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Pokyny pro vypracování: 

V rámci výzkumného úkolu sestrojil student obecný N-hladinový model pro výpočet 

koeficientu zisku a ověřil jeho vlastnosti na jednoduchých hydrodynamických simulacích. 

Dále byl vyvinut model raytracingu, vhodný k modelování jak absorpce laseru, tak i šíření a 

zesilování rentgenového záření. 

1) V rámci diplomové práce otestujte vyvinutou metodu raytracingu na vybraných 

jednoduchých úlohách a ověřte její robustnost a konvergenci.  

2) Otestujte různé numerické metody pro výpočet gradientu hustoty a porovnejte jejich vliv 

na profil absorbované energie laseru.  

3) Implementujte vyvinutou a otestovanou metodu do vybraného hydrodynamického kódu 

[1,2] a porovnejte ji s existujícími metodami absorpce.  

4) Proveďte hydrodynamické simulace přípravy zesilujícího plazmatického prostředí s 

použitím N-hladinového modelu pro určení koeficientu zisku a výsledky porovnejte s 

literaturou [3].  

5) Proveďte simulaci zesilování a propagace rentgenového záření v různých konfiguracích a 

zhodnoťte vlivy difrakce [4,5]. 
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Abstrakt: Hydrodynamické simulace v kombinaci s metodou trasováńı paprsk̊u představuj́ı užitečný

nástroj pro studium plazmatu jako média vhodného k zesilováńı rentgenového zářeńı. Modelováńım

plazmatu vzniklého interakćı laserového impulzu s pevným terčem a následnou simulaćı pr̊uchodu a

ześıleńı rentgenového pulzu t́ımto médiem mohou být źıskány užitečné poznatky o celém procesu. V této

práci je zahrnuta formulace hydrodynamického popisu pomoćı metody konečných prvk̊u a je představeno

rozš́ı̌reńı o modely zesilováńı a absorpce zářeńı pomoćı metody trasováńı paprsk̊u. Důraz je kladen

na metody výpočtu gradientu elektronové hustoty a zhodnoceńı jejich vlivu na modelováńı absorpce

laserového zářeńı. Dále je prezentováno několik úloh testuj́ıćıch implementaci daných model̊u. Konečně

jsou v práci předvedeny výsledky simulaćı zesilováńı rentgenového pulzu na konkrétńım zářivém přechodu

v neonu-podobných iontech v plazmatu vytvořeném interakćı tř́ı laserových puls̊u s pevným železným

terčem. Speciálńı pozornost je věnována difrakci rentgenového pulzu při pr̊uchodu zesiluj́ıćım médiem.

Kĺıčová slova: Lagrangeovská hydrodynamika, trasováńı paprsk̊u, plazmové simulace, metoda konečných

prvk̊u, rentgenový laser

Title:

Hydrodynamic simulations of X-ray generation

and propagation in laser-produced plasmas

Author: Martin Šach

Abstract: Hydrodynamic plasma simulations in combination with ray-tracing methods are a useful tool

to study plasma as a medium suitable for x-ray pulse radiation amplification. Modeling of plasma

produced by a laser beam interacting with a solid target and the subsequent simulation of amplification

of an x-ray pulse traveling through this medium can provide useful insights into the whole process. In this

thesis, a formulation of hydrodynamic description, using the finite element method, is summarized and

additional models of amplification and absorption of radiation using a ray-tracing method are presented.

An emphasis is put on the various electron density gradient calculation methods, influencing the radiation

absorption modeling. Next, several problems are devised to test the implemented models. Finally, results

of an x-ray pulse amplification on a particular lasing transition of neon-like ions in the plasma generated

by three laser pulses interacting with a solid iron target are presented. Special attention is paid to

diffraction of the x-ray pulse traversing the amplifying media.

Key words: Lagrangian hydrodynamics, ray-tracing, plasma simulations, finite elements method,

x-ray laser
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Chapter 1

Introduction

A source of coherent, polarized radiation in the near x-ray or extreme ultraviolet region of

the electromagnetic spectrum is collectively referred to as an x-ray laser. Mastering the

technology of an sufficiently intense x-ray lasers, may bring ground-breaking advances

across a wide range of scientific fields. For example, a great demand for such technol-

ogy is in the microchip industry, where lasers with short wavelength could be used to

manufacture integrated circuits with sub-optical precision and enable more transistors

to be fitted into a given volume through a process called microlithography [1]. Further,

possible applications are in biology and material sciences, where an x-ray laser with good

optical properties can be used to capture images with a previously impossible level of

detail. This can be used for normal imagining as well as for holographic reconstruction

of 3D structures [2]. In material sciences, besides offering a better resolution, the laser

can be used to probe materials opaque for conventional methods. Last but certainly not

least, a femtosecond x-ray pulse can be used to snapshot an image of electron orbitals

during a chemical reaction, bringing new advances in the field of chemistry and physics

alike.

Numerous approaches exist to generation of coherent near x-ray and extreme ultra-

violet radiation. The most notable one is known as the Free Electron Laser (FEL).

Invented by John Madey, it was first demonstrated in the 1970s at the Stanford Uni-

versity. It relies on the fact that an initial random field of spontaneous radiation can

be amplified by an electron beam traveling through an undulator (a device generating a

periodic magnetic field) [3]. Another possibility is to use the high harmonic generation

(HHG) approach where higher harmonic frequencies are generated when a conventional

laser passes through an ionized gas. Most other methods of generating near x-ray or

extreme ultraviolet radiation with good optical and spectral properties facilitate certain

special gain media to amplify the pulse. Among these, is the approach described in this

1
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plasma

Fe target

driving laser

seeding x-ray pulse

x

y

Figure 1.1: The geometry of plasma generated by the driving laser as an amplification
medium for the seeding X-ray pulse as already shown in [6]

work, where a plasma generated by a laser interacting with a solid target is used in place

of the gain medium. This approach is very promising especially when generation of very

short, intense pulses is considered [4].

To fully utilize the potential of the plasma gain medium, usually, a seeding pulse

is used to initiate the amplification. Following this approach, advantageous optical

properties of the seeding pulse (polarization, coherence, etc.) are directly translated to

the amplified pulse. The seeding can be prepared by one of the previously mentioned

methods. The most frequent approach is to use HHG generation, as the driving pulse

producing the plasma can then also serve as a seed [5], after passing through an ionized

gas.

In this work, we are concerned about developing a suitable tool for the optimization

of the plasma gain medium properties. The goal is to achieve the maximal possible

amplification of the seeding pulse. The spatial configuration previously described in [6]

is shown in Figure 1.1. Intense laser (driver), perpendicular to a planar solid target,

produces a plasma, which under the right conditions can serve as the gain medium.

Then a seeding pulse is propagated in the direction parallel to the target surface.

This work is a continuation of the previous efforts [7], [6]. We model the plasma using

a hydrodynamic code formulated in the framework of the finite element method (FEM).

In principle, the formulation of the code can be used for simulations in an arbitrary

number of dimensions (3, 2, 1), but for practical reasons we limit ourselves to 2D in this

work. To account for the interaction with both the driving laser and the seeding pulse

a ray-tracing algorithm is implemented. This algorithm heavily relies on the particu-

lar approximation of electron density gradient. Thus, methods of gradient calculation
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are studied in more detail. Additionally, several models of energy exchange are used,

including a model of x-ray gain coefficient, to simulate the seeding pulse amplification.

In chapter 2, a finite element formulation of the Euler equations is presented and

the discretization scheme is summarized. Additionally, several physical models used

alongside the Euler equations are described, particularly the heat transfer model and

the collisional frequency model. Next, the artificial viscosity and time the stepping

scheme are discussed and the dynamic time step control is reviewed.

The ray-tracing simulations of a laser interacting with a plasma are addressed in

chapter 3. The previously used approach [7] is reviewed and extended by adding a more

fundamental equation, the eikonal equation. The derivation [8] of an analytic solution

to the eikonal equation, in a special index of refraction profile, is shown.

We extend the ray-tracing algorithm with several models of absorption in chapter 4.

There, the previously used models of bremsstrahlung and resonance absorption are de-

scribed and the new model of Fresnel absorption is introduced.

The modeling of the seeding pulse amplification is the main topic of chapter 5, where

a formula for the gain coefficient based on the M level model of energy levels populations

is reviewed.

In chapter 6, the details of several gradient calculation methods are formulated. Then,

the convergence of the methods is evaluated. Finally, it is studied how the gradient

calculation methods influence the ray-tracing algorithm and thus the modeling of laser

absorption.

The rest of the work is devoted to the numerical results. In chapter 7, the robustness

of the absorption method is tested on the simulation previously described in [9]. Next,

several simulations of more realistic plasma conditions are summarized in chapter 8 and

the results are compared with [10]. Lastly, the results of simulations, where diffraction

effects in the x-ray propagation can be observed, are shown and discussed in chapter 9.





Chapter 2

Lagrangian hydrodynamic model

In this chapter, the Euler equations are introduced and models used in the simula-

tions are summarized. The whole description is given in Lagrangian coordinates. In

the Lagrangian description, the coordinates evolve with the simulated plasma, and the

simulated domain changes in time. Proper introduction of the coordinates has been

previously given in [7]. To describe a phenomenon in Lagrangian coordinates the use of

material derivative [11] is typical

dα

dt
=
∂α

∂t
+ v ·∇α, (2.1)

where α is a quatity associated with the fluid and v is the particle velocity in the Eulerian

reference frame.

2.1 Euler equations in Lagrangian coordinates

First, let us briefly address mass conservation. It can be proved [11] that in the La-

grangian coordinates, given a starting volume U and the deformation of this volume

with fluid motion U(t), mass in this volume never changes. Formally, it can be derived

that this may be expressed in differential form as

1

ρ

dρ

dt
= −∇ · v (2.2)

where ρ is the mass density of the fluid. This particular property of Lagrangian coordi-

nates can be used to establish time dependent density ρ(x̃, t) as [11]

ρ(x̃, t) = ρ0(x̃)/
∣∣∣J̃(x̃, t)

∣∣∣, (2.3)

5



Chapter 2 Lagrangian hydrodynamic model 6

where x̃ is the Lagrangian coordinate, ρ0(x̃) is the initial density of the fluid and
∣∣∣J̃(x̃, t)

∣∣∣
is the Jacobian of the coordinate transformation∣∣∣J̃(x̃, t)

∣∣∣ = |∇x̃x|. (2.4)

A two temperature model, following [12] is used, instead of the original one temper-

ature model in [11], meaning electrons and ions have different temperatures. This leads

to the following differential form expression of conservation of momentum

ρ
dv

dt
=∇(σ(e) + σ(i)) (2.5)

where σ(e,i) is a stress tensor dependent on the plasma pressure and viscosity and is

treated separately for electrons and ions.

Another change to the original algorithm [11] is in the equation for conservation of

energy. It is advantageous to set electron and ion temperatures Te and Ti as the main

variables. This avoids a computationally intensive inversion of the equation of state in

simulations following this description. Also, in the two-temperature model an energy

exchange term needs to be added to the equations. Altogether, the equations originating

from the conservation of energy read [12]

ρcVe
∂Te

∂t
= σ(e) :∇v +Gei(Ti − Te)−∇ · (qe + S), (2.6)

ρcVi
∂Ti

∂t
= σ(i) :∇v +Gie(Te − Ti), (2.7)

where cVe, cVi are the electron and iont specific heats, Gei and Gie are the energy

exchange terms, qe is the electron heat flux given by a model of heat transfer and S

is the Poynting vector given by a model of laser absorption. Note that ∇v is a second

order tensor and ”:” denotes a double dot product.

Additionally, an equation giving a description of the stress tensor in terms of state

variables needs to be provided. In the simplest case, this can be facilitated by the

equation of state (EOS)

σ(e,i) = −p(e,i)I, pe = EOS(ρ, Te), pi = EOS(ρ, Ti). (2.8)

A slightly more complicated formula is used if a model of artificial viscosity is considered,

presented further in section 2.5.
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To complete the system of equations and to be able to calculate the Jacobian of the

transformation to the Lagrangian frame of reference, the equation of motion is used

dx

dt
= v. (2.9)

2.2 Semi-discrete formulation of the euler equations

For the plasma simulations, a hydrodynamic code PETE2 [12] is chosen. It is a hydro-

dynamic code developed in the framework of the finite element method (FEM) and uses

discretization described in [11].

Following [11], two discrete finite element spaces are used to obtain a semidiscrete

(discretized only in spatial coordinates) formulation in the framework of the finite ele-

ment method

V(t) ⊂
[
H1(Ω(t)

]d
, with basis

{
ψ(k)

}NV

k=1
, (2.10)

E(t) ⊂ L2(Ω(t)), with basis
{
ϕ(j)

}NE

j=1
, (2.11)

where d is the dimension of the problem and Ω(t) is the moving Lagrangian domain.

Space V is often referred to as the kinematic and space E is usually called the thermo-

dynamic space. Using σ = σ(e) + σ(i) for brevity and using a Galerkin approach [11],

the equation (2.5) is multiplied by a basis test function ψ(k), integrated over the moving

domain and Green’s theorem is applied

∫
Ω(t)

ρ
dvi
dt
ψ

(k)
i dV = −

∫
Ω(t)

σi,j :
∂ψ

(k)
j

∂xi
dV +

∫
∂Ω(t)

niσijψ
(k)
j dS ∀k (2.12)

where n is a normal vector to ∂Ω(t). Assuming the boundary term vanishes and ex-

panding the velocity in the moving basis

vi =
∑
m

v(m)ψ
(m)
i , where v(m) ∈ R (2.13)

a semidiscrete formulation of the momentum conservation equation is obtained

∑
m

dv(m)

dt

∫
Ω(t)

ρψ
(m)
i ψ

(k)
i dV = −

∫
Ω(t)

σi,j
∂ψ

(k)
j

∂xi
dV ∀k (2.14)

Using the notion of a mass matrix this can be rewritten as

MV
dv(1...NV )

dt
= −

∫
Ω(t)

σ :∇ψ(1...NV )dV, (2.15)
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where mass matrix MV is defined as

(MV)mk =

∫
Ω(t)

ρψ(m)ψ(k)dV. (2.16)

Note that v(1...NV ) is a column vector formed by coefficients v(m).

Virtually the same procedure can be performed to obtain a semidiscrete formulation

of the energy conservation equations. The expansion of temperature in the thermody-

namic basis has the following form

Te =
∑
m

T (m)
e ϕ(m) (2.17)

Ti =
∑
m

T
(m)
i ϕ(m) (2.18)

and the semidiscrete formulation is

∑
m

dT
(m)
e

dt

∫
Ω(t)

cVeρϕ
(m)ϕ(j)dV =

∑
m

v(m)

∫
Ω(t)

σ
(e)
i,j

∂ψ
(m)
j

∂xi
ϕ(j)dV+

+
∑
m

(T
(m)
i − T (m)

e )

∫
Ω(t)

Geiϕ
(m)ϕ(j)dV +

∫
Ω(t)

(qe + S)∇ϕ(j)dV ∀j
(2.19)

for electrons and

∑
m

dT
(m)
i

dt

∫
Ω(t)

cViρϕ
(m)ϕ(j)dV =

∑
m

v(m)

∫
Ω(t)

σ
(i)
k,l

∂ψ
(m)
l

∂xk
ϕ(j)dV+

+
∑
m

(T (m)
e − T (m)

i )

∫
Ω(t)

Gieϕ
(m)ϕ(j)dV ∀j

(2.20)

for ions. By defining the following matrices and vector(
M(e,i)
E

)
mj

=

∫
Ω(t)

cVeiρϕ
(m)ϕ(j)dV, (2.21)

(
F(e,i)
E

)
mj

=

∫
Ω(t)

σ
(e,i)
k,l

∂ψ
(m)
l

∂xk
ϕ(j)dV (2.22)

Gie
mj =

∫
Ω(t)

Gieϕ
(m)ϕ(j)dV (2.23)

s(j) =

∫
Ω(t)

(qe + S)∇ϕ(j)dV (2.24)
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the set of equations including the momentum conservation can be rewritten in a compact

algebraic form

MV
dv(1...NV )

dt
= −F · 1(1...NV ) (2.25)

M(e)
E

dT
(1...NE)
e

dt
=
(
F(e)

)T
· v(1...NV ) + Gie

(
T (1...NE)

e − T (1...NE)
i

)
+ s(1...NE) (2.26)

M(i)
E

dT
(1...NE)
i

dt
=
(
F(i)
)T
· v(1...NV ) + Gei

(
T

(1...NE)
i − T (1...NE)

e

)
(2.27)

dx

dt
= v (2.28)

To assemble the matrices and solve the resulting system, a finite element library MFEM

[13] is used.

It remains to address the terms S and qe, specify the stress tensor (including artificial

viscosity), and discretize the equations in time.

2.3 Heat transfer model

Instead of evaluating qe directly and adding it to the equations, an operator splitting

technique similar to the one used in [7] is employed. It enables solving the heat equation

separately

ρcVe
dTe

dt
+∇ · qe = 0. (2.29)

Furthermore, Fourier’s law of heat conduction [14] is used to determine the heat flux qe

qe + κ(T )∇T = 0, (2.30)

where κ(T ) is a heat conductivity coefficient. As the coefficient is a function of tem-

perature κ ∼ Tα the equation is nonlinear. To linearize the problem, the following

transformation [14] is used

T̄e = Tα+1
e , κ̄ =

κ

α+ 1
T−αe , c̄Ve =

cVe

α+ 1
T−α (2.31)

and the equations keep their original form, only using the transformed variables in place

of the original values.

A formulation of these equations in the framework of the finite element method is

used in the code PETE2 to actually solve the heat transfer equation. This is not a trivial

task and is not described in this work. Details are in [14].
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It is possible for the scheme to generate non-physically large heat fluxes. A limit is

thus imposed for the flux to not exceed the free streaming value [14]

|qmax| = flimnekbTevth, (2.32)

where flim is an empirical constant set to 0.1 throughout this work and vth is the thermo-

dynamical velocity coresponding to temperature Te. If the limit is exceeded, the value

of κ is rescaled according to [14]

κ = κmin

(
1,
|qmax|
|qe|

)
(2.33)

and the calculation is repeated.

2.4 Collisional frequency model

An electron-ion collisional frequency model is needed for both the energy exchange terms

in the Euler equations and the refractive index model shown in chapter 3. The classic

Spitzer-Harm frequency model is used as an approximation of collision frequency of high

temperature plasma [15].

νSH =
4

3

√
2π

Ze4mene

(mekbTe)
3/2

ln(Λ), (2.34)

where the electron density ne is obtained form the mass density ρ and mean ionization

state Z

ne =
Zρ

Amu
. (2.35)

Here A is the nucleon number of the given material.

This model is not valid for low temperature plasma as it diverges at T = 0. Especially

at the beginning of a simulation, this is the case and it must be addressed. An improved

model based on the Eidmann approximation is used to resolve the issue. The Eidmann

collision frequency between electrons and phonons is defined as[16]

νef = 2ks
e2kbTi

~2vF
(2.36)

vF =
~ 3
√

3π2ne

me
. (2.37)
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Finally, the resulting collisional frequency is taken to be the harmonic mean of the

previously introduced models

νei =
νSHνef

νSH + νef
. (2.38)

2.5 Artificial viscosity

Artificial viscosity is a diffusion term introduced into the Euler equations to enable the

simulation of shock wave propagation, as the numerical solution would oscillate heavily

otherwise. In the same way, as in the original algorithm, [11] the artificial viscosity is

implemented by introducing an artificial stress tensor σa to the total stress tensor σ (for

both electrons and ions, the superscript is omitted for brevity)

σ(x) = −p(x)I + σa(x). (2.39)

To establish the artificial stress, a symmetrized velocity gradient tensor is defined

ε(v) =
1

2
(∇v + v∇). (2.40)

The tensor has the following spectral decomposition

ε(v) =
∑
k

λksk ⊗ sk, si · sj = δij , (2.41)

where λk are the eigenvalues and sk are the eigenvectors of the tensor. The artificial

viscosity model used throughout this work is what is referred to as type 4 model in the

original work [11]. It is defined in the following way

σa =
∑
k

µskλksk ⊗ sk, (2.42)

where a directional viscosity coefficient µsk plays a key role. A general form of the

coefficient is

µs ≡ ρ
{
q2l

2
s |∆sv|+ q1ψ0ψ1lscs

}
, (2.43)

where q1, q2 are linear and quadratic scaling coefficients, here, both are set to 1, cs is

the speed of sound evaluated at x and ls is known as directional length scale and is

evaluated as [11]

ls = l0
|s|∣∣∣J̃−1s
∣∣∣ . (2.44)

The quantity l0 is the initial scale and can be defined in various ways depending on the

used mesh. For example, for a close to uniform mesh, this can be defined as a global
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constant. The Jacobi matrix is evaluated similar to (2.4) and inverted. In practice, the

inversion is performed on a zone-by-zone basis. Finally, |s| is the directional measure of

compression. It can be shown that for sk this is given by λk [11].

It remains to explain the meaning of terms ψ0 and ψ1. The term ψ1 is called a

compression switch and causes the artificial viscosity to vanish at points in expansion

[11]

ψ1 =

1, if ∆sv < 0

0, otherwise.
(2.45)

The term ψ0 is called a vorticity measure and causes the artificial viscosity to vanish for

purely vortical flows [11]

ψ0 =
|∇ · v|
||∇v||

. (2.46)

2.6 Time stepping scheme and dynamic time step

Similarly to [11] a vector of the main variables is introduced

Y =


v

Te

Ti

x

 (2.47)

The Euler equations in a semidiscrete form (2.25) - (2.28) can be symbolically denoted

as
dY

dt
= F(Y, t), (2.48)

where F is the right-hand side of the equations obtained by inverting the mass matrices

on the left-hand side and moving them to the right-hand side. As noted in [11], standard

discretization schemes such as explicit Runge-Kutta methods can be applied to discretize

the equations in the time domain and obtain a fully discretized scheme.

Although the used hydrodynamic code PETE2 [12] supports multiple discretization

schemes, the scheme of choice for this work is a modified midpoint Runge-Kutta second-

order scheme (RK2-average). The original RK2 scheme has the following form [11]

Yn+ 1
2 = Y +

∆t

2
F(Yn, tn) (2.49)

Yn+1 = Y +
∆t

2
F(Yn+ 1

2 , tn+ 1
2 ), (2.50)
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where ∆t is the dicrete time step. The modification is in the second part of the stepping

scheme where first a new velocity vn+1 is calculated using the original scheme. Then,

instead of using the first half step velocity vn+ 1
2 to evaluate the rest of the equations,

an averaged velocity is used

v̄n+ 1
2 =

vn+1 + vn

2
. (2.51)

It turns out that this particular scheme is significantly more stable than the original

scheme. For more details see [11].

Finally, the time step evaluation needs to be addressed as it is not constant through-

out the simulation. To facilitate the automatic time step control, several criteria for

time step repetition are employed.

The first and most basic criterion is the evaluation of time step estimate

τn = min
x
α

(
cs(x)

hmin
+ αµ

µs(x)

ρ(x)h2
min(x)

)−1

, (2.52)

where hmin(x) is the minimal singular value of Jz(x̃) (Jacobian of the transformation in

the discrete zone z), cs is the speed of sound, ρ is density and α, αµ are CFL constants

in this work set to 0.5 and 2.5 respectively. The repetition condition has the following

form: given a state Yn evaluate the state Yn+1 using ∆t and corresponding time step

estimate τ , if ∆t ≥ τn trigger the time step repetition.

The second criterion is on the specific internal energy change. Even though specific

internal energy e as defined here [11] is not considered a main variable in this work, it

is still evaluated during the simulation. It is then used to specify the following

εn = max
x

en(x)− en−1(x)

en(x)
. (2.53)

The repetition is triggered when the value of εn exceeds a certain threshold δ. Usually

the value δ = 0.7 is used. This ensures that the energy increase in a single zone due to

laser absorption is not exceedingly high during the simulation. It also makes sure that

the laser is absorbed in an appropriate amount of time steps sampling its intensity time

profile well enough.

The last criterion is purely practical. When during the simulation an invalid state

occurs, such that the solution of the system of equations diverges, repetition of the step

is triggered, in hope it resolves the issue.

If one of the conditions is met, the time step is set to ∆t = β1∆t and the whole

procedure of time stepping and estimating τn is repeated. On the other hand, if none of

the conditions is met, and ∆t ≤ γτn, the time step is increased according to ∆t = β2∆t.
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In any other case the simulation continues with an unmodified time step. The constants

are set following [11] to β1 = 0.85, β2 = 1.02 and γ = 0.8.



Chapter 3

Ray-tracing approach to laser

simulations

In this chapter, the ray-tracing approach to modeling the laser propagation in the plasma

is described. The aim is to enable both, the driving, and the x-ray pulse simulations.

The models and conclusions from previous work [6] are covered and important details,

concerning the inclusion of the models to the hydrodynamic model, are added. Also,

analytic solutions of the ray trajectories are found, which serves for a later reference.

3.1 Geometric optics approximation

The aim here is to include a model of radiation propagation in a hydrodynamic sim-

ulation. Different approaches are possible in general, but the ray-tracing approach is

chosen in this work for its generality and ability to model a wide range of plasma pro-

cesses. This approach relies on the fact, that the plasma characteristic scales are large

compared to the wavelength of the radiation λ. In this approach, it is assumed that a

geometric optics approximation can be used [6], where the wave nature of the radiation

is neglected and it is expected that the radiation propagates in the form of rays. In this

approximation, laser radiation is described as a set of independent rays, each carrying

its share of power of the original laser beam.

A single ray is then fully described by the solution of the ray equation [17]

d

ds

(
n

dr

ds

)
=∇n, (3.1)

where r describes the trajectory of the ray, n is the refraction index of the plasma and

s is a parameter defined along the trajectory of the ray.

15
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Another, more fundamental description of radiation propagation is the eikonal equa-

tion [8]

|∇S|2 = n2, (3.2)

where S is the so-called eikonal. Eikonal S is a scalar function of r and its definition

originates from the following description of a harmonic wave [18]

E = E0 exp
(
ik0S(r/c)

)
exp(−iωt), (3.3)

where E is the electric field, E0 is slowly varying amplitude, k is the wave number, ω is

the angular frequency and t is time.

It can be shown that the equation (3.1) can be derived using the equation (3.3). Both

equations are used in this work to devise special case solutions for the ray trajectory.

3.2 Refractive index model

The mode of refractive index of the plasma is a key part of simulations using ray-tracing

to calculate the effects of radiation propagation. It represents a connection between the

state variables of the plasma and the index of refraction. In this and the previous works

[6], the model of cold plasma taken from [9] is used. It states that the permittivity of

the plasma is

ε = 1−
ω2

p

ω2 + ν2
ei

+ i
νei

ω

ω2
p

ω2 + ν2
ei

, (3.4)

where ω is the radiation angular frequency, νei is the collisional frequency (2.38) and ωp

is the frequency of electron plasma oscillations

ωp =
4πe2ne

me
. (3.5)

Given the permittivity and assuming permeability µ ≈ 1, the refractive index is approx-

imated as follows [9]

n = Re
(√
µε
)
≈ Re

(√
ε
)
. (3.6)

3.3 Ray-tracing algorithm

The principle of the algorithm stems directly from the ray equation (3.1). It can be easily

shown that for a constant n, the trajectory of a ray resulting from the ray equation is a

straight line.
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node n

interface

cell c

Figure 3.1: Representation of 2D domain decomposition into quadrilateral cells, nodes
and interfaces between cells [6]

Moreover, using the ray equation on an interface of two environments with different

constant indexes of refraction n1, n2, the well known Snells’s law can be derived [9]

sin θ1n1 = sin θ2n2, (3.7)

where θ1 is the angle of incidence and θ2 is the angle of refraction. Both angles are mea-

sured from the normal to the interface in the respective direction. As previously pointed

out [6], from a computational point of view, it is rather advantageous to reformulate

Snell’s law in the following the vector form [19]

d2 =
n1

n2
d1 +

n1

n2
γ −

√
1−

(
n1

n2

)2(
1− γ2

)n, (3.8)

where

n =

n1, if − n1 · d1 > 0

n2 otherwise,
(3.9)

γ = −n · d1. (3.10)

Here, n1 and n2 are normal unit vectors to the interface with opposite directions, d1 is

the unit vector in the direction of incidence and d2 is the unit vector of the ray direction

after refraction.

The algorithm then relies on a decomposition of the computational domain into

cells with constant values of thermodynamic variables, as schematically shown for a 2D

domain in Figure 3.1. In finite difference schemes, the procedure is straightforward as

the domain is naturally divided into cells with straight boundaries. To obtain such zones

in the finite element problem formulated in chapter 2, the 0th order elements in L2(Ω(t))



Chapter 3 Ray-tracing approach to laser simulations 18

and 1st order elements in
[
H1(Ω(t)

]d
are necessary. In 2D triangular or quadrilateral

cells are usually used both having its advantages and disadvantages. Hydrodynamic

code PETE2 [12] is written with quadrilateral cells in mind, leading to the usage of

quadrilateral cells throughout this work, except for a simple test case in section 3.4.

The choice of finite elements significantly limits the advantages the finite element

method over a finite difference scheme. A possible solution is to use the finite elements

of an arbitrary order to perform the hydrodynamic part of the simulation and then

project the appropriate variables to a much finer mesh of the 0th order, respectively 1st

order elements. This ensures that a high order of accuracy is maintained throughout

the simulation and enables more flexibility in terms of elements geometry. This work

paves the way to this projection by implementing the algorithm for low order elements

in a finite elements hydrodynamic code.

We already fully described the implementation of the ray tracing algorithm in [6].

To summarize, finding a trajectory of a ray in a decomposed computational domain is

performed in the following steps:

1. An intersection of the ray with the domain boundary is found.

2. A cell adjacent to the intersection is found and the ray is propagated as a straight

line throughout the cell. A new intersection at the interface on the opposite side

of the cell is found.

3. In this point, electron density gradient is calculated using linear interpolation from

nodes. Calculation of nodal gradient is described in chapter 6.

4. Snell’s law is used to determine the new direction of the ray. Here, the electron

density gradient is used instead of the normal unit vector to the face.

This is a key part of the algorithm and motivates the study of gradient calculation

methods.

5. The new cell, adjacent to the interface, is chosen based on the direction and the

algorithm either stops if a domain boundary is reached or returns to step 2.

3.4 Integral solution of the ray equation

To obtain a reference solution of the ray equation, a special coordinate system, density

profile, and index of refraction model are specified. This is done in such a way that

the ray equation reduces to a simple set of ordinary differential equations that can be

numerically integrated using a high-order integration method.
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A combination of coordinates (θ, φ, n) originally described in [9] and Cartesian coor-

dinates is used. Using standard xyz Cartesian coordinates, θ is the angle between the

z-axis and the ray, φ is the angle between the ray and x-axis in the xy plane. This leads

to the following form of directional derivative along the ray [9]

d

ds
=

dθ

ds

∂

∂θ
+

dφ

ds

∂

∂φ
+

dn

ds

∂

∂n
. (3.11)

As has been previously shown in [9][6], this leads to a system of ordinary differential

equations. The system is further simplified by looking for a solution in the yz plane only

and thus eliminating φ from the equations. The final form of the ordinary differential

equations is

d

ds


y

z

θ

 =


sin θ

cos θ
1
n

(
cos θ ∂n∂y − sin θ ∂n∂z

)
 (3.12)

At this point the special setting of electron density profile and index of refraction

model plays a major role. Considering the density profile to be [6]

ne = ncrit
e

(
1− z2

)
(3.13)

and using the model of index of refraction

n =

√
1− ne

ncrit
e

(3.14)

the resulting profile of index of refraction is simply

n = ±|z|. (3.15)

The reason to also specify a density profile, and not directly the index of refraction

profile, is to properly test the implementation of the method as the algorithm takes ne

as an input variable and calculates the index of refraction based on model (3.4). By

setting the collision frequency to 0 in (3.4) the simplified model (3.14) is obtained and

no special case needs to be treated in the code.

The direct integration was performed in [6] for various initial conditions (y, z, θ) =

(0.01,−1, θ0), where θ0 is 0.1, 0.2, 0.25 and 0.5 on a randomly perturbed triangular mesh

with total of 400 cells. It was compared with results obtained by using the algorithm

described in section 3.3. The comparison is shown in Figure 3.2 for θ0 0.1 and 0.2 and

in Figure 3.3 for θ0 0.25 and 0.5.
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Figure 3.2: Ray tracing compared with direct integration for initial angle of incidence
θ0 equal to 0.1 and 0.2 rad on a randomly perturbed triangular mesh with total of 400

cells [6]

Figure 3.3: Ray tracing compared with direct integration for initial angle of incidence
θ0 equal to 0.25 and 0.5 rad on a randomly perturbed triangular mesh with total of 400

cells [6]
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We already analyzed the results in [6] and we have drawn the following conclusions:

”It can be seen that the ray-tracing follows the directly integrated solution until a near

effective critical density given by

ne(zt) = ncrit
e (2 sin θ0 − sin2 θ0). (3.16)

at position

zt = 1− sin θ0, (3.17)

is reached. Here, the conditions for total reflection given by negative radicand in equation

(3.8) are met and the ray makes a sharp turn. This is a known effect of this type of

method. The results are similar to those in [9].”.

3.5 Special case analytic solutions of the eikonal equation

It turns out that the eikonal equation (3.2) can be reformulated in such a way that its

analytic solutions are apparent for particular profiles of index of refraction [8]. Eikonal

defined in (3.3) is related to the local wave vector by k = ω∇S [8]. The group velocity

of the radiation can then be expressed using the eikonal

vg =
∂ω

∂k
= c∇S. (3.18)

By differentiating the group velocity with respect to time and using the equations

(3.2), (3.18) a new equation [8]

dvg
dt

=
d∇S

dt
= c
(
vg ·∇

)
(∇S) = c2(∇S ·∇)(∇S) =

c2

2
∇
(
|∇S|2

)
=∇

(
c2

2
n2

)
(3.19)

is obtained. This equation is called the equation of motion of a ray as it has the same

form as an equation of motion for a unit mass particle in potential − c2

2 n
2 and directly

describes the trajectory of the ray in relation to n

d2r

dt2
=∇

(
c2

2
n2

)
. (3.20)

Solutions for a particular right-hand sides of this equation are very well known. Two

of them are demonstrated here.
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3.5.1 Analytic ray trajectory in a constant electron density gradient

Using the equation (3.14) for the index of refraction, the equation of motion of the ray

reads
d2r

dt2
= − c2

2nc
∇ne. (3.21)

We will look for a trajectory of a ray initially propagating perpendicular to the gradient

in the plane of propagation. We set the gradient to be in the x direction ∇ne = (Gx, 0).

Initial position of ray is (x0, y0) and initial velocity of the ray is v0 = (0, v0y) = (0, cn0).

Here n0 is the initial index of refraction

n0 =

√
1− ne0

nc
, (3.22)

where ne0 is the initial electron density. We obtain two equations

d2x

dt2
= − c2

2nc
Gx, (3.23)

d2y

dt2
= 0. (3.24)

The equations are solved by integration from the initial conditions. After eliminating

time from the solution, we obtain the trajectory of the ray

x(y) = x0 −
Gx

4(nc − ne0)
(y − y0)2. (3.25)

It can be recognized that (3.25) describes a parabola.

3.5.2 Analytic ray trajectory in a quadratic electron density

A linear index of refraction is obtained in the case of a quadratic density gradient.

Substituting in (3.15) and looking for a solution for z < 0 leads to a quadratic potential

and nontrivial equation for z(t)
d2z

dt2
= −c2z. (3.26)

The minus sign originates from the fact that the index of refraction is in this case a

decreasing function of z. The solution is given by

z(t) = A cos
(
B̃t
)
, (3.27)

where the constantsA andB are determined from the initial conditions. As the equations

for other coordinates have zero right hand side, the solution for y is y(t) = C̃t+D. For
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particular initial conditions the solution is in the yz plane. The trajectory is then

z = A cos(By + C), (3.28)

where the constants A, B, C are determined from the initial conditions.





Chapter 4

Absorption models to simulate

laser-plasma interaction

In the previous chapter, the geometric optics approximation is introduced and the pro-

cedure for finding the ray trajectories is discussed. But this is not the whole picture of

plasma-laser interaction. For the algorithm to be useful, a model of the radiation power

exchange with the plasma needs to be specified. To simulate a laser in a single time

step of the simulation, a finite number of rays is constructed an appropriate power is

assigned to each of them. The power exchange is then calculated for each of the rays

independently. This chapter describes the models and approximations used to simulate

the power exchange.

4.1 Associating power to the rays

The goal of this chapter is to describe the source term −∇ · S in the equation (2.6).

Similar to the heat transfer model described in section 2.3, an operator splitting tech-

nique [7] is employed. The exchange of power with the laser is evaluated solving only

the equation

ρcVe
dTe

dt
= −∇ · S. (4.1)

Instead of formulating the problem in the framework of the finite element method, the

right-hand side is directly approximated in the mesh cells via ray-tracing.

Usually, the laser is described in terms of its intensity and direction (or it is possible

to obtain such description). We need to approximate the energy flux entering each of

the cells of the discretized domain. As the flux is needed, it is sufficient to associate

power to each of the rays.

25
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To obtain the initial condition, it is assumed that the laser source is bounded in space.

In 3D, this means the source is a finite area and in 2D the source is a line segment. The

source is then covered by a set of rays. At any given time, each ray r covers a finite area

∆ar and the associated power is

Pr(t) =

∫
∆ar

I(r, t)dr. (4.2)

In practice, it is assumed (although not necessary) that the laser intensity can be sepa-

rated into a spatial and temporal profile

I(r, t) = It(t)Ir(r). (4.3)

The time profile is usually the Gaussian function specified by ∆t
FWHM, time of arrival

t0 and maximum intensity Imax

It(t) = Imax exp

−4 ln(2)
(t− t0)2(
∆t

FWHM

)2
, (4.4)

Spatial profiles used throughout this work are Gaussian or super-Gaussian. As the

simulations are performed in 2D, a one dimensional function over the laser source line

segment must be specified. Let x denote the coordinate on the line segment. Then the

super-Gaussian function has the following form

Ir(r) = Ix(x) = exp

−((x− x0)2

2σ2

)P, (4.5)

where x0 is the position of maxima, P is the super-Gaussian exponent and σ2 is its

variance, which can be expressed in terms of ∆s
FWHM as

σ2 =

(
∆s

FWHM

)2
8(ln 2)

1
P

. (4.6)

The spatial integration is performed numerically by the trapezoidal rule.

4.2 Model of absorption via inverse bremsstrahlung

An effect contributing the most to the energy exchange is inverse bremsstrahlung. We

already described the process in [6] and the model is taken from [9]. In summary,

bremsstrahlung is a process through which electrons emit radiation when deflected by

ions (the word originates from German and means braking radiation). The inverse
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process to this is called inverse bremsstrahlung and describes an electron absorbing a

radiation photon.

First, the radiation transfer equation [1] is taken, to estimate the effect of bremsstrahlung

dI(r, t)

ds
= j(r, t)− k(r, t)I(r, t), (4.7)

where j is the so-called emissivity coefficient, k is an absorption coefficient of the media

and s is a parameter in the direction of Poynting vector of the radiation. First, we

neglect emissivity, as we are interested in modeling an absorption process. A solution

for a single cell with a constant values of the thermodynamic quantities is sought, thus, a

constant value of the absorption coefficient is assumed. To obtain an equation for power

Pr, of the ray r, we integrate over the ray area ∆ar, perpendicular to the ray trajectory∫
∆ar

dI(s, xp, yp, t)

ds
dxpdyp = −

∫
∆ar

kI(s, xp, yp, t)dxpdyp, (4.8)

dPr(s, t)

ds
= −kPr(s, t). (4.9)

The total power deposited ∆Pr = (−∇ · S)c by a single ray in the cell c is obtained by

integrating over the parameter s in the cell

(−∇ · S)c = P in
r (1− exp(kl)). (4.10)

Here, l is the distance traveled by the ray r in the cell c and P in
r is the power of the ray

when entering the cell.

Finally, the relation from [9] for bremsstrahlung absorption coefficient k = kib is used

kib =
2ω

c
Im
{√

ε
}
, (4.11)

where ε is the permitivity (3.4).

4.3 Resonant absorption model

An important effect, attributed to the wave nature of the radiation, is a resonance

near critical density. The effect is maximal for a p-polarized wave. The p-polarization

means the radiation is polarized parallel to the plane of incidence. On the other hand,

s-polarization is the term for radiation polarized perpendicular to the plane of incidence

and no resonance is present in that case [20].
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A model estimating the power exchange is originally developed in [20]. We imple-

mented this model in [6] using assumptions from [9]. The model is used when a total

reflection occurs (the radicand is negative in (3.8)). The power exchange is estimated

based on the resonance of the wave over a characteristic length Lchar. The length is

devised from the electron density gradient at the point of total reflection |∇ne|crit and

the model [20] estimates that the exchanged power of the ray r is absorbed in the cell

c, through which the ray passes before reflecting

(−∇ · S)c = aP in
r , a = 18q

Ai3(q)∣∣Ai′(q)
∣∣ , (4.12)

q =

(
ω

c
Lchar

) 2
3(

1− (d1 · n)2
)
, (4.13)

Lchar =
ncrit

e

|∇ne|crit
, ncrit

e =
meω

2

4πe2
. (4.14)

Here, Ai is the Airy function, d1 is the unit direction of the incident ray, and n is the

normal to the interface as defined by (3.9). Here, it should be emphasized that n is

obtained from the electron density gradient, instead of the unit vector in the direction

of normal to the interface, as was already pointed out in section 3.3.

To avoid the computationally intensive evaluation of the Airy function an approxi-

mate relation for the coefficient a introduced in [9] is used

a =
π

2
q

exp
(
−4

3q
3
2

)
q + 0.48

(4.15)

4.4 Model of absorption based on Fresnel equations

Another model applied in this work is based on the Fresnel equations at an interface of

two different optical media. The Snells’s law (3.8) for a perpendicular incidence of ray

(γ = 1) never produces a negative radicand even for index of refraction n2 close to zero

and thus the total reflection is never triggered. In reality, there is always a refracted

and reflected part of the radiation until the conditions are met for the total reflection.

In ray-tracing, it is assumed that the reflection is negligible and that most of the power

is carried by the refracted ray. Thus, only the refracted ray is followed. This may lead

to a ray penetrating through a critical density and propagating into the region, where

no radiation is present, as it is already absorbed or reflected in reality. This is a concern

mainly at the beginning of the simulation, where the irradiation is nearly perpendicular

and the density profile is steep.
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To address the issue, there is another numerical condition implemented that triggers

the ray reflection if it crosses a cell with electron density ne higher than ncrit
e defined in

(4.14) and the Fresnel model of absorption is employed.

The Fresnel equations determine the ratio between electric amplitudes of the refracted

and reflected waves [17] and consequently the amount of power reflected by squaring the

electric fields [18]. For s-polarization, the ratio of total power reflected is

Rs =

∣∣∣∣∣∣∣∣∣
n1γ − n2

√
1−

(
n1
n2

)2
(1− γ2)

n1γ + n2

√
1−

(
n1
n2

)2
(1− γ2)

∣∣∣∣∣∣∣∣∣
2

(4.16)

and for p-polarization the ratio is

Rp =

∣∣∣∣∣∣∣∣∣
n1

√
1−

(
n1
n2

)2
(1− γ2)− n2γ

n1

√
1−

(
n1
n2

)2
(1− γ2) + n2γ

∣∣∣∣∣∣∣∣∣
2

. (4.17)

The identical notation as in (3.8) is used. It is further assumed that when the model is

triggered by the density condition, all the refracted power of the radiation is absorbed

locally. For example, in the case of p polarization, the absorbed power of ray r in cell c,

where the condition was triggered, is

(−∇ · S)c = (1−Rp)P in
r . (4.18)





Chapter 5

X-ray gain coefficient model

One of the goals of this work is to estimate the amplification of a seeding x-ray pulse

propagating through a plasma created by a driving laser interacting with a solid target.

The idea is to use the same developed ray-tracing algorithm for both, the simulation of

the driver and the seed. To be able to simulate the seeding pulse power, we implemented

a gain coefficient model [7], [6] that connects the thermodynamic quantities of the plasma

to its lasing properties.

5.1 Description of the model

Similarly to the model of inverse bremsstrahlung, the radiation transfer equation (4.7)

is taken as a starting point for the derivation. Following the same assumptions as in

chapter 4, an equation (4.9) for ray power is obtained. The process of laser amplification

increases the laser power. This is reflected in the equation by a negative absorption

coefficient k. It is a common practice [1] to introduce a new coefficient

g = −k (5.1)

called the gain coefficient. The equation for x-ray pulse power in a cell then has an

analogous form to (4.9)
dPr(s, t)

ds
= gPr(s, t). (5.2)

Solving the equation, power radiated away by the plasma in the single ray r from the

cell c is estimated

(∇ · S)c = P in
r (exp(gl)− 1). (5.3)

31
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The rest of this section summarizes the estimation of g based on thermodynamic vari-

ables of the plasma as developed in [6].

We are interested in the plasma lasing on a specific transition, identified as an optimal

candidate for the maximal possible power gain values by [21], [10]

2p5
1/23s1/2, J = 1 −→ 2p5

1/23p1/2, J = 0 (5.4)

in neon-like ions. These ions are present in the plasma created by the interaction of a

laser with a solid target. Multiple options exist for the target material, for example,

[21] studies germanium as a possibility. In contrast, following [10], this work is mostly

interested in the use of iron target, although in general the model is material independent

and a calculation in germanium is used to verify the model. The wavelength of the

transition in iron is λ = 25.5 nm. The jj-coupling notation used in (5.4) follows [22].

The gain coefficient is calculated as [1]

g =
πe2

cme
g1f12

(
N2

g2
− N1

g1

)
Φ(ν). (5.5)

Here, g1f12 is product of the lower level degeneration and oscillator strength, it is usually

called the weighted oscillator strength and treated as a single value. Fractions, N2
g2

and N1
g1

are population densities of the upper and lower levels and g2, g1 are the degenerations

of the levels [22]. Level population density means density of ions with the electron

configuration having specific energy. The function Φ(ν) is a spectral line profile.

5.1.1 Spectral line broadening

A common simplifying assumption is that the spectral line profile is a rectangular func-

tion [1]

Φ(ν) = Φ =
1

∆ν
, (5.6)

where ∆ν is the width of the spectral line.

A line broadening due to two effects is taken into account. First, the Doppler broad-

ening is estimated. The spectral lines broaden due to the fact that the plasma has

non-zero temperature and the ions are moving with the thermal velocity. Relative to an

observer, the motion towards or away results in a Doppler blue or redshift. The total

Doppler line broadening is estimated to have a gaussian profile with FWHM [1]

∆νD
FWHM =

1

2
√

ln 2
ν

√
2kbTi

muc2
, (5.7)
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where Ti is the ion temperature.

The second effect taken into account is the broadening due to collisions. If an ion

undertakes a collision just as it emits a photon, the process can be interrupted, effectively

reducing the characteristic time of the process and thus increasing the uncertainty in

energy. This leads to the line broadening characterized by a Lorentzian curve profile.

The FWHM of this profile is estimated to be [1]

∆νL
FWHM = αn2

eT
−1/2
e . (5.8)

Altogether, we assume that photons can be both Doppler shifted and collision shifted in

the same frequency direction, leading to the following rectangular spectral line profile

Φ(ν) =
1

∆νD
FWHM + ∆νL

FWHM

. (5.9)

5.1.2 Population inversion and weighted oscillator strength

The weighted oscillator strength g1f12 and level populations remain to be determined.

A Flexible Atomic Code (FAC) [22] is used to perform the necessary calculations. The

weighted oscillator strength of a transition can be directly measured, and is a tabulated

value provided by the code for a given transition. A more complicated procedure based

on solving a set of rate equations is needed to obtain an estimate of population inversion.

For an energy level l, the population and depopulation of the level occurs due to

various physical processes. Using the same approximation as in the previous work [6],

collisional excitation, collisional deexcitation and radiative deexcitation are assumed to

be the dominant processes governing the population state. Other processes, such as,

ionizing collisions, photo-recombination, photoexcitation, photoabsorption and three-

body recombination are not included in the calculation. The level population Nl is then

described by the the rate equation

dNl

dt
=
∑
m>l

NmAml −Nl

∑
m<l

Alm +
∑
m

NmCml −Nl

∑
m

Clm, (5.10)

Radiative deexcitation from upper levels contributes by an increment governed by an

Einstein coefficients Aml. On the other hand, radiative deexcitation from level l to

lower levels depopulates the level and is governed by the same Einstein coefficinet only

evaluated for different transitions Alm. The coefficient is represents the probability

specific to each transition and is not a function of thermodynamic quatities. It can be

tabulated and is provided by the FAC [22]. Similarly coefficients Clm, Cml, populate and

depopulate the level through collisional excitation and deexcitation. These coefficients
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are governed by the collisional cross-section 〈σlmv〉 and electron density [6]

Clm = ne〈σlmv〉. (5.11)

Assuming a Maxwellian distribution of the velocities, the cross-section can be evaluated

based on the electron temperature Te [6].

Given M energy levels, a system of equations is obtained. The quasi-static approxi-

mation [1] is used to transform the system to a set of algebraic equations

dNl

dt
= 0, i = 1, 2, . . . ,M. (5.12)

Adding the condition on the total density of neon-like ions

N1 +N2 + · · ·+NM = fani, (5.13)

the system has a unique solution. Here fa is the fraction of ions that are neon-like

(fractional abundance) and ni is the total ion density of the plasma.

Practically, calculating the values of Einstein coefficients is performed using the FAC

[22]. The system of rate equations is formed and solved also by the FAC, which obtains

the thermodynamic variables of the plasma as an input.

5.2 Verification of the model

In [23], the FAC was used to determine the relative energy level populations at 2p5
1/23p1/2, J =

0 in neon-like germanium for electron densities ranging from 1020 cm−3 to 1023 cm−3 and

electron temperatures 650 eV, 850 eV, . . . , 1850 eV. As the method of the populations

calculation was the same as described in this work, it can be directly compared. This has

been already done in the previous work [6]. The result is summarized here in Figure 5.1.

Where the relative populations in neon-like germanium ions are shown as a function of

electron density for various temperatures. The results are the same as in [23] and it

can be concluded that the implementation of the energy level population calculation is

correct.

5.3 Predictions of the model

In principle, the gain coefficient model can be thought of as a function of two variables,

temperature T and electron density ne. This is a simplification because the model
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Figure 5.1: Relative populations N of 2p51/23p1/2, J = 0 in neon-like germanium at

various temperatures Te as a function electron density ne [6]

actually uses two temperatures, the electron temperature Te and ion temperature Ti.

For sake of plotting the gain coefficient as a function of two variables, the temperatures

are set equal to the one temperature T . Furthermore, the ion density ni is also needed,

but it can be easily calculated following the fact that we are dealing with neon-like ions

in quasi-neutral plasma.

We calculated the gain coefficient using the transition of interest (5.4) in the previous

work [6] for ne ranging from 1019 cm−3 to 1023 cm−3 and T between 100 eV and 850 eV.

The result is depicted in Figure 5.2

As already stated in [6], the gain coefficient maximum is around 9 cm−1 for ne =

7.5× 1020 cm−3 and T = 421 eV. The fact that there is an optimal value is supported by

the observation, that with temperature rising over a certain threshold, the abundance of

neon-like ions decreases. There is also an optimal range of densities where the collisional

excitation and collisional deexcitation is just right for the inversion of the population

to exist. This is shown in Figure 5.3, where the relative populations of the upper and

lower levels as a function of ne at optimal T = 421 eV are shown.
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Figure 5.2: Gain coefficient as a function of temperature T and electron density ne
originally calculated in [6]
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Figure 5.3: Population at the upper and lower energy levels as a function of ne at
T = 421 eV [6]



Chapter 6

Gradient calculation methods

In this chapter, three distinct methods of gradient calculation are presented. Further-

more, a simple problem with a known analytic solution is devised and the convergence

of the introduced methods is studied.

A gradient at a specific point at an interface of two cells is required for the ray-tracing

algorithm. A linear interpolation is used to obtain the gradient at this point using a

gradient calculated in nodes. This approach is better than calculating the gradient in

cells, where a discontinuity in the gradient at the interface arises. Thus, the goal of the

methods is to calculate the gradient at nodal points of the mesh.

The first method, which uses Green’s theorem over an appropriate stencil, is taken

from [24]. The second method is based on a finite element formulation of the problem

and the third method utilizes the least-squares formulation presented in [25].

6.1 Method using the Green’s theorem

The equations taken from [24] for the first partial derivative of a function u are used.

This corresponds to the method of the support operators for cell-valued scalar functions

and node-valued vector functions. It is a direct consequence of the Green’s theorem

applied to the scalar function u(x, y) that

∂u

∂x
= lim

S→0

∮
∂S udy

S
, (6.1)

∂u

∂y
= − lim

S→0

∮
∂S udx

S
, (6.2)

where S is a given region and ∂S its boundary.

37
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u1

u4

u3

u2

Figure 6.1: Integration stencil for gradient calculation using Green’s formula

In the case of u defined in cells, S can be chosen in such a way that the integrals on

the right-hand side of (6.1), (6.2) can be evaluated. The task is to evaluate the gradient

at the node denoted by lower index n. The discrete stencil depicted in Figure 6.1

connecting the adjacent nodes is considered. Therefore, ∂S is a union of four sides.

Furthermore, the value of function u is constant along these sides and corresponds to

the cell values of the function. Also, the normal direction to each of the sides can be

simply analytically evaluated. Using these considerations, a discrete formula for the

nodal gradient is obtained. See [24] for detailed derivation.

(∇u)x

∣∣∣∣
n

=

(
(y2 − y1)u1 + (y3 − y2)u2+

+(y4 − y3)u3 + (y1 − y4)u4

)
1

Sn
(6.3)

, (∇u)y

∣∣∣∣
n

=−
(

(x2 − x1)u1 + (x3 − x2)u2+

+(x4 − x3)u3 + (x1 − x4)u4

)
1

Sn
. (6.4)

Here, x1 . . . x4 and y1 . . . y4 are the corresponding coordinates of the nodes neighbouring

the node n and u1 . . . u4 are the values of the function u in the adjacent cells as shown

in Figure 6.1.

The area Sn can be evaluated as a sum of areas of the four triangles formed by the

stencil and the node n. This is the approach used in this work. Alternatively, it can be

calculated as

Sn =
1

2

S1 + S2 + S3 + S4

4
, (6.5)

where S1Ṡ4 are the areas of the adjacent cells. This is advantageous in case that the cell

areas are already pre-computed during the simulation.
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6.2 Method based on the finite element formulation

Within the finite element formulation, the goal is to find a function G such that

G =∇u, (6.6)

where u is a given smooth scalar function. Using the notation introduced in section

2.1, the equation is multiplied by a function ψ(k), integrated over the domain Ω and

then Green’s theorem is applied. Note that Gi, ψ
(k)
i is the i-th component of G, ψ(k)

respectively

∫
Ω
Giψ

(k)
i dV =

∫
Ω

∂u

∂xi
ψ

(k)
i dV = −

∫
Ω
u
∂ψ

(k)
i

∂xi
dV +

∮
∂Ω
uψ

(k)
i nidS, (6.7)

where ∂Ω is the domain boundary and ni is the i-th component of the normal vector at

∂Ω. For the finite element formulation expansions to the bases functions are made

Gi =
∑
j

g(j)ψ
(j)
i where g

(j)
i ∈ R, ψ(j) ∈ V (6.8)

u =
∑
j

r(j)ϕ(j) where r(j) ∈ R, ϕ(j) ∈ E (6.9)

Note that variables associated with the concrete test function are denoted using an upper

index (eg. the coefficient associated with a concrete test function in function expansion).

Using the Einstein notation, the weak formulation reads

∑
j

g(j)

∫
Ω
ψ

(j)
i ψ

(k)
i dV = −

∑
j

r(j)

∫
Ω
ϕ(j)∂ψ

(k)
i

∂xi
dV +

∑
j

r(j)

∫
∂Ω
ϕ(j)ψ

(k)
i nidS ∀k.

(6.10)

This, given the coefficients r(j), where j ∈ 1 . . . N , results in a linear system of N

equations for the coefficients g(j)

Mj,kg
(j) = b(k), (6.11)

where Mj,k =
∫

Ω ψ
(j)
i ψ

(k)
i dV and b(k) is the right hand side of the equation (6.10). In

practice the process of assembling M and b and finding the solution is performed using

MFEM [13], a lightweight scalable library for finite element methods.
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6.3 Method based on the least-squares formulation

As described in [25], consider the expansion of the function u around node n

u = un +
∂u

∂x

∣∣∣∣
n

(x− xn) +
∂u

∂y

∣∣∣∣
n

(y − yn), (6.12)

where xn and yn are the coordinates of the node n. The values of u are defined in the

cell centroids. Standard approach [26] is to perform the reconstruction is a cell, where

the value un is known. Here we want to obtain the gradient in a node n.

To find the reconstruction in the node n a method from [25] is used. The equation

(6.12) is evaluated in the centroid of one of the cells c adjacent to the node n. There

are three unknowns: un, ∂u
∂x

∣∣∣
n

and ∂u
∂y

∣∣∣
n
. To evaluate the gradient at node n, at least

three adjacent cells are necessary to form a system of equations. For exactly three

adjacent cells, this is equivalent to defining a plane given the three values in adjacent

cells centroids and finding its slope. More than three adjacent cells taken into account

lead to an overdetermined system of equations that can be solved in the least-squares

sense. Following [25], the weighted least squares formulation is used

Ax = b (6.13)

A =



w1 w1(x1 − xn) w1(y1 − yn)
...

...
...

wc wl(xc − xn) wl(yc − yn)
...

...
...

wN wN (xN − xn) wN (yN − yn)


, x =


un
∂u
∂x
∂u
∂y

 , b =



w1u1

...

wcuc
...

wNuN


, (6.14)

where the weights wc are chosen according to [25]

wc =
1(

(xc − xn)2 + (yc − yn)2
)P/2 . (6.15)

The exponent P = 0.25 is used, following the original work [25]

The system is solved in two steps. First, a QR factorization of the matrix A is

performed using the Householder transformation [27]

A = QR, (6.16)
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where Q is an orthogonal matrix (Q−1 = QT ) and R is a right triangular matrix. As

matrix A is not rectangular, matrix R has multiple fully zero rows

R =

R1

0

 (6.17)

Then, to obtain the solution of the linear least squares problem, the following system is

solved

R1x = q1, (6.18)

where q1 are the corresponding rows from the right hand side formed by

QTb =

q1

q2

 . (6.19)

6.4 Study of the convergence of the methods

To study convergence of the methods, various meshes are used. Any mesh used in

this study is fully described by two parameters. First is the number of cells in each

dimension N . This number is used to generate a square orthogonal mesh with the side

length equal to 1 covering a domain (0, 1)× (0, 1), divided into N ×N square cells. The

mesh is then randomized according to what is here called the randomization factor f .

Each inner node (meaning not a node on the boundary) of the mesh is moved according

to a random displacement

(∆x,∆y) ∈

(
U

(
−f 1

N
, f

1

N

)
, U

(
−f 1

N
, f

1

N

))
, (6.20)

where U(a, b) symbolizes the uniform distribution over an interval (a, b). The set of

meshes with N = 8, 16, 32, . . . , 512 and f = 0, 0.02, 0.04 is used, resulting in 21

different meshes in total.

Two analytic functions with known gradients ga are used to evaluate the convergence

of the methods. First is a simple linear function

u(x, y) = 2x+ 3y (6.21)

ga(x, y) = (2, 3), (6.22)
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Figure 6.2: Analytic function used to evaluate methods convergence (top) and its
gradient norm (bottom)

while the second is a smooth, non-linear function from [25]

u(x, y) = 1.62 + 0.31 sin
(
π(3.79x+ 2.98y)

)
(6.23)

ga(x, y) = (1.1749π cos
(
π(3.79x+ 2.98y)

)
, 0.9238π cos

(
π(3.79x+ 2.98y)

)
). (6.24)

A graph of the latter function is in Figure 6.2.

For both of these functions, the procedure is identical. The function is projected to

the cell centers of a chosen mesh using an integral projection procedure from the MFEM

toolbox [13]. Then, one of the three described methods is used to calculate the gradient

of the function. The difference between the analytic solution ga and calculated solution

∇u is processed in the following way

∆ε =

√∑
n
Sn|ga −∇u|2√∑
n
Sn|ga|2

, (6.25)

where
∑

n is sum over values in all nodes and Sn is an area associated to a given node

n, calculated as the area of a polygon formed by adjacent cell centroids. The resulting

number ∆ε is normalized discrete L2 norm of the error in the vector size. The value of

∆ε is further referred to simply as the error for brevity.
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Figure 6.3: Error ∆ε as a function of the mesh segments count N and the randomiza-
tion factor f for a linear function gradient, evaluated using the Green’s formula method

6.4.1 Convergence of the method using the Green’s theorem

First, Green’s formula method was used to evaluate the error in a reconstruction of

the linear function. For the sake of comparison with other methods, the gradient was

evaluated at the inner nodes of the meshes. This is possible as a local reconstruction

of the gradient is performed using this method. For practical usage of the method,

boundary conditions would have to be specified for the problem.

The result for various various meshes are summarized in Figure 6.3. The method

reconstructs the linear function exactly up to a round-off error for an orthogonal mesh.

With increasing f , the value of ∆ε increases independently of N . This is well explained

by the fact that [24] claims the method is of the zeroth-order truncation error O(1) on a

general regular mesh and the second-order truncation error O(N−2) on a smooth mesh.

To further investigate the convergence, the method was used to evaluate a gradient

of the sine function (6.23). The results are presented in Figure 6.4. It can be clearly

seen that on a rectangular mesh (f = 0), the truncation error is indeed of second order.

For the randomized meshes, the error reaches a threshold below which it no longer

decreases with an increasing number of segments N . This also confirms the zeroth-order

truncation error.
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Figure 6.4: Error ∆ε as a function of the mesh segments count N and the randomiza-
tion factor f for the sine function gradient, evaluated using the Green’s formula method

6.4.2 Convergence of the method using the finite element formulation

Similarly to the case of Green’s formula method, convergence of method using finite

element formulation of the problem has been studied. To properly evaluate the gradient,

essential boundary conditions [13] need to be specified. For sake of comparison, the

boundary conditions are obtained by direct evaluation of the known analytical gradient.

First, the convergence was evaluated on the linear function (6.21). The result is

depicted in Figure 6.5. The trend is remarkably similar to the errors obtained in the

previous section, although the actual error values are higher. This method also recon-

structs the linear function on an orthogonal grid down to a round-off error.

The resulting errors of gradient evaluation of the sine function (6.23) are shown in

Figure 6.6. It can be seen that the error for various meshes depends on N analogously

to the case of the Green’s formula method in Figure 6.4. Second order convergence is

observed only for the orthogonal mesh with f = 0.

6.4.3 Convergence of the method using the least-squares formulation

The results obtained using the least-squares formulation of the problem are processed in

a similar fashion to the previous two methods. There is no need for a special treatment
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Figure 6.5: Error ∆ε as a function of the mesh segments count N and the ran-
domization factor f for a linear function gradient, evaluated using the finite element

formulation method.

Figure 6.6: Error ∆ε as a function of the mesh segments count N and the randomiza-
tion factor f for a sin function gradient, evaluated using the finite element formulation

method.
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Figure 6.7: Error ∆ε as a function of the mesh segments count N and the ran-
domization factor f for the sine function gradient, evaluated using the least-squares

formulation of the problem.

of the boundary nodes as these can be ignored for the sake of comparison. This method

reconstructs the gradient of the linear function up to a round-off error for all of the

randomization factors f considered. Using the sine function, the relative error as a

function of the number of segments for various randomization factors is summarized in

Figure 6.7. It can be seen that the method shows close to second-order convergence even

for an irregular grid.

6.5 Method imprinting into trajectory estimation

To determine how a chosen method influences the model of laser propagation, the follow-

ing test case is proposed. It consists of a simulation with a parabolic profile of electron

density and collisional frequency set to 0. In chapter 3, we have shown that in this case,

an analytic solution to the ray trajectory can be found and that it is a cosine function.

We use this fact to estimate the effects of the gradient calculation on accuracy of pene-

tration depth. This test evaluates, how much does a choice of the method influences an

absorption profile.

First, an analytic solution is constructed for a ray starting at the point (0, 0) and

with angle of incidence equal to 45°. A density profile is chosen based on critical density
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Figure 6.8: Rays propagating in a test case scenario in mesh with N = 512 and f = 0
(bottom) and a difference between the last intersection x coordinate and the depth
of interpenetration computed analytically |x − xref | for all three gradient calculation

methods (top).

of radiation with wavelength of 25.5 nm.

ne(x) =
ncrit

e

2
(1 + x2). (6.26)

The choice of wavelength is arbitrary and corresponds to the critical density ncrit
e

.
=

1.71× 1024 cm−3. In this configuration, the analytic trajectory is

x(y) = neff
e sin(βy), β =

ncrit
e

2(ncrit
e − neff

e )
, (6.27)

where neff
e is effective critical density (density evaluated at distance sin θi, where θi is the

initial angle of incidence). In this case, it is ne evaluated at x =
√

2
2 . The turning point

of the trajectory located at yt = π
2β

.
= 1.111 is important, as the domain boundary is

placed at this turning point.

In the described configuration, the rays are propagated using the ray-tracing algo-

rithm with gradient calculated by one of the methods. At the point where it leaves the

domain, its intersection can be directly compared with the analytic solution. This is

performed not only for the ray originating from (x0, y0) = (0, 0), but for a set of rays

with the same angle of incidence but y0 ranging from 0 to 0.6 cm. This is depicted in

Figure 6.8 for one of the mesh configurations discussed further.
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Figure 6.9: Median of the difference between the last intersection x coordinate and
and the depth of interpenetration computed analytically median|x − xref | over the 50

rays as a function of mesh configuration determined by N and f .

The whole procedure is repeated for 50 equidistant rays for all the mesh configurations

described in section 6.4. To illustrate a single result, the ray trajectories and the resulting

errors in their x coordinate of the final intersection are depicted in Figure 6.8 for mesh

with N = 512 segments on one side and the randomization factor f = 0. It can be seen

that the resulting absolute error |x− xref | increases for rays ending closer to neff
e . This

is an expected effect and has been pointed out in our previous work [6] and summarized

here in Figure 3.2 and Figure 3.3.

To distinguish between the effect of the finite cell dimensions, leading to incorrect

total reflection and the effect of error in the gradient calculation, the following statistical

analysis is performed: a median and maximum of the errors over all 50 rays for each of

the mesh configurations are taken. Comparison of median well describes the expected

error introduced by the gradient calculation method while ignoring the extreme values

resulting from the cell imprinting effects. On the other hand, the maximum characterizes

the effects of finite cell dimensions.

A comparison of the median of the error as a function of mesh resolutions N and

randomization factor f is shown in Figure 6.9 for all of the methods. It can be clearly

seen that the same effects as when investigated in section 6.4 are present. While almost

no dependence on f can be seen for rays propagating in density gradient calculated

using the least-squares method (LSQ), the methods using the finite element formulation

(FEM) and the Green’s formula lead to an increased inaccuracy of the ray trajectory

estimation on the distorted mesh.
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Figure 6.10: Maximum of the difference between the last intersection x coordinate
and and the depth of interpenetration computed analytically median|x− xref | over the

50 rays as a function of mesh configuration determined by N and f .

Analogously to the median, the maximum value of the error is compared in Fig-

ure 6.10. There is no clear dependence on the method nor the randomization factor.

This supports the hypothesis that the maximum of the error mostly characterizes the

effects of the finite dimensions of the cells. What is more problematic, is the fact, that

there is not even a very clear decrease in the maximum of the error with decreasing cell

size. It is concluded that the mesh imprinting effect is dominant in the area around neff
e ,

where the refraction angles are highest.

Considering the results, and also taking into account the ease of implementation, the

least-squares method is the best candidate for the usage in the ray-tracing simulations.

It is thus used throughout the rest of the work.





Chapter 7

Comparison with existing

methods

In this chapter, a comparison of the previously used approaches and the current model is

presented. First, a method known as the WKB approximation [28], used in code PETE2

[12], is analyzed and a special setup in which both methods are equal is described.

Next, a full simulation is compared to the previous work [9] using the same simulation

parameters.

7.1 Comparison with the WKB approximation

Previously, in the finite element code PETE2 [12], the WKB approximation [28] was

used to model laser absorption. This approximation assumes the laser is propagating

without focusation and practically an operator splitting technique is used to evaluate

the source term in equation (2.6).

To compare it with the ray-tracing algorithm consider a 2D rectangular mesh 1 cell

wide and an arbitrary number of cells long. Then, tracing a ray through the middle of

this mesh along the axis results in the same source terms∇·S as using the WKB approx-

imation. In this case, ray-tracing can be thought of as a generalization to an arbitrary

direction of propagation and enables the simulation of diffraction and refraction effects.

On the other hand, this holds only for the lowest order finite elements. While the WKB

approximation can be directly generalized to higher order elements, this is not the case

for ray-tracing. The algorithm can be improved to the first order of interpolation with a

linear profile of thermodynamic quantities in cells (usually called parabolic ray-tracing).
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Otherwise, techniques involving projection on a finer mesh discussed in chapter 2 are

necessary to achieve a higher order of precision.

7.2 Comparison with a finite difference simulation

In [9], the ray-tracing is used to simulate a laser target interaction in a finite difference

hydrodynamic code [29]. We design a similar simulation using the finite element code

and compare the results.

A single p-polarized laser pulse with wavelength 1315 nm impinges an aluminium

target. The temporal profile of the pulse is a Gaussian with the time of arrival of

maxima τ = 400 ns and width ∆t
FWHM = 400 ns and maximum intensity Imax =

2.4× 1015 W · cm−2. The results are compared at time t = 600 ns. In the original

work, a cylindricaly symmetrical geometry is used. In this geometry, the spatial profile

of the pulse is a symmetrical 2D Gaussian with a focus radius rf = 100 µm. The focus

radius can be identified with the parameter σ of the spatial Gaussian (4.5) and is related

to the spatial FWHM ∆s
FWHM in the following way

rf =
∆s

FWHM

2
√

2(ln 2)
. (7.1)

As the cylindrical geometry is not supported in our simulation, we use a ratio between

the maximal intensities derived in [30] to obtain a comparable result

Icyl
max

Icart
max

.
= 2.004 (7.2)

The same ideal gas equation of state is used with the Poisson constant γ = 5/3.

Furthermore, symmetry along y axis in Cartesian coordinates is assumed. Initially, the

mesh is orthogonal with 50 cells in the x dimension and 25 cells in the y dimension.

In both dimensions, a geometric coefficient leading to decreasing cell dimension is used.

The smallest cell is on the target surface closest to the axis of symmetry.

Profiles of temperature T , mass density ρ, source term∇·S (representing absorption)

and velocity in the x dimension vx are show in Figure 7.1 and for easier comparison the

values of ∇ · S are zoomed in Figure 7.2.

First, it must be noted that the value of ∇ · S is dependant on the numerical time

step and thus the absolute values are irrelevant for any evaluation, but the spatial profile

can be studied. The maximal temperature in [9] is around 3000 eV, here it is closer to

5000 eV. In addition, the temperature profile in our simulation is significantly more
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Figure 7.1: The resulting numerical values of temperature T , density ρ, absorption
∇ · S and velocity in x dimension vx at time t = 600 ns in a simulation of a laser

interacting with an aluminium target with initial parameters taken from [9]

Figure 7.2: A zoom the absorbed energy ∇ · S at time t = 600 ns in the simulation
with initial parameters taken from [9]
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diffused than in the referenced work, where a clear local maximum exists. The density

scales are similar. Velocity can not be directly compared as it is not documented in [9],

but it seems that the rate of expansion of our simulation is higher.

It is clear that the dynamics of the simulation is similar, but not the same as in [9].

The mesh successfully expands with the plasma corona and no significant oscillations in

both, the node positions and thermodynamic variables are present. The differences can

be partially attributed to the different geometries used in the simulations. Furthermore,

there may be differences in calibration of models of the artificial viscosity, the heat

transfer and the collision frequency calculation. All these models can influence the

position at which the laser is absorbed and consequently influence the whole dynamics

of the simulation.



Chapter 8

Simulation of realistic plasma

with positive x-ray gain

coefficient

In this chapter, a simulation of a particular driving laser configuration proposed in [10]

is performed.

Here, more advanced model is used in the gain simulations. It employs the M level

model for the gain calculation instead of the 3 level model used in [10]. A direct com-

parison of the models was shown in our previous work [6]. The main conclusion is that

the predicted values of the gain coefficient are significantly lower in the M level model

. The discrepancy originates directly from the solution of the rate equations and was

previously addressed in [6].

Furthermore, several different models are used during the hydrodynamic simulation.

The code described in this work employs the two-temperature approximation of the

plasma instead of a single temperature model in [10]. The main difference is the use

of the ray-tracing instead of the simpler model employed in [10], where the laser is

assumed to be propagating along a straight line perpendicular to the surface of the

target and accounted for in the energy equation (2.6) as a directly evaluated source term

based on the laser intensity. The main advantage of hydrodynamic code used in [10] is

given by an adaptive mesh refinement technique used there, that improves the accuracy

of the solution during the simulation. Our simulation suffers from undesired effects

originating from mesh entangling that could be mitigated using a similar technique. In

both simulations, a quotidian equation of state (QEOS) [31] is used.
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First pulse Second pulse Third pulse

τ = 1.5 ns τ = 2.0 ns τ = 2.51 ns
∆t

FWHM = 1.0 ns ∆t
FWHM = 0.1 ns ∆t

FWHM = 0.5 ps
Imax = 1.25 · 1011 W·cm−2 Imax = 1.25 · 1012 W·cm−2 Imax = 1.16 · 1015 W·cm−2

Table 8.1: Parameters of the incoming laser pulses, τ is the time of arrival, ∆t
FWHM

is full width at half maxima, and Imax is the maximum of intensity [6], [10]

8.1 Parameters of the simulation

The simulation involves three laser pulses of the driving laser. All the pulses have the

same wavelength 800 nm and spatial profile. The spatial profile of the laser is the super-

Gaussian (4.5) with P = 10 and varying ∆s
FWHM across different simulations. Each

pulse has a Gaussian temporal profile characterized by the peak intensity Imax, time of

maxima arrival τ , and ∆t
FWHM. The temporal profiles of the pulses differ greatly and

are summarized in table 8.1.

These three pulses have the following purpose: the first long laser pulse forms the

plasma medium, ensuring a good absorption of the second shorter more intense pulse,

which heats the plasma. The last pulse is almost instantaneous, compared to the previous

two pulses and is also the most intense. The goal is to quickly heat up electrons and

establish optimal conditions for the population inversion. The simulation is terminated

0.01 ns after the time of arrival of maximum of the last pulse and a snapshot of the

hydrodynamic variables is taken.

The simulation is performed in the Cartesian 2D geometry on an initially orthogonal

mesh with 55 cells in the x dimension and 60 cells in y dimension while assuming axial

symmetry over the x-axis. The initial size of the cells in x-dimension is decreasing

towards the target surface with the geometric factor qgeom. Surface of the target is

located at x = 0 and the target is 10 µm iron slab. The target lies in the negative values

of the x-axis. The dimensions of the target are set to provide a sufficient computational

domain and do not necessarily reflect reality. The laser comes from positive x and

initially interacts with the target at x = 0 (in figures it is propagated from right to left).

Simulations for the spatial profiles with ∆s
FWHM equal to 200 µm, 150 µm, 100 µm

and 75 µm were performed for the sake of comparison with [10]. The value of ∆s
FWHM

is further referred to simply as the width.

The geometric factor qgeom is the main optimization parameter when it comes to

properly simulating the laser target interaction with sufficient resolution. With an ex-

cessively high factor the simulation crashes due to overlapping cells or too small time

step estimated by (2.52). If the factor is too small, the whole laser is absorbed into a
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Figure 8.1: The numerical values of electron temperature Te, ion temperature Ti,
electron density ne and mean ionization Z at time t = 2.52 ns in a simulation of the

200 µm wide laser

few exceedingly expanding cells and the simulation resolution is too low to draw any

useful conclusions. Different values were used for different simulations.

8.2 Results of the simulation

The values of electron temperature Te, ion temperature Ti, electron density ne and mean

ionization Z at time t = 2.52 ns from a simulation of 200 µm wide driving laser are in

Figure 8.1. It must be stressed, that axial symmetry of the simulation is assumed. Com-

paring the results of the simulation with [10], it can be observed that we obtained lower

temperature overall. The maximum of Te is 342 eV, while in the one temperature model

of [10] it is around 530 eV. The Ti maximum is approximately 103 eV. A clear difference

between ion and electron temperatures is expected and results from the absorption of

the last laser pulse. The laser pulses heat op electrons and the electrons, in turn, heat

up ions through heat exchange as clearly seen from (2.6), (2.7). During and shortly after

the last pulse electron-ion heat exchange is not fast enough to heat up the ions, as the

pulse is shorter than a typical relaxation time. The maximum of the mean ionization

Z is around 23.5. Electron density is highest in the target where a shock wave forms

and is around 1.9× 1023 cm−3. In [10] the reported ne is two orders of magnitude lower,

even though the profile is similar. Our value seems to be reasonable for this kind of
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Figure 8.2: Gain coefficient g at time t = 2.52 ns obtained by post-processing a
simulation of 200 µm wide laser interacting with a solid Fe target

simulation, based on results from other codes [7], [9] and the source of this discrepancy

is not clear.

The four thermodynamic variables summarized in the figure are then used as an

input for the M -level model of the gain coefficient described in chapter 5. A 2D profile

of gain coefficient is obtained. Furthermore, the whole plasma corona is reconstructed

using the axial symmetry for further evaluation. The result is shown in Figure 8.2. The

image is rotated in such a way that the target is on top and the laser comes from the

bottom side, to enable direct comparison with [10].

As already mentioned, the gain coefficient g predicted by the M level model is much

lower then in [10]. The maximum values is 13.4 cm−1 for the laser 200 µm wide laser.

Apart from the absolute value, the shape of the gain profile is remarkably similar.

Results of the simulations for laser widths 150 µm, 100 µm and 75 µm are processed

analogously. Only the mean ionization is omitted as its profile is not of particular interest

and the gain g is included in the summary of thermodynamic variables instead. The

results for 150 µm, 100 µm laser width are almost identical to the results obtained for

200 µm wide laser, apart from a scale factor. The result for 100 µm laser is taken to

illustrate both configurations in Figure 8.3.

Simulation with laser width 75 µm leads to an excessively deformed mesh. This

effect occurs at the edge of the super-Gaussian pulse. A very similar effect for purely
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Figure 8.3: Values of electron temperature Te, ion temperature Ti, electron density ne
and gain coefficient g at time t = 2.52 ns in a simulation of 100 µm wide laser interacting

with a solid Fe target

∆s
FWHM [µm] 75 100 150 200

gmax [cm−1] 14.3 13.56 13.57 13.44

Table 8.2: Maximum gain values for various driving laser widths ∆s
FWHM

Lagrangian simulations was observed in [30] for disc flyer impact simulations. As pointed

out in [10], 2D effects are more relevant for narrower lasers. These effects probably lead

to the shear motion of the mesh and result in the mesh deformation. Same effect, can

be seen (to a much lesser extent) in the other simulations. Implementation of an ALE

scheme [30] would probably resolve the issue. The resulting variables are shown in

Figure 8.4. In the profile of Ti a non-physical extreme is starting to form and the mesh

is severely overlapped. The overlapping of the mesh can be seen in Figure 8.5.

The maximum gain coefficient gmax for all 4 simulations is summarized in table 8.2

for each of the laser widths. The value for laser width 75 µm is probably not physical

and results from the simulation failure.

To summarize, the simulations of wider lasers are in agreement with the results

in [10], apart from the absolute value of gain coefficient g. It is also concluded that

implementation of an adaptive mesh refinement technique or ALE is desirable to harness

the full potential of the code.
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Figure 8.4: Values of electron temperature Te, ion temperature Ti, electron density ne
and gain coefficient g at time t = 2.52 ns in a simulation of 75 µm wide laser interacting

with a solid Fe target

Figure 8.5: Mesh overlapping and invalid zone formation in a simulation of 75 µm
wide laser interacting with a solid Fe target



Chapter 9

Evaluation of the diffraction

effects in x-ray propagation

The diffraction of the seeding laser pulse is studied based on the results of the simulations

with configurations described in the previous chapter 8. Several problems are identified,

which arise during the simulation and represent a significant difficulty. Multiple possible

solutions to these problems are proposed, their feasibility is discussed and finally, a semi-

analytic approach is used to study the diffraction effects influencing the x-ray seeding

pulse. The results are then compared with the previous studies [32], [33].

9.1 Difficulties using the linear ray-tracing algorithm to

estimate diffraction

The results of simulations for various widths of the driving laser were presented in the

previous chapter 8. The regions on the edge of the laser beam are studied in terms of

diffraction of the seeding pulse. For that, an instantaneous traversal of a seeding pulse

with wavelength of 25.5 nm is assumed and the trajectory of the pulse is studied. We

have chosen the pulse, to fully cover gain zone of the plasma. It has a Gaussian profile

with spatial ∆s
FWHM = 50 µm in the direction almost parallel to the target surface. An

angle between the target surface and the laser direction is 5 mrad towards the target.

The pulse is divided into 1000 individual rays. The initial power of the laser is set to

1 J · s−1 (a value designed to simplify the interpretation of results).

The ray trajectories and the power used for the x-ray amplification are shown in

Figure 9.1. Not all trajectories are depicted, instead, the first and then each 40th

trajectory is plotted. It turns out that no diffraction is happening at the edge of the
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Figure 9.1: Rays of the seeding pulse propagating parallel to the target surface in a
plasma produced by 200 µm wide laser. The first and then each 40th ray is shown.

denser zone of the plasma corona. The only diffraction effects are observed near the

initial target surface. This is not of a particular interest, as the rays near the target

surface are not passing through the gain zone and are not significantly amplified. It may

lead to marginal focusing of the radiated power, but we are more interested in diffraction

inside the gain zone.

To actually study diffraction in the gain zone, we would need a much wider plasma.

This is easy to obtain because we have shown that the dynamics of the simulation do

not change when increasing the plasma width. We may just repeat the cells closest to

the axis to artificially widen the plasma. This is a reasonable approximation because

the plasma is homogeneous in the y direction near the axis of symmetry.

Unfortunately, the resulting mesh is not fine enough to be able to study the diffraction

effects in detail. The gain zone spans over only a few cells. Any set of rays almost

parallel to the target surface traced using a linear ray-tracing algorithm would simply

pass through the mesh without ever encountering a face parallel with the target. This

would lead to little or no diffraction even though the rays should continuously diffract

while traversing the cells in reality. We were not able to obtain any more detailed

simulation using the code PETE2 [12] as the initial mesh has already a very low value of

the geometric factor. Any smaller value resulted in too small time steps or the simulation

crashing immediately due to extreme volume ratios.
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Several options are available to address the issue. First is a formulation of the hy-

drodynamics using the arbitrary Lagrangian-Eulerian method (ALE) or employing an

adaptive mesh refinement technique to resolve the issues with the hydrodynamic simula-

tions. Another option is to use a parabolic ray-tracing algorithm or directly integrating

the ray trajectory inside the cell. None of the mentioned approaches are implemented

in the PETE2 code [12] and are beyond the scope of this work.

9.2 Semi-analytic approach to the estimation of the diffrac-

tion effects

We propose a semi-analytic approach to at least partially overcome the issues identified

in the previous section. Is has been already recognized that the plasma is homogeneous

in the y direction near the axis of symmetry. This means that the plasma can be

described using profiles of thermodynamic quantities dependent on x only. The discrete

electron density profile ne(x) is taken and a linear interpolation is employed. A piece-wise

constant gradient of this profile is then calculated. The gradient in a cell is calculated

from the value of ne in the cell and a cell next to it on the left (lower x coordinate

value). This is performed for each of the cells, except the last one with lowest value of

x coordinate. Such assignment is clearly not optimal, but is reasonable enough for our

approximation.

The analytic solution (3.25) of the eikonal equation is used to obtain the trajectory

of a single ray with wavelength 25.5 nm in each part of the profile with the constant

gradient. The trajectories are shown in Figure 9.2 in a piece-wise constant density

profile homogeneous in y (original electron density profile, before the employment of

the linear approximation). The y value where the ray leaves the zone is in this work

called the diffraction scale because it represents the distance at which we may expect

the diffraction to be significant enough for the ray to leave the zone of constant gradient.

In the Figure 9.3, the diffraction scale profile is compared with the gain profile. It is

clear that even for the zone closest to the target, where the gain is very small around

2 cm−1, it is not reasonable to expect diffraction effect to play a major role for the

plasma width of less than roughly 400 µm. In reality, it is more reasonable to expect

that diffraction effects will appear for the plasma of widths around 1800 µm, where the

diffraction would start to influence the rays passing through the zone of maximal gain.

Probably, at least twice as wide plasma may be the limit where the amplification of the

seeding pulse may be affected by diffraction, simply because a portion of the pulse will

always be refracted into the zone of the maximal gain.
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Figure 9.2: Analytic solutions of the eikonal equation in zones with constant electron
density gradient profile for rays initially parallel to the target surface with values of

electron density ne in the background

In [33], a similar situation is studied with analogous gradient and gain profiles. There

it is concluded, that the diffraction starts to limit the x-ray amplification for plasma

width around 4000 µm using a more sophisticated approach based on numerical inte-

gration techniques. This corresponds well with our approximate orders of magnitude

estimation.

Finally, divergence of the resulting rays can be an estimated. It is assumed that

some amplified rays are not refracted too much after passing through the plasma in the

part of the gain zone, where the diffraction effects are low (right side). On the other

hand the most curved rays will result from the rays closest to the target that are still

passing through a zone of positive gain. Using an approximation, tan(θ) ≈ θ for θ << 1

for the angle of the rays closest to the target and assuming the ray is a straight line

an angle between the rays leaving the plasma and the target surface can be estimated.

These assumptions are valid because the diffraction scale is much larger than the zone

dimension. The biggest angle is obtained for the zone with positive g closest to the

target. The zone is 6.3 µm wide and the diffraction scale is 680 µm for a ray originating

at position x = 9.4 µm. The divergence angle is ∼ 9 mrad. This is close to the value

∼ 8 mrad estimated by [32] in a similar configuration.
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Figure 9.3: Diffraction scale and gain coefficient profile g as a function of the distance
x from the initial target surface x = 0





Chapter 10

Conclusion

The aim of this thesis is to investigate the plasma produced by a laser beam interacting

with a solid target as a possible candidate for the gain medium of an x-ray laser. The

main goal of the study is to develop the necessary tools to enable sophisticated simu-

lations of plasma formation and soft x-ray radiation amplification in the medium. The

hydrodynamic description of the plasma dynamics based on the finite element formu-

lation is extended by a ray-tracing algorithm, equipped with several models of power

exchange and ability to evaluate the diffraction effects influencing the x-ray pulse am-

plification.

First, the theory concerning the formulation of Euler equations in the finite element

method framework is reviewed. The models used to simulate heat transfer and collision

frequency are summarized. Next, a model of artificial viscosity and a time stepping

scheme are presented.

A whole chapter is dedicated to the ray-tracing algorithm for a laser propagating in

the plasma described by a hydrodynamic simulation. There, not only the implemen-

tation of the method, but also the construction of analytic and numeric tests from the

fundamental equations of the geometrical optic are described. The importance of elec-

tron density gradient calculation is emphasized as it governs the inner workings of the

procedure.

Models of absorption via inverse bremsstrahlung and resonance are reviewed, con-

tinuing the description of the laser-plasma interaction. Furthermore, a model based on

Fresnel equations is proposed to more precisely capture the physical phenomena occur-

ring during the initial stages of the simulation.
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The x-ray radiation amplification model developed in previous works is reviewed [6].

Through this model, the lasing properties are connected with thermodynamic quan-

tities computed by the hydrodynamic simulation. It is based on a calculation of the

populations of M possible energy levels in the plasma atoms, and used to post-process

the results of the hydrodynamic simulations and determine the gain coefficients in the

plasma.

Next, the developed ray-tracing algorithm together with several gradient calculation

methods is tested on a simple problem with a linear profile of index of refraction. The

convergence and robustness of the method are verified by the employment of several

different mesh configurations including both regular and irregular grids with varying

numbers of segments. The ray trajectory directly influences where and how is the laser

power absorbed and is identified as a key factor of possible differences in absorption pro-

files. In turn, the gradient calculation directly impacts the trajectory finding procedure.

The least-squares formulation of the gradient calculation is identified as the best of the

three methods presented. Both, in terms of convergence and ease of implementation.

A comparison between the WKB approximation used in the simulations of laser

propagation [12] and the developed ray-tracing algorithm is made. The advantages and

disadvantages of both approaches are discussed. To fully test the whole code including

all the implemented models and to compare it with previous results obtained using

a finite difference scheme [29], a simulation of a laser impacting an aluminum target is

performed. The results are compared and possible sources of discrepancies are discussed.

To fully utilize the potential of the implemented models, a hydrodynamic simulation

concerning the preparation of plasma conditions with a positive gain coefficient for x-ray

pulse amplification is performed. A solid Fe target interacting with an intense laser is

studied in a 2D Cartesian hydrodynamic simulation with ray-tracing used to model the

laser plasma interaction. The results are post-processed using the M -level model of gain

coefficient estimation and compared with literature [10].

Finally, the seeding x-ray pulse propagation and amplification are addressed. Because

only weak diffraction effects are identified in the simulation of a 200 µm wide laser, several

conclusions are drawn about the study of diffraction effects of x-ray laser propagating in

plasma. These conclusions lead to the creation of a semi-analytical model describing the

diffraction, based on the results of previous simulations. The results obtained by this

model are used to predict the width of the target necessary for the diffraction effects to

play a major role in x-ray amplification. This is in good agreement with [33]. Further

comparison is made with [32] using the estimation of the beam divergence, which is also

in good agreement.
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This work is the first step towards combining FEM hydrodynamic simulations with a

ray-tracing algorithm. An implementation of a method of projection onto finer meshes,

enabling the ray-tracing algorithm to work with high-order finite element hydrodynamic

simulations is a possible topic of future research, to harness the full potential of the

approach. Also, a parabolic ray-tracing procedure is expected to improve the laser

diffraction calculation and can fully enable detailed x-ray laser amplification simulations.

Finally, extending the FEM hydrodynamic simulations by employing an the Arbitrary-

Lagrangian-Eulerian approach or using the techniques of adaptive mesh refinement, can

improve rubustness of the simulations.
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