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Abstract
This paper aims to create a guideline in
growing field of neural networks, and their
application in learning based system for
effective compression methods. In first
chapter looking to create theoretical foun-
dation, as to understand the terms that
we will further work with - such as ma-
chine learning, (deep) neural networks,
deep learning etc. Further we then dis-
cuss application of these methods in field
of image coding as well as discussing crite-
ria for classification of such systems. Sec-
ond chapter, the practical part then dis-
covers various implementation of learn-
ing based codecs (e.g. using TensorFlow
platform) and their performance, compar-
ing with conventional methods (JPEG,
JPEG2000). The paper is wrapped up by
discussing the results and future possibili-
ties for research.

Keywords: machine learning, image
processing, compression methods, neural
networks

Supervisor: Ing. Fliegel Karel Ph.D.
Praha, Technická 2, B3-556

Abstrakt
Tato práce si klade za cíl vytvořit orien-
tační návod stále rostoucím oborem stro-
jového učení, neuronových sítí a jejich
aplikace v systémech efektivních kompres-
ních metod založených na učení. První
kapitola tvoří teoretický základ, napomá-
hající k pochopení termínů se kterými
se budeme nadále setkávat - t.j. strojové
učení, (hluboké) neuronové sítě, hluboké
učení atd. Dále budou diskutovány apli-
kace těchto metod právě v poli kódování
obrazu, jakožto i návrh a diskuze kritérií
pro klasifikaci těchto systémů. Následující
kapitola, praktická část se věnuje různým
implementacím kodeků, systémech založe-
ných na učení (např. s použitím platformy
TensorFlow) a jejich efektivita v porov-
nání s konvenčními kompresními meto-
dami (JPEG, JPEG2000). Práce je uza-
vřená diskuzí výsledků, návrhů zlepšení a
možnostmi navazujícího výzkumu.

Klíčová slova: strojové učení,
zpracování obrazu, kompresní metody,
neuronové sítě

Překlad názvu: Metody strojového
učení pro efektivní kompresi obrazu
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Chapter 1
Introduction

With gradually increasing requirements for effective representation and com-
pression of audiovisual content, for purpose of storing and sharing, we are
always looking for new ways and methods to push the boundary of target
quality and compression ratio achievable. With help of learning based al-
gorithms, in-depth research of neural networks and development of efficient
algorithms to train them - this appears to be a promising field to be applied
in new compression systems; this is also supported by JPEG Committee
forming a group, focused on exploring learning based image coding, so called
JPEG-AI, which is aiming to develop an end-to-end compression system with
potential for a standard to be defined. In this paper we would like to discuss
state of the art compression methods, their design, architecture, as well as
their performance in comparison with conventional systems and methods
that are being commonly used on daily basis. Further a classification criteria
would also be discussed.
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Chapter 2
Theoretical part

Before delving deep into the topic at hand, let us briefly mention some
important terms that might often be intertwined or substituted - such as
Artificial Intelligence, Neural Networks, Deep Learning and more. For better
understanding, let us refer to Venn diagram 2.1 suggested by [18], that is
depicting the possible mutual connections of these terms, that we will further
be working with.

Figure 2.1: A Venn diagram showing the relations of fields like AI, machine
learning, deep learning etc. Adapted from [18]

As is apparent from diagram above, the most superior field that we define
and is related to this thesis (although way too broad) is Artificial Intel-
ligence (AI). One of possible definitions define the field as the study of
"intelligent agents", meaning any device that perceives its environment and
takes actions that maximize its chance of successfully achieving its goals [42].
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2. Theoretical part ...................................
Formally, machine learning (ML) is a sub-field of artificial intelligence.

However, in recent years, some organizations have begun using the terms arti-
ficial intelligence and machine learning interchangeably (hence the ambiguity
of the terms). By ML we usually refer to a program or system that builds
(trains) a predictive model from input data. The system uses the learned
model to make useful predictions from new (never-before-seen) data drawn
from the same distribution as the one used to train the model. It also can
refer to the field of study concerned with these programs or systems [32]. We
will discuss the topic in further detail in upcoming section 2.1.

Last two terms that we would like to mention in this section, which are
closely linked isArtificial Neural Networks andDeep Learning. Former
term refers to the biologically-inspired programming paradigm which enables
a computer to learn from observational data. Latter term then describes a
powerful set of techniques for learning in neural networks. Neural networks
and deep learning currently provide the best solutions to many problems in
image recognition, speech recognition, and natural language processing [39],
and therefore being fundamental concepts for the aims of this thesis. These
will be deeply mentioned in section 2.2 as well.

2.1 Machine learning

As our understanding of computers continues to mature, it seems inevitable
that machine learning will play an increasingly central role in computer
science and computer technology. [36] Let us describe some general ideas
behind the term Machine learning (abbr. ML) and why is it perspective
discipline in these mentioned fields.

2.1.1 General idea

With growing complexity of tasks that we deal with in modern computer
science, programming, we naturally wish to use optimal approaches to reach
the best possible efficiency. By using Machine learning methods, we gain
time saving capabilities to process larger amount of data than ever before.
Furthermore with traditional programming, our program might be limited
or rather tailor-made to specific task that is defined apriori, without further
adaptability to possible changes or exceptions that might come up in future.
Machine learning is an application of artificial intelligence (AI) that provides
systems the ability to automatically learn and improve from experience
without being explicitly programmed. Machine learning focuses on the
development of computer programs that can access data and use it learn for
themselves. [60] This is to some extent analogous to human way of learning -
we change our behaviour and approach to different tasks based on experience
gained through our life.

To sum this up, let’s use definition from [36]:
Definition 2.1.1 (Machine Learning). A computer program is said to learn
from experience E with respect to some class of tasks T and performance
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................................... 2.1. Machine learning

measure P , if its performance at tasks in T , as measured by P , improves
with experience E.

As was mentioned before, this might not be the only possible definition,
but for our purpose of better understanding and it works well enough.

Let us propose one example from practice. The most significant early
milestone was A. L. Samuel’s study using the game of checkers. Samuel
devised detailed procedures both of "rote-learning" and "learning by general-
ization". When coupled with efficient methods of look ahead and search, these
procedures enabled the computer to raise itself by prolonged practice from
the status of a beginner to that of a tournament player. Hence there now
exists a checkers program which can learn through experience of checkers to
play better checkers. [34] In general, to have a well-defined learning problem,
we must identity these three features: the class of tasks, the measure of
performance to be improved, and the source of experience. To demonstrate
this on our checkers learning problem:. Task T : playing checkers. Performance measure P : percent of games won against opponents. Training experience E: playing practice games against itself

We can specify many learning problems in this fashion, such as learning
to recognize handwritten words, or learning to drive a robotic automobile
autonomously. [36]

2.1.2 Problem classification in Machine learning

In section 2.1.1 we discussed general ideas behind the the ML - as well as
some basics terms - with help of an example of simple checkers "program".
Let us take a step back now, and generalize the problems (as in types of tasks
we deal with) that we define in modern ML methods.

Supervised vs. Unsupervised Learning

Often, we talk about ML as having two paradigms - supervised and unsu-
pervised learning. However, it is more accurate to describe ML problems as
falling along a spectrum of supervision between supervised and unsupervised
learning. Nevertheless, for the sake of simplicity, we will be describing these
two extremes.

In supervised machine learning, you feed the features and their corre-
sponding labels into an algorithm in a process called training. During training,
the algorithm gradually determines the relationship between features and
their corresponding labels. This relationship is called the model. Often times
in machine learning, the model is very complex. Further it finds patterns
between data and labels that can be expressed mathematically as functions.
Given an input feature, you are telling the system what the expected output
label is, thus you are supervising the training. The ML system will learn
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2. Theoretical part ...................................
patterns on this labeled data. In the future, the ML system will use these
patterns to make predictions on data that it did not see during training [9].
Such example of ML can be seen on figure 2.2 on the left. Below we will
present some of the most representative classifiers [43]:. Perceptron and Logistic Regression (LR) are probably the simplest linear

classifiers. For both models, the model (i.e., weights and bias) is basically
a simple linear transformation.. Artificial Neural Networks (ANN) is a general extension of the aforemen-
tioned linear classifiers. Compared with Perceptron or LR which linearly
project input data to the output, ANN has an additional “hidden layer”
(with a non-linear activation function), which enables ANN to model
non-linearity. We will go deeper into this type of classifier in section 2.2.. Decision Tree (DT) [44] and Random Forest (RF) [7] are two tree-
structure based non-linear classifiers. Based on certain attribute-splitting
criteria (e.g., Information Gain or Gini Impurity), DT can analyse the
most informative attributes sequentially (i.e., splitting) until the final
decision can be made.. Support Vector Machine (SVM) [10] is another popular supervised learn-
ing method, also called large margin classifier, as it aims at finding a
hyperplane that is capable of separating the data points (belonging to
different classes) with the largest margin. For non-linearly separable
data sets, various kernels (e.g., RBF (Radial Basis Function)) can be
applied into the SVM framework with good generalization ability.. In comparison to SVM, we have K-Nearest Neighbour (KNN) [11], which
does not require a training process (also referred to as lazy learning), is
another powerful non-linear classifier. The classification is performed
by distance calculation (between query and all the training examples),
distance ranking, and majority voting among the (K) nearest neighbours.

Figure 2.2: Examples of Supervised Learning (Linear Regression) and Unsuper-
vised Learning (Clustering). Adapted from [43]
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................................2.2. Artificial Neural network
In unsupervised learning, the goal is to identify meaningful patterns in

the data (refer to the figure 2.2, right). To accomplish this, the machine must
learn from an unlabeled data set. In other words, the model has no hints
how to categorize each piece of data and must infer its own rules for doing so
[9]. For example, the clustering algorithm can be used to find the potential
patterns of some unlabelled data and the obtained results can be used for
future analysis. [43]
K-Means [19] and Principal Component Analysis (PCA) [49] are the two

most popular unsupervised learning algorithms. K-means aims to find K group
patterns from data by iteratively assigning each sample to different clusters
based on the distance between the sample and the centroid of each cluster.
PCA is normally used for dimensionality reduction, which can de-correlate
the raw features before selecting the most informative ones.

Reinforcement Learning

Another quite specific approach that is also worth to mention is reinforce-
ment learning. The term by itself is somewhat ambiguous, in that it refers
to simultaneously a problem, a class of solution methods that work well on
the class of problems, and the field that studies these problems and their
solution methods.

Reinforcement learning problems involve learning what to do—how to map
situations to actions—so as to maximize a numerical reward signal. In an
essential way they are closed-loop problems because the learning system’s
actions influence its later inputs. Moreover, the learner is not told which
actions to take, as in many forms of machine learning, but instead must
discover which actions yield the most reward by trying them out [50]. The lack
of a data requirement makes RL a tempting approach. However, designing a
good reward function is difficult, and RL models are less stable and predictable
than supervised approaches [9].

To put this simply reinforcement learning focuses on "trial and error" style
of training, by discovering best possible ways to reach the predefined goal of
our task, while receiving positive or negative feedback, to determine how well
is the learning agent doing.

2.2 Artificial Neural network

The Artificial Neural Networks (ANN) or more often simply Neural Net-
works are computing systems vaguely inspired by the biological neural
networks [8]. Before we begin with the technical description, it would be
useful to start with brief description of the biology of neural networks as we
know it from living organisms.
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2. Theoretical part ...................................
2.2.1 Biological background of Neural Networks

The entire information processing system, i.e. the vertebrate nervous system,
consists of the central nervous system and the peripheral nervous system,
which is only a first and simple subdivision. In reality, such a rigid subdivision
does not make sense, but here it is helpful to outline the information processing
in a body.

The peripheral nervous system (PNS) comprises the nerves that are situated
outside of the brain or the spinal cord. These nerves form a branched and
very dense network throughout the whole body.

We would naturally like to focus on brain, as the main center of information
processing. To keep things simple, we will divide brain into 4 main parts, as
seen on 2.3.

The cerebrum (telencephalon) is one of the areas of the brain that changed
most during evolution. Along an axis, running from the lateral face to the back
of the head, this area is divided into two hemispheres, which are organized in
a folded structure.

These cerebral hemispheres are connected by one strong nerve cord ("bar")
and several small ones. A large number of neurons are located in the
cerebral cortex (cortex) which is approx. 2-4 cm thick and divided into
different cortical fields, each having a specific task to fulfill. Primary cortical
fields are responsible for processing qualitative information, such as the
management of different perceptions (e.g. the visual cortex is responsible for
the management of vision). Association cortical fields, however, perform more
abstract association and thinking processes; they also contain our memory.
[27]

Figure 2.3: Illustration of the brain. Adapted from [27]

To close out this section, we will focus on fundamental description of said
neuron, which we can consider as a basic processing unit the brain. A neuron
is nothing more than a switch with information input and output. The switch
will be activated if there are enough stimuli of other neurons hitting the
information input. Then, at the information output, a pulse is sent to, for
example, other neurons. To put it simply:. Synapses weight the individual parts of information. Dendrites then collect all parts of this information

8



................................2.2. Artificial Neural network
. In the soma the weighted information is accumulated. And the axon transfers outgoing pulses

All of the parts mentioned above can be found depicted in figure

2.2.2 Artificial neuron

Now let us put the knowledge gained in previous section 2.2.1, into context
of basic concepts of ANNs, their structure and design.

The fundamental unit the forms our neural network is once again neuron,
be it artificial one, called perceptron. To be more precise, perceptron
is a simple artificial neuron whose activation function consists of taking
the total net input and outputting 1 if this is above a threshold T , and 0
otherwise[61]. We will describe what is activation function further in this
chapter. Perceptrons were developed in the 1950s and 1960s by the scientist
Frank Rosenblatt, inspired by earlier work by Warren McCulloch and Walter
Pitts. Today, it’s more common to use other models of artificial neurons, and
the main neuron model used is one called the sigmoid neuron [39].

Very similarly as with biological neuron, a perceptron takes several binary
inputs, x1, x2, ..., xn and produces a single binary output:

Figure 2.4: Simple illustration of perceptron. Adapted from [39]

Example above on figure 2.4 shows perceptron with three inputs x1, x2, x3,
which is in this case completely arbitrary, and in general perceptron can have
fewer or more inputs. Rosenblatt proposed a simple rule to compute the
output. He introduced weights, w1, w2, ..., wn real numbers expressing the
importance of the respective inputs to the output. The neuron’s output, 0 or
1, is determined by whether the weighted sum

∑
j wjxj is less than or greater

than some threshold value, arithmetically put:

output =
{

0, if
∑

j wjxj ≤ threshold
1, if

∑
j wjxj > threshold

(2.1)

That’s the basic mathematical model, although perceptron isn’t a complete
model of human decision-making. Connection between the neurons carries
the information that is to be processed. Naturally our next question should
be - how is the incoming information processed? For our neuron j, [27] defines
propagation function converting vector inputs to scalar network inputs:

9



2. Theoretical part ...................................
Definition 2.2.1 (Propagation function and network input). Let I = {i1, i2, ..., in}
be the set of neurons, such that ∀z ∈ {1, ..., n} : ∃wiz ,j . Then the network
input of j, called netj , is calculated by the propagation function fprop as
follows:

netj = fprop(oi1 , ..., oin , wi1,j , ..., win,j) (2.2)

Here the weighted sum is very popular: The multiplication of the output
of each neuron i by wi,j , and the summation of the results:

netj =
∑
i∈I

(oi · wi,j) (2.3)

Figure 2.5: Informa-
tion processed in neuron.
Adapted from [27]

At every moment, every neuron in network
happens to be in some state, it’s "active" so to
speak. This state further defines its reaction on
incoming information, and we refer to it as acti-
vation state or more often just shortly activation.
[27] provides following general definition:
Definition 2.2.2 (Activation state / activation).
Let j be a neuron. The activation state aj is ex-
plicitly assigned to j, indicates the extent of the
neuron’s activity and results from the activation
function.

So the current activation state of neuron is
based on the activation state as well as the input,
incoming information. This relation is described
by activation function [27]:
Definition 2.2.3 (Activation function). Let j be
a neuron. The activation function is defined as

aj(t) = fact(netj(t), aj(t− 1),Θj). (2.4)

It transforms the network input netj , as well as the previous activation state
aj(t− 1) into a new activation state aj(t), with the threshold value playing
an important role.

Unlike the other variables within the neural network the activation function
is often defined globally for all neurons or at least for a set of neurons and only
the threshold values are different for each neuron. The threshold value can
also be changed during time, e.g. by learning procedure. [27] As for the most
common activation functions: the most simple one is the binary threshold
function, also well known as Heaviside function (refer to figure 2.6) - value
changes from one to another, once overcoming given threshold; otherwise it
stays constant. Other very popular functions are Fermi function (also logistic
function), possibly expanded by a temperature agent T

1
1 + e

−x
T

(2.5)

10



................................2.2. Artificial Neural network
which gives us the possibility to change the gradient of the function and

approximate the Heaviside function. Another function would be hyperbolic
tangent. Both lastly mentioned, in contrast to Heaviside function, are differ-
entiable (fig. 2.6). Incidentally, there exist activation functions which are not
explicitly defined but depend on the input according to a random distribution
- stochastic activation function. [27]

Figure 2.6: Example of various activation functions. Adapted from [39]

Lastly we define output function of a neuron j calculates the values which
are transferred to the other neurons connected to j:
Definition 2.2.4 (Output function). Let the j be a neuron. The output
function

fout(aj) = oj (2.6)

calculates the output value oj of the neuron j from it’s activation state aj .

11



2. Theoretical part ...................................
Generally, the output function is defined globally, too. Often this function

is the identity, i.e. the activation aj is directly output:

fout(aj) = aj , so oj = aj (2.7)
Let us illustrate an example, how a perceptron can weigh up different kinds

of evidence in order to make decisions - this is plausible with a complex
network of perceptrons that could make quite subtle decisions:

Figure 2.7: Illustration of multilayered neural network. Adapted from [39]

The leftmost layer in this network is called the input layer, and the neurons
within the layer are called input neurons. The rightmost or output layer
contains the output neurons, or, as in this case, a single output neuron. The
middle layer is called a hidden layer, since the neurons in this layer are neither
inputs nor outputs [39]. Therefore an example in figure 2.7 is four-layer
network, with two hidden layers.

While the design of the input and output layers of a neural network is
often straightforward, there can be quite an art to the design of the hidden
layers. In particular, it’s not possible to sum up the design process for the
hidden layers with a few simple rules of thumb. Instead, neural networks
researchers have developed many design heuristics for the hidden layers, which
help people get the behaviour they want out of their nets. For example, such
heuristics can be used to help determine how to trade off the number of
hidden layers against the time required to train the network. [39]

2.2.3 Learning and efficiency

Since we are aiming to create an efficient model suitable to given task, we’d
like is an algorithm which lets us find weights and biases so that the output
from the network approximates y(x) for all training inputs x. To quantify
how well we’re achieving this goal we define a cost function 1:

C(w, b) ≡ 1
2n

∑
x

‖y(x)− a‖2 (2.8)

1Sometimes referred to as a loss or objective function.
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................................2.2. Artificial Neural network
Here, w denotes the collection of all weights in the network, b all the biases,

n is the total number of training inputs, a is the vector of outputs from the
network when x is input, and the sum is over all training inputs, x. This
is actually nothing else than mean squared error (MSE) 2. This means that
objectively the goal of our training algorithm would be to keep the cost
function as low as possible, C(w, b) ≈ 0. The lower the MSE value, the closer
the output value is to the correct result.

The next milestone on our way is - how do we find this minimum of cost
function? This is reached by using an algorithm called gradient descent.
Suppose we are trying to minimize cost function C(v). This could be any
real-valued function with arbitrary amount of values: let’s say C is a function
of m variables, v1, v2, ..., vm. Then change ∆C in C produced by a small
change ∆v = (∆v1, ...,∆vm)T is

∆C ≈ ∇C ·∆v, (2.9)

where gradient ∇C is the vector

∇C ≡ ( ∂C
∂v1

, ...,
∂C

∂v2
)T . (2.10)

We will further also define

∆v = −η∇C, (2.11)

where η is a small, positive parameter (known as the learning rate). Then
equation 2.9 tells us that ∆C ≈ −η∇C ·∇C = −η‖∇C‖2. Because ‖∇C‖2 ≥
0, this guarantees that ∆C ≤ 0, i.e., C will always decrease, if we change v
according to the prescription in 2.11.

Figure 2.8: 3-D plot of two variable cost function. Adapted from [39]

2Or quadratic cost function.
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To put this into a better perspective, let’s present a case, where C(v) being

function of two variables v1, v2 and as we know, our goal is to find a global
minimum of said function C(v). By one glance at 3-D plot 2.8 of presented
function C(v), we can immediately recognize there exist ideal combination of
variables v1, v2, the would give us the desired result [39].

The way the gradient descent algorithm works is - by making small changes
(defined by step η) and evaluating change ∆v using equation 2.11 - to repeat-
edly compute the gradient ∇C, and then to move in the opposite direction,
"falling down" the slope of the valley. This concept is then upscaled to
arbitrary amount of values, which takes us back to 2.10.

2.2.4 Deep Learning

It is worth mention what do we understand by the term deep learning
and deep neural networks (DNNs) since this term is being more and more
common while talking about modern learning-based methods.

Since idea of ANNs, that we started to described in previous sections, isn’t
anything new, it’s no surprise that the whole field developed during the years.
More often then not, we can see neural networks that doesn’t have just a
few stages, let’s say single hidden layer - that is something we call shallow
neural network models. We often look for more complex solutions to describe
our task; extracting smaller, more detailed (but also more abstract) features.
Lately we often achieve this by stacking hidden layers, leading to so called
deep neural networks (DNNs).

Unsurprisingly this also brings a question of how to (effectively) train
such NNs. Learning (or sometimes called credit assignment) is about finding
weights (as described in section 2.2.3) that make the NN exhibit desired
behavior, such as driving a car for instance. Depending on the problem
and how the neurons are connected, such behavior may require long causal
chains of computational stages, where each stage transforms (of ten in a
non-linear way) the aggregate activation of the network. Deep Learning is
about accurately assigning credit across many such stages. BP-based training
of deep NNs with many layers, however, had been found to be difficult in
practice by the late 1980s and had become an explicit research subject by the
early 1990s. DL became practically feasible to some extent through the help
of Unsupervised Learning (section 2.1.2), further in he 1990s and 2000s also
saw brought many improvements of purely supervised DL and lastly Deep
NNs also have become relevant for the more general field of Reinforcement
Learning (2.1.2). [46]

2.2.5 Topology of ANN

This section is going to focus on common topologies of neural networks and
their names, often abbreviated. The fact that abbreviations are so commonly
spread in this field, makes it rather hard and overwhelming for inexperienced
person to orientate himself. Following chapter will often refer to very useful
sheet by Fjodor van Veen [57], providing well sorted information and visual
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................................2.2. Artificial Neural network
representation of topic at hand. Another note - list that will follow further
below won’t (and almost can’t be) complete, but should provide reader with
basic idea of structure and design of NNs, especially those applicable for
image processing (compression).

Feed Forward Neural Networks

Figure 2.9: Feed forward
neural network. Adapted
from [57]

Feed forward neural networks (FF or
FFNN) and perceptrons represent the simplest
examples of neural networks. We already de-
scribed perceptrons in more details under section
2.2.2, but very briefly: it is the fundamental unit
of neural networks, defined by weighted inputs
from other neurons, activation function and its
output.

Putting neurons into layers, we create network.
Each layer containing input, hidden or output
cells in parallel. FF network, as the name sug-
gests, is a one-directional network - feeding the
information from front and it propagates to the end, towards output cells on
the right. All nodes are fully connected, meaning that every node in given
layer has connections to all nodes in the next one. The applications of FFNNs
are somewhat limited and they are often paired with other types of networks
for more complex tasks. By itself, they can be used as model for classification.

The decision-making of the network lies in the hidden layer in the middle.
As was mentioned in 2.2.2, every neuron has weights, which represents the
decision-making capabilities, once the information is being propagated through
them. These weights are set by process called training, during which we
feed the network the data on the input and pair them with expected data
on the output (so called supervised learning, 2.1.2). We can go back, to
the input layer, layer by layer comparing layer input with layer error. The
error being propagated is often some variation of the difference between the
input and the output (like MSE or just the linear difference) [57]. Each layer,
no matter how deep it is, contributes to next layer error; therefore, we can
adjust weights by value we can get by multiplying previous layer output by
output error multiplied by current layer output.[51] This process is called
Backpropagation.

Amongst some variations to general FF network we put: Radial Basis
Network (RBF), which is FF network that uses radial basis function 3 as
an activation function.2.2.3.

Another example is Deep feed forward network (DFF) pioneering the
way for deep learning in early 90s. General idea is the same as for FFNs,
adding more hidden layers (therefore deep). Although stacking hidden layers

3real-valued function ϕ whose value depends only on the distance between the input
and some fixed point, either the origin, or some other fixed point c [13]
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2. Theoretical part ...................................
led to exponential growth of training time causing them to be impractical,
with forthcoming more efficient approaches in early 00s, they now form a core
of modern ML systems.[51][52]

Recurrent Neural Networks

Figure 2.10: Recurrent neu-
ral network. Adapted from
[57]

Recurrent Neural Networks (RNN)
brings new type of nodes, cells - recurrent
cells. Our goal is to represent time implicitly
by its effects on processing rather than ex-
plicitly (as in a spatial representation) [15].
This idea first described by Jordan, M.I. in
1986 [23] allows us to involve the use of re-
current links in order to provide networks
with a dynamic memory.

Neurons are fed information not just from
the previous layer but also from themselves
from the previous pass. This also means that
order in which data are fed to the network matter - feeding it "dog" then "cat"
may yield different results compared to opposite order. One big problem with
RNNs is the vanishing (or exploding) gradient problem where, depending on
the activation functions used, information rapidly gets lost over time, just
like very deep FFNNs lose information in depth. To put it in perspective:
if the weight reaches a value of 0 (vanishing) or 1 000 000 (exploding), the
previous state of the cell won’t be very informative. In general, recurrent
networks are a good choice for advancing or completing information, such as
autocompletion. [57]

Variation of RNNs called Long / short term memory (LSTM) aims
to deal with mentioned problem with exploding/vanishing gradient. This is
achieved by an efficient, gradient-based algorithm for an architecture enforcing
constant (thus neither exploding nor vanishing) error flow through internal
states of special units - memory cells. [21] These cells are made composed of
so called gates, which define whether to feed the information forward (and
how much of it) or erase/forget it. [57] They are used in fields such as speech
and writing recognition.
Gated recurrent units (GRU) then are very much similar to LSTMs by

design. They are wired slightly differently, with different gating - introducing
update and reset gates. GRUs are slightly less expressive, but a bit faster;
commonly used in speech (or sound in general) synthesis.

To all networks mention above in this section also exist a bidirectional vari-
ation, called Bidirectional recurrent neural networks, bidirectional
long / short term memory networks and bidirectional gated recur-
rent units (BiRNN, BiLSTM and BiGRU respectively). As for the topology
itself, they appear to be all them same. The difference is in fact that they
can be trained without the limitation of using input information just up to a
preset future frame. This is accomplished by training it simultaneously in
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................................2.2. Artificial Neural network
positive and negative time direction. This trains the network to fill in gaps
instead of advancing information, e.g. instead of expanding an image on the
edge, it could fill a hole in the middle of an image. [47][57]

Autoencoders

Figure 2.11: Node map
of an autoencoder net-
work. Adapted from
[57]

Autoencoders (AE) are considerably similar
by their design to FFNNs, applied a bit dif-
ferently. Their aim to encode (compress) the
information on the input. Structurally they re-
semble the hourglass-like shape (as can be seen
on 2.11), and are symmetrical around the (hid-
den) layer in the middle. This smallest layer (or
multiple layers potentially) are the place with
the highest grade of compression of the informa-
tion, and it is so called bottleneck or chokepoint
of the network. Everything up to the middle
layer is called the encoding part, everything af-
ter the decoding and the middle the code. [57]
Bourlard (2000) shows that the nonlinearities
of these hidden units are useless, and that the
optimal parameter values can be derived directly
by purely linear techniques relying on singular

value decomposition and low rank matrix approximation, similar in spirit
to the well-known Karhunen-Loève transform (KLT). [6] Autoencoders are
normally used for classification, clustering and feature compression.[52]

Denoising autoencoders (DAE) is variation of AE networks, with a
little spin. Vincent at al. (2008) is investigation specific criterion of AEs
called robustness to partial destruction of the input (basically ability to restore
data with presence of noise on the input). The motivation behind is such: a
good representation is expected to capture stable structures in the form of
dependencies and regularities characteristic of the (unknown) distribution of
its observed input. For high dimensional redundant input (such as images)
at least, such structures are likely to depend on evidence gathered from a
combination of many input dimensions. They should thus be recoverable
from partial observation only. [58]

In simple terms this means that by training with the presence of noise, the
model is encouraged to focus on more broad features in the data (e.g. image),
rather than details, which are often shifting, changing. This leads to higher
robustness to noise.

Figure 2.12: Sparse
autoencoder map.
Adapted from [57]

Sparse autoencoders (SAE) is in a way oppo-
site to standard AEs. The idea is that instead of
compressing the information in the middle (hidden)
layer containing less nodes than input/output layer,
we expand the information through bigger amount
of nodes, as seen in 2.12. These types of networks
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2. Theoretical part ...................................
can be used to extract many small features from a
data set. To prevent getting identity network each
time, during training we feed back the input plus a
sparsity driver, that can take the form of a threshold
filter, where only a certain error is passed back and
trained, the other error will be “irrelevant” for that
pass and set to zero. [57][45]

Variational Autoencoders

The Variational Autoencoders (VAE) can be
viewed as two coupled, but independently parameterized models: the encoder
or recognition model, and the decoder or generative model. These two models
support each other. The recognition model delivers to the generative model
an approximation to its posterior over latent random variables, which it needs
to update its parameters inside an iteration of “expectation maximization”
learning. Reversely, the generative model is a scaffolding of sorts for the
recognition model to learn meaningful representations of the data, including
possibly class-labels. The recognition model is the approximate inverse of the
generative model according to Bayes rule.

The VAE is inspired by the Helmholtz Machine (Dayan et al., 1995[12])
which was perhaps the first model that employed a recognition model. How-
ever, its wake-sleep algorithm4 was inefficient and didn’t optimize a single
objective. The VAE learning rules instead follow from a single approximation
to the maximum likelihood objective. [25]

Convolutional Neural Networks

Convolutional neural networks (CNN or deep convolutional neural net-
works, DCNN) first described by LeCun et al. (1998) [29] are conceptually
bit different. They are often used for image processing, recognition (or audio),
where other networks such as FFNNs could bring big disadvantages.

Firstly, data (images) on the input are typically large, let’s say several
hundred pixels (variables). Fully-connected first layer with 100 hidden cells
would then already contain several tens of thousands weights; increasing
capacity of system, as well as memory requirements and would require large
training set. Although with latest development in CNNs Valueva et al. (2020)
[56] proposed convolutional neural network architecture in which the neural
network is divided into hardware and software parts to further increase
performance and reduce the cost of implementation resources. Secondly,
images (or time-frequency representation of audio signal, speech) have a
strong 2D local structure: variables that are spatially or temporally nearby
are highly correlated. Therefore these correlations are advantageous for
extracting and combining local features. CNNs force the extraction of local
features by restricting the receptive fields of hidden units to be local. [29]

4an unsupervised learning algorithm most common with Helmholtz machines[37]
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Simply put we start with scanning layer with a smaller dimension in
comparison to input, that is moving (scanning) over the input image, feeding
these data into convolutional layers. These convolutional layers also tend to
shrink as they become deeper, mostly by easily divisible factors of the input
(e.g. if we have layer of 20x20, it’s likely that would be followed by 10, and
5). Besides these convolutional layers, they also often feature pooling layers.
Pooling is a way to filter out details: a commonly found pooling technique is
max pooling, where we take say 2 by 2 pixels and pass on the pixel with the
most amount of red. [57]

Figure 2.13: Architecture of LeNet-5, a CNN, here for digits recognition. Each
plane is a feature map, i.e. a set of units whose weights are constrained to be
identical. Adapted from [29]

Generative Adversarial Networks

Framework for estimating generative models via an adversarial process, in
which we simultaneously train two models: a generative model G that captures
the data distribution, and a discriminative model D that estimates the
probability that a sample came from the training data rather than G. The
training procedure for G is to maximize the probability of D making a mistake.
This framework corresponds to a minimax two-player game. In the space of
arbitrary functions G and D, a unique solution exists, with G recovering the
training data distribution and D equal to frac12 everywhere. In the case
where G and D are defined by multilayer perceptrons, the entire system can
be trained with backpropagation. [17]

In simple terms: GAN is actually two networks designed to compete against
each other. Discriminative network D determines whether the input produced
by the generative network G is good enough (difference from reference data);
through backpropagation G adjust its weights until maximal quality solution.

2.3 Applications in image compression

With growing amount of visual data over the internet as well as the higher
quality of this content (higher resolution such as UHD, high dynamic range
etc.) the requirement of efficient compression and storing of this content
becomes crucial. The research and development of image/video coding can be
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Figure 2.14: Image generated by deconvolutional layers. Adapted from [24]

dated back to as early as 1960s, much earlier than the appearance of modern
imaging, image processing, and visual communication systems. [30]

Compression may or may not give us the possibility of (mathematically)
perfect reconstruction; which is referred to as lossless or lossy compression.
For natural image/video, the compression efficiency of lossless coding is
usually below requirement, so most of efforts are devoted to lossy coding.

The redundancies within images and videos are fundamentally important for
image and video compression, including spatial redundancy, visual redundancy
and statistical redundancy. Besides, the temporal redundancy existing in
video sequences enables the video compression to achieve higher compression
ratio compared with image compression. [31]

Figure 2.15: Simplified diagram of JPEG compression.

2.3.1 Neural networks and image coding

The past decade has witnessed the emerging and booming of deep learning, a
class of techniques that are increasingly adopted in the hope of approaching
the ultimate goal of artificial intelligence [28]. One of the most benefiting
factors of using compression methods based on deep learning is that extracted
representations of image/video content isn’t manually designed, rather learned
from visual data presented during training, learning procedure. Achieved high
level of abstraction gives us possibility to extract latent representations of the
image, as opposed to manually designed systems (e.g. quantization matrixes
of JPEG systems). This is further useful especially for processing natively
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Figure 2.16: Example of JPEG compression. (Left) raw, uncompressed im-
age, (middle) medium level compression, perceptually lossless, (right) highly
compressed image. Adapted from [40]

unstructured data, such as acoustic and visual signal, whilst processing such
data has been a longstanding difficulty in the artificial intelligence field. [30]

In general we can divide available compression systems into two main
groups suggested by Liu at al. in [30]:. Deep schemes - new coding schemes, that are built primarily upon deep

networks.Deep tools - used within traditional coding schemes or together with
traditional coding tools.

To put simply deep schemes can be viewed as an end-to-end compression
system based on NNs and deep learning (pixel probability modeling and
auto-encoders), whereas deep tools are singular tools designed to replace
specific part of the traditional systems: intra-picture prediction, inter-picture
prediction, cross-channel prediction, probability distribution prediction, trans-
form, post- or in-loop filtering, down- and up-sampling, as well as encoding
optimizations. [30]

Auto-encoder we briefly described in section 2.2.5. It originates from work
of Hinton and Salakhutdinov [20], which explores how high-dimensional data
can be converted to low-dimensional codes (encoding) by training a multilayer
neural network with a small central layer to reconstruct high-dimensional
input vectors (decoding).

When we consider the compression requirement, there are several challenges
[30]:. the low-dimension representation shall be quantized then coded, but the

quantization step is not differentiable, making a difficulty to train the
network.. lossy coding is to achieve a better tradeoff between rate and quality, so
the rate shall be taken into account when training the network, but the
rate is not easy to calculate or estimate.
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Figure 2.17: Pretraining consists of stacking restricted Boltzmann machines
(RBMs), each with one layer of feature detectors. After pretraining, the RBMs are
"unrolled" to create deeper autoencoder, which is tuned using backpropagation
of error derivatives. Adapted from [20]

. a practical image coding scheme needs to consider variable rate, scalabil-
ity, encoding/decoding speed, interoperability, and so on.

The original image x is transformed to y = ga(x), and y is quantized then
coded. The decoded ŷ is inversely transformed to x̂ = gs(ŷ). Considering
the tradeoff between rate and quality, we can train the network to minimize
the joint rate-distortion cost D + λR where D is calculated or estimated as
the difference between x and x (note that the difference may be calculated
or estimated in a perception space), R is calculated or estimated from the
quantized code, and λ is the Lagrange multiplier. All of the existing researches
follow this scheme more or less and differ in their network structure and loss
function. [30]

2.3.2 Examples from practice

This section should represent some real implementations that have been
proposed, and that would further be part of a performance comparison in
practical part of this paper.

Paper of Minnen et al. (2018) [35] introduces they learning-based com-
pression method; they network basically consist of two sub-networks, each
having a different purpose. The first is the core autoencoder, which learns
a quantized latent representation of images (Encoder and Decoder blocks).
The second sub-network is responsible for learning a probabilistic model over
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quantized latents used for entropy coding. It combines the Context Model,
an autoregressive model over latents, with the hyper-network (Hyper Encoder
and Hyper Decoder blocks), which learns to represent information useful for
correcting the context-based predictions. The data from these two sources
is combined by the Entropy Parameters network, which generates the mean
and scale parameters for a conditional Gaussian entropy model.

Toderici et al. (2016) proposed an architecture (fig. 2.18)with RNN-based
encoder and decoder, a binarizer, and a neural network for entropy coding.
Their goal was to provide a neural network which is competitive across
compression rates on images of arbitrary size. Also most of autoencoders
of the time were defined by fixed compression rate, based on the size of
bottleneck layer in the middle. [54] extends this idea by supporting variable
rate compression while maintaining high compression rates beyond thumbnail-
sized images.

Figure 2.18: Single iteration of shared RNN architecture from [54]

While the network weights are shared between iterations, the states in the
recurrent components are propagated to the next iteration. Therefore residuals
are encoded and decoded in different contexts in different iterations. Proposed
network incorporates LSTM units, Assoctiative LSTMs 5 (experimentally
proved to be effective only in decoder) and GRU - computation block that
passes residual information around the block in order to speed up convergence.

2.3.3 Quality assessment - metrics

The most widely used full-reference6 image quality and distortion assessment
algorithms are peak signal-to-noise ratio (PSNR) and mean squared error
(MSE), which do not correlate well with perceived quality. That is a main
reason for development of method calledMulti-scale structural similarity
index measure (abbr. MS-SSIM), that will be further used as main metric
of quality.

Structural similarity provides an alternative and complementary approach
to the problem of image quality assessment.[64][63] The perceivability of

5Associative LSTM extends LSTM using holographic representation
6based on an initial uncompressed or distortion-free image as reference
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image details depends the sampling density of the image signal, the distance
from the image plane to the observer, and the perceptual capability of the
observer’s visual system. A older single-scale method may be appropriate
only for specific settings and is surpassed by multi-scale version that is a
convenient way to incorporate image details at different resolutions. [59]

As was mentioned before, more simple metrics such as MSE or PSNR
might not as descriptive for the subjective quality assessment, nevertheless
they still might be useful as indicators, e.g. during training our network. So
for the image I (m× n pixels) and its reconstruction K, we define:

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[I(i, j)−K(i, j)]2 (2.12)

PSNR = 10 · log(MAX2
I

MSE ) (2.13)

For the purpose of new learning based compression methods, these previ-
ously mentioned metrics might not be fully optimal. For this reason, new
metrics for objective quality assessment are developed as well. Work of Testo-
rina et al. [53] gives extensive comparison of objective metrics available and
their correlation to subjective tests. Based on various correlation coefficients
such as Pearson Linear Correlation Coefficient (PLCC), Spearman rank order
correlation coefficient (SROCC) and Kendall’s Rank Correlation Coefficient
(KROCC) - few metrics stands out. Therefore let us extend our list.
The Visual Information Fidelity (VIF or VIFP) [48] express the

quality of the image using Natural Image Statistics exploiting also the Human
Visual System characteristics. The original code works with single-channel
images. The final RGB score is computed as the average over the 3 channels.
The metric takes values in range 0-1 and a high score express better image
quality.
The Feature-Similarity Index Metric (FSIM) [62] uses the Phase

Congruency (PC) and Gradient Magnitude (GM) to assess image local quality.
Since this metric allows as input only monochromatic images, the score has
been computed over the R, G and B channel separately as well as on the
grayscale version of the original image. The FSIM for the RGB image is
computed as the average of the one on the R, G and B results. A high metric
value express better image quality.

In paper of Ponomarenko [41] a simple model of between-coefficient masking
of DCT basis functions is proposed and the modifications of PSNR that take
into account this model are put forward. The new measure PSNR-HVS-M
has shown its higher efficiency (adequacy) in comparison to known metrics.

2.3.4 Data sets

To precisely define the objective quality of compression method at hand, we
should also use suitable testing data, broad enough, various so we can define
what and where are the strengths and weaknesses.
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From my research, the most common data set used by many papers is still
Kodak Lossless True Color Image Suite[26], which contains 24 images
in so called "full colour" (24 bits per pixel, 8 bits per colour layer) contained in
lossless format PNG. Each image is of size 768 × 512 pixels (both dimensions
divisible by 32, commonly used factor in compression systems). This set was
released by the Kodak Corporation for unrestricted research usage in 1999.

Although possibly prevalent, it’s hardly the only data set, so let us also
propose other options..Tecnick [2] containing data set of 100 images, size 1200 × 1200..MCL-JCI [22] has 50 images of 1920 × 1080 with 8-bit depth that can

be classified into ten semantic categories such as people, animals, plants,
buildings, water or lake, sky, bridge, transportation vehicles (boats or
cars) and indoor.. LIVE in the Wild [16] with 1162 distorted images from different mobile
devices (therefore different sizes) Images of faces, people, animals, close-
up shots, wide-angle shots, nature scenes, man-made objects, images
with distinct foreground/background configurations and without any
object of interest.

Many others could be listed, the choice heavily depends on the expected
task, what would be the subject of our study.

2.4 Classification proposal

This paper also aims to propose a taxonomy, how to classify and orient
yourself in vest field of neural networks, based on various criteria. This would
also help us with even field on which we could compare various networks and
their implementations. We have to consider that we are discussing very broad
field and different perspectives should be pointed out. Nelson and Rogers
(1992) [38] points out, that there might be different criteria to chose as best
per se, for the same task. Therefore the final criteria should be selected by the
researcher or application specialist depending on the results desired. Their
paper also proposes division of criteria into 3 main groups - topology, training
and performance.

2.4.1 Topology

Let us start with topological point of you; where we are considering the
architecture, design of the network itself. In section 2.2.5 we’ve been describing
different types of network topologies [14] simply defines category Neural
network type, i.e. top level description of the network. Our aim is to create
efficient compression method - do we use AE network? Or some variation, such
as VAE? Or possibly we could train model through combination of networks,
e.g. GANs? This is also connected to what type of units/neurons/nodes do
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we define in our network and their activation functions (2.2.3). Also, what is
the extent of our network in means of end-to-end image compression system -
NN focused on encoding residual part, the entropy coder or combination of
both?

If we were to dissect this idea into smaller problems, we should discuss the
complexity of the network. How many (hidden) layers should our NN -
shallow or deep NN? Considering solely the amount of layers, while assuming
that same performance regardless of this amount, we would prefer fewest
layer amount possible.
How many nodes do we have per layer? Generally speaking the more

nodes a network has the greater the tendency to memorize the training set
and the less tendency to properly generalize. The network with the fewest
nodes, irrespective of how they are arranged or connected could be selected
by this criterion. [38]

And lastly, what is the amount of connections between the nodes in
layer. This affects networks ability to solve given (or possibly its inability to
do so) while using too few interconnections. In opposite case the network
tends to produce noise in the system. So we are looking for optimal solution
with fewest possible interconnections.

2.4.2 Training

Training, or learning is unmistakably integral part of neural networks, that
has to be considered, while comparing with other systems. Also, because the
training phase is usually the one which requires the most time, this is a good
area to make comparisons according to [38].

First criterion that comes to mind could be the time efficiency - how
fast can the NN be trained, converging to the optimal solution. If we would
discuss the fact, that learning is iterative process, and we are feeding the
training data to the network in cycles, converging to expected solution; that
aim should be to do so in least epoch/iterations as possible.

Further we can also talk about the actual real clock time, that would
be consumed by training on given hardware. With growing complexity and
depth of NNs, the required hardware capabilities are to be consider. All of
this is in the end defined by the time spent, which we expect to be as short
as possible.

Training also involves the requirements for data set, that would be
descriptive enough for our task. This means, that we need to feed the network
data of some variety, in cases of general tasks, e.g. while training NN for
image compression, feeding the network only portraits of people, we couldn’t
expect good results while compressing (and mainly reconstructing) the image
of scenery in nature. The features extracted might not be general enough for
both, therefore model would have more specific application. Summing up
the idea, our criterion would be smallest possible data set, that would fit the
expected results.
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Nelson and Rogers [38] describe a computational complexity of opera-
tions during one epoch of learning algorithm, providing example of so called
Hammering and Stretching Algorithm. This method uses just one epoch
to train, however requires the construction and inversion of a very large
matrix, which might be detrimental during training on bigger data sets. This
implies our desire of least possible computational complexity - the amount of
operations needed.

2.4.3 Performance

The performance is logical context to be discussed as our main aim while
designing learning-based solutions to our task should be based on efficiency.
We already discussed time efficiency, complexity and now quality of final
result, produced by our network. How accurate is the representation, in
our case of this paper: the reconstructed image once decompressed. This
might be different based on the input data and their relation to the training
data set. What we mean by this, is the possibility that we are might try
to process (compress) content similar to that provided during training, or
vice versa; this might (or might not!) impact the resulting quality, e.g. in
means of MSE or MS-SSIM in our case. Which naturally leads us to another
criterion, which is the ability of network to generalize from the training
data set. As a result, some researches include not only training data set, but
also evaluation data set for purpose of accurate quality assessment (which in
our case is represented by Kodak image set [26]).

We can also describe the dependency on initial setup of weights in
our NN. Since a lot of networks start training phase with random weights,
it leads to the different starting point of finding the optimal solution to our
task, therefore best possible network. This implies that there’s possibility of
training getting stuck on a local minima, instead of being able to find the
most optimal global minimum, and most effective network.
Dependency on data set order fed to NN it also to be considered.

There are basically two ways to train a neural network. The first is to update
the weights after calculating the error for each exemplar. The second is to
accumulate the weight updates as each exemplar in the epoch is presented.
At the end of the epoch (presentation of each training exemplar one time), the
weight updates are made. For epoch training, the order of the presentation of
exemplars will make no difference. Exemplar training can result in different
results, depending on the order of the exemplar presentation. [38] Optima
case would therefore consist of complete independency on order, in which the
data are fed to network during training.

Specifically for image processing networks, we might focus on the final
quality range of our system. In some cases, the trained model might not be
able to achieve best possible quality in relation to target compression rate for
example. Let’s describe it on specific example - Agustsson et al. (2018) [1]
presented GAN compression system, with main focus on low quality images,
i.e. giving best possible quality outcome at extremely high compression
rate. This implies that you might not get satisfying results for higher quality
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2. Theoretical part ...................................
compression in comparison to other systems (be it ML-based, or conventional).
[14]

Somewhat similar to quality range, we might discuss flexibility of bitrate
control. Our network might be designed in a way, that doesn’t allow vari-
ability and works with fixed bitrate model(s). On the contrary [55][54] both
presents single model, which can specify target bitrate by so called lambda
parameter. Once again situational criterion, that might have a trade-off of
being flexible at the cost of achievable quality. [14]

Lastly coding unit size gives defines the accessibility to spatial context.
With bigger size of coding unit, NN give us better results; on the other hand,
we must consider the representation of input data (image resolution) - since
architecture is usually tailored for a specific coding unit size, which means
that images that have a resolution that is not multiple of this size need to be
adapted.
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Chapter 3
Practical part

Practical part should focus on comparison of implementations of various ANN
systems for image compression. How they score in quality amongst each
other and against traditional compression methods such as JPEG, JPEG2000,
BPG. Further we would like to summarize proposed classification, or rather
set of criteria to be considered for classification of learning based systems.

3.0.1 Models

Twelve learning based solutions developed in recent years were chosen,
available online through Tensorflow and PyTorch platforms, to be qualita-
tively compared with three traditional compression methods, namely JPEG,
JPEG2000 and BPG.

As for the traditional models of JPEG and JPEG2000; MATLAB imple-
mentations, through imwrite() function as follows:

% JPEG
imwrite(<input>, <output>, ’jpeg’, ’quality’, <qp>);
% JPEG2000
imwrite(<input>, <output>, ’jp2’, ’CompressionRatio’, <ratio>);

Free binary distribution for Windows of BPG implements codec function,
that can be called from console (command prompt):

bpgenc -q <qp> -o <output> <input>

Lastly the implementation of learning based models was done through
Python, specifically through platforms Tensorflow (developed by Google) and
PyTorch. Following table list the encoding command and references to each
model used.
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3. Practical part.....................................
Codec Command Ref
HierMSE python tfci compress mbt2018-mean-mse-qp input output [35]

HierhMS-SSIM python tfci compress mbt2018-mean-msssim-qp input output [35]
HyperMSE python tfci compress bmshj2018-hyperprior-mse-qp input output [4]

HyperMS-SSIM python tfci compress bmshj2018-hyperprior-msssim-qp input output [4]
FactorMSE python tfci compress bmshj2018-factorized-mse-qp input output [4]

FactorMS-SSIM python tfci compress bmshj2018-factorized-msssim-qp input output [4]
NonlinLeaky128 python tfci compress b2018-leaky-relu-128-qp input output [3]
NonlinLeaky192 python tfci compress b2018-leaky-relu-192-qp input output [3]
NonlinGdn128 python tfci compress b2018-gdn-128-qp input output [3]
NonlinGdn192 python tfci compress b2018-gdn-192-qp input output [3]

Hific python tfci compress hific-qp input output [33]
ChengAnchor python3 codec.py encode cheng2020-anchor-qp -o output input [5]

3.0.2 Metrics

We already described chosen metrics for the evaluation in section 2.3.3, so
here we’ll briefly describe their implementation. Most of the metrics were
implemented in Matlab environment, either as part of image processing
toolbox (PSNR, MS-SSIM) or freely distributed m-file scripts (PSNR-HVS-M,
FSIM). Lastly the VIFP was implemented as part of Python package called
Sewar. Further below is part of my evaluation code as an example of use.

% Evaluate the quality with full ref. objective metrics
% Feature Similarity Index (RGB)
FSIM(i-2,j-2) = FeatureSIM(ref_im, rec_im);

% Multi-scale structural similarity index measure
MSSSIM(i-2,j-2) = multissim(Y_rec,Y_ref);

% Peak singal to noise ratio (Y)
PSNR(i-2,j-2) = psnr(Y_rec,Y_ref);

% PSNR taking into account Contrast Sensitivity Function (CSF)
% and between-coefficient contrast masking of DCT basis functions.
PSNR_HVS_M(i-2,j-2) = psnrhvsm(Y_rec, Y_ref, 8);

As was mentioned previously, not every metric implementation works with
3-channel (RGB) images. Therefore we need to extract luminance matrix Y ,
which is easily done by following recommendation of ITU-R BT.709:

% My Matlab implementation
function Y = getLuminance(image)
R = image(:,:,1);
G = image(:,:,2);
B = image(:,:,3);
Y = R*.2126 + G*.7152 + B*.0722; % as defined in Rec. 709
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3.0.3 Performance evaluation

Now that we have raw data from objective quality assessment, we should
evaluate it and compare to subjective quality of reconstructed images available
to us. For this purpose we will use specific images from the Kodak data set,
representing common features.

For the start let’s take kodim19 (fig. 3.4), specifically the part with the
fence (fig 3.2), representing change in spatial frequency. This is common
feature problematic during compression, thanks to the aliasing. Therefore
could be source of compression artifacts.

(a) : Reference (b) : NonlinGdn128
(c) :
NonlinLeaky128 (d) : FactorMSE

(e) : FactorMS-
SSIM

(f) : HyperMSE (g) : HyperMS-SSIM (h) : Cheng2020 (i) : HierMSE (j) : HierMS-SSIM

(k) : JPEG (l) : JPEG2000 (m) : BPG

Figure 3.1: Visual comparison of reconstructed image Kodim19 from Kodak,
bpp ≈ 0.11
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3. Practical part.....................................

(a) : Reference (b) : NonlinGdn128
(c) :
NonlinLeaky128 (d) : FactorMSE

(e) : FactorMS-
SSIM

(f) : HyperMSE (g) : HyperMS-SSIM (h) : Cheng2020 (i) : HierMSE (j) : HierMS-SSIM

(k) : JPEG (l) : JPEG2000 (m) : BPG

Figure 3.2: Area of interest (fence), cropped from reconstructed image Kodim19
from Kodak, bpp ≈ 0.11

By purely subjective assessment, we could see that models HyperMSE
gives somewhat satisfying results, although BPG and Cheng2020 definitely
prevail, showing next to none aliasing related artifacts. Other models either
lose sharpness fairly fast, or creates specific repeated patern in the area. Model
NonlinLeaky128 even creates moiré, specific colour aberration common
with aliasing. Legacy JPEG proves to be almost unusable on such low quality
settings (0.11 bpp), thanks to heavy loss in colour resolution, and blocky
structure. This will prove to be common for JPEG compression with high
compression ratio setting.

Further we shall take a look at Kodim20, and crop out of logo from the
reconstructed images. Here we can explore the readability of sings, logos etc.
Once again, subjectively we can define reconstructed image from model Hy-
perMSE, although specific artifact - repeated blocky pattern on whole image
(as seen on 3.3. JPEG2000 also satisfies the criteria of readability, although
compression artifacts common for JPEG2000 hinders the overall quality on
high compression levels. Loss of contrast on areas with high brightness (the
sky) is noticeable using FactorMS-SSIM and HyperMS-SSIM as well.
Once again Cheng2020 proves to be most satisfying subjective quality.

Let us compare how this subjectively assessed performance correlates with
objectively measure quality of chosen metrics. The important metrics this
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Figure 3.3: Visualization of block pattern artifact from HyperMSE model.

work focuses on are VIFP, FSIM and PSNR-HVS-M, since they bring superior
results correlating with subjective assessments while using learning based
methods for compression.

Going back to our imageKodim19 (lighthouse) we have measured objective
quality score as seen on 3.6 and 3.7. For metrics PSNR-HVS-M and VIFP,
we can clearly see that model Cheng2020 and BPG are superior to other
models. This supports our conclusion from subjective assessment. On the
opposite end, we can see that JPEG doesn’t it’s performance is sub par, be
it in contrast to learning based metrics or other traditional methods (which
isn’t any surprise).

We can further derive that most "dual" models that have mse-based and
ms-ssim-based variants give very similar results. Lastly JPEG2000 scores
average among all mentioned models.

Although FSIM scores suggest, that two ms-ssim-based models (namely
HierMS-SSIM and HyperMS-SSIM) achieve similar or even superior
quality to Cheng2020 and BPG. This might mean that FSIM scores doesn’t
take into account specific artifacts mentioned before; in contrast to subjective
assessment, this could be contested.

Lastly MS-SSIM heavily scores well on JPEG for bpp over 0,2. That is
highly in contradiction with subjective assessment, since JPEG images around
this bitrate are still quite blocky which highly influences the quality.

Now let’s compare the objective scores given for Kodim20, therefore see
how models and metrics relate contextually also. Looking at the 3.8 and
3.9, we can see some similar trends as well as differences in objective scores.
Firstly, models Cheng2020 and BPG proves to be superior in all metrics
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3. Practical part.....................................
used. On the other hand the PSNR-HVS-M metric shows different trend
for all ms-ssim-based models. This might be related to big homogeneous part
of the image with lack of details (sky), and correlates to our assessment of
loss of contrast for these particular models. This is further supported by
simple PSNR metric.

Once again, the MS-SSIM favours JPEG for bpp over 0,2. This might
mean, that MS-SSIM might not be completely viable when assessing quality
of learning based systems.

Rest of the models follows trends that we stated before, and we don’t see
much differences throughout all metrics.
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(a) : Reference (b) : NonlinGdn128 (c) : NonlinLeaky128

(d) : FactorMSE (e) : FactorMS-SSIM (f) : HyperMSE

(g) : HyperMS-SSIM (h) : Cheng2020 (i) : HierMSE

(j) : HierMS-SSIM (k) : JPEG (l) : JPEG2000

(m) : BPG

Figure 3.4: Visual comparison of reconstructed image Kodim20 from Kodak,
bpp ≈ 0.11
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(a) : Reference (b) : NonlinGdn128
(c) :
NonlinLeaky128 (d) : FactorMSE

(e) : FactorMS-
SSIM

(f) : HyperMSE (g) : HyperMS-SSIM (h) : Cheng2020 (i) : HierMSE (j) : HierMS-SSIM

(k) : JPEG (l) : JPEG2000 (m) : BPG

Figure 3.5: Area of interest (logo), cropped from reconstructed image Kodim20
from Kodak, bpp ≈ 0.11
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(a) : VIFP

(b) : PSNR-HVS-M

(c) : FSIM

Figure 3.6: Measured scores for various objective quality metrics (Kodim19).
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(a) : PSNR

(b) : MS-SSIM

Figure 3.7: Measured scores for various objective quality metrics (Kodim19).
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(a) : VIFP

(b) : PSNR-HVS-M

(c) : FSIM

Figure 3.8: Measured scores for various objective quality metrics (Kodim20).
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(a) : PSNR

(b) : MS-SSIM

Figure 3.9: Measured scores for various objective quality metrics (Kodim20).
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Chapter 4
Discussion and conclusions

The results of our research clearly show, that ML based compression methods
proves to be step forward in efficient compression of visual data. It is very
promising field, with ability to already qualitatively exceed the conventional
methods of image processing. However alongside with research in new com-
pression methods, there is also immense need for state-of-the-art objective
quality metrics. As proven by the presented results of various metrics used,
the modified (or completely new) metrics for the purpose of learning based
methods are needed, to give us precise score correlated to the subjective
scores. FSIM, VIFP as well as PSNR-HVS-M proved to be right choice for
such assessment of performance.

As for the output quality of learning based models: quality of the recon-
structed images are on par, in some cases superior to the traditional codecs.
This is especially true for low bitrates, high compression setups. Model
Cheng2020 implemented through CompressAI (PyTorch library) shows very
promising results among the others, which is to no surprise as it’s the most
recent method used in this work.

This is strictly speaking from performance point of view. The conventional
methods are also characterized by their easy of use, after the years of research
and development. They are flexible as to the format of the input, quality
range provided and implementations in most of the modern systems. Same
can’t be told for ML-based systems; as for now at least. Another thing
to consider is possibility of distribution, and hardware requirements on the
consumer/user side. Last but not least, the learning/training of new models
is trivial matter still, and appears to be quite time-consuming, without proper
high-end hardware (GPU). Considering all of these milestones, I’m curious to
see how future of standardization by efforts of JPEG-AI will be.

As for the classification (taxonomy) of ML-based system, there’s plethora
of criteria to look for, extensively described in 2.4. Also many of these criteria
are connected and interlaced, sometimes forcing us to make trade-offs, e.g.
efficiency vs. flexibility etc. Also not every criterion is applicable to all
problem areas; this implies a lot of decision and criteria application has to be
done in advance with fore knowledge.

This paper tries to navigate the ever-growing field ANNs and their applica-
tion in image compression; that is specifically in comparison to conventional
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4. Discussion and conclusions...............................
compression methods. Practical part there is focuses on this fact is holding
possibilities for further improvement, and would be worth of more extensive
research. Specifically considering the platforms used for NN implementations
- this paper solely focused on methods based on Python language and on
TensorFlow platform and PyTorch. Other (still Python-based) platform are
available (such as) and would be worth of deeper research, such as Theano,
OpenCV or Keras; they might provide valuable data to be compared with
those provided in this paper.

42



Appendix A
List of electronic attachments

. evaluation.m: evaluation MATLAB script for JPEG and JPEG2000
compression, with resulting MS-SSIM, PSNR, FSIM, PSNR-HVS-M
scores, as well as BPP of compressed files. codec.m: MATLAB script for compression and reconstruction of image
data, with JPEG and JPEG2000. evaluation.py: Python script for VIFP score evaluation. codec.py: Python script for calling various compression models accessible
through tfci.py. tfci.py: python script implementing various compression methods, down-
loading related models (availability changes during time); by Ballé et
al.. resultsFull.xlsx: Excel file containing all evaluation scores. getLuminance.m: MATLAB function to get Y component from RGB
image
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Appendix B
Average objective scores for Kodak dataset

(a) : VIFP

(b) : PSNR-HVS-M

Figure B.1: Average objective scores over Kodak data set.
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(a) : FSIM

(b) : PSNR

(c) : MS-SSIM

Figure B.2: Average objective scores over Kodak data set.
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