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Introduction

Image manipulation is an important part of computer graphics, still very popular

in recent years. One example of modern image manipulation is style transfer. The style

transfer algorithm applies the chosen artistic style to an image. With this technology, we

can replicate the artistic styles of painters throughout history or reduce the amount of

work an artist has to do when creating a stylized video sequence. This thesis aims to

explore all commonly used style transfer methods and implement the creation of guide

channels for example-based portrait style transfer algorithm used by Fišer et al. [1]. Style

transfer algorithms use two sets of images, where the first set is style examples, and those

in the second set are original images. Style transfer methods use those two sets of images

to create a third set, which take the style of images in the first set and apply it to the

second set. Example of a style transfer algorithm output can be seen in Figure 1. Original

images are usually very common images. It can be an image taken by the algorithm user,

or we might want to do a style transfer on an image from a movie. On the other side, style

examples are very uncommon, and quite often they are paintings created by a famous

painter. In this thesis, we focus on portrait style transfer. An example of this transfer can

be found in Figure 2. Even though the variety of images is much smaller, human eyes are

very sensitive to artifacts in a face image. Therefore, portrait style transfer algorithms

have to focus on small details and have to be different from those used for style transfer

of nature or industrial sites.

Style transfer can be used to apply a certain style to a video sequence and thus

create a non-realistic video, which does not have to be fully computer created by standard

techniques and can be transferred from a video captured with a camera. Very frequent

usage of portrait style transfers is in the photo industry, where users can use predefined

painting styles on their photos or even use style transfer on a live feed from a video camera

to see the result in real-time.

The inputs of our algorithm are the two images, which we use in transfer, their head

masks, skin masks and face landmarks, which can be seen in Figure 3.
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14 Introduction

Figure 1: Example of style transfer. In left most image, we can see the model with its lightning

and in following images, we can see multiple styles applied to this model. Source [2]

Figure 2: Example of the portrait style transfer. In the leftmost image, we can see the style

example and then stylized images creating a video sequence. Source [1]

Figure 3: From left to right: Original image, its head mask, its skin mask and visualisation of

face landmarks.



Chapter 1

Related work

1.1 Stroke-based rendering

This chapter presents work related to the topic of the thesis, like stroke-based render-

ing and image processing. Afterwards, examples of of stylization algorithms are introduced.

There are many different studies on topic of non-realistic rendering, where one does not

try to capture the reality as it is 9like the photo-realistic rendering0, but tries to give

the image a unique style. Stylization of an image means choosing a specific style and, by

using advanced methods, transfer the style onto the chosen image. One of the techniques

used for style transfer is called stroke-based rendering. Algorithms of this technique try

to replicate brush strokes, which are used when painting an image. Some of stroke-based

techniques focus on giving brush strokes colors from the original image and then applying

brush strokes to create a new image with them [3]. Another technique uses a geometry

and colors of a scene in the image, which then uses predefined brush image and paints

the image [4]. The article [5] introduces variables, which can be used to set a good brush

stroke to replicate the content of the image. All those techniques have a huge variability

and can perform multiple styles, but are only restricted to paint brushes. These methods

work very well with video sequences. Their purpose is not to transfer a style, but to setup

a style with settings and apply it to the image or a video sequence. How these methods

perform can be seen in Figure 1.1.

1.2 Image processing techniques

Article [6] explains different aspects of watercoloring. They introduce a pipeline, which

is able to render these effects onto a 3D model or a photo. The pipeline uses techniques such

as color modification, which simplifies complex shading, then computes gradient intensity

15



16 Chapter 1. Related work

Figure 1.1: Examples of usages of stroke-based rendering techniques. Sources [3] (left), [4] (right).

to darken edges in the image. In final steps it applies series of textures, which have a

purpose of locally distorting the image due to the paper granularity, globally diffusing

colors that should create a visual effect of flow of the water, applying the paper texture

to the result. Image processing framework introduced by Montedeoca et al. [7] uses image

processing to transfer a style onto a 3D computer graphics. This technique can apply

styles such as watercoloring, oil painting or charcoal painting. This framework has wide

range of control to help a user create a wanted result. The effects are divided into four

categories. Pigment-based effects which change how the colors are used within a specific

style. Substrate-based effects, which affect the result based on its substrate, whether it is

a paper, canvas or anything else. Edge-based effects are those that can be seen on edges of

rendered object, which is used in cartoon style rendering or also in water color rendering.

Abstraction-based effects might affect shape, detail or blending of colors during rendering.

Examples of these two methods can be seen in Figure 1.2.

1.3 Example-based stylization algorithms

In 2006 Selim et al. [8] published an article concerned about transferring a painting

style for head portraits. This article introduced the first single-example style transfer,

which is not dependent on the chosen style. For their algorithm, they used convolutional

neural networks. In the training stage of the algorithm, the network acquires knowledge

of representations of the style example. Then, by using an algorithm [9], the style of

example is transferred using the learned representation in the network. An example of

results produced by this algorithm can be seen in Figure 7.

The article from Fišer et al. [1] uses the previous algorithm as a state-of-the-art algo-

rithm for comparison and introduces a new algorithm, which would transfer style between

portrait images. At first, the algorithm extracts information from both the example and
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Figure 1.2: Examples of usages of image processing techniques. In top row we can see how a

watercoloring algorithm can be used on a photo, Source [6]. In the bottom row we can see products

of the framework on different 3D scenes with different styles, Source [7].

the original image, creating images called guide channels. This information is then stored

in a form of new images called guide channels. These channels are used in guided texture

synthesis, which finds the best patch (a small rectangular part of the texture with set

dimensions) from the example to place in to the original image. As shown in Figure 1.3,

results created by this algorithm can be different from those produced by the Selim et al.

algorithm and can produce a result more resembling the style example.

The newest method by Futschik et al. [10] uses a generative adversarial network to

create similar or better results than those generated by the method of Fišer et al. An

advantage of this approach is that the whole process of stylization is very fast, and the

algorithm used by this article can be used in real-time. The disadvantage of this method

is that it needs training sets of examples and original images to set up its parameters for

the specific style. A good approach is to use the Fišer et al. method to create a training

set and then use the particular style parameters to produce results in a small amount of

time. Even though this algorithm uses the Fišer et al. one as a training set, it can have

different results, as shown in Figure 1.4.
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Figure 1.3: Comparison between two style transfer algorithms. In the first images, we can see

that structures such as the circle on the left cheek are preserved in the Fišer et al. algorithm. In

the second set of images, we can see warping artifacts in the algorithm of Selim et al., which is not

visible in the Fišer et al. algorithm usage. Source [1].

Figure 1.4: Comparison between two style transfer algorithms. In the Fišer et al. algorithm, we

can see visual artifacts in the left eye, but the right ear is synthesised better in the Fišer et al.

algorithm. Source [10].



Chapter 2

Background

Our target is to use an algorithm, which could be used to create training sets for the

Futschik et al. method, introduced in the previous chapter. The algorithm of Fišer et al.

eradicated visual artifacts, which the algorithm of Selim et al. can cause, and it is suitable

for GPU implementation.

This algorithm finds the best function, assigning patches of an example image to some

position in the output image. To define how good the function is, we define an error, also

called energy function, which we try to minimize:

𝐸(𝐴, 𝐵, 𝐴′, 𝐵′, 𝑝, 𝑞, 𝑤, 𝑛) = ||𝐴(𝑝) − 𝐵(𝑞)||2 +
𝑛∑︁

𝑖=1
𝑤𝑖||𝐴𝑖(𝑝) − 𝐵𝑖(𝑞)||2. (2.1)

Here I(x), is an image patch, centered at pixel x with constant predefined width in

the image I. Images used in this formula are A and B, which are the style example and the

original image, respectively, and 𝐴𝑖 is the i-th guide channel of image A, and 𝐵𝑖 is the i-th

guide channel of image B. Variable 𝑤𝑖 is a weight of the i-th guide channel, and variable

n is the number of guide channels that we use. The difference of patches is the sum of

differences of individual pixels of patches with the same offset to the center of the patch.

This function is used in the final part of the algorithm, where we already have prepared

guide channels.From them, we synthesize the output image. There are multiple ways how

this can be done, and the method used by Fišer et al. will be further explained in the

section 3.4.

2.1 Guide channels

The basis of the algorithm is guide channels, which have to be created before the

texture synthesis. They are images used in texture synthesis to help us preserve information

from the original image. Therefore, we encode the data into them, which is essential for

19



20 Chapter 2. Background

recognition of the person in the original image. There are three base guide channels, which

are essential for our usage. Those are the segmentation guide, appearance guide, and

positional guide. For stylization of video sequences, one could also use the temporal guide,

which helps preserve the look of images in the output video sequence. Our focus is on

single images, and therefore we have no use for this guide channel.

The segmentation guide stores position of important parts of the face. These are the

eyes, the eyebrows, the nose, the lips, and the teeth. This guide helps to separate parts

of the face from each other and also from regular skin parts. We also separate the skin

from the hair. This guide does not store much information about the image. Still, it is

very important because the human eye is very sensitive about visual artifacts around the

eyes and mouth. Therefore, we enforce the usage of good patches in these specific areas.

To encode this information into an image, we use different colors for different parts. To

encode seven different parts into color with three components, we use very different colors

for parts next to each other. For example, eyes are blue, and eyebrows are red. Since we

cannot be sure that the algorithm marks those parts exactly, we want the edges of the

parts as blurred together as possible. An example of a segmentation guide channel can be

seen in Figure 2.1.

The second guide channel is the positional guide. As the name suggests, this channel

stores position data of images. Style example and original image heads usually do not have

the same shape. Also, heads are placed in different spots in their pictures. That is why we

need this channel, as it helps the synthesis algorithm transform the shape and structure

of the head. If the stylization algorithm aimed to change the shape of the head of the style

example to the shape of the original image, this would be the only guide channel we would

need. This channel also stores how differently are the parts of the faces shaped. The data

stored in the image is a function, which tells us to which pixel of the style example does a

chosen pixel corespond. Therefore pixels in the middle of the forehead of the original image

should store indices to pixels in the center of the style example’s forehead. An example of a

positional guide visualization can be seen in Figure 8 in attachments. The final positional

guide channel does not have visualization lines in it, as they could create artifacts, but

they serve for better visualization of the data.

The last guide channel is the Appearance guide. The purpose of this guide is to

preserve the look of the person in the original image. The appearance guide of the style

example is just the image transferred into grayscale. We also turn the original image to

grayscale, but we still need to change the appearance guide to have global intensity levels

and local contrasts of the appearance guide of the style example. In appearance guide
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images, we can see scars, wrinkles, shadows, and other features of the input face. This

channel is significant because it tells the algorithm to create the output image with the

same facial features as the original image. We can alter the importance of this channel

with the weight in the error function 2.1. Sometimes we want the face to look more like

the style example, and for that purpose, we would use a small weight. On the other hand,

if we would like the output image to look very similar to the original image and we do

not need the similarity to the style example, for this purpose, we would use high weight in

the error function. An example of an appearance guide channel can be seen in Figure 2.1.

What impact on a final result has an absence of a guide channel can be seen in Figure 2.2.

Figure 2.1: Visualisations of segmentation and appearance guide channels of original image (top)

and style example (bottom). Segmentation channel is the second one and appearance guide is the

last one in each row.
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Figure 2.2: Example of absences of guide channels during synthesis and how it affects the result.

We can see that without the segmentation guide, the synthesis algorithm can not compile parts of

the face together well. The difference of missing positional channel is the smallest, but we can see

that the we lose the positional correctness of smaller features. With absence of appearance channel

the resulting portrait loses all facial features of the person in the original image and only looks like

a deformed face of the style example. Source [1].



Chapter 3

Implementation

In the previous chapter, we explained the basis of the Fišer et al. algorithm and what

guide channels are. This chapter will describe what algorithms we use to obtain these

guide channels and go over the synthesis algorithm in more detail.

The input for the algorithm in our case is six images and two sets of positions. The

first two images are the style example and the original image. The following two images

are masks, which denote head regions and the last two images are masks, which show

in which parts of images we can expect skin. Skin in this context is the head mask but

without the hair regions. The last input data are two sets of 68 positions, which are called

landmarks. They store positions of fixed points on a face. Landmarks are the chin, the

right eyebrow, the left eyebrow, the nose, the right eye, the left eye, the lips and the teeth

points. Connected landmarks that form individual face features can be seen in Figure 3.1.

Figure 3.1: Visualisation of face features created by connecting landmarks.

In some cases, the points create a polygon around a part of the face, as seen in

23



24 Chapter 3. Implementation

Figure 3.1, e.g., the eye. In others, they depict a poly-line, where we should expect the

part of the face, e.g., eyebrow. Algorithms detecting face landmarks usually work on basis

of deep learning [11]. Head mask can be obtained by getting a portrait segmentation

by method of Shen et al. [12]. Using the information about portrait segmentation, using

known landmarks, we can locate head of a person in the image to obtain a head mask.

Skin mask can be obtained by setting a threshold of pixel’s chance of being a skin pixel

by comparing its color in YCbCr color space with cheek pixels.

As masks from inputs are usually only ones and zeros and nothing in between (there

are no areas with a percentage between 0 and 100), we blur masks before using them to

generate guide channels. Without this change, some parts of hair could be missed, and also

masks in space between skin and hair usually are not very smooth, which could be seen in

insufficient segmentation guide results. These results then create unsatisfying output from

the synthesis, and this simple change completely solves this problem. Another approach

to this problem is with matting. This approach might lead to even better results, but

it is much more complicated and slower, and therefore we decided to choose the simpler

variant.

3.1 Segmentation guide

To create a segmentation guide, we use the method of diffusion curves [13]. This

method is usually used to help artists draw a particular style. As we have minimal demands

from this method, we do not need all its utilities, and we only focus on useful ones. The

input to the method are curves (for our purpose, poly-lines), which have their specific

color. Connecting landmark points generates these poly-lines. Then we use diffuse those

curves into the image. The diffusion is expressed as a solution to a Poisson equation, and

the colored curves are local constraints:

Δ𝐼 = 𝑑𝑖𝑣 w (3.1)

𝐼(𝑥, 𝑦) = 𝐶(𝑥, 𝑦) if pixel (x, y) has a color value (3.2)

where Δ and 𝑑𝑖𝑣 are the Laplace and divergence operators, respectively. I is the output

image of this equation and C is the image with drawn curves. Equation 3.2 tells us that

we do not want to change values that are already stored in the image, and equation

3.1 indicates the smooth diffusion in the image we want. In our case, w, the gradient

field is always constant as we do not need any advantages of having a different gradient
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field. Computing these equations means solving a large linear system, which can be very

time-demanding. That is why we use the Gauss-Seidel iteration method. This method

iteratively changes values in the image until the solution converges, or if an exact result

is not required, we can specify a constant number of iterations. In each iteration, we go

through each pixel in the image and create a new image using the following formula

𝐼(𝑥, 𝑦) = 1
4(𝐼(𝑥 + 1, 𝑦) + 𝐼(𝑥 − 1, 𝑦) + 𝐼(𝑥, 𝑦 + 1) + 𝐼(𝑥, 𝑦 − 1) − 𝑏(𝑥, 𝑦)). (3.3)

Here b stands for the divergence, and as mentioned before, the gradient field is constant.

Therefore divergence in any point is equal to zero. 𝐼 Is the output image of the iteration,

and I is the input image of iteration. As we use large fields and it would take too many

iterations to converge, we first downscale the image, find a solution, and then upscale the

solution and run some iterations until we get the original resolution. In the down-scaled

images, we only need few iterations to get a good result, and when we upscale, we use

more iterations to propagate more minor changes. How segmentation changes with each

upscale can be seen in Figure 3.2.

Figure 3.2: Pictures from left to right: the original image with landmarks displayed, the first

iteration of creation of segmentation guide down-scaled 4x, the second iteration down-scaled 2x, the

last iteration with no scale, the segmentation channel. Segmentation guide in downscaled iterations

without skin and hair. We can see that all three scales are fairly similar, and the upscaled iterations

only do small local changes.

3.2 Positional guide

To produce the positional guide, we need to find a transformation for each original

image pixel. To find this transformation, we used a method of image deformation using

moving least squares [14]. This method is used to deform the image by moving some of

its pixels (called control points). We use it to deform the original image by moving its

landmarks to positions of the style example’s landmarks. However, we do not use the
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deformation to change the original image but store it as the positional guide. How the

deformation changes the style example to be more spatially similar to the original image

can be seen in Figure 3.4.

Figure 3.3: Deformation of a picture by its moving control points with affine matrix transforma-

tion for each pixel. Source [14].

Finding the perfect deformation is defined as finding the best affine transformation

𝑙𝑣(𝑥) that minimizes

∑︁
𝑖

𝑤𝑖|𝑙𝑣(𝑝𝑖) − 𝑞𝑖|2 (3.4)

where 𝑝𝑖 and 𝑞𝑖 are position vectors of a control points in the first and second image

respectively. The point 𝑣 is a point in the original image that we are trying to find a

transformation for. The variable 𝑤𝑖 is a weight of 𝑝𝑖 with the respect to 𝑣 and it is defined

[a] [b] [c]

Figure 3.4: Visualisation of the deformation effect of the positional guide on the style example.
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as

𝑤𝑖 = 1
|𝑝𝑖 − 𝑣|2𝛼

. (3.5)

It can be seen that it is the one over the distance between those two points to the power

of 𝛼, which is a constant. That help to make closer control points more important than

those that are far away from 𝑣. As mentioned before, 𝑙𝑣(𝑥) is an affine transformation,

and therefore we can define it as

𝑙𝑣(𝑥) = 𝑥𝑀 + 𝑇 (3.6)

where T is a translation vector and M is a linear transformation matrix. To compute 𝑇 , we

need to find how is the whole image moved. We compute weighted centroids, and knowing

𝑀 , we get the formulae

𝑇 = 𝑞* − 𝑝*𝑀, (3.7)

𝑝* =
∑︀

𝑖 𝑤𝑖𝑝𝑖∑︀
𝑖 𝑤𝑖

, (3.8)

𝑞* =
∑︀

𝑖 𝑤𝑖𝑞𝑖∑︀
𝑖 𝑤𝑖

. (3.9)

As we do not know the matrix 𝑀 , we compute it first and then compute 𝑇 . For the

linear transformation matrix, we use the following formula

𝑀 = (
∑︁

𝑖

̂︀𝑝𝑇
𝑖 𝑤𝑖 ̂︀𝑝𝑖)−1 ∑︁

𝑗

𝑤𝑗 ̂︀𝑝𝑇
𝑗 ̂︀𝑞𝑗 , (3.10)

where ̂︀𝑞𝑖 and ̂︀𝑝𝑖 are offsets from centroid and are computed as ̂︀𝑥𝑖 = 𝑥𝑖 − 𝑥*.

3.3 Appearance guide

To create an appearance guide, we need to create grayscaled images from the inputs

and then use a method of Shih et al. to change the global intensity levels and local contrast

values in the grayscaled original image to be equal to those of the grayscaled image of

the style example. To adjust the image, we used the style transfer method for headshot

portraits [15]. The basis of this method is to decompose both images into Laplacian stacks,

compute local energy maps of both images and lastly transfer local energy and residual of



28 Chapter 3. Implementation

the style example grayscaled image. Laplacian stack of a grayscale image 𝐼 can be defined

as an ordered set of images 𝐿, where

𝐿𝑖[𝐼] =

⎧⎪⎪⎨⎪⎪⎩
𝐼 − 𝐼

⨂︀
𝐺(2), if 𝑖 = 0

𝐼
⨂︀

𝐺(2𝑖) − 𝐼
⨂︀

𝐺(2𝑖+1), if 𝑖 > 0.

(3.11)

Here 𝑖 = 0...𝑛, where n is number of levels of Laplacian stacks, ⨂︀ is the convolution

operator, 𝐺(𝜎) is a 2D normalized Gaussian kernel of standard deviation 𝜎. In the first

iteration, we subtract the blurred image from the original, which results in an image where

the high-frequency features of the image are present. For each 𝑖 > 0, we create a blurred

image and subtract it from the blurred image created in the last iteration. This results in

lower frequency information in the image. The last part of the decomposition is a residual

𝑅, which is defined as

𝑅[𝐼] = 𝐼
⨂︁

𝐺(2𝑛). (3.12)

When we look at this decomposition, we can see that sum of all the images in Laplacian

stack added to the residual creates the former image. This information is later used to

create a new Laplacian stack with a residual and then add everything together to get a

new image. Visualisation of Laplacian stack and residual can be seen in Figures 9, 11. To

adjust the global intensity level of the original image, we use the warped residual of the

example as a residual of the output image. The next step is to change the Laplacian stack

of the original image to work better with the example residual and change local contrast

values. This problem can be solved by creating maps of the local energy of both images.

To get these maps, we use the following formula:

𝑆𝑖[𝐼] = 𝐿2
𝑖 [𝐼]

⨂︁
𝐺(2𝑖+1). (3.13)

That means we need to create squared Laplacian stack and then blur the values with a

Gaussian kernel of the given standard deviation. Comparison of a Laplacian stack to a

local energy map is in Figure 10. In the next step, we use the positional guide to warp the

local energy map and residual of the example. With warped data we can create output

Laplacian stack using formula:

𝐿𝑖[𝑂] = 𝐿𝑖[𝐼] * Gain, (3.14)

Gain =
√︃

𝑆𝑖[𝐸]
𝑆𝑖[𝐼] + 𝜖

. (3.15)
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Here 𝐼 is the original image, 𝐸 is the style example, and 𝜖 is a small constant to avoid

division by zero. The square root in the formula makes up for the square in the formula

of the local maps in 3.13.

If we used Gain as defined in formula 3.15, we would get a good result for many

typical portraits, but there would be difficulties if we would try to use this method on an

image with glasses or a mole and where the other image would not have it. That would

create a peak in the Gain image, which would create visual artifacts in the final image.

For example, there would be slightly visible glasses even though the person in the original

portrait did not have them. To remove this problem, we use robust gain, which replaces

Gain in the formula 3.14. Robust gain is defined as

RobustGain = 𝑚𝑎𝑥(𝑚𝑖𝑛(𝐺𝑎𝑖𝑛, 𝜃ℎ), 𝜃𝑙)
⨂︁

𝐺(𝛽2𝑖), (3.16)

where 𝜃𝑙 and 𝜃ℎ restrict the range of the original Gain, and 𝛽 is a constant that changes

the deviation of the Gauss kernel. The convolution with Gauss kernel blurs spikes in the

Gain and makes the whole Gain image more smooth. The final step is to add the output

Laplacian stack to the warped residual of the style example, and we get the output image.

As we do not want to have the background affect the appearance guide, we use a head

mask, which is given as an input. It is also necessary to alter the convolution with Gauss

kernel in order to work well with the mask. Therefore, we replace convolutions in formulae

3.11, 3.12, 3.13 and 3.16 as follows:

Image
⨂︁

𝐺 −→ (𝐼𝑚𝑎𝑔𝑒 * 𝑀𝑎𝑠𝑘) ⨂︀
𝐺

𝑀𝑎𝑠𝑘
⨂︀

𝐺
. (3.17)

For the constants used in before-mentioned formulae, we assign constants 𝜃ℎ =

2.8, 𝜃𝑙 = 0.9, 𝛽 = 3 and 𝑛 = 6 as recommended in article [15].

3.4 Synthesis algorithm

After creating the guide channels, we need to use the synthesis algorithm to get the

output image. We do not need a special algorithm for headshot style transfer, but we can

use the one that can be used for numerous other usages. Multiple different algorithms re-

trieve a high-quality output and are usually based on similar principles. The two important

algorithms for this thesis are of Kaspar et al. [16] and of Fišer et al. [17].

The basis of both algorithms is the nearest neighbor field (NNF), an array of data with

the size of the original or style example image (depends on the algorithm). Each element

of the array represents a patch in the image and the data in the element is the patch in the
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other image. These patch correspondences are chosen in a way that the difference between

them is minimal according to the energy function 2.1. An algorithm that can find a nearest

neighbour field is not tied to the synthesis algorithm, but the patch match algorithm is

usually recommended. This algorithm will be explained in-depth in section 3.4.3. The aim

of those algorithms is to find the best possible NNF for each patch in the original image,

and then by averaging colors of patches around each pixel, we get the output image. In

practice, algorithms do not use a patch for each pixel but place them with an offset of

half of the patch size. Both algorithms of Kaspar et al. and of Fišer et al. use the nearest

neighbor field, but they use it differently. How they use it will be explained in the following

sections.

3.4.1 Algorithm of Fišer et al.

The basis of this algorithm is the EM-like iterative method, which finds an NNF for

the currently found solution and then changes the solution according to the NNF. The

NNF that this algorithm uses stores the best patch of the original image for each style

example patch. This might be counter-intuitive because the output image is made out of

style example patches in the original image. We do not use this NNF data to apply it

directly to the output image, but we first have to throw away erroneous patches and then

use the rest to build up the output image. Erroneous patches exist, because the NNF filling

algorithm not always works perfectly and also because some patches of the style example

might not be well represented in the original image. Therefore, these patches should not

be used to produce the output image. To find out which patches are still feasible and

which are not, we need to introduce a filter method. With filled NNF and having the

energy of each element in the NNF, we sort all the elements in NNF by their energy. The

more energy the element has, the worse the patch assignment is. To find a line where the

energy is too high, and elements with higher energy should not be utilized, we have to

approximate the function 𝑓(𝑥), where x is the index of the element and the value of the

function is its energy. In practice, functions like this usually have a hyperbolic shape. The

first elements have very small errors, and once the elements begin being erroneous, the

energy function rapidly increases. The hyperbola, which we will be fitting can be defined

as 𝑓(𝑥) = (𝑎 − 𝑏𝑥)−1. The point, where the hyperbola starts being too steep is known as a

knee point. In this hyperbola, the knee point is positioned in the point of value 𝑓(𝑥)′ = 1

and the point has index 𝑘 =
√︀

1/𝑏+𝑎/𝑏. Visualization of this is method is shown in Figure

3.5. Points above index 𝑘 are not used. We also set a feasible error budget 𝑇 = ∑︀𝑘
𝑥=0 𝑓(𝑥).
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With this budget, we can define the feasibility constraint of the problem as

∑︁
𝑝∈𝐴

min
𝑞∈𝐵

𝐸(𝐴, 𝐵, 𝐴′, 𝐵′, 𝑝, 𝑞, 𝑤, 𝑛) < 𝑇. (3.18)

Figure 3.5: Visualisation of the patch error, fitting f(x) and setting error budget T. This image

is based on an image from [17].

In each iteration, we first find the NNF using the patch match algorithm and then

use good style example patches in the output image. We iterate until we have covered all

or a little less than all (95%) patches. The last patches can be found by searching for the

best possible patches in style example for the remaining patches of the original image with

patch match algorithm. This process is sped up by running a coarse-to-fine synthesis.

This approach makes usage of patches more uniform in each iteration, we might choose

each patch with good enough energy. By using a feasible error budget, we do not force

uniformity. Therefore, if we need to use some part of the head more, for example, if the

person in the original image has a bigger nose than the person in the style example, we

can. Usually, the proportions of faces are similar, and therefore this method does not need

many iterations to fill the output image.

3.4.2 Algorithm of Kaspar et al.

This algorithm also utilizes an EM-like iterative method, but it has a different ap-

proach to make patch usage uniform. It uses the NNF, which finds the best patch for each

patch in the original image and then uses this NNF to create the output image out of it
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simply by averaging colors from each patch. This happens in every iteration. To enforce

uniformity, this algorithm changes the formula for energy 2.1. It introduces new variables

to increase the patch usage uniformity. The first variable is occurrence for a pixel with

coordinates (𝑥, 𝑦):

Ω(𝑥, 𝑦) = |{𝑠𝑖 | (𝑥, 𝑦) ∈ 𝑁(𝑠𝑖)}|, (3.19)

where 𝑁(𝑠𝑖) is the set of pixels in the patch 𝑠𝑖. Occurrence tells us how many times pixel

with specified coordinates was used in a patch that is used in the output image. To enforce

uniformity, we want the occurrence in the output image to be as low as possible. The ideal

occurrence for each pixel in the image is

Ω𝑏𝑒𝑠𝑡 = |𝑂|
|𝑆|

𝑁2, (3.20)

where |𝑂| and |𝑆| are areas of original image and style example respectively and N is the

width of a patch. We define

Ω(𝑠𝑖) =
∑︀

(𝑥,𝑦)∈𝑠𝑖
Ω(𝑥, 𝑦)

𝑁2 (3.21)

as an occurrence in the patch, which is the average occurrence of pixels in the patch. With

this defined variable we can finally alter the energy function 2.1 as

𝐸(𝐴, 𝐵, 𝐴′, 𝐵′, 𝑝, 𝑞, 𝑤, 𝑛) = ||𝐴(𝑝) − 𝐵(𝑞)||2 +
𝑛∑︁

𝑖=1
𝑤𝑖||𝐴′

𝑖(𝑝) − 𝐵′
𝑖(𝑞)||2 + 𝜆𝑜𝑐𝑐

Ω(𝑝)
Ω𝑏𝑒𝑠𝑡

, (3.22)

where 𝜆𝑜𝑐𝑐 is a controlling variable, with which we change how much we want to enforce the

uniform patch usage. There is also one minor change in the patch match algorithm usage

and it will be explained in the end of the following section. We also use this algorithm

with coarse-to-fine synthesis to get results faster.

3.4.3 Patch match

Patch match is an algorithm, which for two images retrieves the NNF for patches

between them. As we use the patch match differently in both previously mentioned algo-

rithms, we will call used images 𝐴 and 𝐵. For each patch in the image 𝐴, we search for

the best corresponding patch in the image 𝐵. There are three basic steps in this algo-

rithm: initialization, propagation, and random search. Initialization of the NNF might be

completely random, which will help us to find different correspondences in each algorithm

usage. If we have some previously known information, which might help the algorithm

to start with better NNF, we can use that. One way to start is to use the previously

found NNF, but the disadvantage is that we might have a lesser chance to find some
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global minimum(when talking about the energy in the synthesis) instead of searching for

minor improvements around a local minimum. When we have initialized NNF, we iterate

with improving techniques. The propagation improves the energy of the current patch by

searching for good correspondences in neighbor patches. When we use propagation on a

patch with coordinates (𝑥, 𝑦), we look to data that is stored in NNF with coordinates

(𝑥 − 1, 𝑦) and (𝑥, 𝑦 − 1). Then we have to translate this data to match the current patch.

If both input images have the same sizes, we use the patches with translation (1, 0) and

(0, 1), respectively. When both images have different sizes, we might need to scale those

vectors. With this method, once one patch finds good patch correspondence, this good

correspondence propagates throughout the whole image. Even though it might not be the

optimal solution, it saves many steps, which would otherwise have been done by random

search. Once we compute the energies, we decide if we want to keep the current patch

correspondence or use one of the propagated ones. We compare energies and choose the

match with the lowest energy. This step is portrayed in the Figure 3.6.

With this method, we can propagate good matches across the image, but we need a

tool to find a good match in the first place and also to find a better solution if the one

given by propagation is not optimal. To achieve those goals, we use random search. As

the name suggests, we search the image with some randomness, and then we compare the

found patch with the one we already have and store the better one. As we do not want

to search in the whole image uniformly, we have multiple searches in each iteration, and

we change the radius in which we search. First, we search the whole image. This helps

us to find distant good matches, and even though they usually do not end up being the

best match, it is necessary to search in all parts of the image. In the following searches,

we half the search radius until the search radius is below one pixel. Patch coordinate that

is chosen can be described with the following formula:

𝑢𝑖 = 𝑣0 + 𝑤𝛼𝑖𝑅𝑖 (3.23)

where 𝑢𝑖 is the coordinates of the found patch, 𝑣0 is the current coordinate patch stored

in the NNF, 𝑅𝑖 is a random vector with both coordinates having a value between -1 and

1. 𝛼 is a constant with value 0.5, and 𝑖 is the index of the random search starting at 0

and ending when the search radius is too small. Visualisation of this step is displayed in

Figure 3.7.

After initializing the NNF, we alter between propagation and random search. The

number of iterations needed might depend on the application, but usually, after 4 to 5

iterations, the image converges. The change required for the algorithm of Kaspar et al. is
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that when a new patch candidate is found in the random search phase, we might not use

it once it has occurrence two times larger than the ideal one. The only exception is when

the occurrence of the patch being replaced in the NNF is even higher than the one of the

new patch candidate.

Figure 3.6: Visualisation of the propagation step, where we have a good correspondence for the

green patch and by translating the match, we can get a good patch for the blue patch.

3.5 Implementation details

In this section, we will explain all the parts of implementation, which might not

be understandable from their mathematical formulation in the previous sections. In the

implementation of segmentation channel, we first had to transform landmark points in

poly-lines to apply the previously mentioned method on them. We used a Bresenham

algorithm [18] to connect specified pairs of points. Bresenham algorithm creates one pixel

wide line without any anti-aliasing effects and runs in a linear time with respect to the

distance of points. Appearance guide channel uses a lot of convolutions. Convolution is a

very time demanding operation. For two functions defined by image of N pixels and Gauss

kernel of M pixels, the convolution has time complexity 𝒪(𝑁 *𝑀). To get better run times

we use separability of a Gauss kernel to get a time complexity. Separability means, that

having a Gauss function 𝐺(𝑥, 𝑦), we can express it in a way 𝐺(𝑥, 𝑦) = 𝑔(𝑥) * 𝑔(𝑦), which

is evident from the Gauss function definition 3.24.

𝐺(𝑥, 𝑦) = 1
2𝜋𝜎2 𝑒𝑥𝑝− 𝑥2+𝑦2

2𝜎2 (3.24)
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Figure 3.7: Visualisation of the random search step, where we have a bad correspondence for the

green patch and by searching in shrinking radii (dark blue), we get progressively better results and

end up with a good one. Arrows indicate how the best found patch moved after one random search

in the iteration.

We use this quality to reduce the 2D convolution into two 1D convolutions, where one is

for rows and one for columns. This change gives us a complexity of 𝒪(𝑁 *
√

𝑀), which

can significantly speed up the algorithm. Most of the used methods use an algorithm

with 𝒪(𝑁) time complexity, because we have to compute an operation for each pixel. In

none of these operations, we need a value of a previously computed pixel in the same

iteration. This fact helps to easily parallelize algorithms by running each computation on

a separate thread. The only algorithm with huge time complexity that left is the optimized

convolution with each thread doing 𝒪(|𝐺|), where G is our representation of Gauss kernel

as an array. We used a technique to reduce number of elements in the array. We set a

constant, which represents the smallest value, which can be represented by the normalized

Gauss function. By changing this constant, we can fasten the algorithm by not using small

function values that does not make any noticeable difference. To find the size of the gauss

array, we had to use inverse function to the one dimensional Gauss function 3.25.

𝑥 = 2𝜎

√︃
ln

1
2𝜋𝜎2

𝐺(𝑥) (3.25)





Chapter 4

Results

We implemented all three above-mentioned channel guides. We used implementation

of the algorithm of Kaspar et al. implemented by Ondřej Jamriška called Ebsynth [2], with

which we created output images for testing sets of style examples and original images.

We aimed to generate output images looking as close to ones in Fišer et al. article as

possible. The algorithm of Fišer et al. recommends setting weights of guide channels in

energy function 2.1 as follows: segmentation and positional channels have weight equal to

5, appearance channel has a weight set to 1 except in the eye and mouth regions, where

the value should be set to 5. As the used synthesis algorithm does not allow to change the

weight depending on a mask, we had to use a special appearance guide channel for the

eye and mouth, which was just the normal appearance guide influenced by teeth, mouth,

and eye masks. This adjustment does not solve the problem entirely, but it makes better

results than using only one weight with the appearance guide channel. How the special

appearance guide channel looks in comparison to the normal appearance guide channel

can be seen in Figure 4.1. How good are the results of guide channels and of the synthesis

algorithm is explained in the following sections.

Figure 4.1: Comparison of special and normal appearance guide channels.

37
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4.1 Segmentation channel

In Figure 4.2 we can see a comparison of a segmentation channel created by our

implementation and one that is used as an example of the segmentation channel in portrait

synthesis on the site of Ebsynth. The significant difference, which is highly noticeable, is

the difference between inner mouth representation in magenta color. This major difference

is caused by differently generated landmarks as our landmarks, provided externally, set the

inner mouth as seen in our picture. As the person in the portrait does not show their teeth,

the landmarks may be different, but this is not a problem as they are consistent within one

usage. One smaller difference is that colors in our implementation seem to be more diffused

into the skin color. This difference would be significant if we used one segmentation guide

channel of our implementation and one out of the other implementation in the synthesis

to get an output image. Some regions, which might be colored as the edge of eyebrows

in our implementation, could be marked as skin segment in the other. But as long as the

diffusion of segments is consistent within the implementation, this does not change the

resulting image. One last slight difference is the blurred out edges of skin and hair regions,

which we mentioned in the implementation chapter 3.

Figure 4.2: Comparison of segmentation channel created by our algorithm and a one that is used

as an example by Ebsynth. Source of the second image [2].
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4.2 Positional channel

Comparing positional channels is very difficult as images without visualization lines

are tough to compare side by side, and the visualization with lines might be different in

each implementation as their positions are not described. To observe the function of the

positional guide, we provided side by side comparison of the deformed style example with

the original image in Figure 4.3. We can see that the deformed parts of the face, which

are near landmarks, are very well aligned with the ones in the original image’s face. There

are no sudden deformations, which would seem unnatural in the face region. Problematic

parts might be seen in the forehead and hair area. As there is only one landmark in the

area, the deformation far from any landmark appears unnatural. In our implementation,

we use only one landmark for the forehead, situated at the highest point of the skin mask.

A better guide channel would be created by having more landmarks or creating multiple

new landmarks as the one mentioned above, but finding a landmark, which is in the same

place in each portrait is not a straightforward task. Since even the one landmark we created

had its artifacts as seen in Figure 4.4. As we can see, the highest skin point is not in the

middle of a forehead in all faces, and in the example, it is on the right side of the forehead.

This creates a deformation that puts the middle of the style example’s forehead to the

right side, and the right side of the forehead is shifted even further.

We chose simply to use an affine deformation in our positional guide channel algo-

rithm, where using a similarity matrix might also be considered correct. Affine deformation

can perform shear, which is not very usable in our usage. It can also do a non-uniform

scaling, which can be helpful as heads are not of the same height to width ratio. The

last change that could have been done to the algorithm of the positional guide is setting

the alpha in the formula 3.5. We used 𝛼 = 2, but the constant value is not specified in

any mentioned articles. The constant tells us how far the point has to be from its closest

control point to be affected more by other control points. Setting this constant with a high

or low value could create visual artifacts near control points, and with minor changes to

the value, the result is nearly the same.

4.3 Appearance channel

To show how the algorithm changes the grayscaled version of the original image into

its appearance guide, we offer the comparison in Figure 4.5. As can be seen, the global

intensity levels are much closer to the image of the style example. The result is brighter,

and the intensity difference between the left and right sides of the face is well visible.
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Figure 4.3: Visualisation of positional channel usage applying deformation of the style example

on the original image.

Figure 4.4: Visualisation of bad deformation caused by incorrectly placed forehead landmark.

Both these effects and many more are the results of the transfer of global intensity levels.

The other effect that can be seen in the comparison is a change of local contrast values.

These changes can be found in the eyes of the appearance channel, where the contrast

between the sclera and cornea is higher, and reflections near the pupil are more visible. As

the algorithm producing this channel does not have any adjustable variables that would

modify the result, we cannot change the algorithm’s outcome. The constants set in the

implementation chapter 3 are recommended and set by authors of the algorithm, therefore,

changing them would not lead to better results.

4.4 Results of the synthesis

Results of the synthesis using our guide channels can be seen in Figure 4.6. The choice

of results was made to show the most common shortcomings of the implementation as well

as good examples of synthesis. When looking at the first image, we can see that the output

image synthesis went very well. One part of this image that might be improved is the dark

parts above the eyes, which are present in the original image, but there are no dark parts

above the eyes of the style example. The hair of the output does not seem perfect, but that
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Figure 4.5: Visualization of changes that are made to the gray image of the original image to

create its appearance guide channel. On the left is grayscaled image of the original image, in the

center is the appearance guide channel of the original image and on the right is the grayscaled

image of the style example.

is because, in the original image, there are individual hairs with different shades, which is

not in the style example. In the second image, we can see how results are affected by using

the second appearance channel instead of having a mask for weight. We can see the outline

of the change of appearance channel, and the contrast between colors in those sections

is visible. We can see that in both pictures the small structures from style example are

preserved. The synthesis in the third image went well, but highly visible facial features,

such as wrinkles in the style example, are not present in the result. Even though those

features are not present in the original image, prominently painted wrinkles are part of

the style used in the style example. The last synthesis also went very well, but we can see

two minor flaws in the face. The first one is on the left of the left nostril, where we can

see a shadow, which should not be present or at least this much visible. The second is the

mustache, which seems like it does not fit. Although they are not significant deficiencies,

finding a configuration of algorithms, which does not create them would be preferable.

4.5 Performance results

The performance tests were done on a machine with following parameters:

• CPU: Intel i5-4670K @ 3.40GHz

• GPU: NVIDIA GeForce GTX 770

• RAM: 15.88 GB
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(a)

(b)

Figure 4.6: a) Results of the synthesis. b) Original images in the top row and style examples in

the bottom row.
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• OS: Microsoft Windows 10

• Programming language: C++ 17

• Compiler: MSVC v142

• CUDA: v10.1

All performance data are present in Table 4.1. All present data were recorded on five

different sets of images, each measured three times, and results were averaged with no

significant outliner. The Visual studio profiler was used to capture these data. The whole

process of loading input images, creating guide channels, and saving guide channels took

4045 ms. 35.89 % of that are input/output operations for images as well as transferring all

the necessary data to GPU and afterward from GPU. If our algorithm was connected with

the synthesis algorithm, we could have saved half of that time since we would not have

to transfer results back to RAM and store them into a hard drive in the end. The time

that was spent inside methods that create guide channels takes 64.10%. In this time are

included all allocations and memory transfers that are needed for the algorithms. Most of

this time took the appearance guide, which took 46.77% of the whole run, and the majority

of the runtime of this algorithm is a convolution with Gauss kernel, an implementation of

formula 3.17. The runtime of this part can be reduced by making the kernel smaller and

thus forgetting parts of the array representing the kernel, which have minor effects on the

final convolution. Using this method could get us time spent in this method down to 77%

of its original runtime. This change can be experimented with by changing a constant in

the code. Another suitable change could be to set a fixed size of the kernel array for each

deviation of the Gauss, which could cause even more significant changes in time as well as

changes to the final appearance guide. 15.30% of time was used on the segmentation guide.

This time can also be altered by changing the number of iterations inside the Gauss-Seidel

iterations. This change can modify the outcome of the algorithm, and the time spent in

this method is not that significant, therefore, we kept it as it is. Only 1.81% were used on

the positional guide, which has to calculate affine matrix for each pixel, and calculating a

matrix is not dependant on the number of pixels and only has to process all landmarks.

This process could be even more sped up by not calculating it for each pixel, but instead,

we could find the matrix for each pixel in a specified grid and use interpolation to spread

data across the whole image.
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method ms per call N° calls total time [ms] % of whole run

Main 4045 1 4045 100

Guides 2593 1 2593 64.10

Appearance guide 1897 1 1897 46.77

Convolution with Gauss kernel 61 30 1830 45.21

Segmentation guide 310 2 620 15.30

Positional guide 38 2 76 1.81

io, memcpy 1452 1 1452 35.89

Table 4.1: Measured time data shown for different parts of the algorithm. For each part, time

per call and number of calls is listed, as well as the total time and percentage of the whole run the

step takes.



Conclusion

The main purpose of my thesis was to research style transfer methods, find a suitable

method for the example-based stylization of portrait and implement the algorithm. As

there are many implementations of the synthesis algorithms available, our main target

was to build a fast implementation, which creates good guide channels for a synthesis

algorithm. After completing the first versions of guide channel algorithms, we tried to

implement the synthesis algorithm based on Fišer et al. method 3.4.1. Still, we could not

make the algorithm perform well on given inputs. Therefore, we decided to redirect our

focus to finalizing and polishing guide channel algorithms and using the available synthesis

algorithm.

We implemented all three necessary guide channels with fast run times and good

results. Even though we showed flaws in the results, we were able to point them out

and find a method or a flaw in the algorithm, which caused these shortcomings. Using our

implementations with a synthesis algorithm, whose primary focus is portrait style transfers,

could improve run times and result quality, as described in the results section. We were

able to run our algorithms on multiple sets of data without having a significant flaw in

the result or without having one that could not be explained. Our implementation made

it possible to alter results by changing constants within the algorithm. As all algorithms

are well implemented, changes that would create better results should not have to change

the implementation at all.
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Attachments

A Contents of the enclosed CD
CD

Source codes ... Folder containing source files of the project.
README ... File containing information about compilation

requirements, program inputs and outputs.
document.pdf ... Pdf containing this document.
Results ... Folder containing a few results of used

algorithms.
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B Additional Images

Figure 7: Example of the portrait style transfer using the Selim et al. algorithm. Source [8].
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Figure 8: On top left and right, we can see original image and style example. The bottom two

images are visualisations of their positional guides. Lines can help see the deformation in the

positional guide of the original image. We can see that at the position of the right ear there is huge

deformation, because the ear of style example is big and on the very right side of the image. In

the guide we could also notice the rotation of the face as the person in the original image looks

straight into the camera or a little to the right and the person in the style example looks a little

to the left. Minor details like difference between lips and eyes can also be seen in the figure.
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Figure 9: In this image we can see visualisation of decomposition of an original image. In the first

image we can see only highlighted high frequency changes, such as hair lips or edges of eyes. As

we move to deeper decompositions, low frequency details are seen.
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Figure 10: In this image we can see a comparison between a local energy map and the decompo-

sition.

Figure 11: Comparison of a style example and its residual.
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