
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Bounding Volume Hierarchies for Oblong
Objects

Emese Szabó

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Open Informatics
Subfield: Computer Graphics
August 2021



ii



ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

469879Osobní číslo:EmeseJméno:SzabóPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačová grafikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Hierarchie obalových těles pro podlouhlé objekty

Název diplomové práce anglicky:

Bounding Volume Hierarchies for Oblong Objects

Pokyny pro vypracování:
Zmapujte metody stavby hierarchií obalových těles (BVH). Navrhněte úpravu existující metody PLOC [1] pro použití
obalových tělech vhodných pro reprezentaci podlouhlých tenkých objektů jako jsou vlasy nebo paprsky. Soustřeďte se na
efektivní výpočet sjednocení navržených obalových těles vhodných pro tento typ objektů. Navrženoumetodu implementujte
v jazyce C++ a důkladně otestujte z hlediska cenovéhomodelu a rychlosti zobrazování pomocí metody sledování paprsku.
Testy realizujte na nejméně pěti scénách různého typu (vlasy, postavy, architektura).

Seznam doporučené literatury:
[1] Meister, D., Bittner, J. 'Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction,' in IEEE
Transactions on Visualization and Computer Graphics, vol. 24, no. 3, pp. 1345-1353, (2018).
[2] Fonseca, R., Winter, P. Bounding Volumes for Proteins: A Comparative Study Journal of Computational Biology 19(10),
1203-1213, (2012).
[3] Woop, S., Benthin, C., Wald, I., Johnson, G. S., Tabellion, E. Exploiting Local Orientation Similarity for Efficient Ray
Traversal of Hair and Fur. High Performance Graphics, (2014).
[4] Sun, X., Zhou, K., Lin, S., Guo, B.. Line space gathering for single scattering in large scenes. Acm Transactions Graph
Tog 29, 4 (2010).

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Jiří Bittner, Ph.D., Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 13.08.2021Datum zadání diplomové práce: 11.02.2021

Platnost zadání diplomové práce: 30.09.2022

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomantka bere na vědomí, že je povinna vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1



iv



Acknowledgements

I would like to express my gratitude to
my supervisor Jiří Bittner for his helpful
comments, corrections and encouraging
words. I would also like to thank my fam-
ily, friends and my dear boyfriend, who
are all very unlikely to ever read this the-
sis, but I am still grateful for the support,
kind words, and not bothering and letting
me do what I had to.

Declaration

I declare that I have created the pre-
sented thesis independently and that I
have quoted all used sources of informa-
tion in accordance with the Methodical
instructions about ethical principles for
writing academic theses.

Prohlašuji, že jsem předloženou práci
vypracovala samostatně a že jsem uvedla
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

Prague, August 13, 2021

v



Abstract

This thesis discusses using cylinders as
bounding volumes in ray tracing for spe-
cific scene types containing oblong objects.
It offers a method for joining cylinder-
shaped bounding volumes and shows their
advantages. The presented method incor-
porates cylinders into a state-of-the-art
bottom-up hierarchy builder, a locally-
ordered clustering algorithm. The pro-
vided implementation is a proof of con-
cept. Three types of bounding volume
hierarchies were compared, the common
axis-aligned bounding box (AABB) hier-
archy, a cylinder version, and a hybrid.
The obtained results show that cylinder
volumes have the potential to reduce the
overall surface area of the hierarchy for
oblong objects. Moreover, the hybrid hi-
erarchy outperforms the AABB version in
rendering certain scenes while increasing
the build times.

Keywords: bounding volumes,
bounding volume hierarchies, ray tracing,
oblong objects, cylinder

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Department of Computer Graphics and
Interaction,
Faculty of Electrical Engineering,
CTU in Prague

Abstrakt

Práce pojednává použití válců jako oba-
lová tělesa při sledování paprsku pro
různé typy scén obsahující podlouhlé ob-
jekty. Představuje způsob sjednocení oba-
lových těles ve tvaru válce a zkoumá je-
jich výhody. Navrhnutá metoda používá
válce v rámci konkrétního algoritmu pro
stavbu hierarchie obálek. Poskytnutá im-
plementace je ověřením konceptu. Byly
porovnány tři typy hierarchií: hierarchie
osově zarovnaných obálek, verze používa-
jící válce a hybridní varianta kombinující
obě typy obálek. Získané výsledky uka-
zují, že válce mají potenciál zmenšit cel-
kový povrch hierarchie pro podlouhlé ob-
jekty. Hybridní hierarchie překonává verzi
s osově zarovnanými obálkami při syn-
téze obrazu v případě určitých scén, ale
zároveň výrazně zvyšuje dobu postavení
hierarchie.

Klíčová slova: obalová tělesa,
hierarchie obalových těles, sledování
paprsků, podlouhlé objekty, válec

Překlad názvu: Hierarchie obalových
těles pro podlouhlé objekty
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Chapter 1

Introduction

Ray tracing is a key element of rendering algorithms that simulate realistic
light propagation. For each ray, their closest intersection with the scene
is computed. To achieve a convincing image, millions of rays have to be
traced in the process, with billions of intersection tests carried out. To
enhance ray traversal performance, state-of-the-art methods use bounding
volume hierarchies (BVHs). They are tree-like data structures containing the
bounding volume of the whole subtree of each node, with primitives contained
in leaf nodes. These data structures have been proven to be very efficient in
rendering, as they accelerate the process of finding the closest intersection
with the scene.

BVHs wrap parts of the scene into tight bounding volumes. The most com-
monly used bounding volume type is an axis-aligned bounding box (AABB).
However, this bounding box is known to perform poorly on long, thin, and
especially diagonal objects, namely curves, fur, and hair. To overcome this
deficiency, oriented bounding boxes (OBBs) may be used instead, which
perform better on thin or diagonally oriented primitives under certain cir-
cumstances. Wald et al. [4] proposed an enhancement for hardware BVH
traversal on NVIDIA’s Turing architecture. They trick the hardware into
performing a hardware-accelerated OBB intersection test before the user-
defined intersection test with an AABB. They demonstrate a speedup of up
to 5.9× compared to a standard hardware-accelerated BVH [4]. Woop et al.
[1] exploit the orientation similarity between individual hairs in scenes with
densely packed strands. They discuss the various bounding options for thin,
curved hair strands, use AABBs in combination with OBBs, and achieve 2×
better performance than with BVHs using purely axis-aligned boxes.

1



1. Introduction .....................................
Fonseca and Winter [5] discuss different types of bounding volumes for

protein chains, which are essentially small objects aligned along curves. They
wanted to detect clashes of subchains (long, thin, slightly curved pieces) in
proteins as precisely as possible, hence the need for tight bounding volumes.

1.1 Goals of the thesis

Solids of revolution qualify as non-standard shapes since their use in BVHs is
unprecedented. The reason for avoiding these shapes is simple: they are not
memory-efficient and demand more computationally expensive intersection
tests. Moreover, calculating the joint bounding volume of two such shapes
is not straightforward. However, these circular shapes could provide tighter
bounds for thin, long objects, such as hair strands and fur. This idea builds on
the conclusions of the studies mentioned above, exploiting similar orientation
of primitives, wrapping diagonal objects with oriented volumes, and reducing
the surface area of the whole hierarchy by reducing redundancy in a BVH
introduced by overlapping AABB-nodes.

In order to make ray tracing as fast as possible, BVH construction should
be relatively fast and efficient. Bittner and Meister [2] introduced a parallel
locally-ordered clustering (PLOC) algorithm for BVH construction. This
algorithm is highly parallel and is able to utilize many cores of current GPUs.
This thesis aimed at constructing a functional variant of the PLOC algorithm
using cylinders as bounding volumes. The results show that cylinders are
the most advantageous when used in combination with AABBs, resulting in
hybrid hierarchies. These are shallower structures and have lower surface
areas than the purely AABB hierarchy, though they are only suitable for
certain scene types.

1.2 Thesis structure

Chapter 2 offers a summary of related work. Chapter 3 elaborates on the
considered bounding volume types, while chapter 4 discusses methods for
computing the joint bounding volume of volumes. Chapter 5 describes the
hybrid hierarchy idea. Then, chapter 6 details the implementation of the
proposed algorithm, and chapter 7 discusses the obtained results. Finally,
chapter 8 concludes the thesis.

2



Chapter 2

Related work

One of the earliest bounding volume hierarchies used was constructed manually
by Rubin and Whitted [6]. The first BVH construction algorithm that was
able to build a hierarchy in a top-down manner was published by Kay and
Kajiya [7]. Various other builders and improvements followed. A well-known
quality metric, the surface area heuristic (SAH) function was introduced by
Goldsmith and Salmon [8]. This heuristic function is used to influence the
construction decisions to obtain a higher quality BVH. Lower node overlap
and a lower overall surface area are preferred.

2.1 BVH improvements

Aila et al. [9] showed that the final SAH cost of a hierarchy does not
necessarily correlate with the ray tracing speed of the resulting BVH, and
they introduced new metrics that exhibit better prediction qualities. The
SAH function was further used by Stich et al. [10] and Popov et al. [11]; while
the former algorithm uses the SAH as the decision criterion for choosing a
good split position and as a possible terminal condition, the latter introduces
a penalty for node overlap enforcing strict space division. However, along
with Ernst and Greiner [12], both take advantage of spatial splitting to utilize
the benefit of spatial and object hierarchies alike. Wald [13] used a SAH
cost estimation based on binning, essentially discretizing the cost function.
Top-down hierarchy builders start with a large bounding box of the whole
scene and often use some form of the SAH to make an informed decision when

3



2. Related work.....................................

Figure 2.1: Illustration of the different options of bounding hairs and hair
segments with rectangular shapes by Woop et al. [1]. (a) and (b) depict the
situation when a diagonal strand is wrapped with an AABB. (c) the strand split
into segments and wrapped with AABBs. (d) OBB of the same hair, and OBBs
of hair segments (e). The OBB-wrapped segments produce less overlap (f).

splitting a node. The bounding volume surface area may be used similarly in
bottom-up algorithms.

Wald et al. [4] proposed an enhancement for hardware BVH traversal on
NVIDIA’s Turing architecture. They trick the hardware into performing a
hardware-accelerated OBB intersection test before the user-defined intersec-
tion test with an AABB. They demonstrate a speedup of up to 5.9x compared
to a standard hardware-accelerated BVH [4]. Woop et al. [1] worked with
scenes containing densely packed hair strands. To accurately represent hair
curvature, the strands must be finely tessellated, which often yields primitives
smaller than a pixel, which may cause aliasing issues. Thus, high sampling
rates are required to avoid aliasing, which means a large number of traced
rays [1]. For this reason, they aimed to reduce the cost of traversing a ray
by exploiting the orientation similarity of neighboring hair strands. Using a
small number of OBBs to wrap each hair by parts minimizes node overlap
and allows for more efficient spatial data structures to be built over them.

2.2 Protein chains

Fonseca and Winter [5] discuss the use of bounding volumes in computational
molecular biology. Namely, they wanted to detect clashes of subchains in

4



.................................... 2.3. Ray gathering

protein chain trees. The chain tree is a balanced binary tree that stores
protein chain bonds in leaves and a whole subchain in internal nodes. The
internal nodes have an associated bounding volume of their subtree. A clash
only occurs if the bounding volumes of two subchains intersect, requiring
tight volumes with efficient intersection tests and the ability to compute a
tight bounding volume of two smaller volumes.

They concluded that for their chain tree structure, OBBs performed worse
than expected. Spheres outperformed OBBs and line swept spheres (capsules),
which provide a sufficiently tight bound when enclosing smaller bounding
volumes into one. The efficient union of certain bounding boxes will be
discussed later in section 4.

2.3 Ray gathering

Long thin objects resembling hair strands may also be randomly distributed
rays in a scene. Sun et al. [14] describe an algorithm that evaluates radiance
along a viewing ray by searching for nearby lighting rays in the scene. They
focus on rendering single scattering in large complex scenes that contain
homogeneous participating media and refractive and reflective materials.
They approximate lighting and viewing rays by the infinite line they lie on,
and use them as 6D points and planes in parametric space by computing
their Plücker coordinates [14]. The task of building a spatial structure over
randomly distributed rays bears some resemblance to constructing a BVH
over hair strands, as rays may be represented by long triangles with nearly
zero surface area (see Figure 2.2).

(a) : 10k randomly generated rays (b) : Close-up of the thin triangles

Figure 2.2: Screenshot of an artificial scene with 10K randomly generated rays -
each ray represented by a single long triangle with a close to zero surface area
(∼ 0.002). The triangle length is approximately 30% of the diagonal of the
scene’s bounding box.

5



2. Related work.....................................
2.4 Parallel Locally-Ordered Clustering (PLOC)

Designed by Bittner and Meister [2], the algorithm operates by performing
clustering in parallel and employing sorting of primitives by the Morton codes
[15] of clusters to enhance the search for nearest neighbors.

The agglomerative clustering starts with n trivial clusters, each cluster
containing one triangle representing the leaves of the resulting tree. The
clusters are sorted by the Morton codes of their centroids. The nearest
neighbor search is a range search along the Morton curve for each cluster i in
the range 〈i− r, i+ r〉, where r is the search radius (for an illustration, see
Figure 2.3). They define a distance metric according to which the nearest
neighbor search operates. The distance between two clusters is defined as
the surface area of the axis-aligned bounding box tightly enclosing the two
clusters [2]. According to this metric, two clusters are only merged if they
are the nearest neighbors of each other since there will not be found any
better neighbor for either of them. Although they note that this nearest
neighbor search can only find an approximate nearest neighbor, they deem
this performance sufficient.

After the nearest neighbor search, they perform the merging step in parallel
on all mergeable pairs. Merging constitutes of replacing one of the merged
clusters by a new parent node in the tree, and discarding the other cluster.
Iterations continue until there is only one cluster left containing the whole
scene (see Figure 2.4). They guarantee algorithm termination by prioritizing
the nearest neighbor with the lowest index in the rare case that two neighbors
are at the same distance from a cluster [2].
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....................... 2.4. Parallel Locally-Ordered Clustering (PLOC)

Figure 2.3: 2D example of primitives ordered along the Morton curve with
the search radius r = 2 (image source: [2]). The two clusters (red triangles)
search for their nearest neighbors (blue triangles). This order adapts well to the
primitive density of the scene, as noted by the authors.

Figure 2.4: An illustration of clustering iterations (image source: [2]). The
cluster pairs connected with two-way arrows are mutually corresponding nearest
neighbors; thus. they are merged into one. Iterations continue until a single
cluster remains containing the whole scene - until iteration 5 in this example.
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Chapter 3

Bounding volumes

Selecting the most suitable bounding volume type is a crucial part of building
an efficient acceleration structure. Various bounding volumes exhibit distinct
traits, making them appropriate for different tasks. The most commonly
used volume is an axis-aligned bounding box (AABB). An AABB is easy to
implement because it only requires computing the extent of an object in the
direction of the three principal axes. It is memory efficient since it requires
storing only six values to determine the bounding box’s position and size in
the scene (minima and maxima on the principal axes). However, it does not
produce a tight bound for objects that are longer in one direction, especially
when they are rotated around one of the principal axes. For a rotated object,
the AABB will partially overlap with other objects or enclose a large amount
of extra scene space along with the object, forcing the algorithm to carry out
unnecessary intersection tests.

To overcome this efficacy issue, an oriented bounding box (OBB) might
be used instead. Although an OBB offers a tighter bound for an object, it is
less efficient memory-wise. However, an OBB might not be tight enough for
long and slightly curved shapes since the bounding volume will also enclose
the space inside the curve. A possible solution may be to wrap parts of the
primitive separately to achieve a tighter bound.

This work focuses on thin hair-like objects and explores the efficiency of
non-standard bounding volumes, such as cylinders, truncated cones, and line
swept spheres (capsules). In particular, emphasizing the potential of the
volume to enclose two volumes of the same type efficiently.
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3. Bounding volumes ..................................

Figure 3.1: Axis-aligned bounding box of a cylinder.

Since hair and fur are inherently cylinder-like shapes, a cylinder-shaped
bounding volume might offer the tightest bound, assuming that the object is
not curved or otherwise deformed. However, considering the fact that most
scenes are triangle meshes, the curved hair strands will likely be represented
by triangles ordered into cylinders; thus, they may be wrapped segment by
segment. In case the object has a varying radius along its length, a truncated
cone might outperform a cylinder. A cylinder is a special case of a truncated
cone because it has identical radii at both ends. Thus cylinders may also be
assumed to be truncated cones. These bounding volumes require additional
information to be stored (a point and a vector for the axis, one or two radii,
and height).

Line swept spheres (LSS) are similar to cylinders, but they have a hemi-
sphere at both of their ends instead of a flat cap. This means more straight-
forward intersection tests since every point on the LSS surface is exactly at
the distance of the radius from the centerline, including the line’s endpoints.

However, it should be easy to wrap every bounding volume around any
object. For an AABB, this is straightforward, requiring only three minimum-
maximum pairs. For an OBB, the bounding volume is oriented along the
object axes. For a cylinder, it suffices to determine an object’s central axis
and then the perpendicularly farthest point from the axis (radius) and the
two most distant points that lie on the axis (height). For an LSS, it might
be more challenging to determine the correct volume length (specifically, the
length of the centerline) because the hemisphere cap might not be a tight fit
for the object.

Another essential property of any chosen bounding volume is to yield a
tight bound for two smaller volumes of the same type (inside a BVH). The
question is if the larger cylinder (or truncated cone) on the next level gives
a tighter bound for two volumes than an AABB (or OBB). In theory, there
might exist a BVH level, from which it is more efficient to switch to simpler
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...............................3.1. Axis-aligned bounding box

bounding volumes, such as AABB, to reduce computational overhead and
make the intersection test faster.

3.1 Axis-aligned bounding box

An axis-aligned bounding box is the simplest and most widely used bounding
volume. It is memory efficient as it may be represented by only six values,
two on each axis. Thus, an AABB is computed by finding the minimum
and maximum values covered on each axis according to the wrapped object’s
extent. This might be a rather complicated task for primary scene geometry,
but since most scenes are triangular meshes, it poses no problem in practice.
Wrapping AABBs by another AABB is very efficient, both time and memory-
wise, making it the superior choice for building BVHs.

3.2 Oriented bounding box

An oriented bounding box (OBB) is very similar to an AABB, as it has the
same form of a rectangular prism. An OBB extends along the axes of the
object’s coordinate system with the origin at the center of mass.

OBBs are sometimes used in ray tracing as a tighter alternative instead
of an AABB or in combination with AABBs. Wald et al. [4] proposed an
algorithm that forces hardware-accelerated OBB intersection tests before
carrying out the user-defined test. They pointed at the problem of AABBs
enclosing unnecessary empty space around diagonal objects that result in
a large number of intersection tests. However, they do not build a BVH
based on OBBs, but use affine transformation and instancing to carry out
the hardware-accelerated tests at the object level of the BVH.

The hypothesis this project builds on is that cylinders and truncated cones
could perform better in ray tracing than rectangular shapes, providing tighter
bounds in certain scene types.
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3. Bounding volumes ..................................
3.3 Cylinder

Intuitively, a cylinder should provide a tighter bound for cylinder-shaped
objects than an axis-aligned box; moreover, it should be a better choice at
the lower levels of a BVH than an oriented box. This is particularly true for
scene primitives that are considerably longer along one of their axes. For such
triangles, a cylinder would enclose less unnecessary space around the primitive
than a rectangular volume. A cylinder can be represented by only seven
values in memory - a point in space, a direction vector, the base radius, and
the height of the cylinder. Memory-wise, a cylinder behaves precisely like an
AABB because storing and accessing six values is generally less cache-friendly
than a power of two; the AABB representation would probably be aligned to
eight floating-point numbers.

Figure 3.2: Similar cylinder pair examples.

3.4 Truncated cone

Although cylinders represent special cases of truncated cones, and they may
be considered a part of the same problem, this experiment distinguishes
between cones and cylinders. Truncated cones are considered due to their
potential to provide a better enclosure for groups of rays or groups of hair
strands or even cylinder-shaped bounding volumes. However, they could
also be less efficient since they might encapsulate unnecessary space around
bounded objects if the difference between the two radii is significant. They
might also prove less cache-friendly because of the need to store another value,
the second radius; however, that may be solved by carefully arranging the
data.
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.................................. 3.5. Line swept sphere

Figure 3.3: Similarly oriented truncated cones.

3.5 Line swept sphere

Line swept spheres (LSS) are capsule-like shapes that may be represented by
two points in space and a radius because the surface of an LSS consists of
all points exactly at the distance of the radius from the line segment defined
by two points. They are more often used in collision detection ([3], [16])
than in ray tracing because they offer a fast overlap test and quick distance
computation between two capsules.

Fonseca and Winter [5] discussed the usage of bounding volumes in molec-
ular biology; they built a chain tree structure for studying changing protein
conformations and used LSSs as bounding volumes to detect clashes of protein
subchains. They compared LSSs to simple spheres, OBBs, and rectangular-
swept spheres. They concluded that simple spheres and LSSs outperform
OBBs. As protein chains are not necessarily similar to hair because of their
tree-like structure, the only takeaway for this project is that LSSs might
present a slight improvement over cylinders due to a faster intersection test.

Figure 3.4: Renders of swept sphere shapes; from left to right: sphere, line
swept sphere, rectangular swept sphere (image source: [3]).
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Chapter 4

Bounding volume of smaller volumes

Computing the bounding volume of other volumes of the same type is straight-
forward for rectangular shapes. As discussed in the previous chapter, AABBs
are ideal for this task; however, they produce very loose enclosures for ob-
long, diagonally oriented objects. The tightness of cylinder or cone-shaped
bounding volumes depends on the definition of the constructed volume’s axis,
along with the orientation similarity of the enclosed volumes.

(a) : Cylinders (b) : Truncated cones

Figure 4.1: Wrapping two similar volumes (green, yellow) with a joint bounding
volume of the same type (red).

4.1 Joining AABBs

In the context of easily computed joint bounding volumes, axis-aligned
bounding boxes are far superior to any other volume. Joining two AABBs is
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4. Bounding volume of smaller volumes ..........................
often realized by extending one volume by the other volume’s extent, which
only takes six comparisons.

4.2 Wrapping cylinders with a cylinder

Tightly wrapping two cylinders by a new bounding volume of the same shape
is fairly complicated. An AABB has its extent precisely defined on each
principal axis. However, a cylinder’s extent is only known with respect to its
center of base and its axis. Moreover, the arbitrary orientation of the two
cylinder axes complicates the construction. Thus, the axis selection is crucial
for the resulting volume to have the smallest achievable surface area. Let
the cylinders be reasonably similar, with a relatively small angle and equally
small distance between the two axes (as in Figure 4.2). Intuitively, to have
the least amount of empty space around the wrapped objects, the new axis
should be positioned somewhere between the two axes. A line can be defined
by two points. This is true in both the context of axis construction and for
the individual cylinders. Their axes are defined by their two centers of bases.
The radius of the constructed cylinder will directly depend on the distance
between the base centers and the selected axis (see Figure 4.3). To minimize
this impact, the new axis will be defined by two points, each on one of the
lines defined by a pair of centers of bases (Figure 4.2). The cylinder cap
centers are paired with the closer point.

The proposed algorithm for constructing joint bounding cylinders first
computes the axis of the resulting cylinder. It takes the endpoints of the axes
of the two encapsulated cylinders (the centers of the cylinder bases), and it
computes the middle point of the line connecting a pair of centers, yielding
two points that will define the axis of the wrapping cylinder (see Figure 4.2,
left). The other explored option was to find the center of mass on the line
connecting the two bases using the volume of the wrapped cylinders instead
of the middle point (Figure 4.2, right); the practical effect of this choice is
further discussed in section 4.6.

The algorithm then establishes the height of the final cylinder by computing
the perpendicular projections of the cylinder bases onto the newly formed
axis, finding the projections of the farthest points of the cylinders onto this
axis, and calculating the distance between the two farthest projections. The
next step is to calculate the radius of the cylinder base. The cylinder should
provide a tight enclosure. Thus, the radius is given as the perpendicular
distance of the farthest point of the two cylinders from the new axis. Figure
4.3 illustrates the radius selection process with a given axis and one cylinder.
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..................... 4.3. Wrapping truncated cones with a truncated cone

Figure 4.2: Two ways of calculating the axis of the bounding cylinder. Line
defined by the middle points (left) and choosing the centers of mass (right) as if
the two volumes were hanging at the ends of the connecting line (here assuming
the yellow cylinder to be larger).

4.3 Wrapping truncated cones with a truncated
cone

The algorithm essentially performs the same steps as when computing an
enclosing cylinder, the main difference being finding two different radii for
the upper and lower bases. It assumes two similarly oriented truncated cones,
both having the smaller radius at the same end of their axis (Figure 4.1
(b)). Another critical step is to save all projected point - distance pairs while
searching for the maximal radius.

The presented method generally does not provide the tightest possible en-
closure for truncated cones; it slightly overestimates the radii of the bounding
cone. Finding the tightest possible enclosing truncated cone is a complicated
optimization problem. When the two radius candidates are found, the algo-
rithm additionally checks the cone slope; essentially, whether the actual cone
radius is larger than the distance of the projected point (the farthest point of
the wrapped cone) at that height on the axis. If it is smaller, the constructed
bounding volume needs to be adjusted. The nature of this adjustment has a
massive impact on the tightness of the computed volume and its surface area.
It is desirable to keep the surface area as low as possible, and the adjustment
procedure should respect that.

As shown in Figure 4.4, there are two correction schemes involving only
one radius. These methods enlarge either the top or the bottom cone radius,
changing the slope angle, and as a result, changing the surface area of the
volume. Another straightforward method is to equally adjust both radii by
shifting the slope side away from the axis, making the volume larger while
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4. Bounding volume of smaller volumes ..........................

Figure 4.3: Calculating the new radius rN1 (magenta) of the bounding cylinder
using the angle α between the cylinder axes a1 and aN . Distances d1 and d2 are
the perpendicular distances of the centers of bases of the black cylinder from
the axis aN . r′ is one of the legs of the right triangle with hypotenuse r. The
radii rN1 and rN2 (orange) are computed as the sum of the respective distance
di and r′. The larger radius is then selected to construct the bounding cylinder
(magenta).

not affecting the side slope angle. Note that for the algorithm to yield an
optimal volume, both radii would have to be adjusted, which requires solving
the optimization problem of minimizing the surface area. The surface area of
a truncated cone may be calculated as

S = πr2
1 + πr2

2 + π(r1 + r2)s

s =
√
h2 + (r1 − r2)2

(4.1)

where s is the length of the sloping side of the truncated cone, computed as
the hypotenuse of the right triangle with legs h along the axis and |r1− r2| at
the bottom. By increasing a radius, the value of S will also increase. However,
by increasing the smaller radius, the resulting volume will be closer to a
cylinder by making its sloping side steeper - this also means that in Equation
4.1 the length of s will decrease.

However, practice does not support this theory. Systematically choosing
to adjust the smaller radius in the current form is by no means superior
to adjusting the other radius. Choosing to adjust only the smaller radius
yields worse average surfaces than selecting the larger or correcting both radii.
The average relative surface areas of the enclosing volume are approximately
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..................... 4.3. Wrapping truncated cones with a truncated cone

(a) : Correcting the larger radius (b) : Adjusting the smaller radius

Figure 4.4: Illustrating the problematic radius selection for the red enclosing
truncated cone. In both cases, the dashed blue shape represents the cone after
the radius correction. (a) rS is the selected larger radius calculated from the
yellow cone’s farthest point from the axis, while rR is the rejected distance (it is
shorter than rS). The selected radius correctly represents the farthest wrapped
point from the axis at that height; however, this selection does not automatically
respect the distance rR at a different height along the axis. (b) Analogically,
r2 is selected as the radius, but the green volume is not fully enclosed by the
resulting red volume. By increasing the radius and making the slope steeper the
bounding volume provides a sufficiently tight bound for both truncated cones.

the same for the larger radius and the double adjustment after thousands of
generated instances (see Table 4.1). For further measurements and comparison,
the correction of the larger radius was chosen, as it seemed to be the most
consistent improvement.

Comparing radius corrections
surface average
10K instances

very similar similar divergent
SC

S1+S2
SC

SAB

SC

S1+S2
SC

SAB

SC

S1+S2
SC

SAB

smaller radius 1.151 0.637 1.159 0.640 1.171 0.642
larger radius 1.022 0.565 1.042 0.572 1.074 0.586

both 1.033 0.571 1.048 0.576 1.060 0.581

Table 4.1: The measurements show that adjusting the smaller radius is prob-
ably the worst choice. Adjusting the larger radius or enlarging both perform
similarly.
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4. Bounding volume of smaller volumes ..........................
4.4 Wrapping cylinders and cones with an AABB

To compute the AABB of two cylinders or two truncated cones, the AABB
of each has to be calculated first by finding their minimum and maximum
extents when projected onto the principal axes. The AABB of a cylinder is
calculated by first finding the bounding box of the centerline, then expanding
it by including the projection of the circular bases. However, wrapping a
truncated cone with an AABB is more complicated; as there is no available
method for projecting a truncated cone directly onto the principal axes, the
algorithm replaces the cone with two cylinders. Both replacement cylinders
inherit one of the cone radii, and both of them will be half the height of
the original truncated cone; although, decreasing the inherited height is only
important for the cylinder with the larger radius. Calculating the joint AABB
of two smaller AABBs is straightforward; one of them will be extended by the
minimum and maximum values of the second one. The reason for considering
the AABBs of cylinders and truncated cones is to use it as a reference when
comparing the resulting surface areas of the different volumes.

Figure 4.5: Joining two AABBs. The joined bounding boxes (left) and the boxes
with the enclosed objects (right). The yellow and green bounding volumes are
computed separately; the white AABB is the tight bounding box of the two.

4.5 Relative surface area test

The test results of the proposed methods for computing the unions of bound-
ing volumes are in accordance with the expectations. They are not optimal
but do not require complicated calculations. Although, constructing the joint
bounding cylinder of two cylinders demands significantly more computational
time than an AABB. Cylinders wrapping cylinders and truncated cones en-
closing truncated cones were tested separately on a large number of randomly
generated instances of similar object pairs to calculate the average surface
ratios. Generally, the wrapping volume has at most a 50% larger surface
area as the two separate objects together; however, its surface area is 40%

20



.............................. 4.6. Bounding volume tightness

smaller on average than the corresponding AABB, depending on the object
orientation.

Two options of axis construction were tested: one takes the middle points
of the lines connecting the pairs of cylinder bases, the other finds the center
of mass on the line with respect to the two volumes. The improvement over
the middle point method is very subtle yet consistent in the case of cylinders.
Truncated cones seem to perform worse with the weighted axis computation
for the configuration next to each other; the surfaces are virtually the same
for the after each other position.

The effect of choosing the middle point at axis construction or weighing by
the object volume was tested on 10K randomly generated instances in three
configurations. Configuring means limiting the ranges of randomly generated
parameters, which are: position, offset, rotation. Position is given by a radius
around the origin of the coordinate system, and it defines the distance of
the first generated object from the origin. Offset is a radius around position
where the second generated object will be translated. Rotation describes
the range for rotation angles in degrees, limiting object rotation around a
randomly generated axis in space. The larger these limit values, the larger
the variance of the generated instances. The following configurations were
compared:

.Very similar. The position and offset radii are 0.1, the angle limit is
10◦.. Similar. The position radius is 2, the offset is 0.8. The rotation angle
limit is 25◦..Divergent. The position radius is set to 3, and the offset is 2. The
angle limit is 35◦.

Table 4.2 shows that by increasing the range of values, the variance in
similarity increases, and the average surface area ratios increase, confirming
that the closer and more similar the two objects are, the better the enclosure.

4.6 Bounding volume tightness

The currently computed bounding volumes are not tight in general, and a
possible error source is the choice of the new axis. Although the joint volume’s
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4. Bounding volume of smaller volumes ..........................
average surface
10K instances

very similar similar divergent
SC

S1+S2
SC

SAB

SC

S1+S2
SC

SAB

SC

S1+S2
SC

SAB

Next to each other, axis: middle points
cylinder with cylinder 1.311 0.570 1.431 0.610 1.501 0.625

cone with cone 1.022 0.565 1.042 0.572 1.074 0.586
Next to each other, axis: weighted

cylinder with cylinder 1.280 0.556 1.401 0.594 1.469 0.618
cone with cone 1.018 0.574 1.117 0.622 1.458 0.804

After each other, axis: middle points
cylinder with cylinder 2.271 0.524 2.395 0.545 2.527 0.571

cone with cone 1.922 0.608 1.927 0.608 1.947 0.614
After each other, axis: weighted

cylinder with cylinder 2.246 0.516 2.353 0.539 2.511 0.566
cone with cone 1.921 0.606 1.933 0.610 1.945 0.613

Table 4.2: Average relative surface coefficients. SC is the surface area of the
bounding cylinder or cone, S1 and S2 denote the surface area of the two wrapped
volumes, and SAB denotes the surface of the corresponding axis-aligned box.
The improvement over the middle point method is minimal.

surface area is equally dependent on the mutual position and orientation of
the wrapped volumes, that is an unalterable characteristic. As noted before,
axis-aligned bounding boxes do not provide tight enclosures for oblong objects
with a diagonal orientation with respect to the principal axes. Cylinders
proved to have approximately 40% lower surface areas, which should be a
sufficient enhancement for complete scenes.

Since the radius of the bounding cylinder or cone is established by finding
the farthest point from the chosen axis, if one of the objects is significantly
thinner, and the two object axes are almost parallel, the smaller volume might
not be touching the side of the enclosing shape. However, these loose-fitted
bounding shapes still prove to be smaller than the compared AABB, especially
for diagonally oriented volumes. Note that this is an indication that cylinders
should not only be similarly oriented but also similar in size.

There was an effort towards further optimizing the axis selection for cylin-
ders by an exhaustive search on the two lines connecting the base centers.
However, this process requires an enormous amount of extra computation for
a relatively small improvement, making it an unnecessary modification.
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.............................. 4.6. Bounding volume tightness

Figure 4.6: An example of comparing the bounding cylinder (red) and the
AABB of two similar cylinders. The relative surface of the enclosing cylinder to
the sum of the enclosed is 1.78. However, the relative surface of the red cylinder
to the AABB is 0.60.

Figure 4.7: An example of comparing the bounding cylinder and the AABB of
two similarly oriented cylinders positioned after each other. The relative surface
of the red cylinder to the sum of the surfaces of the wrapped volumes is 1.59.
The relative surface of the red volume to the AABB is 0.40.

Figure 4.8: An example of the rare case when the AABB is in fact superior to
the bounding cylinder in the context of surface areas. The relative surface area
of the red bounding cylinder to the sum of the enclosed cylinders is 1.566. The
red cylinder’s surface to the AABB surface ratio is equal to 1.094. However, this
ratio is the result of the cylinders being aligned with the coordinate axes.
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Chapter 5

Hybrid hierarchy

The principal idea that this work aimed at exploring was building hierar-
chies that provide a tighter bound for oblong objects than the commonly
used bounding volume hierarchies (BVH). The first step was to enable the
construction of a BVH purely built on cylinders.

5.1 Theory and data

Theoretically, bounding cylinders should provide a more precise bound for
similarly shaped, oblong scene objects. This might be true for the lowest levels
of the hierarchy; however, the orientation similarity, one of the exploitable
characteristics of oblong primitives, is less and less prominent in the higher
levels, producing needlessly large bounding volumes. Axis-aligned bounding
boxes are likely to produce highly redundant levels for scenes densely packed
with thin objects, resulting in a high number of intersection tests per ray.
Nevertheless, the overall surface area of the hierarchy will be much lower
than for the cylinder hierarchy.

The results obtained from measuring the surface areas of the AABB and
cylinder BVH versions implied that there should be a clustering iteration at
which it would be beneficial to switch to AABBs from cylinders, thus creating
a hybrid BVH. The primary scene used for experimenting was a fraction
of 0.1% of the Hairball model (∼ 2.8M triangles). Figure 5.1 shows that
while boxes tend to keep the overall surface area relatively low, the cylinder
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Figure 5.1: Comparing the cumulative BVH surface area of the cylinder and
AABB hierarchies with various radii for the model Hairball 0.1%.

hierarchy surface appears to grow slower below the first 4-5 levels, implying
tighter bounds. An interesting observation can be made about the effect of
the radius selection on the final BVH surface.

The AABB hierarchy appears to follow the same path for a range of different
radii, while the cylinder surfaces exhibit high variability. The reason for this
might be that cylinders are also sorted by the Morton codes of their centroids;
yet, these volumes may be oriented arbitrarily in the scene, which the centroid
sorting does not take into account. While the initial clusters are sorted along
the Morton curve, they are not sorted again after iterations because they
tend to adhere to their original ordering, as noted in [2].

Due to the fact that the ordering only considers the centroids of volumes,
different radii facilitate the detection of better neighbors for certain clusters.
These neighbors might be relatively distant along the Morton curve, yet
the joint bounding volume of the pair of cylinders has a lower surface area;
thus, such a neighbor is closer and preferred. However, the fluctuation of
the cumulative surface areas seen in Figure 5.1 implies no direct correlation
between smaller surfaces and higher radii. One explanation might be that
finding a more suitable neighbor farther away along the Morton curve in an
early iteration causes disruption in later iterations. As Figure 5.2 illustrates,
the clusters merged later become extremely large extremely fast because their
orientation is highly disparate. This tendency is not present in the AABB
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Figure 5.2: Comparing the cumulative cluster surface area of the cylinder and
AABB hierarchies for the model Hairball 0.1%.

hierarchy, as these volumes may not be rotated, and orientation is generally
undefined for them.

While the cumulative cluster surface areas of both hierarchies tend to grow
exponentially, the box cluster areas grow significantly slower. As opposed
to the later iterations, the sum of the cluster surface areas is significantly
lower for cylinders until a specific iteration (see Figure 5.2), validating the
proposal of hybrid hierarchies. The idea was that it could suffice to choose
an iteration in which every cluster’s bounding cylinder would be replaced by
the AABB of that cylinder. Although this naturally introduces some amount
of redundancy, the resulting hierarchy should have a lower surface area.

5.2 Realization

Ideally, a hybrid hierarchy should utilize the different types of bounding
volumes by enabling the clustering process to switch from cylinders to boxes
regardless of the iteration at any level of the hierarchy. The SAH function
could evaluate the benefits of a switch by comparing both joint bounding
volumes of two clusters at each merge step, preferring the one with a lower
surface area. This solution would be relatively costly, however, it has the
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5. Hybrid hierarchy ...................................
potential to avoid some of the larger cylinders and keep the overall surface
areas low. It also opens the question of joining two bounding volumes of
differing types; however, it seems obvious to always favor the AABB in these
situations. If the transition happens individually at every branch, the selected
data structures have to be assembled carefully to preserve simple traversability
of the tree.

Currently, the hybrid builder is only able to construct a hierarchy with
a pre-defined transition iteration, from which it operates exclusively on
AABBs. This choice was deemed sufficient for the purpose of this thesis. For
best results, the choice of the switch iteration should be scene-dependent
and probably be selected together with the search radius. This form of
optimization fell out of scope for this work.
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Chapter 6

Implementation

The PLOC [2] algorithm serves as the basis for this work. Since the goal
was to incorporate the discussed non-standard bounding volumes into this
algorithm, and to compare the resulting hierarchies in terms of build and
render performance, the implementation of Arsène Pérard-Gayot [17] was
utilized and modified accordingly. It is a header-only BVH library in C++17
containing a collection of different BVH builders, including a CPU version
of the PLOC algorithm and a simple ray tracer to allow builder comparison.
The library does not use any platform- or hardware-specific intrinsics, and
it has no other dependencies than the C++ standard library. It employs
OpenMP for parallelization.

6.1 PLOC implementation on a CPU

The locally-ordered clustering algorithm in [17] is implemented according to
Bittner and Meister [2]. Several buffers are used, with two main buffers that
store the clusters before and after an iteration, which are swapped at the end
of each iteration. Child nodes (and primitives) belonging to the same node
are stored at successive indices. The algorithm starts with computing the
corresponding bounding volume for each scene primitive and the centroid of
the volume. According to the centroid, Morton codes are generated for the
clusters; encoding the centroid consists of interleaving the bits of the x, y and
z values. These will be the initial clusters. The main loop consists of three
phases: the nearest neighbor search, the merging phase and the compaction
phase, repeated until a single cluster remains [2].
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6. Implementation....................................
Nearest neighbor search. The search is performed as a 1D search in an
array of clusters along the Morton curve, computing the distances between
clusters. The distance between two clusters is defined as the surface area of
the axis-aligned bounding box of the two clusters. In his implementation,
Pérard-Gayot [17] heavily uses inline functions and utilizes distance caching
in the nearest neighbor search to lower the computational time. Additionally,
he saves a multiplication operation in each distance computation since he
only considers half of the surface area of the axis-aligned bounding box. By
eliminating factor 2 from the cylinder surface area equation, this operation
can be saved similarly in the case of cylinders.

Merging. In the merge phase, every cluster is checked against its nearest
neighbor. If two clusters are the nearest neighbors to each other, they are
marked for merging, replacing one of the clusters with a new cluster and
marking the other as invalid [2]. The new cluster becomes the parent of the
two merged clusters.

Compaction. According to the indices computed in a prefix scan, the new
clusters are inserted and the invalid clusters removed from the output array.
The prefix scan is performed before the actual construction of the new parent
nodes but after the nodes are marked as mergeable or not. The newly
constructed clusters are then directly inserted at the indices calculated in the
prefix sum pass. The clusters that did not find their nearest neighbor in the
given iteration are copied to the output array unaffected.

6.2 Modifications

To use non-standard bounding volumes, precisely cylinders with the PLOC
algorithm, it was essential to define new structures and functions handling
cylinders. However, it was also essential to keep the original structure of the
code for it to remain comparable. Most of the modifications came in the form
of adding new overloads of certain functions, such as build(), cluster()
and traverse().

The build() function has overloads for every considered hierarchy type.
The original and the cylinder version only differ in the parameter list, while
the hybrid builder is further modified, see section 6.2.4. The original function
consists of sorting the primitives by the Morton code of their center of mass,
then creating the initial clusters by computing the bounding volume of each
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primitive. It also sets begin and end indices into the cluster array. After the
initialization, the function enters a simple while loop that runs until a single
cluster remains, that is, until the difference of begin and end becomes one.
In each iteration, the cluster() function is called.

The cluster() function also has overloads suitable for the distinct builders,
but they only differ in their parameter list. After initializing the distance
matrix for caching and establishing the search range, the distance cache is
filled with computed distances for every cluster i in the interval 〈i+ 1, i+ r〉.
Then during the nearest neighbor search, for each cluster, the previously
computed distances are used for the interval 〈i − r, i〉, and new distances
are calculated and cached for the interval 〈i + 1, i + r〉. After the best
neighbor is established for each cluster, nodes that have found their mutually
corresponding nearest neighbor are marked as mergeable. Then a prefix sum
is computed to find the insertion indices for the new clusters. Finally, the
newly constructed nodes are inserted into the output array, and the next
begin and end indices are returned for the next iteration.

The traverse() function is called for every pixel of the image during
rendering, but the actual functionality is inside the intersect() call. This
function also has a hybrid and a cylinder variant. The original hierarchy
traversal processes encountered leaves immediately, as well as moving to
the nearest child node and only pushing the farther child to the stack, if
intersected. The cylinder traversal is identical to the original, but the hybrid
traversal employs two stacks instead of one and needs to mind the volume
type switch.

6.2.1 BVH

The bvh struct originally contained a Node struct holding the six values of the
bounding box, one boolean bit for distinguishing leaf nodes, a bit field for the
number of primitives belonging to the node, and an index to the node’s first
child or first primitive, for inner and leaf nodes respectively. This structure
should be 32 bytes with single precision, and 64 bytes with double precision
[17]. Although this is preferable, another field had to be inserted to facilitate
the hybrid hierarchy construction - node origin. This means saving an index
into the cylinder node array to the cluster from which the AABB was created.
The bvh struct contains an array holding pointers to every node and another
holding indices to the scene primitives. A new pointer array was added to
hold the cylinder node pointers. The new node type, CustomNode is virtually
the same as Node, but instead of the six values representing the bounds of
the axis-aligned bounding box (AABB), it holds a point and a vector defining
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6. Implementation....................................
the cylinder center and axis. That would be exactly six values like the AABB
bounds. However, two additional scalars are required for storing the radius
and the height of the volume.

Both node types contain a structure, BoundingBoxProxy that handles the
conversion of nodes to bounding boxes. The node is also equipped with a
function returning a proxy to this node. The actual bounding box or cylinder
does not exist as a separate entity until the clustering algorithm converts a
node into a bounding volume to call one of its member functions. All values
are kept inside the node structure.

The Scalar type may be set as desired. It defaulted to single precision
floating point numbers in the original implementation. However, cylinders
required complicated calculations demanding double precision, which currently
seems unavoidable.

struct Node {
Scalar bounds[6];
bool is_leaf : 1;
IndexType primitive_count :
sizeof(IndexType) ∗ CHAR_BIT − 1;
IndexType first_child_or_primitive;
// index to cylinder in hybrid version
IndexType origin;

...
}

Listing 6.1: Node

struct CustomNode {
Vector3<Scalar> p1, axis;
// cylinder height and radius
Scalar h, r;
bool is_leaf : 1;
IndexType primitive_count :
sizeof(IndexType)∗ CHAR_BIT − 1;
IndexType first_child_or_primitive;

...
}

Listing 6.2: CustomNode

6.2.2 Clustering

In each cluster() call, the bounding volume’s member function, extend()
is called frequently. For the AABB, this means simply inflating the bounding
volume by taking the common minima and maxima of the two volumes. For
a cylinder, extending a volume means calculating a completely new cylinder
providing a tight enclosure for both the extended and the extending volumes.
To potentially save some computation time, an inclusion test is carried out
before computing the new cylinder. It is a rejection test gradually checking
the cylinder qualities: whether the smaller volume projected onto the larger
axis falls inside the larger radius, then if it fits between the two caps of the
larger cylinder. If one of the cylinder volumes completely includes the other
cylinder, the larger one is returned as their joint bounding volume. If the test
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fails, a new cylinder is computed.

6.2.3 Ray tracing

Tracing a ray consists of traversing the hierarchy while computing the in-
tersection of each bounding volume with the ray, searching for the closest
intersection to the camera along the ray. It is an elimination test - if the ray
misses a node’s bounding volume, it misses the whole subtree of that node.
If the ray does intersect the node, traversal continues until a leaf is reached.
In a leaf node, each primitive in that node is checked against the ray.

Ray-box intersection

The intersection test uses the slab method [7], treating the bounding box as
the space between three pairs of parallel planes. To make the intersection test
more efficient, rays are classified by octant inside the NodeIntersector struct
constructor, see Listing 6.3. The intersection test itself consists of computing
the entry and exit points of the ray against the bounding box. To eliminate
another time-consuming step, the test does not use divisions. Instead, there
is a multiplication by the inverted components of the ray direction vector.
This provides safe handling of zero components.

struct NodeIntersector {
std::array<int, 3> octant;

NodeIntersector(const Ray<Scalar>& ray)
: octant{

ray.direction[0] < Scalar(0),
ray.direction[1] < Scalar(0),
ray.direction[2] < Scalar(0)

}
{}

double intersect_axis(int axis,
const Vector3<Scalar> point,
const Ray<Scalar>& ray)

{
// with division:
// (p[axis] − ray.origin[axis]) / ray.direction[axis];
// without division:
return (p[axis] − ray.origin[axis]) ∗ ray.inverse_direction[axis];

}
}

Listing 6.3: The NodeIntersector struct.
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Ray-cylinder intersection

Computing the intersections of a ray with a cylinder is a more challenging task.
The test function is implemented according to the procedure described by
Zorin [18]. First, the intersection with an infinite cylinder along the bounding
cylinder axis is computed. The equation for an infinite cylinder along the line
pa + vat with radius r is

(q − pa − (va · (q − pa))va)2 − r2 = 0 (6.1)

Where q = (x, y, z) is a point lying on the cylinder. Substitute a ray p+ vt
for q, which yields

(p− pa + vt− (va · (p− pa + vt))va)2 − r2 = 0 (6.2)

which reduces to
At2 +Bt+ C = 0 (6.3)

where
A = (v − (v · va)va)2

B = 2(v − (v · va)va) · (∆p− (∆p · va)va)
C = (∆p− (∆p · va)va)2 − r2

with ∆p = p − pa. If Equation 6.3 has a non-negative determinant, the
intersections exist, which need to be checked if they lie between the two
planes of the cylinder caps, precisely if

va · (p+ vti − p1) > 0
va · (p+ vti − p2) < 0

(6.4)

for i = 1, 2. If they lie between the cap planes, there follows an intersection
test with each of these planes. Similarly to box intersections, the slab method
may be used here; thus, the inverse ray direction is also stored by the modified
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intersector. As a last check, these two intersection points must lie inside the
cylinder caps and be non-negative.

va · (p+ vt− pk) = 0
with t > 0 and
(p+ vt− pk)2 < r2

(6.5)

where k = 1, 2 for the top and bottom cap, yielding t3 and t4, respectively.
In the end, there should be at most four point candidates if any intersection
exists, the closest of which is returned.

Figure 6.1: Ray-cylinder intersection types. t1 and t2 (left) are two possible
intersection points of the ray with the side of the cylinder. t3 and t4 (right)
illustrate valid cap intersections.

6.2.4 Building a hybrid hierarchy

In the current implementation, the main loop of the hybrid build function is
equipped with an iteration counter. When the desired iteration is reached, it
breaks the main loop and transitions from cylinders to axis-aligned bounding
boxes. The process of switching consists of creating a new node for each cluster
and calculating the AABB of the cylinder volume, saving it in the newly
created node. Then these new nodes copy the first_child_or_primitive
and primitive_count values of the cylinder nodes. Note that all tested BVH
versions have only one primitive per leaf. Each node saves an index to the
cylinder node array indicating their origin - a newly added variable in the
Node struct (see Listings 6.1, 6.2). The most relevant step is marking these
nodes as leaves, even though they are most likely inner nodes of the whole
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(a) : The initial scene (b) : AABBs of the cylinders

(c) : Cylinders before the switch (d) : AABBs after the switch

Figure 6.2: Showing the transition from cylinders to axis-aligned bounding
boxes in the scene Hairball 0.1% at iteration 10. (a) the original scene before
clustering, (b) illustrating the switch with both cylinders and boxes visible, (c)
cylinders before, (d) AABBs after the transition.

hierarchy. However, these nodes are leaf nodes in the context of the AABB
hierarchy, which will be built over the clusters present at the switch iteration.
This indicator facilitates traversal during ray tracing since there is no other
connection between the cylinder and box nodes. After the transition, the
function enters a second loop calling the suitable cluster function variant for
the new nodes, which will be repeated until a single cluster remains.

6.2.5 Hybrid traversal

The hybrid hierarchy traversal is very similar to the original function. However,
it might be suboptimal because of the different node types that currently
require the use of two separate stacks. The original function traverses the
hierarchy and processes every leaf node immediately upon encounter. When
the hybrid traverser encounters a node marked as a leaf, it means it reached
a point where the box hierarchy changes to a cylinder hierarchy. The origin
of this pseudo leaf node quite rarely might be an actual leaf that has to
be intersected instantly. In the more likely case of an inner node, a nested
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traversal loop is entered that searches through the cylinder subtree, as if it
was an independent cylinder hierarchy. This nested while loop is exactly the
same as the main traversal, however, it operates on the cylinder stack (see
Listings 6.4, 6.5). It returns to the main loop only after processing the whole
cylinder stack.

Listing 6.4: Pseudo code of the basic traversal loop body, responsible for finding
the closest intersection for a ray. It is used in the box and cylinder hierarchy,
and a nested version is utilized in the hybrid hierarchy. First, it intersects the
left and the right child node. If an intersection exists and the child is a leaf, it
processes the primitive intersections. Otherwise, it continues to the closer node
pushing the farther to the stack, if the ray intersects both children; or to the
only node that is intersected, if any.

/∗ BASIC TRAVERSAL LOOP BODY ∗/
first_child = node.first_child_or_primitive
left = node_array[first_child]
right = node_array[first_child + 1]
d_left = intersect_node(left)
d_right = intersect_node(right)
if left exists and is leaf

intersect_leaf(left)
end if
if right exists and is leaf

intersect_leaf(right)
end if
if exactly one exists

node = left exists ? left : right
else if both exist

stack.push(farther)
node = closer

else
if stack is empty

break
end if
node = stack.pop

end if

6.2.6 Hierarchy built on rays

As mentioned in chapter 2, it is possible to build a bounding volume hierarchy
over rays, assuming each ray is an oblong triangle. The idea is similar to the
line-space gathering process of Sun et al. [14]. They observe that lighting
rays are generally long, and cross large sections of the scene, producing large
bounding volumes, thus being unsuitable for spatial hierarchies. The proposed
cylindrical bounding volumes offer a partial solution to this problem with
reduced surface areas. However, the surface area reduction is insufficient due
to the issues with wrapping arbitrarily oriented cylinder pairs with a cylinder.
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Thus, the randomly generated rays (triangles) may hardly be improved by
cylindrical bounding volumes. Evidence is provided in Chapter 7.

Listing 6.5: Pseudo code of the hybrid ray traversal function with nested cycles.
It utilizes the basic traversal loop (Listing 6.4) twice with certain modifications.
In the outer while cycle, it traverses the box hierarchy processing each node.
In the while loop inside the first if statement, it searches through the cylinder
subtree of the pseudo leaf box, until the whole branch is processed.

while true
if node is leaf

c_node = node.origin
if c_node is leaf

intersect(c_node)
if stack is empty

break
end if
node = stack.pop
continue

end if
while true

/∗ BASIC TRAVERSAL LOOP BODY ∗/
// with c_node and c_stack

end while
if stack is empty

break
end if
node = stack.pop
continue

end if

/∗ BASIC TRAVERSAL LOOP BODY ∗/
// but only intersects leaves if the node origin is a real leaf

end while
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Chapter 7

Results

This project aimed at slightly improving bounding volume hierarchies for
oblong cylinder-shaped objects such as hair. The discussed methods for
constructing joint bounding volumes succeed in significantly reducing the
immediate surface area of the bounding volumes. Although this effect is
generally not as prevalent throughout the hierarchy as at the lowest levels,
the proposed solution has the potential to improve the qualities of a BVH
for certain scene types. The results presented in the following are per the
expectations and support the primary hypothesis that using cylinder-shaped
bounding volumes may sometimes be beneficial.

The small Hairball fraction scene was used for tuning and measuring the
performance (∼ 2880 triangles) while working on the project, as it comprises a
low number of oblong triangles. Further tested scenes that exhibit comparable
qualities are a larger portion of the Hairball scene (10%), a bust of a woman,
and random rays represented by thin triangles, generated by the author. The
control scenes were of a different kind, the Sibenik Cathedral and Park as
architecture and Armadillo as an evenly tessellated figure.

The current version of the hierarchy builder and ray tracer is a proof of
concept; it is an experimental tool lacking intensive optimization and unsuited
for use outside this project. All measurements were conducted on an Intel
Core i5 7300HQ 2.50 GHz CPU under Windows, without parallelization due
to issues with OpenMP.
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Figure 7.1: Comparing the depth of every type of hierarchy for a varying search
radius for the scene Hairball 0.1%.
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Figure 7.2: Showing the cumulative surface area of each BVH type for a large
range of search radii. Measured for the scene Hairball 0.1%.
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A notable characteristic of the cylinder and hybrid hierarchies is that they
consistently produce shallower trees than an AABB hierarchy, as shown in
Figure 7.1. The cylinder variant produces a record low of 14 levels (for
r = 25, 31, 32). A shallower tree means that during clustering, a high number
of clusters were merged in every iteration; thus, most of the leaf nodes are
positioned at the lowest levels of the BVH, making it more balanced. Taking
Figure 2.4 as an example, the amount of unmerged red clusters has to be
relatively low in most iterations.

The most considerable weakness of the pure cylinder hierarchy is visible
in Figure 7.2, with certain search radii approximately doubling the surface
area of the AABB hierarchy with the same radius. However, the hybrid
hierarchies produce surface values a lot closer to the AABB results. The
lower the switch iteration, the lower the overall surface area values. For
i = 5, it is almost always under the AABB variant, except for a few radius
selections around 25. Although render times tend to change for the worse
with alternative bounding volumes, the hybrid hierarchy shows a consistent
improvement of the hierarchy surface area with 3-8% percent lower values
(Table 7.1). The cylinder hierarchy performs exceptionally poorly, with the
build taking 10-20× longer and rendering 7-8× longer than the reference
BVH with AABBs.

Figures 7.1, 7.2 suggest that the most promising hybrid alternative among
the tested hierarchies for the Hairball fraction is the BVH switching at
iteration 5. It exhibits highly similar behavior to the AABB BVH both in
the context of cumulative cluster surfaces and the surface of the final BVH.
As Figure 7.2 revealed, this variant almost always outperforms the AABB
hierarchy for this scene. Moreover, the larger the search radius, the lower the
cumulative surface areas. This is illustrated in Figures 7.3, 7.4. Equivalent
measurements for hybrid hierarchies with a different switch iteration and
further results can be found in Appendix A. The superiority of the i = 5
hybrid is proven by the test results in Tables 7.1, 7.2.

As noted in section 4, the greatest potential of cylinders lies in the densely
packed scenes with thin triangles that are similarly oriented, as the bounding
cylinder loses its dominance over an AABB with increasing primitive orien-
tation variability. To verify this in practice, various models were used and
their performance compared. The supposedly most suitable scenes were those
containing hair strands, such as Hairball and Bust. Although the former
comprises cylinder-shaped hair strands with similarly oriented triangles, the
strands display high curvature variability, bringing different triangles near
each other. However, hair present in the Bust model largely constitutes
similarly oriented clusters with less randomness in bending, more closely
resembling average human hair.
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Figure 7.3: Comparing the cluster surface areas by iteration to the box hierarchy,
switch at iteration 5. Scene: Hairball 0.1%.

The 10% Hairball scene displays too much randomness in the curvature of
the strands to benefit from an alternative hierarchy. However, the measured
surface areas are at least 13% lower than the AABB hierarchy when switched
in iteration 5 (see Table 7.1). The later the transition occurs, the larger the
resulting tree surface. At iteration 10, the hybrid variant still displays an
approximately 10% improvement; the larger the radius, the more noticeable
the improvement.

As mentioned previously, the Bust scene shows a different order of hair
strands with less randomness and large clusters of similarly oriented hairs.
The orientation similarity gets exploited in the alternative hierarchies for this
scene. The results show a stunning decrease of approximately 50% in the
cumulative surface area. The cylinder hierarchy even achieves a 60% decrease
for r = 10, although for an incredibly long render. For this reason, the render
times were not measured for the remaining radii with the cylinder hierarchy,
as there is no potential to improve them. Although the hybrid hierarchies
take significantly longer to build, they produce 23-30% percent lower render
times compared to the reference BVH.

Adhering to the project requirements, the hierarchies were also tested on
scenes containing different geometry, such as architecture and figures. The
Armadillo model was chosen as a figure, as it is a finely and evenly tessellated
mesh with a moderately high number of triangles. As expected, the cylinder
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Figure 7.4: Comparing cumulative BVH surface areas of the hybrid hierarchy
levels to the AABB hierarchy. Scene: Hairball 0.1%.

hierarchy performs appallingly, and the hybrid BVHs also fail to provide any
improvement at all. The architectural scenes were the Park and the Sibenik
Cathedral. The former contains less than 30K triangles and the latter roughly
80K, but both scenes are unevenly tessellated. This characteristic causes
the alternative builders to approximately double the reference surface areas
and render times, confirming the necessity of similar orientation. The main
reason for the failure is that the large triangles in the scene, especially those
along the principal planes that would have an exceptionally thin AABB, are
wrapped with unnecessarily large cylinders immediately at the start of the
algorithm. To illustrate this, the initial bounding volumes of the Hairball
fraction and Park scenes are compared in Figure 7.5.

The Generated random rays scenes simulate randomly bouncing rays in
a scene by 10K arbitrarily positioned and oriented triangles. The triangles
were generated by defining the scene boundaries as a cube, generating two
random points inside the cube for each triangle. Then, a third vertex was
constructed at an ε distance to one of the previous points. Generally, these
triangles lack any similarity. The longest side of each triangle is equal to a
chosen percentage of the diagonal of the scene’s bounding box. For the two
tested scenes, 30% and 70% lengths were chosen. In the scene with shorter
rays, the alternative hierarchies all fail, the cylinder BVH nearly doubling
the surface area. However, hierarchies built over the longer rays display more
consistency between variants. Moreover, the cylinder hierarchy outperforms
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the AABB version, and all alternatives yield lower surface areas with larger
radii (see Table 7.2).

Figure 7.7 (a, b) illustrates the differences in ray tracing the 10% Hairball
model with a box and a hybrid hierarchy, both having the same search radius.
Traversal steps and intersection tests carried out for each ray are mapped
to colors. Although the hybrid version appears to reduce the red regions
and it lowers the number of intersection tests, the number of traversal steps
increases, which results in longer renders (see Table 7.2). Figure 7.7 (c,
d) offers a side-by-side comparison of the render performance for the Bust
model between the AABB and hybrid BVHs. The hybrid variant displays
a considerable improvement over the box hierarchy, decreasing the average
number of intersection tests by an order of magnitude.

Hairball 0.1%, 2 880 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.12 5.66 4.21 2.30 37.89 7.46 1.60 8.81 4.10 1.85 11.12 4.06 2.09 14.91 4.93

15 0.17 6.11 4.21 2.90 38.31 8.09 2.42 8.76 3.98 2.72 11.36 4.07 3.91 17.04 4.86

25 0.27 5.95 4.16 4.89 36.61 8.01 4.27 8.63 3.90 4.44 11.10 3.99 5.03 16.55 5.02

50 0.54 6.08 4.16 9.16 39.21 8.25 7.72 8.95 3.93 8.66 13.77 3.94 9.45 15.31 4.94

100 0.94 6.18 4.18 19.92 44.04 7.91 16.85 9.31 3.85 17.13 9.96 3.99 17.53 14.54 4.68

Hairball 10%, 288 000 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.20 1.61 95 3.75 41.81 219 2.68 1.89 83 3.49 3.38 87 3.65 6.37 109

15 0.32 1.73 95 5.17 41.58 186 4.08 2.11 83 4.63 3.64 87 6.13 6.78 106

25 0.54 1.76 94 10.04 39.65 168 6.63 2.29 82 7.53 3.62 85 9.79 6.91 103

50 0.88 1.50 94 16.20 31.01 469 13.11 2.03 82 15.83 3.07 84 17.85 5.56 99

100 1.86 1.54 94 32.83 28.36 160 25.51 1.81 81 30.00 3.00 82 35.24 5.74 96

Table 7.1: Build and render times along with the relative surface area of hierarchy
alternatives for different radii. Measured times are in seconds for Hairball 0.1%
and in minutes for Hairball 10%. Surface areas (SA) are shown relative to the
surface are of the scene’s AABB. The lowest surface area for each radius (each
row) is emphasized in bold. Every BVH contains one primitive per leaf.
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Bust, 4 271 696 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 5.06 18.34 1644 52.87 >2h 634 38.72 14.16 812 49.87 17.19 719 49.68 21.99 666

25 13.48 16.41 1617 >2h — — 99.96 13.50 769 119.62 15.78 680 >2h — —

100 60.51 17.01 1585 >2h — — >2h 10.97 714 >2h — — >2h — —

Generated random rays (30% of the diagonal), 10 000 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.01 24.78 395 0.17 >2h 756 0.10 53.10 504 0.14 98.54 578 0.15 >2h 642

15 0.02 23.95 390 0.25 >2h 720 0.17 49.12 487 0.22 94.99 562 0.23 >2h 616

25 0.04 25.06 386 0.48 >2h 692 0.28 47.20 471 0.37 79.36 535 0.41 >2h 585

Generated random rays (70% of the diagonal), 10 000 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.01 >2h 766 0.15 >2h 854 0.10 >2h 812 0.13 >2h 841 0.15 >2h 852

15 0.04 >2h 735 0.41 >2h 724 0.26 >2h 791 0.33 >2h 734 0.39 >2h 732

25 0.19 >2h 708 1.72 >2h 639 1.04 >2h 677 1.36 >2h 669 1.66 >2h 659

Armadillo, 345 944 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.32 0.30 33 4.95 16.66 148 3.59 0.83 58 4.53 1.48 67 5.17 2.44 76

15 0.47 0.29 33 7.44 14.76 140 5.27 0.84 57 6.66 1.33 65 7.04 2.06 73

25 0.81 0.31 33 12.72 13.74 128 8.65 0.76 56 11.10 1.44 63 11.92 1.93 70

Sibenik Cathedral, 80 479 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.08 2.03 30 1.35 77.30 122 0.85 4.41 68 1.13 6.82 71 1.29 11.93 73

15 0.12 1.87 29 2.41 76.11 114 1.33 5.39 67 1.82 6.60 70 1.84 9.16 71

25 0.21 1.41 29 3.62 62.63 106 2.24 4.74 65 2.87 5.52 67 3.36 9.51 68

Park, 29 172 triangles

AABB Cylinder Hybrid (5) Hybrid (10) Hybrid (15)
r build RT SA build RT SA build RT SA build RT SA build RT SA

10 0.03 0.99 22 0.48 80.51 72 0.30 2.77 38 0.39 2.99 43 0.44 6.79 46

15 0.05 1.06 21 0.80 77.32 68 0.48 2.79 37 0.66 4.27 42 0.80 6.43 44

25 0.07 1.01 21 1.29 71.29 67 0.75 2.80 37 1.03 4.02 41 1.22 5.51 45

Table 7.2: Displaying the build and render times along with the relative surface
area of hierarchy alternatives for different radii. Surface areas (SA) are shown
relative to the surface are of the scene’s AABB. For some of the scenes, certain
radii were not considered due to their tendency to produce extremely long builds
and renders, while not showing notable improvement. Each measurement had a
time limit of 2 hours - some configurations were unable to produce a hierarchy in
that time, others only failed to finish the rendering process. The lowest surface
area for each radius (each row) is emphasized in bold. Measured times are in
minutes and every BVH contains one primitive per leaf.
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7. Results .......................................

(a) : Hairball detail (b) : Park

(c) : Hairball detail with AABBs (d) : Park with AABBs

(e) : Hairball detail with cylinders (f) : Park with cylinders

Figure 7.5: Illustrating the differences in bounding volume tightness for a
more suitable and an unsuitable scene. Each triangle is bounded with a single
bounding volume. The Hairball fraction (left) wrapped with AABBs shows
volumes enclosing a large amount of extra space, while the cylinder bounding
volumes are inconspicuous. However, the Park scene (right) demonstrates the
exact opposite. AABBs seem to wrap primitives relatively tightly, while cylinders
inflate the initial surface areas.

46



........................................ 7. Results

Figure 7.6: Rendered image of the 10% Hairball scene (left) and Bust scene
(right)

(a) : AABB r = 10
avg. # steps = 60.13
avg. # intersections = 9.26

(b) : Hybrid r = 10, i = 5
avg. # steps = 64.14
avg. # intersections = 3.56

(c) : AABB r = 25
avg. # steps = 436.47
avg. # intersections = 307.59

(d) : Hybrid r = 25, i = 5
avg. # steps = 425.39
avg. # intersections = 16.20

Figure 7.7: Comparing the rendering statistics of the AABB (left) and hybrid
(it. 5) hierarchies for the Hairball 10% and the Bust models. The sum of
traversal steps and intersection tests are mapped to colors for each pixel. For
the Hairball, red corresponds to ∼ 4000 steps and intersection tests combined,
with the minimum (dark blue) being ∼ 20. For the Bust, red corresponds to
∼ 12800, while the dark blue corresponds to ∼ 40.
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Chapter 8

Conclusion

The goal of this project was to improve the qualities of bounding volume
hierarchies for oblong objects. Various bounding volume types were discussed,
with cylinders and truncated cones selected for further examination. It has
been shown that cylinders are superior to truncated cones in many aspects.
Cylinder-shaped bounding volumes were then selected to be incorporated
into the locally-ordered clustering algorithm of Bittner and Meister [2].

The implementation is a proof of concept lacking optimization. However,
the presented results support the idea of non-standard bounding volumes
being beneficial under certain circumstances. The proposed algorithm is
able to construct cylinder-shaped bounding volumes for scene primitives and
for bounding volumes of the same type. For volumes similar in size and
orientation, the resulting bounding cylinders generally have a lower surface
area than the compared axis-aligned bounding boxes (AABBs). The results
confirm the importance of the orientation and size similarity of bounded
objects. After exploring the cylinder hierarchy, the idea of a hybrid hierarchy
was introduced with minor success. The experiments show that combining the
powerful surface area reduction of cylinders in the lowest levels of a hierarchy
with the simplicity of AABBs results in notable surface area reduction. The
modified algorithm closely follows the original clustering implementation [17],
providing alternatives for the common BVH. The alternative hierarchies show
potential to significantly decrease the BVH surface area for scenes comprising
oblong objects.

Generally, cylinder hierarchies perform the worst among all discussed
variants, producing extremely long render times. Because the introduced
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8. Conclusion......................................
bounding volume is more complicated than an axis-aligned bounding box,
improving the build times is infeasible. The alternative hierarchy proved
to be unsuitable for most scene types. However, the Bust scene delivered
promising results, with remarkably low surface areas and the hybrid hierarchies
decreasing render times in exchange for highly increased build times.

This thesis has shown that using cylinders as bounding volumes could be
a viable solution for scenes containing hair and fur. However, it would be
necessary to fully optimize the bounding volume computation, the clustering
and the ray traversal. Ideally, a parallel GPU version would be fast enough
for practical use.
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Appendix A

Diagrams
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Figure A.1: Cumulative cluster surface areas of all three types of BVHs at
selected radii. The hybrid version displays slower growth than the cylinders, yet
faster than the AABB hierarchy. Scene: Hairball 0.1%.
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Figure A.2: Comparing the BVH surface area on each level of the cylinder
hierarchy with the AABB version. Scene: Hairball 0.1%.
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Figure A.3: BVH surface area by levels in hybrid hierarchies, type transition at
iteration 5. Scene: Hairball 0.1%.

52



.......................................A. Diagrams

2 4 6 8 10 12 14 16 18 20

0

50

100

150

200

250

Level

S
u
rf
ac
e
ar
ea

Hybrid BVH surface area at each level, i=10

Box r=15
Hybrid r=10
Hybrid r=15
Hybrid r=25
Hybrid r=50
Hybrid r=100

Figure A.4: BVH surface area by levels in hybrid hierarchies, type transition at
iteration 10. Scene: Hairball 0.1%.
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Figure A.5: BVH surface area by levels in hybrid hierarchies, type transition at
iteration 15. Scene: Hairball 0.1%.
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Figure A.6: Comparing the cluster surface areas by iteration to the box hierarchy,
switch at iteration 15. Scene: Hairball 0.1%.
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Figure A.7: Cumulative BVH surface area of the hybrid hierarchy levels com-
pared to the AABB hierarchy. Scene: Hairball 0.1%.
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Figure A.8: Cluster surface areas by iteration compared to the box hierarchy,
switch at iteration 15. Scene: Hairball 0.1%.
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Figure A.9: Cumulative BVH surface area of the hybrid hierarchy levels com-
pared to the AABB tree. Scene: Hairball 0.1%.
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