
Instructions

1. Familiarise with the basics of programming of GPUs using CUDA.

2. Familiarise with the development of parallel algorithms using TNL library (www.tnl-project.org).

3. Learn and understand available algorithms and data structures (see [1] for example) for B-trees on

GPUs.

4. Implement chosen data structures in TNL with the option of run on both GPU and CPU.

5. Implement unit tests for verifying the correct functionality of chosen algorithms.

6. Measure performance speed-ups of implemented data structures compared to suitable containers

from STL library or similar data structures on datasets arising from generation of unstructured

numerical meshes.

[1] M. A. Awad, S. Ashkiani, R. Johnson, M. Farah-Colton, J. D. Owens, Engineering a high-performance

GPU B-Tree, PPoPP '19: Proceedings of the 24th Symposium on Principles and Practice of Parallel

Programming, p. 145-157, 2019.

Electronically approved by doc. Ing. Jan Janoušek, Ph.D. on 4 January 2021 in Prague.

Assignment of bachelor’s thesis

Title: Implementation of B-trees on GPU

Student: Tat Dat Duong

Supervisor: Ing. Tomáš Oberhuber, Ph.D.

Study program: Informatics

Branch / specialization: Computer Science

Department: Department of Theoretical Computer Science

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Implementation of B-trees on GPU

Tat Dat Duong

Department of Computer Science
Supervisor: Ing. Tomáš Oberhuber, Ph.D.

June 27, 2021

Acknowledgements

I want to thank my supervisor Ing. Tomáš Oberhuber, Ph.D., for his guidance,
advice, and supervision through the work done on creating this bachelor thesis.

My gratitude extends towards my family and friends, particularly Bc.
Nguyen Xuan Thang, for encouraging and helping me during my studies,
especially in these trying times.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 27, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Tat Dat Duong. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Duong, Tat Dat. Implementation of B-trees on GPU. Bachelor’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2021.

Abstrakt

B-Tree je datová struktura, která provád́ı vkládáńı, mazáńı a vyhledáváńı
kĺıč̊u a hodnot se složitost́ı O(logn). Tato práce se zabývá jejich studiem a
implementaćı na kartách GPU. Byly naimplementovány dvě varianty B-Tree:
B+Tree a B-Link-Tree, obě patřičně upravené pro paralelńı zpracováńı. Tyto
varianty jsou popsané a implementované pro grafické karty NVIDIA v jazyce
C++ s pomoćı CUDA API a TNL knihovny. V práci je uvedena analýza
existuj́ıćıch GPU i CPU řešeńı a jednotlivé úpravy a optimalizace provedené
na výsledných strukturách. Všechny implementace jsou řádně otestované,
změřené a porovnané s vybranými implementacemi dostupnými pro GPU a
CPU.

Kĺıčová slova datové struktury, B-strom, Compute Unified Device Archi-
tecture, CUDA, grafická karta, GPU, TNL, C++, výpočetńı cluster, HPC,
ř́ızeńı paralelńıho zpracováńı

vii

Abstract

B-Tree is a data structure that performs inserting, deleting, and searching
of key-value pairs in O(logn) time. This thesis is about the implementation
of a B-Tree capable of execution on GPU cards. Two variants of B-Tree
are implemented: B+Tree and B-Link-Tree, both modified to make use of
the parallel processing power. These variants are studied and implemented
for NVIDIA GPUs using the C++ programming language and CUDA API
with the help of the TNL library. This thesis contains an analysis of existing
GPU and CPU solutions and explains the changes and optimizations made
to the presented solution. All variants are thoroughly tested, measured, and
compared against chosen GPU and CPU implementations.

Keywords data structures, B-Tree, Compute Unified Device Architecture,
CUDA, graphics processing unit, GPU, TNL, C++, high-performance com-
puting, HPC, concurrency control

viii

Contents

Introduction 1
Motivation . 1
Structure of Work . 2

1 Preliminaries 3
1.1 GPU architecture . 3

1.1.1 Hardware architecture 4
1.1.2 Memory hiearchy . 5

1.2 CUDA programming model . 6
1.2.1 Thread hiearchy . 7
1.2.2 SIMT architecture . 7
1.2.3 Synchronization . 8

1.3 TNL . 8
1.3.1 Views . 8

2 State-of-the-art 11
2.1 Prior Art . 11

3 Theory 13
3.1 B-Tree . 13

3.1.1 Search . 15
3.1.2 Insertion . 16
3.1.3 Deletion . 16

3.2 B+Tree . 17
3.3 Concurrency Control . 18
3.4 B-Link-Tree . 19

3.4.1 Insertion and Search . 19
3.4.2 Proof of correctness . 20

4 Realisation 25

ix

4.1 Warp Cooperative Work Sharing strategy 25
4.2 Warp-based operations . 27
4.3 Proactive Splitting . 28
4.4 Latching and Concurrency Control 29
4.5 Bulk Insert . 29
4.6 Allocation . 30
4.7 Node structure . 31

5 Testing 33
5.1 Environment . 33
5.2 Testing methodology . 33
5.3 Benchmarking methodology . 35

5.3.1 Datasets used in benchmarking 36
5.3.2 Chosen implementations for comparison 36

5.4 Results . 37
5.4.1 Query performance . 37
5.4.2 Insertion performance 39

Conclusion 43
Goals and results . 43
Future work . 44

Bibliography 45

A Acronyms 49

B Contents of enclosed SD card 51

x

List of Figures

1.1 Comparison between a typical CPU vs GPU architecture 4
1.2 Architecture of an Ampere GA10x Streaming Multiprocessor . . . 5

3.1 B-Tree with Order = 3. 14
3.2 B+Tree with Order = 3. 18
3.3 B-Link-Tree with Order = 3. 19
3.4 Possible states of a B-Link-Tree split operation. 20

5.1 Web based visual debugger displaying the internal state of a tree. . 34
5.2 Search comparison with gaussian distribution as input. 39
5.3 Insertion comparison with gaussian distribution as input. 40
5.4 Insertion comparison with increasing sequence as input. 41

xi

List of Tables

5.1 Hardware and software specification of the gp1 system. 33
5.2 Search speed-up compared to std::map, shuffled sequence. 38
5.3 Search speed-up compared to std::map, ascending sequence. . . . 38
5.4 Insertion speed-up compared to std::map, shuffled sequence. . . . 40

xiii

Introduction

Motivation

B-Tree is a well-known data structure often used as an index, a critical prim-
itive used in various applications, such as data mining, decision support sys-
tems, and Online analytical processing (OLAP) [13, 12]. Widely found in
database systems and file systems [23, 25], B-Tree became the data struc-
ture of choice used when dealing with a large amount of arbitrary data of an
unknown domain.

Lookup, insertion, and deletion in the tree are in O(logn), by keeping
the tree height as small as possible regardless of arbitrary updates, thanks
to the self-balancing nature of this data structure. Naively, operating on
multiple items will thus perform in O(n logn). This can be improved upon
by using concurrent processing and computation on such data structure when
processing multiple items.

One such hardware utilizing many processing cores to process tasks faster
is the Graphical Processing Unit (GPU). With the advent of programmable
shaders and support for floating-point operations, General-purpose computing
on GPU became suitable for high-performance computing. Thanks to their
superior computing performance to price ratio, GPUs became an essential
staple for enabling high-performance computing for the masses.

Although GPUs have carved their niche and adopted some computational
tasks, such as deep learning or cryptocurrency mining, an efficient GPU im-
plementation of a B-Tree is challenging. Much attention needs to be paid
when implementing concurrency control to allow high-throughput GPU per-
formance without compromising correctness.

Nevertheless, a GPU-friendly implementation of such data structure can
utilize the immense parallel processing power to accelerate querying and up-
dating of multiple items at once. Such optimizations can unlock significant
performance gains, benefiting all applications which use B-Trees.

1

Introduction

Structure of Work

The main goal of this thesis is to introduce an implementation of a B-Tree
built on top of the Template Numerical Library (TNL). This implementation
will have the ability to change the execution environment to either run on the
GPU or the CPU. The solution will be implemented in C++ and will support
CUDA, as these are the prerequisites of the used TNL library.

First, in chapter 1, hardware structure and software architecture will be
introduced, with a general primer of both the TNL library and the B-Tree
data structure. Previous implementations of such data structure and other
state-of-the-art CPU solutions are discussed in chapter 2.

Next, in chapter 3, different variants and modifications of the data struc-
ture, such as B+Tree or B-Link-Tree, are explained and compared against the
original B-Tree. The realization section presented in chapter 4 will explain the
design decision choices and various implementation and optimization details
made for both of the GPU B-Tree variants shown in this thesis.

Last but not least, implementation correctness, testing methodology, and
the experimental benchmark results between the developed solution and other
chosen CPU and GPU implementations are presented in chapter 5.

2

Chapter 1
Preliminaries

1.1 GPU architecture

Graphical Processing Unit (GPU) is a type of coprocessor designed to work
alongside the CPU, offloading intensive tasks to the coprocessor, accelerating
the overall system performance.

Generally speaking, CPUs are low latency, low throughput processors,
whereas GPUs are high latency, high throughput processors. A traditional
CPU is optimized to execute instructions as fast as possible by reducing la-
tency — the duration from the start of the instruction until the availability
of results. To achieve this, CPUs have to implement complex strategies such
as speculative branch execution, out-of-order execution, and large memory
caches. This architecture works well on workflows, which are sequential by
nature, where the execution speed of a single thread has a more noticeable
impact on overall execution time.

In contrast, a GPU focuses on hiding the latency instead of reducing it by
focusing more on throughput — the amount of work completed per unit of time.
The workflows that GPUs are most suited for are abundant in parallelism, for
example, image processing or matrix multiplication. This assumption drives
the design of a GPU to sacrifice the execution speed of a single thread in favor
of the sheer amount of processing cores to increase throughput. The difference
in design philosophies can be seen in fig. 1.1.

Thus, even if the CPU excels at sequential tasks, the GPU can outperform
the CPU in highly parallel computations, as the sheer number of cores GPU
uses compared to CPU execution amortizes the cost of using a slower one [18].

As the staggering performance of a GPU has not gone unnoticed by the sci-
entific community, work has been done to allow the GPU to process workloads
unrelated to graphics, e.g., linear solvers [20], or neural networks [19].

3

1. Preliminaries

Figure 1.1: Comparison between a typical CPU vs GPU architecture, the
main difference being the increased amount of computing cores [18].

1.1.1 Hardware architecture

As the implementation of both B+Tree and B-Link-Tree is based on CUDA
(see section 1.2), we’re focusing on NVIDIA GPU and its architecture in this
work. Since the introduction of unified shared architecture with GeForce 8
Series in 2006 [29], a single NVIDIA GPU is made of an array of streaming
multiprocessors (SM). The power of a single GPU card depends on the number
of these streaming multiprocessors, which may vary between models. Each SM
in general have these components:

• Streaming processors1, each containing an arithmetic logic unit (ALU)
for integer operations and floating-point unit (FPU) for floating-point
operations.

• Register file, where threads store their local variables. This register file is
shared between all threads running in the SM. The number of available
registers per thread is defined by architecture.

• Instruction cache, used to accelerate instruction fetching.

• Shared memory used to share data between threads in the same thread
block (see section 1.1.2).

• L1 / Texture cache, which is used to store local memory of the thread
or to serve as a texture cache for image data.

Newer architectures include more specialized cores. For example, tensor
cores in every SP, capable of executing 4x4 matrix multiplication instructions,

1Also known as a CUDA core

4

1.1. GPU architecture

or RT cores in every SM, accelerating raytracing, found in recent Ampere
architecture (see fig. 1.2).

Figure 1.2: Architecture of an Ampere GA10x Streaming Multiprocessor with
RT cores for accelerated raytracing [21].

1.1.2 Memory hiearchy

The GPU has its own memory with its memory hierarchy separate from the
rest of the system. Every thread has access to its registry and local memory.
Local memory is used to store variables for which we do not have space in
registers (registry spilling), or we cannot determine if we do have space (like
arrays). The registry and the local memory are not directly accessible to the
programmer and are managed by the compiler instead.

5

1. Preliminaries

Each thread also has access to shared memory, which is shared with all
threads executing on the same thread block (see section 1.2). As the memory
resides on-chip itself, it has higher throughput and lower latency compared
to the global memory. It can be considered a user-managed cache, as the
application itself takes care of allocation and access to the cache.

Finally, all threads have access to the global memory, available to all
threads regardless of the residing multiprocessor. The global memory is the
largest memory available on the GPU. But it is also the slowest, as it is stored
on a separate chip. Read and writes are done in 32-, 64-, or 128-byte memory
transactions [18].

Both local and global memory can be routed through L2 and L1 cache. L1
and L2 cache work in a similar manner as in the CPU to speed up memory
access. L1 cache level has lower latency than the L2 cache level when accessing,
and both of these caches are faster than accessing the memory directly. Thus,
to increase memory throughput, it is desirable to store and read data in faster
caches than from memory itself, keeping both cache utilization and hit rate
high.

This can be achieved by organizing the memory allocation and access in
a way to honor both the temporal locality, ensuring the duration between the
reuse of specific data is as short as possible, and spatial locality, keeping our
data access close to each other.

1.2 CUDA programming model

To simplify development on general-purpose GPUs, NVIDIA introduced the
Compute Unified Device Architecture (CUDA) programming model in Novem-
ber 2006. As mentioned previously, GPUs are suited for parallel workloads op-
timizing in total throughput, sacrificing the performance of serial operations.
However, not all programs are fully parallel in nature, and some problems
are difficult, if not impossible, to formulate in a manner that would benefit
from the use of a GPU. Thus, a sane idea would be to utilize both the CPU
and the GPU, using GPU in workloads, where parallelism yields significant
performance uplift. With CUDA, programmers can write applications that
run on the CPU and accelerate parallel workloads with the GPU while using
familiar C/C++ programming language for both processors.

In CUDA, the CPU and GPU and their memory are referred to as host
and device respectively. A host manages the memory of both the device and
the host itself, and it launches user-defined functions, called kernels, which
the device executes. A program thus usually executes serial code on the host
and parallel code on the device.

6

1.2. CUDA programming model

1.2.1 Thread hiearchy

Multiple parallel threads execute these kernels on the GPU. These threads are
grouped by the programmer or compiler into thread blocks and grids, which
the GPU uses to schedule work. A GPU scheduler maps these abstractions
to concrete hardware units: A grid is mapped to a GPU, a thread block is
mapped to a streaming multiprocessor (SM), and a thread is mapped to a
streaming processor (SP / CUDA core).

From the implementation side, to launch a kernel function, a program-
mer must specify the number of threads in a single thread block and the
number of thread blocks in a grid. CUDA extends the C++ language with
<<<numBlocks, blockSize>>> syntax for that purpose.

Every thread in a thread block has an identifier, which is exposed inside
the thread as a constant variable: threadIdx. Similarly, each thread block
can be identified with the block index within a grid, blockIdx. With the
dimensions of a block known blockDim, the global index of a thread can be
computed as such:

x = blockIdx.x ∗ blockDim.x+ threadIdx.x

This global index is often used to determine what data is being accessed
by a single thread. A programmer may choose to address the threads in a
two-, or three-dimensional way instead of a one-dimensional way for the sake
of convenience, especially when dealing with matrices or volumes.

1.2.2 SIMT architecture

Only a few threads from a thread block are executed at once by a streaming
multiprocessor. Before execution, the SM schedules threads in a group of 32,
called a warp. A warp scheduler then picks a warp and executes a single
instruction with different data on all threads in a warp. This architecture is
called Single Instruction, Multiple Threads (SIMT).

All threads in a warp execute the same line of code at once. This rule
at face value permits any thread divergence, most notably disallowing the us-
age of conditionals such as if-else statements. Threads cannot run different
branches in parallel, as all threads must run the same instruction simulta-
neously. As a workaround, divergent branches are executed in series by all
threads. Threads not participating in the active execution branch are de-
activated while still consuming resources. The cost of execution effectively
becomes a sum of the cost of all branches. Generally, warps are at their peak
efficiency when all threads run the same code without any branching.

7

1. Preliminaries

1.2.3 Synchronization

At some point, synchronization needs to happen, either for threads to commu-
nicate and share data with each other or to ensure all threads have completed
their work at a certain point.

Kernel launches from the host are asynchronous by nature, and the host
code will not wait for results unless cudaDeviceSynchronize() is invoked.
This instruction will block the host until the device has completed all preceding
requested tasks [18].

Threads can also be synchronized, as threads do not execute at the same
time and thus do not complete their task simultaneously. A synchronization
barrier __syncthreads() is used to synchronize the threads in a thread block,
which all threads must reach to resume execution. This barrier guarantees
that all code preceding the instruction is executed before the code after the
instruction.

Threads inside a thread block may use shared memory or global memory
to cooperate and share data. To ensure all writes to the memory are visible
to all other threads, __threadfence() can be used to stall the threads until
writes to the memory are completed.

Warp-level primitives enable fine-tuned collective operations within warps.
Parallel reductions and synchronized data exchange can be achieved with
__shfl_down() and __shfl_sync() respectively. __syncwarp() can be uti-
lized to create a synchronization barrier for all threads in a warp, similar to
the function __syncthreads() for all threads in a thread block.

At last, atomic functions (such as atomicAdd() or atomicCAS()) can be
used to read from or write to shared or global memory while ensuring no
interference from other threads until the operation is complete.

1.3 TNL

Template Numerical Library (TNL) [24] is a C++ library offering robust tools
for high-performance computing and computational science. The primary goal
of this project is to provide a familiar API akin to STL while offering significant
performance uplift by exploiting the parallel nature of GPUs.

The library makes extensive use of template meta-programming to create
a unified interface for both CPU and GPU, which stays the same regardless
of the selected execution target device. This interface allows the programmer
to enable or disable invocation on GPU without significant rewrites. This
programming pattern heavily influenced the design of the implementation.

1.3.1 Views

As mentioned in section 1.1.2, GPU have their own separate memory and
address space, which the programmer must keep in mind while developing

8

1.3. TNL

GPU-accelerated applications. What is allocated on CPUs is directly not
accessible from GPUs and vice-versa. CUDA only offers low-level primitives
for managing memory on the GPU, similar to languages like C. TNL helps the
programmer with memory management by including helper classes aiming to
alleviate the work needed to address memories between the devices.

TNL::Container::Array is a template container class for one-dimensional
dynamic array. By specifying a type in a template, this class allows the
programmer to choose where the data will reside. If the template argument is
set to TNL::Devices::Host, the container behaves similar to std::vector,
storing the data in the main memory. However, when the device is set to
TNL::Devices::Cuda, data is stored in the GPU, and all of the operations
need to be invoked with parallelism in mind to utilize that fact.

Data can be directly accessed only from a device where it was previously
allocated. To read or write from a different device, copying of data must occur
between memories. These cross-device operations are considerably expensive
and should thus be used sparingly.

One common problem when developing GPU-accelerated programs with
TNL is the ability to supply an instance of Array containers. Object instances
cannot be passed to the kernel by reference, and every object must be deep-
copied. This implementation detail brings significant performance overhead
but also raises the question: How to mirror the changes back to the CPU
copy of the object? A companion class is introduced to solve this question:
TNL::Container::ArrayView. This class implements the proxy design pat-
tern, substituting TNL::Container::Array, and allows the user to read and
write into the array but permits the user from performing an operation, which
may change memory allocation of the array, like resizing.

9

Chapter 2
State-of-the-art

2.1 Prior Art

Significant work has been done in the past to optimize B-Tree indexing ca-
pabilities. This chapter focuses on past work utilizing parallel computing to
improve B-Tree performance.

Bw-Tree introduced by Levandoski et al. [17] from Microsoft Research is
a B-Tree structure optimized for in-memory data processing and high con-
currency access without using locks. To avoid locking, an indirection layer
is introduced by maintaining a chain of records for each node. These records
allow atomic updates of the memory location of a node using a single compare-
and-swap instruction.

Wang et al. [32] expanded the work done in [17] by describing database-
specific implementation details regarding iterators and enabling non-unique
key support.

Sewall et al. [27] introduced novel modifications to B+Tree operations in
the proposed PALM technique. This technique uses the Bulk Synchronous
Parallel model, where queries are grouped, and the work is distributed among
threads. This work also optimizes synchronization by avoiding barriers in
favor of communicating adjacent threads in a point-to-point manner. Latches
are avoided under condition that all search queries have been completed before
insertions, and a node may be written by exactly one thread.

Previous projects related to GPU implementation of B-Trees focused on
query throughput. Fix et al. [9] measured substantial performance speedup
compared to sequential CPU execution by running independent queries in each
thread block. Until recently, the general approach for updating is either to
perform such updates on the CPU or to rebuild the structure from scratch,
which is the case of this implementation.

Kim et al. proposed FAST [15], a configurable high-performance tree
optimized for SIMD and multi-core CPU and GPU systems. The structure
can be configured towards the target hardware architecture by specifying the

11

2. State-of-the-art

size of a cache line, SIMD register width, and memory page size. Similar to
Fix et al., only bulk creation and querying are supported. Updates are done
by rebuilding the tree.

Kaczmarski [14] utilized the relationship between a sorted list and demon-
strated improved insertion time by presorting keys and proposing a novel
bottom-up approach when constructing a tree. The work also explored sev-
eral methods of key searching within a tree node.

Shahvarani et al. [28] created a B+Tree variant utilizing the heterogeneous
nature of the CPU and the GPU during a search operation. This approach
has the benefit of removing the memory capacity restrictions, as the key-value
pairs are residing on the host, whereas internal nodes are present on the device.

In work done by Yan et al. [34], instead of having the keys and children
of a node in one instance, they are stored into separate arrays. Keys are
stored in a one-dimensional array, and children are stored in a prefix-sum
array. Storing keys and children into separate array improve memory locality
and thus decreasing memory latency.

Awad et al. [2] proposed the most comprehensive GPU implementation
of B-Tree to date. Their implementation supports concurrent queries (single,
range, successor), insertion, and deletion. To achieve state-of-art performance,
B-Link-Tree has been coupled with proactive splitting and Warp Cooperative
Work Sharing as proposed by Ashkiani et al. [1].

12

Chapter 3
Theory

3.1 B-Tree

B-Tree is a balanced search tree used for storing large blocks of data. It cap-
tures and maintains the sort order of data and supports searching, sequential
retrieval, insertion, and deletion in logarithmic time.

Since their invention 50 years ago [3], B-Trees have been already considered
ubiquitous less than ten years later [6]. They can be found in various forms in
databases (e.g., PostgreSQL [23]) and file systems (e.g., BTRFS [25]), where
a performant self-balancing external index for large blocks of data is required.
They can also be found in more applications such as data mining, decision
support systems, and Online analytical processing (OLAP) [13, 12].

However, it raises the question of why B-Trees are used for on-disk data
and binary search trees are used for in-memory data. The main reason behind
this is the high overhead of data access in block-access storage, where byte
access is not well supported. A typical example is disk storage, where a disk
is divided into blocks. B-Tree exploits this behavior by having its nodes be as
large as a whole block.

B-Trees are exceptionally useful for secondary disk-based storage, but it
still yields significant improvements even when storing data in memory; as
with CPU caches and memory line caches, the memory can be treated as a
block-access device.

The main benefit of B-Trees is their shallow height even with many keys
inserted; thus, the number of disk accesses to traverse the tree is also low.

13

3. Theory

24 40

16 26 28 48

12 20 22 25 27 36 37 44 45 52

Figure 3.1: B-Tree with Order = 3. Blue lines indicate the presence of a
pointer to a value.

Definition 1. B-Tree of an order m is a rooted tree with following properties:

1. Every node x has following attributes:

a) x.size, the number of keys in a node,
b) x.leaf , a boolean value indicating whether the node is a leaf node

or not,
c) an list of x.size keys x.key1, x.key2, . . . , x.keyx.size sorted in ascend-

ing order (x.key1 ≤ x.key2 ≤ · · · ≤ x.keyx.size).

2. Every internal node x has x.size+ 1 pointers as its children
(x.child1, x.child2, . . . , x.childx.size+1).

3. All leaf nodes appear at the same depth, which is the height of tree h.

4. Nodes have upper and lower bounds, which limit the number of keys
and children. Assuming m is the order of a B-Tree:

a) Every node other than the root has at least bm/2c children, thus
every node other than root has at least bm/2c − 1 keys.

b) The root node has at least two children, except if it is a leaf node.
c) Every node may contain at most m children, thus may contain at

most m− 1 keys.

An example B-Tree with Order = 3 can be seen in fig. 3.1. In the case of
B-Tree, each key may include a pointer to a specific value, highlighted as blue
lines, which is useful when implementing a map-like container.

As a note, B-Trees are a specialization of (a, b)-Trees, where a B-Tree is
either an (a, 2a)-tree or (a, 2a+ 1)-tree depending on the oddness / evenness
of a. This is also why 2-4 trees (also known as “2-3-4-trees” which in turn are
similar to RB-Trees) are B-Trees with an order of 3.

Lemma 1. B-Tree T of order m with n ≥ 1 keys has height h = Θ(logn).

14

3.1. B-Tree

Proof. Assume t = bm/2c as the minimum number of children in a node. The
root of T has at least one key; all other nodes contain at least t− 1 keys.

Thus, T has at level 1 at least 2 nodes, at level 2 at least 2t nodes, and so
forth. The last level h will have at least 2th−1 nodes.

Define nmin as the minimum amount of keys in T of height h as the sum
of key count per depth.

nmin = 1 + (t− 1) · (2 + 2t+ · · ·+ 2th−1)

= 1 + 2 · (t− 1) ·
h∑

i=1
ti−1 = 1 + 2 · (t− 1) ·

h−1∑
i=0

ti

= 1 + 2 · (t− 1) · (t
h − 1
t− 1) = 2th − 1

(3.1)

The maximum amount of keys at height h is defined similarily:

nmax = (m− 1) ·
h−1∑
i=0

mi

= (m− 1) · (m
h − 1
m− 1) = mh − 1

(3.2)

As nmin ≤ n ≤ nmax, taking logarithm will prove the theorem.

As search, insertion, and deletion on a single node takes Θ(1), time com-
plexity of every operation is Θ(logn). The space complexity for B-Tree is
Θ(n).

3.1.1 Search

The search algorithm for B-Trees is trivial but crucial, similar to the search
algorithm for binary search trees. Keys are compared against a needle key in
every node, starting from the root node. The goal is to find the position of
the first key, which is greater than or equal to the needle key, as seen in lines
3–4 in the sample algorithm 3.1.1.

If the key at that position does match the needle key, the key has been
found, and the function will return the node containing the needle key and
the position of said key. Otherwise, the search will continue from the child
node at the said position. The search ends if it ends up in a leaf node, which
does not have any additional children.

Line 3–4 in the sample algorithm 3.1.1 can be replaced with a binary search
or parallelized search in CUDA, which is more suited towards SIMD systems.
More about that topic can be found in chapter 4.

15

3. Theory

Algorithm 3.1.1: B-Tree Search
1 Function Search(node, needle):
2 i← 0
3 while i < node.size && needle > node.keyi do
4 i← i+ 1
5 if node.keyi = needle then
6 return (node, i)
7 if node.leaf = true then
8 return null
9 return Search(node.childi, needle)

3.1.2 Insertion

First, the tree is traversed for the existence of the needle key. The algorithm
will end up in a leaf node if the key is not found. In that case, a key needs to
be inserted into the node at the correct position to preserve the key ordering.

If a node after insertion has subsequently become full after insertion, a
split operation must occur to preserve the rules of the B-Tree definition 1.
The node is considered full if the node contains exactly m − 1 keys. The
median key is chosen as the separator, and the node is split into two smaller
nodes based on that separator. The separator is inserted into the parent of
the split node, which might trigger the split operation again.

When the root node needs to be split, a new node with the separator as
its only key and two subtrees as its children, which the definition 1 permits
(only internal nodes must contain at least bm/2c keys).

3.1.3 Deletion

Deletion in B-Trees is analogous to insertion, starting by searching the tree
for the desired needle key.

If the searched needle key is found on a leaf node, it can be trivially
deleted from the node. If the node has subsequently become underfull by not
containing at least dm/2e keys, the tree must be rebalanced.

Deleting a key from an internal node is more complicated, as child nodes
are bound to keys, and a key deletion will result in the loss of a child. Thus,
instead of deleting, the key is swapped with a successor (or a predecessor) key.
The key can then be deleted as it is now located in a leaf node after the swap.
Similar rebalancing must occur if the node has become underfull.

Rebalancing of node x is performed when x.size = bm/2c − 1. Assume,
without loss of generality, a sibling node l on the left of x exists, and i is the
key, which binds the node n to its parent. If a left sibling does not exist or

16

3.2. B+Tree

does not have any spare keys to share, a right sibling is used instead, and the
rebalancing operation is mirrored.

If the sibling node l has at least bm/2c + 1 keys, the borrowing operation
can be performed; the key i is prepended to the node x and the last key of
l detaches from l and replaces the key i. Last child of l is also detached and
prepended to x.

However, if neither the sibling nodes have enough keys, a merge operation
occurs. Both the x node and its sibling l are deleted, and a new node is created
instead. This new node contains keys and children of both x and l, with key
i in the middle. Deletion is, thus, propagated upwards. In the event of a root
with no keys and a single child, the single child becomes the new root.

Many implementations forgo rebalancing the tree in favor of replacing the
key with a tombstone [12]. The tombstone is useful even when inserting, as a
key could be directly inserted in the place of a tombstone if applicable, thus
alleviating the cost of inserting a new key into a sorted list. Rebalancing the
tree can be postponed and executed later.

3.2 B+Tree

Definition 2. B+Tree is a B-Tree where keys are stored exclusively in leaf
nodes.

Separators found in internal nodes can be freely chosen and may not match
the actual keys in leaf nodes, as long as these separators split the tree into sub-
trees and preserve the ordering of the keys. Value pointers are also exclusively
stored in leaf nodes, highlighted as blue lines in fig. 3.2.

As the B+Tree does not reuse the keys and may duplicate the keys found
in the leaf nodes to use as separators in internal nodes, they do bear increased
storage requirements. Compressing techniques on keys can be used to mitigate
the increased space complexity in exchange for a slight execution complexity
increase due to compression itself.

In most implementations, leaf nodes may include an additional pointer to
a right sibling node, as seen in fig. 3.2 highlighted as red arrows, enabling
straightforward sequential querying, which is helpful for range querying.

All operations on the B+Tree are simplified thanks to storing the keys
exclusively in leaf nodes, as the end state when traversing a tree is always a
leaf node.

Tree rebalancing operations in B+Tree, such as splitting full nodes and
merging free nodes, are the same as in B-Tree, with the only difference is the
removal of the median key in leaf nodes. The median key is only propagated
to the parent node after a split; the key itself is preserved in the leaf node,
ensuring the rules of B+Tree are not broken.

17

3. Theory

18 23

5 20 21 43

1 5 12 18 20 21 22 23 43 45

Figure 3.2: B+Tree with Order = 3. Blue lines indicate a pointer to a value,
red arrows indicate an optional pointer to a sibling node.

3.3 Concurrency Control

The primary goal of concurrency control is to ensure the correctness of results
after concurrent operations are performed on the structure. Concurrency con-
trol can mean two things, either the correctness and serializability of logical
contents or serializability among threads modifying data structure in memory.

In databases, the primary concern is to protect database contents, re-
gardless of the internal representation of said contents. Locks are utilized to
separate concurrent transactions. These locks have sophisticated acquiring
and releasing mechanisms, usually handled by a lock manager with the sup-
port of prioritization and queuing. As these locks ensure the serializability
of database contents but not their representation, a B-Tree does not require
locks of all non-leaf pages.

In this instance, it must be guaranteed that the operations modifying the
data structure in memory are serializable and do not create an invalid or in-
complete state of the entire tree, not just its contents. Latches are commonly
used for this case, resembling critical sections implemented by mutexes and
semaphores. They have the benefit of lower overhead, as these can be im-
plemented with a handful of instructions in comparison to full-fledged lock
managers.

More specifically, splitting a full node is a significant challenge for concur-
rent updates of B-Trees. As one thread is splitting a full B-Tree node, all the
other threads must not observe any intermediate or incomplete state. Two
latches on different levels must be acquired to atomically serialize changes to
the split node, the new sibling of the split node, and the parent of a said
split node. Even so, a splitting might propagate towards the root, as a split
operation might cause the parent node to subsequently become full, further
bottlenecking the concurrency on the entire tree.

18

3.4. B-Link-Tree

3.4 B-Link-Tree

Previous approaches include locking a subtree of highest affected node [26],
which, albeit straightforward, reduced concurrency. To alleviate the bot-
tleneck without risking inconsistency, B-Link-Tree relaxes the definition of
B+Trees. As explained by Graefe [12]:

Definition 3. B-Link-Tree is a B+Tree with following properties:

1. Each node x has additional attributes:

• x.sibling, a pointer to a right sibling node at the same level,
• x.highkey, the upper bound of all keys found in the subtree rooted

by x (every key found in x is less then x.highkey).

2. Does not require locks nor latches for reading.

18 23

5 20 21 43

1 5 12 18 20 21 22 23 43 45

Figure 3.3: B-Link-Tree with Order = 3. Blue lines indicate a pointer to a
value, red arrows indicate an optional pointer to a sibling node.

An example tree can be seen in fig. 3.3, where it is shown that the idea of
a sibling pointer from B+Tree is extended towards all levels of the tree, not
just the leaf nodes.

3.4.1 Insertion and Search

Splitting during node insertion is divided into two independent steps: splitting
a node and inserting the split node with its new separator key to the parent
node.

Assuming node x is a full node, which needs to be split, shown in step (a)
of fig. 3.4. When splitting the node x, a new right sibling node x′′ is created,
as seen in step (b). The node x′′ inherits the high key and the sibling pointer
from the split node x, whereas the x node is updated (marked as x′) with a
new x.highkey = x′′.key0 and sibling pointer. Thus, an internal node does
exist without a parent in between the operations.

19

3. Theory

p

(a)

x s

p

(b)

x′

x′′

s

p

(c)

x′ x′′ s

Figure 3.4: Possible states of a B-Link-Tree split operation.

As the final step of node splitting, both the separator key and the pointer
to the newly split node y are inserted in the parent node p, seen in step (c).
Similar to the insertion in B-Tree, a split operation might trigger additional
splitting in higher levels.

Tree traversal is modified to honor x.highkey by returning the node at
x.sibling when the target key k is larger or equal to x.highkey. With these
additional attributes, it is possible to traverse the entire tree, even though
some nodes (such as x′′ in step (b) of fig. 3.4) are yet to be inserted into the
parent node.

3.4.2 Proof of correctness

The following theorems need to be proven to prove the correctness of each
operation performed on the B-Link-Tree [16]:

• Deadlock freedom — threads performing operations on the B-Link-Tree
cannot produce a deadlock.

• Correct tree modifications — the tree must appear as a valid tree for all
nodes at any time.

• Correct interactions — concurrent operations do not interfere with one
another.

Theorem 1. Deadlock freedom: threads performing operations on the B-
Link-Tree cannot produce a deadlock.

Proof. By imposing a total ordering of nodes, cycles are eliminated from the
system. Thus the system is deadlock-free.

To prove a total ordering of nodes, the following ordering a < b, where a
and b are nodes of the tree, is considered:

1. If a and b are not on the same distance from the root node, then a < b
if and only if the path from the root node to node a is shorter than the
path from the root node to node b (bottom-up condition),

20

3.4. B-Link-Tree

2. if a and b are on the same level, then a < b if and only if node b
is reachable from node a by following a chain of one or more sibling
pointers (left-to-right condition).

It can be shown that during insertion operation the total ordering of nodes
is preserved. If a < b at time t0 at the start of insertion, then a < b is preserved
for ∀t, t > t0, as a node x during split operation will create a node x′ and x′′,
where x′ < x′′ and:

∀y, y < x⇔ y < x′

∀y, x < y ⇔ x′′ < y

Therefore, insertion will not break the total ordering of nodes.
Latches for the nodes are acquired by following the ordering; thus, once a

latch is acquired for a node, no other latch will be acquired on any node below
it, nor on any node on the same level.

Theorem 2. Correct tree modifications: the tree must appear as a valid tree
for all nodes at any time.

Proof. The tree must appear as a valid tree for all threads at any time except
for the modifying thread. Assuming writing is done by invoking writeNode
function, which will write to the storage atomically.

The insertion operation, assuming performed on a node x of the tree, will
therefore write only in these circumstances:

1. writeNode(x) — if node x is not considered full and is safe for rewriting,

2. writeNode(x′′) — writing a newly allocated node x′, which was created
in the process of splitting node x,

3. writeNode(x′) — rewriting the node x as part of the splitting process,
x.sibling is set to point at node x′.

Even though writeNode(x′′) and subsequent writeNode(x′) operation are
done in two writes, it can be shown, that these operations are equivalent to a
single change in tree structure:

• When writeNode(x′′) is executed, no other node has a pointer at x′′.
Therefore this operation will not modify the tree structure,

• when writeNode(x′) is subsequently executed, the x′.sibling is set to
point to x′′. This operation therefore does both modify the node x and
introduce newly allocated node x′ to the tree in a single operation.

21

3. Theory

Theorem 3. Correct interactions: concurrent operations do not interfere
with one another.

Proof. Assume ti is the time when the insertion process I writes node x to
storage, and tr is the time when another operation P reads the same node x.
All of the operations are considered atomic, thus tr 6= ti.

First, the case of tr > ti is considered: an operation P is reading a node x
after the insertion is done. Any changes that the insertion process I does will
preserve the correct tree structure, as proven in theorem 2.

In the case of tr < ti, where insertion I happens after operation P does
a read, the proof is broken into three possible scenarios, which the insertion
might perform:

1. Simple insertion of a key-pointer pair into node x without splitting,

2. splitting of node x, where the inserted key is placed in the left node x′,
same as the node, which has been split (x′ = x),

3. splitting of node x, where the inserted key is placed in the right node
x′′, the newly allocated node.

In the first scenario, I performs the insertion in node x without additional
splitting if it is inserting into a leaf node (x.leaf = true), no other pointers are
inserted by the process I. The operation P behaves as if the read happened
before insertion.

If the insertion happens on an internal node (x.leaf = false), a key-pointer
pair created by splitting a lower-level node z′′ is inserted into the node x. This
scenario is the only one where a key-pointer pair could propagate upwards to
node x. The operation P will be able to utilize the link pointers z.sibling to
reach both the original node and the newly split node.

In the second and third scenarios, the process I has split the node x into
two nodes x′ and x′′. If the process happens on a leaf node, P will continue
as if no insertion has occurred. Similar to the first scenario, the only possible
case where the process I needs to split a non-leaf node is when a child node
z went through a split and a new separator key and a pointer to z′′ is being
inserted into the node x.

Both the insertion and search in the node z′′ below node x will be correct
thanks to theorem 2. It only remains to prove the correctness of split operation
on node x.

Assume z′′ is the node, which has been created by splitting a node below
x and z′ the node on the left of node z′′ (z′.sibling = z). If the search would
not follow the pointer of z, the operation P will proceed as usual because the
nodes x′ and x′′ contain the same set of pointers as node x with the addition
of the pointer to z′′. Otherwise, if the search would follow the pointer to z′′,
had the process P read the node x after the split, the operation P will proceed

22

3.4. B-Link-Tree

instead to z′ instead. The operation P is then able to reach node z′′ by using
the sibling pointer of node z′.

If the process P is another insertion process, it is either searching for the
correct node, backtracking upwards, or attempting to insert into node x. In
the case of searching, the proof is the same as if the process P was a search
operation.

In the case of backtracking, the node n might have been split multiple
times since the last read when traversing downwards in the search operation.
In this scenario, the insertion process will find the proper target node for
insertion using link pointers, as the order between nodes is preserved, and the
newly split nodes of node n will be found on the right side of node n.

Finally, the process P can attempt to insert a key (or a key-pointer pair)
into node n. In this scenario, only one process can hold a latch for the node n.
After the latch has been acquired by one of the insertion processes, the other
will attempt to read the node n afterward. As the read occurs after write,
theorem 2 proves this interaction to be correct.

23

Chapter 4
Realisation

In this chapter, implementation details and design choices made to construct
a B-Tree implementation on GPU are presented. The entire implementation
is written in CUDA C++ with the usage of TNL.

4.1 Warp Cooperative Work Sharing strategy

Warp-cooperative work-sharing strategy (WCWS) is used to improve the per-
formance of each operation by exploiting the behavior of NVIDIA GPUs and
how threads are executed in each SM. As SMs have a limited number of cores,
threads are organized into groups of 32 threads called warps (see section 1.2).

As threads can communicate with each other in a warp using warp-wide
communication primitives in CUDA, these threads can synchronize with each
other and work on a single task.

An example is shown in listing 1 with entry-point being the KernelTask
function. Each thread will read a single key based on the thread ID calculated
on line 22. A reference to toFind boolean flag is passed to WarpTask. This
flag is used in a ballot call on line 9, which returns a bitmap indicating which
thread lane in a warp has toFind variable set to true. A single lane is selected
as the main lane whose task will be processed by the entire warp. This lane
is selected by calculating the position of the least significant bit set to 1 via
the __ffs function. An elected key is shared between all warp threads from
the selected lane via a synchronization primitive shown in line 11, and the
executeOperation continues with the key. If the operation succeeds, toFind
is set to false, which will be reflected in the next ballot call. The loop will
end after all tasks assigned to the warp threads were completed.

This strategy is used in all of the B+Tree and B-Link-Tree operations,
especially during updates. Better memory coalescing and vectorized load and
store is achieved by utilizing every thread in a warp for a single task. As a
side effect, the Order of a B-Tree node must not exceed the number of thread
lanes in a warp: 32 in contemporary GPUs.

25

4. Realisation

1 template <typename KeyType>
2 __device__ static void WarpTask(
3 Node *root, KeyType key, bool &toFind
4) {
5 using cg = cooperative_groups;
6 auto threadBlock = cg::this_thread_block();
7 auto warp = cg::tiled_partition<32>(threadBlock);
8

9 uint32_t queue = 0;
10 while ((queue = warp.ballot(toFind))) {
11 uint32_t currentLane = __ffs(queue) - 1;
12 KeyType electedKey = warp.shfl(key, currentLane);
13

14 if (executeOperation(electedKey)) {
15 toFind = false;
16 }
17 }
18 };
19

20 template <typename KeyType>
21 __global__ static void KernelTask(
22 Node *root, ArrayView<KeyType, Devices::Cuda> keys
23) {
24 auto threadId = threadIdx.x + blockIdx.x * blockDim.x;
25 bool toFind = threadId < keys.getSize();
26

27 KeyType key;
28 if (toFind) {
29 key = keys.getElement(threadId);
30 }
31

32 WarpTask<KeyType>(root, key, toFind);
33 };

Listing 1: Example code used to implement the Warp Cooperative Work
Sharing strategy. KernelTask is a kernel function invoked from the CPU,
WarpTask is a function called from GPU. The executeOperation function
found in line 13 shall accept a single value for processing.

26

4.2. Warp-based operations

4.2 Warp-based operations

As discussed in section 4.1, both GPU implementations use the WCWS strat-
egy, and all threads of a warp are cooperating to process a single task. Whether
it is an insertion, removal, or query operation, thus, it does make sense to use
this implementation detail to speed up commonly used, performance-critical
computations.

One such computation is finding the correct key index in a node, whether
to find a specific key in a leaf node or to find the right child node to traverse
into the correct sub-tree. This computation essentially boils down to finding
the index of a lower and upper bound key, the former being the first key in a
node that is greater or equal to a searched key, the latter being the first node
key greater than a searched key.

Algorithm 4.2.1: Lower bound in sorted list
Input: keys[0 . . . n], needle
Result: Position of a lower bound key

1 index ← 0, size ← n
2 while size > 0 do
3 step← size/2
4 it← index+ step
5 if keys[it] < needle then
6 index← it+ 1
7 size← size− step+ 1
8 else
9 size← step

10 return index

On the host implementation, the lower-bound key is found by performing
a binary search, as the keys are stored in a sorted manner in each node, thus
allowing a search with time complexity O(log2 n). Implementation of a lower
bound function can be seen in algorithm 4.2.1. However, as all 32 threads
perform a single task in a warp, a binary search is sub-optimal on the GPU,
as it will inherently execute in series for the reasons of thread divergence,
explained in section 1.2.2.

Thus, it is more efficient to break down the work for every thread to be
able to participate, seen in a lower-bound example in listing 2. A lower bound
(and upper bound) search is done as follows: each thread in a warp will read
a key from a node and perform a comparison. The results are aggregated as
a bitmap using warp.ballot(), where N -th bit indicates whether a thread
at index N fulfills the comparison (see line 9). The position is obtained by
invoking __ffs on line 10, which returns the index of a first thread with a
fulfilled comparison.

27

4. Realisation

1 __device__ static uint32_t lowerBound(
2 KeyType *keys, uint32_t size, KeyType needle
3) {
4 using cg = cooperative_groups;
5 auto threadBlock = cg::this_thread_block();
6 auto warp = cg::tiled_partition<32>(threadBlock);
7

8 uint64_t rank = warp.thread_rank();
9 uint32_t ballot = warp.ballot(keys[rank] >= needle);

10 uint32_t idx = __ffs(ballot) - 1;
11

12 asm("min.u32 %0, %1, %2;" : "=r"(idx) : "r"(idx), "r"(size));
13 return idx;
14 }

Listing 2: A warp-friendly implementation of finding a lower-bound key.

The resulting position must not be greater or equal to the size of a pro-
cessed node, as reading keys outside the expected node size is undefined be-
havior. As the data type of a variable storing the position is independent of
the used data type for keys or values, a single asm statement on line 12 is used
to clamp the position. This optimization was done specifically to enforce the
compiler to use a single min.u32 statement rather than generating branch and
jump statements, thus reducing the number of cycles spent on these critical
sections.

This optimization does bring an additional constraint to the structure of
a B-Tree node: the Order of a tree must not exceed the number of threads
available in a single warp, as if it does, some keys will become inaccessible.

4.3 Proactive Splitting

As specified in operations of section 3.1, to perform an update operation, such
as insertion or deletion, on a tree, the target node must be first found by
traversing top-down. If the node becomes either full or does not have enough
keys, a split or merge operation must occur, which requires propagation up-
wards and might cascade the changes to the root node. A pointer to a parent
node stored in a node or a stack of visited notes must be implemented to have
the ability to traverse back to the root, which brings additional unnecessary
complexity to the GPU.

Thus, in the implementation found in this thesis, any splitting operations
are done proactively, where splits occur before descending further down the
tree. This method benefits from not visiting any node twice, guaranteeing
every operation to update at most two levels, and preventing any cascading

28

4.4. Latching and Concurrency Control

back to the root. Furthermore, the implementation needs to track only two
nodes simultaneously, avoiding implementing an explicit stack on the device
or keeping track of the parent node inside the node structure itself.

However, this method does come with the disadvantage of premature split-
ting, as the node does not know whether either of its descendants will become
full, require a split, and cause a cascade back to the node. B-Trees implement-
ing bottom-up insertion could do a smaller amount of splitting in general.

4.4 Latching and Concurrency Control

For our implementation of B-Trees, an additional attribute x.writelock is used
to prevent multiple threads from writing to the same node at the same time.

In the B+Tree implementation of insertion, traversal is prevented if en-
countering a node with a write lock to ensure data serializability, as the node
with a latch is most likely not in a correct state and may lead the traversal
operation to an incorrect subtree. The search is thus restarted from the start
if reaching a node with a latch, sharing the properties of a back-off lock.

B-Link-Tree has this limitation lifted, as the tree is always traversable,
even if the node is latched for writing. As described in section 3.4, each node
has a x.sibling pointer referencing next at the same depth. At every depth,
the nodes are essentially chained in a linked list. With this addition, a correct
node is always found with the help of the additional path to reach every node.

In both of the implementations, warp.sync() and __threadfence() is
often needed to ensure correct order of instructions used for memory access.
Latch coupling is used to ensure safe upgrading and downgrading of write
latches when traversing the tree vertically: a latch of a parent node is preserved
until the target child node is successfully latched. If the attempt to latch a
child node fails, the parent latch is released.

Latching itself is done by a BNodeLatch class. This class does include
two separate template specializations, with the CUDA specialization utilizing
atomic instructions such as atomicAdd() and atomicCAS() to avoid serial-
izability issues when acquiring or releasing a latch. Host specialization does
not require a critical section, as the implementation runs on a single thread.
The class is not explicitly bound to any of the B-Tree implementations, and
a template class of a node must be provided when instantiating the latch.

4.5 Bulk Insert

As described by Graefe [12], there is a strong relationship between B-Trees
and sorting, which we can utilize. Optimal construction of B-Tree shall forgo
incremental insertion in favor of building the tree from a presorted list.

As both B-Link-Tree and B+Tree internally store their key-value pairs in
their nodes, incremental insertion can be avoided. Instead, the tree can be

29

4. Realisation

constructed in a bottom-up approach, creating all nodes of each level one by
one. Sample pseudocode can be seen in algorithm 4.5.1.

Algorithm 4.5.1: Bulk Insert
Input: inputKeys: list of keys to be stored

inputValues: list of values, each one is bound to a key
1 (keys, values)← sortByKey(inputKeys, inputValues)
2 nodeCount ← calculate nodeCount
3 (keys, children)← createLeafKernel(keys, values)
4 while children.len() > 1 do
5 (keys, children)← createInternalKernel(keys, children)
6 root← children[0]

First, the key-value pairs are sorted by key using the built-in thrust::sort
function, as TNL does not have a sort method yet. Sorted pairs are passed to
the createLeafKernel, which will divide the pairs and fit them into nodes.
A fixed offset is chosen to make sure each node is not immediately full. The
expected node count is then calculated by dividing the number of pairs by the
desired node size.

nodeCount =
⌈ |inputKeys|

Order −Offset

⌉
, Order > 0

Each kernel invocation of createInternalKernel will return separator
keys and pointers of the created nodes. These keys and children nodes are
passed back to the kernel to create an additional level until the kernel creates
only one node. This node then becomes the root of the tree, as seen at line 6
in algorithm 4.5.1.

A significant additional benefit of constructing the tree in such a manner
is the improved memory locality of the tree. The reason is that B-Tree nodes
at the same level are created and inserted into memory simultaneously. Thus
the nodes reside in the memory block near each other.

4.6 Allocation

As the allocator for the data structure, a bump allocator is used (also known as
stack allocator) in both of the implementations. The bump allocator allocates
a continuous linear section of memory and works by increasing a pointer at
the next unused memory.

To handle the allocation of nodes, a section of memory is allocated be-
forehand on the CPU. This continuous section of memory can be resized by
invoking the setSize method, which will allocate a new memory segment and
copy the remaining data.

Atomicity is key for successful allocation, as the allocator can be invoked
concurrently from different threads. The allocate method will move the

30

4.7. Node structure

1 template <typename Object>
2 struct BumpAllocator {
3 int *mOffset;
4 ArrayView<Object, Devices::Cuda> mData;
5

6 __device__ Object *allocate(int size) {
7 return mData.getData() + atomicAdd(mOffset, size);
8 }
9 };

Listing 3: Implementation snippet of a bump allocator with an allocate
method.

memory offset atomically via the atomicAdd function. This function will re-
turn the previous offset, which is used to obtain the address on the newly
available global memory block, as seen on line 7 in listing 3. Atomic instruc-
tions are used to ensure the serializability of the operations, as the allocator
is invoked concurrently from different threads.

Proper care needs to be taken of the root node and its address when moving
the pointers to a different memory location, for example, while resizing the
underlying memory block of the allocator. The address of the root node can
be trivially updated in this instance by using pointer arithmetic.

The main benefit of the bump allocator is its simplicity and performance.
Dynamic global memory allocation inside a device function is considerably
slower [30] than the bump allocator. It is also allocated on a size-limited
heap. By default, the heap is only 8 MB large and may be resized only once
in a during application runtime [18], which is not suitable for storing large
amounts of data in global memory.

However, the presented allocator is not as versatile when compared to
traditional allocators, as the acquired memory cannot be deallocated because
the returned mOffset only increases.

4.7 Node structure

This section describes the proposed B+Tree and B-Link-Tree node structure,
found in the listing 4. Comments and helpers methods were removed for the
sake of brevity.

uint16_t have been chosen in favor of smaller data types, as most in-
structions in the ISA do not support operand types smaller than 16-bits and
instead convert them to larger data types via a cvt conversion statement [22].

31

4. Realisation

1 template <typename KeyType, typename ValueType, size_t Order>
2 struct BPlusNode {
3 uint16_t mLeaf;
4 uint16_t mSize;
5 uint16_t mWriteLock;
6

7 KeyType mKeys[Order];
8 ValueType mValues[Order];
9

10 BNode * mChildren[Order];
11 BNode * mSibling;
12 }
13

14 template <typename KeyType, typename ValueType, size_t Order>
15 struct BLinkNode {
16 uint16_t mLeaf;
17 uint16_t mSize;
18 uint16_t mWriteLock;
19

20 KeyType mHighKey;
21 uint16_t mHighKeyFlag;
22

23 KeyType mKeys[Order];
24 ValueType mValues[Order];
25 volatile BNode * mChildren[Order];
26 volatile BNode * mSibling;
27 }

Listing 4: The node structures used in B+Tree and B-Link-Tree.

As seen in the BLinkNode variant at line 25–26, mChildren and mSibling
are both using the volatile qualifier to avoid incorrect memory access op-
timization by the compiler. This qualifier tells the compiler to assume that
the contents of the variable may be changed or used at any time by another
thread. Therefore all references to this variable will compile into an actual
memory read or write [18].

32

Chapter 5
Testing

5.1 Environment

The measurements are captured on the gp1 system provided by Faculty of
Nuclear Sciences and Physical Engineering, Czech Technical University with
the following specifications seen in table 5.1:

CPU Intel Xeon CPU E5-2630 v3 (2.40 GHz)
GPU NVIDIA Quadro P6000 (24 GB, CUDA 6.1)
RAM 128 GB
Driver 465.31
OS Arch Linux (kernel 4.12.9, KPTI enabled)
Host compiler GCC g++ 11.1.0
Device compiler nvcc v11.3.58

Table 5.1: Hardware and software specification of the gp1 system.

Furthermore, the optimization flag is set to -O3. C++ dialect is set
to C++17 when benchmarking against different implementations, although
C++14 is supported as well.

5.2 Testing methodology

It is hard to prove the complete absence of errors and bugs of the solution,
as the execution of code on the device is not deterministic. Nevertheless, for
each of the B-Tree implementations, a set of unit tests is prepared. This
unit test suite rigorously examines if each operation preserves the valid tree
state, which has proved to be helpful when optimizing the performance of the
tree without sacrificing correctness. The unit tests also test the proper usage
of templates, verifying the validity of operations when handling non-integer

33

5. Testing

Figure 5.1: Web based visual debugger displaying the internal state of a tree.
Red boxes denote split nodes not yet inserted to the parent node. A high-
lighted node address indicate that a thread has latched that node.

keys or values. GoogleTest framework [11] is the framework of choice used for
writing these unit test suites.

For the host implementation, unit tests do include assertions of the in-
ternal states of a node to aid the development and catch bugs early on. In
comparison, the device implementations rely on the assertions provided by the
TNL instead. These assertions were used to detect the same issues covered
by GoogleTest unit tests on the host side.

Still, debugging of a kernel is a pain-staking process, even though cuda-gdb
does work on device code. Pinpointing race conditions can be difficult, espe-
cially without any prior context, and any potential issues might arise only
when dealing with a large number of items in B-Tree. To better understand
the behavior of GPU B-Tree operations and help find concurrency issues eas-
ier, a complimentary web-based visual debugger has been developed in React
[8], seen in fig. 5.1.

Macro functions have been inserted through the implementations, which
are enabled by defining a DEBUGGER flag in the source code. With this flag,
the implementation will emit debugging commands into the standard output,
which can be inserted into the web app.

In the case of multiple B-Tree variants, to avoid duplicating tests and
ensure the correctness of both implementations, typed tests are used to repeat
the same logic over a list of types [10], as seen in listing 5. The typename of

34

5.3. Benchmarking methodology

1 template <typename C> class TestSuite : public testing::Test {
2 public:
3 using Implementation = C;
4 };
5

6 using TypeList = ::testing::Types<A, B>;
7 TYPED_TEST_SUITE(TestSuite, TypeList);
8

9 TYPED_TEST(TestSuite, Test) {
10 typename TestFixture::Implementation impl;
11 // ... rest of test implementation
12 }

Listing 5: Snippet of a GoogleTest typed test

1 using DeviceType = Benchmark::Device::Host;
2 using NumericType = uint32_t;
3 Benchmark::execute<DeviceType, NumericType>(
4 "test", [](Benchmark::BenchTimer<DeviceType> &timer,
5 const std::vector<NumericType> &input) {
6 timer.start();
7 // insert operation
8 timer.stop("insert");
9

10 timer.start();
11 // query operation
12 timer.stop("query");
13 });

Listing 6: Sample usage of the benchmark methods found in benchmark.hpp.

each class will be available as a static field within TestFixture itself.

5.3 Benchmarking methodology

Companion benchmarking methods have been created to provide a standard
interface across different implementations of our choice. A tested solution
is wrapped in a lambda function, accepting a timer instance and an input
sequence as its arguments. This lambda function is invoked ten times, and
an arithmetic mean of captured results is computed and stored on a disk. An
example code can be seen in listing 6 and the source code of the benchmarking
methods can be found in /benchmark/ common/benchmark.hpp.

The Benchmark::BenchTimer class will capture the time spent between

35

5. Testing

the invocations of start() and stop(). This class does support multiple
timers within a single instance by specifying a key string in the stop function,
as seen in lines 8 and 12 of listing 6. Internally, CPU-based implementations
are measured using std::chrono::high_resolution_clock, whereas GPU-
based solutions will use the built-in CUDA runtime API, which is more precise,
as it does not include the time spent on potential synchronization.

In most scenarios, the time spent on copying the data between the CPU
and GPU were excluded in the actual measurement.

5.3.1 Datasets used in benchmarking

Different data sequences were generated as the input data for benchmarking
created implementations and existing solutions. Assuming n is the expected
size of generated data sequence, these datasets were used:

• Ascending – sorted sequence 0..(n− 1),

• Descending – inverse of ascending dataset, a sorted sequence (n− 1)..0,

• Almost sorted – sorted sequence 0..(n− 1) with 5 random swaps,

• Shuffle – generated sequence shuffled with std::shuffle,

• Gaussian – a sequence generated by producing n random values around
mean with standard deviation.

For all of the measurements done in section 5.4, 32-bit values are used
both as keys and values, as some implementations chosen in section 5.3.2
do not function properly when different data types are utilized. For this
reason, no benchmark tests utilizing non-integer keys or values required for
comparison on datasets from unstructured numerical meshes are presented
here. An example of such a test implemented for TNL based implementations
can be found in the source code (/benchmark/tnl/tnl mesh cuda.cu).

5.3.2 Chosen implementations for comparison

As for the implementations themselves, the following projects were chosen for
the benchmarks:

• OWG (owensgroup/GpuBTree) – implementation of a GPU based B-
Link-Tree by Awad et al. [2],

• PALM (runshenzhu/palmtree) – an implementation of PALM Tree [27]
by Xian et al. [33]; a concurrent lock-free B+Tree scaling up to 16 cores,

• TLX – a collection of C++ data structures, algorithms and helpers by
Bingman et al. [5].

36

5.4. Results

std::map is chosen as the baseline when calculating the performance
speedup. Internally, std::map tends to be implemented as a self-balanced
red-black tree [7].

Additional implementations, such as the Bw-Tree implementation by Wang
et al. [31], or STX B+Tree by Timo Bingman [4], were considered as well. But
either due to memory leak issues or deprecation by the author, these solutions
were not included in the comparison. Nevertheless, the obtained results can
be found in the attached medium.

As the OWG implementation is the only readily available GPU implemen-
tation of the B-Tree, additional work has been done to resolve issues encoun-
tered while benchmarking. Patches were created for the OWG implementation
to mitigate memory leaks. These patches can be found in the benchmarking
source code and will be automatically applied when CMake is invoked.

5.4 Results

Chosen implementations described in section 5.3.2 were measured against dif-
ferent sequences mentioned in section 5.3.1.

For the speedup comparison, std::map is chosen as a baseline. 32-bit key-
value pairs sequences are generated as the input data. First column indicate
the size of the sequence used. Second column contains the raw execution
time spent by std::map on a benchmark test. Remaining speedup values
are presented as the ratio of the execution time spent by std::map to the
execution time spent by a tested implementation:

Speedup = S = τCPU
τGPU

5.4.1 Query performance

In table 5.2 the query speedup on shuffled sequence is shown. For smaller
sequences, std::map tends to be faster than other compared implementations.
However, as the input size increases, the solutions utilizing parallelization
overtake the baseline implementation.

As soon as the input size is larger than 210, both the TNL+ and TNLlink

becomes faster than the baseline std::map. A notable observation can be
made when comparing TNL+ (implementation of B+Tree) with TNLlink (im-
plementation of B-Link-Tree). Even though the concurrency control is better
in TNLlink than in TNL+, the reduced instruction count and reduced pointer
chasing through sibling links overshadow the performance benefits of such con-
currency control, resulting in similar speedup on shuffled and gaussian input
sequence.

Different behavior can be observed in table 5.3, where the query speedup is
shown on ascending input sequence. The performance of the CPU implemen-

37

5. Testing

STL TNL+ TNLlink OWG PALM TLX TNLhost

2x τ [ms] S S S S S S

10 0.055 0.730 0.814 1.383 1.767 0.804 0.588
11 0.133 1.416 1.583 2.722 1.512 0.861 0.615
12 0.288 3.024 3.383 5.825 2.035 0.798 0.615
13 0.742 7.703 8.363 14.415 3.904 0.964 0.737
14 1.901 11.457 16.556 30.823 4.980 1.111 0.785
15 4.632 21.204 21.189 36.124 5.800 1.162 0.891
16 10.918 29.534 25.694 44.915 7.080 1.200 0.955
17 26.074 32.771 33.447 61.745 8.694 1.260 0.999
18 62.571 34.897 38.197 78.075 10.333 1.337 0.978
19 169.116 49.068 51.854 105.834 13.923 1.505 1.113
20 480.989 121.280 74.452 153.818 19.921 1.562 1.083
21 1217.690 108.249 91.548 192.396 25.343 1.617 1.269
22 2989.450 97.953 112.298 230.330 31.187 1.709 1.475
23 6975.730 187.227 138.958 × 36.500 1.702 1.476
24 16584.300 155.728 160.673 × 40.687 1.789 1.476
25 43311.200 226.363 201.184 × 53.206 2.089 2.129

Table 5.2: Search speed-up of chosen implementations compared to std::map
for various input sizes. Shuffled sequence is used as input.

STL TNL+ TNLlink OWG PALM TLX TNLhost

2x τ [ms] S S S S S S

10 0.045 0.582 0.668 1.075 1.827 0.839 0.678
11 0.097 1.029 1.134 1.906 1.178 0.885 0.705
12 0.199 2.068 2.324 4.048 1.574 0.793 0.728
13 0.406 3.787 4.588 7.920 2.049 0.784 0.712
14 0.842 4.201 6.787 13.267 2.158 0.803 0.751
15 1.879 7.654 10.023 14.823 2.531 0.883 0.836
16 4.321 9.529 10.164 17.443 2.856 0.957 0.890
17 10.829 10.986 11.581 23.388 3.556 1.130 1.080
18 26.453 15.397 15.930 30.847 4.378 1.324 1.269
19 60.116 17.887 18.116 35.975 4.915 1.415 1.448
20 128.294 15.199 17.847 35.448 5.349 1.504 1.509
21 271.900 18.845 19.115 38.846 5.673 1.529 1.511
22 602.152 23.065 20.274 43.738 6.318 1.669 1.522
23 1308.570 21.677 20.167 × 6.905 1.739 1.797
24 2921.260 23.215 23.499 × 7.346 1.874 2.144
25 6591.670 25.359 26.415 × 8.272 2.102 2.336

Table 5.3: Search speed-up of chosen implementations compared to std::map
for various input sizes. Ascending sequence is used as input.

38

5.4. Results

211 213 215 217 219 221 223 225

Number of items

106

107

108

O
pe

ra
tio

ns
pe

r
se

co
nd

STL
TNL+

TNLlink

OWG
PALM
TLX

TNLhost

Figure 5.2: Graph comparing number of search queries per second between
chosen implementations for various input sizes. Gaussian distribution is used
as input.

tation has significantly improved, thus reducing the measured query speedup
on the GPU implementations.

In all input distributions, the OWG implementation of GPU B-Tree per-
forms 2× to 3× faster than both the TNLlink and TNL+, regardless of input
size, which can be seen in fig. 5.2. Internally, OWG utilizes explicit mem-
ory read and write operations with hand-crafted asm statements, where each
thread in a warp reads a 32-bit word from global memory instead of relying
on implicit read instructions generated by the compiler. This approach yields
better memory utilization in exchange for the loss of generality. On a re-
lated note, even with applied patches, the OWG implementation suffers from
frequent crashes caused by invalid memory accesses and deadlocks for input
sequences larger than 222. Thus the OWG results are missing for these input
sizes.

5.4.2 Insertion performance

In table 5.4 it can be shown that std::map is generally not effective even on a
single thread, as both TLX and TNLhost overtake the baseline when inserting
more than 215 items.

One notable observation can be gathered from the results of the PALM
tree, as the insertion time is comparably the same as the querying execution

39

5. Testing

STL TNL+ TNLlink OWG PALM TLX TNLhost

2x τ [ms] S S S S S S

10 0.083 0.139 0.207 0.398 3.193 0.914 0.693
11 0.185 0.279 0.397 0.772 2.099 0.950 0.704
12 0.395 0.492 0.752 1.433 3.505 0.943 0.706
13 0.903 1.028 1.485 2.487 3.541 1.005 0.768
14 2.183 1.989 2.679 3.763 4.968 1.111 0.838
15 5.312 3.041 3.894 4.000 6.237 1.229 0.962
16 12.429 4.596 6.102 4.818 7.921 1.294 1.012
17 29.280 8.119 10.864 9.469 9.349 1.367 1.071
18 67.215 12.981 15.803 19.933 10.853 1.384 1.099
19 168.193 19.835 22.629 38.064 13.497 1.511 1.185
20 461.217 31.699 33.518 65.485 18.864 1.751 1.171
21 1222.530 42.197 44.516 99.201 25.044 1.897 1.381
22 3054.340 51.295 54.066 134.295 31.361 1.956 1.564
23 7299.760 61.146 63.606 × 37.566 1.956 1.589
24 17217.300 69.850 72.824 × 41.691 2.009 1.631
25 44176.200 84.574 89.070 × 53.398 2.286 2.243

Table 5.4: Insertion speed-up of chosen implementations compared to
std::map for various input sizes. Shuffled sequence is used as input.

211 213 215 217 219 221 223 225

Number of items

106

107

108

O
pe

ra
tio

ns
pe

r
se

co
nd

STL
TNL+

TNLlink

OWG
PALM
TLX

TNLhost

Figure 5.3: Graph comparing the number of inserted keys-value pairs per
second between chosen implementations for various input sizes. Gaussian
distribution is used as input.

40

5.4. Results

211 213 215 217 219 221 223 225

Number of items

107

O
pe

ra
tio

ns
pe

r
se

co
nd

STL
TNL+

TNLlink

OWG
PALM
TLX

TNLhost

Figure 5.4: Graph comparing the number of inserted keys-value pairs per
second between chosen implementations for various input sizes. Increasing
sequence is used as input.

time, a result more in line with other CPU implementations. All GPU-based
implementations are slower than PALM when inserting less than 217 items.
This performance is consistent regardless of the distribution of incoming se-
quence, as seen in figs. 5.3 and 5.4, where PALM is the most performant
implementation in the scenario of increasing input sequence.

The performance difference between OWG and TNL implementations is
similar compared to the previous query benchmarks with shuffled input se-
quence, where TNL structures are generally ≈ 3× slower than OWG. When
inserting key-value pairs in a sorted manner, as seen in fig. 5.4, OWG becomes
slower than both of the TNL implementations when inserting 217 items and
more.

41

Conclusion

Goals and results

The goal of this body of work was to study and understand the B-Tree data
structure with all of its variants and introduce an implementation of a B-Tree
data structure capable of execution on the GPU.

Core concepts behind the CUDA programming model were studied and ex-
plained; how it allows the programmer to execute GPU code from the CPU,
how threads are organized and assigned to each CUDA execution core, and
how a programmer can synchronize threads on the GPU. An introduction
to the Template Numerical Library has been made to understand how tem-
plate metaprogramming can provide a unified interface for different execution
environments.

Two variants of B-Tree were introduced and described: B+Tree and B-
Link-Tree. Both of the variants were appropriately modified to support con-
current updates and reads. All of the implementations were written in C++

with the help of the TNL library.
The principles behind the Warp Cooperative Work Sharing strategy were

outlined, and different warp-friendly optimizations were introduced to utilize
the entire warp to accelerate a single operation, avoiding unnecessary warp
divergence and improving performance. Proactive splitting has been utilized
to avoid implementing a stack for keeping track of parent nodes, and various
concurrency control methods used in both of the variants were discussed.

Multiple GoogleTest based unit test suites were written to ensure proper
functionality. A complementary web tool has been developed to visualize
operations done in a multithreaded environment.

Finally, both of the implementations were measured and compared against
STL and other state-of-the-art GPU and CPU B-Tree implementations. Mea-
surements of both variants against std::map show a substantial speedup:
≈ 200× when querying and ≈ 85× when inserting random sequences of length
224–225. When compared to the GPU B-Tree implementation by Awad et al.

43

Conclusion

[2], both of the variants implemented in this thesis are slower. It should be
noted that both the B+Tree and B-Link-Tree perform similarly, suggesting the
reduced instruction count and reduced unnecessary pointer chasing in B+Tree
overshadow the concurrency improvements of B-Link-Tree.

Future work

The implementation presented in this thesis, as shown in section 5.4, is ≈ 3×
slower than the solution from Awad et al. [2], even though it is not certain
their implementation perform correctly on large input sequences. Further
work needs to be done to improve memory access patterns. Another point of
improvement can be the implementation of range queries.

44

Bibliography

1. ASHKIANI, Saman; FARACH-COLTON, Martin; OWENS, John D. A
dynamic hash table for the GPU. In: 2018 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 2018, pp. 419–429.

2. AWAD, Muhammad A. et al. Engineering a High-Performance GPU B-
Tree. In: Proceedings of the 24th Symposium on Principles and Prac-
tice of Parallel Programming. Washington, District of Columbia: Asso-
ciation for Computing Machinery, 2019, pp. 145–157. PPoPP ’19. isbn
9781450362252. Available from doi: 10.1145/3293883.3295706.

3. BAYER, R.; MCCREIGHT, E. Organization and Maintenance of Large
Ordered Indices. In: Proceedings of the 1970 ACM SIGFIDET (Now SIG-
MOD) Workshop on Data Description, Access and Control. Houston,
Texas: Association for Computing Machinery, 1970, pp. 107–141. SIG-
FIDET ’70. isbn 9781450379410. Available from doi: 10.1145/1734663.
1734671.

4. BINGMANN, Timo. STX B+ Tree C++ Template Classes v0.9 [comp.
software]. [N.d.] [visited on 2021-06-24]. Available from: https://github.
com/bingmann/stx-btree.

5. BINGMANN, Timo. TLX: Collection of Sophisticated C++ Data Struc-
tures, Algorithms, and Miscellaneous Helpers [comp. software]. 2018 [vis-
ited on 2021-06-24]. Available from: https://panthema.net/tlx.

6. COMER, Douglas. Ubiquitous B-Tree. ACM Comput. Surv. 1979, vol. 11,
no. 2, pp. 121–137. issn 0360-0300. Available from doi: 10.1145/356770.
356776.

7. CPPREFERENCE.COM. std::map [online]. [N.d.] [visited on 2021-06-
24]. Available from: https://en.cppreference.com/w/cpp/container/
map.

45

https://doi.org/10.1145/3293883.3295706
https://doi.org/10.1145/1734663.1734671
https://doi.org/10.1145/1734663.1734671
https://github.com/bingmann/stx-btree
https://github.com/bingmann/stx-btree
https://panthema.net/tlx
https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/356770.356776
https://en.cppreference.com/w/cpp/container/map
https://en.cppreference.com/w/cpp/container/map

Bibliography

8. FACEBOOK INC. React: A JavaScript library for building user inter-
faces [comp. software]. [N.d.] [visited on 2021-04-27]. Available from:
https://reactjs.org/.

9. FIX, Jordan; WILKES, Andrew; SKADRON, Kevin. Accelerating Brai
ded B+ Tree Searches on a GPU with CUDA. In: 2nd Workshop on Appli-
cations for Multi and Many Core Processors: Analysis, Implementation,
and Performance (A4MMC), in conjunction with ISCA. 2011.

10. GOOGLE LLC. Advanced googletest Topics [comp. software]. [N.d.] [vis-
ited on 2021-04-27]. Available from: https://github.com/google/
googletest/blob/master/docs/advanced.md.

11. GOOGLE LLC. GoogleTest [comp. software] [visited on 2021-04-27].
Available from: https://github.com/google/googletest.

12. GRAEFE, Goetz. Modern B-Tree Techniques. Found. Trends Databases.
2011, vol. 3, no. 4, pp. 203–402. issn 1931-7883. Available from doi:
10.1561/1900000028.

13. GUPTA, H.; HARINARAYAN, V.; RAJARAMAN, A.; ULLMAN, J.D.
Index selection for OLAP. In: Proceedings 13th International Conference
on Data Engineering. 1997, pp. 208–219. Available from doi: 10.1109/
ICDE.1997.581755.

14. KACZMARSKI, Krzysztof. B+-tree optimized for GPGPU. In: OTM
Confederated International Conferences On the Move to Meaningful In-
ternet Systems. 2012, pp. 843–854.

15. KIM, Changkyu et al. Designing Fast Architecture-Sensitive Tree Search
on Modern Multicore/Many-Core Processors. ACM Trans. Database Syst.
2011, vol. 36, no. 4. issn 0362-5915. Available from doi: 10 . 1145 /
2043652.2043655.

16. LEHMAN, Philip L.; YAO, s. Bing. Efficient Locking for Concurrent
Operations on B-Trees. ACM Trans. Database Syst. 1981, vol. 6, no. 4,
pp. 650–670. issn 0362-5915. Available from doi: 10 . 1145 / 319628 .
319663.

17. LEVANDOSKI, Justin J.; LOMET, David B.; SENGUPTA, Sudipta.
The Bw-Tree: A B-Tree for New Hardware Platforms. In: Proceedings
of the 2013 IEEE International Conference on Data Engineering (ICDE
2013). USA: IEEE Computer Society, 2013, pp. 302–313. ICDE ’13. isbn
9781467349093. Available from doi: 10.1109/ICDE.2013.6544834.

18. NVIDIA CORPORATION. CUDA C++ Programming Guide [online].
[N.d.] [visited on 2021-04-05]. Available from: https://docs.nvidia.
com/cuda/pdf/CUDA_C_Programming_Guide.pdf.

19. NVIDIA CORPORATION. cuDNN Developer Guide [online] [visited on
2021-04-30]. Available from: https://docs.nvidia.com/deeplearning/
cudnn/developer-guide/index.html.

46

https://reactjs.org/
https://github.com/google/googletest/blob/master/docs/advanced.md
https://github.com/google/googletest/blob/master/docs/advanced.md
https://github.com/google/googletest
https://doi.org/10.1561/1900000028
https://doi.org/10.1109/ICDE.1997.581755
https://doi.org/10.1109/ICDE.1997.581755
https://doi.org/10.1145/2043652.2043655
https://doi.org/10.1145/2043652.2043655
https://doi.org/10.1145/319628.319663
https://doi.org/10.1145/319628.319663
https://doi.org/10.1109/ICDE.2013.6544834
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html

Bibliography

20. NVIDIA CORPORATION. cuSOLVER [online] [visited on 2021-04-30].
Available from: https://docs.nvidia.com/cuda/cusolver/index.
html.

21. NVIDIA CORPORATION. NVIDIA Ampere GA102 GPU Architecture
[online]. [N.d.] [visited on 2021-05-02]. Available from: https://www.
nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-
whitepaper-v2.pdf.

22. NVIDIA CORPORATION. Parallel Thread Execution ISA [online]. [N.d.]
[visited on 2021-06-27]. Available from: https://docs.nvidia.com/
cuda/pdf/ptx_isa_7.3.pdf.

23. OBERHUBER, Tomáš; KLINKOVSKÝ, Jakub; WODECKI, Aleš. Post-
greSQL: Documentation: 13: Implementation [comp. software]. [N.d.] [vis-
ited on 2021-04-27]. Available from: https://www.postgresql.org/
docs/13/btree-implementation.html.

24. OBERHUBER, Tomáš; KLINKOVSKÝ, Jakub; WODECKI, Aleš. Tem-
plate Numerical Library [comp. software]. [N.d.] [visited on 2021-04-27].
Available from: https://tnl-project.org/.

25. RODEH, Ohad; BACIK, Josef; MASON, Chris. BTRFS: The Linux B-
Tree Filesystem. ACM Trans. Storage. 2013, vol. 9, no. 3. issn 1553-3077.
Available from doi: 10.1145/2501620.2501623.

26. SAMADI, Behrokh. B-trees in a system with multiple users. Information
Processing Letters. 1976, vol. 5, no. 4, pp. 107–112.

27. SEWALL, Jason et al. PALM: Parallel Architecture-Friendly Latch-Free
Modifications to B+ Trees on Many-Core Processors. Proc. VLDB En-
dow. 2011, vol. 4, no. 11, pp. 795–806. issn 2150-8097. Available from
doi: 10.14778/3402707.3402719.

28. SHAHVARANI, Amirhesam; JACOBSEN, Hans-Arno. A Hybrid B+-
Tree as Solution for In-Memory Indexing on CPU-GPU Heterogeneous
Computing Platforms. In: Proceedings of the 2016 International Confer-
ence on Management of Data. San Francisco, California, USA: Associa-
tion for Computing Machinery, 2016, pp. 1523–1538. SIGMOD ’16. isbn
9781450335317. Available from doi: 10.1145/2882903.2882918.

29. SHIMPI, Anand Lal; WILSON, Derek. NVIDIA’s GeForce 8800 (G80):
GPUs Re-architected for DirectX 10. Anandtech [online]. 2006 [visited
on 2021-04-27]. Available from: https://www.anandtech.com/show/
2116/8.

30. VINKLER, Marek; HAVRAN, Vlastimil. Register efficient dynamic mem-
ory allocator for GPUs. In: Computer Graphics Forum. 2015, vol. 34,
pp. 143–154. No. 8.

47

https://docs.nvidia.com/cuda/cusolver/index.html
https://docs.nvidia.com/cuda/cusolver/index.html
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://www.nvidia.com/content/PDF/nvidia-ampere-ga-102-gpu-architecture-whitepaper-v2.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.3.pdf
https://docs.nvidia.com/cuda/pdf/ptx_isa_7.3.pdf
https://www.postgresql.org/docs/13/btree-implementation.html
https://www.postgresql.org/docs/13/btree-implementation.html
https://tnl-project.org/
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.14778/3402707.3402719
https://doi.org/10.1145/2882903.2882918
https://www.anandtech.com/show/2116/8
https://www.anandtech.com/show/2116/8

Bibliography

31. WANG, Ziqi; ZHU, Runshen. Open BwTree: An open sourced implemen-
tation of Bw-Tree in SQL Server Hekaton [online]. [N.d.] [visited on 2021-
06-24]. Available from: https://github.com/wangziqi2013/BwTree.

32. WANG, Ziqi et al. Building a Bw-Tree Takes More Than Just Buzz
Words. In: Proceedings of the 2018 International Conference on Man-
agement of Data. Houston, TX, USA: Association for Computing Ma-
chinery, 2018, pp. 473–488. SIGMOD ’18. isbn 9781450347037. Available
from doi: 10.1145/3183713.3196895.

33. XIAN, Ran; ZHU, Runshen. An implementation of Intel’s concurrent
B+Tree (Palm Tree) [comp. software]. [N.d.] [visited on 2021-06-24].
Available from: https://github.com/runshenzhu/palmtree.

34. YAN, Zhaofeng; LIN, Yuzhe; PENG, Lu; ZHANG, Weihua. Harmonia:
A High Throughput B+tree for GPUs. In: Proceedings of the 24th Sym-
posium on Principles and Practice of Parallel Programming. Washing-
ton, District of Columbia: Association for Computing Machinery, 2019,
pp. 133–144. PPoPP ’19. isbn 9781450362252. Available from doi: 10.
1145/3293883.3295704.

48

https://github.com/wangziqi2013/BwTree
https://doi.org/10.1145/3183713.3196895
https://github.com/runshenzhu/palmtree
https://doi.org/10.1145/3293883.3295704
https://doi.org/10.1145/3293883.3295704

Appendix A
Acronyms

CPU Central Processing Unit.

CUDA Compute Unified Device Architecture.

GPU Graphical Processing Unit.

ISA Instruction Set Architecture.

SIMT Single Instruction, Multiple Threads.

SM Streaming Multiprocessor.

TNL Template Numerical Library.

49

Appendix B
Contents of enclosed SD card

README.md.......................................description of content
benchmark directory of the benchmarking suite
benchmark-data.............................captured benchmark data
debugger................sources of the complementary B-Tree debugger
implementation implementation sources

scripts hotfix scripts for editor support
src source code of the implementation
test......................................integration and unit tests

51

	Introduction
	Motivation
	Structure of Work

	Preliminaries
	GPU architecture
	Hardware architecture
	Memory hiearchy

	CUDA programming model
	Thread hiearchy
	SIMT architecture
	Synchronization

	TNL
	Views

	State-of-the-art
	Prior Art

	Theory
	B-Tree
	Search
	Insertion
	Deletion

	B+Tree
	Concurrency Control
	B-Link-Tree
	Insertion and Search
	Proof of correctness

	Realisation
	Warp Cooperative Work Sharing strategy
	Warp-based operations
	Proactive Splitting
	Latching and Concurrency Control
	Bulk Insert
	Allocation
	Node structure

	Testing
	Environment
	Testing methodology
	Benchmarking methodology
	Datasets used in benchmarking
	Chosen implementations for comparison

	Results
	Query performance
	Insertion performance

	Conclusion
	Goals and results
	Future work

	Bibliography
	Acronyms
	Contents of enclosed SD card

