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Abstract

Guitar amplifiers play a key role in rock music because of the overdrive
and other effects unique to each model. They are a costly piece of musical
equipment, especially when considering the vacuum valve models. This work
explores the options to learn and emulate any guitar amplifier using artifi-
cial neural networks. One recurrent and one convolutional neural network
architectures were implemented and trained on real guitar recordings. Their
accuracy was then evaluated objectively and with listening tests. It was
shown that the presented neural networks can create accurate emulations of
the overdrive effects with only small imperfections. This work did not aim
to create a real-time application, but it could be useful for post-processing.

Keywords: recurrent neural network, convolutional neural network,
WaveNet, LSTM, guitar amplifier

Abstrakt

Kytarové zesilovače hrají klíčovou roli v rockové hudbě kvůli tzv. overdrive
a jiným efektům, které jsou unikátní pro každý model. Představují zásadní
investici do vybavení hudebníků, především pokud se jedná o elektronkové
modely. Tato práce zkoumá možnost učení a emulace libovolného kytarového
zesilovače pomocí umělých neuronových sítí. Byly implementovány jedna
rekurentní jedna konvoluční neuronová síť, které poté byly trénovány na
skutečných kytarových nahrávkách. Jejich přesnost pak byla vyhodnocena
objektivně i pomocí poslechových testů. Výsledky ukazují, že představené
neuronové sítě dokáží věrně napodobit overdrive efekt jen s drobnými nedo-
konalostmi. Tato práce se nevěnovala použití v reálném čase, výsledky ale
mohou být najít uplatnění v postprodukci.

Klíčová slova: rekurentní neuronová síť, konvoluční neuronová síť,
WaveNet, LSTM, kytarový zesilovač

Překlad názvu: Učení modelu zesilovače hudebního nástroje pomocí
neuronových sítí
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Chapter 1
Introduction

Electric or bass guitar with applied sound effects has been a major
theme of rock music ever since its beginnings in the 1950s. Back then, gui-
tar amplifiers were built with vacuum valves, semiconductors were not yet
available on the market. Despite the fact that all consumer electronics have
switched to solid state designs long ago, vacuum valve amplifiers still remain
popular among musicians. The limited production capacity of vacuum valves
of course drives the price of such amplifiers up.

A solid state amplifier might be just enough for a beginner musician,
but having only one can still be too restrictive. What if the musician wants
some variety or even chain multiple effects together? Another interesting
problem arises when someone likes particular guitar sound in a song, they
want to imitate it, but it is not possible to find which device and which
settings were used to make it. Figuring out the correct combination by hand
is almost impossible, so it would be useful to get help from a computer.

Artificial neural networks have been on the rise over the last years and it
seems like they can be the solution to many problems. The goal of this thesis
is to find out whether neural networks can really learn a musical amplifier
effect from a sound file, what network architecture is the most suited for this
task, and whether an emulated effect can be distinguished from the real one.

This thesis is divided into five chapters. The following chapter briefly
explains the inner workings of a valve guitar amplifier and other effects units.
After that, the current state of research is summarised and the proposed
neural networks are introduced. Chapter three tells everything about the
practical execution, from dataset preparation and model implementations to
outlining the experiments and introducing the evaluation criteria. In chapter
four, the the models are compared through the experimental results. Finally,
in chapter five the results are discussed and all findings are summarised.
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Chapter 2
Theory

This chapter introduces the reader to the concepts that are later used
in this work. First, the functioning of traditional valve guitar amplifiers and
similar devices is described more in depth. After that, the state of research
in the field of effects modelling is summarised. The following sections then
further explain the methods.

2.1 Traditional Hardware

2.1.1 Vacuum Valve Amplifiers

Guitar amplifiers are used to boost and distort audio signal from an
electric guitar or bass guitar. The traditional type is the valve ‘combo’ am-
plifier (also called tube amplifier), combining an amplifier based on vacuum
valves (tubes) and a speaker in one cabinet. The purpose of valves in the
circuit is to amplify input audio signal, which becomes distorted (clipped)
when the signal strength exceeds a certain threshold. The amount of gain,
also labelled as overdrive, can be regulated with a knob. Other properties,
such as equaliser levels, master volume, and sometimes the amount of reverb,
can be controlled as well. Different circuit designs and vacuum valve models
significantly influence the sound of distortion.

Triode, tetrode, and pentode valves with three, four, or five active
electrodes, respectively, are commonly used. Triodes have only one control
grid; more grids were added to allow higher operating frequencies and higher
gain without affecting stability. [1] The rest of the circuit consists just of
passive components. Semiconductors are not present since they were not yet
widely available around 1950s, when rock music came into existence.

2.1.2 Solid-state Amplifiers

Vacuum valves were technologically surpassed by transistors, which are
smaller, more energy-efficient, and cheaper to manufacture. This also meant
that solid-state amplifiers with semiconductor components were introduced.
Nevertheless, even today some musicians still prefer vacuum valve models.
Musical amplifiers are therefore one of the last applications where vacuum
valves are still in use in the 21st century.

The reason for that is very subjective: musicians claim that old am-
plifiers have a characteristic, so-called ‘valve sound’, which is described as
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2. Theory .......................................
softer than the one produced by solid-state devices. This phenomenon was
researched and even though some differences in sound were confirmed, au-
dio experts suggest that output transformers might have a more significant
impact on that than a mere presence of vacuum valves. [2]

2.1.3 Effects Units

Audio effects can also be produced by standalone effects units, often
rack-mounted or in the form of a pedal (stompbox). They come in a wide
variety of effects, such as distortions, modulations, delay, reverb, sustain etc.
The devices are designed to be easily chained, which allows for complex effect
modelling. Pedal units are very compact and can be easily regulated with a
press of foot, while rack-mounted units offer more controls.

The most advanced devices in this category are multi-effect processors
and modelling amplifiers. These contain digital signal processing circuits,
a single device can model vast amount of effects and even valve amplifiers.
The parameters can be very complex, therefore preset saving and loading is
incorporated. An example of such unit is the Kemper Profiler [3].

2.2 Effects Modelling with Software

Two different approaches can be used for emulating a device that has
some inputs and outputs. The ‘white-box’ modelling works with the knowl-
edge of inner workings of the device and re-creates its analogue circuits with
numerical methods. Such facsimile should operate very similarly to the orig-
inal if the non-linear equations are solved correctly [4].

Contrary to that, the ‘black-box’ approach knows nothing about the
device’s internals, instead only the input-output mapping is known. The
model then needs to be designed and tuned from scratch to produce similar
results. This method gained on popularity particularly with the recent ad-
vances of artificial neural networks. Therefore, this is the approach that will
be further explored in this work.

2.2.1 State of Research

If we further consider only black-box modelling methods with artificial
neural networks, two trends in network designs can be seen. First, the Re-
current Neural Networks (RNN) are great for making time series predictions
as they can process any sequence of inputs while remembering their internal
state. The Long Short-Term Memory (LSTM), possibly the most popular
subtype of RNNs, was used in [5, 6] where it was concluded that the models
closely matched the real amplifier. It was also discovered that LSTM net-
works perform better than Gated Recurrent Unit (GRU) networks, which is

4



...........................2.2. Effects Modelling with Software

another vastly used type of RNNs.[7].
Another option is to use a Convolutional Neural Network (CNN),

namely the feedforward WaveNet [8, 9]. Recently, the WaveNet and LSTM
networks were compared with focus on real-time use [10]. No major differ-
ences in quality were found if the networks are sufficiently large.

It was also explored how different perceptual pre-emphasis filters, ap-
plied before computing a loss, affected the subjective accuracy of produced
audio [11].

As of today, a few production-ready Virtual Studio Technology (VST)
plugins with models learned by neural networks are already available. For
example, the Neural DSP company uses proprietary neural networks to train
their commercial models [12]. Some authors of [10] are affiliated with this
company. On the other hand, the GuitarML [13] project offers open-source
real-time models based on both the WaveNet and RNN. Users can either use
a pre-trained model or train their own with provided scripts.

2.2.2 Recurrent Neural Networks

A Recurrent Neural Network (RNN) unit/cell iterates over a sequence
of inputs and at the same time generates the output sequence step by step.
The unit remembers its internal (hidden) state, which can be seen as another
input/output when the operations are unrolled in time. The operation is
illustrated in Figure 2.1. Multiple cells can be layered in more complex
RNNs, i.e. the prediction of one cell is given as input to another one.

RNN cell

x[n]

y[n]

h
id

d
e
n
 s

ta
te

h[n+1]

h[n−1]
Figure 2.1: A simple recurrent neural network with one cell at time step n.
Output sequence y is generated from input sequence x and hidden state h. The
hidden state h is updated in each step.

Long Short-Term Memory

So far, the internals of an RNN cell were not discussed, since several
architectures exist. The Long Short-Term Memory (LSTM) network, first
introduced in [14], was one of the chosen method for experiments in the
thesis.
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2. Theory .......................................
An LSTM cell keeps two internal states, referred to as the hidden

state (h) and the cell state (c). Their size is determined by the hidden size
hyperparameter. The main four internal building blocks (yellow color in
Figure 2.2) are called the forget gate (f), the input gate (i), the candidate
cell state (c̃), and the output gate (o). These operations are defined as:

f(t) = σ(Wf [h(t − 1), x(t)] + bf ), (2.1)

i(t) = σ(Wi[h(t − 1), x(t)] + bi), (2.2)

c̃(t) = tanh(Wc̃[h(t − 1), x(t)] + bc̃), (2.3)

o(t) = σ(Wo[h(t − 1), x(t)] + bo), (2.4)

where weights W and biases b are learnable parameters of the cell and σ is
the logistic sigmoid function. Afterwards, new values of the cell state and
hidden state are calculated:

c(t) = f(t)c(t − 1) + i(t)c̃(t), (2.5)

h(t) = o(t) tanh(c(t)). (2.6)

The hidden state h(t) is also the cell’s prediction y(t). [15]
The forget gate prevents the network from being affected by an input

value for too long, which is useful for modelling an overdrive effect with-
out any echoes. In [7] the LSTM network was compared with the Gated
Recurrent Unit (GRU) network

LSTM Unit
c(t+1)

h(t+1)

c(̃t)i(t) o(t)f(t) ...

c(t−1)

h(t−1)

ŷ(t−1)

...

×

tanhσσ

×

+ c(t)

tanh

σ
×

h(t)

ŷ(t+1)ŷ(t)

x(t−1) x(t) x(t+1)

Figure 2.2: A diagram of an LSTM unit unrolled in time. In each step, a value
from the input sequence x (green) and the cell state h are processed through
gates (yellow). The gate outputs and cell state c are combined with pointwise
operations (magenta) to get an updated cell state and hidden state. Finally, the
new hidden state h(t) is added to the predicted sequence ŷ (violet).
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...........................2.2. Effects Modelling with Software

2.2.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) belong in the category of feed-
forward neural networks. There are no loops in the data flow, as opposed
to the recurrent neural networks. The principle of CNNs is based on a
mathematical operation called convolution.

Convolution

Let x be a discrete input, for example, sampled audio with a specific
sample rate. Let t be an integer time argument. The discrete convolution of
discrete functions x and w is

(w ∗ x)(t) =
∞∑

n=−∞
w(n)x(t − n)

=
∞∑

n=−∞
w(t − n)x(n) = (x ∗ w)(t).

(2.7)

Function w is also called the kernel. [16]
Common intuition for convolution in machine learning is shown in ??:

The kernel is represented as a finite matrix, which is being moved on top
of the input. For each kernel position, a dot product of the kernel and the
overlapping section of input is calculated. Finally, the dot product is written
to the output in the same position where the kernel is currently placed.

From the mathematical perspective, it is important to note that ??
does not actually represent convolution, but a similar operation called cross-
correlation. The main difference is that in convolution, the kernel is flipped
(see Equation 2.7, notice the minus sign in the index). Convolution is also
commutative, while cross-correlation is not. [16] Functions referred to as
convolution are implemented as a cross-correlation in many popular machine
learning libraries. [17, 18]

Given discrete real functions w and x, the discrete cross-correlation
w ⋆ x is defined as

(w ⋆ x)(t) =
∞∑

n=−∞
w(n)x(t + n)

=
∞∑

n=−∞
w(n)x(t + n),

(2.8)

where w[n] is the complex conjugate of w[n].
If we restrict the kernel wN to have a finite size N , Equation 2.8 can

also be rewritten as

(wN ⋆ x)(t) =
N−1∑
n=0

wN (n)x(t + n). (2.9)

7



2. Theory .......................................
WaveNet

WaveNet is a generative convolutional neural network that was pro-
posed in [19]. It was originally designed for text-to-speech tasks, but authors
suggest that the network could be used for many other audio generation prob-
lems, since it works with the same input signals. Suitability of this network
for guitar amplifier emulation was later confirmed by Damskägg and others
in [8] and in the followups [9, 10].

The distinct feature of the WaveNet are dilated convolutions, which are
visualised in Figure 2.3. The first layer is an input time series. In each further
layer, the space between inputs from the previous layer is doubled, which
increases the receptive field without significantly increasing computational
complexity. The example pattern in this figure can be described as dk =
{1, 2, 4, 8}.

Figure 2.3: Dilated convolutional layers of the WaveNet neural network.
Figure taken from [19].

To further improve model performance, the dilation pattern can be
repeated: e.g. dk = {1, 2, 4, . . . , 128, 1, 2, 4, . . . , 128}.

The WaveNet uses a gated activation function

z = tanh(Wf ∗ x) ⊙ σ(Wg ∗ x), (2.10)

where ∗ is the convolution operation, ⊙ is the element-wise multiplication,
σ(·) is the logistic sigmoid function, and Wf , Wg are the filter and gate learn-
able convolution kernels, respectively.

8



Chapter 3
Methodology

This chapter describes the practical approach – implementation of the
neural networks, the training process, and the evaluation experiments. Some
interim results are already presented in this chapter, while the final compar-
ison is done in chapter 4.

3.1 Dataset

To train an artificial neural network, an appropriate dataset is required.
During supervised learning, the network’s goal is to tune its internal parame-
ters so that the predictions are close to the provided target predictions. The
training set should be sufficiently large and diverse so that the network can
become well generalised, meaning that it has a good performance even on
input it has never seen. If the predictions on validation or test set have sig-
nificantly worse accuracy than on the training set, the network is overfitted.

Since no real devices were available during the thesis preparation, a
publicly available dataset was used. The Guitar Amplifier dataset [20] con-
tains recordings of chromatic scales, chords, and a few short songs, which
were processed through 5 different guitar amplifiers with several settings.
MATLAB scripts, provided with the dataset, can be used to extract a smaller
subset.

Two overdrive effects were chosen for modelling: the Mesa Boogie Ex-
press 5:50+ channel Crunch at gain 5, and the Blackstar HT-5 Metal channel
Disto at gain 3. For both of them, the chromatic scale, chords, and La Bamba
song were used for training, the blues scale for validation and the blues song
for testing. This yields 2 min 37 s of training data.

Two more audio effects, Delay and Tremolo, were added in order to
test the models’ adaptability to other than distortion effects. Initially it was
considered to use the IDMT-SMT-Audio-Effects dataset [21], which contains
guitar sounds and 11 audio effects, but the downside is that only single
tones and single chords are present in it. Therefore, the two desired effects
were designed in Audacity editor and applied to the aforementioned Guitar
Amplifier dataset.

The Delay effect was created by using the Echo plugin with the delay
time of 0.1 s and decay factor 0.5, which means that the sound is repeated
after 100 ms at half volume. The Tremolo effect is a volume function, defined
as a sinusoid with the frequency of 5.5 Hz. Its wet level parameter, which

9



3. Methodology ....................................
sets the mute intensity in each period, was set to 60 %.

All WAV files were converted to NumPy arrays with librosa [22] audio
processing library. To allow training in batches, each array was split into
100 ms (4410 sample) sequences. The resulting shape of the 3-dimensional
array is (batches, 1, 4410), the middle dimension represents number of chan-
nels. Normalisation was then performed by applying formula

x′(i) = x(i) − µ

σ
(3.1)

to the inputs x, where µ is the mean value (average) and σ the standard
deviation of the training set. The new standardised time series x′ now has
0 mean and standard deviation 1. This technique is commonly used to aid
the neural network with learning.

3.2 Understanding the Effects

To better understand what happens to the sound after it passes through
a guitar amplifier, a simple visualiser was developed in Python. Such spec-
trogram can be even used for automatic effects recognition [23]. First, Short-
time Fourier transform (STFT) is computed on the audio signal, which means
that a Fast Fourier transform (FFT) is performed on short overlapping win-
dows. The chosen parameters for STFT were 1024 samples window length
(∼ 23 ms at a sample rate of 44 100 Hz) and 512 samples window hop length.
From this we get a time-frequency spectrogram, which states what amplitude
each frequency has at each time frame.

Since human ear is more sensitive to pitch changes at lower frequencies,
the Mel scale was designed in such a way that an equal distance in pitch
anywhere on it is always perceived as equally distant by a listener. By
specifying a number of Mel bands, in this case 128, the frequency domain of
Fourier transform is divided into equally sized bins on the Mel scale. Finally,
the amplitude (power) should be converted to logarithmic dB scale, because
otherwise the quiet sections would not be visible.

The resulting spectrogram of the guitar sound before and after passing
through an amplifier, created with help of the librosa Python package, can
be seen in Figure 3.1. At first glance, it is obvious that the overdrive effect
adds some noise well above the original maximal frequency. The sound of
Mesa 5:50+ feels more sharp than of the HT-5 Metal, which is caused by
higher frequencies up until 20 kHz being present. Interestingly, there is a
visible spike in the final reverberation of Mesa 5:50+ at 11.5 s, not present
in other audio samples. The change in timbre is audible, but an explanation
for it is unknown.

10



............................. 3.2. Understanding the Effects

0
512

1024
2048
4096
8192

16384
Hz

Clean guitar

0
512

1024
2048
4096
8192

16384

Hz

Tremolo effect

0
512

1024
2048
4096
8192

16384

Hz

Delay effect

0
512

1024
2048
4096
8192

16384

Hz

Mesa Boogie 5:50+

0 1.5 3 4.5 6 7.5 9 10.5 12
Time (s)

0
512

1024
2048
4096
8192

16384

Hz

Blackstar HT-5 Metal

Figure 3.1: Guitar sounds with and without audio effects, visualised with a Mel
spectrogram. Strong distortion in the high frequencies can be seen in the last
two overdrive effects.
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3. Methodology ....................................
3.3 Performance Measurement Techniques

3.3.1 Loss Functions

A loss function is a certain metric which tells the neural network how
well it performs. It is also used in the backpropagation step, when the
network’s parameters are updated. Many loss functions exist, each of them
might be suited better for a different type of data. Four were chosen for
evaluating the accuracy of predicted audio.

The Mean Absolute Error (MAE), also known as the L1 loss, is a classic
loss function commonly used in machine learning. It is the arithmetic mean
distance between predictions and targets, or as an equation

MAE = 1
n

n∑
i=1

|yi − ŷi|, (3.2)

where n is the length of the data, y is the expected value, ŷ is the predicted
value.

Another common regression loss is the Mean Squared Error (MSE) or
the L2 loss. It is similar to the L1 loss, but the squared difference penalises
larger errors and outliers more significantly. A square root of the MSE is
called the Root Mean Squared Error (RMSE), its advantage is that such
error is represented in the same units as the data.

RMSE =
√

MSE =

√√√√ 1
n

n∑
i=1

|yi − ŷi|2 (3.3)

The Error-to-Signal Ratio (ESR) loss was proposed in [8] to measure
audio signals. Written as

ESR =
∑n

i=1 |yi − ŷi|2∑n
i=1 |yi|2

, (3.4)

it can described as the squared error divided by the target signal energy.
Finally, in [7] it was proposed to also measure the DC offset in addition

to the ESR loss. This leads to the combined ESR + DC loss, where

DC =
| 1
n

∑n
i=1(yi − ŷi)|2

1
n

∑n
i=1 |yi|2

. (3.5)

3.3.2 Pre-Emphasis

In Figure 3.1, it can be seen that most of the sound energy is con-
centrated in the lower frequencies of the spectrum. On the other hand, the
overdrive effect has a significant impact on the frequencies above 10 kHz,

12



....................... 3.3. Performance Measurement Techniques

which should be correctly accounted for in the evaluation. To compensate
for this when calculating a loss or accuracy, high-pass filters are used in
audio processing to amplify the higher frequencies. Such process is called
pre-emphasis filtering. First, the filter is applied to both the expected and
predicted values, then the loss is computed from pre-emphasised data. An
exception is made in case of the ESR+DC loss function, where pre-emphasis
is used only for the ESR part.

In [11], three perceptual filters were proposed and compared for train-
ing a guitar amplifier model, along with the case of not using pre-emphasis
at all. Practically, all the filters were ready to use thanks to the auraloss
library [24], they can be easily plugged into the training or validation loop as
simple PyTorch 1D convolutions. Because of that, the use of pre-emphasis
filters does not have a negative impact on processing time.

First, the first-order high-pass filter (HP) has been the usual choice for
speech processing for a long time [25]. Its operation can be described with
an equation

y(n) = x(n) − αx(n − 1), (3.6)

where y(n) is the current output of the filter, x(n) is the current input sample,
and x(n − 1) is the previous input sample. The coefficient α usually lies
between 0.8 < α < 1; values 0.85 and 0.95 were chosen for the RNN and
WaveNet, respectively, in previous research [10, 11]. At 44.1 kHz sampling
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Figure 3.2: Bode plot showing the frequency response of tested pre-emphasis
filters at 44.1 kHz sampling rate.
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3. Methodology ....................................
rate, this filter attenuates frequencies below cca 8 kHz and the frequencies
above that are slightly amplified.

The second pre-emphasis filter is the folded differentiator (FD), pro-
posed in [11]. An output of this filter is computed as

y(n) = x(n) − αx(n − 2), (3.7)

which means that the current and the 2nd-to-last input values are used for
filtering the output. This works as a band-pass filter with the peak at around
10 kHz. The intuition behind this is to attenuate the importance of frequen-
cies above 15 kHz where the human hearing gets limited.

Finally, the A-weighting curve filter (AW), defined in the international
standard IEC 61672:2003, represents the human-perceived loudness across
the frequency range. When a device reports noise levels in dBA units, it
means that the measurement was done after passing the signal through the
A-weighting filter. The curve is defined for continuous signal in quite a
complicated way, hence it was approximated as a 101-tap Finite Impulse
Response (FIR) filter using least-squares error minimisation.

Magnitude and phase shift of the frequency response of these filters is
visualised with a Bode plot in Figure 3.2.

3.4 Neural Networks Implementation

All the neural networks were implemented in Python with use of the
PyTorch [26] machine learning library. Adam optimiser [27] with the de-
fault decay coefficients β1 = 0.9, β2 = 0.999 was used for gradient descent.
Learning rates were different for each neural network.0 Models were trained
on a single NVIDIA GeForce GTX 1080Ti graphics card provided by the
Department of Cybernetics computing server.

3.4.1 Long Short-Term Memory

LSTM
Unit

FC
layer + ŷ(t)x(t)

c(t), h(t)
Figure 3.3: Schematic of the LSTM recurrent neural network with a skip con-
nection. x is the sequence of inputs, ŷ are the predictions, and c, h are the cell
state and hidden state respectively.
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.......................... 3.4. Neural Networks Implementation

The Long Short-Term Memory (LSTM) network was developed inde-
pendently in PyTorch. The model, shown in Figure 3.3, consists of a single
LSTM cell, followed by a fully connected layer, and a skip connection that
should mitigate the vanishing gradients problem. Because RNNs are also vul-
nerable to the exploding gradients problem, gradient clipping is performed
before each optimiser step.

The hidden size hyperparameter affects shapes of the hidden state and
cell state vectors, as well as the predicted value. Therefore, the fully con-
nected layer shrinks it down to a single dimensional time series prediction.
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Figure 3.4: Evolution of training and validation loss of the RNN during training.

By performing a grid search, optimal values for the batch size and
learning rate hyperparameters were found to be 56 and 0.001, respectively.
The rate at which the training and validation losses decrease during network
training can be seen in Figure 3.4. For next experiments, training was limited
to 1000 epochs to save some time as the validation loss did not improve
further.

The LSTM network’s performance was then evaluated with hidden
sizes ranging from 16 to 192 on the Mesa Boogie 5:50+ dataset. For each of
the hidden sizes, the network was trained ten times and the median validation
loss was chosen as the performance index. The results are shown in Figure 3.5.
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Figure 3.5: ESR validation loss of the LSTM network with different hidden
sizes. Almost no improvement can be seen beyond hidden size 96.

Large changes in validation loss can be seen at small hidden sizes, but the
differences get gradually smaller. Interestingly, the increase in hidden size
did not make the training process significantly longer, 1000 epochs took cca
1 h 20 min for the hidden size 16 and 1 h 35 min for the hidden size 192.

Only the networks with hidden sizes 64 and 96 (LSTM-64 and LSTM-
96) were used in later experiments.

3.4.2 WaveNet

Since the dilated convolutions might be tricky to understand and cor-
rectly implement, it was decided to use an existing open-source WaveNet
implementation. The PedalNet [28] project, which uses the PyTorch Light-
ning [29] machine learning library, is specifically designed for the task of
guitar effects emulation. For this thesis, minor edits to the code needed to
be done to make it work with the latest version of PyTorch Lightning and
a different dataset format. After some experimenting, learning rate 0.0001
and batch size 48 were chosen as hyperparameters.

Experiments were done with three dilation patterns, inspired by [10]:

dk = {1, 2, 4, . . . , 512} (10 × 1 layers),
dk = {1, 2, 4, . . . , 256, 1, 2, . . . , 256} (9 × 2 layers), and
dk = {1, 2, 4, . . . , 128, 1, 2, . . . , 128, 1, 2, . . . , 128} (8 × 3 layers).

For each dilation pattern, an ablation study was done on the number of
convolution channels.

Performance of each of the WaveNet sizes is shown in Figure 3.6. With
too little convolution channels, the network cannot learn the effect well, but
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Figure 3.6: ESR validation loss of various WaveNet model sizes on the Mesa
5:50+ validation dataset. The numbers at nodes indicate number of convolution
channels.

increasing the number of learnable parameters significantly increases the time
needed for training. When choosing the optimal model complexity, both the
accuracy and training time were considered. Based on the presented results,
the 18-layer and 24-layer WaveNets, both with 16 convolution channels, were
chosen for further experiments. Relation between the training and validation
loss during training is shown in Figure 3.7.

3.5 Experiments

First, a grid search experiment was conducted to find the best combi-
nation of a loss function and a pre-emphasis filter for learning. The study
was done on LSTM networks with hidden size 64 because they were faster to
train than WaveNets. With 4 loss functions (MAE, MSE, ESR, ESR+DC)
and 4 pre-emphasis filter options (no filter, A-weighting, first-order high-pass,
folded differentiator), and two guitar amplifier models (Mesa Boogie 5:50+,
Blackstar HT-5 Metal), this meant the total of 4 × 4 × 2 = 32 training con-
figurations. As the learning process is non-deterministic, it was repeated 5
times with each configuration and the one with the lowest achieved valida-
tion loss was included in the results. Comparison of all configurations was
done on the validation set with 16 metrics (all combinations of loss functions
and pre-emphasis filters).

Next, the RNN andWaveNet architectures were directly compared The
selection criteria for this experiment were as follows:. Two WaveNets which have shown the best performance in Figure 3.6
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Figure 3.7: Evolution of training and validation loss of the WaveNet during
training.

. An LSTM network with hidden size 64 and the best combination of loss
function and pre-emphasis

. An LSTM network with hidden size 96 and the worst combination of
loss function and pre-emphasis

. An LSTM network with hidden size 96 and the best combination of loss
function and pre-emphasis

Performance of all models was measured on the test set using the RMSE and
ESR metrics without pre-emphasis and for both overdrive effects.

Finally, the models mentioned in the previous experiment were also
trained on the Tremolo and Delay effect datasets. Performance evaluation
was done in the same way as in the previous experiment, i.e. RMSE and
ESR test losses without pre-emphasis.
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................................... 3.6. Listening Tests

3.6 Listening Tests

Loss functions give an objective measurement of how close a predicted
waveform is to the expected one, however, in the end it is more important
how big of a difference can be heard by listeners. For example, a vast number
of predictions can have the exact same loss or accuracy, but each of them
would sound differently. That is why listening tests and the subjective results
from them were added to the model evaluation.

The Multi Stimulus test with Hidden Reference and Anchor (MUSHRA)
method, defined in the ITU-R BS.1534-3 Recommendation [30], was used to
conduct the listening tests. In each experiment, participants are instructed
to grade test samples with a score between 0 (Bad) and 100 (Excellent), de-
pending on how close they sounds to the provided reference. Among the test
signals, the reference and two low-passed anchored signals are hidden with
the purpose of having the best and worst signals well defined. In theory,
participants should rate the hidden reference with a score of 100, while the
anchors should get the worst scores relative to other samples.

Test sessions were performed remotely by using the webMUSHRA [31]
web-based testing interface, which can be easily configured with a single
YAML file. The ITU Recommendation mandates the same equipment and
test conditions for all participants, but in this case participants were in-
structed to be in a quiet room and to use their headphones. Schedule of each
test session is outlined in Appendix A.
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Chapter 4
Results

4.1 Loss Function and Pre-Emphasis Training
Combinations

The purpose of this experiment was to find the best combination of a
loss function and pre-emphasis filter for training the LSTM-64 model. There
were 32 test configuration and their performance was measured with 16 met-
rics. The raw results are presented in a table in Appendix B due to its size.
However, losses computed with different loss functions cannot be directly
compared, so it was needed to come up with a way to compare them relative
to each other.

A simple scoring system was therefore used, where for each type of
measurement, the configuration achieving the lowest validation loss received
15 points and the worst one got 0 points. These relative scores are shown in
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Figure 4.1: Total and average scores (from Table 4.1) achieved by the LSTM-64
trained with 16 combinations of loss functions and pre-emphasis filters
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4. Results .......................................
Table 4.1. To get the final score of a training configuration, the sum or the
arithmetic mean of all sub-scores was calculated. Both of these are plotted
in Figure 4.1, where the training configurations can be easily compared.

It appears that the best training loss function is the Mean Squared Er-
ror (MSE), which achieved the lowest validation loss in 75% of all measure-
ments regardless of the overdrive effect. When looking for the best training
pre-emphasis function, the first-order high-pass filter got the highest score

Training Validation Loss + Pre-Emphasis
Preemp. none AW HP FD

Loss a b c d a b c d a b c d a b c d
Mesa Boogie 5:50+

no
ne

a 14 12 12 12 10 2 2 2 7 4 4 3 4 2 2 2
b 15 15 15 15 11 13 13 13 10 10 10 10 11 11 11 12
c 13 14 14 14 8 5 5 5 9 7 7 7 3 3 3 3
d 10 10 10 10 2 1 1 1 4 2 2 2 1 1 1 1

AW

a 9 6 6 6 15 11 11 11 5 1 1 1 9 4 4 4
b 4 7 7 7 13 15 15 14 1 5 5 5 7 9 9 9
c 5 8 8 8 14 14 14 15 2 3 3 4 5 7 7 6
d 3 1 1 1 7 7 7 7 0 0 0 0 0 0 0 0

H
P

a 12 13 13 13 9 6 6 6 15 13 13 13 14 8 8 8
b 8 9 9 9 5 10 10 10 14 15 15 15 13 14 14 14
c 6 5 5 5 3 4 4 4 13 14 14 14 8 10 10 11
d 7 3 3 3 1 3 3 3 12 11 11 11 6 6 6 7

FD

a 11 11 11 11 12 9 9 9 11 9 9 9 15 12 12 13
b 2 4 4 4 6 12 12 12 8 12 12 12 12 15 15 15
c 1 2 2 2 4 8 8 8 6 8 8 8 10 13 13 10
d 0 0 0 0 0 0 0 0 3 6 6 6 2 5 5 5

Blackstar HT-5 Metal

no
ne

a 15 10 10 10 12 0 0 0 10 1 1 1 9 0 0 0
b 11 15 15 15 9 5 5 6 8 7 7 7 5 6 6 6
c 10 11 11 11 6 3 3 3 6 6 6 6 4 4 4 5
d 13 14 14 14 10 4 4 4 9 5 5 5 7 5 5 4

AW

a 6 5 5 5 14 8 8 9 4 2 2 2 8 2 2 2
b 0 0 0 0 1 6 6 5 0 0 0 0 0 1 1 1
c 3 3 3 3 11 13 13 14 1 4 4 4 2 7 7 7
d 2 2 2 2 5 10 10 10 2 3 3 3 1 3 3 3

H
P

a 14 12 12 12 13 14 14 13 15 12 12 12 14 12 12 11
b 8 9 9 9 7 15 15 15 12 15 15 15 12 15 15 15
c 9 8 8 8 8 11 11 11 13 14 14 14 13 14 14 13
d 7 7 7 7 4 9 9 8 11 13 13 13 11 11 11 12

FD

a 12 13 13 13 15 12 12 12 14 10 10 10 15 10 10 10
b 1 1 1 1 0 2 2 1 3 8 8 8 3 9 9 8
c 5 6 6 6 3 7 7 7 7 11 11 11 10 13 13 14
d 4 4 4 4 2 1 1 2 5 9 9 9 6 8 8 9

Abbrev. a = MAE loss, b = MSE loss, c = ESR loss, d = ESR+DC loss
15 is the best, 0 is the worst achieved validation loss in each column

Table 4.1: Relative validation error scores of the LSTM-64 models trained with
different loss function and pre-emphasis combinations.
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......................... 4.2. Objective Evaluation of the Models

in 10 out of 16 metrics on the Blackstar HT-5 Metal dataset, whereas it cor-
related with the validation pre-emphasis metrics in the case of Mesa Boogie
5:50+.

The plots of total and average scores in Figure 4.1 further confirm that
the combination of MSE loss function and first-order high-pass filter should
be the best choice for learning the LSTM network. Surprisingly, the model
trained with ESR+DC loss function and A-weighting pre-emphasis filtering,
which were the choices of Wright and others in [10], got the lowest score of
all combinations in these experiments.

4.2 Objective Evaluation of the Models

Two WaveNet and three LSTM neural networks were chosen for the
final comparison according to the criteria outlined in section 3.5. To measure
the models’ accuracy, ESR losses were calculated on the test sets without
pre-emphasis. Results of the Mesa Boogie 5:50+ and Blackstar HT-5 Metal
models are shown in Table 4.2.

In terms of accuracy, there is no clear winner when comparing the
LSTM and WaveNet architectures; the Mesa amplifier model was better
learned by the LSTM network, the WaveNet excelled in learning the HT-5
Metal amplifier. However, the LSTM network took only around 1 h 20 min to
1 h 30 min to learn, whereas the training time of a sufficiently large WaveNet
was 2 or more hours. It was also once again confirmed that it is preferred
to use the MSE loss and first-order high-pass filter pre-emphasis for training
the LSTM network.

Network Training ESR Test Loss (%)
Type Configuration Mesa 5:50+ HT-5 Metal

WaveNet-18 ESR loss, HP filter 4.44 1.72
WaveNet-24 ESR loss, HP filter 3.04 1.23
LSTM-64 MSE loss, HP filter 2.54 2.95
LSTM-96 MSE loss, HP filter 2.19 2.46
LSTM-96 ESR+DC loss, AW filter 2.47 2.52

WaveNet-18 ESR loss, HP filter 0.29* 0.32*
LSTM-96 ESR+DC loss, AW filter 0.20* 1.80*
* Results achieved by Wright et al. (2020) [10] on a different test set

Table 4.2: ESR loss achieved by the compared models on the test sets of Mesa
5:50+ and Blackstar HT-5 Metal overdrive effects.

Additionally, the networks have tried to learn the Tremolo and Delay
effects, which did not end up being successful. These results are presented
in Table 4.3. The wanted effects were inaudible in produced recordings,
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4. Results .......................................
the models only introduced ’clicks’ and other sound impairments. It was
meaningless to have these recordings rated in the advanced listening tests.

A probable explanation for this failure is that these effects are very
time-dependent – the Tremolo effect modulates volume periodically, the De-
lay effect always repeats sound after a set time. When pre-processing was
performed, the recordings were split into 100 ms samples and shuffled in each
training epoch, which completely broke the time context. This is not an issue
with overdrive effects where the effect response time is almost negligible.

Network Training ESR Test Loss (%)
Type Configuration Delay Tremolo

WaveNet-18 ESR loss, HP filter 37.17 12.44
WaveNet-24 ESR loss, HP filter 36.83 12.13
LSTM-96 MSE loss, HP filter 25.06 9.21
LSTM-96 ESR+DC loss, AW filter 25.63 9.98

Table 4.3: ESR loss achieved by the compared models on the test sets of Tremolo
and Delay effects.

4.3 Subjective Results

Some of the trained models were compared in 6 sets of listening tests, 3
for each of the overdrive effects, by 9 assessors aged between 16 and 29 years.
All assessors declared that they consider their hearing to be normal without
any impairments. Five of them (56%) stated that they have experience with
playing a musical instrument, which could be a precondition to being more
sensitive to imperfect sounds. An average MUSHRA score of the hidden
references given by musicians was 98.9, whereas non-musicians rated them
on average with 87 points, but the the population sample is too small and
the test environment was not controlled, so the causation cannot be proved.

The MUSHRA Recommendation [30] states that assessors should be
excluded from the responses if they rate the hidden reference for more than
15% of the test items with a score lower that 90, or if they give the low
quality anchor more than 90 points for more that 15% of the test items.
This would, however, exclude most of the participants of this experiment –
one of the assessors even graded one mid anchor sample with a score of 100,
unfortunately it was not possible to analyse whether this happened due to
a simple error or as a deliberate judgement. Thus, the post-screening step
was skipped and no submissions were rejected, but the results should not be
taken as conclusive.

The grades given by assessors are presented in box plots, with outliers
shown as circles and the labelled average scores as diamonds. Results of
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................................. 4.3. Subjective Results

the first experiment in Figure 4.2 compare the quality of LSTM-64 networks
trained with four different training loss functions. In Figure 4.3, a comparison
is made between models trained with different pre-emphasis filters. Finally,
the sound quality of WaveNet and LSTM models is compared in Figure 4.4.
Almost all mean scores appear in the ’Excellent’ range above 80 points, but
the data sample is not convincing enough to be able to declare a decisive
winner.
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Figure 4.2: MUSHRA scores given in the listening test where training loss
functions were compared.
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Figure 4.3: MUSHRA scores given in the listening test where training pre-
emphasis functions were compared.
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Figure 4.4: MUSHRA scores given in the listening test in the final model com-
pare test.
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Chapter 5
Conclusion

In conclusion, two neural network architectures were presented, which
were able to learn two valve guitar amplifier models with high accuracy from
short audio recordings. Several experiments were conducted to find the best
learning hyperparameters, where it was shown that the correct combina-
tion of training loss function and pre-emphasis filtering ultimately lead to
lower validation error. This was followed by a direct comparison between
the WaveNet and the recurrent neural network.

WaveNet achieved lower test errors on the Blackstar HT-5 Metal am-
plifier model, whereas the Mesa 5:50+ amplifier was better learned by the
LSTM network. In listening tests, assessors have stated that most of the
presented models have an ’Excellent’ audio quality when compared to the
reference. There might not be a clean winner, but the LSTM network has
the bonus of significantly faster training time. It was also tested whether
the networks could learn other than overdrive effects. Unfortunately, this
was not successful with the Tremolo and Delay effects, probably because the
time context was lost during pre-processing when the sound sequences are
split into batches and shuffled.

This thesis did not aim to create a real-time implementation, but it
would undoubtedly be a major improvement. Both the WaveNet and the
RNN already have existing real-time versions created by other researchers.
In the future, it would be interesting to explore some other approaches to
the effects emulation problem, for example with the Generative Adversial
Networks (GANs). Finally, the produced audio still contains small imperfec-
tions, which might be fixed with some smart post-processing.
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Appendix A
Listening Test Schedule..1. Introduction: Participant is shortly briefed with the goal of their par-
ticipation and the rules...2. Volume settings: In this step, participant can adjust the volume of
test samples inside the web interface. It cannot be changed later...3. Training: Participant gets familiar with the MUSHRA grading inter-
face in a practical manner, no ratings are recorded from this step...4. Mesa 5:50+: The following experiments follow in random order:..a. MUSHRA – compare Mesa 5:50+ validation samples learned with:

Network architecture Training loss Training pre-emphasis
LSTM-64 MAE none
LSTM-64 MSE none
LSTM-64 ESR none
LSTM-64 ESR+DC none..b. MUSHRA – compare Mesa 5:50+ validation samples learned with:

Network architecture Training loss Training pre-emphasis
LSTM-64 MSE none
LSTM-64 MSE A-weighting
LSTM-64 MSE HP (α=0.85)
LSTM-64 MSE FD (α=0.85)..c. MUSHRA – compare Mesa 5:50+ test samples learned with:

Network architecture Training loss Training pre-emphasis
WaveNet-18 ESR HP (α=0.95)
WaveNet-24 ESR HP (α=0.95)
LSTM-64 MSE HP (α=0.85)
LSTM-96 MSE HP (α=0.85)
LSTM-96 ESR+DC A-weighting..5. HT-5 Metal: The following experiments follow in random order:..a. MUSHRA – compare HT-5 Metal validation samples learned with:
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A. Listening Test Schedule ...............................
Network architecture Training loss Training pre-emphasis

LSTM-64 MAE none
LSTM-64 MSE none
LSTM-64 ESR none
LSTM-64 ESR+DC none..b. MUSHRA – compare HT-5 Metal validation samples learned with:

Network architecture Training loss Training pre-emphasis
LSTM-64 MSE none
LSTM-64 MSE A-weighting
LSTM-64 MSE HP (α=0.85)
LSTM-64 MSE FD (α=0.85)..c. MUSHRA – compare HT-5 Metal test samples learned with:

Network architecture Training loss Training pre-emphasis
WaveNet-18 ESR HP (α=0.95)
WaveNet-24 ESR HP (α=0.95)
LSTM-64 MSE HP (α=0.85)
LSTM-96 MSE HP (α=0.85)
LSTM-96 ESR+DC A-weighting..6. Questionnaire: Participants answer the following questions:. Age. Do you consider your hearing to be normal (i.e. no hearing loss,

no tinnitus)? (Yes/No). Can you play any musical instrument? (Yes/No)..7. End of test session
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Appendix B
Validation Data Tables of Training
Combination Experiments
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Table B.1: Validation errors of all LSTM-64 Mesa 5:50+ training combinations
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Table B.2: Validation errors of all LSTM-64 HT-5 Metal training combinations
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