
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

The Attacker IP Prioritizer: An IoT Optimized
Blacklisting Algorithm

Bachelor thesis

Thomas O’Hara, B.L.A

Study program: Electrical Engineering and Computer Science
Field of study: Computer Science

Supervisor: Ing. Sebastián Garćıa, Ph.D.

Prague, May 2021

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

480003Personal ID number:O'Hara ThomasStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Electrical Power Engineering

Electrical Engineering and Computer ScienceStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

The Attacker IP Prioritizer : An IoT Optimized Blacklisting Algorithm

Bachelor’s thesis title in Czech:

The Attacker IP Prioritizer : An IoT Optimized Blacklisting Algorithm

Guidelines:
IP address-based blacklists are an integral part of most firewall, IDS and security systems for any kind of Internet-connected
device. Even modern Threat Intelligence feeds are based on IP addresses, domains and URLs. Therefore,the majority of
our protection systems, such as in DNS servers and webbrowsers depend on blacklists. However, there has not been yet
a goodevaluation about how effective these blacklists are, or how they can beoptimized for different environments.
With the ever constant growth of 5G and the bypassing of traditional firewalls with direct Internet connections, it is becoming
more and more difficultto protect IoT devices using traditional blacklisting methods. Many blacklists inthe community are
created by adding the IP addresses of attackers into ageneral feed, with the IP addresses usually coming from the data
collected fromone or many honeypots. This idea is assumed to work well, but it has twomaindrawbacks for IoT environments.
First, although systems with greater storageand large computational resources may afford to store and parse an evergrowing
blacklist, small Internet of Things (IoT) devices have limited computational resources and may not hold large blacklists in
memory. Second,IP addresses attacking today can be associated with normal services in thefuture, especially in cloud
environments. Moreover, the nature of IoT malware shows that attacking IP addresses mostly attack for a short amount
of time (afew hours or days), questioning the value of blocking IP addresses for extendedperiods without verification.
In this Thesis, I will propose an algorithm to optimize the creation ofblacklists and an evaluation method in order to help
understand their issues.First, I will design a new algorithm for creating blacklists that is optimized for theprotection of IoT
devices, called the Attacker IP Prioritizer (AIP). Second, I willpresent an idea for a standardized methodology for evaluating
the efficacy of blacklists.
The blacklist algorithm will be designed to optimize for certainperformance metrics common in IoT scenarios. AIP will
create a routinelyupdated scoring system trained on network captures gathered from real IoThoneypot networks. For each
source IP, AIP extracts a set of performancemetrics, among which are:
●Total number of connections
●Average number of connections per day
●Total number of bytes transferred
●Average bytes per connection
●Total number of packets transferred
●Average number of packets per connection
●Total connection times
●Average connection times per connection
These performance metrics will then be used to create models that usethe metrics to generate a score for each malicious
IP. This sore will then beused to decide if that IP should be blocked or not.
One such model I propose will be designed to assign higher scores toIPs that are consistent in their attacks for a long
time. In this model, IPs thatattack a meaningful amount of times every day will be assigned higher scores,thus making this
blacklist more likely to contain IPs from devices that are higherin botnet hierarchies, such as victim bots, compromised
computers.
Another model will be designed to assign higher scores to newer IPsthat attack a lot, thus prioritizing intense short term
attackers. IPs in this blacklistwill be more likely to be end-user infections spreading to other IoT, as well andinfected web
servers and fast changing cloud deployments. It achieves this byassigning greater importance to high total metric counts,
and ages each IPbased simply on how long it has been since that IP was first added to thehistorical dataset.
The evaluation methodology will consist of training each blacklist withdata from the past and evaluating how accurate the
protection will be. Thetraining and evaluation will be done in an iterative way, using each successiveday to update the
blacklists, and each ‘tomorrow’ date to evaluate them.

Bibliography / sources:

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

1.Sûnnet Beskerming. 2007. Time to blacklist
blacklists.http://www.beskerming.com/commentary/2007/07/01/196/Time_to_Blacklist
_Blacklist
2.Baris Coskun. 2017. (Un) wisdom of Crowds: Accurately SpottingMalicious IPClusters Using Not-So-Accurate IP
Blacklists.IEEETransactions on Information Forensics and Security 12, 6
(2017)https://ieeexplore.ieee.org/abstract/document/7839928/
3.Sivaramakrishnan Ramanthan, Jelena Mirkovic, and Minlan Yu. 2018.BlacklistsAssemble: Aggregating Blacklists for
Accuracy. TechnicalReport. Technical ReportISI-TR-730. Information Sciences
Institute.https://steel.isi.edu/members/sivaram/papers/blag_technical_report.pdf
4.Ramanathan, S., Mirkovic, J., & Yu, M. (2020, January). BLAG:Improving the Accuracy of Blacklists. In 27th Annual
Network andDistributed System Security Symposium, NDSS (pp. 23-26).
5.Michael Bailey Sushant Sinha and Farnam Jahanian. 2008.Shades ofgrey: On the effectiveness of reputation-based
“blacklists”. 2008 3rdInternational Conference On Malicious and Unwanted Software(MALWARE).
IEEE,https://ieeexplore.ieee.org/abstract/document/4690858

Name and workplace of bachelor’s thesis supervisor:

Ing. Sebastián García, Ph.D., Artificial Intelligence Center, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 21.05.2021Date of bachelor’s thesis assignment: 25.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Sebastián García, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iii

iv

Declaration

I hereby declare I have written this bachelor thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, May 2021

..
Thomas O’Hara, B.L.A

v

vi

Abstract

IP address-based blacklists are the most important part of firewalls, security systems and
Threat Intelligence feeds. However, there is no comprehensive and verified evaluation of
blacklists to determine if they are effective, how efficient they are, or how they forget data.
Given the reliance in Threat Intelligence feeds, it is critical for blacklists to be optimally
generated and evaluated.

With the constant growth of 5G and IPv6 technologies, IoT devices have two unique
problems: direct connection to the Internet and resources constrains. Therefore, tradi-
tional long blacklists may not fit in IoT devices, and may take time to process. Moreover,
IP addresses attacking today may be associated with benign services later, marking a
need to update blacklists.

This thesis proposes an algorithm to optimize the creation of blacklists as well as
an evaluation method targeted at better quantifying a blacklists efficacy over time. Our
Attacker IP Prioritizer, or AIP, framework is designed to optimize for certain performance
metrics common in IoT scenarios.

The AIP framework includes three models that generate prioritized blacklists using
a threat score for each malicious IP. This score is then used to decide if that IP should
be blocked or not. Two of these models were designed to produce a score by combining
features with a time-based aging function that decreases or increase that score. A third
model uses a Machine Learning (ML) model that predicts if each particular IP is going
to attack in the future.

The evaluation methodology of AIP consists of building each blacklist with data from
the past and evaluating how accurate the protection is in the future. The training and
evaluation were done in an iterative way, using each successive day to update the black-
lists, and each ‘tomorrow’ date to evaluate them. The performance metrics used were
percentage of bytes blocked, total duration of attacks blocked in the future, percentage
of flows blocked in the future, and total IP addresses blocked in the future.

We compared AIP against four major blacklists that are provided for free as threat
intelligence feeds in the Internet. For this we created an Index Metric that computes the
effectiveness of each IP address in a blacklists to protect from future threats. The best
AIP model achieved an Index metric of 0.0068%, which is 22x times better than the rest
of the threat intelligence feeds on the Internet. We conclude that the AIP models and the
evaluation methodology can help improve the protection of memory-constrained devices
by maximizing the impact of blacklists.

Keywords: IoT, Honeypots, Blacklists, Threat Intelligence, Random Forest, Machine
Learning, Intrusion Prevention

vii

Acknowledgements

I would first like to thank my thesis advisor Ing. Sebastián Garćıa, Ph.D. from the FEE,
Czech Technical University. I would like to thank AvastLab and the AIC group of the
CVUT University in Prague for their support. Also I would like to thank Veronica Valeros
for the use of her Hornet 15 dataset. Special thanks to Maŕıa José Erquiaga, Maria Rigaki,
Ondřej Lukáš, and Elnaz Babayeva for their support and reviews.

Thomas O’Hara

viii

List of Tables

3.1 Features extracted from the network traffic from the flows of each attacking
IP . 6

3.2 Extracted Features per IP for Training . 8
3.3 Data Weights for PC Model . 9
3.4 Data Weights for PN Model . 9
3.5 Example IP from Main Database After 4 months 10
3.6 Hyper-parameters of the Random Forest Algorithm. Trained with heuristic

random search. 15
3.7 Values of the Hyper-parameters of the Random Forest after the heuristic

random grid search . 16
3.8 Performance Metrics . 18

4.1 Devices used as honeypots . 21
4.2 Common dynamic port ranges [7] . 22
4.3 Honeypot locations for data validation . 23

5.1 Average Percent Blocked per Blacklist per Metric 28
5.2 Performance Index Per Blacklist (Higher is Better) 28

ix

List of Figures

3.1 Graph of Aging Function for the Prioritize Consistent AIP algorithm . . . 12
3.2 Graph of Aging Function for the Prioritize New algorithm 13
3.3 ROC curve for Logistic Regression . 14
3.4 ROC curve for Random Forest . 14
3.5 AIP Framework evaluation methodology 18

4.1 Aposemat IoT Lab capture method . 21

5.1 Comparison of Blacklist Sizes in Log Scale. RF X stands for Random
Forest model trained up to X days in the past. Y axis is in Logarithmic
scale. 24

5.2 Comparison of the Percentage of Malicious Bytes Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past. 25

5.3 Comparison of the Percentage of Total Duration Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past. 26

5.4 Comparison of the Percentage of Malicious Flows Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past. 27

5.5 Comparison of the Percentage of Malicious IPs Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past. 27

6.1 Average Bytes blocked per Blacklist, Hornet 15 Evaluation 33
6.2 Average Flows blocked per Blacklist, Hornet 15 Evaluation 33
6.3 Average IPs blocked per Blacklist, Hornet 15 Evaluation 34
6.4 Average Duration blocked per Blacklist, Hornet 15 Evaluation 34

x

Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Previous Work 3

3 AIP Framework 5
3.1 General Methodology . 5
3.2 Processing of Input Data . 5
3.3 Weighted Linear Combination Algorithms 6

3.3.1 Prioritize Consistent Algorithm . 8
3.3.2 Prioritize New Algorithm . 11

3.4 Random Forest Algorithm . 13
3.5 All IP Blacklist . 16
3.6 Evaluation Framework . 16

4 Datasets 20
4.1 Design of the IoT Laboratory . 20
4.2 Data Processing Techniques . 20
4.3 Hornet 15 Dataset . 22

5 Experiments and Comparisons 24

6 Results and Analysis 29
6.1 Results of Blacklists Size Comparison . 29
6.2 Results of the Metrics Comparison . 29

6.2.1 Results of Blacklists Bytes Comparison 29
6.2.2 Results of Blacklists Duration Comparison 30
6.2.3 Results of Blacklists Flows Comparison 30
6.2.4 Results of Blacklists IPs Comparison 31

6.3 Results of Blacklists Performance Index Comparison 31
6.4 About the Emerging Threats, DigitalSide and FireHOL blacklists 32

6.4.1 Location Bias Testing using the Hornet 15 Dataset 32

7 Conclusion 35

References 39

xi

Chapter 1

Introduction

Blacklists have always been an essential part of security, being used in Antivirus, Intrusion
Detection Systems (IDS), and threat intelligence feeds. They are easy to generate, have
some level of accuracy, and are easy to implement. IoT devices, in particular, would benefit
from them as a defense mechanism given the amount and diversity of attacks they receive
and given the future direct exposure to the Internet given by 5G networks. Despite the
known constraints of IoT devices, there are no methodologies that we know of for efficiently
creating such blacklists. There are also no standard methodologies for evaluating and
comparing which blacklists are more effective and perform better. Especially in the IoT
world, devices not only have become a primary target for attackers that turn them into
malicious bots [30], but they are also often resource-constrained, not providing enough
memory and processing capacity to protect themselves [4, 5]. As far as we know, there are
no comparison methodologies for blacklists, even for traditional computers and systems.

IoT blacklists are needed because they may be the first line of defense between the
attacks that occur every day in these devices. There are free blacklists currently available,
and many are sold as part of the threat intelligence business, but there is no comprehensive
analysis of how good they are, how many errors they make, and how many resources
they use. This may imply that blacklists may not work as well as we believe [2]. Some
methods were proposed to improve their performance, mainly making use of aggregation of
blacklists [20] and IP clustering techniques [6], while others focus more on better-utilizing
traffic data [23]. However, these methods do not compare blacklists and do not focus on
improving the performance while reducing the size of the blacklist.

This thesis presents an alternative framework for generating blacklists of IP addresses,
called Attacker IP Prioritizer (AIP). AIP consists of three models that ingest network
data and output blacklists. Two of the three models are based on a linear combination
of normalized data used to create a score for each IP. The final list of IPs in the blacklist
depends on this score. These models aim at maximizing the amount of malicious traffic
blocked while minimizing the size of the blacklist. In this way, the blacklists are easily
deployable in devices with small memory, such as smart-doorbells [1]. The third model
implemented in the AIP framework is a Random Forest machine learning model. This
method uses a concatenated database of labeled past data to train the model and then
predicts which IPs seen in the past are going to be seen in the next time window of
operation and should be blocked. These predicted IPs are used to create a blacklist.

In order to create our blacklists and evaluate our methods, we created a specific dataset
of real IoT attacks. This dataset was created by capturing traffic in the Aposemat IoT
laboratory [10], using real IoT devices for five months, namely December 2020 until April

1

2021. These devices were exclusively used as honeypots, and the traffic was filtered such
that every connection to them can be considered an attack.

The evaluation of our models was done by comparing them to 4 open-source commonly
used blacklists. This evaluation followed a specific methodology. First, a time frame
was decided for the comparison, from December 2020 to April 2021, and each day we
downloaded the third-party blacklists. Notice that this means that the comparison was
in real-time since there is no way to download third-party blacklists that have already
been updated with new data. Each day we used their latest version. Also, notice that we
do not know the internal process each blacklist used to update. Second, the AIP models
were updated using different criteria for each of these days, and blacklists were generated
using these models. Third, each day we used the blacklists from the AIP framework and
the downloaded feeds to block those IPs in the next day and calculated how many attacks
were blocked by each blacklist. A special blacklist that is a memory of all the IPs that
attacked in the previous days was used as a baseline.

According to the evaluation metrics, our comparison showed that the AIP framework
performed as well or better than the downloaded open-source threat intelligence feeds.
The linear models performed as well as other blacklists comparable in size, blocking on
average 37% of incoming malicious IP addresses while being several orders of magnitude
smaller. The Random Forest models performed much better than blacklists comparable
in size, blocking on average up to 22% of the incoming malicious IP addresses. We calcu-
lated a performance index for each blacklist to compare ones differing in size. This index
was what percent of the malicious traffic could be blocked by a single IP on average per
blacklist. We found that the Random Forest blacklist could block 0.0068% of malicious
attacking IPs per IP in its list. This made it 13x better than the AIP linear models at
0.0005% and 22x times better than IPsum, which was the best performing downloaded
blacklist, at 0.0003%. The Random Forest model proved to be the best model for gener-
ating blacklists for IoT devices.

The contributions of this thesis are:

• The AIP framework , which consists of three models. One that prioritizes consistent
attackers, one that prioritizes new attackers, and one that predicts future attacks
using all features.

• The inclusion of an aging method inside our models.

• An IoT dataset of honeypots attacks.

• An online, public and free feed of our three blacklists for the community to download.

• A methodology for comparing and evaluating blacklist.

• A comparison between mainstream blacklists and AIP.

The rest of this thesis is organized as follows: Chapter 2 describes the previous work,
Chapter 3 describes the three AIP framework models, Chapter 4 describes the data,
Chapter 5 describes the experiments performed, Chapter 6 is a discussion and analysis
the results of the experiments and Chapter 7 concludes this thesis.

2

Chapter 2

Previous Work

There have been several proposals to improve the effectiveness of blacklists. The method
called BLAG [20] is a system that generates blacklists based on the aggregation of other
blacklists. BLAG rates IP addresses from other blacklists using a sorting mechanism and
then adds the most aggressive IP addresses to the BLAG blacklist. This method calculates
a reputation for each source blacklist based on its accuracy and then aggregates the best
ones. The accuracy of each blacklist is computed using the network traffic of the user,
which should have an IDS. It then generates scores for each IP based on its history and the
success rate of the blacklist of origin. BLAG uses recommendation algorithms, thresholds,
and IP prefix expansion. The most successful IP addresses emerging from this system are
blacklisted. The experiments showed that BLAG achieved high specificity (86%) and high
recall (27%–61%).

Another method proposed to generate blacklists through clustering algorithms [6].
This method increased the efficacy of blacklists by targeting malicious clusters of IPs. This
method identified clusters of related IP addresses and then sorted them into malicious
or not malicious clusters by comparing the clusters to blacklists. The authors showed
that using this method, they were able to identify malicious clusters of IPs by checking
the identified clusters against different blacklist sources. This paper shows that even a
blacklist with a very low recall can identify malicious clusters with a high success rate.

An alternative method [23] consisted of a system that focuses more on local traffic
than on high-level blacklist comparisons. The method was proposed for blacklisting spam
IP addresses and is based on dynamic thresholding and speculative aggregation. Dynamic
thresholding adds IP addresses to a blacklist only if their reputation drops below a certain
threshold. The reputation is established by comparing traffic from a real email server to
a honeypot server. The other important method employed was speculative aggregation,
meaning to predict whether unknown IPs were malicious by classifying the network of
origin. This was done by aggregating the spam honeypot data together from any given
network and comparing the ratios of malicious IPs to benign IPs and benign email to
spam email. A decision is made based on if a given network is classified as malicious or
not. If a network is classified as malicious, IPs from that network receive a higher danger
reputation. This reputation is updated with new information and data. Similarly, as in
the BLAG paper, both methods use thresholds and add network prefixes to block yet
unknown IPs.

Regarding the evaluation of blacklists, one research study [14] performed a thorough
investigation of 15 blacklists to assess their efficacy. They concluded that the union of 15
public blacklists included less than 20% of malicious domains and most AV vendor black-

3

lists failed to protect against malware that utilizes Domain Generation Algorithms [15].
This is an important finding that describes the reality of blacklists and is the first study
to do this comprehensively.

These previous methods for blacklisting IP addresses are effective and provide helpful
insight into the state of the art of blacklisting. However, they have limitations. The first
two methods above are solely based on the aggregation of other blacklists. For a blacklist
to better protect a specific type of device, that blacklist should be trained using data
collected on that type of device. If malicious IoT traffic is not used to generate blacklists,
IoT devices are not adequately defended. Both methods address the problem of ineffective
IP blacklists by creating models that work with existing blacklists instead of addressing
the generation of blacklists directly from captured traffic. Our proposed method is the
first that provides the framework for any user to build their blacklists only based on a
traffic capture of the device being protected.

The dynamic spam blacklist method [23] seems to be closer to solving the core issue of
the problem by working with the generation of blacklists directly from traffic. Although
moving in the right direction, this method did not include a way to lower the importance
of IPs that grew older. In other words, it does not answer the questions: what happens
to a malicious IP that is very active attacking for some time and then stops attacking?
Does it get removed from the blacklist, or does it stay? What happens as more time
goes on? Many methods lose efficiency as time goes on [25]. Our method addresses these
limitations.

4

Chapter 3

AIP Framework

3.1 General Methodology

To address the problems mentioned above with current blacklisting approaches, the first
part of this thesis proposes the Attacker IP Prioritizer framework (AIP). AIP is a frame-
work that includes several algorithms to create blacklists and one comparison methodol-
ogy. This chapter describes the three different models implemented in AIP, which inputs
are traffic data and which outputs are blacklists. Two of the three models in AIP are
based on a linear combination of data, and the third model is a Random Forest Classifier.

All AIP algorithms work by consuming daily data about actual attacks, computing
how to process this data in different ways, and outputting a list of IPs to block the next
day. Each algorithm prioritizes different aspects of the attacks, given that users may be
interested in different types of attacks.

3.2 Processing of Input Data

The algorithms in AIP use data coming from several honeypots for training and evaluation.
This dataset is described in Chapter 4. This section describes how the data is processed
and used. In the context of this thesis, we refer to a honeypot as a device that is set up
with no real interaction or usage planned. Since the collected data always comes from a
device with no specified use, all the computers connecting to it are invariably attacking.

Note that this definition of an attack is true even for a regular computer connected in
a network concerning its closed ports. If port 23/TCP is closed, and another computer
connects to it, that connection can be considered an attack.

The data is processed in batches of 24 hours. Every 24 hours, we extract a set of
features used for training each of the three algorithms. These are the guiding principles
that are used to decide which features should be extracted from the data and used to help
decide which IPs should be more or less important for blocking in a blacklist:

• Aggressiveness. The more attacks received by a particular IP, the more important
it is to block it. Each attack is represented by a flow in the network, containing
data such as source port, source IP address, the start time of the flow, and more.

• Attack Duration: The amount of time that an IP spends exchanging packets
during an attack gives us information about how successful the attack may have
been and how persistent the attacker was. This can be quantified by summing and
averaging the length of the connections extracted from the network captures.

5

Table 3.1 Features extracted from the network traffic from the flows of each attacking IP

Features Definition

IPv4 Address Source IP address of the attacker
Number of Flows Total connections from the given IPv4 address
Total Connections Duration Sum of the connections duration
Average Connections Duration Average duration for the connections
Total Bytes Sum of all bytes in all connections
Average Bytes Average bytes per connection
Total Packets Sum of packets in all connections
Average Packets Average packets per connection
Time of First connection Time of the first connection (set only once)
Time of Last connection Time of the last connection (updated)

• Attack Size: Attackers that are sending more data to the honeypots should be
considered more dangerous because it suggests an active transfer, exfiltration, suc-
cessful connection, or that a Command and Control server is actively conversing
with the device. This feature can be quantified by the number of bytes and the
number of packets that are transferred.

• Re-occurrence. By measuring the exact time when an IP attacks, it is possible to
measure how many times and how often an IP attacks. IPs that attack for the first
time recently should be considered as new attackers and dangerous, as well as IPs
that attack consistently for a long time.

With these principles in mind, the features in Table 3.1 are extracted from the raw
network traffic captures every 24 hours for each IP that attacks the honeypots. The
basic unit of measurement is a flow (or connection), and we consider quantities in both
directions inside the flow.

We extract every 24 hours a set of features for each IP that attacks the honeypots.
These features are described in Table 3.1. The final processed dataset consists of this
group of features per IP, per day. This dataset is then fed to the three AIP models for
updating and processing.

3.3 Weighted Linear Combination Algorithms

The first two algorithms of AIP, called Prioritize Consistent and Prioritize New, use a
weighted linear combination of the features previously described. Both algorithms share
a similar structure: (i) database update, (ii) compute the features, (iii) use a linear
algorithm, (iv) train the weights of the linear algorithm, (v) compute a score, (vi) age
the score to forget IPs, (vii) use a threshold to decide which IP are included in the final
blacklists. The main differences are how the training of the weights is done, and the type
of aging function applied.

Database Creation and Update The core of the linear models in the AIP framework
is a database. This database per IP address remembers all the information ever produced
by each IP address and is updated with the new information coming every day. We refer

6

to this database as main database. Therefore, the first step of the update algorithm is
dealing with this main database. During this phase, the goal is to convert the daily fea-
tures computed and described in Section 3.2 into a database of features per IP address.
The main database contains a list of all the IP addresses that have ever been encountered
by the current instance of AIP, along with their corresponding features. This database
is essential because it is used as a form of memory for the linear models. During the
database update phase, AIP receives data from the last 24 hours for a certain number of
IP addresses. For each of these IP addresses, its past known features in the main database
is updated using the new data. The update is done by summing the historical totals with
the new totals and recalculating the running averages. The data update algorithm is
shown in Algorithm 1.

Algorithm 1: AIP algorithm to update the main database with new daily data

Result: Updated database
1 for IP in New Data do
2 if IP is in the database then
3 active-days += 1;
4 total-ip-flows += new-ip-flows;
5 average-ip-flows = total-ip-flows/active-days;
6 total-ip-duration += new-ip-duration;
7 average-flow-duration = total-ip-duration/total-ip-flows;
8 total-ip-packets += new-ip-packets;
9 average-flow-packets = total-ip-packets/total-ip-flows;

10 total-ip-bytes += new-ip-bytes;
11 average-flow-bytes = total-ip-bytes/total-ip-flows;
12 time-of-last-flow = new-time-of-last-flow *;

13 else
14 active-days += 1;
15 total-ip-flows = new-ip-flows;
16 average-ip-flows = total-ip-flows;
17 total-ip-duration = new-ip-duration;
18 average-flow-duration = total-ip-duration/total-ip-flows;
19 total-ip-packets = new-ip-packets;
20 average-flow-packets = total-ip-packets/total-ip-flows;
21 total-ip-bytes = new-ip-bytes;
22 average-flow-bytes = total-ip-bytes/total-ip-flows;
23 time-of-last-flow = new-time-of-last-flow ;
24 if First time IP appears then
25 time-of-first-flow = new-time-of-first-flow
26 end
27 ;

28 end

29 end

Thus, after the update using the new data, there are eight features with corresponding
values for each IP in the database. These values are used later for training the models
and scoring the IPs.

Once it is updated with the new data, this main database is used to train the two

7

Table 3.2 Extracted Features per IP for Training

Feature Time Frame of Feature

Number of Flows All Time
Average Flows Average Per Day
Total Connection Duration All Time
Average Connection Duration Average Per Flow
Total Bytes All Time
Average Bytes Average Per Flow
Total Packets All Time
Average packets Average Per Flow

linear models: the Prioritize Consistent Model and the Prioritize New Model. These two
models compute a score for each IP in the historical database based on the aggregated
data for that IP. This score is meant to designate the importance for each particular IP
to be blocked. The higher the score, the greater the importance of blocking.

Having the IPs rated by a score according to their importance is a very useful feature
because it allows for the easy scaling of the blacklist according to the application’s needs.
When a blacklist is implemented in a device as part of an IP-based solution, it is loaded
and stored in the device’s memory. Thus, the memory capabilities of the device can
be a bottleneck for how large the blacklist can be. In larger systems such as servers
and industrial firewalls, this is not a concern since these devices tend to have plentiful
memory. However, in IoT devices and other smaller devices such as routers, memory can
be a limitation. Every IP that is implemented in a resource-restricted system needs to
be as effective as possible. The scoring-based method for a blacklist allows the end-user
to choose the number of IP addresses that can fit the system for the most significant
effect. On the other hand, if the blacklist is being implemented in a high-end system
where memory is not an issue, the number of IPs can be easily scaled to achieve the best
result possible.

3.3.1 Prioritize Consistent Algorithm

The Prioritize Consistent algorithm (from now on PC) is designed to give higher scores
to IP addresses that consistently attack the network over a long period. IP addresses of
this sort are less likely to be coming from IoT devices or cloud deployments since those
tend to be infected and uninfected at a swift pace. These are more likely to be more
permanent servers. There are two main parts of the PC algorithm; the scoring function
and the aging modifier.

This algorithm starts by using the main database that was described in the first part of
Section 3.3, which means that every day, the main database is updated, and the algorithm
is ready to use the new data. The first step of the algorithm is to create a score for each
IP address using the eight features that are listed in Table 3.2.

The calculation of the score for each IP address is presented in Equation 3.1, where
featurei is the value of each data feature, n is the number of features, and wi is the
weight corresponding to the feature featurei. Notice that the weights are the same for

8

all IP addresses.

scoreIP =
n∑

i=1

wi ∗ featurei (3.1)

The score is the sum of the eight weighted features and defines each feature’s impor-
tance in the final score. The sum of all the weights is 1. In the PC algorithm, these
weights were defined to prioritize the consistency of the attacks exactly. The highest
weights are assigned to the four average values to prioritize IPs in the list that attack
consistently and transfer more data than others. The values for the weights in the PC
algorithm are presented in table 3.3.

Table 3.3 Data Weights for PC Model

Features Weight

Number of Flows 0.05
Average Flows 0.2
Total Connection Times 0.05
Average Connection Times 0.2
Total Bytes 0.05
Average Bytes 0.2
Total Packets 0.05
Average packets 0.2

Table 3.4 Data Weights for PN Model

Features Weight

Number of Flows 0.2
Average Flows 0.05
Total Connection Times 0.2
Average Connection Times 0.05
Total Bytes 0.2
Average Bytes 0.05
Total Packets 0.2
Average packets 0.05

The score is a linear combination of the weighted features for each IP.
An investigation of how the eight features listed in Table 3.2 grew over time showed

that the scoring methodology needed to be altered to account for the scale of values. An
example of an IP entry in the main database is shown in Table 3.5 after it was updated
for four months. As it can be seen, the values for the features, specifically the total
number of bytes, are orders of magnitude larger than the others. Because the final score
is a weighted sum of the values in this table, excessively large values can dominate the
calculation outcome. An example calculation for the score for the example IP in Table 3.5
is shown in Equation 3.2.

score43.254.240.34 =
n∑

i=1

wi ∗ featurei = 403, 365.2603 (3.2)

Table 3.5 is a breakdown of the different features that make up the score in Equation 3.2.
As can be seen in the table, the total bytes feature compromises 97% of the final total
score since its weighted value is 394,783. Thus, the rest of the values had almost no effect
on the final score. We found that this was true for most IPs that stayed on the blacklist
for an extended period. In order to solve this, we introduced a normalization methodology
for the features.

For each IP in the main database, the features shown in Table 3.2 are normalized
using Equation 3.3, where Fvalue is the feature value for each feature (example Total
Bytes), FMin is the smallest Fvalue for all IPs in the entire main database up to now, and
FMax is the largest Fvalue for any IP in the main database until now. We are aware that
the maximum and minimum values may change every day; therefore, old scores may not

9

Table 3.5 Example IP from Main Database After 4 months

Entry Value PC Score

IP address 43.254.240.34 N/A
Number of Flows 3,675 183.75
Average Flows 5.42 1.09
Total Connection Times 96,310.37 4,815
Average Connection Times 26.206 5.24
Total Bytes 7,895,676 394,783
Average Bytes 2,148.48 429.7
Total Packets 62,855 3,142.8
Average packets 17.103 3.42

be directly comparable with new scores. However, our algorithms do not compare past
scores. This normalization is also called Min-Max normalization.

NormalizedF = f(FV alue, FMin, FMax) =
FV alue − FMin

FMax − FMin

(3.3)

After the normalization of the features Equation 3.1 can be rewritten as Equation 3.4.

normalizedScoreIP =
n∑

i=1

wi ∗NormalizedFi
(3.4)

Aging of Attacks One of the essential concepts in Threat Intelligence and blacklists,
in general, is when to stop blocking the IP addresses. This is a complicated problem
for two reasons. First, if the IP of an attacker is taken out of the list, it is not blocked
anymore, and new attacks may happen. Second, if the IP of a benign computer is never
taken out of the list, it is continually blocked, and normal services can lose access. A
good aging function is then proposed that is dynamic in how it ages the IP.

The aging function is the second core part of the AIP algorithm. Every time the
main database is updated with new data, the last connection time for IP addresses is also
updated. If that IP has not been seen to attack in the last update (usually one day), the
time of its last connection is left unchanged. The time of the first connection is never
updated.

The aging function for the PC algorithm is designed to consider the first time and the
last time an IP is connected to estimate how long the IP has been attacking. The aging
function is applied to the score of each IP after the score has been computed for that day.

Before aging the score of any IP address, the aging function checks if the IP should
be aged or not. If the IP was seen in the last update (meaning the last 24 hours), its
score is not modified. That means that the score is not aged in the PC algorithm if the
IP attacks every day. This is consistent with the idea that as long as the IP attacks, it
keeps its score fresh.

On the other hand, if the IP address has not been seen attacking in the last update,
the function ages the score by multiplying the score by the aging function shown in
Equation 3.5:

a pc(x, y) = 1 − x

x + y
(3.5)

10

y = time of last flow − time of first flow (3.6)

In Equation 3.5, x is the amount of time since the IP address attacked last, and y is
the total amount of time that the IP was found to be attacking, i.e., the last recorded
event time minus the first event time (Equation 3.6). The output of this aging function
is a decimal value between 0 and 1 multiplied by the score, thus decreasing it by some
value.

Figure 3.1 illustrates the shape of the aging function as the values for x and y change.
As shown in the graph, the highest values are given to IPs that attacked for longer periods
since the last attack was the smallest. Thus, IPs that are the most consistent in their
attacks are aged the least. The lowest scores are given to IPs with low y values and high
x values, meaning they attacked for a short time, and the last attack occurred a long time
ago. In this way, the score for a given IP is decreased over time depending on its attack
times.

The output of the aging function is then multiplied by the initial score, hence de-
creasing the IPs score, making the pc final score in Equation 3.8 a combination of Equa-
tions 3.4 and 3.5:

pc final score = a pc ∗ normalizedScore (3.7)

Re-written as:

pc final score = (1 − x

x + y
) ∗

n∑
i=1

(wi ∗NormalizedFi
) (3.8)

The last step of implementing the PC algorithm is to use a threshold to restrict the
number of IP addresses in the final blacklist not to grow indefinitely. To do this, we
implemented a threshold score of 0.002 so that only IPs that achieve a score higher than
this are included in the final blacklist. The threshold was defined as an ad-hoc heuristic
by experts by a careful analysis of the impact of the blacklist.

3.3.2 Prioritize New Algorithm

The Prioritize New algorithm (from now on, PN) is designed to give higher scores to IP
addresses that are new and aggressively attacking the network over a short period. IP
addresses of this sort are likely to be coming from IoT devices or cloud deployments since
those tend to be infected and uninfected at a swift pace. Like the PC algorithm described
in Section 3.3.1, there are two parts of the PN algorithm; the scoring function and the
aging function.

This algorithm starts by using the main database that was described in the first part of
Section 3.3, which means that every day, the main database is updated, and the algorithm
is ready to use the new data. The first step of the algorithm is to create a score for each
IP address using the eight features that are listed in Table 3.2.

The calculation of the score for each IP address is presented in Equation 3.1, where
featurei is the value of each data feature, n is the number of features, and wi is the weight
corresponding to the feature featurei. Notice that the weights are the same for all IP
addresses.

The score is the sum of the eight weighted features and defines each feature’s impor-
tance in the final score, illustrated in Equation 3.1. Like the PC algorithm, the features

11

Figure 3.1 Graph of Aging Function for the Prioritize Consistent AIP algorithm

from the main database are normalized using Equation 3.3. The sum of all the feature
weights is 1. In the PN algorithm, these weights are defined to prioritize IPs with the
most significant recent attacks. Thus the highest weights are assigned to the four total
values. This is because a new IP does not have a trustworthy average value since averages
are normalized over time. Thus, the best way to compare a new attacker to another new
attacker is with the features that represent totals. Thus the total features are assigned
higher weights. The values for the weights in the PN algorithm are presented in table 3.4.

The aging function is the other main difference between the PN and PC linear al-
gorithms. Before aging the score of any IP address, the aging function checks if the IP
should be aged or not. If the IP was seen in the last update (meaning the last 24 hours),
its score is not modified.

On the other hand, if the IP address has not been seen in the last update, the function
ages the score using an aging function different from the one used for PC. Equation 3.9
shows the aging function for PN, where x is the amount of time since its last attack (in
units defined by the user, but we use one day), and c is a constant to control the rate at
which the score is decreased over time:

a pn(x) =
c

c + x
(3.9)

Different values for a are illustrated in Figure 3.2.
As it can be seen from the Figure 3.2, the different values for a cause the rate of score

aging to increase or decrease as time goes on without an attack. The lower the value of
c, the faster the score decreases, and the higher the value of c, the slower it decreases.

12

Figure 3.2 Graph of Aging Function for the Prioritize New algorithm

The value for c is constant across all IP addresses, and we used expert knowledge to fix
its value for our experiments in c = 2. The output value of the aging function, shown in
Equation 3.9, varies between 0 and 1, decreasing with the number of days since the last
connection from that IP. The aging modifier is multiplied by the previously computed
normalized score, making the final score pn, shown in Equation 3.10.

pn final score = (
c

c + x
) ∗

n∑
i=1

(wi ∗NormalizedFi
) (3.10)

The last step of implementing the PN algorithm is to use a threshold to restrict the
number of IP addresses in the final blacklist to not grow to infinity. To do this, we
implemented a threshold score of 0.002 so that only IPs that achieve a score higher than
this are included in the final blacklist. Experts selected this score as an ad-hoc heuristic
value based on the performance of the blacklist.

3.4 Random Forest Algorithm

The third AIP algorithm is built using the Random Forest algorithm (from now on RF)
and has an entirely different design than the two previous linear models described in
Sections 3.3.1 and 3.3.2.

A full explanation of the Random Forest Classifier is beyond the scope of this thesis,
but a basic explanation of it is warranted. Random forest is an ensemble learning method
for classification that is based on the usage of decision trees to make predictions on
labeled datasets [26]. It is a supervised learning method. Random forests use Bootstrap
aggregation [8] as it ensemble method, which is a method of binning the training data

13

by sampling a given training set uniformly and with replacement. It trains different trees
on each of the training datasets using randomly chosen features to reduce the correlation
between the different trees. The output of the decision trees is the aggregated values of
the trees, and it is used to predict on a new set of data.

In order to explore other machine learning models and verify the correct functioning
of the RF, we compared the Random Forest classifier to another common model, Logistic
Regression [21]. After training the two models and then testing, we compared the two
receivers operating characteristic (ROC) curves. These curves are shown in Figure 3.3
and 3.4. As shown in the comparison, the Random Forest classifier performed much
better than the Logistic Regression model and had a higher AUC (area under the curve)
value, the Random Forest Having AUC = 0.8339, and Logistic Regression having AUC =
0.7232.

Figure 3.3 ROC curve for Logistic Re-
gression

Figure 3.4 ROC curve for Random For-
est

Our implementation of the classical RF algorithm uses a unique dataset. This was
done by comparing each new day of network traffic, which is described at the beginning
of this Chapter in Table 3.2, to the traffic collected on the next day. Each data flow in
the data from day one is compared to the data in day two and labeled with 1 if the IP
occurs and 0 if it does not. This is based on the concept that each dataset of IPs contains
IP addresses that may or may not attack the network again during the 24 hours after the
data is collected. Labeling the data flows in this way is meant to capture the features of
the IPs that make the attacks and the features of the IPs that do not. It should be noted
that because of this need to label the data, the RF model is continually training on data
that is 24 hours old since the only way to know if a specific IP is going to attack is to
wait and see if it does.

In order to build a more extensive dataset over time, each day, the data file from the
day before is labeled using the most recent 24 hours of data and then concatenated with
a historical dataset. This historical dataset of labeled data flows is then used to train the
Random Forest classifier.

The algorithm for training and predicting using a Random Forest Classifier is shown
in Algorithm 2. The numbers [1, 4, 7, 10, 13, 16, 19, 22, 255] refer to different models of the

14

Table 3.6 Hyper-parameters of the Random Forest Algorithm. Trained with heuristic
random search.

Parameter Definition

warm start Reuse the solution of the previous call to fit
oob score Whether to use out-of-bag samples
n estimators Number of trees in the forest.
min samples split Minimum number of samples required to split an internal node
min samples leaf Minimum number of samples required to be at a leaf node
min impurity decrease Determines if a node is going to be split
max features Number of features to consider
max depth Maximum depth of the tree
criterion Function to measure the quality of a split
bootstrap Whether bootstrap samples are used

Random Forest algorithm.

Algorithm 2: Random Forest blacklist generation

Result: Random Forest Blacklist
1 new labeled data = [];
2 for IP flow in Unlabeled data from 48 to 24 hours ago do
3 if IP flow is in Data from last 24 hours then
4 new labeled data += IP Flow + label 1;
5 else
6 new labeled data += IP Flow + label 0;
7 end

8 end
9 main database += new labeled data;

10 trained classifier = RandomForestClassifier(main database);
11 for X in [1, 4, 7, 10, 13, 16, 19, 22, 25] do
12 predictions = trained classifier.predict(last X days of data);
13 create blacklist for X days of data(predictions);

14 end

The hyper-parameters shown in Table 3.6 need to be set to run a random forest
classifier using the sklearn [3] library in Python [19]. In order to find the best parameters
to use for the random forest classifier, we did a heuristic random search of a matrix of
different parameter values using the built-in RandomizedSearchCV [3] function. Table 3.7
shows the values that were found to perform the best on the dataset that was tested on.

To generate a blacklist of IPs, the model needs to have a set of data to predict on.
As shown in line 10 of Algorithm 2, the classifier is trained on the entire updated main
database. Notice that we do not use cross-validation in the training process.

The classifier is then used to predict what IPs occur in the next 24 hours. The IPs
that are predicted on are selected from the most recent section of the main database.
The classifier labels each IP in the prediction dataset with 1 or 0 depending on the eight
features in Table 3.2. The list of IPs labeled with 1 is then used to create the blacklist
for the next day.

In order to test if there is a gain in performance for choosing a larger number of IPs
to predict on, the Random Forest Classifier predicts on eight sections of data. As can be

15

Table 3.7 Values of the Hyper-parameters of the Random Forest after the heuristic random
grid search

Parameter Definition

warm start True
oob score False
n estimators 150
min samples split 4
min samples leaf 3
min impurity decrease 0.0012
max features log2
max depth 20
criterion entropy
bootstrap True

seen in lines 11-13 of Algorithm 2, the RF classifier is used to predict on the last day of
collected data, the last 4 days, 7, 10, 13, 16, 19, 22, and 25 days of data. Each set of data
is predicted on, and a separate blacklist is generated from the predictions.

Because each day new data is being added to the main dataset of labeled flows, the
processing time for the Random Forest model grows at a linear rate, depending on the
amount of data added each day. This is not very good, so to limit processing time, the
dataset is capped at about one month. Thus, for the first 30 days of generating blacklists,
the main dataset grows, and once it reaches 30 days, the first day of data collected is
deleted from the dataset since it is the oldest data, and the newest data is added to the
end of the dataset. In this way, the processing time is capped, and the most recent data
is always used to update the dataset while only losing the oldest data. This decision was
made because the training time of the model grew at a linear rate.

3.5 All IP Blacklist

We also created a baseline blacklist of what can be considered one of the best blacklists:
a blacklist that remembers every attacker ever to connect to the honeypots. It is called
the All-IP blacklist. Comparing to this blacklist is crucial because it is an upper limit
of efficiency for a blacklist based on traffic from honeypot networks. Without using
any forward prediction techniques, a model can only choose from IPs that attacked the
network in the past when deciding what IPs to block. This All-IP blacklist can therefore
be considered an upper limit of raw blocking without prediction. Users do not use this type
of blacklist because it grows at a linear rate, making it almost impossible to implement
in most hardware.

3.6 Evaluation Framework

One of the most important issues of current research on blacklists is the lack of a good
evaluation. To overcome this problem, we developed a statistical-based methodology for
evaluating the efficacy of the different models for blacklist generation. The methodol-
ogy aims to measure how many attacks would be blocked tomorrow if the blacklists are

16

updated daily, up to today. The methodology is as follows:

• Start with an empty list of attacker’s IPs and empty blacklists.

• Every 24 hours, take the attack data from the last 24 hours.

• Update each blacklist with the new data according to their specific method.

• Consider all the IPs in each blacklist as predictions to block in the following 24
hours for that blacklist.

• Receive the attacks of the following 24 hours.

• Evaluate the efficacy of the blacklist according to how much traffic it would have
blocked in those following 24hs.

Figure 3.5 is an illustration of this methodology. On each step, the blacklist is retrained
according to its specific generation methodology. Each blacklist here decides how to use
the new data arriving. Some blacklists concatenate all IPs, and others take the ones
attacking more and so on. However, it is clear that for the blacklists to stay effective,
they need to update to keep up with the changing attackers. In the second step, the
already retrained blacklist is used to predict which IPs should be blocked in the next time
slot, therefore testing its efficiency.

To compare how the AIP blacklists perform against others, we downloaded four other
open-source blacklists for the same four-month period at 24-hour intervals. These black-
lists are IPsum [24], an open-source conglomerate of many blacklists into a single feed,
FireHOL [18], a threat intelligence feed by The FireHOL Project, DigitalSide [9], a threat
intelligence feed by DigitalSide Threat-Intel Group, and Emerging Threats [12], an open-
source feed by Proofpoint Incorporated. Each of these threat intelligence feeds was eval-
uated using the same methodology described above, the results of which are presented in
Chapter 5. For each blacklist, we downloaded a new file every day, and that is the list
used for that day.

The first step in the evaluation is to choose a time slot window. This time slot
represents the amount of time between updates for the blacklist in question. We decided
to update it every 24 hours, as is explained in Chapter 3. Thus, in order to evaluate its
efficiency, we generated four months of 24-hour sections of data using the methodology
explained in Chapter 4.

For each new 24-hour data section, all blacklists in our comparison were updated and
regenerated. In the case of the third-party blacklists, we use the blacklist published for
that day.

Then, to ascertain its efficiency, the updated blacklists were tested with the malicious
traffic from the following 24-hour time slot, as is illustrated in Step 1 of Figure 3.5. This
allowed us to see how much of the malicious traffic the blacklist would have stopped if
implemented in a firewall. Then, after that comparison was completed, the blacklists were
again updated on the next 24-hour slot of data and then compared to the slot after that,
as is illustrated in Steps 2 and 3.

The evaluation method was to compare how much of the attacks of tomorrow would
have been blocked. However, how to assert the concept of how much?. For this, we used
four metrics: the total amount of bytes blocked, total duration of the flows blocked, total
unique IP blocked, and total flows blocked.

17

Figure 3.5 AIP Framework evaluation methodology

Table 3.8 Performance Metrics

Metric Definition

Total Bytes Total amount of data sent by all malicious IPs
Total Duration Total amount of connection time by all malicious IPs
Total Unique IPs Total number of IPs that attacked during time slot
Total Flows Total number of individual attack attempts by IPs

These metrics are shown in Table 3.8. Total Bytes is meant to quantify how much
data all the malicious IPs were responsible for sending during the given 24 hour period.
Total duration is the amount of time the IPs spent connected to the honeypots. Total
Unique Flows refers to the number of unique connection attempts made to the honeypots,
successful or not. Lastly, the number of Unique IPs is self-explanatory.

Each IP on every blacklist is compared to the evaluation data and checked to see if
it attacked or not. If it did, the amount of data associated with each metric is saved.
We extract the bytes and the duration of the flow for each flow in the attack, then we
sum the number of flows, bytes, and duration, and we sum 1 to the IPs blocked by the
blacklist. Once all IPs in a blacklist have been checked, the percentages of the metrics are
calculated by comparing them to the totals values of bytes, duration, flows, and IPs that
attacked. Thus, the output for the evaluation of a given blacklist is the four metrics per
day. Once this is complete, final averages can be calculated and graphed for use compared
to other blacklists evaluated using the same methodology.

In this way, it is possible to create a standard way of comparing blacklists for their
efficacy. Each of the four metrics gives valuable information for evaluating a given blacklist

18

for a specific task. For example, a blacklist meant to protect a network from a Distributed
Denial of Service Attack (DDoS) [29] should perform well in blocking the bytes and events
metrics since these type of attacks take up much bandwidth. This evaluation methodology
is used in this thesis to evaluate the blacklists produced by the three models in the AIP
framework.

19

Chapter 4

Datasets

The dataset in this thesis was created by capturing traffic from a network of real IoT
devices. These devices are used as dedicated honeypots, without human interaction;
thus, all incoming connections are considered attacks, with some basic filtering techniques
implemented to avoid artifacts of the capturing tools.

The capture server monitors each honeypot, and each connection, established or not,
to the honeypot is logged as a flow in the dataset. This dataset is therefore comprised of
all the attack flows on the IoT network.

4.1 Design of the IoT Laboratory

The Aposemat IoT laboratory [10] used to create the dataset is composed of real IoT
devices, software honeypots, and IoT devices infected with malware. The real IoT de-
vices include the devices listed in Table 4.1. The general design of the lab and capture
methodology is illustrated in Figure 4.1. As can be seen, all devices are set up in a LAN
connected to a Cisco switch, and the switch is connected to a router. In order to have all
the devices connected directly to the Internet, as would be the case if they were connected
via a 5G SIM card, all the devices are assigned external IP addresses, and all the traffic
is bridged to the devices to and from the Internet. In order to capture all the traffic
without altering it, the traffic is mirrored in the Cisco switch to a capture server, which
generates network captures every 24 hours. This thus emulates the case where a modern
smart home is connected directly to the Internet via a 5G or other connection, and thus
we can capture and train AIP algorithms on the traffic.

4.2 Data Processing Techniques

Since the devices are connected directly to the Internet, and they have no actual human
interaction, from a general point of view, most connections from outside the network to
the honeypots can be considered attacks. Therefore, the raw network traffic is sorted so
that only the incoming connections are included in the final dataset.

To be more precise, only connections that have an SYN flag [22] originating from
outside the network are included. The traffic captures are processed using the Argus
network flow system processing software [17]. Argus processes the pcap files [13] and
converts them into data flows.

However, when sorting through the data flows and testing, it was discovered that about

20

Table 4.1 Devices used as honeypots

Device Use

Amazon Echo Dot 1st gen Honeypot
Amazon Echo Dot 2nd gen Honeypot
Philips Hue Bridge and Devices Honeypot
Synology NAS Honeypot
Wyze Home Hub and Devices Honeypot
Edimax IP Camera Honeypot
HikVision IP Camera Honeypot
Home&Life Router Honeypot
ZyXel Router Honeypot
Google Chrome-cast Honeypot
Google Nest Home WiFi System Honeypot and Access Point

Figure 4.1 Aposemat IoT Lab capture method

10% of the final data were false positives. This was because the Argus tool maybe not see
the initial SYN packets and therefore believe that a connection from a honeypot to a typ-
ical server on the Internet is a connection from that server. For the context of this thesis,
we define a false positive as an IP address associated with a known non-malicious orga-
nization. We discovered that some IP addresses associated with large corporations such
as Microsoft, Google, and Twitter would regularly initiate connections to the honeypots
in the capture network.

The problem of the FP is in the Argus tool. Let H be a honeypot server and I a
server on the Internet. Given a connection from the honeypot H to the real server I,
it should not be considered in our database of attacks because it was originated in the
honeypot. Argus, however, may lose some packets (like the original SYN packet) and
therefore create a flow falsely originating from I to H. In order to recognize these false
connections to the honeypot, we implemented the sorting by ports and ASN.

In order to deal with these FP connections, we implemented two more filters to the

21

Table 4.2 Common dynamic port ranges [7]

Operating System Range

Free BSD 49152 to 65535
Debian 32768 to 60999
Windows 49152 to 65535
Solaris 32768 to 65535

traffic, a port sorter and an ASN (Autonomous System Number) database sorter. The
port sorter analyzes the source ports in the connections and checks that the ports are
assigned in a specific way. The motivation to sort by source port is that connections
originating from a normal (not attacking) device are usually assigned a random port from
the ephemeral port number range assigned to that device by its developers [27]. These
ports are dynamically assigned when the device starts a connection to another device or
server. Thus, when an attacking device connects to a honeypot device, it is assigned a
fixed random port or a port from a non-common range to initiate the connection. In
comparison, a connection from a legitimate operating system comes from an assigned
port range. According to RFC 6335 [7], ports from the range 49152-65535 are reserved
for dynamic user assignment, whereas System Ports are 0-1023 and user ports are 1024-
49151. However, many developers do not hold this standard. Table 4.2 shows the ranges
for major Operating systems.

Therefore, to restrict our data to only IP addresses that were initiating a connection to
the honeypot and were not mistaken by Argus, we implemented a filter that only accepts
connections from source ports greater than 32,000. This proved to be able to remove the
bulk of the false positives from our data.

Even after sorting the connections by incoming connections only and from specific
port ranges, there were still a few IP addresses that were false positives in the data. As
a last precaution, we implemented an Autonomous System Number, or ASN, verification
method. ASNs are 16-bit or 32-bit numbers assigned to a specific set of IP prefixes belong-
ing to an organization used to maintain a single, clearly defined routing policy [11]. Thus,
using an ASN database, a specific IP address can be checked to see if it is registered to a
specific entity. The ASN verification method is based on the motivation that IP addresses
of attackers do not usually come from well-known organizations. To implement this, we
downloaded the free Geo-IP database of ASN information provided by MaxMind [16] and
used it to check the registration information for each IP. We compiled a list of major
service providers, and after each blacklist is generated, each IP in the blacklist is checked
to see if they are registered to a major service provider, and they are removed if this is
found to be true.

Therefore, all the network traffic is filtered using the above three stages, namely,
including only incoming connections, checking source ports, and ASN verification. Once
these steps are done, the output traffic flows from Argus are sent to the database update
phase described in Chapter 3.

4.3 Hornet 15 Dataset

A possible variable that can influence the efficacy of blacklists is location. It is possible
that a blacklist that is generated using data collected in one country is not as effective

22

Table 4.3 Honeypot locations for data validation

Location Number of Honeypots

Amsterdam 1
Bangalore 1
Frankfurt 1
London 1
New York 1
San Francisco 1
Singapore 1
Toronto 1

in another country because different groups are targeting it. Therefore, to perform an
evaluation that is not geographically constrained, we used the Hornet 15 Dataset [28].

This is a dataset of traffic flows collected from honeypots in eight different locations
around the world, the exact locations shown in Table 4.3. The data collection method is
the same as explained in Section 4.2. The data connections are captured and processed
by Argus and aggregated into connection flows. We processed these flows and then sorted
them according to the incoming connections, port, and ASN data to remove false positives
from the attacks. This dataset is used in Chapter 5 to evaluate if the results of the
evaluations explained in that chapter are location biased.

23

Chapter 5

Experiments and Comparisons

The methodology to compare blacklists was explained in Section 3.6, and it was used to
evaluate the efficacy of the three AIP models as well as the four downloaded blacklists
over four months.

Using the above methodology of comparing each blacklist to the next 24 hours of
malicious network traffic and computing four metrics for comparison, we were able to
compute the average performance for each blacklist, which is displayed in Table 5.1.
Comparing only the size of the blacklists is not enough to understand the differences,
that is why we evaluated all different features.

Experiment of Comparing the Size of Blacklists The first comparison between
all the blacklists was regarding their size and can be seen in Figure 5.1. Every day each
blacklist was updated according to its rules. In the RF models, the vertical lines are
because there has to be a wait of different amounts of time to have enough data to train
them. Note that the scale of the size is logarithmic, given the significant differences in
size. It seems that the IPsum blacklist has a limit in the amount of IPs and FireHOL,
DigitalSide-Threat Intel, and Emerging Threats.

Figure 5.1 Comparison of Blacklist Sizes in Log Scale. RF X stands for Random Forest
model trained up to X days in the past. Y axis is in Logarithmic scale.

24

Experiment of Comparing the Bytes Blocked The following comparison between
all the blacklists was regarding their total bytes blocked and shown in Figure 5.2. The ALL
IP blacklist is the best, followed by IPsum, the PC blacklist, and the PN blacklist. The
RF blacklist performs much less in absolute terms. However, the FireHOL, DigitalSide-
Threat Intel, and Emerging Threats are the lines that are close to zero at the bottom
of the graph. At the end of the evaluation, there is a spike in performance in all the
blacklists, except FireHOL, DigitalSide-Threat Intel, and Emerging Threats.

Figure 5.2 Comparison of the Percentage of Malicious Bytes Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past.

Experiment of Comparing the Duration of Attacks Blocked The following
comparison between all the blacklists was regarding their total duration blocked and
shown in Figure 5.3. Once again, the ALL IP blacklist is the best, followed by IPsum, the
PC blacklists, and the PN blacklists. Also, here the FireHOL, DigitalSide-Threat Intel,
and Emerging Threats are the lines that are close to zero at the bottom of the graph. It
should be noted that the performances in this graph are much more volatile.

Experiment of Comparison of Amount of Flows Blocked The following compar-
ison between all the blacklists was regarding their total flows blocked and can be seen
in Figure 5.4. Once again, the ALL IP blacklist is the best, but the IPsum blacklist is
surpassed by the PC and PN blacklists in some cases later in the evaluation. Also, here
the FireHOL, DigitalSide-Threat Intel, and Emerging Threats are the lines that are close
to zero at the bottom of the graph. The RF blacklists are not as tightly grouped in this
case, suggesting that increasing the dataset size affects performance in this case.

Experiment of Comparing the Amount of IP Blocked The last comparison be-
tween all the blacklists was regarding their total number of IPs blocked and shown in
Figure 5.5. This one is fascinating because even though the All IP blacklist is consistently
the best, the IPsum blacklist is overtaken by the PC model and even the PN at specific
points. Also, here the FireHOL, DigitalSide-Threat Intel, and Emerging Threats are the

25

Figure 5.3 Comparison of the Percentage of Total Duration Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past.

lines that are close to zero at the bottom of the graph. The RF blacklists clearly improve
performance as more data is used for training, clearly seen when comparing the RF 1
blacklist to RF 25.

We also calculated the average performance and standard deviation per blacklist,
shown in Table 5.1, where the bold rows are the blacklists that performed the best on an
absolute scale.

Performance Index After the previous comparisons with the four metrics, it was still
unclear how to show the differences between blacklists. Since a larger blacklist blocks
more IPs, how to express the unbalance between size and coverage?

Therefore, we created a performance index that is designed to show the efficiency of
the blacklists in terms of how much each IP address contributes to the final blockage.

The performance index is calculated using the Equation 5.1, where d the is number
of evaluation days, i is the number of day, metric is the metric being indexed, and
blacklist size is the size of the blacklist each day. The idea is to compute the ratio
of each average performance metric over the average size of that blacklist. This index
is crucial for comparing blacklists of different sizes since it shows how well the model
that generates the blacklist can choose the most critical IPs. Blacklists with a higher
performance index have IPs that block more, fewer IPs that are never used for blocking,
and are therefore more efficient. Although they might be less effective on an absolute
scale, the performance index is helpful to pick up blacklists that are smaller but better,
as is discussed in Chapter 6. The question the index helps to answer is: Which is the
smallest blacklist that blocks the more IPs?

A comparison of the performance index for all the blacklists is shown in Table 5.2,
where the AIP framework blacklists are in bold, along with the best performing down-
loaded blacklist, IPsum.

index =

∑d
i=1(metrici)∑d

i=1(blacklist sizei)
(5.1)

26

Figure 5.4 Comparison of the Percentage of Malicious Flows Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past.

Figure 5.5 Comparison of the Percentage of Malicious IPs Blocked in attacks. RF X
stands for Random Forest models trained up to X days in the past.

27

Table 5.1 Average Percent Blocked per Blacklist per Metric

Blacklist
Bytes Duration Flows IPs

AVG STD AVG STD AVG STD AVG STD

RF 1 4.61% 6.89% 6.27% 8.31% 18.38% 17.87% 10.38% 3.19%

RF 4 5.87% 7.64% 8.8% 9.74% 22.56% 18.57% 17.85% 3.71%

RF 7 6.19% 7.63% 9.19% 9.93% 23.05% 18.17% 19.88% 4.8%

RF 10 6.39% 7.95% 9.2% 10.13% 23.17% 18.89% 20.91% 5.83%

RF 13 6.41% 8.26% 9.11% 10.45% 23.19% 18.9% 21.57% 6.83%

RF 16 6.65% 8.26% 9.54% 10.59% 23.29% 19.16% 21.82% 7.63%

RF 19 6.56% 8.36% 9.15% 10.84% 23.28% 19.37% 22.06% 8.45%

RF 22 6.65% 8.37% 9.47% 11.08% 23.09% 19.72% 22.02% 9.11%

RF 25 6.58% 8.48% 9.22% 11.08% 22.93% 20.01% 21.98% 9.83%

PC Model 20.62% 14.71% 16.4% 13.07% 25.8% 16.02% 37.26% 12.14%

PN Model 14.86% 7.8% 15.05% 12.09% 19.93% 11.53% 27.69% 13.71%

IPsum 33.79% 15.03% 23.08% 13.33% 35.22% 15.95% 41.75% 5.19%

All IP 37.98% 17.11% 37.4% 17.99% 50.15% 16.24% 62.12% 6.83%

DigitalSide 0.01% 0.03% 0% 0.01% 0.01% 0.02% 0.03% 0.02%

Emerging 0% 0% 0% 0% 0.001% 0.003% 0.002% 0.005%

FireHOL 0% 0.001% 0.001% 0.006% 0% 0.003% 0% 0.002%

Table 5.2 Performance Index Per Blacklist (Higher is Better)

Blacklist
Index Value (Higher is Better)

Bytes Duration Flows IPs

RF 1 0.003 0.0041 0.012 0.0068

RF 4 0.0017 0.0025 0.0065 0.0051

RF 7 0.0013 0.002 0.0049 0.0042

RF 10 0.0011 0.0016 0.004 0.0036

RF 13 0.0009 0.0013 0.0034 0.0032

RF 16 0.0009 0.0012 0.003 0.0029

RF 19 0.0008 0.0011 0.0027 0.0026

RF 22 0.0007 0.001 0.0025 0.0024

RF 25 0.0007 0.0009 0.0023 0.0022

PC Model 0.0003 0.0002 0.0003 0.0005

PN Model 0.0003 0.0003 0.0003 0.0005

IPsum 0.0003 0.0002 0.0003 0.0003

All IP 0.0001 0.0001 0.0002 0.0002

DigitalSide 5e-06 2e-06 8e-06 1.9e-05

Emerging threats 4.95e-08 2.4e-08 4.387e-07 1.268e-06

FireHOL 4.73e-08 2.492e-07 1.357e-07 8.95e-08

28

Chapter 6

Results and Analysis

This chapter discusses and analyses the results of the experiments presented in Chapter 5.
We discuss how each of the AIP models performs against the third-party open-source
threat intelligence feeds, and the ALL-IP blacklist discussed.

6.1 Results of Blacklists Size Comparison

The first comparison between all the blacklists was regarding their size and can be seen
in Figure 5.1. The All-IP blacklist (light violet) grows in size at a linear rate, which
is expected. After five months, the All-IP blacklist has almost 1,000,000 IPs and keeps
growing. The second largest blacklist is IPsum (orange); however, this list has a constant
size, which shows that their creators must have a mechanism to forget IP addresses, but
we do not know which is it. The PN blacklist (red) has a significant variance which
suggests that the rate of appearance of new attackers varies greatly. The PC blacklist
(dark green) slowly grows from zero to the size of IPsum, which suggests that we might
want to limit its size or change the score threshold in a future version. The RF lists
grow in an exponentially decreasing order, which means that adding one more day to its
training does not add as many IPs as the first days that were added. All third-party
blacklists seem to have a limit in the total amount of IP used. This is in clear contrast
with our method, which does not limit the amount of IPs directly, but limits the score,
which is a measure of importance.

6.2 Results of the Metrics Comparison

6.2.1 Results of Blacklists Bytes Comparison

The following comparison between all the blacklists was regarding their bytes blocked and
shown in Figure 5.2. Note that for this section, performance is discussed on an absolute
scale. The IPsum blacklist(orange) seems to have much variance in performance for this
metric, which is interesting compared to the PC blacklist (green), which slowly climbs
to about the same performance but with much less variability. When comparing these
performances to their blacklist sizes in Figure 5.1, we can see that the PC model catches
up to the IPsum blacklist in performance around the same time it grows to the same size
as it. This suggests that the IPsum and PC blacklists perform about the same in the
bytes metric.

29

The PN blacklist (red) also varies less than IPsum but has large, infrequent jumps
in performance. When comparing these jumps to the size graph in Figure 5.1, these
drops and gains in the performance line up with massive drops and gains in blacklist size.
This suggests that the PN model aging needs to be adjusted in future versions of the
framework.

The eight RF blacklists do not change much in performance between the different
training data sizes, suggesting that the Random Forest Classifier did not find the bytes
metric to be essential to determining the label of a given prediction IP. These blacklists
spike in performance near the end of the evaluation like the others, suggesting much
overlap between the Random Forest classifications and the other blacklist choices.

6.2.2 Results of Blacklists Duration Comparison

The next comparison between all the blacklists was regarding their duration blocked and
shown in Figure 5.3. All of the blacklists seem to have a lot more variance than in the
bytes comparison. Note that for this section, performance is discussed on an absolute
scale.

Note that in terms of absolute performance, even the baseline blacklist, the All IP
blacklist (light violet), seldom rises above 40% blocking. This suggests that the IPs that
are entirely new and cannot be predicted by any of the blacklists are responsible for most
of the connection duration. This is supported by the fact that the rest of the blacklists
seldom rose above 20% blocking.

The IPsum blacklist (orange) seems to have much variance in performance for this
metric, which is interesting compared to the PC blacklist (green), which slowly climbs to
about the same performance but with less variability. The PN blacklist acts similarly to
its performance in the bytes comparison, only this time with much more variance. The
RF blacklists all perform very similarly to each other, suggesting that the Random Forest
Classifier did not find the duration metric crucial to determining a given prediction IP
label.

6.2.3 Results of Blacklists Flows Comparison

The next comparison between all the blacklists was regarding their flows blocked and can
be seen in Figure 5.4. Note that the vertical lines in the graphs of the RF blacklists occur
because these blacklists need to wait until they have enough prediction data. Also, note
that for this section, performance is discussed on an absolute scale.

The All IP blacklist performs much better than any other blacklists in this metric by
a much larger scale than in the previous two metrics. As was explained in Section 3.5,
the main difference between the All IP blacklist and the other blacklists is that the other
blacklists are forgetting specific IPs as time goes on, while the All IP is not. The fact
that the All IP blacklist performs so much better than the other blacklists in this metric
suggests that the IPs that are being forgotten by the other blacklists are responsible for
a substantial number of connections. This might need to be addressed in a future version
of the AIP framework.

The IPsum and PC models performed more closely in this metric than in the other
two metrics discussed, but with the PC being more consistent as before. Whereas in the
other metrics discussed, it took the PC blacklist at least four months to catch up with
the IPsum blacklist in performance, this metric caught up in only two months, and they

30

follow each other closely for the rest of the evaluation period. When comparing this to
the size graph in Figure 5.1, these two start performing similarly while the PC blacklist
is still substantially smaller than IPsum.

The PN blacklist is has variability in this metric, and unlike the other metrics, it does
not seem to correlate with its size. Sometimes it performs better than the PC model, and
at others, it performed worse than the Random Forest 1 Day model, which is surprising
considering that it was almost an order of magnitude larger. Also, it massively loses
performance near the end while all the other blacklists are gaining.

The Random Forest Blacklists seem to follow a similar trajectory as the PN model,
with minor variance. This is an excellent sign considering that the RF blacklists are, in
fact, the smallest ones, and despite that, can block a large amount of traffic.

6.2.4 Results of Blacklists IPs Comparison

The last comparison between all the blacklists was regarding the number of IPs blocked
and can be seen in Figure 5.5. Note that the vertical lines in the graphs of the RF
blacklists occur because these blacklists need to wait until they have enough prediction
data. Also, note that for this section, performance is discussed on an absolute scale. All
blacklists seem to perform at a much more steady rate than in any other metric.

The All-IP blacklist consistently has a 10% performance uplift over the PC and IPsum
blacklists. In this case, however, the PC blacklist even more clearly catches up with the
IPsum blacklist within the first two months of the evaluation and performs better by the
end.

The PN blacklist acts similarly as it did in the bytes metric, having large, infrequent
jumps in performance. When comparing the jumps to the size graph in Figure 5.1, these
drops and gains in the performance line up with massive drops and gains in blacklist
size. This is very interesting compared to the PC and IPsum blacklists, especially since it
performed better than either of them for a time before dropping below the performance of
the RF 1 blacklist. This suggests that an alteration might need to be made in the aging
method in the PN model.

The RF blacklists seem to gain performance at a logarithmic rate in proportion to
the amount of data they predicted on. The RF 1 blacklist was the lowest and the RF 25
the highest, but the most significant difference in performance was between RF 1 and
RF 4. Note that all of the RF blacklists had a high performance in this metric at the
very beginning of the evaluations, and then it dropped down and settled at about 50%
its previous value after a few days. The difference here is in the amount of data the RF
classifier is training on. This amount of data, as explained in Section 3.4, starts with just
the most recent data on day 1 of training and then grows up to 30 days of data in the
main database. This suggests that a future RF model should be tested that only trains
on the most recent data to see if this high performance continues over time.

6.3 Results of Blacklists Performance Index Compar-

ison

In order to compare the blacklists in a standardized framework, we computed a table of
averages and standard deviation, shown in Table 5.1, and then using this to compute a
table of performance indexes shown in Table 5.2. As was explained in Chapter 5, the

31

performance index is calculated using the Equation 5.1. The idea is to compute the ratio
of each average performance metric over the total size of the blacklist. This index is
crucial for comparing blacklists of different sizes since it shows how well the model that
generates the blacklist can choose the most important IPs. Therefore, for a blacklist with
a large Performance Index, each IP in the blacklist blocked more and consequently there
are less IPs that are not used. Thus, models that have higher performance indexes are
more efficient when choosing what IPs to block. This can be very useful when trying to
find small blacklists that have the most impact, our goal for IoT devices.

As can be seen in Table 5.2, the RF blacklists perform the best in this regard. Even
the worst RF blacklist, the RF 25, is still more than twice as good as the PC, PN, IPsum
blacklists for the Bytes and Duration metrics, and an order of magnitude better in the
case of the Flows and IPs metric. The best performing RF blacklist is the RF 1 blacklist,
a whole order of magnitude better than the PC, PN, and IPsum blacklists in bytes and
duration, and two orders of magnitude better in the flows and IPs metrics. This shows
that the RF models are an excellent resource for producing small and practical blacklists
for IoT.

6.4 About the Emerging Threats, DigitalSide and

FireHOL blacklists

According to our experiments and as shown in Figures 5.2, 5.4, 5.5 and 5.3, the Emerging
Threats, DigitalSide and FireHOL blacklists seem to have a poor performance in new
unseen attacks. The percentage of traffic being blocked was either zero or very close to
zero in all four of the metrics.

This lack of performance could be due to the blacklists not including the correct IPs,
or it could be that the blacklists were generated for other geographical locations. It is
suspected that IPs may attack differently in different parts of the world. In order to
evaluate which is the valid reason for their poor performance, we reevaluated all the
blacklists in another dataset called Hornet 15 [28]. Hornet 15 is a dataset of honeypots
attacks captured for 15 days in eight different locations. The idea was to evaluate how
these same blacklists (including our AIP blacklists trained in data from Prague) performed
on datasets from eight different locations in the world.

6.4.1 Location Bias Testing using the Hornet 15 Dataset

Hornet 15 is composed of two weeks of data, captured from 8 honeypots placed in eight
different locations across the world, seen in Table 4.3. This dataset was processed, sorted,
and evaluated with the same methodology presented in previous Section 4.2. We per-
formed the same evaluation methodology explained in Chapter 3, the only difference
being that the Hornet 15 dataset was used for the evaluation data.

Since our blacklists are trained in data from honeypots in Prague, and Emerging
Threats, DigitalSide, IPsum, and FireHOL were trained in other locations, we wanted to
perform a non-location biased evaluation. The models of the AIP framework, including
the random forest, were trained in Prague and tested in the data from Hornet 15. This
guaranteed a fair comparison with the other blacklists.

The results of these evaluations are shown in Figures 6.1, 6.4, 6.2 and 6.3. These
graphs show the average performance of each of the blacklists per day from each of the

32

Figure 6.1 Average Bytes blocked per Blacklist, Hornet 15 Evaluation

Figure 6.2 Average Flows blocked per Blacklist, Hornet 15 Evaluation

8 locations. As we can see, the results are very similar to the original evaluations using
the dataset from Prague, and the performance of the Emerging Threats, DigitalSide, and
FireHOL blacklists are the same.

This is a very interesting finding, especially if we compare the results to the Random
Forest model that was trained on a single day of data, seen in Figures 5.2, 5.4, 5.5 and 5.3.
This blacklist is about the same size as the three third-party blacklists, as can be seen
in Figure 5.1, but it performed much better. This shows the importance of a standard
of evaluation for blacklists. This second evaluation in eight different geographic locations
confirms that the third-party blacklists Emerging Threats, DigitalSide, and FireHOL did
not have poor performance due to a geographical location but because of how they were
built.

33

Figure 6.3 Average IPs blocked per Blacklist, Hornet 15 Evaluation

Figure 6.4 Average Duration blocked per Blacklist, Hornet 15 Evaluation

34

Chapter 7

Conclusion

Blacklists are the core defense method in our current Threat Intelligence feeds and IDS
systems. However, there was no known evaluation and comparison of blacklists. The
lack of an evaluation may imply that blacklists may not work as well as we believe [2].
In particular for IoT, where blacklists may play a crucial role, a better blacklists may
improve their protection while consuming low resources.

This thesis presented an alternative framework for generating and evaluating black-
lists, called Attacker IP Prioritizer (AIP). AIP consists of three algorithms that take
network data and output blacklists. The first algorithm prioritizes IPs that attack more
consistently, the second algorithm prioritizes IP that are newer. Both algorithms use a
score per IP, that is later aged in order to forget unnecessary IP addresses. These algo-
rithms aim at maximizing the amount of malicious traffic blocked while minimizing the
size of the blacklist. In this way, the blacklists are easily deployable in devices with small
memory, such as smart-doorbells [1].

The third algorithm implemented in the AIP framework is a Random Forest. This
algorithm uses a concatenated database of labeled past data to train the model and then
predicts which IPs seen in the past shall be blocked in the next day.

In order to create our blacklists and evaluate our methods, we created a specific
dataset of real IoT attacks. This dataset was created by capturing traffic in the Aposemat
IoT laboratory using real IoT devices for five months. These devices were exclusively
used as honeypots, and the traffic was filtered such that every connection to them can
be considered an attack. Another separate dataset, the Hornet 15 dataset by Veronica
Valeros, was used to test any location bias in the evaluations.

The evaluation of our models was done by comparing them to our three blacklists,
and a group of state-of-the-art free threat intelligence feeds found online. A particular
blacklist was used as a baseline, a blacklist that remembers all attackers until now. The
evaluation using the Hornet 15 dataset found that there was no geographically location
bias in our results.

We found that the AIP models performed better than the downloaded open-source
threat intelligence feeds according to the evaluation metrics. The first two models per-
formed as well as other blacklists comparable in size, being able to block on average 37%
of incoming malicious IP addresses. The Random forest models performed much better,
blocking on average up to 22% of the incoming malicious IP addresses but being order of
magnitudes smaller.

We calculated a performance index for each blacklist to compare blacklists of different
size. We found that the Random Forest model has an Performance Index of of 0.0068.

35

This made it 13x better than the other AIP models and 22x times better than the IPsum
blacklist, which was the best performing downloaded blacklist. The Random Forest model
proved to be the best model for generating blacklists for IoT devices.

We conclude that better blacklists are possible and that blacklist evaluations need to
be performed to establish better methodologies for blacklisting.

36

References

[1] David Beren. The 8 Best Smart Doorbell Cameras of 2020. Oct. 2019. url: https
://www.lifewire.com/best-smart-doorbell-cameras-4145064.

[2] Sûnnet Beskerming. Time to blacklist blacklists. July 2007. url: http://www.besk
erming.com/commentary/2007/07/01/196/Time%5C_to%5C_Blacklist%5C_Blac

klists.

[3] Lars Buitinck et al. “API design for machine learning software: experiences from
the scikit-learn project”. In: ECML PKDD Workshop: Languages for Data Mining
and Machine Learning. 2013, pp. 108–122.

[4] Deepak Choudhary. “Security Challenges and Countermeasures for the Heterogene-
ity of IoT Applications”. In: Journal of Autonomous Intelligence 1.2 (2019), pp. 16–
22.

[5] Louis Columbus. IoT Market Predicted To Double By 2021, Reaching $520B. http
s://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predict

ed-to-double-by-2021-reaching-520b/. Forbes. 2018.

[6] Baris Coskun. “(Un) wisdom of Crowds: Accurately Spotting Malicious IP Clus-
ters Using Not-So-Accurate IP Blacklists”. In: IEEE Transactions on Information
Forensics and Security 12.6 (2017). https://ieeexplore.ieee.org/abstract/d
ocument/7839928/, pp. 1406–1417.

[7] M. Cotton. “Procedures for the Management of the Service Name and Transport
Protocol Port Number Registry”. In: (2021). https://datatracker.ietf.org/do
c/html/rfc6335.

[8] Anthony Christopher Davison and David Victor Hinkley. Bootstrap methods and
their application. 1. Cambridge university press, 1997.

[9] “DigitalSide IPs”. In: (2021). https://osint.digitalside.it/.

[10] Sebastian Garcia. “Aposemat Project - MALWARE ON IOT”. In: (2021). https:
//www.stratosphereips.org/aposemat/.

[11] John A. Hawkinson and Tony J. Bates. Guidelines for creation, selection, and reg-
istration of an Autonomous System (AS). RFC 1930. Mar. 1996. doi: 10.17487
/RFC1930. url: https://rfc-editor.org/rfc/rfc1930.txt.

[12] Proofpoint Inc. “Proofpoint Emerging Threats Rules”. In: (2021). https://rules
.emergingthreats.net/fwrules/.

[13] V Jacobson, C Leres, and S McCanne. “libpcap, Lawrence Berkeley Laboratory,
Berkeley, CA”. In: Initial public release June (1994).

37

https://www.lifewire.com/best-smart-doorbell-cameras-4145064
https://www.lifewire.com/best-smart-doorbell-cameras-4145064
http://www.beskerming.com/commentary/2007/07/01/196/Time%5C_to%5C_Blacklist%5C_Blacklists
http://www.beskerming.com/commentary/2007/07/01/196/Time%5C_to%5C_Blacklist%5C_Blacklists
http://www.beskerming.com/commentary/2007/07/01/196/Time%5C_to%5C_Blacklist%5C_Blacklists
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/
https://www.forbes.com/sites/louiscolumbus/2018/08/16/iot-market-predicted-to-double-by-2021-reaching-520b/
https://ieeexplore.ieee.org/abstract/document/7839928/
https://ieeexplore.ieee.org/abstract/document/7839928/
https://datatracker.ietf.org/doc/html/rfc6335
https://datatracker.ietf.org/doc/html/rfc6335
https://osint.digitalside.it/
https://www.stratosphereips.org/aposemat/
https://www.stratosphereips.org/aposemat/
https://doi.org/10.17487/RFC1930
https://doi.org/10.17487/RFC1930
https://rfc-editor.org/rfc/rfc1930.txt
https://rules.emergingthreats.net/fwrules/
https://rules.emergingthreats.net/fwrules/

[14] Marc Kührer, Christian Rossow, and Thorsten Holz. “Paint it Black: Evaluating
the Effectiveness of Malware Blacklists”. In: (2014). https://christian-rossow
.de/publications/blacklists-raid2014.pdf.

[15] Marc Kührer, Christian Rossow, and Thorsten Holz. “Paint it Black: Evaluating
the Effectiveness of Malware Blacklists”. In: (2014). https://christian-rossow
.de/publications/blacklists-raid2014.pdf.

[16] Inc. MaxMind. “GeoIP Databases & Services: Industry Leading IP Intelligence”.
In: (2021). https://www.maxmind.com/en/geoip2-services-and-databases.

[17] “Open Argus”. In: (2021). https://openargus.org/.

[18] The FireHOL Project. “FireHOL’s IPsets”. In: (2021). https://github.com/fir
ehol/blocklist-ipsets.

[19] “Python”. In: (2021). https://www.python.org/.

[20] Sivaramakrishnan Ramanthan, Jelena Mirkovic, and Minlan Yu. “Blacklists Assem-
ble: Aggregating Blacklists for Accuracy”. In: (2018). https://steel.isi.edu/me
mbers/sivaram/papers/blag_technical_report.pdf.

[21] “Logistic Regression”. In: Encyclopedia of Machine Learning. Ed. by Claude Sam-
mut and Geoffrey I Webb. Boston, MA: Springer US, 2010, p. 631. isbn: 978-0-387-
30164-8. doi: 10.1007/978-0-387-30164-8_493. url: https://doi.org/10.100
7/978-0-387-30164-8_493.

[22] Ankit Kumar Singh. “TCP flags”. In: (2019). https://www.geeksforgeeks.org
/tcp-flags/.

[23] Sushant Sinha, Michael Bailey, and Farnam Jahanian. Improving Spam Blacklisting
Through Dynamic Thresholding and Speculative Aggregation. Proceedings of the
Network and Distributed System Security Symposium, https://vhosts.eecs.um
ich.edu/fjgroup//pubs/ndss10_final.pdf. University of Michigan, Ann Arbor,
MI. 2010.

[24] Miroslav Stampar. “IPsum Threat Intelligence Feed”. In: (2021). https://github
.com/stamparm/ipsum.

[25] Michael Bailey Sushant Sinha and Farnam Jahanian. Shades of grey: On the effec-
tiveness of reputation-based “blacklists”. IEEE, https://ieeexplore.ieee.org/a
bstract/document/4690858. 2008 3rd International Conference on Malicious and
Unwanted Software (MALWARE). 2008.

[26] Gilbert Tanner. “Random Forest”. In: (2021). https://ml-explained.com/blog
/random-forest-explained.

[27] Joe Touch et al. “Service Name and Transport Protocol Port Number Registry”.
In: (2021). https://www.iana.org/assignments/service-names-port-numbers
/service-names-port-numbers.xhtml.

[28] Veronica Valeros. “Hornet 15: Network Dataset of Geographically Placed Honey-
pots”. In: (2021). https://data.mendeley.com/datasets/rry7bhc2f2/2.

[29] Steve Weisman. “What is a distributed denial of service attack (DDoS) and what
can you do about them?” In: (2020). https://us.norton.com/internetsecurit
y-emerging-threats-what-is-a-ddos-attack-30sectech-by-norton.html.

38

https://christian-rossow.de/publications/blacklists-raid2014.pdf
https://christian-rossow.de/publications/blacklists-raid2014.pdf
https://christian-rossow.de/publications/blacklists-raid2014.pdf
https://christian-rossow.de/publications/blacklists-raid2014.pdf
https://www.maxmind.com/en/geoip2-services-and-databases
https://openargus.org/
https://github.com/firehol/blocklist-ipsets
https://github.com/firehol/blocklist-ipsets
https://www.python.org/
https://steel.isi.edu/members/sivaram/papers/blag_technical_report.pdf
https://steel.isi.edu/members/sivaram/papers/blag_technical_report.pdf
https://doi.org/10.1007/978-0-387-30164-8_493
https://doi.org/10.1007/978-0-387-30164-8_493
https://doi.org/10.1007/978-0-387-30164-8_493
https://www.geeksforgeeks.org/tcp-flags/
https://www.geeksforgeeks.org/tcp-flags/
https://vhosts.eecs.umich.edu/fjgroup//pubs/ndss10_final.pdf
https://vhosts.eecs.umich.edu/fjgroup//pubs/ndss10_final.pdf
https://github.com/stamparm/ipsum
https://github.com/stamparm/ipsum
https://ieeexplore.ieee.org/abstract/document/4690858
https://ieeexplore.ieee.org/abstract/document/4690858
https://ml-explained.com/blog/random-forest-explained
https://ml-explained.com/blog/random-forest-explained
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://data.mendeley.com/datasets/rry7bhc2f2/2
https://us.norton.com/internetsecurity-emerging-threats-what-is-a-ddos-attack-30sectech-by-norton.html
https://us.norton.com/internetsecurity-emerging-threats-what-is-a-ddos-attack-30sectech-by-norton.html

[30] Christian Wressnegger and Rouven Scholz. Security Analysis of Devolo HomePlug
Devices. https://dl.acm.org/doi/10.1145/3301417.3312499. EuroSec ’19:
Proceedings of the 12th European Workshop on Systems Security. 2019.

39

https://dl.acm.org/doi/10.1145/3301417.3312499

	List of Tables
	List of Figures
	Introduction
	Previous Work
	AIP Framework
	General Methodology
	Processing of Input Data
	Weighted Linear Combination Algorithms
	Prioritize Consistent Algorithm
	Prioritize New Algorithm

	Random Forest Algorithm
	All IP Blacklist
	Evaluation Framework

	Datasets
	Design of the IoT Laboratory
	Data Processing Techniques
	Hornet 15 Dataset

	Experiments and Comparisons
	Results and Analysis
	Results of Blacklists Size Comparison
	Results of the Metrics Comparison
	Results of Blacklists Bytes Comparison
	Results of Blacklists Duration Comparison
	Results of Blacklists Flows Comparison
	Results of Blacklists IPs Comparison

	Results of Blacklists Performance Index Comparison
	About the Emerging Threats, DigitalSide and FireHOL blacklists
	Location Bias Testing using the Hornet 15 Dataset

	Conclusion
	References

