
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

DSL-specific IDE generation

Bachelor thesis

Author: Pavel Pakhomov
Supervisor: Jan Trávńıček

Prague, 2021

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

487587Personal ID number:Pakhomov PavelStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Software Engineering and TechnologyStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

DSL-specific IDE generation

Bachelor’s thesis title in Czech:

Generování IDE specifické pro DSL

Guidelines:
1. Analyze the Xtext as an Eclipse framework for the development of domain-specific
languages (DSL), and the Xtext grammar language as a method for describing DSL.
2. Analyze Grammar-Kit as an IntelliJ IDEA plugin for generating parser support for
languages in Backus-Naur form (BNF).
3. Analyze a way to develop plugins for IntelliJ platform-based IDEs.
4. Using the Grammar-Kit plugin, design an IntelliJ IDEA plugin as a tool to generate a
DSL-specific IDE for an Xtext compatible language description.
5. Implement the designed IntelliJ IDEA plugin.
6. Select examples of DSL languages and test the plugin on those.
7. Compare the behaviour of the environment generated by the implemented plugin
with the one generated by Eclipse Xtext for the same input.

Bibliography / sources:
1. "Domain Specific Languages" by Martin Fowler, with Rebecca Parsons 2010
2. "Implementing Domain-Specific Languages with Xtext and Xtend" - Second Edition by Lorenzo Bettini 2016

Name and workplace of bachelor’s thesis supervisor:

Ing. Jan Trávníček, Ph.D., Department of Theoretical Computer Science, FIT

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 13.08.2021Date of bachelor’s thesis assignment: 26.02.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Jan Trávníček, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

iii

Declaration

I hereby declare I have written this bachelor thesis independently and quoted all the
sources of information used in accordance with methodological instructions on ethical
principles for writing an academic thesis. Moreover, I state that this thesis has neither
been submitted nor accepted for any other degree.

In Prague, 2021

..
Pavel Pakhomov

v

Acknowledgements

I would like to thank Ing. Jan Trávńıček, Ph.D. for being the project’s supervisor. Ad-
ditionally I would like to thank Michail Golubev the, in-firm supervisor, and Ing. Jǐŕı
Šebek, the faculty guarantor, for the support during the project.

vi

Abstract

This bachelor thesis describes the design and development of an IntelliJ IDEA plugin
which generates language support infrastructure, integrating new programming languages
to the IDE based on the language grammar specification. The goal of the theoretical
part of the project is to study formal language theory and language grammar definition
methods. The Xtext framework from the Eclipse IDE is discussed and its functionality
and interface is replicated in the IntelliJ IDEA. This theoretical knowledge is subsequently
applied in the practical section, which describes the entire implementation process. This
part includes enriching the IntlliJ IDEA with the Xtext grammar language support logic,
creating a Syntax Tree analyzer component, implementation of file generators and the
mechanism that facilitates the translation between two different tree structures. The
concluding part of the thesis presents the evaluation of the newly created plugin by testing
the behaviour of the language environments it generates.

Keywords: IDE, DSL, grammar specification, parser, lexer, Abstract Syntax Tree,
Grammar-Kit, Ecore model.

vii

Abstract

Ćılem této bakalářské práce je navrhnout a vyvinout plugin Intellij IDEA, který bude
generovat infrastrukturu jazykové podpory a integrovat nové programovaćı jazyky do
IDE na základě specifikace jazykové gramatiky. Ćılem teoretické části projektu je zk-
oumańı teorie formálńıho jazyka a metod definice jazykové gramatiky. Je také analy-
zován Xtext framework z Eclipse IDE, jehož funkčnost a rozhrańı byli replikováné v
IntelliJ IDEA. Tyto teoretické znalosti jsou následně aplikovány v praktické části, která
popisuje celý proces implementace. Implementačńı část zahrnuje obohaceńı IntlliJ IDEA
o podporu jazyka Xtext, vytvořeńı komponenty analyzátoru syntaktického stromu, im-
plementaci generátor̊u soubor̊u a mechanismu realizuj́ıćıho překlad mezi dvěma r̊uznými
stromovými strukturami. Závěrečná část práce obsahuje zhodnoceńı vytvořeného pluginu
prostřednictv́ım testováńı chováńı jazykových prostřed́ı, které se generuj́ı.

Kličova slova: IDE, DSL, specifikace gramatiky, parser, lexer, Abstract Syntax Tree,
Grammar-Kit, Ecore model.

viii

List of Figures

2.1 Pascal-like language grammar in EBNF . 6
2.2 Example of valid program in Pascal-like language 6

3.1 Students data stored in XML . 8
3.2 Students data stored in DSL . 9

4.1 Example of AST built from input program of particular language 12

5.1 Entity language grammar defined by Xtext grammar language 16
5.2 Terminals grammar file . 18
5.3 The output Xtext framework generates . 19
5.4 The example of program in Entity language 20

6.1 Grammar-Kit BNF syntax . 22
6.2 Entity DSL grammar defined using Grammar-Kit BNF 23
6.3 Token elements definition using Flex . 23

9.1 Xtext grammar language root rule translated to Grammar-Kit BNF 31
9.2 Xtext Terminal Rules translated to Flex format 32
9.3 Xtext language support plugin architecture 33
9.4 “Grammar” rule modifications . 35
9.5 Xtext language support plugin architecture(final version) 35
9.6 Entity language grammar(Xtext format) in IDEA editor 36
9.7 Grammar files generator component diagram 37
9.8 Translating PSI tree to EObjects tree . 40
9.9 Example of created EObject . 41
9.10 Simple Actions example . 41
9.11 Assigned Actions example . 42
9.12 BridgeRule class diagram . 43
9.13 Pseudocode of the “Bridge” alorithm . 44
9.14 Architecture of DSL support plugin with Bridge component 45
9.15 Rule modification example . 46
9.16 Updated file generator component diagram 47
9.17 Example of Xtext validation rule . 48
9.18 Class diagram of the Validator component 49
9.19 The Xtext new project wizard, second step 52

10.1 The Xtext new project wizard, second step with the input data filled . . . 54
10.2 The plugin structure generated by plugin. Entity DSL 55
10.3 Generated plugin.xml file, extensions tag 56

ix

LIST OF FIGURES x

10.4 Entity language grammar in Xtext format 56
10.5 Updated Entity grammar . 57
10.6 EntityValidator class . 58
10.7 Entity DSL IDE test . 59

A.1 The final component diagram . 63

B.1 The source directory of the project . 64

Contents

Acknowledgements vi

Abstract vii

Abstract viii

List of Figures ix

1 Introduction 1

2 Language definition 2
2.1 Introduction . 2
2.2 Basic concepts . 2
2.3 Finite Representation . 3
2.4 Grammar . 3

2.4.1 Example of a grammar . 4
2.5 BNF and EBNF . 4

2.5.1 Example of EBNF usage . 5

3 Domain Specific Languages 7
3.1 Introduction to DSL . 7
3.2 DSL examples . 7
3.3 Need for a new language . 8

4 Implementing a DSL 10
4.1 Introduction . 10
4.2 Parsing . 10
4.3 Semantic analysis . 11

4.3.1 Abstract Syntax Tree . 12
4.4 IDE integration . 13

5 Xtext plugin in Eclipse 14
5.1 Introduction . 14
5.2 Xtext grammar language . 14

5.2.1 Basic concepts . 14
5.2.2 Syntax description . 16

5.3 How it works . 19

xi

CONTENTS xii

6 IntelliJ IDEA approach 21
6.1 Introduction . 21
6.2 Grammar-Kit . 21

6.2.1 Grammar-Kit BNF . 22
6.2.2 Entity DSL example . 23

7 Summary and analysis 24

8 Design plan 26

9 Implementation 28
9.1 Technologies used . 28
9.2 Xtext language support plugin implementation 30

9.2.1 Defining language grammar . 30
9.2.2 Base plugin architecture . 32
9.2.3 Final plugin architecture . 34
9.2.4 Plugin testing . 36

9.3 Language support plugins generation . 37
9.3.1 Grammar-Kit BNF and Flex files generator 37
9.3.2 Plugin files generator . 38
9.3.3 Bootstrapping . 39

9.4 “Bridge” . 40
9.4.1 Advanced Xtext grammar features 40
9.4.2 “Bridge” design . 42
9.4.3 “Bridge” generator . 45

9.5 Validation Rules . 48
9.5.1 Adapter design . 49

9.6 Wizard . 51
9.6.1 Wizard design . 51
9.6.2 Project generation . 53

10 Testing and evaluation 54
10.1 Creating new Xtext project . 54
10.2 Xtext grammar language editor . 56
10.3 Defining Validation rules . 57
10.4 Launching new instance of IDEA with included language support 58

11 Conclusion 60

A Component diagram 62

B Electronic attachment description 64
B.1 Source code description . 64

Bibliography 66

Chapter 1

Introduction

In this current age of digital revolution, many companies are expected to write their own

software. Domain-specific languages (DSLs) are increasingly vital in software develop-

ment. DSLs can help domain experts participate in the software development process

and can significantly improve communication between stakeholders. Building a DSL is

usually a complex task that requires specific technical knowledge. Fortunately, there are

several available useful tools that can help developers. The most powerful among them

is Xtext (among java programmers) - a widely used framework in the Eclipse IDE. With

Xtext, users can quickly create new DSL, defining it using powerful grammar language.

With the help of Xtext, the user receives a full environment, including rich IDEs and text

editors to support the new DSL.

Importantly, Eclipse is not the most progressive IDE and fewer and fewer users today are

inclined to use it and prefer products from JetBrains instead. Currently, DSL developers

familiar with Xtext do not have the possibility to transfer to a modern IDE without

significantly changing their workflow. At the same time IntelliJ IDEA does not have such

a powerful tool that DSL developers can use, so they have to spend a lot of time and

effort to create the new language environment that Xtext users do with 1 click.

The main goal of this project is to design and implement a plugin in IntelliJ IDEA that

will repeat the Xtext plugin functionality. The thesis will cover all sides from analysing

two different approaches of language support creation to software implementation and

testing.

1

Chapter 2

Language definition

2.1 Introduction

The thesis covers the specific topic of development of programming languages, therefore

the reader is invited to get acquainted with the notion of formal languages and methods of

their representation. There will be no deep analysis of Formal Languages and Automata

Theory presented in the work, but the familiarity with basic concepts is required for

better understanding of further material.

2.2 Basic concepts

According to [1]:

• Alphabet is a non-empty finite set often denoted as Σ. Members of Σ are called

symbols. (e.g Σ = {a, b, c} or Σ = {0, 1, 2, ..., 9})

• A string or word over an alphabet Σ is a finite sequence of symbols of . (e.g. let

Σ = a, b be an alphabet; then aa, ab, bba, baaba,... are some examples of strings

over Σ).

The empty string is denoted by ε.

The set of all strings over an alphabet is denoted by Σ*. (e.g. Σ = {0, 1}, then

Σ* = {ε, 0, 1, 00, 01, 10, 11, 000, 001, ...}).

• Formal language (further just language) over an alphabet Σ is a subset of Σ*

(the collection of strings over the alphabet). If this subset is finite, then the lan-

guage is called finite, otherwise it is infinite.

Languages also can be divided into natural languages (any language that has

2

CHAPTER 2. LANGUAGE DEFINITION 3

evolved naturally in humans) and computer languages (a method of communica-

tion with a computer).

2.3 Finite Representation

Proficiency in a language does not require one to know all the sentences (strings) of

the language; rather with some limited information one should be able to come up with

all possible sentences of the language. This limited information describing the language

is called a finite representation of the language. In the case of finite languages, the

representation can just be an enumeration of all its strings. On the other hand, the

representation of an infinite language(e.g. all natural and computer languages) is a more

complex task. There are different ways to represent an infinite language, such as using

mathematical expressions, automata, or the more commonly used method representation

- grammar[2].

2.4 Grammar

Simply put, the grammar describes how to form strings of a language.

The classic formalization of grammars proposed by Noam Chomsky is a quadruple: G =

(N,Σ, P, S), where:

• N is a finite set of non-terminal symbols that is disjoint with the strings formed

from G.

• Σ is a finite set of terminal symbols that is disjoint from N.

• P is a finite set of production rules.

• S ∈ N is the start symbol.

Every production rule (also named a rewriting or derivation rule) has the following

form: (Σ ∪ N) ∗ N(Σ ∪ N)∗ −→ (Σ ∪ N)∗ [1]. That is, each rule maps one string of

symbols to another. Or in other words, a string to the left can be replaced by a string to

the right. This replacement is called derivation (denoted as ⇒).

Non-terminal symbols can be understood as references to another production rule, while

terminal symbols are those that form the final valid string of a language.

The valid string of a language is one that consists exclusively of terminal symbols

and can be derived from S in any number of steps. The set of all valid strings forms the

CHAPTER 2. LANGUAGE DEFINITION 4

language generated by grammar G, denoted as L(G) = {w ∈ Σ*|S ⇒ *w}(i.e. language

generated by grammar G is all strings that can be derived from G ‘s start symbol).

The only constraint put on production rules is that the left side must contain at least one

non-terminal symbol.

Context-free grammar is a special type of grammar in the Chomsky hierarchy. It is

a grammar in which the left-hand side of each production rule consists only of a single

non-terminal symbol. So the production rule form is simplified to N −→ (Σ ∪ N)∗ .

Further, only context-free grammars will be considered.

2.4.1 Example of a grammar

Consider the grammar G , where N = {S,B},Σ = {a, b, c} , S is the start symbol, P

consists of the following rules:

S −→ aBSc

S −→ abc

B −→ cB

B −→ bb

Examples of derivations of strings in L(G):

• S ⇒ abs

• S ⇒ aBSc⇒ abbSc⇒ abbabcc

• S ⇒ aBSc ⇒ aBaBScc ⇒ acBaBScc ⇒ acbbaBScc ⇒ acbbaBabcccacbbabbabccc

...

2.5 BNF and EBNF

Backus–Naur form (BNF) is a metasyntax notation for context-free grammars pro-

posed by John Backus, a programming language designer at IBM [7]. It is used to express

the syntax of formal languages - typically computer programming languages. Let’s start

by rewriting the grammar defined as an example [2.4.1] with in BNF:

< S >::= “a” < B >< S > “c”|“abc”
< B >::= “c” < B > |“bb”

Sequences of characters enclosed in the brackets <>represent metalinguistic variables

CHAPTER 2. LANGUAGE DEFINITION 5

whose values are sequences of symbols. In other words <...>represents a nonterminal

symbol. Characters enclosed in commas are just terminal symbols. The “::=” symbol

means “can be replaced with”, the same meaning as “−→” in the Chomsky formalization.

The vertical bar “|” can be read as “or” and denotes the choice between two sequences of

symbols. There are many variants and extensions of BNF. The most famous is probably

the EBNF [7]. An extended Backus–Naur form (EBNF) consists of terminal symbols and

non-terminal production rules which are the restrictions governing how terminal symbols

can be combined into a legal sequence. The common features of the EBNF [8] are listed

below:

Notation Usages
= definition
, concatenation
; termination
| alternation

[...] optional
. . . repetition

(. . .) grouping
“...” or ‘...’ terminal string

? . . . ? special symbol
- exception

Table 2.1: EBNF syntax features

These metasyntax notations and their further extensions are used by parser generators

(compiler generators) that will be discussed in further chapters.

2.5.1 Example of EBNF usage

Firstly the example [2.4.1] written in EBNF will look as follows:

S = “a”, B, S, “c”|“abc”
B = “c”, B|“bb”

This example doesn’t fully show all of EBNF features, so the a more complex illustration

is needed.

EBNF is metasyntax for describing computer languages. Consider the definition of a

Pascal-like programming language that allows only assignments written in EBNF:

CHAPTER 2. LANGUAGE DEFINITION 6

Figure 2.1: Pascal-like language grammar in EBNF

Then the syntactically correct program of defined language could be:

Figure 2.2: Example of valid program in Pascal-like language

Chapter 3

Domain Specific Languages

3.1 Introduction to DSL

In theory of computer languages, a domain-specific language (DSL) is a language meant

for use in the context of a particular domain [4]. This is in contrast to a general-purpose

language (e.g. Java, C++), which is broadly applicable across domains.

Domain is a term used in software engineering which means the targeted subject area of

a computer program. The domain could be such familiar things like database querying or

document markup. Additionally it could be any specific business context such banking,

insurance, automotive production or smart home systems.

3.2 DSL examples

Query languages:

• SQL

• XPath

Data storage languages:

• XML

• YAML

Document formatting languages:

• LaTex

• HTML

7

CHAPTER 3. DOMAIN SPECIFIC LANGUAGES 8

• CSS

Languages that cover more specific domains:

• DOT.

A DSL to define graphs

• PlantUML.

A DSL to draw UML diagrams

It is possible to list many examples of DSL, but many of them are developed and used by

a small group of people; for example, a language that exists within a single organization.

Consider a scenario in which a car manufacturer develops its own language for expressing

car configurations. The syntax and features of this DSL meet the requirements of this

particular company only. Such a language is unlikely to go beyond its limits, and most

likely will not be suitable for other users due to the domain specific design for a particular

company.

3.3 Need for a new language

The main goal of this theses is the creation of a plugin for DSL developers. One may

wonder why people need to develop new languages to describe specific data and models at

all. There are known tools to describe data in both a machine and human-readable form,

the most popular of which is XML. An example can be some a university that needs to

store information about their students. The XML file may look as follows:

Figure 3.1: Students data stored in XML

CHAPTER 3. DOMAIN SPECIFIC LANGUAGES 9

The XML representation fills the document with too much additional syntax noise due

to all of the tags. It is not straightforward for a human to grasp the actual information

about a student from such a specification.

The same information can be described in a custom DSL:

Figure 3.2: Students data stored in DSL

This specification is more compact and contains much less noise. Also the editor of the

DSL can provide many useful features such as a rich validation system that will not allow

the user to write invalid information. For example the editor will help to complete the

keyword part-time as well as faculty/program names. It may also forbid improper

year/study start date values.

Chapter 4

Implementing a DSL

4.1 Introduction

Implementing a DSL means developing a program that is able to read text written in

that DSL, parse it, process it, and then possibly interpret it or generate code in another

language [13]. Also, to ensure that the end user can effectively and comfortably work

with a new language, the implementation process should include the building of a rich

environment that provides features modern developers are used to, such as: validation,

highlighting etc.

4.2 Parsing

First and foremost, while reading a program written in a specific DSL, the implementation

must ensure that the program follows the language’s syntax.

To accomplish this, the program must be divided into tokens. Each token is a single atomic

element of the language. An analogy between program tokens and terminal symbols [2.2]

can be drawn here. The following are possible program tokens:

1. Keywords

Such as class or private in Java.

2. Identifiers

Such as Java class (or class member) name.

3. Literals

Examples of literals can be string literals, typically surrounded by quotes (“Hello

world”), integer literals (204) or boolean literals (true or false).

10

CHAPTER 4. IMPLEMENTING A DSL 11

4. Separators

Such as parentheses or terminating semicolons.

5. Spaces

Language elements such as whitespaces or newlines characters.

For instance, in the figure 3.2 Martin is an example of a string literal, 2018 is an integer

literal, square and round brackets are separators and full is a keyword.

The process of converting a sequence of characters into a sequence of tokens is called

lexical analysis, and the program or procedure that performs such analysis is called a

lexer [9]. This analysis is usually implemented by using the syntax of regular expressions.

Having a sequence of tokens from the input file is not enough, since this sequence should

form a valid statement in the language. This phase is called parsing or syntactic anal-

ysis. The program or procedure that performs such analysis is called a parser. In fact,

the parser asks the lexer for tokens and tries to build a valid statement of the language

[2.4].

Writing the parser and the lexer by hand requires a lot of effort. In practice, special tools

are utilized to do this work for a human. These tools are called parser generators.

A parser generator is a programming tool that creates a parser, interpreter, or compiler

from some form of formal description of a programming language. Its input is a grammar

file, typically written in extended Backus–Naur form (EBNF) [2.5.1] and its output is

the source code of a parser for the programming language. In the Java world, the most

well-known parser generator is ANTLR (ANother Tool for Language Recognition) [6].

4.3 Semantic analysis

Parsing a program is only the first stage in implementing a programming language. Usu-

ally it is not possible to check the overall validity of a program by only performing syntactic

analysis. For example type checking cannot be performed during parsing (e.g. assign-

ing a string value to an integer variable is not possible in Java). Validations like this are

part of semantic analysis and are handled by a different section of the implementation

program.

For these reasons, a representation of the parsed program should be constructed and stored

in memory. In this way the implementation program can perform semantic analysis on

the memory representation instead of parsing the same text repeatedly.

CHAPTER 4. IMPLEMENTING A DSL 12

4.3.1 Abstract Syntax Tree

A tree structure called the Abstract Syntax Tree (AST) is a convenient representation

of a program in memory [10].

The Abstract Syntax Tree may also be thought of as a representation of the abstract

syntactic structure of source code written in a programming language. The following

example of a parsed program in a simple “Addition expressions language” will review the

previous topics and illustrate the principle of AST construction:

Figure 4.1: Example of AST built from input program of particular language

The tree diagram shows that its leaf elements are tokens in the context of syntactic

analysis (terminals in the context of grammar). Inner nodes are associated with the

languages’s grammar non-terminal symbols.

Since the AST nodes may differ in types and properties, different code is required to

represent them. Therefore, the language implementation should include Java classes for

each type of nodes. Often parser generators are responsible for generating code for AST

nodes. In this way, using ANTLR, a programmer should specify names of Java classes

directly in the grammar file to map elements of the language to tree nodes types that will

be built in the future [3].

CHAPTER 4. IMPLEMENTING A DSL 13

4.4 IDE integration

Even if the DSL implementation is able to read, parse and semantically validate the pro-

grams written in a new language, the work cannot really be considered finished. Nowa-

days, many programmers are accustomed to using powerful IDEs, which assist program-

mers to use learn and maintain programming languages.

Every IDE should provide the following features:

• Syntax highlighting

This provides users with immediate feedback on the syntactic validity of what they

are writing by coloring and formatting various DSL elements in various styles.

• Error markers

If the development environment is able to mark incorrect parts of the program and

provide explanatory messages directly in the editor, the programmer does not have

to go to the console to discover such errors and will easily spot the parts of the

program that need to be fixed.

• Completion assist

This feature automatically, or on demand, provides suggestions on how to complete

a given statement that the programmer just typed. The feature not only speeds

up the programming process but also tells the user what will make sense in that

specific program context, allowing them to avoid consulting the documentation or

inspecting the code.

• Hyperlinking

Hyperlinking is a feature that makes it possible to navigate between references in

a program. If the DSL provides declarations of any sort, then the IDE should also

provide the possibility to directly jump from an identifier token to the corresponding

declaration.

• Quickfixes

The ability of IDE to fix the mistake made by user if the DSL implementation is

able to do so. When a programmer gets stuck, this feature could be quite handy.

Chapter 5

Xtext plugin in Eclipse

5.1 Introduction

Xtext is an Eclipse framework for implementing programming languages and DSLs [14].

It lets a developer implement languages quickly, and most of all, it covers all aspects of a

complete language infrastructure, starting from the parser, code generator, or interpreter,

up to a complete Eclipse IDE integration with all the typical IDE features that were

discussed previously [4.4].

Xtext generates the complete language infrastructure in one stage. The only thing the

framework requires from the developer is the grammar specification file written in powerful

language developed by the Xtext team.

5.2 Xtext grammar language

The language used in the Xtext framework to specify DSL grammars is appropriately

named ”Xtext.” Because the Xtext language is an extension of EBNF, the reader will be

familiar with its syntax. However, it has a wide range of features that allow it to express

all parts of language infrastructure in one file using friendly syntax.

5.2.1 Basic concepts

1. Interconnection between language structures and Ecore model objects

The need of AST(in-memory representation) of a parsed program was discussed in

the previous chapter. In the Xtext world, the notion of AST is often referred to as

the Ecore model because its nodes are objects of some Ecore model. Here a brief

introduction to the EMF framework is needed.

14

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 15

EMF (Eclipse Modeling Framework) is a framework in Eclipse for modeling, gen-

erating code and presenting object models [12]. The main elements of EMF are:

• Ecore model is model built with EMF, the name comes from Ecore language

in which models are declared.

• EClass is a Java class of a the Ecore model.

• EObject is an instance of an EClass.

• EDataType is an EMF representation of a Java primitive type.

• EPackage is a set of EClasses.

The parser generated by Xtext is responsible for building such object graphs. There-

fore, the developer should specify how certain parts of the language will be mapped

to certain EObjects (quite similar to the ANTLR approach because the Xtext frame-

work uses it under the hood). The user has the possibility to map not only the whole

rule to the EObject but parts of the rule to EObject’s properties called features.

2. References system

A unique feature of the Xtext grammar language is called Cross References. This

allows the user to specify how one named part of the DSL can be referenced from

another in the grammar specification file.

3. Reuse of grammars

The DSL developer is able to declare the existing Xtext grammar for reuse(referenced

as grammar mixin). In this way, a developer can make use of the declared gram-

mar’s rules in the language that he or she develops.

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 16

5.2.2 Syntax description

First of all, the example of a grammar language syntax should be shown. This is the

grammar file defining the DSL called “Entity” that the developers of Xtext provide in

their official framework documentation[3]:

Figure 5.1: Entity language grammar defined by Xtext grammar language

Now let’s discuss the syntax and features based on this example.

The whole grammar file consists of two parts: the header and the set of grammar rules.

The header includes:

1. Language Declaration

grammar org.xtext.example.entity.Entity

with org.eclipse.xtext.common.Terminals

This line declares the fully qualified name (FQN) of the language.

The FQN that follows the keyword with indicates the grammar mixin.

2. EPackage Declarations

import "http://www.xtext.org/example/entity/Entity"

This line defines the Ecore model, which enables the use of their EObjects in the

grammar. The imported model’s EObjects are then utilized to create an AST of

DSL expressions.

There are two types of rules in the Xtext grammar language: Parser rules and Terminal

rules.

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 17

5.2.2.1 Parser rules

A parser rule is an Xtext interpretation of a non-terminal production rule [2.4]. The

syntax of each parser rule is quite similar to EBNF:

Domainmodel :(elements+=Type)*;

Here Domainmodel is the rule‘s name, colon (:) is a definition sign. The semicolon (;)

is used to separate rules. Xtext syntax uses four types of cardinalities similar to regular

expressions operators: exactly one (the default, no operator), zero or one (operator ?),

zero or more (operator *) and one or more (operator +).

The first parser rule defined in the grammar file is considered as the root rule (an analogy

of start symbol [2.4])

The parser rule features:

• Return types

RuleA returns TypeA: ... ;

The developer specifies the type of EObject that will represent the DSL expression

matched by the parser rule in the AST using the rule’s return type. If the return

type is omitted, the EClass of the same name as the parser rule is considered. In

this way the ”Domainmodel” rule can be rewritten as:

Domainmodel returns Domainmodel:(elements+=Type)*;

• Assignments

elements+=Type

Assignments are used to assign parts of the rule to a feature (the Xtext notation

of EObjets‘s property) of the returned object. The type of the assigned feature is

inferred from the right hand side of the assignment.

There are three different assignment operators, each with different semantics.

1. The simple equal sign = is the straightforward assignment, and is used for

features which take only one element.

2. The += sign (the add operator) expects a multi-valued feature and adds the

value on the right hand side to the list feature.

3. The ?= sign (boolean assignment operator) expects a feature of type EBoolean

and sets it to true if the right hand side was parsed.

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 18

For instance in the rule

DataType:‘datatype’ name=ID;

the EObject of type DataType will have a feature called “name” and the object

returned by the rule ”ID” will be assigned to it.

• Cross-References

superType=[Entity]

Cross-Reference denotes reference by name and the parser will expect the ID token

here, not the Entity rule. This ID should be the name of an existing Entity. The

type of supertype feature will be the EClass that the Entity rule returns.

5.2.2.2 Terminal rules

There are no terminal rules presented in the Entity language grammar (figure 5.1) so one

should take a look at the grammar it reuses. org.eclipse.xtext.common.Terminals

grammar is predefined grammar in Xtext that consists exclusively of terminal rules:

Figure 5.2: Terminals grammar file

Terminal rules are also known as token rules or lexer rules since they represent atomic

elements of the language. Every terminal rule starts with the keyword terminal. The

return type of the terminal rule should be EDataType. If the return type is omitted,

the type EString is considered.

The features of the language do not end there. Unmentioned things such as tools for

more detailed designing of AST called Actions will be discussed in future implementation

chapters [9].

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 19

5.3 How it works

When the user finishes with the grammar, the next step is to run an action on a grammar

description file. This action generates the parser, text editor, and the other additional

infrastructure code. Simply put, it will generate all the things you need to start using the

new DSL.

Figure 5.3: The output Xtext framework generates

After the Xtext finishes its work, the user will see 5 Xtext projects were generated.

The developer can now launch a new instance of Eclipse, which will include the new

language plugins and provide functionality for code completion, syntax highlighting, syn-

tactic validation, linking errors, formatting, hyperlinking, find references, folding, rename

refactoring, etc.

Furthermore, the programmers can easily enrich the generated code with their own logic.

An example might be configuring editor-support files(e.g to add one’s own validation

rules) or integrating the DSL with java.

Ones the new instance of Eclipse is launched the IDE will provide full infrastructure for

the new language. Thus, the following code can be typed and successfully parsed by the

IDE:

CHAPTER 5. XTEXT PLUGIN IN ECLIPSE 20

Figure 5.4: The example of program in Entity language

Chapter 6

IntelliJ IDEA approach

6.1 Introduction

IntelliJ IDEA is an IDE built on the IntelliJ Platform, which is a powerful platform for

building development tools targeting any language [15]. Similarly to Eclipse IDE the

implementation of a new language means creating a plugin which will contain all of the

needed components described in the chapter 4, starting from parser and ending with

various editor support features.

In contrast to Eclipse, there is no such powerful framework in the IntelliJ IDEA that could

generate an entire programming language infrastructure in one click. The DSL developer

is forced to spend more time and effort to implement the language support plugin in

IDEA. Fortunately, however, this does not mean the developer must code everything from

scratch. The IntelliJ platform provides a rich language-independent code base that allows

developers to implement a particular IDE feature by just implementing a few interfaces.

Moreover, the programmer is not obligated to write the parser and lexer code as far as it

can take full advantage of the Grammar-Kit plugin.

6.2 Grammar-Kit

Grammar-Kit is an IntelliJ IDEA plugin for creating language support plugins [18]. It

adds parser, lexer and PSI (an extension over AST in IntelliJ platform, described in more

detail below) generators to IDEA.

With the help of Grammar-Kit the programmer can describe the language‘s grammar

using BNF-like specification [2.5.1]. However, the plugin doesn’t allow the programmer

to declare everything in one file like Xtext in Eclipse does. In order to define tokens

(terminal symbols) the developer should declare them in the JFlex (lexer generator)

21

CHAPTER 6. INTELLIJ IDEA APPROACH 22

specification file, using special syntax [22]. Thus Grammar-Kit plugin adds BNF and

JFlex file editing support.

The plugin works with IntelliJ PSI. The Program Structure Interface(PSI), is the layer in

the IntelliJ Platform responsible for parsing files and creating the syntactic and semantic

code model that powers many of the platform’s features [19]. Therefore, the parser created

by Grammar-Kit builds a PSI tree whose nodes are subclasses of PsiElement (the

common base interface for all of the elements of the PSI tree).

6.2.1 Grammar-Kit BNF

Grammar-Kit uses PEG (parsing expression grammar) with EBNF notations.

The syntax of grammar language looks as follows:

Figure 6.1: Grammar-Kit BNF syntax

In other words, Grammar-Kit BNF uses basic EBNF syntax, but it is extended with

global attributes, rule attributes and rule modifiers.

Global attributes are information for the code generator. There could be specified paths

where the parser should be generated, the prefix of generated classes, or paths to special

“Util” classes. Rule attributes contain additional information for the code generator, but

separately for each rule. It could be a prefix attribute such as private, left, inner,

etc. Rule attributes (enclosed by curly brackets) could be used to specify the interface

for the PSI class to be generated. It could also be used to change the parser logic for a

particular rule (pin or recoverWhile attributes).

CHAPTER 6. INTELLIJ IDEA APPROACH 23

6.2.2 Entity DSL example

The Entity language, which was used as an example in the previous chapter [5.2.2], can be

implemented with Grammar-Kit plugin. Its syntax description written in Grammar-Kit

BNF will look like this:

Figure 6.2: Entity DSL grammar defined using Grammar-Kit BNF

Tokens are described using a separate file (hereafter called Flex), which is specification

for the JFlex generator. Terminal Rules from “Terminals” grammar (figure 5.2) have

the following form in Flex:

Figure 6.3: Token elements definition using Flex

Specification like this is only used as input for the Grammar-Kit parser generator and

doesn’t describe IDE behaviour or add editor features. To do so in IntelliJ IDEA, the

developer should perform a number of actions that will be discussed in detail in a later

chapter [9.2].

Chapter 7

Summary and analysis

This intermediate chapter aims to review the thesis goals and how they relate to the

covered theoretical material. It analyzes the differences between the procedures discussed

earlier which will be important in the implementation stage.

• The development of programming languages is the main topic of the work.

• The DSL is a programming language to describe things and make expressions which

belong to a specific domain.

• The DSL developer’s job consists of the following parts:

1. Inventing of the language itself, defining its syntax and rules of how sentences

should be formed. The developer achieves this by describing the language’s

grammar using some variation of BNF metasyntax.

2. Creation of the environment that will support the usage of the DSL. Usually

this environment is built on the base of some existing IDE - in this case, a plugin

that adds DSL-specific components(parsers, editor support logic) to that IDE.

• The developer is not required to write complex IDE components (such as the parser

or lexer) since tools called parser generators are used for that purpose.

• There is an “Xtext” framework in the Eclipse IDE, that is much more powerful than

a typical parser generator. The main advantages of Xtext are:

1. Xtext generates the entire ready-to-use environment in one click, requiring only

one grammar specification file as its input.

2. The Xtext framework uses its own BNF for describing a DSL’s grammar. This

grammar language allows developers to flexibly design a mapping between

grammar structures and domain instances. It also allows the programmers

24

CHAPTER 7. SUMMARY AND ANALYSIS 25

to define references by name and token elements and handle the AST creation

process in one file.

3. The Xtex framework relies on an object modeling framework EMF that is ideal

solution for describing and working with specific domains.

• The main objective of this bachelor thesis is to “transfer” the Xtext features from

the Eclipse IDE to the IntelliJ IDEA IDE. In other words, this project encompassed

the creation of the IDEA plugin that extends all of the Xtext functionality to the

IntelliJ platform.

• This “transferring” is a quite complex task since Eclipse and IDEA are completely

different platforms with various approaches to the creation of language support

plugins.

• Two major differences between these two IDEs are:

1. AST creation.

In the IntelliJ IDEA the PSI layer is responsible for parsing files and creat-

ing the semantic model. In the case of a successfully parsed program(in any

language) the PSI tree is created.

In Eclipse the process of AST creation is hidden from user. Using Xtext, the

DSL developers receives a semantic model constructed from EObjects that they

specified in the grammar description.

The approach with the tree structure common for all language formats is def-

initely more convenient, but due to the fact that Xtext in Eclipse uses Ecore

models throughout its code and predefined grammars, the implementation of

Xtext in IntelliJ IDEA should be able to build an EObjects tree out of a PSI

tree. That also will allow Xtext users who were working with ECore models in

their projects to transfer to IDEA with ease.

2. Parser generators.

The syntax of the Xtext grammar language and Grammar-Kit BNF was de-

scribed in previous chapters. Although Grammar-Kit provides many possibil-

ities to fine-tune parser and PSI tree creation, some of the features that Xtext

provides have no direct analogues in the Grammar-Kit world.

• The implementation can be considered successful if: for the same input (grammar

specification in Xtext format) the implemented plugin will generate an environment

similar to one that the Xtext framework in Eclipse generates (e.g. the semantic

models for the same DSL input should be equal).

Chapter 8

Design plan

The implementation of the project is divided into several stages:

1. Implementation of the Xtext grammar language support plugin in IDEA

In the final plugin users should be able to describe grammars in the Xtext grammar

language. To achieve this the IDEA plugin that adds support for this language will

be written manually.

2. Implementation of the mechanism to “translate” Xtext grammars to

Grammar-Kit grammars

The method of generating a Grammar-Kit BNF file and a Flex file for a given Xtext

grammar should be devised. At this stage, only language syntax support is con-

sidered because Xtext grammar features like Cross-References cannot be defined in

the Grammar-Kit BNF.

3. Implementation of the language-defining files generator

The DSL developer is required to write a significant number of classes which are

part of the the language support plugin in IntelliJ platform. These classes should

be generated together with the Grammar-Kit BNF/Flex files, thus the base IDEA

plugin supporting the particular DSL could be generated from the input Xtext

grammar specification file. There are still no Xtext features or editor support that

will be implemented at this stage.

4. Implementation of the editor support files generator

According to [4.4] the generated IDE should provide base support to help pro-

grammers in their work, such as syntax highlighting or keyword completion. The

generator of classes which realize this support is implemented in this stage.

5. Regeneration of the Xtext language support plugin created in point 1.

Using generators created in points 2-4, the plugin supporting Xtext grammar lan-

26

CHAPTER 8. DESIGN PLAN 27

guage will be generated. This is a “bootstrapping” stage in the sense that the

project component will be built by this project itself.

6. Implementation of “Bridge” between PSI tree and EObjects tree

The “Bridge” is the name chosen during the implementation process for the project

component which is responsible for the creation of semantic models identical to

those created in Eclipse.

This is the most complex and time-consuming stage. Therefore it should be divided

into substages:

a) “Bridge” algorithm implementation for one test language.

b) Generalisation of the algorithm for every language.

c) Implementation of the “Bridge” generator.

7. Implementation of validation rules

Adding custom validation rules is the most common practice in DSL development

after the base language implementation is completed. The Xtext framework offers

a user-friendly API for these purposes. This API will be reproduced in the IntelliJ

IDEA at this stage.

8. Implementation of a new project wizard

The new project wizard is a tool that assists users in creating new projects with

specific structures by requesting them to provide some initial inputs.

The next chapter covers the entire implementation process. The material will be narrated

in the order corresponding to the design plan.

Chapter 9

Implementation

9.1 Technologies used

Programming languages:

• Java

Java is the central language of the thesis topic. All of the IntelliJ platform classes

are implemented (and generated) in it.

• Kotlin

Most of the code is written in Kotlin [20]. It is fully interpretable with Java and

provides useful features that help to implement classes containing difficult logic,

generators and IntelliJ UI classes.

• Xtend

This Java dialect is used to configure Xtext plugins in Eclipse [21]. In this project

it was used at the “Bridge” testing stage for the implementation of the unit test

methods in Eclipse.

Products and technologies:

• IntelliJ IDEA Community IDE

Target platform of the created plugin - final product of this project.

• Gradle

Assembling tool used in the IntelliJ platform for the creation of language support

plugins [16].

• Grammar-Kit

Plugin in IDEA which provides parser generator functionality.

28

CHAPTER 9. IMPLEMENTATION 29

• PsiViewer

Plugin in IDEA for representation of PSI trees.

• Eclipse IDE

The IDE which was used to learn, analyze and test the Xtext framework. Ecore

models are also built and exported from it.

• Xtext framework

The framework this project is aimed to replicate.

• EMF framework

Eclipse framework which provides tools for creating Ecore models.

• Enterprise Architect

This product from the Sparx Systems company [17] was used for design purposes

during the implementation process. Moreover, all of the diagrams presented in the

thesis were drawn using Enterprise Architect.

CHAPTER 9. IMPLEMENTATION 30

9.2 Xtext language support plugin implementation

The first thing the implementation should start with is the creation of the plugin support-

ing Xtext grammar language. After the successful implementation of this stage, IDEA

will be expanded with the possibility to parse Xtext grammars and build PSI trees of

parsed files. These trees then will be used as the main input parameter by other project

components(e.g. generators).

The process of implementing plugins of this type can be logically divided into two phases:

1. Defining the language grammar and generating the parser/lexer/PSI classes (using

Grammar-Kit plugin)

2. Writing classes that integrate the new language to the IntelliJ IDEA and add editor

support.

9.2.1 Defining language grammar

The Xtext grammar language is described by itself. At this point the task is to translate

the grammar from the Xtext BNF to the Grammar-Kit BNF.

Some grammar elements will remain unchanged, whereas others will be substantially al-

tered or ignored at all. The following table represents Xtext grammar features of Parser

rules that should be modified in some way while being rewritten in the Grammar-Kit

BNF:

Xtext grammar feature Xtext notation Grammar-Kit BNF solution

Rule return type
Alternatives returns
AbstractElement: ...

Alternatives ::= ...

Assignments ... name=GrammarID GrammarID ...

Cross-References
... supertype=[Entity|STRING] STRING ...

... classifier=[EClassifier] ID ...

Unordered groups
... ‘static’ & ‘final’

& Visiability ...
-

Simple Actions and
Assigned Actions

... {Group} ... -

... {Alternatives.elem
ents+=current} ...

-

Syntactic Predicates ... -> ‘else’ ... -

Table 9.1: Grammar-Kit replacements of Xtext grammar features

Dashes in the third column of the table mean that the corresponding feature is ignored

at this stage of implementation. Some of skipped features like Actions or Syntactic

CHAPTER 9. IMPLEMENTATION 31

Predicates will be implemented in future “Bridge” implementation stage [9.4], when

building EObject models and AST modification operations will make more sense. How-

ever, the Unordered groups feature will not be implemented in this project because

Grammar-Kit BNF doesn’t offer a mechanism to express such language structures.

Thus, the root rule of Xtext grammar language is translated to Grammar-Kit BNF as

shown in the figure:

Figure 9.1: Xtext grammar language root rule translated to Grammar-Kit BNF

In a similar way Xtext Terminal rules should be translated. Since Grammar-Kit uses

JFlex generator for Lexer generation, all terminals should be defined in a Flex file that

has a fairly intuitive syntax similar to regular expressions. The following figure displays

how Terminals rules are translated to the .flex format:

CHAPTER 9. IMPLEMENTATION 32

Figure 9.2: Xtext Terminal Rules translated to Flex format

9.2.2 Base plugin architecture

The “base version” of plugin is created at first. This simplified version will only contain

the code mandatory for base language integration without optional editor support logic.

The technique for creating such types of plugins is described in [19] and is common for

any language in the IntelliJ platform. The generator component of the project (whose

implementation is discussed in future chapters) follows all of the steps outlined at this

stage.

CHAPTER 9. IMPLEMENTATION 33

The architecture of the created plugin appears as follows:

Figure 9.3: Xtext language support plugin architecture

The plugin consists of the following components:

1. The xtext(blue) package contains classes generated by Grammar-Kit.

This component include base elements of DSL implentatation process discussed in

[4.2], namely lexer, parser and AST classes. The IntelliJ platform semantic

model is being built from PSI elements. The psi package contains PSI interfaces

and their implementations that were generated into the impl package. The input

files for generator are located in the grammar package.

2. The xtext(orange) package contains base classes needed to integrate a new lan-

guage to the IntelliJ platform.

• XtextFileType and XtextLanguage are required to make the IDE able

to determine the type of Xtext files.

• XtextLexerAdapter allows the XtextLexer generated by the JFlex gen-

erator to be adapted to the IntelliJ Platform Lexer API.

• The psi package consists of classes which represent types of AST nodes that

each language should have in the IntelliJ Platform: XtextElementType for

non-terminal nodes, XtextTokenType for terminal nodes and XtextFile

for root element of the file.

CHAPTER 9. IMPLEMENTATION 34

• XtextParserDefinition class aggregates all the logic implemented above

and provides parser, lexer, tokens and other important language plugin com-

ponents to the IntelliJ Platform.

3. The plugin.xml is a configuration file for plugins in IntelliJ IDEA. Within it all

language plugin components should be registered.

9.2.3 Final plugin architecture

At this stage, the previously created plugin will be extended with editor support.

There are several IDE features that should be added:

• Syntax highlighting

• Completion support

• Hyperlinking

• Usage finder

• Renaming support

The first two features are not hard to implement. It requires adding a couple of classes that

implement the corresponding platform’s interfaces with small amount of language-specific

logic.

The implementation of the references mechanism and usage finder, though is not a simple

task. It requires adding some PSI helper and “util” classes. Additionally changes in the

grammar file should be made.

Resolving references means the ability to go from the usage of an element to its declaration.

To achieve this, the grammar elements that refer somewhere should be distinguished from

other identifiers(Cross-References in Xtext notation). The solution was devised to declare

new grammar rules for each referencing ID element in the grammar. Thus, the Grammar

rule was modified as follows:

CHAPTER 9. IMPLEMENTATION 35

Figure 9.4: “Grammar” rule modifications

Not only ID elements have undergone changes, some rule attributes were added since

the Grammar rule itself is a referential element of the language. These attributes modify

generated PSI classes making them extend the specified classes and implement specified

methods. This enables grammar files to provide their name when asked.

The final Xtext grammar language support plugin then appears as follows in the diagram

below:

Figure 9.5: Xtext language support plugin architecture(final version)

CHAPTER 9. IMPLEMENTATION 36

9.2.4 Plugin testing

The validity of the plugin work has been evaluated by numerous unit tests. However, the

best way to prove that this stage of the project is finished and working correctly is to

examine the IDE behaviour:

Figure 9.6: Entity language grammar(Xtext format) in IDEA editor

The Entity language and its grammar is taken as an example. The IntelliJ IDEA edi-

tor highlights important Xtext grammar language elements. Completion, references and

renaming features are working as well. Most significantly, the PSI tree on the right is

appropriately constructed.

CHAPTER 9. IMPLEMENTATION 37

9.3 Language support plugins generation

This subchapter will cover phases of implementation which correspond to points 2-4 of

the Design plan.

The main idea is to automate the process of the language support plugin implementation.

The component that will be created at this stage should be able to perform all of the steps

mentioned in the previous section, including generating all language defining and editor

support files, as well as translating grammar from Xtext to the Grammar-Kit format.

9.3.1 Grammar-Kit BNF and Flex files generator

There is always an input Xtext grammar file. With the plugin created in the previous

section, it is now a possible to parse such files and work with them programmatically.

The first task is to create the grammar-translating mechanism. This mechanism could

be implemented using knowledge, such as how Xtext grammar expressions should look in

the Grammar-Kit BNF/Flex files [9.2.1]. This translation, however, will not be straight-

forward. With regard to the fact that some of the Xtext grammar expressions should

be simplified or renamed, an inter-structure is a needed. The name that was cho-

sen for this structure is Meta model. The Meta model will be especially useful in the

“Bridge” implementation stage(remember that Xtext features that are still ignored, e.g.

Assignments).

The following component diagram describes how the generating process is organized:

Figure 9.7: Grammar files generator component diagram

There are three distinct stages:

CHAPTER 9. IMPLEMENTATION 38

1. Parsing the Xtext file and building its PSI tree. The Xtext language plugin

component created in the previous stage is responsible for this.

2. Building the Meta model. This is the most important and complicated to imple-

ment phase. Here the Meta model creator goes through the Xtext PSI tree, finds

Xtext PSI elements which describe the grammar rules and creates Meta rules in

accordance to each of them.

Meta rule is a tree structure which carries all the information that was mentioned

in the original Xtext rule. Meta rule child nodes provide strings for generators

describing how they should look in BNF/Flex formats. The Xtext details such as

Return Types, Assignments and Actions are also saved in tree nodes for future

purposes. The final Meta model is actually a “forest” of Meta rules.

3. File generator receives the Meta model and generates content of Grammar-Kit

grammar files guided by simple logic.

9.3.2 Plugin files generator

The File generator component should now be extended with the generator that will

create all of the language-defining and editor support files. Despite the fact there were a

lot of classes written in first implementation stage [9.2], none of them contains difficult

logic. This generator requires the following input information:

• The language name is defined in Xtext grammar file, therefore is saved in the Meta

model.

• Language extension is not part of Xtext grammar file. In Eclipse this string value

is specified by the user in the wizard window when he/she creates new project. The

same will be done in this project, but for now, the extension will be hardcoded.

• Token set: the generator will receive the token set from the Meta model by finding

Meta rules built from the Xtext terminal rules.

• Keywords will be found using a simple filtering function through the Meta rules

set.

• Referenced elements are Meta rules with a special mark.

• Referential identifiers are represented by a special type of nodes in the Meta

rules.

CHAPTER 9. IMPLEMENTATION 39

In this way, all of the input information is prepared for the generator. It only thing that

remains is to organize the Meta information correctly, generate Java files and register all

providers in the pugin.xml file.

At this point, the implemented part of the project is able to create the full language

support plugin(i.e. ready-to-use programming language environment) given an Xtext

grammar file.

9.3.3 Bootstrapping

This stage is not mandatory for the implementation process. It is here only for test

purposes. The fact of having the component of the program generated by the program

itself is a good practice in the sphere of SDK development(e.g. ANTLR version 3 is

written using a parser developed in ANTLR version 2 [6]).

The Xtext language support plugin(implemented in [9.2]) was successfully regenerated by

the implemented generator. It was achieved by starting the plugin-generation process on

the Xtext.xtext - Xtext language grammar file.

CHAPTER 9. IMPLEMENTATION 40

9.4 “Bridge”

In this section, the meaning of the “Bridge” component will be explained. Then the

implementation of the “Bridge” component generator will be discussed.

At this point, the implemented part of the project creates language support plugins that

work perfectly, but lack the component that could create a semantic model from EObjects,

in the similar way to the Xtext parser in the Eclipse IDE. This component should act in

a runtime, when files of the particular DSL are parsed and their PSI trees are created.

Thus, the component’s primary function is to construct EObject trees out of PSI trees,

realizing transition between the two tree structures. This is why the component was

named “Bridge”.

Figure 9.8: Translating PSI tree to EObjects tree

9.4.1 Advanced Xtext grammar features

To realize the “Bridge” is quite a complex task. The difficulties are caused by some Xtext

grammar features that were ignored and now will be finally taken into account.

They are:

• Return Type

• Assignments

• Simple Actions

• Assigned Actions

Return Types and Assignments were partially explained in [5.2.2]. The Parser Rule is

always associated with some EClass. The object of a given EClass is created if the string

(which is matched by that rule) is parsed by the Xtext parser. Assignments bind parts of

the Parser Rule to EClass properties. For example:

CHAPTER 9. IMPLEMENTATION 41

Figure 9.9: Example of created EObject

Actions are another tool that operate with types of objects in the semantic model.

Simple Actions are used to specify type of EObject to be created, similar to Return

Types, but are more flexible. The return type can vary depending on which part of the

rule describes the string of the language. For example:

Figure 9.10: Simple Actions example

Assigned Actions are used mainly for one purpose: to deal with the left recursion.

Left recursion is a problematic situation for a top-down parser (LL parser [5]). It means

that the grammar rule starts with a reference to itself and usually appears in grammars

which describe some expressions(Addition : Addition ‘+’ ...;). Consider the

Assigned Action usage example:

CHAPTER 9. IMPLEMENTATION 42

Figure 9.11: Assigned Actions example

The Assigned Action {Addition.left=current} is an action that rewrites the tree.

This forces the parser to create an instance of the EClass Addition and assign the current

object to-be-returned to the Addition expression’s feature left.

9.4.2 “Bridge” design

Test implementation

The first version of “Bridge” was implemented for the Entity language support plugin. The

process of translating PSI elements to EObjects was organized by the means of a visitor

pattern. A class which contains methods for each language rule was written. Despite

the fact that Entity language grammar does not even contain difficult Xtext features, the

logic of these methods was convoluted and therefore difficult to generate. Therefore, the

decision was made to devise more general method of “Bridge” translation.

CHAPTER 9. IMPLEMENTATION 43

Final implementation

The “heart” of the final “Bridge” implementation is a recursive algorithm that traverses

the given PSI tree and builds the model of EObjects. This algorithm is common for all

languages. It takes a PSI element, iterates over element’s children and builds EObjects

in parallel.

It is important to note that every non-terminal PSI element represents particular Xtext

Parser Rule, and that terminal PSI elements are representations of either keywords or

Xtext Terminal rules. Accordingly, PSI elements can be discussed as if they were elements

of Xtext grammar. The following statement uses this analogy:

Each PSI element could be in one of the following states:

1. The element is assigned to the feature.

2. The element is preceded by the Simple Action or by the Assigned Action.

3. The combination of states 1 and 2.

4. No feature is applied to the element.

The algorithm should now be able to decide how to proceed with the PSI element’s child.

Namely, whether to assign it to the feature of currently producing EObject or perform

a tree rewrite action. The solution is to write a class for each grammar rule which can

provide all of the information about itself and its children. These classes implement the

following interface:

Figure 9.12: BridgeRule class diagram

There is BridgeRule interface and 3 helping functional interfaces displayed on the dia-

gram. Note that BridgeRule takes PSI elements as parameters and provides EOjects or

CHAPTER 9. IMPLEMENTATION 44

operations under EOjects. The method createObject returns the instance of rule’s

return type. Other 4 methods have the similar logic: depending on the type of taken

PsiElement provide information about its state [9.4.2].

Consider an example from figure 9.9 and BridgeRule for Person rule. After passing

the PSI element of ID (“Adam”) to the findLiteralAssignment, the method will

return the function that assigns the PsiElement’s text to the Person’s feature “myName”.

If the PSI element of the keyword name will be passed, null will be returned.

Here is the pseudocode of the traversing algorithm:

Figure 9.13: Pseudocode of the “Bridge” alorithm

One thing that has not yet been mentioned is processing Cross References.

The createCrossReference method saves referencing identifiers without resolving.

They should be resolved after the first traversing through the tree, when all the names are

CHAPTER 9. IMPLEMENTATION 45

known. The class that connects all discussed parts together is called BridgeCreator.

It knows how to map a certain PSI type to its BridgeRule, how to save unresolved

references, etc.

The Bridge component is a part of every DSL support plugin. The final architecture of

the “Bridge” component with relation on previously created component is shown in the

diagram below:

Figure 9.14: Architecture of DSL support plugin with Bridge component

9.4.3 “Bridge” generator

The next step is the implementation of the “Bridge” generator. The File generator

component that was created in [9.3] should now be extended with the ability to generate

Bridge component.

The discussed Bridge component contains quite complex logic. At the same time, the

generator logic should remain simple.

The input structure for File generator component is Meta model described earlier.

Therefore all of the required information about Ecore types, assignments and actions is

conveniently stored in its tree’s nodes.

CHAPTER 9. IMPLEMENTATION 46

The implementation of this stage is then divided into two parts:

1. Making changes into Meta model creator component.

2. Implementation of “Bridge” file generators.

The first part is more complex. The fact that EObjects model building is a two-step pro-

cess in the IntelliJ IDEA(neither one-step like in the Eclipse IDE) causes some difficulties.

In Eclipse, the Xtext parser builds the EObjects model on the run, assigning incoming

tokens to the particular features directly. The “Bridge” in IDEA, on the other hand, is

required to work with the PSI structure that is received from the Grammar-Kit parser.

Since BridgeRules provide information about a given rule’s children by examining their

types, identical language elements with different roles in the semantic model should be

presented by PsiElements of different types - otherwise they will be indistinguishable.

Therefore the PSI tree should be prepared correctly. This preparation should take place

at the stage of Meta model building. Some grammar elements should be modified in

Grammar-Kit BNF. These modifications are usually fall into two categories:

• Creating a copy of the rule with a different name and replacing initial rule usages

with usages of a created copy. This ensures the uniqueness of types within one rule.

• Moving a certain part of a rule to a separate rule, thereby producing additional

nodes (SuffixElements) in the AST. Although the AST complication might not

be considered “good practice”, in some cases there is not possible to implement

Xtext features like Actions without these “suffixes”.

For example, here is a modification of the Group rule of Xtext grammar language:

Figure 9.15: Rule modification example

CHAPTER 9. IMPLEMENTATION 47

At this stage, the Meta model creator component was greatly complicated and extended

with the logic of analyzing and modifying Meta trees.

The second part involves implementing BridgeCreator and BridgeRules file gen-

erators. This stage is not even nearly as difficult as the previous one. All troublesome

spots of the grammar are avoided and all Ecore model-related data is stored in the Meta

model. The generators only need to iterate through the Meta rules and form strings

based on information they provide.

After this is done, the plugin is able to generate the Bridge component of the DSL

support plugins (figure 9.14). The diagram from the figure 9.7 can be updated:

Figure 9.16: Updated file generator component diagram

CHAPTER 9. IMPLEMENTATION 48

9.5 Validation Rules

One of the main advantages of DSLs is the possibility to statically validate domain-specific

constraints. Xtext framework provides a special API-hook which allows the user to define

custom validation rules with ease:

Figure 9.17: Example of Xtext validation rule

One single method adds a new validation rule to the IDE. After this the validation mech-

anism will check all Entities in Entity DSL files if their name starts with a capital letter.

warning() method takes two parameters: the message to be displayed, and the feature

to be highlighted. There are also error() and info() methods available which differ

in the way they highlight the code.

The current implementation stage’s purpose is to implement Xtext the Validation Rules

mechanism, copying its API. Of course, the IntelliJ platform provides developers with

the opportunity to define custom validation logic. This logic applies to PSI elements.

Xtext Validation Rules however “live” in the EObjects world. Fortunately the “Bridge”

solves this inconsistency, allowing two-side communication between PSI elements and

corresponding EObjects.

CHAPTER 9. IMPLEMENTATION 49

9.5.1 Adapter design

To achieve complete API replication, a kind of adapter was created. The adapter allows

the developers to write validation rules methods in the Xtext manner, describing what

EObject’s features should be highlighted in what cases. Most importantly, these rules

cause the highlighting of corresponding PSI elements. The following diagram shows, how

the whole process is organized:

Figure 9.18: Class diagram of the Validator component

The diagram uses the Entity DSL as an example, but the structure applies to any language.

The EntityValidator and its parent AbstractValidator classes provide the Xtext

Validation Rules API which means that the developer can write validation methods like

he used to do in Eclipse. The EntityInspection and EntityInspector classes

are parts of the IntelliJ platform. The EntityInspection class is registered as a tool

for local inpections, and therefore will be called by IDE editor at the syntax highlighting

stage. The EntityInspector is responsible for inspecting and highlighting. Under

normal circumstances it should perform the following logic:

1. Visit a particular PSI element.

2. Register problems via ProblemsHolder if needed.

CHAPTER 9. IMPLEMENTATION 50

In order to replicate the Xtext API, the order of events is changed:

1. Visit a particular PSI element.

2. Ask the EntityBridge to create an EObjects model of a PSI element’s containing

file(and cache it in order to not perform model building every time).

3. Get an EObject that corresponds to the PSI element.

4. Set context of EntityValidator.

5. Using ValidatorMethodsHolder object, find methods in EntityValidator

that work with current EObject’s type.

6. Invoke received methods via Java reflection.

7. Each of these methods ends in one of warning(), error() or info() meth-

ods. In those, by the means of provided context, the reverse communication be-

tween two structures happens. The PSI element that corresponds to the specified

EStructuralFeature is found, and, again, using the ProblemsHolder the

problem to be highlighted is registered.

The structure described above forms the next Validation component of language plu-

gins. It means that generator must create it. Fortunately, this component doesn’t differ

from one DSL to another, so the Validation component generator was implemented with-

out much difficulty and there are no interesting details to pay attention to.

CHAPTER 9. IMPLEMENTATION 51

9.6 Wizard

The first thing that users of an IDE encounter is a wizard that helps them to create a new

project, whatever type of project it is. The IntelliJ IDEA plugin developed within this

bachelor thesis adds a completely new type of projects to IDE - Xtext projects. Therefore

the presence of a “new Xtext project wizard” is required.

9.6.1 Wizard design

The wizard will contain 3 steps:

1. SDK selection step.

2. Xtext-related information configuration step.

3. Project name and location configuration step.

While the first and the last steps are common for many projects in IDEA, the second step

is unique for Xtext projects and deserves a closer look.

The wizard will have 2 modes:

1. Creation of a new Xtext project.

2. Creation of a project from existing Xtext grammar file.

The first mode is quite primitive, it only asks the user to provide language name and

language extension values. If this mode is chosen, a nearly empty project is created.

The second mode is more interesting and has more usages in practice. The specified

grammar file will serve as a starting point for generators and the user will receive the

ready-to-use environment after the wizard will end its work. However, before that, the

wizard needs to make sure whether all of the required information is provided. A single

grammar file will not be sufficient, since every grammar uses at least one Ecore model

and often depends on another grammars. As a result, the wizard will not let the user go

further to the final step until he/she provides all dependencies.

The wizard should also analyze provided additional grammars recursively since they will

have dependencies too. In this way, all inputs for Xtext project generation are follows:

1. Language name : String value.

2. Language extension : String value.

3. Used Xtext grammars files(including the language grammar) : list of *.xtext files.

CHAPTER 9. IMPLEMENTATION 52

4. Used Ecore models : list of JARs.

The wizard implementation process will not be discussed in detail here. It consists mostly

of defining IntelliJ UI components classes that aren’t particularly interesting and hardly

related to the topic of the thesis.

After the work is completed, the wizard’s second step appears as follows:

Figure 9.19: The Xtext new project wizard, second step

The wizard window has fields for each input type. These fields are protected by validation

mechanisms. Thus, for example, it is not possible to pass incorrect JAR to the field that

expexts Ecore model of the particular URI. An example of the this step with the filled

values will be shown in the next chapter.

CHAPTER 9. IMPLEMENTATION 53

9.6.2 Project generation

The wizard that has been implemented is only a part of the Module builder component.

This component is responsible for the construction and configuration of new projects. The

generated project is a language-support plugin, thus it uses Gradle as the assembling tool.

Therefore the Xtext module builder should extend Gradle module builder, which provides

all module configuration logic(e.g. defining source roots).

The module builder then should perform a number of steps in the correct order to ensure

the project is built correctly:

1. Receive all of the input data from the Wizard.

2. Copy all JARs and Xtext grammar files to the new project.

3. Using Xtext File Generaror component generate all Xtext languge plugin files

into the new project.

4. Configure the Gradle build script, defining source directories and paths to JARs.

5. Delegate further configuration of the project to Gradle module builder.

6. Wait until the previous step is completed.

7. Register all extensions in plugin.xml.

8. Invoke Grammar-Kit parser and lexer generation actions on the corresponding

files.

After the Xtext module builder is implemented, the work can be considered as done.

The Xtext plugin JAR could be created and used as IntelliJ IDEA plugin. The final

component diagram could be found in the appendix section [A].

Chapter 10

Testing and evaluation

Let’s now evaluate the results of the work and test the implemented plugin functionality.

The testing will be performed manually and the IDE behaviour will be illustrated in the

screenshots.

10.1 Creating new Xtext project

The new Xtext project is created in the same way as all other projects in IDEA are:

by choosing File > New > Project... in the file menu bar. Choosing the Xtext

project type from the list on the left will show the Xtext project wizard. The already-

familiar Entity DSL is used as an example in this chapter. The second step of the wizard

with all required data provided then looks as follows:

Figure 10.1: The Xtext new project wizard, second step with the input data filled

Defining the project name and location on the last step and clicking on the “Finish”

button will start the project creation process.

54

CHAPTER 10. TESTING AND EVALUATION 55

After a few seconds the user will see the generated project with the following structure:

Figure 10.2: The plugin structure generated by plugin. Entity DSL

The generated project represents the plugin that adds the support of the Entity DSL to

the IntelliJ IDEA IDE. The parsing support files(parser, lexer, PSI classes) are located

in the gen package. Files that integrate the new language to the IntelliJ platform and pro-

vides editor support are those that rooted in the java.enityLanguage.entity pack-

age and in the nested java.enityLanguage.entity.psi package. The “Bridge”

files are located in the corresponding bridge directory. Validation rules files were

generated to the validation package. The grammar folder contains language gram-

mar specification files: Entity.bnf, Entity.flex - specifications for Grammar-Kit

plugin and Entity.xtext - the DSL grammar in Xtext format which is the main file

the user should work with.

All IDE extensions are registered correctly in the plugin.xml file:

CHAPTER 10. TESTING AND EVALUATION 56

Figure 10.3: Generated plugin.xml file, extensions tag

10.2 Xtext grammar language editor

Let’s look at the Entity.xtext closer:

Figure 10.4: Entity language grammar in Xtext format

The user can enjoy all editor features the plugin provides. Among them are general

features like syntax highlighting, error marking, completion support and more complex:

support of references from Rule Calls to rule declarations, references to Ecore models and

classes and renaming feature.

Let’s edit the Entity grammar by adding a few new rules. Since every rule in Xtext

should be mapped to the concrete Ecore type and the current project has only one(Entity)

CHAPTER 10. TESTING AND EVALUATION 57

Ecore model imported, it is impossible for now to go beyond the domain and declare a

fundamentally new language structure. To do so, the developer is required to connect a

new Ecore model to the project or edit Entity model(using EMF in Eclipse). Thus the

new rules will be modifications of Entity and Feature. Here is the updated Entity

grammar:

Figure 10.5: Updated Entity grammar

The grammar is now extended by DataFeature rule - a Feature that can only accept

DataTypes(neither other Entities) and DataEntity rule - a simplified version of Entity

that can only contain DataFeatures.

After changes to the grammar file are completed, the entire plugin can be regenerated.

It is possible to so in one click by calling the “Generate fragments” action which is

located in the editor’s context menu.

10.3 Defining Validation rules

The next functionality that should be covered in this chapter is defining Validation rules.

Let’s define 2 rules of the following logic:

1. Each Entity cannot have more than 3 features. This rule will be assigned the error

severity level.

CHAPTER 10. TESTING AND EVALUATION 58

2. The Feature, marked by keyword many, should have a name ending with “s” letter.

This rule will have the warning severity level.

The EntityValidator class will contain 2 corresponding methods:

Figure 10.6: EntityValidator class

The result of the actions described here is shown in the next section.

10.4 Launching new instance of IDEA with included

language support

Now it is time to run runIde gradle task. This will build the current project and launch

the new instance of IntelliJ IDEA with current plugin imported. The started IDEA is

provided with Entity language support logic, so let’s open new project, create a file with

entity extension in it and write some expressions in Entity DSL:

CHAPTER 10. TESTING AND EVALUATION 59

Figure 10.7: Entity DSL IDE test

The test.entity file is parsed correctly. All keywords are highlighted. Keywords/-

names completion mechanism works perfectly. References between declaration and usages

behave properly as well as renaming feature. References inspector underlined the word

Human(line 24) correctly, in order to the rule described in grammar - DataFeature in

DataEntity can be only of DataType type.

The result of Validation rules work can be also evaluated. The Features children and

subject are highlighted yellow which corresponds to the rule checkFeatureNameIfMany.

The Entity Student has more than 3 features and is therefore highlighted in red.

The entire testing process took no more than 5 minutes but covered the whole procedure

of creating a programming environment for the new language. Under usual circumstances,

the user might spend a week to learn how to implement language plugins and write all

necessary files registering them in IntelliJ platform. And that’s not even considering the

possibility to define grammars with Xtext grammar language and use Ecore models in

the DSL development which IntelliJ IDEA now provides.

Chapter 11

Conclusion

Summary

The primary task of the project was to design and implement a plugin for the IntelliJ

IDEA IDE in order to streamline the work of DSL developers. The second important

aspect of the thesis is that plugin is based upon an existing multifunctional software

product called Xtext, which was developed for the popular Eclipse IDE. Accordingly, the

resulting product is a type of “plugin-adapter” which allows the user of one IDE to use

all of the functionality of a framework from a different IDE in the exact same manner.

Within this project, the author studied Programming Language Theory and formal de-

scription methods of programming languages. Additionally, the the principles of im-

plementation of development environments were analyzed and helping tools like parser

generators were discussed. The author utilized existing software models to avoid com-

pletely building the project from scratch. In particular, the IntelliJ platform was studied

in details and comparing analysis with Eclipse IDE was performed. In fact, the author

was engaged in metaprogramming since the developed plugin’s main functionality is the

creation of other IDEA plugins.

The project goals are considered accomplished, although a market-ready product is defi-

nitely not finished yet. Nevertheless, the plugin at the current stage will be instrumental

to many other programmers working in this area of expertise. Among the benefits of

the work are the author’s significant advancement in programming skills and knowledge

gained in the sphere of IDE plugin development and computer languages implementation.

60

CHAPTER 11. CONCLUSION 61

Future plans and development

The implemented plugin lacks some features the Xtext framework in Eclipse provides

and needs further development. First in line is the improvement of the Xtext language

editor. For example, the inspection logic preventing the user from writing invalid grammar

structures should be added. After that, Xtext instruments for generator modification,

mapping to Java and testing will be transferred in IDEA.

Appendix A

Component diagram

62

APPENDIX A. COMPONENT DIAGRAM 63

Figure A.1: The final component diagram

Appendix B

Electronic attachment description

The archive attached to the work contains two main elements:

1. XtextPlugin-0.0.1.zip archive.

This archive is used as the IntelliJ IDEA plugin. The JAR IntelliJ Platform

Xtext Plugin-0.0.1.jar, which contains all of the source code is located in

it.

2. testing folder.

This folder consists of testingScenario.txt file, which describes how to launch

IDE with created plugin and test its functionality. The folder also includes testing

resources.

B.1 Source code description

The source folder of the project contains the following packages:

Figure B.1: The source directory of the project

• action - contains the “Generate fragments” action class.

64

APPENDIX B. ELECTRONIC ATTACHMENT DESCRIPTION 65

• bridge - contains classes of the Bridge component.

• generator - contains classes of the File generator component.

• language - represents the Xtext language support plugin component.

• metamodel - contains classes of the Meta model creator component.

• module - contains classes of the Xtext project creator component.

• persistence - contains classes for persisting the project-related data.

• util - contains all helping classes.

• validation - contains classes of the Validation rules adapter compo-

nent.

Bibliography

[1] D. Goswami, K. V. Krishna, Formal Languages and Automata Theory, 11.2010.

[2] P. Linz, An Introduction to FORMAL LANGUAGES and AUTOMATA Fourth Edi-

tion, 2006, ISBN 0763737984.

[3] A. Deursen, P. Klint, Domain-Specific Language Design Requires Feature Descriptions,

2002.

[4] M. Fowler, R. Parsons, Domain-Specific Languages, 2010, ISBN 9780321712943.

[5] R. Frost, R. Hafiz, P. Callaghan, Modular and Efficient Top-Down Parsing for Am-

biguous Left-Recursive Grammars, 2007.

[6] T. Parr, The Definitive ANTLR 4 Reference, 2013, ISBN 9781934356999.

[7] L. Garshol, BNF and EBNF: What are they and how do they work?, 2008, https:

//www.garshol.priv.no/download/text/bnf.html, [online].

[8] R. Feynman, EBNF: A Notation to Describe Syntax.

[9] C. Trim, The Art of Tokenization, 2013.

[10] J. Jones, Abstract Syntax Tree Implementation Idioms, 2013.

[11] Eclipse Foundation Inc., Eclipse, 2020, https://www.eclipse.org/, [online].

[12] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro, EMF: Eclipse Modeling Frame-

work, 2008, ISBN 0321331885.

[13] L. Bettini, Implementing Domain-Specific Languages with Xtext and Xtend. Second

edition, 2016, ISBN 9781786464965.

[14] Eclipse Foundation Inc., Xtext, 2020, https://www.eclipse.org/Xtext/index.html,

[online].

[15] JetBrains s.r.o., IntelliJ IDEA, 2021, https://www.jetbrains.com/idea/, [online].

66

https://www.garshol.priv.no/download/text/bnf.html
https://www.garshol.priv.no/download/text/bnf.html
https://www.eclipse.org/
https://www.eclipse.org/Xtext/index.html
https://www.jetbrains.com/idea/

BIBLIOGRAPHY 67

[16] Gradle Inc., Gradle, 2021, https://gradle.org/, [online].

[17] Sparx Systems, Enterprise Architect, 2013, https://sparxsystems.com/, [online].

[18] JetBrains s.r.o., Grammar-Kit, 2020, https://github.com/JetBrains/Grammar-Kit#

readme, [online].

[19] JetBrains s.r.o., IntelliJ Platform Plugin SDK, 2020, https://plugins.jetbrains.com/

docs/intellij/welcome.html, [online].

[20] D. Jemerov, S. Isakova, Kotlin in Action, 201ý, ISBN 9781617293290.

[21] Eclipse Foundation Inc., Xtend, 2020, https://www.eclipse.org/xtend/index.html,

[online].

[22] G. Klein, JFlex User’s Manual, 2001, http://www.di.uevora.pt/∼pp/2002-s1/

compil/jflex-man/manual.html, [online].

https://gradle.org/
https://sparxsystems.com/
https://github.com/JetBrains/Grammar-Kit#readme
https://github.com/JetBrains/Grammar-Kit#readme
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://www.eclipse.org/xtend/index.html
http://www.di.uevora.pt/~pp/2002-s1/compil/jflex-man/manual.html
http://www.di.uevora.pt/~pp/2002-s1/compil/jflex-man/manual.html

	Acknowledgements
	Abstract
	Abstract
	List of Figures
	Introduction
	Language definition
	Introduction
	Basic concepts
	Finite Representation
	Grammar
	Example of a grammar

	BNF and EBNF
	Example of EBNF usage

	Domain Specific Languages
	Introduction to DSL
	DSL examples
	Need for a new language

	Implementing a DSL
	Introduction
	Parsing
	Semantic analysis
	Abstract Syntax Tree

	IDE integration

	Xtext plugin in Eclipse
	Introduction
	Xtext grammar language
	Basic concepts
	Syntax description

	How it works

	IntelliJ IDEA approach
	Introduction
	Grammar-Kit
	Grammar-Kit BNF
	Entity DSL example

	Summary and analysis
	Design plan
	Implementation
	Technologies used
	Xtext language support plugin implementation
	Defining language grammar
	Base plugin architecture
	Final plugin architecture
	Plugin testing

	Language support plugins generation
	Grammar-Kit BNF and Flex files generator
	Plugin files generator
	Bootstrapping

	"Bridge"
	Advanced Xtext grammar features
	"Bridge" design
	"Bridge" generator

	Validation Rules
	Adapter design

	Wizard
	Wizard design
	Project generation

	Testing and evaluation
	Creating new Xtext project
	Xtext grammar language editor
	Defining Validation rules
	Launching new instance of IDEA with included language support

	Conclusion
	Component diagram
	Electronic attachment description
	Source code description

	Bibliography

