
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Structured population in evolutionary
algorithms

Tomáš Dulava

Supervisor: Ing. Petr Pošík, Ph.D.
Field of study: Open Informatics
Subfield: Computer Games and Graphics
August 2021

ii

Acknowledgements
I would like to express my sincere
gratitude to my supervisor, Ing.
Petr Pošík, Ph.D. The access to
the computational infrastructure
of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765
“Research Center for Informatics” is also
gratefully acknowledged.

Declaration
I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, August 13, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 13. srpna 2021

iii

Abstract
Evolutionary algorithms belong to popu-
lar optimization methods. They are able
to provide satisfactory solutions even for
hard tasks. But even these algorithms
have their limitations. A common prob-
lem we can encounter within evolution-
ary algorithms is so-called premature con-
vergence which is that the population
converged to a local optimum, and no
more improvements could be made. There
are various methods that are designed to
deal with premature convergence, and one
of them is using structured populations.
These structures modify the behavior of
evolutionary algorithms in order to main-
tain diversity of the population. The goal
of this thesis is to compare classical un-
structured evolutionary algorithm with
some structured algorithms, specifically
ALPS: Age-Layered Population Structure,
MAP-Elites: Multi-Dimensional Archive
of Phenotypic Elites and cellular evolu-
tionary algorithm, in order to find out
if using structured populations is really
beneficial.

Keywords: black-box optimization,
premature convergence, evolutionary
algorithm, structured population, ALPS,
Age Layered population structure,
MAP-Elites, Mutli-dimensional archive
of phenotypic Elites, cellular model,
diffusional evolutionary algorithm, TSP,
Travelling Salesperson Problem

Supervisor: Ing. Petr Pošík, Ph.D.

Abstrakt
Jednou z populárních optimalizačních me-
tod jsou evoluční algoritmy, které dokáží
poměrně efektivně řešit i velmi složité
úlohy. Ovšem i tyto algoritmy mají svoje
limity. Jedním z běžných problémů, se kte-
rým se můžeme u evolučních algoritmů se-
tkat, je předčasná konvergence, kdy algo-
ritmus konvergoval do lokálního optima a
není již schopen dalšího zlepšení. Jednou z
možností, jak se s tímto problémem vypo-
řádat, je použití struktur při správě popu-
lace evolučního algoritmu. Použití struk-
tury určitým způsobem modifikuje cho-
vání evolučního algoritmu a pomáhá tak
zachování diverzity populace. Cílem této
práce je porovnání klasického evolučního
algoritmu a několika vybraných evoluč-
ních algoritmů využívajících strukturova-
nou populaci. Konkrétně jsou to algoritmy
ALPS: Age-Layered Population Structure,
MAP-Elites: Multi-Dimensional Archive
of Phonetypic Elits a celulární evoluční
algoritmus. Otázkou tedy je, zda-li použití
strukturované populace opravdu pomáhá
evolučnímu algoritmu nalézt lepší řešení,
respektive za jakých podmínek.

Klíčová slova: black-box optimalizace,
evoluční algoritmus, předčasná
konvergence, strukturovaná populace,
ALPS, Age Layered population structure,
MAP-Elites, Mutli-dimensional archive
of phenotypic Elites, celulární model,
difůzní evoluční algoritmus, TSP,
problém obchodního cestujicího

Překlad názvu: Struktura populace v
evolučních algoritmech

iv

Contents
1 Introduction 1
1.1 Optimization 1
1.2 Evolutionary algorithm 3
1.2.1 Evolution in biology 3
1.2.2 Terminology 4
1.2.3 Mechanisms 4
1.2.4 Premature convergence 5

2 Algorithms 9
2.1 Simple evolutionary algorithm
(EA) . 9
2.2 ALPS: Age-Layered Population
Structure . 9
2.2.1 Age . 9
2.2.2 Layers . 10
2.2.3 Age-gap 11
2.2.4 Domain 11

2.3 MAP-Elites: Multi-dimensional
Archive of Phenotypic Elites 11
2.3.1 Feature space 12
2.3.2 Feature descriptor 12
2.3.3 Workflow 12
2.3.4 Properties 12
2.3.5 Domain 13

2.4 Cellular model 13
2.4.1 Lattice 14
2.4.2 Neighborhood 15
2.4.3 Update 15
2.4.4 Domain 16

3 Testing problems 19
3.1 Continuous problems 19
3.2 Traveling Salesperson Problem
(TSP) . 19
4 Configuration 21
4.1 Shared configuration 22
4.1.1 Continuous problems 22
4.1.2 Traveling salesperson problem 22

4.2 Simple evolutionary algorithm and
ALPS . 23

4.3 MAP-Elites 24
4.3.1 Selection 24
4.3.2 Feature descriptor for
continuous problems 25

4.3.3 Feature descriptor for travelling
salesperson problem 25

4.4 Cellular model 25

5 Experiments 27
5.1 Continuous problems 27
5.2 Traveling salesperson problem . . 28
5.3 Overall results 29
6 Conclusion 39
A Bibliography 41
B Comments to feature
descriptors 43
B.1 Continuous problems 43
B.2 Traveling salesperson problems . 43
C Project Specification 45

v

Figures
1.1 The demonstration of difference
between global optimum and local
optimum on the Schwefel function. . 2

1.2 Example of premature convergence
on Schwefel function. Population
converged to local optimum and no
more improvements could be made.
The Global optimum is unreachable. 7

2.1 Completely connected graph with 5
nodes . 14

2.2 Incomplete graph with 5 nodes . 15
2.3 A 1-dimensional lattice graph
called ring . 16

2.4 A 2-dimensional lattice graph
called torus . 17

2.5 Examples of von Neumann
neighborhood on the grid graph for
different radii. The target node is red
and by orange are colored other
nodes that belong to its
neighborhood 17

3.1 A simple example of TSP problem.
By orange color is depicted the
optimal solution. 20

4.1 Gaussian function with µ=0 and
σ=0.1. The f(x) is not with the
probability in a good ratio. 23

4.2 Arithmetic crossover in
two-dimensional space. Red dots
represents parents and all their
possible offspring are represented by
blue line (red dots including) 24

4.3 An example of feature descriptor
used in continuous problems. In this
particular example, the chromosome
of the individual has length 9 and the
feature space has 3 dimensions. . . . 26

5.1 Comparison of all algorithms for
population size 20 and throughout
different dimensions 28

5.2 Comparison of all algorithms for
population size 50 and throughout
different dimensions 29

5.3 Comparison of all algorithms for
population size 100 and throughout
different dimensions 30

5.4 Comparison of simple evolutionary
algorithms with different population
sizes throughout different dimensions.
The graph thus shows the ability of
EA to deal with low diveristy. 31

5.5 Comparison of ALPS with different
population sizes throughout different
dimensions. The graph thus shows
the ability of ALPS to deal with low
diversity. 32

5.6 Comparison of cellular model with
different population sizes throughout
different dimensions. The graph thus
shows the ability of the cellular
model to deal with low diversity. . . 33

5.7 Comparison of MAP-Elites with
different population sizes throughout
different dimensions. The graph thus
shows the ability of MAP-Elites to
deal with low diversity. 34

5.8 Comparison of algorithms on TSP
problems for population size 20 . . . 35

5.9 Comparison of algorithms on TSP
problems for population size 50 . . . 36

5.10 Comparison of algorithms on TSP
problems for population size 100 . . 37

vi

Chapter 1
Introduction

In almost every domain, there is a need to optimize some problems and
find good solutions. For many problems, there are designed sophisticated
optimization methods. Effective for particular problems yet not always ap-
plicable on other ones. What to do when it is not clear what optimization
method should be used? What to do when we even do not know what the
optimization function looks like? What to do when the optimal solution
changes over time or is noisy? What to do if there are too many candidate
solutions for a problem, and we can not test all of them in a reasonable time?
A possible answer to all questions above is to use evolutionary optimization
algorithms.

Firstly, we will take a look at optimization in general. What is it? What
is important to keep in mind when optimizing some problem? Then we
will talk about evolutionary algorithms. What are they? How they work?
Then we will discuss particular evolutionary algorithms, and finally, based
on conducted experiments, we will answer the following questions: "Can be
structured population beneficial for evolutionary algorithms? Under what
conditions is it so?"

1.1 Optimization

Optimization is, generally speaking, the selection of the best element from a
set of available alternatives. Typically, an optimization problem is defined
by[1]:. A set of available solutions from some set:

X ⊆ U. An objective function that we want to minimize1:
f : X → R. A set of constraints that a candidate solution must comply with
gi(x1, ..., xn) 5 0, i = 1, ...,m

1If we want to maximize some function we can easily rewrite it as minimization because
maxx∈Xf(x) = minx∈X − f(x)

1

1. Introduction
fi(x1, ..., xn) = 0, i = 1, ..., n

The solution of an optimization problem is x∗ ∈ X such that f(x∗) =
minx∈X f(x) and f(x∗) is an optimal value. The x∗ is also called global
minimum. Besides global optimum, there is also so-called local optimum.
That is the best solution in the immediate vicinity. Global optimum is always
also local minimum, but it does not hold the other way round. The differ-
ence between global and local optimum is for better idea depicted in Figure 1.1.

Figure 1.1: The demonstration of difference between global optimum and local
optimum on the Schwefel function.

According to this image of optimization, an example of a simple optimiza-
tion problem could be as follows:

Find x ∈ R that minimizes function f(x) = x2, such that x > 0 and x 6 10
Solution: x∗ = 0, f(x∗) = 0

In this particular case the solution is obvious, but that is not matter of
course for all optimization problems. Some optimization problems require a
complicated analytical way of solving and for many optimization problems
an analytical method does not even exist.

Another obstacle we can encounter when solving optimization problems
could be a lack of information of the optimization problem when we do not
know what the objective function looks like. For instant, when the evaluation
of a candidate solution is based on some simulation. This type of optimization

2

................................ 1.2. Evolutionary algorithm

is called black-box optimization.

A question arises what to do when we need to find a solution of the black-
box optimization problem or optimization problem where no low-cost or
analytic solution is known. Popular methods that are suitable for solving this
class of problems are evolutionary algorithms.

1.2 Evolutionary algorithm

Evolutionary algorithms are popular optimization methods that are espe-
cially valued for their robustness, effectiveness and simple implementation.
Evolutionary algorithms (EA) are stochastic algorithms inspired by natural
evolution. It is worth taking a look at the evolution in biology for better
understanding of EAs because the terminology and basic mechanisms comes
from it.

1.2.1 Evolution in biology

Imagine some living organism, a cat for instant. The collection of all its
observable traits is called its phenotype. The height of the cat, its weight,
color, etc. are features that contributes to its phenotype. Then we have
a genotype of an organism. That is the collection of all its genes. We can
think about it like a set of information what the organism should look like.
We usually do not observe the genotype of an organism directly, but we can
observe its influence on its phenotype. So then we can observe correlation
between presence of some gene in the genotype and the phenotype of an
organism. But the phenotype of an organism is not fully destined only by
its genotype but also by effect of an environment and what the organism
experienced.

With this in mind there could be potentially two organisms with the same
genotype but with different phenotypes as well as organisms with different
genotypes but the same phenotype.

Different individuals have different phenotype, different traits and thus
their successfulness in survival and reproducing also vary. How good traits
an individual has reflects its fitness value. Simply put, the better traits an
individual has, for its environment and situation, the more successful it is,
and thus the better fitness it has.

When two individuals mate with each other, they reproduce offspring that
inherit a combination of genes from their parents. This way an individual
with unique genotype can be produced, but still based on a genotype of its
parents. Besides that, an individual might be affected by mutation, when its
genotype is changed.

3

1. Introduction
Now there is a question, how the evolution works? Let’s have a population

of individuals with various genotypes and phenotypes and an environment
with limited resources. Those with great fitness values will have tendency to
produce more offspring than those with low fitness value, and thus, completely
naturally, in the population will be more and more individuals with high
fitness value.

The concept of evolution introduced here is very simplified and not ab-
solutely correct. Biological evolution is a complicated and complex field of
study, and it is not the object of this thesis to fully describe it here. Yet, the
concept introduced here is well known, simple and useful for our purposes.

1.2.2 Terminology

Now it is a time to combine our basic concept of biological evolution with
optimization.. Genotype:

The mere representation of a candidate solution. It could be a binary
string, real value vector, tree graph, etc.. Phenotype:
The actual meaning of the genotype. For instance, genotype represented
as a permutation of integers could actually mean an order of execution
of some tasks.. Fitness:
Quality of the candidate solution. It is assigned based on the objective
function. The better fitness, the more promising candidate solution.. Individual:
The candidate solution with its fitness value so basically genotype+fitness.

1.2.3 Mechanisms

The simplified workflow of EA looks as follows. At the beginning of the
algorithm, a set of random candidate solutions is generated. Then each
candidate solution is evaluated with respect to the objective function we want
to optimize. This way, each candidate gets its fitness value that represents the
quality of the candidate. Then an evolution of this population of candidate
solutions takes place, and this evolution lasts until termination conditions are
met. The terminal condition is usually number of evaluations the algorithm
can make, but it also could be a time limit, detection of sufficiently good
solution, etc. The evolution runs in a cycle and this cycle consists of 4 stages:. Selection:

We select parents from our population, usually individuals with great
fitness.

4

................................ 1.2. Evolutionary algorithm

.Mutation and crossover :
By mutation, we individually modify parents to create new candidate
solutions. By crossover, we combine parents to create new candidate
solutions.. Evaluation:
In evaluation stage, we evaluate all newly created candidate solutions
with respect to our objective function.. Replacement:
In replacement, we create new population based on the old one and
newly created individuals.

When the terminal conditions are met, the algorithm returns the best
individual in the population.

A simplified description of how EA works is depicted in the following
pseudo-code:

Algorithm 1 Illustration of simple evolutionary algorithm
1: procedure simple evolutionary algorithm
2: population ← initialization of population
3: evaluate population
4: while the conditions for termination are not met do
5: parents ← select individuals from population
6: offspring ← make mutation and crossover of parents
7: evaluate offspring
8: population ← make replacement with population and offspring
9: return the best individual of population

There are, of course, various strategies and methods for individual parts
of EA such as initialization, selection, mutation, crossover and replacement.
Very important is selection pressure. Either selection or replacement have to
operate in favor of individuals with better fitness, otherwise the algorithm
have no mechanism to generate better individuals.

Even though that evolutionary algorithms are powerful solving techniques,
they have their limitations. One of the problems we can encounter is so called
premature convergence.

1.2.4 Premature convergence

What it actually means is that the population converged to some local opti-
mum and no more improvements could be made. The population prematurely
lost its diversity and is unable to explore other parts of the fitness landscape[2],
as depicted in Figure 1.2. This usually happens when the selective pressure is
too big or when the population size and thus the initial diversity is too low.

5

1. Introduction
There are various techniques and methods to prevent this state.. Start with bigger population size:
This approach could really help to prevent premature convergence, but
when we need to process bigger population it also takes more time. If we
use the number of evaluations, number of generation or time as terminal
condition it can happen that algorithm prematurely ends without good
solution. To estimate right population size is a hard task in general..Make the selective pressure weaker:
With this approach we do not lose the diversity of the population so
quickly, so it can to help to prevent prematurely convergence, but another
problem can arise and that it stagnation. It basically means that the
selective pressure is too weak, and that leads to ineffective search when
individuals are not encouraged to explore other parts of the fitness
landscape.. Higher mutation rate:
This way, we increase diversity of the population during the run, but
if it is too big offspring unlike to their parent are made and this leads
to random search like algorithm that is also ineffective. Besides that,
with high mutation rate, exploring of narrow peaks of fitness landscape
becomes also very hard.. Structured population: Set population to structure usually means to
introduce some restriction on selection or replacement operator, but
the effect of structure can go beyond that, depending on the particular
structure.

6

................................ 1.2. Evolutionary algorithm

Figure 1.2: Example of premature convergence on Schwefel function. Population
converged to local optimum and no more improvements could be made. The
Global optimum is unreachable.

7

8

Chapter 2
Algorithms

There have been proposed many evolutionary algorithms with structured
population. There is a question whether using some structure can really
improve the ability of evolutionary algorithm to find better solution. Why it
could be so?

When classical evolutionary algorithm without structured population is
used, there is not any restriction for breeding. The selection operator chooses
from the whole population of individuals, and the same holds for the re-
placement operator. Using structured population basically means to restrain
somehow these operators.

Now, take a look at algorithms we are going to compare.

2.1 Simple evolutionary algorithm (EA)

Just a simple evolutionary algorithm with unstructured population. Its
pseudo-code is depicted in Alg. 2.

2.2 ALPS: Age-Layered Population Structure

Age-Layered Population Structure[3] is an evolutionary algorithm designed to
prevent premature convergence. There are many other approaches to face this
problem, but they are not usually suitable for complicated representations, and
they are limited to discovering solutions that are within the basin of attraction
of the initial population. ALPS deals with this problem by introducing newly
generated individuals in regular intervals and incorporating them into the
population. The population is structured into layers based on the age of
individuals. Pseudo-code of ALPS is depicted in Alg. 3.

2.2.1 Age

ALPS introduces a new measure of age. Each entity in ALPS has an age
that measures how long its genetic material has been evolving. Thus, a

9

2. Algorithms......................................
Algorithm 2 Pseudo-code of simple EA
1: procedure Simple EA
2: population← initialize population
3: while terminal conditions are not met do
4: population ← make generation from population

5: return best individual of population
1: procedure Make generation from population
2: selection:
3: elites← find k best from population
4: individuals← select n-k from population
5: crossover :
6: for ind1, ind2 in individuals do
7: if random < crossover probability then
8: ind1, ind2 ← breed ind1 with ind2
9: mutation:

10: for ind in individuals do
11: if random < mutation probability then
12: ind ← mutate ind
13: return:
14: return elites with individuals

newly generated individual has age 0. An individual created by mutation or
crossover has age 1 plus the age of the older parent.

2.2.2 Layers

Based on the age, ALPS divides population into layers. Each layer has a
maximum capacity of individuals and a maximum age that an individual can
have in the layer.

The initial layer has a special function. Individuals in this layer are replaced
by newly generated individuals in regular intervals, and thus this layer is the
source of new genetic material.

Every individual can breed only with individuals from the same layer or
from the previous layer. Thus, younger individuals have opportunity to
find their own optimum and are not dominated by older individuals. This
should ensure effective exploration of fitness landscape by newly generated
individuals.

If an individual became too old for its current layer, it is compared against
every individual in the older layer. If it is better than least one of them it
replaces the worst one, otherwise it is discarded. This way, every individual is
guaranteed to stay in the population forever only if it is the global optimum,
otherwise it will be eventually replaced by a better individual.

10

................2.3. MAP-Elites: Multi-dimensional Archive of Phenotypic Elites

If an individual became too old for its current layer, it is compared against
the worst individual in the older layer. If it is better, it replaces it, otherwise
it is discarded.

2.2.3 Age-gap

Age-gap is an important parameter in the settings of ALPS. It determines
the interval in which new individuals are generated, as well as the age limits
for layers in the structure.

2.2.4 Domain

ALPS is not restricted to any particular representation of individuals and
thus could be widely used.

Algorithm 3 Pseudo-code of ALPS
1: procedure ALPS
2: structure← initialize structure
3: while terminal conditions are not met do
4: for layer in structure do
5: process layer
6: return best individual of structure
1: procedure process layer
2: if layer is active then
3: if layer is initial layer then
4: population of layer ← initialize population
5: for gen ← 1, 2,...,AGE-GAP do
6: population of layer← make generation from populatin of layer
7: move old individuals from current layer to older layer
8: else if layer is ready to be activated then
9: activate layer

2.3 MAP-Elites: Multi-dimensional Archive of
Phenotypic Elites

Evolutionary algorithms typically return one fittest solution. MAP-Elites[5]
belong to the family of algorithms called Quality-Diversity[7] algorithms, and
this type of algorithms have a bit different ambitions. They return a set of
phenotypically different individuals, yet with good quality. The main goal of
Quality-Diversity optimization is to illuminate the search space, and find out
how high-performing solutions are distributed throughout the search space.
In result, it provides us with a holistic view over the problem.

11

2. Algorithms......................................
2.3.1 Feature space

In traditional evolutionary algorithm we work with individuals only in the
genotypic space. But in Quality-Diversity optimization we work also with
phenotypic space. This space forms dimensions of interest in some features of
individuals. Although the genotypic space can be very large or also infinite,
the phenotypic space is usually quite small in terms of number of dimensions.
For example, in optimization of robot movement the fitness value could be
the speed of the robot and the features could be its weight and height even
though the robot itself can be described by a very long chromosome. Then,
we are interested in the fittest robot throughout various combinations of
height and weight.

The feature space is discretized thus it can be described as a multidimen-
sional grid. A particular position in the feature space is usually called as cell.

The problem is that we can not search explicitly in the feature space, but
we have to search in the genotype space. Therefore, we need some mapping
from genotype space to the feature space, and this mapping function is called
a feature descriptor.

2.3.2 Feature descriptor

The feature descriptor takes genotype as the input and return some position in
the feature space as an output. The mapping may be direct from the genotype,
but also it could be a result of some more complicated operation that is not
easily determined by the genotype. There is no guarantee that each cell in the
feature space can be filled. It is also possible that various different genotypes
are mapped into the same cell. In other words, the genotype-phenotype
function is not guaranteed to be injective nor surjective[8].

2.3.3 Workflow

The workflow of the algorithm looks as follows. First a random population of
individuals is generated, then based on the feature descriptor their positions
in the feature space are found. If the position is empty or an individual
with worse fitness is present here, they are placed here. At the same time,
an individual is present in a cell unless a better individual with the same
feature values is found, therefore the feature space really works as an archive
of phenotypic elites. The pseudo-code of the algorithm is depicted in Alg. 4.

2.3.4 Properties

Because the MAP-Elites belong to Quality-Diversity algorithms, it returns
not only the fittest solution but the whole set of high-performing solutions
throughout the feature space. This way it illuminates the relation between

12

.................................... 2.4. Cellular model

performance and fitness of individuals, and gives holistic view of the problem.

Even though the MAP-Elites is not focused solely on the fittest solution,
but also is focused on the high phenotypic diversity of the solutions it may
be surprising but the MAP-Elites finds even better solution than classical
evolutionary algorithm on some problems, especially on the very deceptive or
complex ones[5][6].

2.3.5 Domain

MAP-Elites is primary designed for problems, where we are interested in
some phenotypic qualities of individuals, and we want to know about relations
between these qualities and the fitness value of the individual. Nonetheless,
the MAP-Elites could be widely used on any type of problem for which one
can design reasonable feature descriptors.

Algorithm 4 Pseudo-code of MAP-Elites
1: procedure MAP-elites
2: structure← initialize structure
3: population← initialize population
4: for individual in population do
5: add individual to structure
6: while terminal conditions are not met do
7: parents ← select parents from structure
8: offspring ← make offspring from parents
9: for individual in offspring do

10: add individual to structure
11: return best individual of structure
1: procedure Add individual to structure
2: coordinates ← feature descriptor applied on individual
3: if structure is empty on the cordinates then
4: individual is placed on the coordinates of the structure
5: else
6: rival ← entity on the coordinates of the structure
7: if fitness of individual is better than fitness of rival then
8: individual replaces rival

2.4 Cellular model

Cellular model[4] is a well known type of evolutionary algorithm with struc-
tured population. Individuals are spatially distributed, and an individual can
interact only with individuals that are sufficiently close to him. Because of
this, even superior genes are spread slowly and gradually diffuse throughout
the population. In result, the algorithm has more explorative behavior, and
it is more resistant against getting stuck in a local optimum.

13

2. Algorithms......................................
The individuals are spatially distributed, and an individual can interact

only with a subset of the population. This behavior could be demonstrated
as a graph, where nodes represent individuals and edges between individuals
represent whether individuals can "see" each other. The neighborhood of an
individual is the set of other individuals it is connected to.

We can encounter various types of graphs. For example, in Figure 2.1 we
can see that all individuals are connected, and thus all individuals can inter-
act with each other. This is a trivial case with no restriction in interaction
between individuals, and actually this is the case for simple evolutionary
algorithm. A more interesting case in shown in Figure 2.2, where some of the
edges are missing, and thus the algorithm will converge more slowly.

Figure 2.1: Completely connected graph with 5 nodes

To represent structured population arbitrary graph could be used, but for
cellular model lattice graph is usually used.

2.4.1 Lattice

The lattice graph, also called a mesh graph or grid graph, is a regular and
connected graph. It basically means that each individual has a neighborhood
of the same size and between every two nodes exists a series of edges the nodes
are connected with. An example of 1-dimensional lattice graph is depicted in
Figure 2.3 and is called ring. Another example is shown as Figure 2.4. It is a
2-dimensional lattice graph called torus with rectangular spaces in the graph.

14

.................................... 2.4. Cellular model

Figure 2.2: Incomplete graph with 5 nodes

We can also think about the torus as a grid wrapped around on itself. In
some cases this point of view is quite useful. Although lattices with arbitrary
number of dimensions could be used, typically 1-dimensional or 2-dimensional
lattices are used.

The graph insight view here is very simplified, but it is sufficient for our
needs. For more information about graphs, see [4]

2.4.2 Neighborhood

When an individual is about to be processed, only its neighborhood is taken
into account. There are various types of neighborhood but among the most
popular ones is so-called von Neumann neighborhood.

Let’t take a look on the von Neumann neighborhood on the rectangular
grid. Neighborhood is defined by its range r which is typically 1. To the
neighborhood of some node belong all nodes of the graph that are achievable
by maximally r edges from the node. Examples are provided in Figure 2.5

2.4.3 Update

Each individual in the population is processed independently. The lattice can
be processed in two ways.. Asynchronous:

Individuals are processed sequentially.

15

2. Algorithms......................................

Figure 2.3: A 1-dimensional lattice graph called ring

. Synchronous:
All individuals are processed in parallel.

When an individual is processed, its neighborhood is found first. This is the
subset of the population that we take into account. From the neighborhood
we select parents and create offspring as usual. If an offspring with better
fitness than the individual is produced then the better offspring replaces the
individual, otherwise the individual remains unchanged and the process of
another individual takes place. Pseudo-code of cellular model is shown in the
Alg. 5.

2.4.4 Domain

Cellular model has no restriction on particular representation of individuals
neither on any type of problems thus could be widely used.

16

.................................... 2.4. Cellular model

Figure 2.4: A 2-dimensional lattice graph called torus

(a) With radius 0 only the node be-
longs to its neighborhood

(b) With radius 1 there are totally
5 nodes in the neighborhood

(c) With radius 2 there are 13 nodes
in the neighborhood

Figure 2.5: Examples of von Neumann neighborhood on the grid graph for
different radii. The target node is red and by orange are colored other nodes
that belong to its neighborhood

17

2. Algorithms......................................

Algorithm 5 Pseudo-code of Cellular model
1: procedure Cellular model
2: structure ← initialize structure with random population
3: while terminal conditions are not met do
4: for individual in structure do
5: neighbors ← find neighborhood of individual
6: parents ← select parents from neighbors
7: ofspring ← make offspring from parents
8: rival ← select best from offspring
9: if fitness of rival is better than fitness of individual then
10: rival replaces individual
11: return best individual of structure

18

Chapter 3
Testing problems

To compare our algorithms and thus analyze effectivity of structured popula-
tions I tested algorithms on several continuous and discrete problems. All
instances of discrete problems tested belong to Travel Salesperson Problem
domain.

3.1 Continuous problems

In continuous problems we distinguish unimodal problems and multimodal
problems. The difference between them is that an unimodal problem has only
one local optimum (which is also a global optimum) whereas a multimodal
problem has more local optima. Multimodal problems are generally harder
to optimize, because there is a great chance to get stuck in a local optimum.
In our set of testing functions are presented instances of unimodal functions
as well as multimodal functions.

In order to test algorithms on continuous problems, the Comparing Contin-
uous Optimizers platform (COCO) was used [12]. There are 24 functions in
the benchmark of COCO[13] and for each function there are 15 instances of it.

All functions were tested in the interval [-5, 5] in every dimension and for
the following number of dimensions: 2, 5, 10, 40.

3.2 Traveling Salesperson Problem (TSP)

This is a famous and intensively studied optimization problem that is defined
as follows:
"Given a list of cities and the distances between each pair of cities, what is the
shortest possible route that visits each city exactly once and returns to the
origin city?"[9]. A simple example of TSP problem is depicted in Figure 3.1.

I tested algorithms on several instances of TSP from TSPLIB[14]. Here I
present description of problems[15][16] as well as fitness of optimal solutions[17].. gr17:

19

3. Testing problems
. Number of cities: 17.Optimal value: 2085. gr21:. Number of cities: 21.Optimal value: 2707. gr24:. Number of cities: 24.Optimal value: 1272. gr48:. Number of cities: 48.Optimal value: 5046

Figure 3.1: A simple example of TSP problem. By orange color is depicted the
optimal solution.

20

Chapter 4
Configuration

There are many parameters to set in evolutionary algorithms. Some of them
have greater impact on the effectivity of the algorithm then others, but all of
them have to be set to some reasonable value to make the algorithm effective.
The problem is that there is no one universal configuration that is best for all
algorithms and problems. The optimal configuration for particular algorithm
and problem varies and especially for black-box optimization it is very difficult
to set some parameters right. Moreover, the more sophisticated algorithm we
have, the more parameters it usually has and the higher the risk of setting
some parameters suboptimally with negative effect on the algorithm1.

Although all parameters matters, some of them are more important than
others. An essential parameter is population size. If population is to small
the algorithm can prematurely converge as already mentioned in the section
1.2.4 about premature convergence and if population is too big it might have
not enough time to properly explore the search space and to find optimal
solution.

Therefore, population size is the only parameter that is not set, and I
conducted all experiments for following population sizes:. 20. 50. 100

We will see how the population size really affects the effectivity of the algo-
rithms, espeially how different algorithms are effective in dealing with small
population size and thus low initial diversity.

Setting all parameters to optimal value would be very time demanding,
and it is not quite a goal of this thesis. Therefore, other parameters were
set to reasonable values or values based on simple experiments that are not
discussed.

1There is a way to deal with bad configuration of parameters in evolutionary algorithms.
Besides evolution of individuals, we can also have evolution of configurations. This idea
opens the door to many interesting possibilities that are not concerned in this thesis though.

21

4. Configuration.....................................
4.1 Shared configuration

To make the algorithms comparable and to see how the structure of population
affects their performance I set them the same operators for mutation and
crossover, function for generation of new individuals and the number of
evaluations is also the same.. Number of evaluations: 10,000

4.1.1 Continuous problems.Generation of individuals
The function creates a new individual with a random value in the interval
of the problem [-5, 5] on each position of the chromosome..Mutation. Function: Gaussian mutation. Probability: 0.2.Mean: 0. Standard deviation: 0.1. Independent probability for each attribute to be mutated: 0.1

Distribution of this function is depicted in the Figure 4.1. Crossover. Function: Arithmetic crossover. Probability: 0.5

With this crossover new individual is created as weighted average of
parents gene-wise. So each gene of the new individual is created inde-
pendently as gnew = r · g1 + (1− r) · g2, where g1, g2 are genes of parents
on the same position of the chromosome and r ∈ (0, 1). Arithmetic
crossover is depicted in Figure 4.2

4.1.2 Traveling salesperson problem.Generation of individuals
The function generates a random permutation of length n, where n is a
dimension of particular instance..Mutation. Function: Twors mutation[10]. Probability: 0.2

Swap the position of two randomly chosen genes.

22

........................ 4.2. Simple evolutionary algorithm and ALPS

Figure 4.1: Gaussian function with µ=0 and σ=0.1. The f(x) is not with the
probability in a good ratio.

. Crossover. Function: Partially matched crossover[11]. Probability: 0.5

With this crossover new individual is formed from two parts. The first
one is copied from a parent. The second part is created based on the
second parent so that it is as similar to it as possible.

4.2 Simple evolutionary algorithm and ALPS

These algorithms have some parameters shared because after all, the ALPS
behaves as EA within a layer.. Selection. Function: Tournament selection. Tournament size: 3. Elitism. Number of elites: 3. Replacement. Function: Generational

23

4. Configuration.....................................

Figure 4.2: Arithmetic crossover in two-dimensional space. Red dots represents
parents and all their possible offspring are represented by blue line (red dots
including)

Besides that, ALPS have some other parameters related to its structure.. Number of layers: 5. Age gap: 20.Max age for a layer: polynomial function was used, thus age limits were. layer 1 : 20. layer 2 : 40. layer 3 : 180. layer 4 : 320. layer 5 : no limit

4.3 MAP-Elites

In MAP-Elites we have to discuss two parameters that are not covered yet.
The selection operator and the feature descriptor.

4.3.1 Selection

The most easy way to select parents from the population is to select them
randomly. Some of the more sophisticated selection operator as tournament

24

.................................... 4.4. Cellular model

selection are not very suitable for MAP-Elites because they do not encourage
the algorithm to explore less promising parts of the fitness landscape. There-
fore curious selection was proposed.

Every individual has also so-called curious value. At the beginning of the
algorithm, all individuals has the curious value equal to 0. Individuals are
selected proportionally to their curious value. If selected individuals created
offspring that survived and was added to the structure, their curious value
increases, otherwise decreases. This way, the attention is primary put into
individuals that proved themselves in creating good offspring.

4.3.2 Feature descriptor for continuous problems

What to use as a feature descriptor in functions we know nothing about? It
is obvious that we can not fulfill the primary intention of feature descriptor
to observe relations between fitness of a solution and its features. We have to
come up with a universal feature descriptor applicable on every continuous
problem that can map different solutions into different cells in feature space
and thus provide us with diversity of the population. One possible solution
looks as follows. Let’s assume that the feature space has m dimensions and
an individual has a chromosome of length n. Then the value of a solution in
the first dimension of feature space is the sum of the first n//m genes, where
"//" is an integer division. Then the value of the second dimension of the
feature space is equal to the sum of the next n//m genes etc. Visual example
o this feature descriptor is provided in the Figure 4.3. For additional note,
see section B.1

4.3.3 Feature descriptor for travelling salesperson problem

What to use as a feature descriptor for TSP? One of the ideas that might
come to mind is to measure the similarity of an individual with a solution
based on the minimal spanning tree of the graph that describes particular
TSP problem. But there is a problem with this approach. The population
size can be much larger than the length of the path, and thus we can not
create feature space of required size. How to deal with this obstacle? Well,
a possible solution is to generate a whole bunch of paths and then choose
the two least similar ones. Then the feature space would be two-dimensional.
And this is the way I chose. For additional note, see section B.2

4.4 Cellular model

In conducted experiments, a one-dimensional lattice graph (ring) was used.
As a neighborhood function, von Neumann neighborhood with range 1 was

25

4. Configuration.....................................

Figure 4.3: An example of feature descriptor used in continuous problems. In
this particular example, the chromosome of the individual has length 9 and the
feature space has 3 dimensions.

used. This function was introduced in the Sec. 2.4.2. Individuals were
processed asynchronously in a random order every time.

26

Chapter 5
Experiments

In this chapter are present results of conducted experiments. All algorithms
were introduced in chapter 2, their configuration in chapter 4 and testing
problems in chapter 3. In this chapter, the following abbreviations are used:. EA: simple evolutionary algorithm. ALPS: Age Layered Population Structure. CELL: cellular model.MAP: MAP-Elites

5.1 Continuous problems

Comparison of algorithms on continuous problems is depicted in graphs,
where the higher value algorithm reached the better. Besides our algorithms,
there is also an algorithm called "best 2009". That is the best algorithms
tested on COCO to 2009.

For population size 20 as we can see in Figure 5.1 ALPS and cellular model
clearly outperform MAP-Elites and simple EA on 2 and 5-dimensional prob-
lems. On problems with 10 dimensions the difference in performance is almost
negligible, and for 40-dimensions it is minimal. An interesting observation is
that although simple EA is significantly worse than cellular model and ALPS
for low dimensions, it is actually a bit better for high dimensions. Possible
explanations could be that 40-dimension problems are really hard and algo-
rithms have not enough evaluations to demonstrate advantages of structured
populations. Another observation is that MAP-Elites is almost as poor in per-
formance as simple EA. It is probably caused by the chosen feature descriptor.

The results are very similar for population size 50 as we can see in Figure 5.2.
Although simple EA has significantly better performance and MAP-Elites
did a bit worse. Another observation is that for 40 dimensions the ALPS
stays behind other algorithms. This trend continues for population size 100
as depicted in Figure 5.3.

27

5. Experiments
For better idea how population size influences performance of algorithms,

graphs for individual algorithms throughout population sizes were plotted.
Figure 5.4 for EA, Figure 5.5 for ALPS, Figure 5.6 for cellular model and
Figure 5.7 for MAP-Elites.

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 20

EA 20

ALPS 20

CELL 20

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EA 20

MAP 20

CELL 20

ALPS 20

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 20

EA 20

CELL 20

ALPS 20

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

ALPS 20

CELL 20

MAP 20

EA 20

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.1: Comparison of all algorithms for population size 20 and throughout
different dimensions

5.2 Traveling salesperson problem

As we can see in Figure 5.8, Figure 5.9 and Figure 5.10 the EA has bad
performance on small instances of TSP problems, but surprisingly it was best
on the biggest instance. Why is it so? If we look closely on the run of EA on
smaller instances, we can notice that EA converges pretty quickly but then
reach a local minimum and is unable to make any noticeable improvement.
In gr48 are all algorithms at the end of run still in progress and none of them
reached any local minima, so probably EA is not best, but our algorithms
just was not provided with enough evaluations.

ALPS in general did pretty well on small instances throughout all popula-
tion sizes, but was not quite good on gr48. The reason is probably lack of

28

.................................... 5.3. Overall results

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

MAP 50

EA 50

CELL 50

ALPS 50

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 50

EA 50

CELL 50

ALPS 50

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 50

ALPS 50

EA 50

CELL 50

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 50

CELL 50

MAP 50

EA 50

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.2: Comparison of all algorithms for population size 50 and throughout
different dimensions

evaluations.

The performance of cellular model and MAP-Elites varies depending on
instance of problem, and there is no simple observable trend in their perfor-
mance.

It seems that population size has only small effect on the performance
of algorithms. A possible reason might be that there are many candidate
solutions and also many global optima 1 thus the distance between newly
generated individual and global optima tends to be roughly the same every
time.

5.3 Overall results

Based on conducted experiments, the structured algorithms as ALPS and
cellular model proved themselves to effectively deal with small population

1The genotype of an individual is a permutation, thus there are 2·n genotypes representing
each optimal phenotype

29

5. Experiments

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

EA 100

CELL 100

ALPS 100

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

EA 100

CELL 100

ALPS 100

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

ALPS 100

CELL 100

EA 100

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 100

CELL 100

MAP 100

EA 100

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.3: Comparison of all algorithms for population size 100 and throughout
different dimensions

sizes on continuous problems. Simple evolutionary algorithm had worse per-
formance than these two algorithms on low dimensional problems, but in
higher dimensions the differences were almost negligible, actually the EA did
a bit better. MAP-Elites had the worst performance of all algorithms, but
this algorithm was designed for a different type of problems, plus the used
feature descriptor was not meaningful.

On TSP problems, structured algorithms were almost every time better than
simple EA, thus proved that structured population can be really beneficial.
However, EA was better on TSP instances with lots of dimension, but that
could be because of insufficient number of evaluations. Also, it was observed
that population size is not as important parameter as in continuous problems,
at least for our representation and number of evaluations.

30

.................................... 5.3. Overall results

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EA 20

EA 50

EA 100

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EA 20

EA 50

EA 100

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EA 20

EA 100

EA 50

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

EA 100

EA 50

EA 20

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.4: Comparison of simple evolutionary algorithms with different popu-
lation sizes throughout different dimensions. The graph thus shows the ability
of EA to deal with low diveristy.

31

5. Experiments

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 20

ALPS 100

ALPS 50

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 20

ALPS 100

ALPS 50

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 100

ALPS 50

ALPS 20

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

ALPS 100

ALPS 50

ALPS 20

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.5: Comparison of ALPS with different population sizes throughout
different dimensions. The graph thus shows the ability of ALPS to deal with low
diversity.

32

.................................... 5.3. Overall results

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CELL 20

CELL 100

CELL 50

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CELL 100

CELL 20

CELL 50

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CELL 100

CELL 50

CELL 20

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

CELL 100

CELL 50

CELL 20

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.6: Comparison of cellular model with different population sizes through-
out different dimensions. The graph thus shows the ability of the cellular model
to deal with low diversity.

33

5. Experiments

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

MAP 50

MAP 20

best 2009bbob f1-f24, 2-D
51 targets: 100..1e-08
15 instances

v2.4

(a) For 2-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

MAP 50

MAP 20

best 2009bbob f1-f24, 5-D
51 targets: 100..1e-08
15 instances

v2.4

(b) For 5-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

MAP 50

MAP 20

best 2009bbob f1-f24, 10-D
51 targets: 100..1e-08
15 instances

v2.4

(c) For 10-dimensions

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

MAP 100

MAP 50

MAP 20

best 2009bbob f1-f24, 40-D
51 targets: 100..1e-08
15 instances

v2.4

(d) For 40-dimensions

Figure 5.7: Comparison of MAP-Elites with different population sizes throughout
different dimensions. The graph thus shows the ability of MAP-Elites to deal
with low diversity.

34

.................................... 5.3. Overall results

(a) gr17 (b) gr21

(c) gr24 (d) gr48

Figure 5.8: Comparison of algorithms on TSP problems for population size 20

35

5. Experiments

(a) gr17 (b) gr21

(c) gr24 (d) gr48

Figure 5.9: Comparison of algorithms on TSP problems for population size 50

36

.................................... 5.3. Overall results

(a) gr17 (b) gr21

(c) gr24 (d) gr48

Figure 5.10: Comparison of algorithms on TSP problems for population size 100

37

38

Chapter 6
Conclusion

Evolutionary algorithms are powerful optimization methods, but have some
limitations. A significant one is premature convergence when population of
the algorithm converged to some local optimum and no more improvements
could be made. A possible solution is to use structured population to maintain
diversity in the population and thus improve performance of the algorithm.
Several algorithms with structured population were tested and compared with
simple evolutionary algorithm. These algorithms are ALPS: Age-Layered
Population Structure, MAP-Elites: Multi-Dimensional Archive of Phenotypic
Elites and cellular evolutionary algorithm. Algorithms were compared on
various continuous problems as well as on traveling salesperson problems
that are discrete. Based on conducted experiments, structured algorithms,
except MAP-Elites, have overall significantly better performance than simple
evolutionary algorithm for small population sizes on continuous problems.
On TSP problems, all structured algorithms had better performance than
a simple evolutionary algorithm, regardless of population size. The only
exception is the instance with many dimensions, where apparently not enough
evaluations were provided for conducted experiments, and thus results here
are unclear.

39

40

Appendix A
Bibliography

[1] Optimization course. Cvut.cz. Available at: https://cw.fel.cvut.cz/
b192/_media/courses/b0b33opt/opt.pdf (Accessed: August 10, 2021).

[2] Wikipedia contributors (2021b) Fitness landscape, Wikipedia, The Free
Encyclopedia. Available at: https://en.wikipedia.org/w/index.php?
title=Fitness_landscape&oldid=1034646731 (Accessed: August 13,
2021).

[3] Hornby, G. S. (2006) “ALPS: The age-layered population structure for
reducing the problem of premature convergence,” in Proceedings of the 8th
annual conference on Genetic and evolutionary computation - GECCO ’06.
New York, New York, USA. Available at: https://www.researchgate.
net/publication/216300808_ALPS_The_age-layered_population_
structure_for_reducing_the_problem_of_premature_convergence

[4] Tomassini, M. (2005) Spatially structured evolutionary algorithms: Artifi-
cial evolution in space and time. 2005th ed. Berlin, Germany: Springer.

[5] Mouret, J.-B. and Clune, J. (2015) “Illuminating search spaces by mapping
elites,” arXiv [cs.AI]. Available at: http://arxiv.org/abs/1504.04909

[6] Quality Diversity optimisation algorithms: Toturials. Available at: https:
//quality-diversity.github.io/tutorials

[7] Gravina, D. Divergence and Quality Diversity: A collection of pa-
pers on divergence and quality diversity. Available at: https://
github.com/DanieleGravina/divergence-and-quality-diversity#
quality-diversity-algorithms

[8] Wikipedia contributors (2021) Bijection, injection and surjec-
tion, Wikipedia, The Free Encyclopedia. Available at: https:
//en.wikipedia.org/w/index.php?title=Bijection,_injection_
and_surjection&oldid=1023502940 (Accessed: August 12, 2021).

[9] Wikipedia contributors (2021) Travelling salesman problem, Wikipedia,
The Free Encyclopedia. Available at: https://en.wikipedia.org/w/
index.php?title=Travelling_salesman_problem&oldid=1035459634
(Accessed: August 9, 2021).

41

https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/opt.pdf
https://cw.fel.cvut.cz/b192/_media/courses/b0b33opt/opt.pdf
https://en.wikipedia.org/w/index.php?title=Fitness_landscape&oldid=103464673
https://en.wikipedia.org/w/index.php?title=Fitness_landscape&oldid=103464673
https://www.researchgate.net/publication/216300808_ALPS_The_age-layered_population_structure_for_reducing_the_problem_of_premature_convergence
https://www.researchgate.net/publication/216300808_ALPS_The_age-layered_population_structure_for_reducing_the_problem_of_premature_convergence
https://www.researchgate.net/publication/216300808_ALPS_The_age-layered_population_structure_for_reducing_the_problem_of_premature_convergence
http://arxiv.org/abs/1504.04909
https://quality-diversity.github.io/tutorials
https://quality-diversity.github.io/tutorials
https://github.com/DanieleGravina/divergence-and-quality-diversity#quality-diversity-algorithms
https://github.com/DanieleGravina/divergence-and-quality-diversity#quality-diversity-algorithms
https://github.com/DanieleGravina/divergence-and-quality-diversity#quality-diversity-algorithms
https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1023502940
https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1023502940
https://en.wikipedia.org/w/index.php?title=Bijection,_injection_and_surjection&oldid=1023502940
https://en.wikipedia.org/w/index.php?title=Travelling_salesman_problem&oldid=1035459634
https://en.wikipedia.org/w/index.php?title=Travelling_salesman_problem&oldid=1035459634

A. Bibliography.....................................
[10] Abdoun, O., Abouchabaka, J. and Tajani, C. (2012) “Analyzing the

performance of mutation operators to solve the Travelling Salesman
Problem,” arXiv [cs.NE]. Available at: http://arxiv.org/abs/1203.
3099 (Accessed: August 12, 2021).

[11] Puljic, K. and Manger, R. Comparison of eight evolutionary
crossover operators for the vehicle routing problem, Cvut.cz. Avail-
able at: https://cw.fel.cvut.cz/b201/_media/courses/a0m33eoa/
du/puljic2013crossoversforvrp.pdf (Accessed: August 12, 2021).

[12] COCO: Numerical Black-Box Optimization Benchmarking Frame-
work.Available at: https://github.com/numbbo/coco (Accessed: Au-
gust 9, 2021).

[13] COCO: Real-parameter black-box optimization benchmarking 2009.
Available at: https://coco.gforge.inria.fr/lib/exe/fetch.php?
media=download3.6:bbobdocfunctions.pdf (Accessed: August 9,
2021).

[14] TSPLIB main page. Available at: http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/ (Accessed: August 10,
2021).

[15] TSPLIB description of files. Available at: http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/tsp95.pdf (Accessed: Au-
gust 10, 2021).

[16] TSPLIB assignments. Available at: http://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/tsp/ (Accessed: August
10, 2021)

[17] TSPLIB optimal values. Available at: http://hhttp://comopt.ifi.
uni-heidelberg.de/software/TSPLIB95/STSP.html (Accessed: Au-
gust 10, 2021).

42

http://arxiv.org/abs/1203.3099
http://arxiv.org/abs/1203.3099
https://cw.fel.cvut.cz/b201/_media/courses/a0m33eoa/du/puljic2013crossoversforvrp.pdf
https://cw.fel.cvut.cz/b201/_media/courses/a0m33eoa/du/puljic2013crossoversforvrp.pdf
https://github.com/numbbo/coco
https://coco.gforge.inria.fr/lib/exe/fetch.php?media=download3.6:bbobdocfunctions.pdf
https://coco.gforge.inria.fr/lib/exe/fetch.php?media=download3.6:bbobdocfunctions.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp/
http://hhttp://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html
http://hhttp://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/STSP.html

Appendix B
Comments to feature descriptors

B.1 Continuous problems

Using our feature descriptor for continuous problems introduced in sub-
section 4.3.2 the number of dimensions of feature space and the number of
cells in each dimension can not be arbitrary. If we want to ensure specific
population size or alternatively the number of cells in the feature space
that can be potentially occupied, we have to design proper feature space
shape 1. Therefore, approach using prime factorization was used. This
approach is introduced in the pseudo-code.

Algorithm 6 Finding out proper shape of feature space
1: procedure Find proper feature space shape
2: prime numbers list ← make prime factorization of the population size
3: while length of prime numbers list > length of chromosome do
4: product ← multiply two lowest numbers in the prime numbers list
5: remove two lowest numbers in the prime numbers list
6: add product to the prime numbers list
7: return prime numbers list

So for instant, when we have population size equal to 100 and length of
chromosome equal to 3 than our feature space shape would be [4, 5, 5].

B.2 Traveling salesperson problems

Here are some additional notes to the feature descriptor used for TSP prob-
lems that was introduced in subsection 4.3.3. The feature space cannot be
created simply as two-dimensional space, where each dimension refers to
the similarity with some path. The paths used in feature descriptor are not

1The population size of n-dimensional feature space is computed as
∏n

i=1 xi where xi is
the number of cells in the i-th dimension of the feature space

43

B. Comments to feature descriptors
identical but have some shared edges. Therefore, there are cells in the feature
space that can not be occupied in principle. There is a function that gives
the number of cells that can be occupied in n ·n feature space, where n is the
dimension of the problem. Then m is the number of edges that paths used for
feature descriptor have in common. This function I derived looks as follows:
f(m,n) = (n2 + n+ 2 ·m · n− 3 ·m2 − 3 ·m)/2.

If the number of available cells is insufficient, we can simply add another
dimension, but this case did not occur in this thesis. Finally, if the number
of available cells is too big, we can adequately shrink the feature space.

44

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

483654Osobní číslo:TomášJméno:DulavaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačové hry a grafikaSpecializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Struktura populace v evolučních algoritmech

Název bakalářské práce anglicky:

Structured population in evolutionary algorithms

Pokyny pro vypracování:
Internal structure of a population in an evolutionary algorithm has been usually used as a means to preserve diversity in
the population which is profittable e.g. when solving multimodal problems. The structure usually restricts with what other
individuals from the population an individual competes, either for breeding or for survival. The goal of this project is to
explore existing population structures, or to propose a new one, and evaluate and compare their effects on the run of
evolutionary algorithms on unimodal and multimodal functions.
1. Familiarize yourself with the existing population structures proposed in literature.
2. Choose at least 3 of them (or propose your own) and implement them in an evolutionary algorithm.
3. Compare their effects on the algorithm performance on a set of benchmark problems/functions (BBOB, TSPLIB).

Seznam doporučené literatury:
[1] Gregory S. Hornby. ALPS: the age-layered population structure for reducing the problem of premature convergence.
GECCO 2006
[2] Brian W. Goldman and William F. Punch. Parameter-less population pyramid. GECCO 2014
[3] Marco Tomassini. Spatially Structured Evolutionary Algorithms. Springer, 2005

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Petr Pošík, Ph.D., katedra kybernetiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 13.08.2021Datum zadání bakalářské práce: 11.01.2021

Platnost zadání bakalářské práce: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Pošík, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction
	Optimization
	Evolutionary algorithm
	Evolution in biology
	Terminology
	Mechanisms
	Premature convergence

	Algorithms
	Simple evolutionary algorithm (EA)
	ALPS: Age-Layered Population Structure
	Age
	Layers
	Age-gap
	Domain

	MAP-Elites: Multi-dimensional Archive of Phenotypic Elites
	Feature space
	Feature descriptor
	Workflow
	Properties
	Domain

	Cellular model
	Lattice
	Neighborhood
	Update
	Domain

	Testing problems
	Continuous problems
	Traveling Salesperson Problem (TSP)

	Configuration
	Shared configuration
	Continuous problems
	Traveling salesperson problem

	Simple evolutionary algorithm and ALPS
	MAP-Elites
	Selection
	Feature descriptor for continuous problems
	Feature descriptor for travelling salesperson problem

	Cellular model

	Experiments
	Continuous problems
	Traveling salesperson problem
	Overall results

	Conclusion
	Bibliography
	Comments to feature descriptors
	Continuous problems
	Traveling salesperson problems

	Project Specification

