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Abstract

Neural networks can learn complex functions, but they often have troubles with extrap-
olating even simple arithmetic operations on real numbers beyond the training range. A
sub field of Neural Networks called Neural Arithmetic tries to address this extrapolation
problem by making use of arithmetic operations like addition, multiplication, or division.

This thesis provides a comparison between different arithmetic layers on their extrap-
olation performance for simple functions and on a recurrent task.

Additionally, we exploit how arithmetic models can be used to build more transparent
models by trying a simple equation discovery.

The general introduction is done in Section 1. Section 2 describes Neural Networks
and Neural Arithmetic layers. Section 3 contains the function learning, recurrent, and
equation discovery experiments and Section 4 the conclusion.
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Chapter 1

Introduction

One of the most complex mechanisms that exist in nature is the human brain. Human
brains have biological networks, which scientists in many fields are trying to replicate.
One of the products such a trial have called Neural Networks (NN). This technology
tries to mimic human brain abilities to some extent. Generally speaking, developing and
maintaining NN’s mechanisms verified that they are great approximators, meaning that
they are capable of approximating no matter what function with arbitrary precision, this
feature is also known as universal approximation theorem. There is no need to code them
directly, they can learn from the environment itself, and they work great with higher
dimensions. They are used in many fields of science. Some examples of usage are Natural
Language Processing (NLP) [15], car driving automation [1], business risk minimization
[14], image processing.

NeuralTalk2: A flock of birds flying in the air

Microsoft Azure: A group of giraffe standing next to a tree
Image: Fred Dunn, https://www.flickr.com/photos/gratapictures - CC-BY-NC

Figure 1.1: Neural Networks being deceived by the goats on the
tree [13].

Presented image, Fig. 1.1, here to show some peculiar result performed by mentioned
neural networks technology. One of the cases where NN’s are widely used called object
recognition. The objective of object recognition is to find or identify certain things on the
image. Human brain can correctly manage this task without any problems.

After being trained with huge amount of different images network still can not correctly
identify goat in an unexpected environment. When the goats were mostly presented on
images with grass, mountains, etc., any image that have goat that are not within this
environment will not be classified correctly. This particular type of problem that most of



the networks are suffered from called extrapolation.

It is observed that even though Neural Network models are capable of approximating
functions of many types with exceeding accuracy, given an appropriate amount of training
data, they still tend to memorize more than see the general pattern. As complicated as it
seems at first, the picture below shows the problem of extrapolation with a simple Neural
Network in a much easier way. Looking at Fig. 1.2, it can be said that the network does
a pretty good job inside the training range boundaries. Thus, it is interpolating well, can
perform correctly within the provided data. But after receiving data outside the training
range model does not generalize and thus can no longer correctly estimate points of a
simple parabola function, it is hitting the extrapolation problem.

100 | 1 |
Training range
Truth

Dense prediction

Figure 1.2: Simple Neural Network trying to approximate function
f(x) = 22, where blue line is a graph of 22 and orange line is a graph
approximated by the network after being trained in the range of a
training data, which marked by a greed dash.

The young field of Neural Networks, Neural Arithmetic, was developed to make mod-
ules capable of doing arithmetic operations that are being relatively easy to interpret and
can possibly solve extrapolation issues usual networks are facing. Analysing already pro-
posed solutions to the Neural Arithmetic is a main focus of this thesis and will be discussed
later.

The other interesting application of Neural Arithmetic networks is ease of interpretabil-
ity. In general, interpretability characteristic is ability of something to be easily described
or explained. Having a glimpse inside small linear NN models, it is clear how they operate
and how much each part in the network contributes to the final result. But as complexity
of the tasks progress the larger size of the network is needed, which makes model uninter-
pritable. By now complicated models are a black box that no one knows how it performs
inside nor what parts of it are responsible for what [9]. This problem will be partially
covered in later chapters.



Chapter 2

Theory

2.1 Feedforward Neural Networks

Neural Networks are mathematical models with a learning architecture similar to the brain
algorithm of storing information [8]. They are also known as function approximation
algorithms that are trying to approximate function that would fit provided input data.
Previous statement also arises the question, considering some large function, is there any
model that could approximate such function? And the answer is provided by universal
approximation theorem. That states that there always exist a feedforward Neural Network
with some architecture that can approximate such a function.

All types of neural networks are commonly referred as Artificial Neural Networks
(ANN) since they are used in conjunction with some machinery, any type of mechanical or
electrical device which have to perform certain actions in different environments. ANN’s
can learn complex patterns from different sources of data, such as images, signals from
sensors, etc., and make a decision of actions that will be proceeded to some device or

mechanism.
Input Layer Hidden Layer Output Layer

Qw\ P Q
Figure 2.1: Simple three layers feedforward Neural Network model
with weights w and biases b marked respectively to each layer.

In a nutshell, mathematical models, neural networks, are assembled from cells, later
referred to as neurons. They are interconnected with each other in the path, which allows
the transfer of the data between the connected cells. The neuron cell’s main tasks in
the network are extracting and memorizing features from the input data. Extraction and
memorization processes are done by varying initial neurons coefficients named weights W,
and biases by, where n is a n-th layer.

a, = Wha,_1+ by, (2.1)

Stacking neurons in layers allow extracting a big chunk of features at a network step.
General NN architecture consists of layer types like an input layer, an output layer, and a
hidden layer. The purpose of the first two is hidden in their names. As for the last one,
it performs the main feature extraction computation. The whole algorithm of proceeding
data through the simple network looks this way Fig. 2.1:
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Figure 2.2: Graph of a Sigmoid activation function.

(i) The Input layer accepts encoded input.

(ii) Than input is forwarded through the hidden layer by computing every hidden neu-
rons activation Eq. 2.1.

(iii) The final result is than received by the output layer.

The calculation of the neuron activation is done by applying the weights of the ded-
icated neuron to the input and insert it inside the activation function. The activation
function is a function, which determines the output of the neuron. Those functions are
influencing the network’s ability to converge as well as convergence speed. Choosing the
proper activation function is essential for neural network performance. For the rest of the
paper and all experiments Sigmoid function will be used Eq. 2.2, Fig. 2.2.

1
o= flan) = T+ ean’
where a,, is n-th layer activation. General mathematical formula of the second network
algorithm step (ii) was described in Eq. 2.1, where n is a layer number, W), is a matrix
of weights of each neuron in the n-th layer, b,, is a vector of biases in n-th layer, a,, is the
n-th layer vector output, and a,_1 is an output vector of n — 1-th layer. The last layer
usually denotes as n, will be the final result of NN.

In machine learning, there is a way of training such networks. It is called supervised
learning. This method allows training NN by forwarding the data through the model
and then examining the difference between expected and outputted results, allowing the
network to improve performance based on previous experiences. This method is used for
all kinds of real-world computational problems. But such a technique requires well-labeled
data, which sometimes takes a massive amount of time since it has to be done manually.

Now, let’s look at more mathematical details behind the learning process. Comparing
received output with the expected one is done by the so-called loss function. One of
which is called Mean Square Error (MSE) will be used throughout this thesis. It works
by subtracting the desired result from the received one squared

(2.2)

L
L(z,y) = 5 Z lyi — NN ()|, (2.3)

where N is a length of the vectors inputed to the loss function,NN(x;) is NN output
from data point @x;, x is an input vector, and y is a labeled vector. The loss function is



an indicator of changes performed to the network, as a result, minimizing value of this
function will train the network. The minimizing part is done by making adjustments to the
model weights with respect to the loss function value, which is done by Gradient Descent
(GD). Gradient Descent - is a mathematical algorithm for finding the local minimum of a
function by computing the gradient and performing steps in the opposite direction of the
gradient.

0n+1 = On - I/V@f(il)n, 9), (2.4)

where 6,11 is newly computed parameter, and 6,, is the previous parameter, Vg f(x,,0)
is the gradient of the loss function with respect to the parameter. The gradient part
can be regulated using the learning rate v, choosing proper learning rate parameter may
significantly change the learning process. By increasing it to much the algorithm will go
around the desired minimum but will never reach it. On the other hand, making it to
small will lead to long training time.

Nevertheless, this algorithm has a few issues that have to be mentioned. Computational
speed is slow because Eq. 2.3 iterates through whole data, which can be very large. Thus
the bigger the training set, the longer it takes to compute the gradient of the loss function.
The second issue is a local minimum problem. In shorter terms, it will be impossible to
omit the local minimum by going in the proportional direction, which makes the full
learning process stop without reaching the actual minimum.

Stochastic Gradient Descent Gradient Descent

Figure 2.3: Image showing difference between SGD and GD mini-
batching [5].

Those issues were addressed in a new version of GD called Stochastic Gradient De-
scent (SGD) 2.6. The SGD is still the same as GD, with the exception of performing
gradient operations not on the entire data set but on the small subsets called batches.
Now the loss function computes only difference between some training and label batch
T = [z1,22, .., Ym|, Y = [Y1,Y2, ..., Ym] Of length m << N

1 N
Lz,y) = §Z|!yz'—NN($i)H27 (2.5)

which makes gradient make oscillations, allowing it to avoid local minimum more fre-
quently and increase computational speed.

The algorithm that inherits the SGD methodology for training feedforward networks
is Backpropagation. Backpropagation calculates the error of the last layer and than as
in name states backpropagates it to every previous layer of the model, simultaneously
updating the network weights.

Now the full steps of performing such learning can be numerated:

(i) The Input layer accepts the data batch.

(ii) Than input is forwarded through the hidden layer by computing every Hidden neu-
rons activation Eq. 2.1.



(iii) The final result is than received by the output layer.
(iv) The final result is compared to the expected one, label, and loss is computed.
(v) The gradient of the loss with respect to the NN weights is computed, Eq. 2.9, 2.8.

(vi) The last step is to backpropagate the loss to every layer and update the layer weights
and biases, Eq. 2.6,2.7, and repeat over the step (i) until desired accuracy is reached
or the last chunk of data have been processed.

OL

w; =w; — v—, (2.6)
w
L

bl = bl — 1/87, (2.7)
b,

where w; is a weight vector of the layer [ and % is the gradient of the loss with respect

to weight, accordingly b; is a bias vector of the layer [ and %L is the gradient of the loss
with respect to bias, v is a learning rate, which dictates of how much change will from the
gradient will be proceeded to the weights.

As it is stated in the chain rule the gradient can be derived as follows:

oL 0L da; :
P~ ey 9wy — ¥~ NN@)F (wiar + bary, (2.8)
oL 0L da; _ :
% = 5o 36, (y — NN(x))f (wai—1 + by), (2.9)
8 = (y — NN(x))f' (wai_1 + by), (2.10)

where §; is the error of the last layer [. In order to backpropagate the error to the rest of
the layers, [ — 1 layer equation have to be expressed in terms of the error of [ layer Eq.
2.10, and thus will look as follows:

01 = wlélf'(’wlal_l + bl) (2.11)
oL
6711” = al_l(sl (212)
oL

2.2 Regularisation

Small NN can perform just fine for simple problems, staying very explanatory and giv-
ing the proper precision. But as soon as problems became more complex, much larger
networks are required. The bigger the number of free parameters, the wider the range of
phenomenons this model can describe. But, unfortunately, the large number of parameters
influence the model’s ability to make predictions in environments it has never seen before.
It was observed that after the training, those networks have all one problem with accuracy
values received on the test data. This problem is also known as overfitting. Overfitting as
were stated in the previous sentences is collectively a type of NN problems that happens
when model was trained on a wide range of data, showing remarkable results on the pro-
vided data set, but as soon as data not shown before appears model performance drops
seriously.
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To solve this problem the set of the process were designed called Regularisation meth-
ods. Those methods aims to reduce overfitting in large models, allowing them to show
better test and validation data results.

One of the regularisation types that will be mentioned in this section is called L1
regularisation. Generally speaking, regularisation methods focus on making big neural
network models prefer learning smaller weights rather than big ones. It is done by adding
an extra component to the loss function

L=MSE+X)_ |wl, (2.14)

where M SE is the loss function as described in Eq. 2.3, and w is a weights of the model
layer, A is a regularisation parameter. This adjustment will allow filtering large weights
that could improve the model from the one that could not, which results in small weights.
Combine that with models that have small number of hidden layers and it will bring the
most transparent network possible. Transparency in neural networks is a feature of a
model to give clear understanding of how much every weight adding to the output, which
makes this model easier to understand and debug.

2.3 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are artificial neural networks developed as an extension
to dense networks to work more efficiently with sequential data.

ﬂﬂf

h, T RNN

|

hy

Figure 2.4: The one iteration RNN, with x; as an input, izt as an
output and h;_; as a previous or hidden state.

DNN’s computes the output from every input without considering connection between
previous and new computations, which makes it hard for this type of network to work with
sequences. On the other hand, Recurrent Networks are made of recurrent connections,
which allows them to take the output as additional information from previous computa-
tions and pass it to the next layer. Performing such forwarding requires those types of
network somehow to save such an information. It is done with the extra variable that
every recurrent layer posses that is also called as the hidden state.

I €2 Tt Tt+1
l l l l
hg 2 RNN—/RNN——== RNN—RNN
| | | l
hl h2 ht ht—i—l

Figure 2.5: Unfolded RNN of the input sequence vector & =
[€1, X2, ..., x141], where hg is the initial hidden state and every next
computed output h; is then forwarded to the next step.
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In order to use this variable, recurrent layers share the same weights within the network.
The weights are adjusted parts of the RNN. General formula that RNN is using to compute
the output is as follows

h; = f(ast, ht—l) = tanh(VVixt +Wrh: 1 + b), (215)

where h;_1 is the previous hidden state and h; is a newly computed output, which will be
proceeded for the next computation, W;,W),,b are a parameters of RNN. To make the first
computation of the time ¢ = 0, the recurrent layer must have a predefined hidden state
hg. Usually, it is initialized to zero since we do start from scratch. It is straightforward
to compute with those networks data sequences of many sizes. As well as computing
sequences of the same size at once. In the Fig. 2.5 sequence of values x; can be changed
to the sequence of vectors of the same size x;.

The Backpropagation of RNN is differ from the same algorithm proceeded for DNN .
The first difference in the loss since we have t outputs for every time step. Thus the full
loss is a sum of all unrolled layer errors

n

LX,Y) =Y Er=Y_|lh—dil|, (2.16)
=0

t=0

where L is the loss of the model, E; is the error or difference between the desired and re-
ceived output of ¢-th step and n is the length of the sequence. Thus the weight adjustment
will change as well

Ey
W=W-v) — (2.17)
—~ W

As a result of storing a hidden state value at every layer, RNN’s are very slow to
train. Those networks as well are suffering from the problems of explosive and vanishing
gradients. Gradient vanishing is an issue, which occurs during the learning process. When
the gradient is too small, it has tendencies to continue becoming even smaller, which makes
it update weights until they become zero. The previously mentioned problem will lead to
such weights inability to learn anything from the training data.

& ® ®
t | |

N\ I\
X (D= >
E&@nb>
A ? 9 A
[o] @] [o]
—)
J J

| |
©) ® &)

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

Figure 2.6: Descriptive picture with notation of the LSTM cell work
[12].

As were mentioned previously, in theory RNN should have had been able to work prop-

erly with very long sequences of data, but in reality the opposite was observed. Solutions
to the problems is updated RNN or as it called Long-Short Term Memory (LSTM) [7].
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Instead of memorizing everything shortly LSTM have a gating mechanism, which allows
it to chose at every time step if it should add or disregard additional information to the
cell state.

Considering all previously mentioned things about RNN and LSTM it is now time
to find where those models are the most useful. For example, predicting next letters or
words since the network has to consider previously predicted one. The same holds for
sound processing, predicting stock market etc.

2.4 Neural Accumulator

Neural Networks can learn any function in theory, but they have some issues with gener-
alizing learning outside the training range. Hence new direction appeared called Neural
Arithmetic, which aims to make models that can consistently extrapolate with numerical
computations. The first of such models is Neural Accumulator (NAC). The Neural Ac-
cumulator - is a NN architecture presented here [16], that was directed to approximate
functions with simple arithmetical operations like addition and subtraction. It was ac-
complished by merging network weights and restricting the final result to take values -1,1
or 0. To restrict the values of final weight to be -1,1 or 0, tanh and ¢ functions were used,
and the final weight matrix is now looking this way

W = tanh(W) - o(M), (2.18)
where W, M are actual model weights matrices. The work procedure of this model looks
as follows In Fig. 2.7, inputs are arbitrary numbers or vectors in the range of training data.
The matmul is our accumulator, which multiplies input to the corresponding weights

a=Wcz (2.19)

and defines what actions we are doing with our input. Thus the network output is a
weighted sum of the inputs.

O
O t O
3 N\

Figure 2.7: NAC architecture [16], bottom dark green space is our
weights matrices M and W, light green field is where model perform
multiplication on input, received from the left, to the weight matrix
computed from below.

2.5 Neural Arithmetic Logic Unit

Previous model were designed to learn simple addition and subtraction operations. But
those are not enough to learn any complex function. Thus the new model was developed,

13



Neural Arithmetic Logic Unit (NALU). NALU - is a NN architecture that consists of
multiple NAC modules with an additional control gate, which allows switching between
those. Now let’s look in detail at what is happening inside the NALU model.

o
O : » [matmu] -z—

O \ > @ matmul

N LN N N
[ tanh ) ( tanh ) ( tanh ) ( tanh )
T T

Q@000

N N N £ N
666
e SN N N
£ N 2N £ £
[ tanh )

Figure 2.8: NALU architecture [16], where purple matmuls are NAC
modules, one ordinary and another one with two additional functions
before and after, matmul marked orange is a control gate.

As was mentioned previously in this section NALU does have two NAC models, but
in reality, it is one NAC that shared weights that are copied and split as presented in Fig.
2.8. The extra function between the NAC matmul, which is marked as a yellow rectangle,
is there to change the input flow to allow this brunch to learn multiplication or division.
The orange marked matmull with additional ¢ function is the so-called control gate. A
control gate is a method that tries to activate or deactivate NAC model outputs depending
on the arithmetical operations in the function that NALU is trying to approximate.

Finally, let’s look at a mathematical expression that defines the whole NALU network

NALU :y=g©®a+(1—g)om, (2.20)

where a is the NAC output vector shown previously in Eq. 2.19, m and g are

m = exp W (log(|z| + €),9 = 0(Gx), (2.21)

where m is an modified NAC output that is capable of learning multiplication and division,
g is a control gate, W and G are the learning parameters, € is a value that prevents zero
input inside the log and « is an input vector.

=[] = (2.22)

All those together allow this complex architect model to approximate functions that con-
sists of addition, subtraction, multiplication, division.

However, the NALU model has some issues that stop it from being state of the art for
Neural Arithmetic. For example, Suppose one of the most critical NALU mechanisms that
allow approximating such a wide range of functions, the gating mechanisms, misbehaves.
In that case, it will eventually lead to an inability of the correct NAC module to receive
gradient signals. It was observed [10] that this mechanism in NALU works in almost
a random way, which disables correct approximation of the functions. NALU also has
problems with negative numbers and smaller numbers than e. It also suffers from large
gradients, which makes it even more inapplicable to specific tasks.

14



Nevertheless, this model was the first one that tried to bring some solution to the
Neural Arithmetic word, but not the last one.

2.6 Neural Addition Unit

There also exists a much simpler and yet much better solution for addition and subtraction.
It is called Neural Addition Unit (NAU) presented here [10] in 2020. Analysing NAC
weights values it was empirically observed, that in practice Eq. 77 does not achieve this
-1,1 or 0 vales clipping. To achieve results better than NAC with addition and subtraction,
it was proposed instead of restricting the values of the weight, instead to map them to the
[-1,1] range

W = min(max(W, —1),1), (2.23)

where W model weights, which are clamped to [-1,1] boundary at every iteration and W
is a result that going to be used to compute the output. That allowed to outperform the
NAC model results and decrease model complexity by making it more transparent. The
full NAU model looks as follow

NAU: a=Wa, (2.24)

where a is a newly computed output vector from weighted input, W is newly computed
matrix as in Eq. 2.23, and « is an input vector.

For the experiment part, the NAU weights will not be clipped. Since in the initial paper
authors were intended to learn only +,- or 0. But in the experiment section functions also
contain extra constant component like 3x. Hence not clipping the weights will help to
learn such variables.

Intuitive understanding of NAU comes from its name. So for now lets treat it like a
simple box that takes some input vector & and makes weighed sum of the elements. So
lets take a look at at vector x of size 3

z1
la b ] |2z2| = [az1 + by + cas] (2.25)
x3

Nevertheless, such model can not approximate well equations with a constant inside, since
it was not intended by design. Lets assume that we have a model with three hidden layers
NAU(1,3). The input vector from equation f(x) = = + 2 will be proceeded through this
model as follows

a I axy
x| = |bxo (2.26)
€T3 CI3

where a,b,c are NAU weights values. The problem is, NAU weights are incapable of
learning the +2 constant. Thus any model that contains this type of layer has to expect
and somehow compensate.

w1 b1 w1T + bl
wy | * [x] + |b2| = |waz + bo (2.27)
w3 bg w3x + b3

Interesting fact is Dense network are capable of easily predicting function constants
since they have bias term, which is basically a learnt constant, as shown in Eq. 2.27.
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2.7 Neural Multiplication Unit

The writers of the NAU paper also [10] introduced there one extra model that was capable
of learning multiplication more efficient than mentioned NALU. The Neural Multiplication
Unit (NMU) is a neural arithmetic model, which was suggested as a simple way to learn
multiplication. Even though NMU is incapable of division, as an opposed model in the
referenced paper, it converges much faster and can work well with negative numbers. NMU
weights look similar to NAU ones and are computed this way

W = min(max(W,0),1), (2.28)

where W is a weight matrix of the model. The complete mathematical algorithm behind
the NMU looks as follows

NMU : f(z,W) = [[(Wa+1-W), (2.29)

7

where W is a weight matrix computed in Eq. 2.28, x is an input vector, +1 there to deal
with W = 0. In Eq. 3.3, we now may observe that NMU is not bounded to value of ¢, as
NALU does, and also can properly work with negative or positive input values since it do
not have inner sign restriction functions.

Intuitive way of understanding how does the model proceeds the input is as follows

|:w11 ZU12:| |:$1:| — [u?nxl . wlng w211 wggxg] , (230)
Wa1 W21 |T2

where first matrix is an NMU model weights, and [z, z2] is an input vector. From the
equation above it is clearly seen how NMU can approximate polynomial type of functions
by just performing multiplication on the input.

In the paper [10] was also mentioned how regularising this layers weights clip them to
-1,1 or 0 values, which allows this model converging to the simplest solutions.

Both NAU and NMU show high standards for addition and multiplication, making
state of the art for learning functions with addition and multiplication operations inside.
However, their limited learning capability does not allow them to be an individual model
but rather conjunction to something more advanced. Nevertheless, stacking those model
together in order or using them as a layers in more complex networks, will eventually
becomes a potential solution to the Neural Arithmetic problem capable of showing ex-
trapolating results. In addition stacking NAU, NMU layers together is way better than
gating mechanism, that was presented in NALU, which have huge convergence issues. The
tasks that stacked model can solve are approximating functions with addition, subtrac-
tion, multiplication operations inside, type of functions that have all of the mentioned
operations inside is polynomial one. And indeed it will be observed in the experiment
section how good this model is in approximating polynomials.

2.8 Neural Power Unit

The last model that was proposed is Neural Power Unit (NPU) that was published by my
supervisor and his colleagues [6]. Previous models demonstrate great results for two simple
arithmetical operations, addition and multiplication. Still, there was no satisfactory score
for the rest of the arithmetical operations as well as all mentioned solutions have some
strong and weak sides in their implementations individually.

In a nutshell, NPU tries to improve the NALU work by changing some architectural
decisions made in its equations. Its goal is to show practical solutions for learning di-
vision, multiplication, and square root operations. All three arithmetic methods can be
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interpreted as just a product of power functions

fla) ==, (2.31)

where x is an input vector, and w; is a power value, which can be natural, integer, or
rational number. And that is exactly what NPU tries to do. It tries to learn the power
value parameter for every input.

To achieve those results, modification to the Natural Arithmetic Logic Unit was done
in Eq. 2.21, more precisely in the m value part. The updates were done by adding complex
logarithm and complex weight to the Eq. 2.21. The received equation looks this way

m = exp (Wyea + iWing) logx), (2.32)

where W, are the real part of the model weights, and W;,, is an imaginary part of
the weights, 7 is imaginary number. The necessary changes allow for processing correctly
positive and negative values and give extra flexibility to work with complex weights. Since
the imaginary part is not needed for the real solutions, it can be omitted. The math
interpretation after the transformation looks this way

NPU :y =exp (W, logr — nW;k) ® cos(W;logr + nW,k), (2.33)

. . 0, ifx; >0 ) .
r=g0(lz|+e)+(1-9g), k= ., i =min(max(g;,0),1), (2.34)
1, otherwise

where r is our input, and k is a switch, which is influenced by the sign of the input
data, § is gating mechanism that does complicated work of choosing which direction to
go. In conjunction with NAU, appeared model can approximate all range of functions
constructed with simple arithmetical operations.

Even this Neural Arithmetic model experience some issues with convergence, but in-
creasing number of parameters will eventually solve it.

2.9 Arithmetic models in Recurrent Networks

In the Recurrent Neural Network section 2.3, it was described how do they work. It is
essential since this section will try to extend some of its functionality for some different
experiments with the data sequences. The previously mentioned Arithmetic models will
extend RNN functionalities to achieve better results in extrapolation than the state-of-
the-art LSTM.

The Arithmetic Recurrent Neural Networks (ARNN) are the same RNN except it
has replaced original weights to one of the Neural Arithmetic Logic Module (NALM)
mentioned earlier. So after some changes, the RNN equation will look like this

h; = f(.’IJt, ht—l) = NALM(:IZt, ht—l) + b, (235)

where NALM () is one of the arithmetic models, x; is input, hy_; is previous hidden state
and b is bias. The tanh function was erased since it bounds the output to the predefined
range, which prevails computing with such an architecture.

| function (m::ArithmeticRNNcell) (h, op, x)

2 s,op_net, a_net, b = m.s,m.Wi, m.Wh, m.b

3 ho = op_net([op;h .* ones(Float32,size(x))])

A h = a_net([x;ho]) .+ Db

5 sz = size(x)

6 return h, reshape(h, :, sz[2:end]...)

7 end

Listing 2.1: Julia code example for Recurrent part.
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Chapter 3

Experiments

3.1 Simple functions

Experiment section is aiming to show practical example of the Arithmetic Models usage,
as well as showing their performance. This experiment will approximate different types of
functions to observe behavior with data outside the training range. Programming models
is not a complicated task using modern and powerful libraries, for example one of the Julia
libraries available in GitHub (https://github.com/FluxML/Flux.jl). In this experiment,
five simple functions f(z) = 22,f(z) = |z, f(z) = Vz,f(z) = Inz, f(z) = —0.12*+322+2
was approximated by four different models Tab. 3.2.

Experimented func- | Training | Training Training| Testing grid | Testing
tions data size | grid range | step dx | range step dx
Polynomial 80000 [-1.5,1.5] 0.67 -3,-1.5],[1.5,3] | 0.67

[
Absolute value 80000 | [-1.5,L.5] | 0.67 [3-1.5,[1.5.3 | 0.67
Square root 80000 [0,1.5] 0.67 [1.5,3] 0.67
Natural logarithm 80000 [0.01,1.5] | 0.67 [1.5,3] 0.67
Parabola 80000 | [-1.5,1.5] | 0.67 [3-1.5],[1.5,3] | 0.67

Table 3.1: Data generation settings for the Simple functions
experiment section.

Models Architecture

NALU NALU(1,24),NALU(24,1)
NMU | NAU(1,12),NMU(12,12),NAU(12,1)
NPU NPU(1,24),NAU(24,1)
Dense Dense(1,24,sigmoid),Dense(24,1)

Table 3.2: Models architectures for the Simple functions exper-
iment section.

In every experiment models architecture and training settings were the same, Tab. 3.1.
The mean squared error (MSE) loss function were used, which was mentioned previously
in this paper.

Experiment proceeded as follows, every model were trained with the same amount of
training data for the same number of epochs and than were tested with the data in the
test range. In order to gather more representative data number of neurons were chosen
optimally, meaning some manual training was done. The data were generated as static
grid in ranges described here Tab. 3.1.
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Models Train Test
R L NALU 6.97e-7 5.48
100 100 NMU/NAU | 3.52e — 11 | 1.49e¢ — 3
\ —NPU \ —Dense NPU/NAU 1.74e-6 2.26e-2

7.5 — -Truth 7.5 — -Truth
@ Data @ Data Dense 4.62e-7 2.22e-1

5.0

2.5

0.0

Figure 3.1: Left image represent experiment results of every model
as a graph, where Truth line is a graph of a function, Data are points
that were used in training models, and blue line represents each model
extrapolation results. Right table shows numerical representation of
the graphical results on the left. Approximated function is parabola

In the image Fig. 3.1 the simple parabola function was approximated by 3 different
NALM’s and one Dense models. Results above show that NALU, NPU, and NMU models
can extrapolate parabola, when the Dense Network can not. The DNN shows the problem
of extrapolation in models containing only dense layers very clearly. As expected from
NPU, its architecture allows it to do fractional powers z*, which is precisely the case of
the simple parabola function. The results are not that great because the tested model
have some convergence problem. NPU mode is used in conjunction with NPU to allow
such a network better approximate functions with different arithmetical operations. As
intended for the NMU model, it performs best with tasks it was initially made for and
outputs exceeding extrapolation results. The NALU case did well, but it is hard for this
model to converge to the real solution.

0 Models Train Test

Al e NALU 1.07e — 7 1.30e-1

4 .- NMU/NAU 1.25e-3 6.24e6

5 —NPU —Dense NPU/NAU 1326—7 1.136 —4
— -Truth 3N — -Truth

@ Data Dense 4.22e-5 6.31e-2

Figure 3.2: The same as in Fig. 3.1. Approximated function is abso-
lute value.

In the Fig. 3.2 we see that Dense layer model performance again shows that it can not
extrapolate well, especially when approximated function is not similar to its activation.
This result can be increased by changing model activation function. The NPU network
achieved great results. In NALU case absolute value operation is originally inside its
implementation in the multiplication part exp(W (log|z| + €)), which resulted in good
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training results. But it as soon as it gets to far from the training data range it experience
with converge to the real solution. NPU shows such exceeding results because it tries to
approximate mirrored square root functions and the NAU layer adds them together. Since
NMU/NAU only can do multiplication and addition of the input they can not approximate
absolute value function.

5.0 5.0
2.5

0.0

-25 Models ‘ Train ‘ Test
-s0 b NALU 1.65¢-6 4.01e2
o NMU/NAU | 2.36e — 9 | 1.08e — 1

NPU/NAU 2.44e-4 6.36el

“2 Dense 8.36e-5 2.26e2

Figure 3.3: The same as in Fig. 3.1. Approximated function is poly-
nomial, f(z) = —z* + 322

The extrapolation problem in the Dense network ,left part of Fig. 3.3, appears as soon
as tested points are going outside the boundaries of the training range. Results received
in Fig. 3.3 for the NALU model shows problems of its architecture. As were mentioned
in the Theory part this model suffers from convergence issues. NMU/NAU model can do
such tasks with such outstanding accuracy due to its initial reasons of implementation,
approximate functions with multiplication and addition operations. The model also shows
a great convergence for this function. The NPU/NAU model shows good results for this
task, as expected from two modules, separately best at approximation power and addition
operations.

2 2
1 1 -
° el “un|  Models | Train | Test
@ Data @ Data
- L - - - b - - - NALU 2.94e-8 3.14e-3
i i NMU/NAU | 2.93e-4 6.32¢2
NPU/NAU | 1.19¢—8 | 2.93e — 4
1 1 Dense 3.07e-6 3.74e-4
0 —NPU 0 —Dense
— -Truth — -Truth
@ Data @ Data
1 -1
0 1 2 3 0 1 2 3

Figure 3.4: The same as in Fig. 3.1. Approximated function is square
root.

From the observation of the square root case at Fig. 3.4 Dense layer network numerical
results in training part present its ability to learn well the training data. Also show not
great results with a testing data, which is due to its activation function . The NPU model
did very grate almost fully converged to the function, unlike NMU and NALU. In NALU

20



case it again can experience issues with convergence, which is very common thing for this
model. NMU model layers, NMU and NAU, were not designed to approximate square
root function, meaning it is expected that models that was not intentionally created for a
specific type of operations will show any reasonable result. That is why after the training
range, it tries to approximate the tested function as some sort of polynomial.

-2
. _mn| Model | Train Test
L | | L L —— NALU 1.15e — 8| 2723
NMU/NAU | 2.86e-2 1.44e-1
g : NPU/NAU | 1.31le6 |4.74e—5
- Dense 4.21e-3 6.95¢e-3

0 1 2 3 0 1 2 3

Figure 3.5: The same as in Fig. 3.1. Approximated function is natural
logarithm.

Results and reasons those results were received in Figure 3.6 are similar to the previ-
ously mentioned.

Tested functions are functions of rational type. Now experiment will be conducted us-
ing one that is irrational, to observe whether proposed NALM’s can extrapolate irrational
types of functions. For the previous experiments as data were used random uniformly
distributed sample. For this experiment predefined grid will be used in order to avoid
undefined points

3

(x —0.5) % (x + 0.5)

In the Eq. 3.1, we may see irrational polynomial function that has inf value at x = +0.5
point. Avoiding this point in the experiment is vital because there exist no Neural Network
models that can work with value of that type. To avoid this point our training and testing
data range will look this way Not only the data have encounter transformation but also
models architecture. Now it looks as follows

flz) = (3.1)

Models Architecture

NALU Dense(1,10),NALU(10,1)

NPU Dense(1,10),NPU(10,1)

NMU Dense(1,10),NMU(10,10),NAU(10,1)

Dense | Dense(1,10,sigma),Dense(10,10,sigma),Dense(10,1)

Table 3.3: Models architectures for the experiment with irra-
tional type of function Eq. 3.1

The Dense layer part in every model make the x — 0.5 and = + 0.5 in Eq. 3.1 terms
possible via bias. Not only that but in order to receive any results the learning rate
variable have to be chosen small other wise it would make models unable to perform any
score.

The observation from the images above shows that the only models that are capable
of getting close to approximating tested irrational function are NPU and Dense. For NPU

21



5.0

L —NALU —NMU
2.5 — - Truth 2.5 — -Truth

@ Data A @ Data

0.0 | | 0.0 |ﬁ|

| I
-25 [ = ‘ -25 1~ 1 { Model ‘ Train Test
ol 1 b L L ) NALU 1.61el 3.13¢2
5o NMU/NAU 1.6el 1.28e6
iﬁpgh NPU 5.21e — 3 1.85e—1
%2 @ Data Dense 7.81e-1 7.58
0.0
-25 =
-5.0
-3 -2 -1 0 1 2 3

Figure 3.6: The same as in Fig. 3.1. Approximated function is irra-

. 13
tional, f(x) = (@=0.5)+(a405)

it is easy since first layer is Dense, which without any problem learns addition inside the
denominator and forwards it to the last layer. The rest operations are proceeded and
handled well by the NPU layer.

As for the Dense layer, it did shows some results within the data points grid, showing
again that it can memorize training data well. But as soon as it gets out of it, results
dropped since model with only Dense layers inside can not extrapolate much.

3.2 Simple function equation discovery

This experiment will cover how regularised NALM models will solve interpretability prob-
lems. From the previous experiments, it is clear that models can approximate many kinds
of arithmetical functions. But the interesting feature that some of them have is trans-
parency. By only looking into regularised network weights, it is easily seen what function
it was trying to approximate. Hence, manual equation recovery is possible.

As an example, the small NMU/NAU model will be explored, with an architecture
NAU(1,2),NMU(2,2),NAU(2,1). The model layers were chosen specifically for this task
since they are very simple and can be interpreted intuitively, and regularisation gives
model with weights clamped to -1,1 or 0 values.

The training data will be a fixed grid in the range [-1.5,1.5] with a step 0.067. The
regularisation method will be of an L1 type, which was previously mentioned in the Reg-
ularisation section of the Theory chapter. The equation discovery procedure begins after
a small regularised model successfully converged to the approximated function f. Explo-
ration starts from observing regularised weights of every layer separately.

Observing weights values of the layer, heatmap plot Fig. A.7, show that the first NAU
layer has converged its weights numbers to -1 and 1. Hence first layer output will look

this way.
0.99 0.992
[—0.99} =] = [—0.9995] (32)

The second layer is represented by a 2x2 NMU weight matrix, with values 1 and 0. As we
know from the Neural Multiplication Unit section in the Theory chapter, the main goal
of NMU is to learn and perform multiplication operations. That allows assuming that
the model’s output will be just the product of the corresponding inputs, which looks as
follows.
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[0.99 0.99] [0.9995] R [—0.96:61 (3.3)

0 0 —0.99z 0

As the last layer, we have NAU layer with values -1 and 0 again. So, proceeding with the
NMU layer output as the second NAU layer input, we will receive this intuitive equation.

—0.9622

[—0.99 0]{ 0

] — [0.9522] (3.4)

In the end, a simple
f(z) = 0.952% (3.5)

component was received, that highly reminds of a parabola function. And indeed it was a
simple parabola function

flz) =2, (3.6)

that this model trained to approximate.

3.3 Polynomial function equation discovery

Lets now look at more complex polynomial function that the same model will try to
approximate. For example polynomial of 4-th power. To do so our model would need to
increase the number of hidden layers to 4, since NMU model does multiplication in order
for this model to learn function with a 2* component it will need at least 4 hidden layers
inside. After the training regularised layers weights looks can be found here Fig. A.8.

The same as in previous experiment the equation discovery procedure will be held.
Looking at the regularised weights, from the Fig. A.7, first layer equation will be held this
way

1.7 1.7z
-0.8 —0.8z
1.7 [ ] 1.72 |’ (3.7)
-0.8 —0.8z
where first matrix is NAU weights matrix, [z] is an input vector.
Second step is to forward previously received output to the NMU layer.
0.99 0 0.99 0 1.7z 2.8322
0 0 0 0 —0.8z o 0 (3.9)
0.788 0.884 0.788 0.884 1.7x 0.89z% |’ '
0 0 0 0 —0.8z 0

where first matrix is NMU weights, second matrix is an input vector.
As always the last NAU layer will output the final result by proceeding the output
from the multiplication model.

2.8322
0
0.89z*
0

[0.93 0 —0.86 0] — [2.632% — 0.762%] (3.9)

where first matrix is a layer weights, second one is an input vector.
Final discovered equation have this form

f(x) = —0.76x* 4 2.6322, (3.10)
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and initial approximated equation was
f(z) = —a* + 322 (3.11)

The acquired equation is look almost similar to the initial but have constant differences,
which is normal.

There were also attempts to perform on more complex function of irrational type.
But there were no representative example received with L1 regularisation, that could be
presented. Meaning that there were no models that have converged to irrational function.
It is still a way to go for presented models in terms of weights transparency.

Even though, from presented sections of equation discovery experiment it is clear that
having a small model with regularised weights values almost certainly can bring an intuitive
understanding of what the model is doing. Bringing more transparency to the black NN
box.

3.4 Sequential task

This experiment is made in order to show if the Neural Arithmetic models can extrapolate
well on the sequential data. In order to make a model perform on the sequences, as was
mentioned in the Theory chapter Sec. 2.9 of this thesis, we will use Arithmetic Recurrent
Neural Networks. Thus we will substitute network weights with a tested NALM’s model
A.l.

In the experiment Neural Frankenstein’s will be compared to Long-Short Term Memory
(LSTM) model, which is also a type of recurrent neural network except it posses some ad-
vanced memorization architecture. They will be compared in terms of the sequence length
and data range extrapolation. Meaning that training will be performed with predefined
sequence length and data range boundary and validation will go further to observe the
extrapolation. Experiment settings can be observed hear A.3. The same as in the previous
experiment training settings are equal for every model.

The experiment will try to approximate sequences of randomly chosen operations, now
it is only addition and multiplication

(a+b)*c)—d (3.12)

In order to make this experiment happen first data and operations going to be encoded
in order as shown bellow:

a + b * ¢ + —d
a 0 b 0 ¢ 0 —d
01 000 0’ (3.13)

1
0 00100 O

where every number n in sequence is encoded as [n, 0, 0], addition and multiplication are
encoded as [0, 1,0], [0, 0, 1] respectfully.

Than there some minor prepossessing done where first data, number in a sequence, is
always stuck to the addition operation, which also allows to merge value with the operation
that stands before it. It is done for making model learn operation and value rather than
making it also learn when the input is an operation or a number.

(+7a) (+’b) (*’C) (+’_d)
0 0 0 0
1 1 0 1
0 0 1 0 (3.14)
a b c —d
0 0 0 0
0 0 0 0
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The models have inside the recurrent part simple linear layer, Operational Network
Tab. A.1, which will fetch the encoded numbers and operations at the same time and will
approximate the merged version of those two. Next the output from previous step will be
fed to the main arithmetic networks Tab. A.1, which will give the product of sequential
part of the model to the last NAU layer to sum and output the result. The full models
architecture can be found here Tab. A.2. Plot on Fig. 3.7 shows the loss at every range

104 -
10*
w1
wu
=1
far
w02 |
LsTM
wt F / NALU
+ NPU
/ NMU
2 4 6 8 10

Scalar range [-x,x]

Figure 3.7: Extrapolation comparison on the data range, between
Arithmetic Recurrent Neural Network and LSTM.

from [-2,2] to [-10,10], with a step 1, for every model that were used in this experiment.
It is clearly seen here, which model performs best. Surprisingly, but created NMU RNN
model outperforms state of the art LSTM in in extrapolation. Plot on Fig. 3.8 represents

10 -

10°°

Loss

1072 5L

NALL

w0 - NPU

NMU

Sequance length

Figure 3.8: Extrapolation comparison of the sequence length, between
Arithmetic Recurrent Neural Network and LSTM.

showcase of how models extrapolate in terms of sequence length. And again the careful
observation shows that simple model RNN model in conjunction with NMU outperforms
in this experiment LSTM, which again highlights how good and useful arithmetic neural
networks are.
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Chapter 4

Conclusion

In conclusion, the first experiment shows that simple arithmetic tasks can be extrapolated
with NMU and NPU models. However, presented models are still experiencing conver-
gence issues with harder tasks that include more complicated structure and arithmetic
operations, like division, etc.

The following two function discovery experiments were there as proof of equation
discovery concept. In order to make it work in practice, other regularisation methods
might be more preferable as well as better training strategies.

The last experiment, sequential task, shows that NMU can be injected in a larger
network and demonstrate good results. On the other hand, the rest of the tested models,
NALU and NPU, do not improve or even reduce overall model performance. That happens
because both of mentioned models have convergence issues.

It is for sure that the extrapolation problem can be resolved using tested models.
But the field still has to come up with something better to solve the Neural Arithmetics
fully. Besides using arithmetic models in the arithmetic field, they can still be applicable
to any task composed of simple arithmetical operations, such as financial or engineering
modeling.

There is much stuff that should be solved before. Future works will focus on faster
convergence and extrapolation to other functions like periodical, exponential, logarithmic,
and irregular. In the future, those types of models will succeed in representing exact
ordinary differential equations (ODE).
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Appendix A

Appendix title
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Figure A.2: Experiment with simple parabola function.

28



@ Data
——— Truth
——— NPU
——— Dense

Figure A.4: Experiment with square root function.
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Figure A.5: Experiment with natural logarithm function.
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Figure A.6: Experiment with square root function.
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Figure A.7: Heat map of the model weights, where color represents
rounded value of the corresponding layer weight.
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Figure A.8: Heat map of the model weights, where color represents
rounded value of the corresponding layer weight.
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Figure A.9: The loss plots representing the convergence accuracy of
the model, that was used for equation recovery of a simple parabola
function.
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Table A.1: Networks architectures for the ”Sequence task” sub-
section.

Networks Architecture
Operation | Dense(6,10),Dense(10,3)
NMU NAU(6,6),NMU(6,3)
NPU NAU(6,6),NPU(6,3)
NALU NALU(6,6),NALU(6,3)
NAU NAU(3,1)

Table A.2: Models architectures for the ”Sequence task” sub-
section, where some networks (Operation, NMU, NPU, NALU)
were taken from Tab. A.1.

Models Architecture

NMU Operation, NMU,NAU

NPU Operation, NPU,NAU

NALU Operation, NALU,NAU

LSTM | LSTM(6,30),LSTM(30,10),Dense(10,3)

Table A.3: Test settings for ”Sequence task” section.

Training | Testing
Maximum sequence length | 3 10
Data values ranges [-2,2] [-10,10]
Data size 180000 8000
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