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Abstrakt / Abstract

Instruční sada MIPS se na fakultě
elektrotechnické ČVUT k výuce před-
mětů spojených s architekturou počí-
tačů používá již řadu let. Jedná se o
jednoduchou instrukční sadu a na jejím
vývoji se podílel jeden z autorů popu-
lární učebnice architektury počítačů.
Některé aspekty architektury MIPS se
ale ukázaly být neefektivní a instrukční
sada se potýká s licenčními problémy.
Autoři výše jmenované učebnice spolu
se svými studenty vyvinuli novou in-
strukční sadu, RISC-V, která byla
navržena k výuce, aby byla jednoduchá
k pochopení ale také jednoduchá na
implementaci v hardware. Tato práce
je součástí snahy přesunout výuku z
MIPS na RISC-V. Tato práce se zamě-
řuje na vykonávání a překlad instrukcí
a simulaci systémových volání.

Klíčová slova: RISC-V, architektura
počítačů, CPU simulátor, dekódování
instrukcí, emulace OS, QtRvSim, Qt-
Mips

The MIPS ISA is being used at the
Faculty of Electrical Engineering for
most computer architecture courses.
It is simple in design and it was co-
developed by one of the authors of a
popular computer architecture text-
book. However, some design decisions
in MIPS have proven inefficient and
the ISA is encumbered in licensing
problems. The authors of the textbook
along with their students developed a
new architecture, RISC-V. It was de-
signed for teaching purposes, making it
simple to understand in theory, but also
simple to implement in hardware. This
thesis is part of the effort to switch our
courses from MIPS to RISC-V, updat-
ing the QtMips simulator to RISC-V. It
focuses on core execution, the internal
assembler/disassembler and system call
simulation.

Keywords: RISC-V, computer archi-
tecture, CPU simulator, instruction de-
code, OS emulation, QtRvSim, QtMips
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Chapter 1
Introduction

Computer chips are slowly taking over all industry sectors. What used to be a car-
buretor and a distributor is now an electronically controlled fuel injection system and
ignition coils. Many mechanical state machines are getting replaced with sensors and
computers. Most washing machines and dishwashers sold today are controlled by small
computers instead of mechanical systems. With the recent popularity of Internet of
Things devices, this trend is moving onto ovens, refrigerators and more. Computerized
appliances are often cheaper to manufacture yet provide more advanced features to their
users. Cheap electronics also enabled new products which were not possible without
them. Medical devices such as pacemakers and insulin pumps are saving lives daily, yet
none would be possible without computer chips. However, computers are not magic
and to properly utilise them, it is important to understand their inner workings and
limitations. For this reason, the computer architectures course is part of informatics
and robotics study programs at the Faculty of Electrical Engineering CTU. To teach
the course, the MIPS architecture has been chosen in part due to its simplicity and
its common use as a teaching tool on other universities across the world. The selected
textbook[4] comes with a graphical simulator, MipsIt 1. However, the simulator is old
and closed source. With the latest supported OS being Windows XP and no option
to update it, it was decided to choose a different simulator. Unfortunately no suitable
replacement with cache and pipeline visualization was found. Therefore Ing. Karel
Kočí developed a graphical MIPS simulator as his master’s thesis project, QtMips[1].

QtMips was first released in May 2018 but the computing landscape has changed
significantly since. RISC-V has been gaining traction both in embedded applications as
well as a teaching tool. Meanwhile the MIPS architecture has been officially abandoned
in March 2021[14].

In 2014, the authors of RISC-V stated that “While the first RISC-V beachhead may
be IoTs or perhaps WSCs, our goal is grander: just as Linux has become the standard
OS for most computing devices, we envision RISC-V becoming the standard ISA for all
computing devices.” [16] Today we can observe that their vision is slowly coming to
fruition:

. The Internet of things and embedded development may not require a lot of com-
puting performance, but these use cases require a large amount of simple and cheap
processor. A free and open specification allows for companies to compete with var-
ious implementations. This is in stark contrast with the current status quo where
complete core licenses are cheaper than ISA architecture licenses which allow the
licensee to design their own implementations.. Domain-specific chips also form a large and growing market. RISC-V is well suited
for this purpose. The modular design of RISC-V does not force implementations
to include unnecessary instructions and the ISA reserves encoding space for vendor-
specific instructions. This property of the ISA has opened a new market for RISC-

1 https://www.eit.lth.se/fileadmin/eit/courses/eit090/MipsIt/MipsITEnvRef.html
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1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V-based ASIC design and there are at least two companies which offer application-
specific CPU design services in the Czech Republic alone, Codasip1 and Espressif2.
On the international scale Western Digital has openly embraced RISC-V[13] for use
in controllers.. RISC-V’s modularity and extensibility opens up to new experimentation in high-
performance computing. An interesting example is Esperanto Technologies’ ET-
SoC-1 A RISC-V-based AI accelerator with over 1000 cores using custom vector and
matrix multiplication extensions. Art Swift, the CEO of Esperanto Technologies,
stated that “We expect to see 100 times better energy efficiency in terms of inferences
per watt versus the incumbent solutions.” [15]

It was therefore decided that the computer architecture courses at the Faculty of
Electrical Engineering should utilise RISC-V instead of MIPS going forward.

This thesis is part of an effort to switch the QtMips simulator to RISC-V. As stated
in the formal assignment, my focus was on decoding and executing RISC-V instructions
and emulating a subset of Linux system calls.

The thesis is structured to provide an overview of RISC-V followed by instruction
encodings and their decoding. The internal assembler is discussed in the same chapter
as instructions. The next chapter focuses on simulating RISC-V instruction execution,
including the emulated system calls. The final chapter present other existing RISC-V
simulator and their possible use in the computer architecture course.

1 https://codasip.com/
2 https://www.espressif.com/
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Chapter 2
RISC-V Instruction Set

“Prof. Krste Asanovic and graduate students Yunsup Lee and Andrew Waterman started
the RISC-V instruction set in May 2010 as part of the Parallel Computing Laboratory
(Par Lab) at UC Berkeley, of which Prof. David Patterson was Director” [8] RISC-V
was designed to be a modular instruction set first and foremost. The base instruction
set consists of only 49 instructions with the 64-bit version adding 14 instructions for
working with the longer values. The feature set of the base instructions is rather
limited and does not include many functions considered necessary in modern CPUs.
The RISC-V specification provides more advanced features in its varius extensions.

. M: Integer Multiplication And Division. A: Atomic Instructions. F: Single-Precision IEEE 754-2008 Floating-Point. D: Double-Precision IEEE 754-2008 Floating-Point

The RISC-V specification also includes definitions which are not strictly instructions.

. RVWMO (RISC-V WMO): Memory consistency model. Specifies rules for reordering
memory writes and reads to global memory. Does not include any instructions.. Zicsr: Reads and writes to CPU’s Control and Status Registers.. Zifencei: Instruction-Fetch Fence. G: Not an actual extension. This is a shorthand for the combination of the above
mentioned extensions. It is intended to represent a standard general-purpose ISA.

The RISC-V specification also includes additional extensions, many of which are not
ratified as of writing.

. C: Compressed Instructions represent some instructions from G using only 16 bits
for their encoding.[17]. B: Bit manipulation.. J: Features to help JIT languages.. V: Vector operations. Unlike SIMD allows for more variation in implementations.. Ztso: Similar to RVWMO, but with different memory ordering semantics. Intended
to easy porting software from TSO ISAs.. E: Identical to the I base set except for register count. Intended for embedded
applications. Has 16 registers instead of 32.

These extensions are out of scope of the computer architecture course and are there-
fore not implemented in this thesis.

2.1 Data Sizes and Memory
The RISC-V specification defines 5 data sizes[3, pg. 6]:

. byte is 8 bits

3



2. RISC-V Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. halfword is 16 bits (2 bytes). word is 32 bits (4 bytes). doubleword is 64 bits (8 bytes). quadword is 128 bits (16 bytes)

Different versions of RISC-V have different native sizes. RV32 uses word, RV64 uses
doubleword and RV128 uses quadword. Each version can also operate on smaller sizes
than its respective native size.

2.1.1 Endianness
“RISC-V base ISAs have either little-endian or big-endian memory systems, with the
privileged architecture further defining bi-endian operation” [3, pg. 9]. Little-endian
systems store bytes in multi-byte sizes from least significant to most significant. Big-
endian systems store bytes in multi-byte sizes from most significant to least significant.
Instructions however are stored as a sequence of 16-bit little-endian parcels. This was
done because instrucion lenght is encoded in the least significant bits of an instruction.
This allows implementations to only observe the first few bits of the parcel to determine
the lenght of the instruction.

The simulator developed as part of this thesis uses little-endian memory operations.

2.2 Registers
RISC-V has 31 general purpose registers and special register 0, which is hard-wired to
the value 0. Any reads from register 0 will always return 0 and all writes to it must
perform all side-effects, but the register’s value remains 0. On RV32E there are only
16 registers 2.1. The size of these registers coresponds to the processor’s native size
2.1.1. There is also a special register for the program counter. This register cannot
be modified directly with regular instructions, but can be read from using AUIPC and
modified using several jump and branch instructions. The program counter is also
automatically incremented after each executed instruction by the instruction’s lenght.
Unlike most architectures, RISC-V’s basic arithmetic operations do not utilize special-
purpose registers.

. FLAGS on x86 for conditional instructions. HI and LO on MIPS for multiplication and division. switching zero and stack pointer registers on AArch64

2.3 Instruction Encoding
Most instructions in the RISC-V base set use one of 6 instruction formats. These are
R, I, S, B, U and J2.1, but some instructions (FENCE, ECALL, EBREAK) use special
single-purpose encodings.

“The RISC-V ISA keeps the source (rs1 and rs2), and destination (rd) registers at the
same position in all formats to simplify decoding.” [3, pg. 15] The RISC-V instruction
encoding scheme has been optimised to minimize hardware logic required to implement
its decoding.

The only field included in all instructions is opcode. It is encoded in the lowest 7 bits
of the instruction 2.2. However, only 5 bits of opcode can be used. The lowest 2 bits
are always 11 with other values reserved for 16-bit instructions.

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 ALU operations

7 5 5 3 5 7 bits
funct7 rs2 rs1 funct3 rd opcode R-type

imm[11:0] rs1 funct3 rd opcode I-type
imm[11:5] rs2 rs1 funct3 imm[4:0] opcode S-type

imm[12,10:5] rs2 rs1 funct3 imm[4:1,11] opcode B-type
imm[31:12] rd opcode U-type

imm[20,10:1,11,19:12] rd opcode J-type

Table 2.1. RISC-V instruction encodings. Copied from [3, pg. 130]

RISC-V instructions allow for up to two source and one destination register. As is
tradition among RISC instruction sets, arithmetic operations operate on registers only.
Memory operations are reserved for the load and store instructions. 2.7 All operands are
optional. To minimize multiplexers required for register number decoding, both sources
and destination registers are always encoded using the same bits. If an instruction does
not use a register argument, the bits are reused to encode the immediate value.

funct3 and funct7 blocks provide additional information to further specify some
instructions. funct3 is used to choose among related instructions. Implementations do
not have to actually decode this part of the instruction but can instead pass it directly
to the next stage.2.4, 2.5, 2.7, 3.3

funct7 is present only in R instructions which do not use an immediate value. It
is mainly used to allow for encoding of more register-register instructions, but it is
mostly unused in the base instruction set. Its only usecase in the base set is separating
logical from artihemic right-shifts and addition from subtraction. Extensions can use
the encoding space generated by funct7 to encode new instructions without requiring
new opcode. For example, the M extension uses funct7 to distinguish itself from base
arithmetic operations.

Immediate values on RISC-V are encoded in unused fields of the respective instruction
formats. This however means that each instruction format has the immediate value
encoded using different bits. To simplify immediate value decoding, the bits have been
placed to maximise bit reuse and the most significant bit is always encoded on bit 31
to simplify sign extenstion. All immediate values are sign-extended.

To avoid executing uninitialized memory in case of a software error, the instructions
encoded as all 0 and all 1 are reserved to be explicitly invalid.

2.4 ALU operations
RISC-V has 2 types of ALU instructions, register-register or register and immediate
value. The register-register arithmetic instructions use the R-type encoding and read
their input values from registers addressed by rs1 and rs2. The register and immediate
arithmetic instructions are encoded using the I-type encoding and do not utilise rs2.
Instead, they use the immediate value encoded in the instruction. Both instruction
types write their result to the register provided in rd. An interesting feature of RISC-V
is that these operations are encoded using only 2 opcodes. One for the R-type and one
for the I-type. The specific operation is encoded in the funct3 field and is same for both
instruction types. Adding an immediate value to a register is encoded using the same
value in the funct3 block as adding two registers. This detail allows implementations
to not decode funct3 but instead pass it to the ALU unit directly.

5



2. RISC-V Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Arithmetic

RISC-V provides a total of 3 arithmetic operations: ADD, SLT and SLTU. ADD performs
a binary addition of its arguments. If an overflow occurs, it is ignored. The R-type
variation of this operation uses an additional bit in funct7, if set, two’s complement
of the argument in rs2 is used instead, resulting in a SUB instruction. Because all
immediate values are considered signed, this modification is not present in the I-type
version of the instruction, where a negative value can be used directly.

SLT and STLU perform singed and unsigned comparison respectively. If the first
operand is less than the second operand, the result is 1, othwerwise the result is 0.

2.4.2 Logical

A set of logical operations is included. These consist of AND, OR and XOR, performing
conjunction, disjunction and exclusive disjunction respectively. The unary operation
NOT is substituted using XOR with an immediate argument of -1.

All operations are performed bitwise. The N-th bit in the result is equal to applying
the logical operation to the N-th bit of input 1 and N-th bit of input 2.

2.4.3 Shift

Bit shifts are provided in 3 forms: SLL, SRL and SRA. SLL performs a left-shift, filling
in the empty bits with 0. SRL performas a right-shift, filling in the empty bits with 0.
SRA performs a right-shift, but fills in the empty bits with the source values sign bit.

The immediate versions of shifts are encoded as a specialization of the I-type. The
shift amount is encoded in the lower 5 bits (6 bits for 64-bit operands) of the immediate
field. Bit 30 is used to encode the type of right shift. This is the same bit used in ADD
to create SUB.

2.5 Branch and Jump Instructions

Branch and jump instructions are the only instructions in RISC-V for manipulating the
program counter. Branch instructions perform a conditional jump and jump instruc-
tions perform a jump unconditionally.

Unlike MIPS or SPARC, RISC-V does not have architecturally visible delay slots.

2.5.1 Branches

Branch instructions are the only instructions which use 2 source registers and an im-
mediate value. They are encoded using the B-type encoding. All branch instructions
use the same opcode.

A branch instruction performs a comparison of the values stored in rs1 and rs2. If
the comparison is true, the value encoded in immediate is added to the current program
counter and used instead.

The comparison is performed by subtracting the value in rs2 from rs1. The funct3
bits encode whether the zero bit, signed oveflow bit or unsigned overflow bit should be
used and if the result should be negated. This approach generates the set of branching
instructions: BEQ, BNE, BLT, BGE, BLTU and BGEU. The missing conditions such as branch
if less or equal and branch if greater are supported using pseudo-instructions and are
encoded by swapping rs1 and rs2 and comparing using BGE and BLT respectively..

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Upper Immediate

2.5.2 Jumps
Jump instructions come in two forms: JAL and JALR.

JAL adds the immediate value to the current program counter and jumps to it.
Compared to branch instructions with an always true condition, JAL uses the J-type
encoding a provides a larger range for the destination of the jump. JAL is the only
instruction using J-type encoding.

JALR is the only control transfer instruction which takes a register argument. It adds
the offset encoded in the immediate to the address located in rs1 and jumps to the
result. In combination with LUI 2.6, JALR can be used to jump to any 32-bit address.

Both jump instructions write the address of the following instruction to rd. A later
JALR can jump to the address saved by the previous jump and continue execution. This
combination is used by the CALL and RET pseudoinstructions to implement function
calls[3, pg. 140].

2.6 Upper Immediate
Arithmetic and memory instructions are limited to a 12-bit immediate 2.1. When a
larger value is needed as a constant or an address of a static variable, building it from
basic ALU operations would be inefficient. The LUI instruction has a 20-bit immediate
field and loads its immediate into the upper bits of rd. The lower 12 bits are zeroed out.
If a full 32-bit value is desired, an ADDI instruction can be used to fill in the remaining
bits.

In modern position-independent code, variables are not stored at a fixed address but
instead at a known offset. In such cases, the AUIPC instruction can be used. AUIPC is
similar to LUI except that after unpacking its immediate value, the current program
counter is added. The combination of AUIPC and ADDI can be used to construct any
PC-relative address in signed 32-bit range1.

2.7 Load and Store
All of the instructions listed above operate only on the general-purpose registers and
the program counter. To operate on values in main memory, the value has to first be
loaded into a general-purpose register. The modified value can then be stored back
into the main memory. Both load and store instructions are provided in all sizes 2.1.1
supported by the specific variation of RISC-V. Load instructions for smaller-than-native
sizes support extending the value both as a signed and unsigned integer. The full list
of load and store instructions on RV32 is: LB, LH, LW, LBU, LHU, SB, SH, SW.

Both load and store instructions use 12-bit immediate offset from rs1 for addressing.
Store instructions read the value to store from rs2 and load instructions write the result
into rd. Therefore the immediate encoding is different for load and store instructions.
I-type and S-type respectively. 2.1

funct3 is used to select the size of the memory operation. Values used to encode the
operation’s size are the same for load and store instructions.

1 This covers the entire address space on RV32 and is enough for basically any usecase on RV64

7



Chapter 3
Instruction Encoding and Decoding

The main goal of this thesis was to switch the existing MIPS-specific parts of the
simulator to support execution of RISC-V instructions instead. This chapter discusses
rewriting instruction definitions and modifying the internal assembler.

3.1 Instruction Definitions
The QtMIPS simulator uses hierarchical indexed tables to internally represent the MIPS
instructions. In order to decode an instruction, some bits of the instruction are masked
out and used as an index into an array of child nodes of the current node. If the child
node is a leaf node, the instruction is decoded and values for control signals stored in
the node are used. Many instructions however require multiple layers of decoding. In
such cases, the child node carries information on which bits should be used to determine
the next node and an array of its descendants.

I have rewritten this data structure to match the RISC-V specification[3]. Due to
different encodnigs of various instructions and a few architectural changes, some signals
were removed and some new were added. Control signals for ALU and memory units
use the same value as is encoded in funct3 2.1. I have also added a method for decoding
immediate values from RISC-V instructions.

3.2 Assembler
One of the education-oriented features of QtMIPS is its embedded assembler. It is
designed to be a simple assembler for students to start writing assembly without having
to install an external assembler.

The assembler uses the same instruction database as the simulator core. However,
an additional arguments field is used to describe the operands used by the instructions.
The RISC-V operand descriptors were heavily inspired from opcodes/riscv-opc.c in
GNU binutils[18].

(’d’, ’g’, 0, 0x1f, {{{5, 7}}, 0})
(’s’, ’g’, 0, 0x1f, {{{5, 15}}, 0})
(’t’, ’g’, 0, 0x1f, {{{5, 20}}, 0})
(’j’, ’n’, -0x800, 0x7ff, {{{12, 20}}, 0})
(’>’, ’n’, 0, 0x1f, {{{5, 20}}, 0})
(’a’, ’a’, -0x80000, 0x7ffff, {{{10, 21}, {1, 20}, {8, 12}, {1, 31}}, 1})
(’u’, ’n’, 0, 0xfffff000, {{{20, 12}}, 12})
(’p’, ’p’, -0x800, 0x7ff, {{{4, 8}, {6, 25}, {1, 7}, {1, 31}}, 1})
(’o’, ’o’, -0x800, 0x7ff, {{{12, 20}}, 0})
(’q’, ’o’, -0x800, 0x7ff, {{{5, 7}, {7, 25}}, 0})

Example. Mappings of operands to fields in instruction.

8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Automated table generation

Mapping operands to instruction fields is done using the table above. The MIPS code
for mapping operands assumed that each operand is mapped to a contiguous chunk of
bits. On RISC-V, this is often not true for immediate values. To solve this, I have
implemented a structure which encodes operands as shift amount and a list of pairs of
bit counts and offset. The BitArg structure is the last field in the argument descriptions
in the Example above. shift amount is first used to shift arguments which do not utilise
the lowest bits of the value. The list of bit counts and offsets then describes at what
offset the next bit count bits are located.

3.2.1 Examples
Several assembly examples are included with the simulator. The goal of these examples
is to provide students with a starting point when writing their first assembly code. The
first example1 shows a simple combination of reading and writing data from/to memory.
Two hello-world examples are alse provided. One example2 writes “hello, world” to a
simulated serial port and the other3 to a terminal using a system call. The serial port
example also includes a list of available peripherals and their locations in the memory
address space and the system call example includes a list of supported system calls,
their numbers and arguments. I have updated all examples to RISC-V assembly and
all information provided in comments.

3.3 Automated table generation
The original plan for this project included generating the instruction tree automatically
from an external source. However as the project progressed, it made more sense to fill in
the tree manually instruction by instruction, because it provided valuable information
about which control signals were no longer necessary and which had to be added.

Writing a tool to create the instruction listings automatically would be possible now
that the necessary control signals are added, but would provide no additional value, as
the instruction tree already exists.

1 simple-lw-sw-ia.S
2 template.S
3 template-os.S
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Chapter 4
Execution

Decoding RISC-V instructions into control signals is not enough to become a RISC-V
CPU. The most significant difference between MIPS and RISC-V is in the absence of
delay slots and the implications of their removal. Furthermore the behaviour of both
the memory unit and ALU are slightly different on RISC-V and some operations can
be done in different stages of the CPU than on MIPS.

The QtMIPS simulator provides two core variants. Both divide the execution of an
instruction into 5 phases. The simple core executes the phases in order and simulates a
single-cycle CPU. This CPU is used for demonstrating how a CPU executes instructions
and what operations are performed in each phase. The pipelined core adds interstage
buffers and executes the stages in reverse order, simulating a pipelined execution. It
is used to demonstrate performance advantages of pipelined execution, but also the
engineering challenges of resolving data dependencies. The phases in order of execution
are:

. Fetch. Decode. Execute. Memory. Writeback

4.1 ALU, Memory and Interstage
ALU on RISC-V does not raise exceptions on overflow and therefore does not need to
separate signed and unsigned operations. The ALU control signal is directly encoded
in funct3 2.1. The ALU was updated to use control signal values from the respective
instructions.

The memory unit also uses the value in funct3 2.1 directly and was updated ac-
cordingly. More importantly, the QtMIPS simulatorr used a big-endinan architecture,
but little-endian is preferred on RISC-V. All changes required to support changing the
endianness of memory are part of Jakub Dupák’s thesis [2, Chapter 3].

Finally, all interstage buffers have been relocated to machine/pipeline.h. This
change reduced the use of slow Qt signal slots and simplified extracting data from core
for display in GUI [2, Chapter 4].

4.2 Branches
MIPS branch instructions were designed to be evaluated in the CPU’s pipeline as early
as possible. Only simple branching logic is provided: equality and inequality between
registers and comparisons with zero. Furthermore, a branch delay slot is provided
by the ISA. Evaluating the branch in the decode stage allows the implementation to
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forward the branch target to the fetch stage. One instruction would be fetched between
the branch and its target, filling the unconditional delay slot.

RISC-V branches allow for full comparisons between registers and do not require a
delay slot 2.5. The chosen design for the RISC-V simulator uses the ALU to perform
the comparison and writes the resulting program counter in the memory stage. Moving
jumps from decode to memory stage does not cause any problems in the single-cycle
core, because all phases have to be completed before the next instruction. To ease
learning of MIPS assembly programming for students of the computer architecture
course, it was possible to disable the delay slot. On the pipelined core, there are
now 3 cycles after fetching a branch or jump instruction before the target is written
to the program counter. I have decided to implement a solution similar to modern
CPUs. When an instruction is fetched, a predictor guesses the address of the next
instruction1. Once the memory stage is reached and the target is known, the target
address is compared to the guessed address of the instruction immediately following in
the pipeline. If the addresses differ, the pipeline is flushed before any of the instructions
fetched due to an incorrect prediction can take effect.

4.2.1 Exceptions
The design of jumps and branches on MIPS has another implication: If an instruction
is fetched, it will be executed. As a result, QtMIPS can stop execution and evaluate
an exception before the exception reaches the memory stage. This is done whenever
an invalid instruction is fetched. However, we cannot stop execution upon fetching
an invalid instruction on RISC-V. The predictor mentioned in 4.2 can cause the CPU
to fetch invalid instructions from a wrongly guessed address. These instructions will
never take any effect, because they will be flushed once the mispredicted branch reaches
memory stage and its true target is known.

To solve this issue, no stage before the memory stage can perform any side-effect.
If an invalid instruction is fetched, the decoder has to pass the information onto the
execute stage, which then passes the information to the memory stage. If an exception
reaches the memory stage, it is acted upon. If the pipeline is flushed while an exception
is getting passed through the pipeline, the exception is also flushed. The writeback
stage cannot cause an exception and can be safely ignored.

4.3 System Calls
Another feature of QtMIPS is system call simulation. Simulating a subset of Linux
system calls is used for demonstrating how a user programs interact with the kernel.

System calls are numbered differently on different platforms. However, not all system
calls are supported on all platforms.

. set_thread_area is present only on MIPS, m68k and x86. It was removed from
QtRvSim.. mmap2 was introduced to enable indexing into larger files on 32-bit systems, but is
not necessary on 64-bit systems. RISC-V Linux supports mmap only.. open was superseded by openat, which is functionally a superset of open. RISC-V
supports only the newer openat. Only the open subset of openat is supported.

To map the system call implementations to their RISC-V numbers, I have modified
the system call table from strace[19] to suit QtRvSim needs and format.
1 The present predictor always adds 4 to the current program counter.
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QtMIPS also supported SPIM1 system services. These were implemented to support

running examples from SPIM in QtMIPS. With the switch to RISC-V, these services
are not useful anymore and were removed.

1 https://sourceforge.net/projects/spimsimulator/
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Chapter 5
Existing RISC-V Simulators

Before starting work on QtRvSim, existing RISC-V simulators were evaluated for their
possible use in the computer architecture course. This chapter lists the most notable
simulators and why they were not used.

5.1 Ripes
Ripes1 is a visual computer architecture simulator. It provides great core visualization,
cache simulation and more.

Figure 5.1. Ripes core view

Ripes supports almost all features required for the computer architecture course.
Unfortunately Ripes does not support simulating system call execution and its internal
design would have made it harder to add them to Ripes than switching QtMIPS to
RISC-V. For this reason the decision was made to develop QtRvSim instead of modi-
fying Ripes.

5.2 RARS
RARS2 is a RISC-V continuation of MARS3, a popular MIPS simulator. The goal
of RARS is to assemble and simulate RISC-V programs. Unfortunately RARS does
1 https://github.com/mortbopet/Ripes
2 https://github.com/TheThirdOne/rars
3 http://courses.missouristate.edu/KenVollmar/MARS/
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not simulate the full execution pipeline and does not have a core view like Ripes and
QtRvSim. RARS has a good assembly editor with instruction auto-completion, which
would help computer architecture students when writing assembly.

5.3 Brisc-v
Brisc-v1 is a RISC-V simulator developed by Adaptive & Secure Computing Systems
Laboratory at Boston University. It is an online simulator. It includes a disassembler,
register and memory view and instruction breakdown, which displays how instruction
arguments are encoded 2.1. However, it does not simulate individual operations per-
formed inside a CPU core. It also does not simulate system calls, cache or a serial
port. Adding these features to Brisc-v would have been significantly more effort than
switching QtMIPS to RISC-V.

5.4 Verilator
Unlike the other simulators listed, Verilator2 is not a RISC-V simulator, but instead
a Verilog simulator. Verilog is a hardware description language, which is beyond the
scope of the computer architeture course.

Verilator is however well suited for use in the advanced computer architecture course
where students design their own CPU cores.

5.5 Qemu
Qemu3 is a generic machine emulator and virtualizer. Qemu can emulate a variety of
target architectures on a variety of host architectures. However, Qemu’s primary goal
is speed rather than introspection. Qemu is a great tool for cross-developing to other
platforms, but is not suitable for the computer architecture course because it does not
simulate internal units inside of a CPU core.

1 https://ascslab.org/research/briscv/simulator/simulator.html
2 https://github.com/verilator/verilator
3 https://www.qemu.org/
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Chapter 6
Conclusion and Future Work

As a result of this thesis and the thesis of Jakub Dupák[2], QtRvSim is being released.
QtRvSim is a RISC-V update to the QtMips MIPS simulator previously developed
by Karel Kočí in his master’s thesis[1] and maintained by Ing. Pavel Píša. QtRvSim
supports the required features for use in courses and will be used in the upcoming
computer architecture course on FEE CTU. However, I see multiple multiple options
for improving on the work presented here in the future.

6.1 Predictor
The current predictor implementation 4.2 is very simple and the API does not provide
necessary information for implementing a more advanced predictor. Future work could
replace the current API and provide more advanced predictors. Switchable predictors
in QtRvSim would improve the currently lacking tools for presenting branch predictors
to students.

6.2 Pseudoinstructions
The RISC-V specification includes pseudoinstruction listings for assembly programmers
[3, pg. 139]. Pseudoinstructions implement additional instructions by translating them
into normal instructions with special arguments or a sequence of instructions. Currently
the only supported pseudoinstruction is nop. Future work could investigate possible
implementations of instruction rewriting to implement pseudoinstruction.

6.3 QFile
As my semestral project last semester, I rewrote file operations in QtMIPS to utilise
Qt’s file abstractions instead of assuming a POSIX-like host. This change has improved
code readability and made memory-mapped files a possibility. Unfortunately, the Qt
features required to use QFile are not supported on Ubuntu 18.04 LTS, the most
popular Ubuntu version for QtMIPS [2, Appendix B].

When our users move to newer versions of Ubuntu which does support the required
features, the QFile changes should be merged into the release version of the simulator.
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Appendix A
Source Code

The QtMips and QtRvSim projects are developed as open-source, and therefore the most
up-to-date version of the source code is to be found publicly available on GitHub.com.

A.1 QtRvSim (CTU o�cial)
The new official repository for the RISV-V edition of the simulator.

https://github.com/cvut/QtRvSim

A.2 QtMips (CTU o�cial)
The original repository of the MIPS version.

https://github.com/cvut/QtMips

A.3 Development Repository
A fork containing all immediate work.

https://github.com/hollmmax/QtMips/
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Appendix B
Glossary

ALU . arithmetic logic unit
API . application programming interface
CPU . central processing unit
CTU . Czech Technical University
endian . adjective from endian
endianness . order of bytes of integer value in memory
FEE . Faculty of Electrical Engineering
GNU . the GNU Projecthttp://www.gnu.org
GUI . graphical user interface
IEEE . Institute of Electrical and Electronics Engineers
IEEE 754-2008 . IEEE floating-point standard
ISA . instruction set architecture
JIT . just-in-time compilation
LTS . long-term support
MIPS . microprocessor without interlocked pipeline stages, a RISC ISA

developed by MIPS Technologies
m68k . Motorola 68000 family of microprocessors
OS . operating system
POSIX . the Portable Operating System Interface
Qt . a widget toolkit for creating graphical user interfaces
RISC . reduced instruction set computer
SPARC . scalable processor architecture, a RISC ISA developed by Sun

Microsystems
TSO . total store order
WMO . weak memory order
x86 . family of microprocessors based on Intel 8086. x86 is usually used

to refer to the 32-bit generation of the family
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