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Abstract

This work overviews basic techniques of
ray tracing as well as the structure of
Vulkan API and shows how to use them
to create a path tracer. The related im-
plementation is built from ground up and
is aimed for simplicity ...
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Abstrakt

Tato price obsahuje prehled zakladnich
technik sledovani paprski spolu s popisem
struktury Vulkan API a ukazuje jak za
jejich pomoci vytvorit program pro sledo-
vani paprsku. Vztahujici se implementace
je postavena od zdkladu a je zaméfena na
jednoduchost ...
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Chapter 1

Introduction

Physically based rendering is the most common approach for creating realistic
images of 3D scenes implemented in a number of GPU and CPU-based ren-
derers such as Blender Evee, Octane, or Corona. Unlike empirical approaches,
PBR aims to achieve photo realistic results by modeling physical behavior
of light, which also involves modeling physical properties of various types of
surfaces influencing how they interact with light. The resulting approach is
consistent and capable of producing images close or indistinguishable from real
photos. The reason why it was widely adopted only in the last 10 years is its
computational heaviness and hence its dependence on hardware acceleration.

Light propagation in PBR is commonly simulated by the path tracing
algorithm, which recursively calculates how each light ray bounces off object
surfaces in the scene. Since all the light rays are independent and behavior of
each light ray follows the same rules, all rays can be computed in parallel on
different GPU cores via compute shader. Other ways to speedup ray tracing
include storing vertex data in accelerating structures such as Bounding Volume
Hierarchy (BVH) which is the part of NVIDIA RTX platform. Despite the
optimizations path tracing does not run in real time on regular hardware.

In year 2018 NVIDIA released new generation of graphic cards GeForce
RTX with dedicated ray tracing cores, which provide hardware acceleration
for BVH and sped up ray tracing to real time performance. This makes RTX
platform the technology that expands the application field of ray tracing
into the game industry, and it is already supported in major games such as
Fortnite, Minecraft, Cyberpunk 2077, and many others.

This work aims to demonstrate the framework capabilities via implementing
basic path tracing. Features of the RTX platform can be accessed through in
OptiX, DirectX and Vulkan APIs. For this work Vulkan API is chosen for
advantages of being fast, cross-platform and leaving a lot of control for the
user at cost of somewhat bigger complexity compared to other APIs.
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Chapter 2
Theory of ray tracing

Rendering techniques have always progressed towards increasing realism, from
empirical local illumination techniques to modern ray tracing, each of them
trying to simulate the same phenomenon of visible light interacting with
different media. Even though all the existing systems due to computational
limits omit a lot of complexity of physical light behavior, it is still important
to understand for seeing their limitations.

B 21 Physical properties of light

Light propagating through space can be best represented as electromagnetic
waves (a), which are described by direction of propagation, speed, wave-
length, amplitude and polarization. The latter is never simulated in rendering
applications since it would be complicated and would not attribute to visual
quality. Wavelength influences the light color, which during the simulation is
represented with RGB vector. This also handles the common case of light
consisting of multiple waves with different wavelengths.

Both electric and magnetic component of the light wave have the same
wavelength and amplitude. Together, they contribute to average light energy
per time and surface unit called irradiance, denoted E. This can be written
as E = ka® where a is the amplitude and k is a constant factor. The electrical
component of light interacts with molecules which absorb and re-emit the light
mostly along the direction where it comes from, which is called light scattering.
In simulation, light components are assumed to interact independently, which
is in most cases physically correct.



2. Theory of ray tracing

Magnetic

<
|

A :‘\::“\\\\\

"‘. 2 A0
“HHIIHI‘-'-. .-'-.l|||l|l||||

()
0

'
I"I;""’I’

(b)

Figure 2.1: Linearly polarized light wave (a), interference pattern of monochro-
matic light (b) [3]

Combined together multiple waves of monochromatic light may amplify or
cancel out depending on their phase offset, which is called waves interference.
For two interfering waves, the resulting irradiance is changing quadratically
E = k(a1p1 + azp2)?, where p; and ps are phase factors €< —1,1 >. When
the phase offset is constant for each point at some plane, a wave pattern
is formed b). Although this phenomenon also underlies the way light
behaves in different media, it is usually ignored in rendering applications.

Abstracting away from wave particle interactions, the environment can be
described with two parameters: attenuation index k, which describes how
much light is absorbed by the environment and refractive index 7, describing
phase velocity of light in the environment relative to vacuum (vacuum = 1,
air = 1.0003, water = 1.33, glass = 1.6). When light hits a surface between
two environments, part of the waves is reflected and part is transmitted into
the other environment. The direction of the transmitted light is affected
by light speed change and is defined by Snell’s law. In metallic materials,
all the transmitted light is immediately absorbed by free electrons, so no
transmission takes place. The wave form of the reflected light is influenced
by microscopic surface structures in the order of hundreds of wavelengths.
Simpler models ignore structures that are bigger than a wavelength, while
more complicated approaches like Cook-Torrance to model them.

Summarizing all the simplifications, simulating light itself in a ray tracing
application requires only the ray along which the wave is propagated and
intensities of the three light components. The simulation will then follow the

4



2.1. Physical properties of light

rules of geometric optics:

® Light propagating through space is described by its flaw and a corre-
sponding wave length.

® Light travels along straight lines in the direction from the light source
(light rays).

B8 Light behavior is reciprocal, meaning that laws of physics are the same
for a light ray traveling in the opposite direction.

B Light rays do not interact with each other.

® Light rays obey laws of reflection and refraction.

The rule of reflection states that the angle of the incoming ray 6; and the
ray of ideal mirror reflection 6, (fig. [2.2)) are equal, resulting in equation 2.1
for reflected ray for wj-n < 0.

wr = wj — 2n(wj - n) (2.1)

The rule of refraction also known as Snell’s law states that for angles of
incoming and refracted ray holds 7; sin§; = n; sin@;. The refracted ray wy
can then be computed as 2.2, assuming 6; € (0, 7] il

k =wj+ncosf; // projection of w; to the surface

cosl; = —wj-n
sin? 0, = (@)2(1 — cos® 6;)
Uz

cosf; = /1 —sin? 0,

kK ) ) (2.2)

wy = — sinf; —ncos b
[ K|]

sin Ht
=k— —ncosb,;

sin 6;
= wi@ — n(cos 191-ﬂ + cos ;)

uiz Nt

19, = 5 is called critical angle. Refraction angles above critical are handled separately
as a phenomenon of total interlal reflection.
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Figure 2.2: wj;, w, and w; are incoming, reflected and transmitted light directions
respectively. n is surface normal vector. All the vectors are normalized.

B 2.2 Whitted ray tracing

Use of geometric optics for image synthesis was first suggested by Turner
Whitted [4] in 1980. Before him, the Phong illumination model [2.3 was used.

! !
I=I,+kg) Ligm-w)+ks> Lis(n-v)" (2.3)

Where:

v is the viewer direction 2.

1, is intensity of ambient component.

kg and ks are diffuse and specular coefficients respectively, making the
surface look more or less glossy.

L;q and L;, are diffuse and specular intensities of i-th light source,
respectively.

n is reflection sharpness.

[ is the number of light sources.

This model works fast and produces good results for diffuse reflections, but
it does not consider the case of surfaces that reflect light acting as light sources.
The alternative offered by Whitted [2.4] replaces the specular component by
the intensity S of light coming from the direction of specular reflection.
Reflection sharpness n in the original paper is replaced by adjusting random
perturbations of the n vector. The model also counts with transmitted light
intensity by adding T term weighted by k; coefficient of transmitted light
contribution.

l
I=1I,+kqY Lign-w)+keS+ kT (2.4)

2Often was replaced with halfway vector for i-th light source h; = (n + w;)/||(n + w;)|.

6



2.2. Whitted ray tracing

S and T intensities depend on previous light hits and hence must be
calculated recursively. The approach used in Whitted ray tracing, suggested
by Appel[5] is to trace rays backwards from camera to light sources, exploiting
the aforementioned rule of reciprocity. Each time a ray coming from the
camera hits a surface it creates two incoming rays that are traced recursively
creating a tree of incoming rays (fig. 2.3). So that the process is not running
infinitely, the recursion is stopped at some constant depth and in the last hit
only the diffuse component is calculated.

v SWO
he 50 hy
hi N\ 51 S, ATI

Figure 2.3: Tree of rays

At each hit point h; light intensity is calculated using the equation 2.4l
Note that for calculating hits that will be produced by rays 77 and T» inside
transparent objects normal vectors will have to be flipped.

Ly

Figure 2.4: Shadow rays

Apart from reflections and refractions the model also tests visibility of each
light source attributing to the diffuse term. It does so by casting shadow
rays s; (fig. [2.4) from the hit point in the direction of each light source. If a
geometry hit occurs as for sy ray, then the light source Lg is considered in
shadow and its contribution is attenuated, e.g. as Lé),d =Log-c,c<<l

Whitted ray tracing produces much better results than previous techniques
simulating reflections, transparency and color bleeding (one surface influencing
the color of another), but does so at much bigger computational cost. Tracing
all the rays rakes time and the optimizations such as clipping, back face

7



2. Theory of ray tracing

culling, and depth tests for visibility can no longer be used because all objects
in the scene can now influence each other’s appearance.

.
=

Figure 2.5: The famous image produced by Whitted ray tracer (Whitted [4]).
Reflection and refraction impossible to synthesize before are well visible here.

B 23 Calculating illumination

Just as with light propagation, when calculating lighting at some point the
following assumptions are made:

® Light components are independent (no fluorescence or phosphorescence
takes place).

® Light system is at equilibrium and is not changing over time.

® Incident light from multiple sources is always calculated as a vector sum
of influences of each light source.

B Energy conservation law is preserved, meaning that the scattered light
never has more energy than the incoming light.

To describe and evaluate the contribution of each light component at some
point, some further notions are required.

B 2.3.1 Measuring lighting

Multiple physical quantities exist for measuring the light influence, all being
derived from light energy (2.5 expressed as a function of wavelength (\) and
using constants of speed of light in an environment (¢) and Plank’s constant
h = 6.626.

he
Q= [J] (2.5)

Other measures represent the distribution of light energy over different
quantities:



2.3. Calculating illumination

® Radiant flux (®) describes the light energy distribution over time.

aQ .J
o=22 [Z=ow

s (2.6)
Q= [ ®)dt

to

® Irradiance (E) and radiant exitance describe the radiant flux distribution
over an area for incoming and exiting light respectively. Irradiance at
some point p is calculated as a limit of differential flux over a differential
area at the point. The total flux is then expressed as an integral over the
area. The value of irradiance is the one used as value of light components
in ray tracing applications.

Bp) = 0 (1 o
<I>:/AE(p)dA

® Intensity (I) describes the distribution of light over different directions.
It can be used e.g. to describe point light sources. The directions are
described as points on a unit sphere via solid angles | denoted w. The
total flux is obtained by integrating over the set of directions 2. The
differential solid angle is defined as in eq. [2.8| using polar coordinates.

dw = sin 0d¢do

T 2w (28)
/ / sin Odpdf = 47
o Jo

=2
W ST (29)
@z/gl(w)dw

® Radiance (L) is the most general quantity for describing the light energy
with respect both to directions and to area.

_ dE,(p) d®

Llpw) = =37 = Twdar (2.10)

In the equation [2.10| radiance is calculated with respect to a surface
perpendicular to the light direction, the incident light energy for an
arbitrary surface is calculated using the Lambert’s law.

3 A notion to describe a 3D angle. Just as a unit circle has an arc angle of 27 radians, a
unit sphere has a surface angle of 47 steradians (sr).

9



2. Theory of ray tracing

B 2.3.2 Lambert’s law
From fig. [2.6/ we see that dA = dA* cos. Light falling to the surface at an

angle 6 with radiance L(p,w) would therefore produce irradiance expressed
as follows (using eq. 2.10 and 2.8).

z r2r
E(p):/ L(p,w)cos@dw:/Z/ L(p,w) cos 0 sin Odpdf (2.11)
Q o Jo

Figure 2.6: The small region dA where light hits the surface is the projection of
a small surface region dA+ orthogonal to the incoming light direction on a unit
sphere.

B 2.4 BSDF And The Rendering Equation

To compute an image of an object, we need to know how much light is leaving
the surface in any particular direction. This notion is formally described
using bidirectional reflectance distribution function (BRDF).

The main principle, used in the BRDF definition, is that the total amount
of irradiance incident from a particular direction is getting distributed over
different reflection directions. Put otherwise, the differential reflected radi-
ance dL,(p,w,) in the direction w, is a fraction of the differential irradiance
dE(p,w;) coming from the direction w;. BRDF f,(p,w,,w;) is the function
defining the proportionality coefficient for all incoming and outgoing direc-
tions.

dLo(pa wo) _ dLo(pa wo)
dE(p,w;)  L;i(p,w;) cos O;dw;

To define the distribution of the transmitted light, the bidirectional trans-
mittance distribution function is being defined analogously. The total light
distribution as a combination of BRDF and BTDF is called BSDF for bidirec-
tional scattering distribution function. Using the BSDF function f(p,w,,w;)
we can define the equation for radiance leaving the surface in any direction
considering all the incoming directions known as scattering equation.

fr(pywo,w;i) = (2.12)

Lo(p,wo) = /52 f(p,wo, w;i) Li(p, w;)|cos 6;|dw; (2.13)

For a BSDF to fulfil the property of energy conservation, the following
restriction should apply.

/52 [ (P, wo, wi)| cos | dw; <=1 (2.14)

10



2.5. Defining distribution functions

Also, to fulfil the property of reciprocity, f(p,w;,wo) = f(p,ws,w;) should
hold for any BxDF.

When combined with light emitted by the surface in the direction w,, the
scattering equation turns into a basic equation for radiance leaving the surface
in any direction, known as the rendering equation.

Lo(p,wo) = Le(p,wo) + /52 f (P, wo, wi) Li(p, w;)|cos 0;|dw; (2.15)

The absolute value around the cosine term here is a substitute of a normal
flip for the transmitted light.

B 25 Defining distribution functions

Physically based BRDFs are used to capture the phenomenon of light being
scattered differently by various kinds of surfaces with respect to their micro-
scopic structure. The simplest case of reflection from a surface is an ideal
mirror or pure specular reflection, which is characteristic for very smooth
surfaces. On the other side there is pure diffuse reflection which scatters
light equally in all directions and happens on rough surfaces e.g. brick or
cotton fabric. The intermediate kind of reflection are glossy reflections that
scatter the light around the ideal specular direction and emerge on surfaces
like porcelain or car paint.

Figure 2.7: Reflections corresponding to specular, diffuse and glossy types
respectively

Note that these types of BRDF are based on an assumption that the
reflected ray starts at the same point where the incident ray hits a surface.
This is not the case though for materials like human skin, where a significant
amount of subsurface scattering takes place. Simulating such effects would
require adding another term to the scattering equation and would make
computations much more complex.

11



2. Theory of ray tracing
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Figure 2.8: Local and subsurface scattering (Real-Time Rendering [3])

B 25.1 Reflectance

Defining BRDF functions typically requires a value called refiectance, describ-
ing a ratio of light energy being reflected to the light energy being absorbed
by the environment. This value depends on indices of refraction, and its
behavior for conductor and dielectric environments is strictly distinguished.

® Dielectrics have real indices of refraction, can transmit incoming light
and some subsurface scattering may take place.

® Conductors have complex indices of refraction in form n + ik. Light
energy falling on their surface gets rapidly absorbed by free electrons
and never gets transmitted.

Another factor influencing the reflectance coefficient is light polarization.
Assuming that light is unpolarized we can compute reflectance using Fresnel
equation.

F(w) = %(rﬁ +72) (2.16)

where 7, and r, represent Fresnel reflectance for light with parallel and
perpendicular polarization. The reflectance values for dielectrics can be
computed as follows.

~ mgcosB; — n;cos by
N Nt cos B; + n; cos Oy
_ mgcosB; + n; cos by
. =

Nt cos B; — n; cos Oy

’ (2.17)

These formulas are largely simplified due to real indices of refraction. In
case of light hitting a surface of a metal, the formulas for Fresnel reflectance
are much more complex and computationally heavy. To simplify them, some
good approximations are possible. The following simplified Fresnel coefficient
for metals is suggested by Lazanyi [9].

(n—1)2 +4n(1 — cos 0)° + k?
(n+1)% 4+ k2

where 1 and k£ come from 7, = n+ ik and 6 is the angle of the incident light

direction with halfway vector between light and viewer direction. The reason

Flw) = (2.18)

12



2.5. Defining distribution functions

Figure 2.9: The pictures are synthesized using Phong BRDF, which does not
consider Fresnel effect, while the bottom pictures are real photographs. (Kavita
Bala, Cornell University)

for using halfway vector instead of normal comes from microfacet theory. The
simplification relies on the fact that light comes from an environment with
1n; = 1 e.g. air or vacuum.

In case when the incident light angle is above critical, the Fresnel formulas
are not applicable and the reflectance coefficient can be considered equal
to one. Using of Fresnel coefficient is used to capture Fresnel effect when
reflections get more specular at near-grazing angles .

B 2.5.2 Cook-Torrance BRDF

Distribution function is always defined as a sum of glossy (specular) and
diffuse reflection. For physically based rendering, the combination of Cook-
Torrance model for specular and Lambertian model for diffuse component is

used (2.19).

f(pawmwi) = k:dfrd(pa WOawi) + k'sfrs(pv wmwi) (2-19)

Here k4 and ks are mixture coefficients for diffuse and specular components
respectively for which the restriction kg + ks < 1 should hold, otherwise the
amount of emitted light may exceed the amount of light coming in, breaking
the law of energy conservation.

Lambert diffuse distribution is defined as an even distribution of the surface
diffuse color f.q = %

Cook-Torrance reflectance model (R.Cook and K.Torrance, 1982) is a more
complex function that was derived based on microfacet theory of surface

structure (2.20).

13



2. Theory of ray tracing
m n
: ; Microsurface
Macrosurface
Figure 2.10: Micro vs. macrostructure (Walter [6])

D(wn) - G(we,w;) - F(w;)

4 cosb; cosf,

frs(p’ WOuwi) = (220)

Here the nominator consists of the distribution function D, geometry
function G and Fresnel function F. Here w,, is a half angle between w; and
wo. While the D function is the distribution of light reflected directly, G is
the distribution of light bouncing of microfacets and loosing energy. Both
are dependent on same surface parameters.

® According to the microfacet theory, any surface consists of microscopic
ideal mirrors (micro facets) facing random directions (2.10). Microfacet
distribution function is a probability distribution D(m) of microfacet
normal m (2.10) facing any particular direction. It is most often defined
by Backmann, Phong or GGX functions. To preserve the law of energy
conservation, any microfacet distribution function should fulfill

D(wn,) cos O dw,, =1 (2.21)
H?2
Backamann distribution for isotropic surfaces assuming m -n > 0 is
defined as

—tan? 6
exp (7’” )
Dm)= ——2% % 2.22
(m) ra? costb,, (2.22)
where « is a distribution parameter set depending on slope of the micro-
facets.

8 Geometry or masking-shadowing function accounts for light reflected
from microfacets being occluded by other microfactes (2.12). Forward
facing microfacets are visible from a viewing direction if they are not
shadowed by back facing microfacets. The masking-shadowing function
G1(w) can be then defined as a ratio of visible microfacet are to the
total forward facing microfacet area in the direction w. For the areas of
forward and backward facing microfactes denoted A (w) and A~ (w) the
visible microfacet area can be the calculated as A" (w) — A~ (w), leading
to the masking-shadowing function

At (w) — A™(w)
Gr(w) = o) (2.23)
usually written using the auxiliary function A(w)
1 A (w
_ Aw) = 2.24
G=1 3w M T Ee AW (2.24)

14



2.5. Defining distribution functions

dA cos & /

J

Figure 2.11: Total viewed surface of microfacets is equal to viewed differential
area (Physically Based Rendering [2])

Visible Blocked Visible

Figure 2.12: Shadow masking (Walter [0])

As can be seen from figure [2.11], the portion of microfacet area directly
visible from a direction w equals to cos @ = w - n, imposing the restriction
of

At (w) — A™ (w) = cos b (2.25)

Assuming that heights microfacests close to each other do not correlate
(which does not always apply in reality), the A(w) function can be derived
for a chosen D(w). For Backmann distribution it takes the form of

Aw) = lerfla) =1+ 52)
where:
1 (2.26)
" atanf

erf(z) = \/27?/03Lj e*yzdy

In order for light to be reflected from a microfacet both incident and out-
going directions should be visible. A function G(w,,w;) representing this
distribution could be defined as Gj(w;)Gr(w,). Because the probabilities
of visibility are dependent, a similar but better approximation is used:

1
T 1+ Alws) + Awy)

G(wo, wi) (2.27)

15



2. Theory of ray tracing

Cook-Torrance

Acquired data

Figure 2.13: Cook-Torrance model compared to the ground truth data (Ngan

[10])

B 2.5.3 Physically based Phong BRDF

The Cook-Torrance model yields results that are very close to reality ,
but is quite complex to implement. In this work, we implement a simpler
model, being a modification of Phong illumination model for physically based
rendering proposed by Lafortune [7]. It differs from the Cook-Torrance model
by a simplified specular term reduced to the D(w) function defined as Phong
distribution.

n—+2

27
where « is an angle between the reflected ray and ideal specular reflection
and n is specular exponent. The restriction of ks + ky <= 1 is required to
preserve the energy conservation law.

1
fr(p,wo,wi) = ka— + ks cos” o (2.28)
m

B 26 Monte Carlo integration

The most effective way to compute radiometric integrals is using the probabil-
ity based Monte Carlo method, which estimates the integral of a function as
an average of the function values at randomly chosen points. For N samples
drawn from a random distribution p, the integral estimation can be computed
as

1 f(X)
Fy =+ ; (%) (2.29)

where it holds that f(z) # 0 => p(x) # 0. This integration technique is
universal, does not require continuity and does not depend on an integral
dimension, but it comes with a downside of slow convergence rate of O(v/N).
In rendering applications it manifests itself as a noise taking large amount of
samples to get rid of.

16



2.6. Monte Carlo integration

Various Monte Carlo estimators can be built depending on how the samples
are drawn. The main properties used for evaluating the Monte Carlo estimator
are its bias, variance and efficiency.

® Bias of an estimator is defined as E[I] —I. In the simplest case, unbiased
Monte Carlo estimators are used, so they approach the actual value of
the integral at infinite number of samples.

® The variance of an estimator can be computed as

.1 X X; 1 X;
i) =5z ;V({;EX?:;) - NV(ZJZEXQ))

which means that the error of an unbiased estimator can be reduced

by increasing number of samples and the closest is the IJ; &(13 value to a

constant, the fewer samples it will take.

(2.30)

— where T'(I) is

® The efficiency of an estimator is defined as €(I) = m

the time it took to produce the variance.

Depending on the goals and type of function, various sampling techniques
are used to optimize for these parameters.

B 2.6.1 Importance sampling

The importance sampling techniques can be used to reduce the variance by
assigning higher probability to samples that contribute to the result the most.
Rather than using a uniform distribution, we choose some p close to p* so
that f(z) = p*(x)c where ¢ = [, f(z)dx. Then we need to compute the
CDF F(z) = [*__ p(xz)dz and invert it, so that we can draw samples using
inversion method X = F'~!(u) where u is a variable generated from a uniform
distribution.

From the equation [2.30] we can see that for p = p* the method would
produce 0 variance, but computing such p is an equivalent to solving the
problem. One way of computing the approximation for p is the metropolis
light transport algorithm and the other is using some analytical approximation,
as we will show for the physically based Phong model.

B Sampling Phong BRDF

The method for sampling the BRDF is introduced by Lafortune [7]. The
paper suggests rewriting the integral into the new form, separating parts of
the specular and diffuse BRDFs that integrate to 1:

1 2
Lo(pco) = [ (ha + K22 cos” @) Lip,wn)costhds =
o2 T 2

1
= kd/ (=cos;) Li(p, wi ) dw; (2.31)
g2

n+1 n+2
cos” ) (m Li(p,wi)cosb;)dw;

ks
+ H2 ( 27
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2. Theory of ray tracing

To determine the type of the reflection to sample, another uniform random
variable u is used, and the appropriate component is chosen as follows:

- for 0 <= u < kg4 sample diffuse component;
- for kg <= u < kq + ks sample specular component;
- for kg + ks <= u sample nothing;

For each type of reflection, we now have the p so that f(x) = p(x)c function,
where the constant factor ¢ is computed by the ray tracing algorithm and
used as sample value:

Diffuse component:

1
pg = —cosb;
T
L | ky (2.32)
cr = Li(p. w:
d i\P, Wi max(kd)
Specular component:
n+1 n
Ps=— —cosa
L )n+2 ) (2.33)
cs = Li(p, w;) ——cosb;
s i\p, Wi nt1 i

Evaluating the integral in closed form (both components for each reflection
type) is also possible but does not lead to good results, so the authors suggest
evaluating only a single selected component, setting the other one to 0.

The difficulty when sampling such BRDF functions is the need of mapping
the distribution into polar coordinates and then projecting the value back to
the Cartesian shading coordinates. The F' function for the diffuse component
can be derived from the integral through the solid angle in a way very similar
to the following:

1
Fy(a,b) = / —cos@w—/ / — cos 0sin 0dfd¢

47:b/ /2b81n 20)d(20)d¢ (2.34)
— 1 1= cos Colhas

We can get marginal F~! functions as

1 a
Fi(a,b= g) = 4—/ (cos 0 — cos m)dpdep
o 5 (2.35)
= %Fd_l(u) = 27u
Fi(a=2m,b) = L /%(1 — cos (2b))d¢ = 2—7r2 sin?b = sin® b
A== 0x Jo " i - (2.36)

F; Y (u) = aresiny/u
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2.6. Monte Carlo integration

Then the sampling direction in polar coordinates according to the paper
will be

(0, ¢) = (acos\/u1, 2musz) (2.37)

for two uniform variables u1 and 2. The direction of the specular reflection
can be analogously computed to be

1

(0, ¢) = (acos(u™), 2muy) (2.38)

Translating the direction to shading coordinates can be done as follows:

Diffuse component:

(z,y,2) = (cos ¢sin b, cos f,sin ¢ sin ) (2.39)

Specular component:

(%,y,2) = (Xp cos ¢ + yrsin @) sin 6 + z, cos 6 (2.40)

where X, = z, X n, y, = X, X z, and z, is the direction of specular
reflection.

This importance sampling technique allows to significantly reduce the
amount of noise in the final image. The image rendered with importance
sampling, compared to the image where the two components are sampled
separately but uniformly, is show at fig. [2.14
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2. Theory of ray tracing

Figure 2.14: Scene rendered with 100 samples, without importance sampling
(top) and with importance sampling (bottom).

B 2.6.2 Russian roulette

The other subject to optimization is the efficiency of the estimator, inversely

proportional to the time it took to calculate the samples. While importance

sampling aims to prefer samples that contribute the most, the Russian roulette

method aims to cancel the computation of samples that contribute the least.

This is achieved not taking a sample with probability ¢ and when taking a

sample weighting it with its probability ¢ — 1. The estimator will then be
updated as

T—qc

r={Te

c, otherwise

v (2.41)

where ¢ is a default sample value mostly set to 0.
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2.7. Path tracing

The value of ¢ can be set constant as well as be computed from the
throughput value as

2 pd7 Wod, wzd)cosezd
q = Mmaxygp ]_;[ D) ) (2.42)

Computing ¢ dynamically results in reduced number of "fireflies" that occur
when the sampling probability is low while the sample value is high.

When using dynamic, ¢ however, it is possible that some dark regions will
never get sampled and paths with big BRDF values like mirrors will be too
long. For this reason, the minimum and the maximum number of bounces
should always be set.

B 2.7 Path tracing

One way of integrating the rendering equation is using path tracing. Unlike
other ray tracing techniques, it samples only one light path for a pixel, instead
of the whole tree of rays. Each time light hits the surface, the BSDF function
is integrated, taking the radiance from the next hit point as an input leading
to the recursive definition 2.43 [*, The value of the last sample is assumed to
be 0.

Lo N, Wo :Le ns Wo +/ ny Wo, Wi Lz n+1, Ws COSQZ‘ dwi
(P wo) = Le(pn,wo) + | f(p )Li(Pn+1,wi)|cos 0] (2.43)

Lo(pD7 wo) = Le(pDa wo)

We can now rewrite the integrals into Monte Carlo sums and expand the
recursive definitions, taking the sum out:

J:Ua Wo, wz)

) (Le(xl,wo)-i-

Lo(xOHUo) = L $[),wo + Z

72 xlawoawl) )COSGZ'O)

(2.44)

72 ZL‘O,(JJO

f(3607 Wo0, Win)

J \*0> %00, “i0) o)L 7
+ ( p(wio) 08 0;0) Le (w1, Wo1))
f(@1,wor, win) f(2o,won, wio)
) 3 L ,
" ( p(in) p(wio) cos ;1 cos 0) E(xQ WOQ))

This equation can be then rewritten to the following pseudocode.

4This notion can also be formalized as a path integral proposed by Veach i1
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2. Theory of ray tracing

vec3 radiance(wo, x, d){

L = emis(x); // in case of miss, sample the envirnment em
if(d =D || !is_hit(x)){
return L;

}

wi, f = brdf_sample(x); // f is weigted by sample probabi
x1 = trace(x, wi);

L += f % dot(wi, norm(x)) % radiance(wi, x1, d++);

return L;

}

vecd integrate (x){

col = 0;
prim = cameraRay(x);
x = trace(cam, prim);

for (i=0; i < N; i4++){
col += radiance(prim, x, 1);
}

return col / N;

The most common implementation of the algorithm relies on recurrent call
to the radiance function. In some cases, though, the algorithm needs to be
implemented in constant memory, e.g. because of hardware limitations. As
can be seen from the equation 2.44, the BRDF samples and cosine terms are
multiplied cumulatively. This accumulator called throughput

D
T=T] (P, Wod, wia)cosbiq (2.45)
=1 p(wia)

and we can use it to modify the algorithm.
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2.7. Path tracing

vec3 radiance(wo, x){

L = 0;

T = 1;

for (d=1; ; d++){
L +=T % emis(x);
if (lis_hit(x) || d = D){

break ;

}

wi, f = brdf_ sample(x);
T %= f * dot(wi, norm(x));
x = trace(x, wi);

}

return L;

We can now modify the termination condition to employ the throughput-

based Russian roulette:

vecd radiance (wo, x){
L = 0;
T —
for

T /=q
telse{

break;
}

if (!is_hit(x)) break;

return L;

This is the basic path tracing implementation used in projects like smallpt
(http: / /www.kevinbeason.com/smallpt/). Here it can be seen that all the light
in the scene actually comes from emissive components. The problem with
this approach is similar to the one with uniformly sampling BRDF, meaning
that when light sources are small, the scene would appear dark. In this work,
it was decided to use point light sources which cannot be sampled at all.
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2. Theory of ray tracing

B 2.7.1 Light sources and next event estimation

To address the problem of light sources, the next event estimation technique
is used. Its goal is to efficiently sample direct illumination from light sources
and combine the result with indirect light when evaluating radiance. The
direct light component for point lights can be simply added to the rendering
equation:

Lo(p,wo) = Le(p, wo) + /H2 f(p, wo, wi) Li(p, w;) cos Oiw; + Ey(p)

E@p) = > /2Ilv(php)f(paWOawi)COSHidwi
lelights ’

(2.46)

where I; is the intensity of the light source, V(p;, p) is the visibility function
equal to 1 if the point of a light source p; is visible from the shading point.

The common practice in path tracing is to apply Monte Carlo-like method
to sampling point lights as well. Only one light source is sampled at a time,
and the result is divided by the sampling probability. The directions of
light sources are known, and the integral is zero elsewhere, so the equation
simplifies to:

Ei(p) = LV (p1,p) f(p,wo,wi)cosb; x num__lights (2.47)

where 6; is the angle at which light arriving from the uniformly chosen random
light source.

We can implement the visibility test by casting a shadow ray, hence the
final modification to the ray tracing pseudocode:

vecd radiance (wo, x){

d=1; ; d++){
// Russian roulette and emission
1 = ligts [urand ()*num_ lights|];
1_dir = dir(x, 1);
s = trace(x, 1 dir);
if (!is_hit(s)){
L 4+=T % intensity (1)
x brdf_eval(x, 1_dir) * dot(1_dir, norm(x));
* num_ lights;

// sampling indirect light

}

return L;

When calculating the light source contribution, we need to use brdf eval
to evaluate BRDF for the light source direction. For Phong BRDF, we also
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2.8. Modelling camera

find that evaluating both components produces very noisy results, so it is
better to only evaluate one of them.

We still use emissive components, but small objects cannot be used here as
light sources efficiently. Next, event estimation for light sources with a surface
would result in them contributing both to direct and indirect illumination.
This problem can be solved for smaller lights sources by disabling emissive
component everywhere except the first and the last bounce, or generally by
applying multiple importance sampling technique.

B 2s Modelling camera

Camera models are being used to specify different ways to cast the primary
ray. The simplest and widely used is the pinhole camera model.

Figure 2.15: Pinhole camera described by near and far plane distance (near
plane being the screen), vectors up, side and direction d, as well as aspect ratio
and FOVy angle, here presented as 6 = %. w and h here represent the size
of screen in pixels.

To calculate the primary ray, we first transform pixel coordinates to the
range [—1,1], so that zero lies on the camera axis, and then get the ray

direction:
PR W L |

w h (2.48)
r=side-u+tanf-v-tand-hup+d

U

Other camera models deal with simulating camera lenses and aperture.
This could produce various effects like depth of field of fish eye.

B 2.9 Other ray tracing techniques

The approach of tracing rays from camera back to light sources used by
Whitted is referred to as backward ray tracing. As opposed to it, other ray
tracing techniques exist, namely light tracing and bidirectional path tracing.
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2. Theory of ray tracing

Light tracing is forward ray tracing, i.e. tracing rays from light sources
until they hit the camera. Whitted-type ray tracing has hard time finding
paths like EDS™ L P’| because the diffuse BRDF does not favor any direction,
so the specular path will probably not be found. The same goes for refracted
rays causing that various light caustics phenomena e.g. thin lenses will not be
rendered properly. The same paths can be though effectively sampled with
light tracing. The disadvantage of such approach is much higher computational
intensity due to rendering points invisible from camera and being restricted
by L.*ST.*E paths from "cutting corners" via next event estimation °. This
approach is hence used mainly for computing light maps or radiosity maps
and as part of bidirectional path tracing.

Figure 2.16: Light tracing and ray tracing steps. Dots represent the points at
which values are stored. It can be seen that some stored values may remain
unused.

Bidirectional path tracing is a combination of Whitted ray tracing and
light tracing, first suggested in a paper by Paul Heckbert [§]. The algorithm
consists of two stages (fig. [2.16)):

- First comes light tracing pass, which traces paths L(S* D)™ and stores all
the diffuse illumination values into a texture. In the Heckbert‘s approach,
the diffuse illumination values are computed via radiosity algorithm,
which yields much better results for diffuse reflections then ray tracing.

- Next the ray tracing pass is made sampling paths ES*D and reading the
diffuse component value stored in the texture created by the previous
pass.

This results in an approach of sampling paths L(S*D)™ DS*E, the first
part representing all the components ending with D and the second part

Sregular expression for ray path string where E stands for eye, L for light source, S and
D for specular and diffuse reflections.

Scasting the ray in the direction of interest instead of waiting for it to be cast there
randomly
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2.10. Acceleration and BVH

adding an arbitrary number of Ses. This can be also written as L(S|D)*E,
which represents all possible ray paths.

Bidirectional approach may be used to produce better results for diffuse
illumination and can simulate some phenomena that backward ray tracing
can not. Currently, it is the most used technique in production ray tracers.

. 2.10 Acceleration and BVH

The path tracing algorithm would be very expensive to compute if each
ray-triangle intersection test would be calculated linearly for every triangle
in the scene. For this reason, certain tree-like acceleration structures were
designed to make intersection tests logarithmic in number of primitives. The
two basic types of approaches are:

- Subdividing space, e.g. using K-d trees. Possible improvements include
adaptive subdivision depending on number of triangles. Such approach
tend to take bigger amounts of memory but produce slightly better
results.

- Subdividing objects into bounding volume hierarchies(BVH) which are
trees of depth lognum descendantsnum__objects where leaves are objects
wrapped, typically, into AABBs. When constructing BVH each time a
subdivided axis needs to be chosen, then to create child bounding volumes
we need to choose a subdividing pivot. Axis is chosen as the one with the
biggest distance between primitives’ centers of masses (fig. [2.17)). The
subdivision pivot should be chosen so that the amount of computation
is evenly distributed between the node children. The heuristics can be
the number of triangles or object’s surface area.

X

Figure 2.17: Choosing volumes subdivision axis [2]

Both techniques can significantly speed up finding intersections, but the
computation still takes a lot of time. Another speedup comes from massive
parallelization of acceleration structure construction and traversal. The BVH
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2. Theory of ray tracing

traversal intersection tests can run in shaders (fig. 2.19)), but still never in
real time.

NVIDIA has recently enabled ray tracing capabilities in their drivers to
build highly efficient BVH and traverse them, while the ray tracing logic
is left to specialized shaders. This allowed to separate the bottleneck tasks
of ray tracing and offload them to hardware that is optimized for the task,
allowing for real-time performance. Such hardware, namely dedicated ray
tracing cores, is a part of modern RTX series GPUs. BVH traversal and
ray-triangle intersections can run on RT cores, while ray generation and hit
processing is left to the shader (fig. [2.18).

Turing SM Shaders RT Core Box
Intersection
™ Evaluators
Fetch box
Decode box =

Intersection test

Sub-box or tris?

Triangle

Intersection

- Evaluators
Ray/triangle
intersection test

l Return hit |

- RTCORE -

Figure 2.18: Ray tracing on RT cores [13]

Pascal SM Shaders

i

Fetch box
Decode box
Intersection test
Sub-box or tris?

4 Many thousands

> of instruction slots

Ray/triangle per ray
intersection test

I

Return hit

———

Figure 2.19: Software emulated ray tracing [13]
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Chapter 3
Structure and workflow of Vulkan API

Vulkan APT is a modern cross-platform graphics API designed to provide
the developer with maximum control over the program execution as well as
provide the system itself with as much as possible information about the user
intentions for better optimization.

B 31 Memory structure
There are three types of memory for storing Vulkan objects:

8 Device memory is memory that is managed by the developer, who is
responsible for its allocation and deallocation.

8 Resource pools are memory that is shared by objects of the same type such
as VkCommandBuffer or VkDiscriptorSet whose lifetime is controlled by
a Pool object, meaning that it is on driver to allocate them.

8 Memory allocated with custom allocators.

Memory is allocated from multiple heaps that depend on device and are
distinguished by physical location, size, alignment and by operations they
can perform. Not all memory can be mapped by the user, so for creating a
vertex buffer in GPU memory it is needed to create an intermediate staging
buffer and then copy it into the desired heap.

From the developer’s perspective, the device memory is managed using
buffers. When creating a buffer, the developer specifies the heap type (host or
device memory, visibility, writing behavior) and how the buffer will be used
(e.g. for ray tracing or as memory transfer source). After buffer creation,
memory of the size of the buffer must be allocated separately and then bound
to the buffer using vkBindBufferMemory(). Host is responsible for the buffer
lifetime, so at the end it should be deallocated with vkDestroyBuffer().
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3. Structure and workflow of Vulkan API

Tiiican. <ANVIDIA,

HEAP supporting type A,B and flags 1 HEAP supporting B flags 2

Allocate memory from heap Flags can be “CPU-mappable”

for example
Memory Allocation type A Allocation type B .

Query resource about size, alignment & type requirements

Assign memory subregion to a resource

Bind buffer sub-range Create view for sub-resource usage (array
with offset & size slice, mipmap...)

Figure 3.1: Memory hierarchy [13]

B 32 Rendering pipeline

Rendering pipeline in Vulkan is similar to OpenGL pipeline in the sense that
int consists of same programmable and fixed stages.

Vulkan Pipeline Diagram [3]

| Draw }‘—' Indirect Buffer '—>| Dispatch

£ 2
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‘ Index Buffer
¥
‘ Vertex Shader b_—E Vertex Buffer

———

ion ion Shader Uniform Texel Buffers

<—>1 pled Images

| Geometry Shader I Storage Buffers

——

e —————————— 1
| Tessellation Control Shader }4— : Descriptor Sets

- C
| ion Primitive | : Euzh

¥ - Uniform Buffer
| | '
) T
1

[ [ Shader

Some Vulkan commands specify geometric objects

Storage Texel Buffers

Storage Images

while others specify state controlling how objects

¥

Blending |1———>L Color Attachments J

L EiLex PBSt Process i J I e oo . H are handled by the various pipeline stages, or control
data transfer between memory organized as images
| Rastenzatmn ‘ and buffers. Commands are effectively sent through
¥ ! i a processing pipeline, either a graphics pipeline or a
| Early Per-F Tests [ I 1 Depth/Stencil Attachments | compute pipeline.
¥ [rixed Function Stage
| Fragment Shader |1—|_ -|_| Input Attachments |
¥ I DShaderStage
| Late Post-F Tests R | |:|Sturage Images

Figure 3.2: Vulkan rendering pipeline [12]

®m [nput Assembler converts vertex and index buffers into input to the
vertex shader.

8 Vertex, Tessellation and Geometry Shaders are manipulating data asso-
ciated with each vertex in a programmable way. Like in OpenGL vertex
shader gets access only to one vertex at a time, while tessellation and
geometry shaders run on whole primitives like triangles.

B Rastrerization stage projects primitives on screen in order from back
to front discarding those that are covered, discarded by depth test-
ing or oriented in an opposite direction and creates fragments to be
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3.3. Command buffers

sent to fragment shader. During the stage creation, type of fragments
(triangles/lines/points) as well as fragments orientation for face culling.

B Fragment Shader stage performs operation on each fragment given the
interpolated fragment information and outputs the final fragment color.

® Blending stage defines the behavior occurring when several fragments
are projected into one screen pixel. They can be combined with some
fixed (e.g. 0: 1) ratio, or alpha blending may be used.

In Vulkan after the pipeline is created it remains fixed except only the
parameters provided in VkDynamicState during pipeline creation. To
change any other parameters such as shaders, type of rasterization or
blending function the pipeline needs to be re-created.

Shader input variables are passed to the pipeline by directly binding
buffers with vkCmdBindVertexBuffers() and vkCmdBindIndexBuffers()
before each draw call. Uniform buffers on the other hand are not bound
directly, but with descriptor sets.

B 3.2.1 Descriptor Sets

Descriptor sets are the primary way of transferring uniform data from
CPU to GPU. Their goal is specifying the way uniform buffers bind to
stages of graphics pipeline and to specific uniform variables.

Descriptor sets are allocated from a pool object. After allocation de-
scriptor gets updated with VkWriteDescriptorSet structures by calling
vkUpdateDescriptorSets(). Each structure defines an update of one
or more descriptors, which define bindings between a uniform variable
(according to layout) and some interval in the uniform buffer. By default,
descriptors sets are immutable and cannot be updated while used in
pipeline.

After descriptor sets are created, they can be bound to graphics pipeline
before each draw call by vkCmdBindDescriptorSets(). Data stored in
uniform buffers associated to each descriptor get updated during the
bind call.

. 3.3 Command buffers

Commands are Vulkan built-in procedures to be performed on the graphics
card. For performance reasons, commands in Vulkan are pre-recorded and
stored in a special buffer named VkCommandBuffer, which is then submitted
for execution. This way, Vulkan can re-order the command sequence of
execution based on given information so that they execute more efficiently.
The whole lifetime of the command buffer is made explicit to the developer.
First, it is required to create VkCommandPool object that would manage
lifetimes of command buffers. The command pool is tied to a specific queue
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3. Structure and workflow of Vulkan API

family, which means that it should execute only some certain set of commands.
The purpose of it is to allow for parallel execution of commands that do not
share resources, e.g. commands from graphics queue and from presentation
queue. After that, one or multiple buffers are allocated. When allocating,
the type of command buffers should be specified. There are two types of
command buffers: primary buffers, that are submitted, and secondary that
can not be submitted directly but have some shared commands that can be
called from primary buffers.

After creating a buffer, commands should be recorded into it. Recording
starts with call to vkBeginCommandBuffer() and ends with call to vkEnd-
CommandBuffer(). The first transitions the buffer from Initial to Recording
state, the second - from Recording to Executable state; all the commands in
between are recorded to the buffer.

Command buffer is submitted to the corresponding queue using vkQueue-
Submit(). After submission, the host process has no information on when the
buffer starts executing and when it finishes. To wait until the buffer finishes
its execution, some synchronisation primitives to wait for can be passed to
vkQueueSubmit() or vkQueueWaitldle() that make the whole application
wait until all the queue is finished.

Allocate

\
7 \
-

A = ~ \
N NN
Completion with ~_ SN End
One Time Submit  ~_ \\ \
~o Completion \“

Submission

Figure 3.3: Command buffer life cycle [12]

B 34 Synchronization

When some commands are submitted to a queue, it is generally not known in
which order they will be executed. Although even if submitted from different
command buffers, commands on the same queue will not be executed in
parallel, they will probably be executed out-of order. That’s why programming
in Vulkan is largely about enforcing execution order via synchronization
primitives.

The most basic synchronization primitive, arising in different forms, is
barrier, set e.g. by vkCmdPipelineBarrier(srcStageMask, dstStageMask).
When this command is submitted, all commands submitted after it will wait
at the dstStage until all the commands submitted before the barrier finish the
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3.5. Ray tracing in Vulkan

execution of srcStage. This allows to set dependencies between commands,
ensuring that commands from one set happen-before commands in the other.

A slightly modified version of barrier vkCmdMeoryBarrier(srcStageMask,
dstStageMask, srcAccessMask, dstAccessMask) may be used to not only order
the commands with shared resources but also ensure that the resources
are transferred correctly. After the commands at srcStageMask finish, the
memory should be made available, meaning, that all the dirty L1 caches from
stages in srcStageMask modified as srcAccessMask need to be written to
the L2 cache. Also, before the dstStageMask commands start executing the
memory will be made visible to the stages and dstAccessMask, meaning that
the corresponding L1 caches will be invalidated.

Similar approach is used when transferring image layout for different usages
via vkCmdImageBarrier(srcStageMask, dstStageMask, srcLayout, dstLayout).

When creating the rendering pipeline, it is necessary to synchronize across
different queues and with the host, e.g. graphics queue needs to signal for the
presentation and to the host to acquire the next frame. For such purposes,
semaphores and fences are created. Vulkan offers multiple ways for sequencing
the execution of commands, which often relate to synchronization options
passed to. One of them is specifying pWaitDstStageMask property to wait
for certain pipeline stages before starting the buffer execution. Other ways
involve own synchronization primitives of the framework, such as fences,
semaphores and barriers.

B VEkFence is used for synchronization of commands execution with host
application. Fences can be only signalled by the device i.e. when passed
to the VkQeueuSubmit(), can be waited for using vkWaitForFences()
and then reset later with vkResetFences().

8 VkSemaphore is similar to VkFence except that the synchronization only
runs on device, and they are reset automatically at submission.

B 35 Ray tracing in Vulkan

B 3.5.1 Bottom and Top Level acceleration structures

One way to speed up the ray tracing computation is to exclude parts of the
scene that a ray will definitely not intersect. This can be solved by using
acceleration structures that store geometry information efficiently:
® Bottom level acceleration structure (BLAS)
Is built from the geometry vertex and index buffers. Contains triangles
and bounding volumes for geometries.
® Top level acceleration structure (TLAS)

Stores pointers to BLAS structures along with per-instance data such as
transformation and shader binding table offset. Multiple instances may
point to the same BLAS for reusing the geometry data.
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Top Level Acceleration Structure (AS)
Transform &
[ Properties I I ] Gi@

Bottom Level AS Bottom Level AS

O 0

Figure 3.4: Acceleration structures hierarchy [14]

Data for the TLAS in Vulkan are provided as an array of Geometrylnstance
structures. The structure is defined as

struct GeometrylInstance {
float transform [12];
uint32_t instance_custom__index : 24;
uint32_ t mask : 8;
uint32_t instance_ offset : 24;
uint32_t flags : 8;
uint64_t acceleration_structure__handle;

In this structure, instance_custom__index and instance_ offset provide the
shader information in a way we will discuss later. Geometrylnstance.mask
can be used to identify the geometry instance, for example to cull it while
testing visibility, passing a corresponding argument to traceNV call in shader.

B 3.5.2 Ray tracing pipeline

As already mentioned, ray tracing is a massively parallel task of computing
ray intersections with scene objects. In Vulkan (similarly to DirectX) this
process of tracing rays is implemented in a dedicated pipeline. Unlike the
graphics pipeline, it is recursive and contains significantly more programmable
parts.
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Ray Tracing Pipeline
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Figure 3.5: Ray tracing pipeline [14]

The whole pipeline is started after submitting vkCmdTraceRaysNV com-
mand, which creates a number of threads that generate rays and traverse the
acceleration structure. Behavior of acceleration structure traversal is defined
in Any Hit and Intersection shaders. There are also Closest Hit and Miss
shaders that determine the final result of tracing a ray. Shader functions are
as follows:

® Ray Gen (Required) generates rays and starts tracing. Must be imple-
mented in shader function traceNV.

® Intersection allows for defining intersections with arbitrary primitives
If an intersection occurs. If not implemented, the default triangle inter-
section will be used.

® Any Hit is invoked for all ray intersections with primitives.

® Closest Hit (Required) is invoked for the closest intersections with
primitive after all Any Hit calls. Returns lighting in the intersection
point.

® Miss(Required) is called if no intersection was found in the given range.
Returns color of the environment.

All the three shaders are bound to the pipeline via Shader Binding Table
(SBT), which allows for quick switching between shaders, e.g. for different
types of objects.

B 3.6 Shader binding table

The table is a buffer of shader records. Each record consists of a shader
handle and some optional parameters passed to it. The same shader handle
may be added multiple times with different parameters. Shaders are added
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3. Structure and workflow of Vulkan API

to the table in the form of a group, a set of shaders with the same binding
parameters. There are separate groups for generation, intersection, hit, and
miss shaders. Most of the groups would contain only one shader, but it is
common for a hit group containing both closest hit and any hit shader. To
run the pipeline, generation, hit, and miss groups must be bound.

Ray Generation Miss

Shader Records Shader Records Hit Group Shader Records

Shader Identifier - Hit Group

Any-Hit Shader

=}
51, CBY —
& -5 UAY lusest—l-llt hader
E g Constant Constant Intersection Shader
o
% .:,:‘: Constant Pad
2 Descriptor Table
o

Descriptor Table

Figure 3.6: Shader binding table in DXR [I]

Different instances may have multiple shader groups attached. The common
use case for this is adding separate Miss and Hit shaders for occlusion testing
to reduce the payload. To use a different shader, it is then enough to specify
a different shader offsets to the traceNV call in the shader.

The SBT address of the hit shader associated with the instance is calculated
by the following formula.

H= HG[O] + Hstride : (Roffset + Rstm’de * Gid + Ioffset) (31)
where:
HGI0] points to the start of the hit groups buffer.

Hgrige is the shader handle size that we can get from the VEkPhysicalDe-
vicePropertiesRayTracingNV structure.

R, ¢ fset is the index of the shader group to be used (the type of shader).

Set from the traceNV call.

Rstride is the number of shader groups (the type of shader). Also set
from the traceNV call. Can be set to 0 for all the instances to use the
same shaders.

Giq is the geometry index, set either in the Geometrylnstance or as the
instance index in the array.

I, set is the offset of shader subset of the instance. Can also be specified
in the Geometrylnstance.
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3.6. Shader binding table

The miss shader offset calculation is simpler:
M = &MG[O] + Mstridge Rimiss (32)

where R,,;ss is the parameter of the traceNV and Mg;,.;4e 1S the size of the
shader handle and M G[0] shows the start of the miss groups buffer.

There can also be multiple gen shaders, although they cannot be changed
"on the fly" but only by the new command buffer submission.

The layout of the SBT slightly differs across different APIs. It brings more
flexibility in working with multiple shaders, but is quite difficult to be used
correctly.
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Chapter 4

Implementation

The related implementation was created in bare Vulkan API. It aimed to be
as simple as possible and did not introduce much abstraction over the API.

Ray tracing is not a standard part of Vulkan. In this implementation,
VK _NV_ray tracing extension was used. This extension was meant as a
demo for the VK__ NVX NVIDIA extension that actually uses RTX technology.
The resulting code can easily be converted for VK NVX or VK _KHR
extensions, since all the calls are similar.

The resulting program consists of three main parts:

8 VulkanBase class containing all the basic initialization, scene creation,
event handling and swapchain management code.

8 RayTracerNV derives from VulkanBase and provides code related to ray
tracing pipeline through virtual methods.

8 RayTracerNVQuerlay derives from RayTracerNV and provides rasterized
gui (text) rendering on top of the ray tracer output image.

To start the application, either RayTracerNV or RayTracerNVQOverlay
instance can be used. In the following sections, we will discuss the function
of these classes in detail.

B 4.1 VulkanBase

The abstract class VulkanBase is designed to provide the functionality that
is independent on whether the application uses ray tracing or the classical
rasterization pipeline.

First, the window needs to be initialized. For this purpose, we use the
GLFW library designed for OpenGL applications. When initializing the
window GLFW should be explicitly told not to create an OpenGL context,
instead, we create a Vulkan instance by ourselves and use a rendering surface
provided by GLFW.

We create an instance using vkCreatelnstance. In the corresponding struc-
ture, we specify the list of instance extensions required by the GLFW returned
by glfwGetRequiredInstanceExtensions function and enable validation layers
if they are supported.
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Then we need to discover the GPU to run on and check whether all the
required extension are supported. Then we create a logical device with
these extensions enabled. The extension include VK KHR_ swapchain,
VK_NV_ray tracing and helper extensions VK__KHR_ maintenance3 for
additional device properties and VK _EXT descriptor_indexing for simplify-
ing work with descriptors. When creating the logical device, we also create
two command queues: the presentation queue that will be used for showing
the swapchain image and graphics queue that will be used for the rest of
commands.

For on-line rendering, we need to initialize a swapchain of images to draw
to. The API provides maximum and minimum number of swapchain images
that can be used; the minimum value is commonly 2, so that one image can
be drawn into while the other is being shown to the user. Although since
graphics and presentation commands can run in parallel, it is better to have
a third image prepared not to wait until the other image is released. Hence,
in this application we will use a swapchain of three images, the approach
which is also called triple buffering.

Finally, we record the drawing commands to command buffers. Because
commands are pre-recorded, we would need a separate command buffer for
each swapchain image. Some commands for timing are recorded in the base
class, while the actual drawing commands that depend on a particular pipeline
are recorded in the overridden method VulkanBase::recordPipeline DrawCommands.

After the initialization, the VulkanBase::run() method is called to start
rendering frames. The logic of drawing a frame is located in Vulkan-
Base::drawFrame method |'|and can be described by the following pseudocode.

!The method is based the tutorial code freely available at https://vulkan-
tutorial.com/code/15__hello__triangle.cpp.
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4.1. VulkanBase

#define IMG_COUNT 3

#defice MAX FRAMES IN FLIGHT 10
VkSemaphore rendSem [MAX FRAMES IN_FLIGHT];
VkSemaphore swapSem [MAX FRAMES IN_ FLIGHT];
VkFence frameFences [MAX FRAMES IN_FLIGHT];
//Initialize the previous three arrays

VkFence imageFences [IMG_COUNT];
int framelnd = 0;
void drawFrame () {
// Pick the next image to render to
int imglnd;
vkAcquireNextImageKHR (.., &imglnd,
swapSem [ framelnd ], ...)
if(/+resizedx/){
windowResized (); // re—initialize
swapchain and pipeline
return;
}
// Wait till the previous frame is
rendered to this image
if (imageFences[imagelnd] != 0){
vkWaitForFences (...,
&imageFences [imagelnd], ...);
}
imageFences [imagelnd | =
frameFences [ framelnd |;
// Do some per—frame operations

// Then on the device:

// 1. Ezxecute render commands.

// 2. At the image writing stage wait for
the swapchain to release the image.

// 3. Write the image, signal the
semaphore for the presentation queue,
and signal the fence to start rendering
the next frame to the image.
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vkResetFences (..., &imageFences|[imagelnd]) ;
vkSubmitQueue (graphicsQueue, ...,
pCommandBuffers =

&commandBuffers [imagelndex |,
pWaitDstStageMask = x ATTACHMENT OUTPUT x
pWaitSemaphores = &swapSem [ framelnd ],
pSignalSemaphores = &rendSem [framelnd]} ,
imageFences [imagelnd |)
// Wait for image to get written and start

presenting it
vkQueuePresentKHR (presentQueue ,
{pWaitSemaphores = &rendSem [framelnd],
pImagelndices = &imagelnd
pSwapchains = &swapchain});
// Switch between frames in circle
frameInd = (frameInd + 1) %

MAX FRAMES IN FLICHT:

The reason for having all the synchronization primitives is that CPU is able
to submit work much faster than GPU can process it, and therefore waiting
for the pipeline to get empty is inefficient. Instead, we constantly feed the
pipeline with commands for different images and then wait for the swapchain
images to become available. The number of command buffers submitted to
the pipeline at any time is the number of so-called frames in flight. The
optimal maximum number of frames in flight depends on the speed of the
particular hardware but comes with little overhead, so it should rather be set
bigger.

B a2 RayTracerNV

This class built on top of the VulkanBase creates a ray tracing pipeline using
the API provided by the VK__NV__ray_tracing extension.

Unlike in the rasterization pipeline, input to the ray tracing pipeline is
provided in the form of acceleration structures, which we need to first build.
The process of building acceleration structure of the scene consists of the
following steps:

1. For each scene object, pass the geometry index and vertex buffers info
to the vkCreateAccelerationStructureNV and get an opaque acceleration
structure object.

2. Using the method vkGetAccelerationStructureMemoryRequirementsNV
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4.2. RayTracerNV

query the type and the maximum size of memory needed for the AS.
Then we allocate the required memory and assign it to the acceleration
structure via vkBindAccelerationStructureMemoryNV.

3. Go through the same steps for the TLAS except that instead of geometry
data, we pass data for each instance. Instances data are specified in a
standard framework Geometrylnstance structure, which is not included
in the extension and should be defined by the user. In the structure,
we specify the BLAS reference and the world transformation. Multi-
ple Geometrylnstances may reference one BLAS providing a way of
instancing.

4. Build the BLASes using vkCmdBuildAccelerationStructure NV command.
The command would require a scratch buffer for work that we also
should allocate. The buffer should be on device memory of type _ US-
AGE_RAY TRACING _BIT NV and should be at least as big as any
of the acceleration structures.

5. Insert the pipeline barrier on the acceleration structure build stage so
that all the BLLASes building happens-before the TLAS building.

6. Build the TLAS acceleration structure with the same command as for
BLAS also passing a handle to a buffer containing Geometrylnstances.

If when creating BLASes the _ ALLOW_COMPACTION_BIT NV is
set in flags, the actual size of the ASes after they are built is smaller than
the allocated memory. They can be therefore reallocated to save some GPU
memory, but let us leave it in a space of possible improvements.

After the ASes are built, we can create the pipeline. The pipeline does not
require specifying any fixed-function stages, so we should only provide shader
bindings and descriptor set layout. The shaders are pre-compiled SPIR-V
files, which we load to create VkShaderModules. A shader binding table is
then created from the pipeline.

Passing data to the pipeline is done using descriptor sets that are extended
by enabling VK__ KHR_ descriptor__indexing extension which allows passing
arrays of values to descriptors, which we can use for all the per-instance data
and light sources.

Each frame, the command buffer is submitted to the graphics queue. Aside
from performance measurements, the commands written in pseudocode look
as follows:
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vkCmdTraceRays (rtImage , <SBT offsets >);
vkCmdPipelineBarrier (ImageBarrier ,
srcLayout=GENERAL,
dstLaoyout=TRANSFER_ OPTIMAL) ;
vkCmdImageCopy (ImageTolmage, src=rtlmage,
dst=swapchainlmage) ;
vkCmdPipelineBarrier (ImageBarrier ,
srcLayout=TRANSFER,_ OPTIMAL,
dstLaoyout=GENERAL) ;

The drawing behavior is slightly different in the derived RayTracingN-
VOverlay class. Instead of copying the image to the swapchain, the image is
presented as a texture through the rasterization pipeline along with profiling
info. This class has a complex functionality of its own that we will not discuss
any further here, since human lifetime is limited and too precious to be wasted
on such things.

B a3 Ray tracing shaders

The path tracer logic is defined by GLSL shaders for ray tracing pipeline.
There are only three basic shaders with extensions .rgen, .rchit, and .rmiss
that are using the same ray payload for all the primary and secondary rays.
Per-instance data are passed to shaders using variable-sized arrays of uniforms
accessed via the GL__EXT nonuniform__qualifier extension.

® Closest Hit shader (.rchit) shader data include vertex and index data of ge-
ometries. It gets the ID of the hit geometry using gl InstanceCustomIndexNV
variable and uses it to get material and vertex data. The normal and
UV coordinates are interpolated using barycentric coordinates of the
hit taken from the shader parameter of type hitAttributeNV and writes
the values to the payload along with ray hit parameter accessible as
gl_HitTNV variable.

® Ray Generation shader (.rgen) shader defines most of the ray tracing
logic we will discuss further. It receives the scene acceleration structure
handle, output images, as well as texture samplers and scene parameters,
such as rendering parameters and per instance material data.

® Miss shader (.rmiss) does not do anything except setting a negative hit
parameter value to the payload, which indicates a miss.

Notice that in case of shadow rays most payload values are not used but still
passed between shaders. An optimization could be made by using separate
shaders for shadow rays with boolean payload.
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4.4. Path tracing implementation

. 4.4 Path tracing implementation

For implementation of the algorithm it was chosen to use path tracing without
recursion described in the Path Tracing section, since in GLSL shaders
recursion is not supported. Although it is possible to implement recursion
via calling the ray casting function from the Hit shader, such approach can
only reach certain maximum hardware dependent recursion depth.

For tracing rays we use the traceNV function provided by the framework
that takes the parameters d, tyin, tmaz and o of the ray described by equation
r = o+dxt, where t € [tmin, tmaz), and then returns the data passed to it by
miss or hit shaders depending on whether miss or hit occurred. This function
should only be called from the gen shader, so we cast each next reflected ray

(or do not cast in case of a miss) based on payload accepted from the miss or
hit shader.

The algorithm of the path tracer the shaders are implementing can be
described as follows:

1. Trace a ray from a camera till it reaches a geometry.

2. If a hit has occurred, identify the geometry ID and interpolate normal
and UV coordinates from the hit triangle using barycentric coordinates.
Write all of these to the ray payload.

3. If no hit has occurred, set a specific payload value telling that the
environment map should be sampled.

4. Cast a shadow ray to a randomly selected light source.

5. If a geometry hit has occurred (light source is shadowed) then set resulting
ray color to 0.

6. Otherwise, calculate the illumination value and multiply it into the
throughput.

7. Then sample the next ray direction from the BRDF function and proceed
with 2.

This can be otherwise written in the following pseudo-code, describing the
contents of the gen shader.
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Ray primaryRay = traceNV(<parameters of primary
ray cast from camera>);
traceSecondary (primaryRay) ;

void traceSecondary (Ray curRay){
vec3 endColor = vec3(0);
vecd throughput = vec3(1);
for (i = 0;; i++){
if (curRay.miss){
endColor += throughput * envEmission () ;
break;
}
Point hp = curRay.hitPoint;
//cast the shadow ray and get the color of
a visible light source
Light lightSource = randomLightSource () ;
vecd lightDir = lightSource.direction (hp);

shadowRay = traceNV (
direction = lightDir ,

origin = hp,
Tmin = 0,
Tmax = lightSource.distance (hp)

) ;

Figure 4.1: .rgen shader pseudocode (1)
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//now get the current illumination value
and the mnext tracing direction

Samp sampe = BRDFsample (hp.norm,
hp. material , curRay.dir)

//Phong BRDF (section 2.11) may randomly
choose not to sample

if (!sampe.sampled || i == RECURSION DEPTH) {
break;

}

throughput *= sampe.value;

curRay = traceNV (
direction = sample.direction ,
origin = hp,
Tmin = 0,
Tmax = inf.

)

}

return endColor;

Figure 4.2: .rgen shader pseudocode (2)

The previous pseudocode is the basic implementation with fixed depth
and zero emission components for all objects except for the environment.
These features could be easily implemented though by small modifications
and passing additional material parameters. There is a problem with light
sources of high intensity because bright colors are automatically clamped to
1. It can be solved by applying tone mapping based on average radiance,
which would take slightly more effort.

Another problem with the algorithm that the big loop over samples is
sometimes uncontrollably unwrapped by the compiler for optimization pur-
poses. That is why in our implementation we need to split the samples into
smaller patches and compute new color values based on previous ones using
the following formula.

col — col - sampleInd + frameSamplesSumColor

samplelInd + min(totalSamples — sampleInd, sampPer Frame)

(4.1)

In our application we are reading and writing colors to the same image,

which is the one being displayed either by copying to the swapchain or as

a texture if rasterization overlay is used. Depending on the case we are in,

we may or may not need to reorder color components and perform gamma

correction. For this reason, it is necessary to call a reordering and gamma

correction function when we write and call their inverses when we read to
always work with the same color space.
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Functions that perform the common operations like image reads and
writes, uniform random number generation, primary rays casting etc. are
moved to a helper file gen_ helpers.rgen to let the gen.rgen shader only inte-
grate the rendering equation. All the shader interface defines are moved to
gen__interface.rgen and structure definitions are moved to the shaders__shared.h
C header file to enable further sharing with the C++ code. This refactoring
is made possible by enabling GL__ GOOGLE__include__directive extension.
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Chapter 5

Results

The path tracer provides realistic results for varying material parameters.
Results shown here are measured using the implementation from the previous
chapter, using no transmitted rays and fixed recursion depth. Also, for the
direct light, only the diffuse BRDF component was evaluated, but the light
sources’ contribution is insignificant compared to the environment light, so it
should not be too noticeable.

The table 5.1 shows how the image quality is progressively improving with
increasing number of samples. The image at 1000 samples does not differ a
lot from the image at 100 samples. The reason for it is the rate of convergence
of Monte Carlo integration, which is v/N in number of samples. The quality
of the random generator influences the results as well.

How the rendered image changes depending on the recursion depth is shown
in the table [5.2l At depth 1 only camera ray and shadow ray is cast, and no
indirect illumination is sampled, that is why the image appears darker. As
the number of bounces increases, more orders of reflections are computed and
the indirect light contribution gets bigger.

The implementation performance was measured on two NVIDIA graphics
cards: TITAN Xp, the high-end GPU from the year 2017 based on Pascal
microarchitecture, and the recent GeForce RTX 3060 based on Ampere
architecture with RT cores. The measurements of the secondaryrays/second
for four different scenes are shown in the table 5.3. This is the main metric
we will use for evaluating the ray tracing performance. The other two values
are the total CPU time T it took to produce the image and the number of
secondary rays cast per sample.
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S=10

S=100

S=1000

Table 5.1: Scene with two direct light sources rendered for different numbers of
samples S and fixed depth D=10



Table 5.2: Scene with two direct light sources rendered for different recursion
depth D with number of samples S=100



Scene || Monkeys Bunny Happy Buddhas Happy Buddhas
Instanced
lights || 2 2 2
triag. 5810 2.3 mil. 4.3 mil.
unique || 5810 1.2 mil. 4.3 mil.
triag.
TLAS || 2.1 1.75 1.88 1.88
(Kb)
BLAS || 400 8.16 * 107 2.88 * 10° 7.2 * 101
total
(Kb)
NVIDIA TITAN Xp

for S=10
D T[s] | 10%¢/s | 10%sr/sp || T[s] | 10%/s | 10%sr/sp || T[s] | 10%c/s | 103sr/sp || T[s] | 10°r/s | 103sr/sp
1 0.04 | 887.47 0.00 0.029 | 332.80 0.00 0.016 | 166.40 0.00 0.016 | 204.80 0.00
2 0.03 | 242.04 | 101.95 0.036 | 76.07 122.13 0.037 | 73.96 124.44 0.037 | 78.31 124.44
3 0.02 | 177.49 | 113.36 0.045 | 60.51 160.49 0.051 | 53.25 158.31 0.047 | 56.65 158.31
5 0.03 | 156.61 | 120.26 0.051 | 53.25 193.99 0.06 | 45.13 208.21 0.054 | 50.23 216.88
10 0.03 | 110.93 | 124.67 0.052 | 52.20 212.64 0.067 | 40.34 240.39 0.07 | 38.59 227.94
50 0.04 | 63.39 185.13 0.048 | 56.65 222.80 0.075 | 35.98 236.35 0.09 | 29.91 259.04
100 0.04 | 80.68 133.43 0.057 | 46.71 187.22 0.066 | 40.34 235.14 0.063 | 42.26 230.19

for D=3
S T[s] | 10%¢/s | 10%sr/sp || T[s] | 10%/s | 10%sr/sp || T[s] | 10%c/s | 103sr/sp || T[s] | 10°r/s | 103sr/sp
2 0.01 - 0.00 0.024 - 0.00 0.029 - 0.00 0.024 - 0.00
10 0.02 | 221.87 | 113.36 0.037 | 71.96 154.41 0.041 | 66.56 162.88 0.04 | 66.56 158.31
50 0.14 9.64 22.67 0.35 0.17 31.22 04 6.14 31.66 0.39 6.36 31.66
100 0.3 9.76 11.34 0.78 4.10 15.44 0.85 3.55 15.83 0.82 3.68 15.83
500 1.5 0.50 2.27 4.1 0.71 3.09 4.5 0.72 3.17 4.3 0.75 3.17
1000 3 0.47 1.13 8.3 0.03 1.54 9.1 0.02 1.58 8.8 0.02 1.58

NVIDIA GeForce RTX 3060

for S=10
D T[s] | 10%¢/s | 10%sr/sp || T[s] | 10%/s | 10%sr/sp || T[s] | 10%c/s | 103sr/sp || T[s] | 10°r/s | 103sr/sp
1 0.071 | 887.47 0.00 0.071 | 665.60 0.00 0.071 | 295.82 0.00 0.07 | 332.80 0.00
2 0.071 | 887.47 | 101.57 0.07 | 221.87 | 121.88 0.071 | 110.93 | 124.14 0.07 | 126.78 | 124.14
3 0.07 | 887.47 | 112.90 0.07 | 140.13 | 154.08 0.07 | 76.07 157.97 0.07 | 80.68 157.97
5 0.069 | 665.60 | 119.70 0.07 | 106.50 | 175.12 0.069 | 66.56 208.06 0.069 | 70.06 199.99
10 0.07 | 887.47 | 124.01 0.07 | 98.61 182.32 0.07 | 63.39 235.37 0.07 | 64.94 229.52
50 0.07 | 665.60 | 131.55 0.071 | 98.61 182.65 0.07 | 61.92 237.18 0.071 | 66.56 232.09
100 0.073 | 532.48 | 132.72 0.073 | 91.81 182.65 0.071 | 61.92 237.40 0.071 | 68.27 233.12

for D=3
S T[s] | 10%/s | 10%sr/sp || T[s] | 10%/s | 10%sr/sp || T[s] | 10%c/s | 103sr/sp || T[s] | 10°r/s | 103sr/sp
2 0.038 - 0.00 0.037 - 0.00 0.048 - 0.00 0.043 - 0.00
10 0.074 | 887.47 | 112.90 0.071 | 110.93 | 154.08 0.075 | 66.56 164.62 0.07 | 91.81 157.97
50 0.34 | 36.54 22.58 0.34 | 23.54 30.82 0.36 6.86 31.59 0.34 8.24 31.59
100 0.67 | 37.59 11.29 0.67 7.59 15.41 0.78 3.80 15.80 0.67 4.62 15.80
500 3.3 0.24 2.26 3.3 1.03 3.08 4.1 0.71 3.16 3.4 0.85 3.16
1000 6.7 0.14 1.13 6.7 0.74 1.54 8.2 0.46 1.58 6.9 0.54 1.58

Table 5.3: Test results for scenes of varying complexity




5. Results

We see that on all the scenes, the performance of the RTX GPU for different
recursion depths are from roughly one third to ten times better on all the
scenes. The best performance gain is demonstrated on Monkeys scene. The
monkey models take up a small part of the screen and most of the rays do
not hit anything, hence the biggest speedup probably comes from an efficient
acceleration structure traversal by the RT cores.

When it comes to tests for different numbers of samples, though, the
GeForce RTX tests may even run slower as the value reaches 500. The reason
for this is that not all samples are calculated at once, but the intermediate
results are stored and presented to the user, which becomes the actual
performance bottleneck. Unfortunately, our application failed to measure the
GPU time for the two samples case, but we can still imagine that the number
is quite big.

When comparing results across different scenes, we see that the performance
on the RTX card is more dependent on the number of visible triangles. The
Bunny scene has a big bunny model with a relatively small number of triangles
taking up a lot of view space, while the four Buddha models in the Happy
Buddhas scene are much more complex. On TITAN the two scene show
almost the same complexity for secondary rays, while on the RTX card the
Bunny scene is rendered almost twice as fast.

Interestingly, the instanced version of the Happy Buddhas scene is always
rendered slightly faster. The only way it differs is by the TLAS structure
pointing to the same Buddha model rather than to different models, so the
performance increase might come from some caching while accessing the
BLAS memory.

The CPU time in the two tables is different since the application was
tested on different machines and different environments, the second one
being tested on a notebook. The same applies for the number of rays
per sample. The latter would probably not differ if the random sequence
generator for this implementation would not use a periodic function that can
be evaluated differently on different hardware, and would use for example
LFSR for generating pseudo-random numbers.

The ray tracing performance on modern GPUs can actually be done in real
time for some smaller number of samples. The goal of a ray tracing programs
now is to rather optimize passing the data to the GPU and try to reduce the
host-device synchronization and CPU overhead.
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Conclusion

In this work we have gone through the basic theory of path tracing from
ground up as well as some more advanced concepts like Cook-Torrance
illumination model. The implementation of even a basic path tracer in
Vulkan, especially with additional profiling capabilities, turned out to be a
highly non-trivial task. Because Vulkan gives such a low abstraction and
broad opportunities for optimization, it is quite complex to get even the
simplest things running in bare API. The application that we have built offers
a framework for further experimentation with ray tracing, so some basic path
tracers can be implemented just by writing and compiling relatively simple
shaders. The framework still has a lot of space for improvements, such as
tone mapping, more advanced materials, separate shadow shaders, support
for more complex light sources and more.
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