
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Autonomous Robotic Exploration of
Underground Environments

Identifying suitable exploration goals in a sparse
point cloud map

Lars Kahlert

Supervisor: Ing. Tomáš Petříček, Ph.D
Field of study: Cybernetics And Robotics
Subfield: Cybernetics And Robotics
August 2021

ii

Acknowledgements
I would like to thank my supervisor Tomáš
Petříček his feedback and help with this
work. I also like to thank my family for
supporting me in my studies. And lastly
I would like to thank my friends for proof-
reading this thesis, and keeping my spirits
up in those past few years.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 13. August 2021

iii

Abstract
Aim of this bachelor project is to develop
and test a frontier detection method work-
ing on point cloud maps, as an alternative
to voxel-based probability mapping, and
compare the strengths and weaknesses of
such approach to an exploration. Optimal
parameters and method behavior is found
through tests on simple objects. Addition-
ally, three methods for filtering out false
detection of points are proposed. Then
the method is tested in a simulated under-
ground environment, and compared with
voxel-based frontier detection.

Keywords: point clouds, frontier based
exploration, voxel mapping, autonomous
exploration

Supervisor: Ing. Tomáš Petříček, Ph.D

Abstrakt
Cílem bakalářské práce je vyvinout a otes-
tovat metodu na průzkum hranice po-
dél známého prostoru pracující s mapami
mračen bodů, jako alternativa k voxelo-
vému pravděpodobnostnímu mapování, a
srovnat silné a slabé stránky tohoto pří-
stupu k exploraci. Optimální parametry
a chování metody získáme skrze testování
na jednoduchých objektech. Navíc jsou
navženy tři metody pro filtraci falešných
detekcí bodů. Následně je metoda otes-
tována na simulovaném podzemním pro-
středí a porovnána s voxelovou metodou
detekce hranice podél známého prostoru.

Klíčová slova: mračna bodů, průzkum
podél hraničního prostoru, voxelové
mapování, autonomní explorace

iv

Contents
1 Introduction 1

1.1 Motivation and goals 1

1.2 Related works 2

1.3 Outline . 2

2 Method description and
definitions 3

2.1 Term explanations 3

2.2 Mean vector method 5

2.2.1 Method input and output 5

2.2.2 Method description. 6

3 Testing on simple objects. 9

3.1 Test conditions 9

3.2 Effects of changing local
neighbourhood radius 9

3.3 Frontier detection 10

3.3.1 Finding optimal threshold
values . 10

3.3.2 False positive detection. 10

4 Experiments in SubT simulator. 21

4.1 Test environment 21

4.1.1 Code structure 21

4.2 Results . 23

4.2.1 Point cloud method 23

4.2.2 Voxel method 24

4.2.3 Method comparison 24

5 Conclusion 29

A Bibliography 31

B Project Specification 33

v

Figures
2.1 Example of a point cloud, mapping
an underground environment. 4

2.2 Example of a voxel map. 4

2.3 Showcase of the mean vector
method on a plane. Distance between
test point and average vector is
bigger for points on the edge of the
point cloud. 7

3.1 Display mean vector algorithm on
a cube for various values of r (see eq.
3.1) and a fixed threshold value. . . 11

3.2 Display of frontier selection
capabilities of mean vector
algorithm.TP - True Positive, FP -
False Positive, TN - True Negative,
FN - False Negative 12

3.3 ROC curves for simple objects,
with highlighted best classification
threshold values (see table 3.2). . . . 13

3.4 Example of Number of Points
method. Frontier points have less
points in LNR. 14

3.5 Effect of point number based FP
detection. For Tpoints = 19 15

3.6 Example of fitting method. 16

3.7 Example of effect of fitting method
threshold (Tf) changes 17

3.8 Example of plane fitting method. 18

3.9 ROC curves for classification with
plane fitting method. Values in table
3.3. 19

3.10 Example of results with plane
fitting method. 19

4.1 Example of the SubT virtual test
environment. 22

4.2 Code structure 22

4.3 Showcase of point cloud mapping
and frontier detection (green) in cave
environment. 26

4.4 False classifications of the mean
vector method. 27

4.5 Showcase of voxel frontiers in cave
environment 28

4.6 Comparison of frontier
classification ability of mean vector
method (green) and voxel mapping
(blue), in an urban environment. . . 28

vi

Tables
3.1 Default values used for testing. . . 9

3.2 Optimal threshold values for a
given LNR/MPD ratio 12

3.3 Optimal threshold values for plane
fitting method. 15

vii

Chapter 1

Introduction

1.1 Motivation and goals

Autonomous exploration deals with the problem of efficiently mapping un-
known space. This can be used to safely explore environments dangerous
for humans, or environments where communication between the robot and
human driver cannot be guaranteed, such as underground spaces.

Over time different methods for facilitating exploration were developed.
Notably occupancy grid mapping [6], in which a grid map holds values
representing the probability that the cell is occupied. With these values being
constantly updated with new measurements. Later Yamauchi et al. [1] came
with the concept of frontiers, as the areas between explored and unexplored
space, with the idea being that the robot would continuously head to in the
direction of frontiers, thus expanding explored space, until the whole area is
explored.

The goal of this paper is to create, and test a method for identifying suitable
exploration goals on a point cloud map, as opposed to voxel grid occupancy
maps. This should yield some advantages, mainly simplicity and efficiency, as
a point cloud map may already be created during simultaneous localization
and mapping (SLAM).

1

1. Introduction
1.2 Related works

Yamauchi et al.[1] proposed the idea of frontiers. Works like [8] deal with
autonomous exploration and mapping but work on voxel grids. In [9] different
frontier-based approaches are evaluated, thought those also work on grid
maps. While there are propositions for utilizing point clouds for terrain
assessment, and motion path planning [7], none would consider autonomous
exploration.

1.3 Outline

In chapter 2, used terms are explained and the proposed frontier detection
algorithm is described. In chapter 3 we test the algorithm on simple geomet-
rical objects and find optimal input parameters. We also try methods for
rectifying the algorithms weaknesses. Afterwards in chapter 4 experiments
are done in the SubT virtual environment. A comparison with voxel-based
frontier detection is made, and pros and cons are discussed. The final results
of the project are in chapter 5.

2

Chapter 2

Method description and definitions

2.1 Term explanations

Frontier - "regions on the border between space known to be open and unex-
plored space."[1] Used in robotic exploration to determine the best directions
to explore.

Frame/Coordinate system - A system of coordinates to uniquely deter-
mine the position of points in space.

Point - In the following text we will understand a point as a set of
coordinates, describing a position in a given coordinate system. Example for
three-dimensional space:

P = [PX , PY , PZ] (2.1)

Point cloud - A set of points in the same coordinate system, usually the
output of a sensor, and describing a physical object or space [5] (see fig 2.1).

Voxel - If we split three-dimensional space into a uniform grid. A single
"cube" on this grid would be called a voxel.

Voxel-based mapping - For the purposes of this document voxel-based
mapping is the process of splitting space into voxels, and setting their oc-
cupancy values based on laser measurements. For example, we increase the
value for a voxel that contains the end point of a laser measurement, and
decrease the value of all voxels intersecting the measure line. Then it is
possible to classify voxels, based on their occupancy values, as representing
empty, full or unexplored space, thus receiving a map of the environment (see
example fig. 2.2).

3

2. Method description and definitions

Figure 2.1: Example of a point cloud, mapping an underground environment.

Figure 2.2: Example of a voxel map.

4

................................. 2.2. Mean vector method

2.2 Mean vector method

The mean vector method is a method designed for finding frontiers on a
sparse point cloud.

2.2.1 Method input and output

The method has the following inputs:

. Point cloud - A sparse point cloud, for example the output of a lidar
sensor..Minimal point distance (MPD) - Parameter of the point cloud. Sets the
minimal distance two points in the point cloud can have.1. Local neighbourhood radius (LNR) - This input sets the distance from
the test point in which other points will be used for calculations. It must
be bigger than MPD (see fig. 2.3).. Threshold - Threshold for classifying point as frontier.(see eq. 2.3)

The method has the following output:

. Set of frontier points, a subset of the input point cloud.

1This can determined by the robot sensor, or by the user to limit the number of points.

5

2. Method description and definitions
2.2.2 Method description...1. Select a point to test. Pt in the following text...2. Find local neighbourhood points (Pi). Points closer to Pt than LNR...3. Calculate the mean vector (Pm) of this point.

Pm =
∑N

i=1 Pi
N

(2.2)

Where N is the number of points in LNR...4. Point is considered a frontier if 2.3 is true.

||Pt −Pm||
LNR > threshold (2.3)

In figure 2.3 we can see the effect of the test point position on the resulting
distance between the test point and the average vector, with points positioned
more on the border having larger distance and corners in particular.

Though we have to keep in mind that the algorithm by itself only detects
edges. Any differentiation between edges on the border of unexplored space,
and edges given by object geometry has to be done separately (see chapter
3.3.2).

6

................................. 2.2. Mean vector method

0 1 2 3 4 5

x [-]

0

1

2

3

4

5

y
 [
-]

lidar point cloud

local neightbourhood

average vector

point to test

Figure 2.3: Showcase of the mean vector method on a plane. Distance between
test point and average vector is bigger for points on the edge of the point cloud.

7

8

Chapter 3

Testing on simple objects.

In this chapter we will look at the method behaviour on simple geometrical
objects and try to find optimal values for method inputs.

3.1 Test conditions

All testing in this chapter has been done on MATLAB version r2020b. If not
specified otherwise values in table 3.1 apply. True frontiers were selected as
points closer to the edge than MPD.

Parameter MPD LNR T
Default value 0.1 0.35 0.22

Table 3.1: Default values used for testing.

3.2 Effects of changing local neighbourhood
radius

Any changes to LNR will always be considered in relation to MPD, and will
be expressed in radius in minimal distance units r.

r = LNR/MPD (3.1)

In figure 3.1, are shown the effects of changing r values, while keeping a fixed
threshold, can have on the classification of points (see eq. 2.3). With smaller
radii using less points for calculations and thus being more affected by random
noise. We see that values between one and two don’t consider enough points
to be useful for detection. At r = 2 corner points are detected, although still
sparse. At values 2.5 and higher we get solid edge detection, with higher

9

3. Testing on simple objects.
values increasing the width of classified points area, and decrease the chance
of misclassifying surface points1 and increases computational complexity.

3.3 Frontier detection

Now we can test the ability to detect frontiers. For this we take some simple
incomplete shapes. For the sake of comparison any point closer to the edge
of the object than MPD shall be considered a true frontier.

On figure 3.2 we can see the algorithm output for r = 3.5 and threshold =
0.22 for different shapes. The algorithm reliably detects object edges for flat
and rounded surfaces. On the cube (3.2b) and tunnel (3.2d) shapes we can
also see the problem with the algorithms inability to differentiate between
object geometry edges and point cloud edges 3.1.

3.3.1 Finding optimal threshold values

Now that we quantify the detection quality. We can draw a receiver operating
characteristic, also known as a ROC curve. This curve plots the true positive
rate against the false positive rate (Green and red points respectively in figure
3.2), for the changing value of the classifying threshold, thus showing us the
classification capabilities for a given threshold. On figures 3.3 we can again
clearly see the effects of changing r, with values less than 1.5 having little
classifying ability and little change with raising values over 2.7.

The best threshold values, according to Youden’s J statistic [2] are marked
in the graph and in table 3.2. For low r values there is a lot of noise and a
higher threshold value minimizes the false positives in the faces of objects.
At around r = 2 the noise in the points in object faces is low enough that
the number of false negatives at frontier zones gains statistical significance.
Thus a lower threshold value maximizes the true positives at frontiers. With
increasing r values the optimal threshold value also rises to counteract the
expanding positive classification zone, that would otherwise occur (see fig.
3.1). For the expected use value of r ≈ 3 a threshold value of 0.22 seems
reasonable.

3.3.2 False positive detection.

By now we have encountered the problem of distinguishing between object
edges and frontiers multiple times. In this section we look at three possible
methods for detecting false positives.

1Although given the random placement of points a chance for misclassification always
remains.

10

.................................. 3.3. Frontier detection

(a) : r = 1.1 (b) : r = 1.5

(c) : r = 2 (d) : r = 2.5

(e) : r = 3 (f) : r = 4

Figure 3.1: Display mean vector algorithm on a cube for various values of r (see
eq. 3.1) and a fixed threshold value.

11

3. Testing on simple objects.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x [-]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

y
 [

-]

TP

FP

TN

FN

(a) : plane (b) : cube

(c) : sphere (d) : tunnel

Figure 3.2: Display of frontier selection capabilities of mean vector algorithm.TP
- True Positive, FP - False Positive, TN - True Negative, FN - False Negative

r 1.5 2.12 2.75 3.38 4.0
Plane 0.23 0.18 0.17 0.20 0.23
Cube 0.33 0.25 0.24 0.24 0.25
Sphere 0.23 0.18 0.21 0.23 0.26
Tunnel 0.24 0.20 0.19 0.21 0.24
Mean 0.26 0.21 0.20 0.22 0.25

Table 3.2: Optimal threshold values for a given LNR/MPD ratio

Number of points in LNR

This method uses the number of points in the local neighbourhood. With
frontier points having less points in their LNR (see 3.4). So, for each frontier
detection we check the number of points in LNR, and if the number is bigger
than a point threshold we consider it a false positive and change it accordingly.

Now the problem of selecting the right cutoff point arises. A reasonable
assumption would be that frontier points have half the number of points in
their local neighbourhood, by virtue of being in the middle between explored
(filled) and unexplored (empty) space. We can approximate the number of
points by first calculating the point density ρpoints = 1

MP D2 times the area of
the local neighbourhood A = πLNR2. So our point threshold is:

12

.................................. 3.3. Frontier detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for plane

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(a) : plane

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for cube

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(b) : cube

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for sphere

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(c) : sphere

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for tunnel

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(d) : tunnel

Figure 3.3: ROC curves for simple objects, with highlighted best classification
threshold values (see table 3.2).

Tpoints = πLNR2

2MPD2 (3.2)

On figure 3.5 is an example of the method effects. If we compare these
with the classification in figure 3.2, we see that it got rid of most of the false
classified points, although as seen in the cube example, corners are still false
positives.

Distance from fitted plane

This method works on the principle of detecting object edges and filtering
them out. We do this by fitting the local neighbourhood points with a plane.
Projecting the average vector on to this plane, and measuring the length of
this projection. With edge points having larger distance (see fig 3.6).

Now we have to find a the decision threshold (Tf). The effects of different
thresholds can be seen on figure 3.7. Values too small start detecting any sort
of curvature on the point cloud, while values to high stop detecting edges and
the algorithm doesn’t fulfill it’s purpose. Also because this method works on

13

3. Testing on simple objects.

Figure 3.4: Example of Number of Points method. Frontier points have less
points in LNR.

detecting edges it also falsely detects any edges on the frontier (see fig. 3.7c).
This could be problematic when using the method in rough terrain.
The ideal values are strongly dependent on the terrain shape and method
parameters, but for this case (chapter 3.1) values between 0.02 and 0.08 seem
usable.

Projection on plane

As we can see on figure 3.2 the method itself works well on planes. We can
use this knowledge, and classify points from a planar perspective. We do this
by projecting the local neighbour points on a fitted plane and applying the
mean vector method on those projected points (See example fig. 3.8). This
removes any false positives occurring because of object geometry.

Being pretty much the same method we can expect the optimal threshold
values to be similar to those of a plane. The ROC curves for the method are
on figure 3.9, if we compare those with the graphs in figure 3.3 it’s evident
that the characteristics now more closely resemble those of a plane or sphere.
Values are in table 3.3, and although slightly lower are mostly similar to those
of a plane. On figure 3.10 the effects of the method can be seen. All of the
"false edges" have been removed, without impairing the true frontiers.
While this method works great at removing false frontiers, this comes at a

14

.................................. 3.3. Frontier detection

(a) : cube (b) : tunnel

Figure 3.5: Effect of point number based FP detection. For Tpoints = 19

great cost in computational complexity and time. With the added need for
plane fitting and point projection.

r 1.5 2.12 2.75 3.38 4.0
Cube 0.24 0.19 0.19 0.20 0.20
Tunnel 0.21 0.19 0.19 0.19 0.21

Table 3.3: Optimal threshold values for plane fitting method.

Comparison

Number of points method has the advantage of low computational require-
ments, with LNR points having already been found for the mean vector
algorithm. Its disadvantage is the assumption that the point cloud has a uni-
form density. Also false detection for objects with forms that would naturally
invoke sparser point clouds, for example rock spikes or grates.
Distance from fitted plane method, on the other hand, has generally a more
thorough false positive detection. But this at computational cost and the
possibility to misclassify frontier points. Although this missclassification only
occurs on sharp edges, depending on threshold. This method seems to be
better for locations with flat or curved surfaces.
The effectiveness of both methods is dependent on the explored environment
terrain. The plane method has the best false positive detection rate, but this
comes at the cost of speed and computation.

15

3. Testing on simple objects.

(a) : False frontier

(b) : True frontier

Figure 3.6: Example of fitting method.

16

.................................. 3.3. Frontier detection

(a) : Tf = 0.01 (b) : Tf = 0.01

(c) : Tf = 0.03 (d) : Tf = 0.03

(e) : Tf = 0.09 (f) : Tf = 0.09

Figure 3.7: Example of effect of fitting method threshold (Tf) changes

17

3. Testing on simple objects.

(a) : without projection

(b) : with projection

Figure 3.8: Example of plane fitting method.

18

.................................. 3.3. Frontier detection

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for cube (FP detection plane fitting method)

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(a) : cube

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Positive Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 P

o
s
it
iv

e
 R

a
te

ROC for tunnel (FP detection plane fitting method)

r = 1.5

r = 2.125

r = 2.75

r = 3.375

r = 4

(b) : tunnel

Figure 3.9: ROC curves for classification with plane fitting method. Values in
table 3.3.

(a) : cube (b) : tunnel

Figure 3.10: Example of results with plane fitting method.

19

20

Chapter 4

Experiments in SubT simulator.

Testing will be done in the DARPA subterranean challenge (SubT) virtual
competition simulator (see https://github.com/osrf/subt/wiki). This simula-
tor provides a robot, sensor and environment that can be used for testing the
method in sufficiently realistic scenario.

4.1 Test environment

The tests will be done on the virtual cave and urban environment. An example
of simulation can be seen on figure 4.1.
For testing purposes, any kind of autonomous localization or exploration will
be omitted. Instead, we will purely focus on the algorithms ability to identify
suitable exploration goals on a sparse point cloud map. For this goal, the
real time position of the robot from the simulator will be used. Though it
is important to note that determining robot location is a whole problem in
itself (localization). Also any disturbances or inaccuracies in localization or
mapping will project itself on the point cloud map, which is going to have a
negative impact on the frontier detection method.

Robot

The robot used for testing is a large skid-steer UGV. Its only sensor used in
our experiments is the long range (30m) lidar.

4.1.1 Code structure

The simulator operates on the robot operating system (ROS), in which code
is split into nodes, which interact by sending (publishing) and receiving

21

https://github.com/osrf/subt/wiki

4. Experiments in SubT simulator..............................

Figure 4.1: Example of the SubT virtual test environment.

Figure 4.2: Code structure

(subscribing to) messages. This is demonstrated on figure 4.2 where the
structure for our testing can be seen, as well as the robot providing the
measurements and transformations between coordinate frames.

Voxel filter

This node subscribes to the robot lidar measurements and reduces the amount
of measure points. This works by replacing all points in a voxel with their
centroid. This reduces the amount of data, but keeps the relevant surface
information.

Point cloud mapper

This node takes the filtered points, and transforms them from the sensor
frame to the world frame. After this it creates a map by adding new points if

22

....................................... 4.2. Results

there are no points closer than a given minimal point distance. Thus creating
a point cloud map of the environment with a minimal point distance.

Mean vector method

This node subscribes to the point cloud map and applies the mean vector
method (as described in chapter 2.2). The parameters gained in chapter 3
give good results so there was no need to alter them. False positive filtering
based on the number of points (see chapter 3.3.2) was added to get rid of
object edges. Operations on point clouds are done using the C++ Point
Cloud Library [3], with FLANN (Fast Library for Approximate Nearest
Neighbours) [4] providing k-nearest neighbour search for finding points in
local neighbourhood. It outputs the classified frontier points as a point cloud.

Voxel frontiers

This node takes the filtered point cloud from voxel filter, and crates an internal
voxel map, on which frontier voxels are identified. Yamauchi desribes frontiers
as "regions on the border between space known to be open and unexplored
space."[1] Because we are working on point clouds, which are measured points
(i.e, occupied space), so if we are comparing those methods we have to
consider full voxels. We thus define a voxel frontier as: A full voxel which
directly neighbours an empty voxel, which directly neighbours an unexplored
voxel. With a neighbouring voxel meaning the ones which touch a side (6-
neighbourhood). The code implementation is based on a header only voxel
map library1. The node outputs the centers of frontier voxels as a point
cloud.

4.2 Results

4.2.1 Point cloud method

Figure 4.3 shows the results of mapping and frontier detection in a cave
environment. As we see, the detection ability looks good, with most of the
points closest to on opening being classified. But there are things to look out
for, most of which we already encountered in the previous chapter. In figure
4.4a we see that even in a cave environment, which we could consider very
round in contrast to urban areas, we can’t do without some form of filtering
out false positives. Also we have to remember specific filtering methods can
have their own weaknesses, for example number of points method, which
doesn’t filter out long narrow objects, see gazebo legs in figure 4.4b.

1https://bitbucket.org/tpetricek/voxel_map/src/master/

23

https://bitbucket.org/tpetricek/voxel_map/src/master/

4. Experiments in SubT simulator..............................
4.2.2 Voxel method

A showcase of voxel mapping in a cave environment is on figure 4.5. There are
a lot of false positives but frontiers around openings are detected. It seems
that on curved surfaces there is a chance that the measuring line intersects a
voxel on the outside of the map2, thus classifying it as empty. Which from our
definition (chapter 4.1.1) leads to the voxels around it being set as frontiers.
So it seems the method has a hard time dealing with curved surfaces3. But
as shown on figure 4.6 there are no problems on flat surfaces.

4.2.3 Method comparison

Discussion of pros and cons

The first thing noticeable when comparing the two methods is the simplicity
of point cloud based mapping, with only the need for a point map, and nearest
neighbour search. With the point cloud map already being the output of
simultaneous localization and mapping (SLAM) methods, the implementation
of the point cloud method seemed far easier.

The simplicity of the method also concerns the maintenance of the map, as
adding points to a cloud is easier than having to constantly update occupancy
values for voxel maps. Though in this sense the voxel map is more robust to
faulty measurements. With the point cloud mapping algorithm in its current
form faulty measurement (or transformations) would be permanently added
to the map. Because of this, some form of a point matching algorithm should
be used in mapping.

Single outliers aren’t a problem for both methods, as part of voxel-based
exploration is splitting frontiers into separate clusters, with the amount of
points in a cluster predicting the possible reward of exploration (i.e, new
unexplored space). Thus false classification in small enough numbers would
be ignored, this is particularly beneficial for number of points FP detection,
which does not detect thin edges.

It would be interesting to see if sensor inaccuracies could be remedied by
applying the plane projection method discussed in chapter 3.3.2, although
the methods with plane fitting come at the cost of simplicity, and quickness,
which are otherwise the methods greatest strengths.

At least for this abstracted implementation the frontier detection ability of
the frontier algorithm seems good. But before any concrete statement can be
made about the viability of the algorithm in autonomous exploration, more

2Remember that for a voxel to count as free it is enough for the measuring line to
intersect it at any point.

3Or at least my implementation of it does.

24

....................................... 4.2. Results

tests would need to be done with SLAM and autonomous navigation, based
on frontier goals.

25

4. Experiments in SubT simulator..............................

(a) : Outside view.

(b) : Inside view.

Figure 4.3: Showcase of point cloud mapping and frontier detection (green) in
cave environment.

26

....................................... 4.2. Results

(a) : Falsely classified edges around a rockfall. (Without FP detection.)

(b) : False classification of object edges. (Number of points FP detection.)

Figure 4.4: False classifications of the mean vector method.

27

4. Experiments in SubT simulator..............................

Figure 4.5: Showcase of voxel frontiers in cave environment

Figure 4.6: Comparison of frontier classification ability of mean vector method
(green) and voxel mapping (blue), in an urban environment.

28

Chapter 5

Conclusion

In this paper we introduced the mean vector algorithm for detecting frontiers
on point clouds. The algorithm function depends on the minimal point
distance of the point cloud map, the local neighbourhood radius which
determines the area around the test point, which is used for calculations,
and the classification threshold. Through tests on simple objects, optimal
parameters were determined. Radius in minimal distance units r (see eq.
3.1) should be kept between three and four. Threshold values are slightly
dependent on the value of r, but for the expected values a threshold of 0.22
seems reasonable.

The tests showed that not only does the method detects edges between
explored and unexplored space (frontiers) but also edges on object geometry,
so we proposed and tested three methods for filtering out those false detections.
The number of points method, which is simplest and fastest one but does not
filter out long thin objects for example poles or rock spikes. The distance
from fitted plane method, which worked by filtering out all object edges but
this also included those that were on the frontier. The projection on plane
method, which was the most reliable method of the three, filtering out all
false detections without impairing true frontiers but this comes at the cost of
added complexity and computation time.

Afterwards the mean vector algorithm was implemented in ROS and tested
in a simulated underground environment. For these abstracted tests the
frontier detection ability of the algorithm seems to be working well. But
before any concrete statement can be made about the viability of the algorithm
in autonomous exploration, more tests would need to be done with SLAM
and autonomous navigation, based on frontier goals

29

30

Appendix A

Bibliography

[1] Yamauchi, Brian. "A frontier-based approach for autonomous exploration."
Proceedings 1997 IEEE International Symposium on Computational Intelli-
gence in Robotics and Automation CIRA’97.’Towards New Computational
Principles for Robotics and Automation’. IEEE, 1997.

[2] Youden, William J. "Index for rating diagnostic tests." Cancer 3.1 (1950):
32-35.

[3] R. B. Rusu and S. Cousins, "3D is here: Point Cloud Library (PCL),"
2011 IEEE International Conference on Robotics and Automation, 2011,
pp. 1-4, doi: 10.1109/ICRA.2011.5980567.

[4] M. Muja and D. G. Lowe, "Fast approximate nearest neighbors with auto-
matic algorithm configuration," in International Conference on Computer
Vision Theory and Application VISSAPP’09). INSTICC Press, 2009, pp.
331-340.

[5] ——, "What are Point Clouds".https://tech27.com/resources/point-
clouds/ (accessed august 12 2021)

[6] Hans Moravec and A. E. Elfes Conference Paper, Proceedings of the 1985
IEEE International Conference on Robotics and Automation, pp. 116 -
121, March, 1985

[7] Krüsi, P. et al. Drivingon Point Clouds:MotionPlanning,TrajectoryOptimization,and
Terrain Assessmentin GenericNonplanarEnvironments.J. Field Robotics,34:
940-984,2017.

[8] Surmann, H., Nuechter, A., & Hertzberg, J. (2003). An autonomous mobile
robot with a 3D laser range finder for 3D exploration and digitalization of
indoor environments. Robotics and Autonomous Systems, 45(3–4), 181–198.

[9] D. Holz, N. Basilico, F. Amigoni and S. Behnke, "Evaluating the Efficiency
of Frontier-based Exploration Strategies," ISR 2010 (41st International
Symposium on Robotics) and ROBOTIK 2010 (6th German Conference
on Robotics), 2010, pp. 1-8.

31

https://tech27.com/resources/point-clouds/
https://tech27.com/resources/point-clouds/

32

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

478066Personal ID number:Kahlert LarsStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and RoboticsStudy program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Autonomous Robotic Exploration of Underground Environments

Bachelor’s thesis title in Czech:

Autonomní robotická explorace podzemních prostor

Guidelines:
Consider the task of autonomous robotic exploration of underground environments.
Focus on identifying suitable exploration goals in a sparse point cloud map, as opposed to a voxel grid occupancy map,
discuss related challenges and the pros and cons of such an approach.
Design, implement and evaluate a method for solving this task.
Perform experiments in the DARPA Subterranean Challenge simulator (see https://subtchallenge.world/,
https://github.com/osrf/subt/).

Bibliography / sources:
[1] Rouček T. et al. DARPA Subterranean Challenge: Multi-robotic Exploration of Underground Environments. In: Modelling
and Simulation for Autonomous Systems. Springer, Cham, 2020.
[2] Krüsi, P. et al. Driving on Point Clouds: Motion Planning, Trajectory Optimization, and Terrain Assessment in Generic
Nonplanar Environments. J. Field Robotics, 34: 940-984, 2017.
[3] B. Yamauchi. A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium
on Computational Intelligence in Robotics and Automation CIRA'97. Monterey, CA, USA, 1997.

Name and workplace of bachelor’s thesis supervisor:

Ing. Tomáš Petříček, Ph.D., Vision for Robotics and Autonomous Systems, FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 13.08.2021Date of bachelor’s thesis assignment: 25.01.2021

Assignment valid until: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Tomáš Petříček, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

	Introduction
	Motivation and goals
	Related works
	Outline

	Method description and definitions
	Term explanations
	Mean vector method
	Method input and output
	Method description.

	Testing on simple objects.
	Test conditions
	Effects of changing local neighbourhood radius
	Frontier detection
	Finding optimal threshold values
	False positive detection.

	Experiments in SubT simulator.
	Test environment
	Code structure

	Results
	Point cloud method
	Voxel method
	Method comparison

	Conclusion
	Bibliography
	Project Specification

