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Abstrakt /

Head-Related Transfer Functions
(HRTFs) se využívají pro popis vir-
tuálních audio scén, pro fitování na-
slouchacích pomůcek a v psychologii.
Aproximují interakci zvuku s tělem po-
sluchače. Jelikož existují různé stupně
individualizace HRTF pro posluchače
roste potřeba jejich porovnání. Pro
tento účel se využívají distanční met-
riky, které mohou popisovat různé typy
rozdílů mezi HRTFs. Bylo analyzováno
pět distančních metrik pro porovnání
HRTFs. Cílem této práce je analyzo-
vat interakce a vzájemné informace
poskytnuté danými distančními metri-
kami a zredukovat jejich počet na počet
vhodný pro experiment. Dále, navrh-
nout a provést daný experiment pro
prozkoumání slyšitelného prahu (just
noticable difference: JND) daných met-
rik a také pro získání prvních poznatků
o predikci percepčních atributů pomocí
distančních metrik.

Dané vzájemné interakce a informace
poskytnuté distančními metrikami jsou
analyzovány pomocí korelační analýzy,
analýzy hlavních komponent a faktorové
analýzy. Tři distanční metriky (Inter-
subject Spectral Difference: ISSD, Mean
Squared Error: MSE and Mel-frequency
Cepstral Distortion: MFCD) zachová-
vající nejrozmanitější informace jsou
vybrány pro návrh experimentu. 3AFC
paradigma je navrženo pro prozkou-
mání slyšitelného prahu těchto metrik.
Test se také zaměřuje na zkoumání
vztahu mezi distančními metrikami
a subjektivními percepčními atributy
(kolorizace a lokalizace). Tyto atributy
jsou zkoumány za různých podmínek,
což umožnilo pozorovat výsledky shodu-
jící se s předpokladem “výhody pravého
ucha” (right ear advantage). Na základě
této práce byly předloženy návrhy na
další kroky ve vývoji distančních metrik
pro porovnání HRTFs.

Klíčová slova: HRTF, distanční met-
riky, 3AFC, JND, percepční atributy.
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Abstract /

Head-Related Transfer Functions
(HRTFs) become necessary when us-
ing headphones to create virtual audio
scenes. They approximate the inter-
action of the sound with the body of
the listener. They can be also used
in hearing aid fitting and psychology,
where individually measured HRTFs
are better suited than generic ones.
For comparison of HRTF datasets, dis-
tance metrics, taking different types
of errors into account, can be used.
Five distance metrics were examined in
the present work. The main objective
of this thesis was to examine mutual
information and interaction of these
metrics and reduce them to a smaller
set of measures suitable for a listen-
ing experiment. A further objective
was to design and conduct a listening
experiment paradigm to examine just
noticeable differences (JND) as well as
gain first insights into various percep-
tual attributes using respective distance
metrics for prediction.

The present mutual information and
interactions between different objec-
tive distance metrics were analysed and
evaluated using tools such as correlation
analysis, principal component analysis
and factor analysis. Three distance
metrics (Inter-subject Spectral Differ-
ence: ISSD, Mean Squared Error: MSE
and Mel-frequency Cepstral Distortion:
MFCD) providing the most diverse in-
formation were selected for the listening
test. To examine an audible thresh-
old of these metrics, a 3AFC listening
test paradigm was proposed. The test
also focused on finding a relation of
selected distance metrics and subjective
perceivable attributes (coloration and
localization). These attributes were
inspected in different conditions, en-
abling observations in alignment with
the right ear advantage presumption.

Suggestions were given for further steps
in the metric development, based on the
present work.

Keywords: HRTF, distance metrics,
3AFC, JND, perceptual attributes.

vii



Contents /

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
2 Theoretical Background . . . . . . . . . . . .3
2.1 Human Auditory Percetion . . . . . .3

2.1.1 Perception of Pitch
and Loudness . . . . . . . . . . . . . .3

2.1.2 Binaural Hearing. . . . . . . . . . .4
2.2 Head Related Transfer Func-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.2.1 Directional Transfer

Function . . . . . . . . . . . . . . . . . . . .7
2.3 Mathematical Principles . . . . . . . . .7

2.3.1 Principal Component
Analysis . . . . . . . . . . . . . . . . . . . .7

2.3.2 Factor Analysis . . . . . . . . . . . .8
2.3.3 Pearson’s Correlation

Coefficient . . . . . . . . . . . . . . . . . .9
2.3.4 Spearman’s Correla-

tion Coefficient . . . . . . . . . . . . .9
2.3.5 Voronoi Diagram. . . . . . . . . . .9

3 State of the Art . . . . . . . . . . . . . . . . . . . 11
3.1 Measurement of HRTFs . . . . . . . 11
3.2 Individualization methods . . . . . 13

3.2.1 MRA of Principal
Components . . . . . . . . . . . . . . 13

3.2.2 PCA weight estimation
using anthropometric
measures . . . . . . . . . . . . . . . . . 14

3.3 HRTF Evaluation . . . . . . . . . . . . . . 14
3.3.1 Objective Measures . . . . . . 14
3.3.2 Subjective Evaluation . . . 17
3.3.3 Listening Tests . . . . . . . . . . . 18

4 Materials and Methods . . . . . . . . . . . 21
4.1 Input Data . . . . . . . . . . . . . . . . . . . . . 21
4.2 Analysis of Mutual Informa-

tion of Distance Metrics . . . . . . . 22
4.2.1 Choice of Distance

Metrics for Listening
Experiment. . . . . . . . . . . . . . . 23

4.3 Just Noticable Difference
(JND) Experiment for Dis-
tance Metrics. . . . . . . . . . . . . . . . . . . 24
4.3.1 Experiment concept . . . . . 24
4.3.2 Test design . . . . . . . . . . . . . . . 25
4.3.3 Test Execution . . . . . . . . . . . 30

5 Results and Discussion . . . . . . . . . . . 32

5.1 Distance Metrics Selection
for JND experiment. . . . . . . . . . . . 32
5.1.1 Principal Component

Analysis . . . . . . . . . . . . . . . . . . 33
5.1.2 Factor Analysis . . . . . . . . . . 35
5.1.3 Correlation Analysis . . . . . 36
5.1.4 Conclusion . . . . . . . . . . . . . . . 40

5.2 Listening Test Findings. . . . . . . . 41
5.2.1 JND Test . . . . . . . . . . . . . . . . . 41
5.2.2 Additional questions

related to perceptual
attributes . . . . . . . . . . . . . . . . . 43

6 Summary and Outlooks . . . . . . . . . . 48
References . . . . . . . . . . . . . . . . . . . . . . . . 50

A Thesis proposal . . . . . . . . . . . . . . . . . . . 53
B Lists of Acronyms . . . . . . . . . . . . . . . . . 54
C Additional figures . . . . . . . . . . . . . . . . 55

viii



Tables / Figures

4.1. Example of Latin square ma-
trix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1. Range of distance metric val-
ues. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2. Explained variation by PC -
meanOverAll values. . . . . . . . . . . . 33

5.3. Highest loading for PCs -
perDir data. . . . . . . . . . . . . . . . . . . . . 34

5.4. Specific variation not ex-
plained by common factor
- meanOverAll values. . . . . . . . . . 35

5.5. Highest loading for factors
and specific variation -
perDir data. . . . . . . . . . . . . . . . . . . . . 36

5.6. Significant corr. higher than
|0.5|, perDir data, MRA to
Ideal PCA. . . . . . . . . . . . . . . . . . . . . . 39

5.7. Significant corr. higher than
|0.5|, perDir data, Real to
MRA PCA. . . . . . . . . . . . . . . . . . . . . . 39

5.8. Significant corr. higher than
|0.5|, perDir data, Real to
Ideal PCA. . . . . . . . . . . . . . . . . . . . . . 39

5.9. Combination of the indepen-
dent variables for the listen-
ing test. . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1. Melscale filter bank . . . . . . . . . . . . . .3
2.2. Illustration of ITD and ILD. . . . .4
2.3. Cone of confusion.. . . . . . . . . . . . . . . .5
2.4. Coordinate system in use. . . . . . . .6
2.5. Head-related impulse response. . .6
2.6. Magnitude spectrum of

Head-related transfer function. . .7
2.7. Ilustration of Voronoi Dia-

gram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1. Description of free-field

HRTF. . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Measurement setup for indi-

vidual HRTF. . . . . . . . . . . . . . . . . . . 12
3.3. Insertion of a new point into

Voronoi diagram. . . . . . . . . . . . . . . . 13
3.4. Loudness Level Spectrum Er-

ror. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5. Exemplary listening test us-

ing SAQI vocabulary. . . . . . . . . . . 18
3.6. Psychometric function.. . . . . . . . . 19
3.7. Ranking scales. . . . . . . . . . . . . . . . . . 20
4.1. Distance metric values for

different sides. . . . . . . . . . . . . . . . . . . 25
4.2. Audiograms of test subjects.. . . 26
4.3. 3AFC GUI. . . . . . . . . . . . . . . . . . . . . . 26
4.4. Overall difference between

stimuli.. . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5. Scales for localization and

coloration. . . . . . . . . . . . . . . . . . . . . . . 28
4.6. Experiment paradigm and

time expectation. . . . . . . . . . . . . . . . 28
4.7. Preselection of the stimuli. . . . . 29
5.1. Biplot of PCs for meanOver-

All values. . . . . . . . . . . . . . . . . . . . . . . 34
5.2. Biplot of FA for meanOverAll

values. . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3. Correlation plot - MRA to

Ideal PCA - Spearman’s c. . . . . 37
5.4. Correlation plot - Real to

MRA PCA - Spearman’s c. . . . . 38
5.5. Correlation plot - Real to

Ideal PCA - Spearman’s c. . . . . 38
5.6. Psychometric function, in-

tramodal comparison (Ideal),
ipsi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



5.7. Psychometric function, inter-
modal (Ideal to MRA) com-
parison, contra. . . . . . . . . . . . . . . . . . 43

5.8. Dependence of coloration/ lo-
calization on distance metric
values. . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.9. Dependence of coloration/ lo-
calization on different stimuli
source location. . . . . . . . . . . . . . . . . . 45

5.10. Dependence of coloration/
localization on different com-
parisons. . . . . . . . . . . . . . . . . . . . . . . . . 45

5.11. Dependence of coloration/
localization on mirroring of
the source stimuli. . . . . . . . . . . . . . . 46

5.12. Dependence of coloration lo-
calization on mirroring of the
source stimuli and source lo-
cation - ipsi. . . . . . . . . . . . . . . . . . . . . 46

5.13. Dependence of coloration/
localization on mirroring of
the source stimuli and source
location - contra. . . . . . . . . . . . . . . . 47

C.1. Correlation plot - MRA to
Ideal PCA - Pearson’s c. . . . . . . . 55

C.2. Correlation plot - Real to
Ideal PCA - Pearson’s c. . . . . . . . 56

C.3. Correlation plot - Real to
MRA PCA - Pearson’s c. . . . . . . 56

C.4. Psychometric function, in-
tramodal comparison (Ideal),
contra. . . . . . . . . . . . . . . . . . . . . . . . . . . 57

C.5. Psychometric function,
intramodal comparison
(MRA), ipsi. . . . . . . . . . . . . . . . . . . . . 58

C.6. Psychometric function,
intramodal comparison
(MRA), contra. . . . . . . . . . . . . . . . . . 59

C.7. Psychometric function, inter-
modal (Ideal to MRA) com-
parison, ipsi. . . . . . . . . . . . . . . . . . . . . 60

x



Chapter 1
Introduction

Head-related transfer functions (HRTFs) are often used in virtual audio scenes and for
medical purposes such as hearing aid fitting [1]. They are also used in psychological
research and psychoacoustics, e. g. regarding auditory selective attention [2]. HRTF
describes the head as an LTI system, more precisely as a frequency and direction depen-
dent filter. The incoming soundwaves on the ear are filtered in every direction based on
resonance, diffraction at a listener’s head and torso as well as based on interference and
reflection of the soundwaves. The goal of using HRTFs is to achieve the most realistic
impression of the audio scenes. Within this objective, individually measured HRTFs
perform better than HRTFs measured for an artificial head. However, the measuring
process is very complex and requires special equipment. Hence it might not be possible
to measure HRTF for every person individually. Many studies have been conducted in
order to individualize it, e.g. based on a person’s preference or morphology such as the
shape of the head and resonance properties of the pinna [3].

With different ways of obtaining individual or individualized HRTFs the need for
their comparison arose. This task is not intuitive as the visualization of HRTFs is
challenging due to its high dimensionality. The HRTFs may differ in spectral peaks
and notches for every direction. Objective measures (referred to as distance metrics)
allow for different ways of comparison. They can be mainly focused on directional
differences, frequency differences or they can take both into account [4–10]. So far, no
detailed analysis of the information provided by distance metrics has been conducted.
In this thesis, the relationship between different distance metrics will be examined
by different tools, such as correlation analysis, principal component or factor analysis
in order to eliminate a subset due to redundancy. Five direction dependent distance
metrics will be inspected in detail.

Based on findings from the analysis of interrelations and mutual information of the
distance metrics a few distance metrics providing the most diverse information will be
selected. We further hope to look for an audible threshold of these selected distance
metrics. For that purpose, a just noticeable difference (JND) listening test is proposed
and conducted. The listening experiment also focuses on finding a relation of the few
different distance metrics and human auditory perception. Subjectively perceivable at-
tributes of audible differences, coloration and localization, are examined in relationship
with the selected distance metrics.

Chapter 2 describes the basics of human auditory perception and binaural hearing.
HRTFs are introduced in the chapter, as well as mathematical methods used in this
thesis. Chapter 3 discusses the current research on binaural technology relevant to
the present work. That includes HRTF measurement and individualization, objective
and subjective measures for HRTF comparison and an overview of common listening
paradigms. Chapter 4 describes the input data and further is separated into two main
sections. The first section describes steps taken to analyse and reduce investigated ob-
jective distance metrics. Based on findings from this analysis (described in section 5.1)

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the listening experiment is proposed in the second section of this chapter. Results of
both parts of this thesis are presented and discussed in chapter 5. A summary and
suggestions for further work are then given in chapter 6.

2



Chapter 2
Theoretical Background

This chapter is concerned with describing the basics of human auditory perception as
perception of pitch and loudness. The basic principles of binaural hearing are also
described. Then, head-related transfer functions (HRTFs) and their directional com-
ponents directional transfer functions (DTFs) are introduced. Moreover, mathematical
principles used in this thesis are explained.

2.1 Human Auditory Percetion
Hearing – our auditory perception provides us with the possibility to communicate with
others and it helps us to orient in new events and environments. The acoustic signal
is not simply received by the human auditory system but also analyzed by hearing
organs and then transmitted to the brain, where it is further analyzed and interpreted.
Each sound event is therefore subjective and influenced by factors such as the pitch and
loudness leading to an overall perception of sound quality.

2.1.1 Perception of Pitch and Loudness
The human audible frequency range is approximately 20 Hz – 20 kHz. The sensation
of a sound wave’s frequency is called pitch. Pitch perception of the human auditory
system is highly nonlinear, this is thought to have their basis in cochlear filtering [11].
At low frequencies, the frequency is proportional to the perceived sensation. At higher
frequencies, the perceived sensation is not proportional. For reference tone fref = 8 kHz
the tone of 4 kHz is not perceived “half as high” but rather 1.3 kHz is [12].

Figure 2.1. Mel scale filter bank with 24 critical bands.

Mel (melody) is a unit of the perceived pitch. It was shown that the human auditory
system processes tones in frequency groups, so-called critical bands [12]. Their effect
can be described as a band-pass filter (BPF). In Figure 2.1 Mel scaled filter bank is

3



2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
shown with twenty-four critical bands. The critical bandwidth is frequency dependent.
It is approximately 100 Hz wide up to an audible frequency of 500 Hz, for higher
frequencies it greatly increases.

Similarly, to human pitch perception, there is also a difference between the actual
sound pressure level and the perceived loudness level. The relation between the per-
ceived loudness level and actual sound pressure level is described by a unit phon. It is a
unit of loudness for a sine wave. The loudness level of one phone matches sound pressure
level in decibels of similarly perceived 1 kHz sine wave [13]. Therefore 60 phons means
“as loud as 60 dB, 1 kHz wave”. The relation between the loudness level is frequency
dependent. Furthermore, the loudness level is a non-linear metric, for that reason the
unit sone was introduced. In this scale for each 10-phon increase, the loudness in sones
almost exactly doubles [14].

2.1.2 Binaural Hearing

Binaural hearing, the ability to hear with two ears, is very important to humans for
sound localization. Temporal and spectral disparities between the signal in the two
ears provide cues about the spatial location of the sound. The most important binaural
cues are the interaural time difference (ITD) and the interaural level difference (ILD),
see Figure 2.2.

Figure 2.2. Illustration of ITD and ILD occurrence in free-field. Temporal and spectral
disparities between the signals in the two ears provide cues about the incidence direction

of the incoming sound [15].

ITD refers to the different time delays of sound wave’s arrival to left and right ear.
ILD refers to different sound pressure level perceived by each ear, the sound pressure
levels drops at the contralateral side ear compared to ipsilateral side ear. The duplex
theory states ITD would be more relevant in lower frequencies (originally only below
125 Hz) while ILD would be relevant for higher frequencies (originally from 500 Hz
onwards) [16]. ILD is irrelevant for lower frequencies as their long wavelength is not
influenced by the body. ITDs should be relevant only for low frequencies as higher
wavelength shall allow for direct detection of phase delays between each ear’s signals.
Hovewer, similar effect has been shown in higher frequencies due to amplitude modula-

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Head Related Transfer Function

tion. [17] Information of ITD and ILD from the whole spectrum are combined to enable
horizontal localization [18].

Only changes in ITD and ILD, which shall be responsible for human localization
in the horizontal plane, shall lead to detectable differences in positions. However,
localization is also partially enabled by so-called monaural cues which are strongly
influenced by the listener’s anthropometry. An example of limitation, when describing
sound localization, is the; “cone of confusion” [19], see 2.3.

Figure 2.3. Illustration of a “cone of confusion”, the ambiguity of localizing of the sound
source while using only ITD and ILD. The cone is centered on the interaural axis expand-
ing from each ear entrance, representing on its surface locations of the same interaural

differences. Differentiating between these directions is difficult. [15, 19].

2.2 Head Related Transfer Function
The effects described at 2.1.2 can be summarized by the head-related transfer function.
Head-related transfer functions (HRTFs) are often used in virtual audio scenes and for
medical purposes such as hearing aid fitting. HRTF describes the filter process of the
incoming sound on the ear by reflection, diffraction, interference and rezonance [17].
It also describes the head as an LTI system, more precisely as a frequency and direction
dependent filter (1).

H(f, θ, ϕ) (1)

The HRTF contains prominent spectral features, such as peaks and notches, that
vary according to source direction. Playback of a sound that has been filtered with
individual’s HRTF leads to more accurate localization of the sound source. On the
contrary, playback of a sound filtered with HRTF from different subject, the virtual
acoustic scene is less realistic and localization less acurate. [20].

Figure 2.4 describes coordinate system in use. HRTFs consist of directional and
frequency-discrete complex values, that can be subdivided into a magnitude and a phase
spectrum. Hence HRTF has coefficients for each ear, direction and frequency. Mean-
ingful comparison method between HRTFs has been in the interest of research for many
years. Different distance metric for comparison of HRTFs are in use. [4–5].

5



2. Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.4. Head-related coordinate system. Theta θ describes zenith (elevation), ϕ the az-
imuth angle. The origin is located at the center of the head. Both ears lie on the y axis. The
head faces towards the positive x direction, where the azimuth angle ϕ and the elevation

angle θ both equal zero. [21].

HRTF can be displayed in freguency as well as time domain. The time-domian
counterpart is called head-related impulce response (HRIR). In HRIR binaural cues
become evident, see Figure 2.5. In magnitute spectrum of HRTF monoaural cues and
ILD are visible, see Figure 2.6.

Figure 2.5. Head-related transfer function for lateral direction (ϕ = 90° θ = 0° ) in time
domain - HRIR shows a time delay (ITD) and level offset (ILD) due to head shadowing. [21].

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Mathematical Principles

Figure 2.6. The magnitude spectrum of Head-related transfer function shows frequency
dependent level offset (ILD) for higher frequencies as well as a direction- and subject-

specific peaks and notches. [21].

2.2.1 Directional Transfer Function

The directional components of head-related transfer functions can be referred to as
directional transfer functions (DTFs). The DTF can be calculated by dividing the
complex transfer function measured at each location by the complex common compo-
nent Hcom. Therefore only information for specific sound-source location are provided,
separating it from common component for all directions. [20].

DTF (f, θ, ϕ) = H(f, θ, ϕ)
Hcom(f) (2)

2.3 Mathematical Principles
Principal Component Analysis (PCA), Factor Analysis (FA) and Pearson’s correlation
coefficient will be introduced. PCA, a dimension reduction technique, can be in use
of finding the necessary number of distance metrics given by the number of necessary
dimensions. FA can be used for finding connections between different distance metrics.
Pearson’s correlation is usually used for determining a linear relationship between data.
Spearman’s correlation is used to determine a monotonic relationship between data.

Voronoi diagram, which can be used as a method for computing weights for unequally
sampled points, will be also introduced.

2.3.1 Principal Component Analysis

The main principle of PCA is the projection of data into reduced space defined by prin-
cipal components. Principal components are a linear combination of original data sorted
by variance. The first few principal components contain most of the information from
original data, which allows us to reduce the dimension of the dataset. PCA does so
by solving the Eigenvector-Eigenvalue problem for the correlation matrix of the dataset
X ∈ Rnxp for p variables and n observations. [22–23]

PCs are found as defined ( [23], nomenclature after [21]), see (3):

(φ− λI)V = 0 (3)
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where φ is pxp covariance matrix of X, the vector of eigenvalues λ ∈ RpandV ∈ Rpxp

is the eigenvector containing PCs. V contains eigenvalues sorted from the highest to
the lowest which signs the variance of data in directions defined by PCs.

In order to project X into new coordinate system, weighting is performed. W is nxp
weight matrix:

V = XW (4)

The data can be further converted to original space after preserving only important
PCs (usually preserving 95 % of the variance of original data or keeping PCs with
eigenvalues greater than one):

X = WV −1 = WV T (5)

eigenvector matrix V is orthogonal and therefore it’s inverse and transpose are the same.

2.3.2 Factor Analysis

Factor analysis (FA) is a multivariate statistical technique for finding associations be-
tween observed variables. FA introduces latent variables, referred to as factors, that de-
termine to some extent the values of the observed variables. Factor loading is a weight
indicating the direct influence of a factor on a variable. [24]

FA is well-suited to psychology, or in our case, evaluating spatial audio quality.
In psychology concepts such as “intelligence” (spectral coloration or distance when
evaluating spatial audio quality) can be observed only indirectly [24]. Spearman noted
in 1904 that if an individual performs well on intelligence-related task, he also inclines
to do so on similar tasks. He introduced the general ability factor, which later developed
into a general statistical procedure [25].

FA explains observed correlations in term of latent factors, PCA is a data reduc-
tion technique, where component scores represent a linear combination of the observed
variables weighted by eigenvectors.

The factor model [24] declares that conditional expectation of variables X is a linear
function of factors ξ:

E(X|ξ) = Λξ (6)

where X ∈ Rpx1 vector of random variables with zero means, ξ ∈ Rqx1 is a vector of
random factors and Λ ∈ Rpxq matrix of factor loadings.

The model assumptions are that variables are uncorrelated and the data are stan-
dardized with 0 mean and 1 variance. The covariance matrix Σ of the variables is
defined as [24]:

Σ = ΛφΛ′ + Ψ (7)

where φ is correlation matrix, Ψ = V ar(X|ξ) is conditional covariance matrix. When
holding model assumptions: Ψ = V ar(ε), where ε = X − E(X|ξ) is a residual vector.
Equation (7) shows, that each variable’s variance is the sum of two sources. The first one
is denoted as a variable’s communality hi

2 = V ar(E(xi|ξ)) and is given by ith diagonal
element of ΛφΛ′. The second source Ψ is referred to as a variable’s uniqueness. A special
case occurs if the factors are uncorrelated (φ = I) and several equations simplify.

Maximum-Likelihood Factor Analysis
For maximum-likelihood (ML) estimation the assumption of multivariate normal dis-
tribution must be met. The estimation of loadings and uniqueness are obtained from
minimizing following function [24]:
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F (Λ) = log|Σ|+ trace(SΣ−1) (8)

where S denoted sample covariance matrix and Σ = ΛΛ′+Ψ (factors are assumed to
be uncorrelated). Minimizing equation (8) w.r.t. λ and ψ requires iterative numerical
methods. There are also other approaches for solving FA such as Principal-Axis FA. For
determining the number of factors with the ML approach likelihood-ratio test can be
used to test whether a specific number of factors can explain the sample covariance. The
drawback is, that number of factors will be overestimated if the factor model is only ap-
proximately true (e.g. with a large sample size), also type-one error may highly increase
due to multiple testing when the number of models is estimated varying the number of
vectors. There are two other commonly used methods for determining the number of
factors. Both rules apply when using the sample correlation matrix R rather than sam-
ple covariance matrix S to fit the model. The first rule chooses eigenvalues of R greater
than 1, the second rule is a visual plotting procedure, where eigenvalues are plotted
against their rank. Only the factors with the “largest” eigenvalues are kept. [24]

2.3.3 Pearson’s Correlation Coe�cient
The correlation coefficient between two random events is closely related to measures
of correlation. Here Pearson’s and Spearman’s correlation coefficient will be described.
Other correlation coefficients and measures of correlation can be found in [26]. The
formula for Pearson’s correlation coefficient ρ between two random variables X and Y
can be written as:

ρX,Y = E(X,Y )− E(X)E(Y )√
E(X − E(X)2)

√
E(Y − E(Y )2)

(9)

2.3.4 Spearman’s Correlation Coe�cient
The formula for Spearman’s correlation coefficient ρ is Pearson’s correlation between
the observation ranks R(xi)n

1 , R(yi)n
1 and can be written as [26]:

ρX,Y =
∑n

k=1[R(xi)− R̄x][R(yi)− R̄y]√∑n
k=1[R(xi)− R̄x]2

∑n
k=1[R(yi)− R̄y]2

(10)

2.3.5 Voronoi Diagram
A Voronoi diagram separates a plane into regions (usually polygons) such that every
point in the region is closer to a measurment point than to any other measurement
point. These regions are also called Thiessen polygons. Thiessen polygons determine
an area where prediction of characteristics at unsampled locations are provided by the
nearest measurement point. If measurement points lie on a grid, then polygons are
all equal. If the data are irregularly spaced then the result is an irregular grid of
polygons. [27–28]

General construction of Voronoi Diagram:

. Every three sampling points form a triangle on which no other sampling point lies.. These three points lie on a circle, the center of which is a node of the Voronoid
diagram.. The Voronoi points, which lie around a sampling point, span a polygon, the area of
which corresponds to the weight of the sampling point.
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The Delaunay triangluation is dual to the Voronoi diagram (in 2D space) in the graph

theoretical sense [27], see Figure 2.7. In this project a Spherical Voronoi diagram is
used to determine the weights for unequally sampled HRTFs.

Figure 2.7. Example of Thiessen polygons (thick lines) and the equivalent Delaunay tri-
angulation (thin lines). [28].
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Chapter 3
State of the Art

This chapter discusses current research on binaural technology relevant to this thesis.
A brief introduction to HRTF measurement is given as well as to a chosen HRTF
individualization method, Multiple regression analysis (MRA) of principal components,
which plays an important role in the present work. Objective and subjective measures
to evaluate and compare HRTFs are presented. Finally, a short overview of common
listening tests is given.

3.1 Measurement of HRTFs
Generic artificial head HRTF can be used for auralization of acoustic virtual scenes
as the measurement of individual HRTFs can be exhausting and time-consuming.
Nonetheless, this leads to localization errors such as front-back confusion and in-head
localization. HRTF measurements summarize the direction-dependent acoustic filtering
of a free-field point source due to the head, torso, and pinna [29]. An HRTF is ideally
measured in an anechoic chamber over a discrete spatial grid. It can be also described
as a free-field transfer function, which describes the sound pressure measured at the
entrance of the aural canal in relation to the sound pressure, measured with the same
sound source at the central point of a person’s head (the person is absent during the
measurement), see Figure 3.1. [17] The basic measurements method includes the move-
ment of one loudspeaker around the subject to each desired direction. High resolution
can be achieved, however, this method is highly time-consuming (up to 72 hours for
1° resolution) and undesirable for measurement with individual subjects. [17]

Figure 3.1. Depiction of free-field HRTF. [17].

Multiple fast HRTF measurement setups have been developed. One design uses
an arc with loudspeakers as shown in Figure 3.2. Measurement can, therefore, be
reduced below 10 minutes with a resolution of 2.5° with elevation 0° to 160°. [30] Further
development of the arc at the Institute for Hearing Technology and Acoustics makes use
of a continuous rotation to omit time periods exclusive for movement. The developed arc
consists of 64 neighboring loudspeakers with a flat frequency responses between 450 Hz
and 18 kHz. The speakers are integrated into the surface of the arc which eliminates
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the reflection from neighboring loudspeakers. Using this construction, placement of
more loudspeakers using less space is made possible. The construction also allows
rotating around the participant and it is possible to conduct stepwise and continuous
measurements. The latter is proven to invoke fewer movements with participants due
to shorter duration. [6]

Figure 3.2. The HRTF measurement arc of the Institute for Hearing Technology and
Acoustics. The IHTA artificial head is used for the measurement. (Taken from [6].)

Spatial interpolation or weighting is of use for uneqally sampled HRTFs, as well as
for reposition of sampling points due to unconscious movements. Another advantage of
spatial interpolation is the ability to estimate HRTF values for directions that were not
determined by measurement [31]. In [31] Spherical Harmonics Decomposition Method
(SHD) is compared to other methods feasible for calculating HRTFs at arbitrary field
points. SHD describes spherical objects as the weighted sum of spherical basis functions.
It originates from solving Laplace’s equation in the spherical domain.

Another method uses geometrical principles of the Voronoi diagram as mentioned in
section 2.3.5. A Voronoi diagram is used to determine optimal triangulations. Con-
verting this model to HRTF reconstruction, a frequency or time-dependent vector cor-
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responds to each sampling point. The task is to identify the weight for a new point
in an unsampled location, which is equivalent to inserting a new polygon as shown
in Figure 3.3. This task is also called Sibson interpolation and is described in [32].
Interpolation on a surface of a sphere is introduced by Brown [33].

Figure 3.3. Insertion of a new point into Voronoi diagram, the polygon of new inserted
point is highlighted (taken from [32]).

3.2 Individualization methods
Due to complex measuring conditions, it is not always possible to measure HRTF for ev-
ery person individually, therefore many studies have been made in order to individualize
it e.g. based on a person’s preference or morphology such as the shape of the head and
resonance properties of the pinna [4–5, 3]. There are methods that perform changes on
existing non-individual HRTF and that split HRTF into components and combine them
using weights exist. Anthropometric individualization of HRTFs using MRA of prin-
cipal components offers a compromise between individual and non-individual HRTFs
and offer a solution on how to quickly adapt HRTF to a certain listener.

3.2.1 MRA of Principal Components
Principal Component Analysis, as described in 2.3.1 is a dimension reduction technique.
It allows in combination with multiple regression analysis to estimate individual HRTFs
based on individual anthropometry. For the PCA model, every frequency bin (e. g.
129 bins) of the single-sided frequency spectrum can be understood as a variable. The
accuracy of PCA increases with the size of input data. For that purpose, a database
consisting of HRTFs of multiple individuals is used as an input to the analysis. Likewise,
a mirrored set of HRTFs is provided in order to obtain twice as much data for the
analysis. The left and right sides of the human head are not perfectly symmetrical, so
HRTFs are not completely symmetrical around the median plane. Yet we can expect
a symmetrical result when the average is built over a large group of individual HRTFs.
Therefore it is feasible to use a mirrored set of HRTFs. [3]

A linear combination of principal components with direction and subject-specific
weighing is used to reconstruct HRTFs. The PCs are sorted by the variance of the
original data. The number of components required to reconstruct a HRTF is given by
the threshold of 90 % cumulative variance of the original data [34]. PC1, which accounts
for the highest variance in the input data, shows a maximum that corresponds to the
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first resonance frequency of the cavum concha at around 5 kHz. All other PCs show
at least one minimum and one maximum. The number of PCs used for reconstruction
determines the detail of the resulting HRTF. The required number of PCs is however
dependent on the characteristic of input data. [3]

HRTF reconstruction in the frequency domain can be based on magnitude or com-
plex spectra. When only magnitude spectra are used for the analysis, only real PCs are
obtained and only absolute magnitude HRTF spectra can be reconstructed neglecting
the phase information. An additional phase estimation is then needed. Hence, the min-
imum phase for given magnitude spectra is determined and a suitable ITD phase added,
along with an (arbitrary) runtime phase to ensure causality of the filter. An overview
of different methods for ITD estimation can be found in [35]. Complex spectra contain
both magnitude and phase information. The drawback of using complex spectra is the
higher number of PCs required to reconstruct HRTF accurately. [3]

3.2.2 PCA weight estimation using anthropometric measures
To determine HRTFs of subjects that are not included in the original database deter-
mination of weights is necessary. These weights are derived from anthropometric data,
where a linear relationship between their geometric dimension and psychical effects at
the ear is assumed. The anthropometric dimension αi and each of the weights w (depen-
dent on subject, direction and ear) of the matrix W can be used for regression analysis.
Weights of a subject j can be expressed by a linear combination of anthropometric
features αj,i and regression coefficients βi [3]:

wj = β0 +
nanthro∑

i=1
βiαj,i (1)

The anthropometric features are expressed by a vector αj = [1 αj,1...αj,anthro] and
the regression coefficients by a vector βj = [β0...βanthro]′. The necessary amount of
anthropometric features can be further reduced as some of the measures are of low
importance. The determination of the suitable number of the features can be based
on magnitudes of the regression coefficients βi. Alternatively the determination can
be based on collinearities between features where the features with the lowest pairwise
correlation will be kept. [3]

3.3 HRTF Evaluation

3.3.1 Objective Measures
There are differences in individual HRTFs such as peaks and notches, which relate
to an individual’s anthropometry. To be able to compare them there is a need for
objective metrics. These objective metrics are referred to as distance metrics, of which
many have been introduced in different studies. Distance metrics can be of interest for
many applications, for example, to compare HRTFs of a single listener in different setups
or a comparison of individualized HRTFs. It also enables the comparison of intermodal
HRTFs, such as the comparison of individual HRTF to individualized HRTF. Some
examples of distance criteria can be [4–10]:

. Mean Squared Error (MSE Criterion),. Critical Bands Mean Squared Error (CB-MSE),. Inter-Subject Spectral Difference (ISSD),
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. Correlation Distance (CD),. Mel-Frequency Cepstral Distortion (MFCD),. Spectral Difference (SD),. The Loudness Level Spectrum Error (LLSE Criterion) ,. Fahn Criterion,. and many more.

They can be mainly focused on directional differences (MSE, CB-MSE, ISSD, CD
and MFCD), frequency differences (SD) or they can take both into account (LLSE).
Directional distance metrics quantify spectral changes for each direction individually
whether the other metrics quantify differences for given frequency bins across all direc-
tions. The relationship between different directional distance metrics will be examined
by different tools, such as correlation analysis, principal component or factor analysis
in order to eliminate some metrics due to redundancy. A smaller set of distance met-
rics will be manageable regarding performing a subjective listening experiment with
participants. We further hope to look for a correlation between distance metrics and
subjective attributes of audible differences.

Mean Squared Error
One of the most obvious criteria that can be used for comparison of HRTFs is Mean
Squared Error which is defined as [4]:

DMSE = 1
N

N∑
i=1

[H1(i)−H2(i)]2 (2)

where H1(i) is the magnitude spectrum of one HRTF and H2(i) that of another
HRTF. N is the number of FFT points. The MSE is a symmetric criterion and it’s
value can be determined for every direction. A single-value distance metric is then
achieved by averaging over all directions.

Critical Bands Mean Squared Error
The changing frequency resolution (logarithmic behaviour) of a human auditory sys-
tem can be taken into account when computing MSE criterion. As stated in 2.1.1 the
frequency resolution for low frequencies is higher than for high frequencies. It is there-
fore approached to lower the contribution of high frequencies part to the metric by
frequency weighting. Frequency weights α(i) are computed as the inverse of the critical
bandwidth [4]:

α(i) = 1
a0 M (fi)

(3)

where a0 is a normalization value [4]:

a0(i) =
N∑

i=1

1
M (fi)

(4)

ensuring that [4]:
N∑

i=1
α(i) = 1 (5)

.
The Critical Bands Mean Squared Error (CB-MSE) which includes frequency weight-

ing is therefore computed as [4]:
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DCB−MSE = 1
N

N∑
i=1
{αi[H1(i)−H2(i)]}2 (6)

By averaging CB-MSE over all directions a single value for comparison of two HRTFs
is then determined.

Inter-Subject Spectral Di�erence

The directional components of HRTFs are referred to as DTFs as stated in 2.2.1. DTFs
vary systematically between subjects in different frequency features for every direction.
Since they subtract information common to all directions, they focus on differences be-
tween the fine structures of HRTFs. The inter-subject spectral difference was introduced
by Middlebrooks [20] and is defined as [3]:

DISSD = 1
ndir

ndir∑
i=1

var

(
20log10 |HRTF1,if(j)|

|HRTF2,if(j)|

)
(7)

The variance of the quotient ot absolute values corresponding to frequency bins f(j)
between 1 and 13 kHz is determined for each direction i. An averaging over all directions
is then needed in order to obtain a single value metric to compare two HRTF sets.

Mel-frequency Cepstral Distortion

Mel-frequency Cepstral Coefficients (MFCC) are widely used in speech processing ap-
plications. They take into account human auditory perception by using the mel-scale.
MFCCs are obtained using Cosine transform. The distance metric making use of
MFCCs is Mel-frequency Cepstral Distortion and can be defined as [5]:

DMF CD = 1
NC

NC∑
i=1

(Mk − M̂k)2 (8)

where Mk and M̂k are MFCCs determined for the HRTFs and NC is the total number
of the coefficients. This metric is computed for every direction, one value to compare
two HRTFs can be achieved by averaging over all directions.

The Loudness Level Spectrum Error

The Loudness Level Spectrum Error is a distance metric based on evaluation of virtual
source quality using binaural auditory model as proposed in [10]. The basis of the
model lies in the inter-aural cross-correlation and shall estimate perceived localization
cues and coloration.

A schematic model can be found in Figure 3.4 and consists of the following steps [36].
As excitation, pink noise is filtered with both HRTFs. Pink noise is used because it
yields average spectral properties. The filtered noise is passed through a grammatone
filterbank (GTFB) with 42 bandpass ERB (equivalent rectangular bandwidth) channels.
For each channel, the resulting loudness is calculated.
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Figure 3.4. Binaural auditory model as described in [10], taken from [37].

In this thesis, the distance measure has been adjusted to indicate changes in the level
difference as in [37]. This has been achieved by computing the variance in the frequency
or in the spatial domain. The results are two distinct distance metrics. A single metric
can be then obtained by averaging over all frequencies or directions, respectively.

3.3.2 Subjective Evaluation

The aim to create realistic virtual audio scenes is dependent on correctly reproduced
binaural cues which are embodied in HRTFs. The quality of the reproduced sound can
be at best assessed by a listening test. With regard to more complex virtual scenes,
the perceptual impact of HRTFs can go beyond simple localization. It is therefore still
a matter of research to find a suitable set of perceptual attributes [38].

For the perceptual evaluation of virtual audio rendering quality Spatial Audio Qual-
ity Inventory (SAQI) has been developed “to overcome limitations with respect to the
relevance and completeness of vocabularies” [39]. Auditive qualities mentioned in differ-
ent studies are spectral coloration, spaciousness, localizability, steadiness of movements,
source width, loudness, loudness balance, distance, internalization vs. externalization,
impulse-like artifacts, and dynamic responsiveness. However, for a comprehensive per-
ceptual evaluation of the virtual environment, the existing vocabulary did not appear
sufficiently complete. The vocabulary which consists of 48 descriptors of auditive quali-
ties, that can be roughly sorted into eight categories (timbre, tonalness, geometry, room,
time behavior, dynamics, artifacts, and general impressions) has been proposed. Some
attributes are closely related to spectral properties of an audio signal, other attributes
reflect higher-order psychological constructs (e.g. clarity, naturalness, presence) [39].
An exemplary listening test procedure implementing SAQI vocabulary is depicted in
Figure 3.5. The listening test starts with comparing selected stimuli to another stimu-
lus or reference. The participant is first asked whether they perceived any difference at
all. In case they did not perceive any difference the test stops here, otherwise selected
auditive qualities can be rated. Auditive qualities can be selected with regard to the
research interest or with respect to the used stimuli [39]. This thesis will interrelation
of different distance metrics and human auditory perception.

17



3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 3.5. Exemplary listening test using SAQI vocabulary [39]. The procedure corre-
sponds to the implementation in the free listening test software WhisPER [40].

3.3.3 Listening Tests

Listening experiments allow the transfer of subjective perception of audio scenes to
quantitative measures. These measures establish a link between subjective evaluation
and perceptual parameters (e. g. how different metrological values are perceived or
how this connection influences the acoustic impression). [17] “A listening experiment
is a scheduled, repeatable examination, conducted under variable conditions with test
persons, who assess their acoustic perception according to given instructions” [17].
These assessments are usually acquired verbally or by motoric reactions.

One of the possible listening tests can be a just noticeable difference (JND) test. In
other words, a listening test to determine threshold of audibility between two different
stimuli. Another possible listening procedure can include scale assessment with different
attributes in relation to stimuli. [17]

An inferential model that is often applied in detection tasks such as listening ex-
periments is a psychometric function. It can model a probability of a “yes” answer in
relationship with a selected feature of physical stimuli, in this case, acoustic stimuli.
Therefore it can help to determine a threshold of examined acoustic measure. The
result is linked to a linear combination of predictors, using a sigmoid link function. [41]

Depending of the study design 50 % point can correspond to the threshold of a
likelihood of 50 % for audibility, while in some paradigms, e.g. the 72 % point must
be applied to account for correct guesses. An example of the psychometric function is
presented in Figure 3.6.
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Figure 3.6. Psychometric function example for 3AFC test, taken from [21].

Various approaches to evaluate stimuli exist. The description of classical evaluation
methods can be found in [42]. They include a method of limits, method of adjustment
and method of constant stimuli. Another method allows evaluating more stimuli at
the same time. It is referred to as n-alternative forced-choice (nAFC) where n is the
number of stimuli being compared. The subject is presented with n stimuli and is
forced to choose between them based on the selected criteria. For 3AFC experiment, the
participant is presented with three stimuli and is asked to determine the odd one among
the others. However, the participant is not provided with the option “I don’t know”.
This guess rate needs to be taken into account when evaluating the experiment. [43, 17]
For different test approaches or paradigms, the slope of psychometric function changes.
E.g. for the yes-no paradigm, the slope is steeper which allows for more precise threshold
detection, yet it is highly sensitive to “the position and stability of listeners’ response
criterion”, an area in which nAFC test outperforms the yes-no paradigm, even though
3AFC experiment might be comparatively time-consuming. [43]

For the common listening test, several stimuli are pre-selected based on discrete
levels of selected criteria and presented to the participant. Every presented stimulus
is referred to as a trial. How many trials and how are they composed is part of the
test design and strategy. The levels of the criteria shall cover the range of the slope of
the psychometric function. For the 3AFC test, the T50 threshold is determined by the
point of 2/3 of trials answered correctly. Adaptive methods may allow for more precise
threshold determination as every next level of the presented trial is choosen based on
the previous answer of the participant. In consequence to that, no prior knowledge
regarding the threshold is needed. [43, 17]

By listening experiments, different scaling methods can be of use to help determine
perceptual attributes of the stimuli [43]. Scaling methods can be divided into direct
and indirect scaling, where indirect scaling is usually more demanding and should be
preferrably used in laboratory experiments instead of field studies. [17] Multiple scales
options come into consideration based on data’s characteristics. The typical scales levels
are nominal, ordinal, interval and ratio scales and they can differ in their properties.

One of the sub-classes of scaling methods are rating methods which present the test
subject with questionnaire after playback of the acoustic stimulus. Different unipolar
and bipolar scales can be utilized as seen in Figure 3.7. They can be continuous as well
as discrete. For rating methods, the reference stimulus always needs to be taken into
account in order to minimize bias. In order to align the reference for all participants,
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a common reference frame can be introduced. However, there exist a lot of possible
biases that are discussed in [44–45].

Figure 3.7. Example scales to assess stimuli (modified and taken from [17]).
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Chapter 4
Materials and Methods

The practical part of the thesis consists of two main parts: In the first part, distance
metric selection for further analysis is discussed. The approach for analysis of mutual
information shared between mentioned distance metric is described as well as the se-
lection of distance metrics to be examined in a listening experiment. The second part
focuses on the design and implementation of the listening test.

4.1 Input Data
In this thesis, the analysis of HRTFs distance metrics’ mutual information, as well
as design of JND listening experiment was conducted on HRTFs from ITA HRTF-
database [46]. HRTFs of 47 subjects were then utilized. The resolution of HRTFs is
5° x 5° , with limited zenith angle from 0° to 160° which results in 2304 directions.
Three datasets using ITA HRTF-database were considered for the analysis:

. Real measured HRTFs.. Reconstructed HRTFs, using “ideal” weights PCA.. Reconstructed HRTFs, using MRA of principal components with “reconstructed”
weights.

The reconstruction methods are described in section 3.2.1 and in [3]. “Ideal” weights
reconstructed HRTFs can be determined only for subjects whose individual HRTF is
in the database. They usually serve as data compression approach. Individualized
HRTF with “reconstructed” weights using individualization method MRA of principal
components can be on the other hand computed for any arbitrary subject whose an-
thropometric features are known. All reconstructions were implemented in MATLAB
with the use of signal processing tools in ITA-toolbox [47]. In this thesis, three HRTF
datasets for the same subjects can be therefore compared. Each subject has real mea-
sured HRTF, and two reconstructed HRTFs, one with “ideal” weights, the other with
“reconstructed” weights. The distances were computed between left ear data.

For the reconstruction with “ideal” weights 23 PCs were used for all 2304 directions.
For the reconstruction with “reconstructed” weights anthropometric features are uti-
lized to determine weights for the MRA of principal component procedure. A set of 6
features was chosen to estimate PC weights using the minimum correlation approach [3].
The reconstruction was performed on magnitude frequency spectra, therefore only real
PCs were obtained and the phase information was neglected.

For above-mentioned datasets various distance metrics can be computed. The dis-
tance metrics can be determined for comparison of HRTFs of the same modality (e. g.
reconstructed HRTF of one subject to reconstructed HRTF of another subject) and
for comparison of HRTFs of different modalities (e. g. real measured HRTF to recon-
structed HRTF). For purpose of this thesis the datasets will be referred to as: real
measured HRTFs - Real HRTF, reconstructed HRTFs, using “ideal” weights PCA -
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Ideal PCA HRTF; reconstructed HRTFs, using MRA of principal components with
“reconstructed” weights - MRA PCA HRTF.

To analyze the interaction and mutual information of different distance metrics for
HRTF comparison, the HRTFs of different modalities were used. The following inter-
modal comparisons were taken into account:

. Real HRTF to Ideal PCA HRTF for the same subject.. Real HRTF to MRA PCA HRTF for the same subject.. Ideal PCA HRTF to MRA PCA HRTF for the same subject.

For design of the JND listening experiment intramodal comparisons as well as inter-
modal comparisons of HRTF datasets were considered. A subset of comparisons was
chosen, as discussed in section 4.3.2.

. Intermodal comparison:

• Real HRTF to Ideal PCA HRTF for the same subject.
• Real HRTF to MRA PCA HRTF for the same subject.
• Ideal PCA HRTF to MRA PCA HRTF for the same subject.

. Intramodal comparison:

• Real HRTF for different subjects.
• MRA PCA HRTF for different subjects.
• Ideal PCA HRTF for different subjects.

4.2 Analysis of Mutual Information of Distance Metrics
Many objective distance metrics have been introduced in an attempt for useful com-
parison of HRTFs. Comparison of HRTFs may be of interest to compare HRTF of
single listener in different setups or for comparison of individualized HRTFs. Distance
metrics can be focused on directional differences in frequency spectra magnitude and
phase spectra or on overall frequency differences. Nine different distance metrics were
examined in [37], where also more detailed descriptions of the measures can be found.
The computation of selected distance metrics used for more detailed inspection in this
thesis were described in section 3.3.1, that are MSE, CB-MSE, ISSD, MFCC and LLSE
varied in spatial domain. That means that only distance metrics focused on directional
differences were considered, i.e. quantifying the spectra error within discrete direc-
tions. Two of these metrics (MSE and ISSD) display mostly numerical errors between
the pair of HRTFs, the other three distance metrics (MFCC, CB-MSE and LLSE) rely
on psychoacoustic effects.

The most fundamental approach, the mean square error (MSE) introduced in [4], is
rarely used for HRTF comparison. It provides wider range of values than any other
considered metric for equal HRTF variations, however Bondu et al. [4] reports that
MSE performs well for clustering purposes.

ISSD defined by Middlebrooks [20] focuses on the differences between the fine struc-
ture of HRTFs as the information common to all directions is omitted when subtracting
DTF. According to [20], ISSD shall correspond well with virtual localization of par-
ticipants. ISSD was originally computed up to 13 kHz, to enable comparison to other
distance metrics it is determined for whole audible frequency range.
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The intuitive approach to include psychoacoustic effects is the CB-MSE measure
introduced in [4]. It includes frequency weighting resembling critical bands. Critical
bands shall follow the changing frequency resolution of the auditory system.

The measure MFCD makes use of mel-frequency cepstral coefficients (MFCCs) which
are widely used in automatic speech recognition. Hovewer, in [5] the measure was
considered for HRTFs clustering and interpolation. It was shown to be suitable. MFCCs
are useful in separating the periodic parts of the signal from additive noise and hence
in representing the envelope of the signal. MFCD could be recognized as approach
complementing ISSD which focuses more on differences in fine spectral structure.

Timbre is mostly defined as qualities of sound that help distinguish it “from other
sounds of the same pitch and volume” [48]. It could be described as changes in volume
distribution in auditory bandpass filters. The differences in timbre between stimuli are
referred to as coloration. The measure investigating coloration changes in the present
work shall be LLSE as defined in [36]. It computes disparities in loudness level for each
direction and for each gammatone filter. The metric values strongly depend on the
excitation signal, , e.g., pink noise can be used, as done in the original study. In this
thesis it was generated using ITA-toolbox [47] function.

All the above-mentioned distance metrics provide a distance value for each direction.
In order to obtain one distance metric value, the average over all directions needs to be
computed. Weighing for unequally distributed spatial sampling of HRTFs needs to be
considered when determining the mean. For that purpose spherical Voronoi was used
to compute the weights for each direction. The distance metrics were computed for the
left ear data.

The analysis of the interaction and mutual information between the mentioned dis-
tance metrics was performed on the set of directional distance metric values between
HRTFs as well as on the set of mean distance measures, where there is only one dis-
tance metric between a pair of HRTF sets. That results into a 5 x 47 matrix. For
the directional distance metric values, there are 2304 values between pair of HRTFs as
HRTFs used for the analysis were measured for 2304 directions. That results into five
47 x 2304 matrices one for each of the five examined distance metrics, where 47 is the
number of subjects. The analysis was then done on 5 x 2304 matrix for each person,
i. e. five different distance metric values for each direction. For the analysis purposes,
PCA, FA and correlation analysis were used. Mutual information and interaction of
above-mentioned metrics was examined.

4.2.1 Choice of Distance Metrics for Listening Experiment
The next objective was to reduce the number of given metrics to a smaller set of
measures suitable for a listening experiment. Based on findings from analysing mutual
information metrics which cover the most information, regarding differences between
different sets of HRTFs are inspected in the listening experiment. Selected metrics shall
cover differences in the spatial and spectral domain.

Principal component analysis projects data into space defined by principal compo-
nents. PCs are a linear combinations of original data sorted by variance, therefore the
first few principal components contain the most information from the original data. It
is possible to determine which variables (distance metrics) contribute the most to the
first few PCs by noting which variables show the highest values (loadings) for the given
PCs coefficients. Usually, the number of variables that explain at least 95 % variance
of the original data shall be kept, see Section 2.3.1.

Factor analysis introduces latent variables (factors) that can explain associations
between observed variables as is described in Section 2.3.2. The direct influence of
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factors on a variable is indicated by determining loadings of observed variables for the
latent factors. Factor loading shows the variance explained by the variable on that
particular factor and could be understood as the correlation coefficient for the variable
and factor. PCA introduces new variables that are made of the linear combination of
original data, factor analysis shall provide factors that describe variability among the
observed and most probably correlated variables whilst extracting common variance.
The highest specific variation from all observed variables can be also important in
determining which variable provides the most information.

Individual correlation coefficients between all distance metrics can be also determined
so that linear or monotonous relationships between these metrics can be observed, the
calculations can be found in Sections 2.3.3 and 2.3.4.

4.3 Just Noticable Di�erence (JND) Experiment for
Distance Metrics.

The second main objective of the thesis was the design and implementation of a listening
test to determine JND for selected distance metrics. In other words to determine the
audible threshold for selected distance measures between sets of HRTFs. Extension to
the JND listening test shall also provide first insights into perceptual attributes of the
selected distance metrics. Perceptual attributes cannot be exactly measured as they
are subjective in their nature. They might include changes in sound coloration, timbre,
spatial qualities or audible artifacts. There might be a possibility of prediction of the
perceptual attributes by the respective distance metric.

The experiment is based on insights gained and discussed in chapter 5.1 regarding
metric behaviour and correlation. The analysis of interactions of different distance
metrics was conducted on datasets that included intermodal comparisons as such com-
parisons are more commonly needed, i. e. to compare HRTFs of one listener in different
setups or to compare individualized HRTF to real measured HRTF. However, audible
differences between several intermodal comparison datasets were too high to be consid-
ered for the experiment. For this reason, intermodal as well as intramodal comparisons
of HRTF datasets were considered and examined when designing the listening test. In-
tramodal comparisons are also relevant when it comes to comparing different people’s
cues, or whether a person’s HRTF is suitable for someone else.

4.3.1 Experiment concept
For the listening test several directions of compared HRTFs sets were chosen based on
their distance metrics values. The purpose of the test is to address these issues:

. Identify distance metric values for which audible differences exists.. The additional research question is concerned with prediction of perceptual attributes
(coloration and localization) based on distance metric values.. Identify, if there is a link between given perceptual attributes and any independent
variable.

The distance metrics, localization and coloration were examined for following inde-
pendent variables:

. Directions of HRTFs from ipsi-/contra-lateral side.. Different comparisons (intermodal, intramodal) of HRTFs.. Right and left ear playback (i. e. mirroring of the source stimuli as the analysis for
choosing directions was performed on left ear data).
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Ipsi- /Contra-lateral sides were considered because different distance metrics show
very distinct values for these sides as can be seen in Figure 4.1.

Figure 4.1. Comparison between ISSD and MSE metric for the same two HRTF sets. Some
distance metrics show higher values for the ipsilateral side compared to the contralateral
side and some show the opposite behaviour, therefore directions for the listening test were

optimized also for ipsi-/contra-lateral side.

Mirroring of the sources takes into account the presumption of the right ear advan-
tage, i. e. the fact that human auditory system is not symmetrical and right ear shall be
in advantage in terms of binaural processing [49]. Hence listening to compared stimuli
with the right ear might show different behaviour than to listening to compared stimuli
with the left ear.

4.3.2 Test design

Test Subjects

A total number of 19 subjects participated in the experiment. All subject were IHTA
researchers or employees, meaning that majority (15 out of 19) had experience with
HRTF evaluation. There were 6 women among all subjects, all participants were aged
between 23 to 35.

Intact hearing was screened for all the participants. For that purpose high frequency
audiometry was conducted for each participant. All participants had intact hearing
up to 8 kHz (considering the common 20 dB HL limit). For high frequencies up to
16 kHz alternative limit was considered as recruitment of subjects would be even harder.
The limit for satisfactory hearing ability was defined as drawing a line from 20 dB HL
at 8 kHz to 40 dB HL at 16 kHz. Trespassing the line at 16 kHz could be neglected
as most monoaural cues of HRTFs lie below 13 kHz [20]. Subjects with such hearing
ability did not present outliers in the data. Audiograms of all test subject are displayed
in Figure 4.2.
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Figure 4.2. Audiograms of all test participants. The dashed line depicts the limits that
were considered for intact hearing, just few subjects trespass the limit.

All participants were informed about the process of the experiment and signed the
consent form. Pseudonym list for the participant’s names and personal information was
created and stored securely ensuring anonymity of the data.

Procedure
A 3AFC experiment was implemented for the JND test of distance metrics. Three
stimuli (A, B, C) were presented and the participant was asked to determine the odd
one, see Figure 4.3. There was one reference stimulus presented twice and a test stimulus
once.

Figure 4.3. Graphical user interface for 3AFC test paradigm.

A problem is of course the order of stimuli within a trial. Direct comparison of A
and C is difficult. Therefore, the choice and order of reference and test stimuli were
randomized in each trial. To repeat the trial with different order of the stimuli, the
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1 2 6 3 5 4
2 3 1 4 6 5
3 4 2 5 1 6
4 5 3 6 2 1
5 6 4 1 3 2
6 1 5 2 4 3

Table 4.1. Balanced latin square.

experiment consists of three blocks consisting of the same trials. The number of trials
is 72 as will be discussed in the Stimuli selection part. The stimuli in one trial are
always randomized and thus the order of stimuli (A, B, C) always differs.

The test design with repeated measures provides higher statistical power, however
it may cause the subject’s fatigue interfering with the results. Generally speaking, it
is important to randomize the trials in order to prevent these undesirable effects. One
common randomization measure is the Latin square which was utilized in this thesis.
It presents the experimental design so that each trial/treatment occurs once in each
row and in each column. Hence for 72 stimuli, 72 x 72 matrix was presented. For the
listening test consisting of three blocks three rows of a given matrix were randomly
selected and used as an order of the presented trials in each block. See an example of
Latin square for 6 trials in Table 4.1.

The 3AFC experiment paradigm shall provide a more precise threshold determina-
tion, as mentioned before, with the drawback of taking more time.

In the second block of the experiment, additional questions about stimuli were asked.
The questions were concerned with subjectively perceived sound quality. The procedure
followed the proposed approach in Figure 3.5. The participant at first answered 3AFC
paradigm question (which stimulus is different). Afterwards the participant was asked
whether they perceived any overall difference between the stimuli (see Figure 4.4).

Figure 4.4. Graphical user interface to asses additional questions about subjective percep-
tion of presented stimuli - first the participant is asked whether they perceived an overall

difference between stimuli.
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If the answer was positive, two additional questions about perceived stimuli quality

were asked. They are “How do the stimuli differ in terms of coloration?” and “How
does the stimuli differ in the terms of source location?” The example stimuli regarding
these qualities were presented together with their descriptions:

. Coloration describes sound characteristics other than loudness and virtual source
location. As result sounds can become “hollow” or “metallic”, but also “sharp” or
“rough”.. The difference in localization between stimuli (whether the source changes location).

To assess these questions unipolar continuous scales were used. The range was set
from 0 (the stimuli differ not at all.) to 100 (the stimuli differ extremely), see Figure 4.5.
The listening test GUI was implemented in MATLAB App Designer.

Figure 4.5. Graphical user interface to asses subjective perception of presented stimuli.

The overall experiment paradigm could be described by the following Figure 4.6. The
expected time duration of the experiment procedure was determined as 45 minutes per
participant for all three blocks, considering 15 minutes per block and therefore about
12,5 seconds per trial . Additional 10 minutes were considered for an introduction and
an audiometry measurement. Summing up to the expected time of 55 minutes per
participant.

Figure 4.6. Depiction of the experiment blocks and expected time duration for each par-
ticipant.
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Stimuli Selection and Preparation
As will be seen in section 5.1, three metrics (MSE, ISSD and MFCD) cover the most
information on the differences between HRTF sets and are applied in the experiment.
The limits of the distance metric will be therefore selected in a non-adaptive manner
as it would be difficult to optimize for all the three distance metrics at the same time
from the reason that the distance metric values don’t change linearly with each other.

For the selection of reproduced stimuli, HRTF directions from intermodal as well as
from intramodal comparisons were considered. HRTF directions of different modalities
were convoluted with pink noise generated using ITA-toolbox [47] function and replayed.
The selection process was as follows for all independent variables (ipsi-/contra-lateral
sides, different comparisons) except for the right and left ear playback as the selected
source stimuli were only mirrored:

. Examination of the distance metric values of the three selected metrics (MSE, ISSD
and MFCD) for different comparisons of HRTFs and ipsi-/contra-lateral sides. Pre-
selection of the stimuli based on the values as can be seen in Figure 4.7.. Listening to the compared pre-selected stimuli with different distance metric values.. Selection of stimuli (directions) suitable for the experiment: directions of HRTFs
between which no difference could be heard as well as where there was a slight
audible difference.

Figure 4.7. Example of pre-selection of stimuli directions for listening test based on three
distance metric values between MRA PCA HRTF and Ideal PCA HRTF for the same

subject.

During the selection process intermodal and intramodal comparisons with Real
HRTFs were excluded from the experimental design as the audible differences and dis-
tance metrics values were too high compared to other cases. The following comparisons
were used when designing the experiment:

. Intermodal comparison:
• Ideal PCA HRTF vs. MRA PCA HRTF for the same subject.

. Intramodal comparison:
• MRA PCA HRTF for different subjects.
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• Ideal PCA HRTF for different subjects.

Six directions were selected for all independent variables combinations making it
72 stimuli in total (6 directions x 3 comparisons x 2 sides (ipsi- / contralateral) x 2
mirroring of the source stimuli for left and right ear playback). Six directions should
be adequate to provide first outlook on audible threshold determination using fitting
of psychometric function. For the intermodal comparison the HRTF directions were
analysed for the first subject, for the intramodal comparison directions between the
first two subjects were analysed.

As the reconstruction of HRTFs was performed on magnitude frequency spectra,
the minimum phase of the reconstructed spectra was determined and the ITD phase
component was added along with a time offset ensuring causality. ITD phase was
determined according to the analytical ellipsoidal model [35]. All HRTF directions
used for the test were calculated and saved locally prior to the test. That ensured
avoiding the time-consuming calculation of the analytical ellipsoid model.

The distances were computed for left ear data, however, for binaural playback, data
for both ears need to be provided. Thus, for the purpose of the experiment, it was
decided to fixate right ear data for both stimuli in order to affect the participant’s
perception of the stimuli as little as possible. Transitions of interaural cross-correlation
(IACC) between HRTFs’ channels (ears) needed to be considered as we are able to notice
changes in IACC, even if the magnitude spectrum is identical. Hence, if the binaural
signal stimulus is less correlated than the stimulus replayed before we are more prone
to notice change [50–51]. The right ear data from HRTF that showed smaller IACC
transitions with left ear data of both HRTFs were used for the binaural playback as we
were trying to select the stimuli below the JND for detecting IACC changes.

4.3.3 Test Execution
Prior the test, loudness calibration of the sound reproduction system was performed.
It was calibrated to have sound pressure about 60 dB at the frontal direction and
maximum of 66 dB at sides. The test was executed in hearing booth 2 at the Institute
of Hearing Technology and Acoustics of RWTH Aachen to ensure a quiet environment
during the test. Before the start of the experiment, a short introduction was given
to the subjects, they were asked to sign the consent form and “Separate declaration
on compliance with hygiene and infection control measures and Recording sheet for
traceability according to § 2a CoronaSchVO”.

High frequency audiometry up to 16 kHz was performed for every participant. For
qualified subjects, a headphone transfer function was measured according to Masiero
and Fels’ approach [52]. Small microphones were inserted into the ears of participant
and through the headphones, that were later used for reproduction of the stimuli,
a frequency sweep was played. The used headphones were Sennheiser HD 650. The
participant was then asked to take off the headphones and put them on again. This
procedure was repeated 8 times. After that, the spectra of the left and right signals were
averaged. Unsuccessful measurements (e.g. due to swallowing or low-frequency traffic
noise) could be omitted before averaging. The result multiplied by the inverse sweep
spectrum and the inverses of the known transfer function of the respective microphone,
provide HpTF. It takes properties of the headphones and interaction of the signal with
pinna geometry into account and serves for equalization.

During the test, the stimuli were loaded and convolved with pink noise train stimulus
of the same sampling frequency of 44.1 kHz. The final stimuli spectra for playback were
processed using the measured HpTF as:
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Si(f) = Snoise(f)HRTFi(f)
HpTFi(f) , (1)

with Snoise(f) being the pink noise pulse train, i signs indices ’L’ and ’R’ for the left
and right ear.

The participant was then presented with the listening test. The test consisted of
3 test blocks with a possibility of a break between each block to prevent dizziness.
The second block included the above-mentioned additional questions regarding the
perceptual attributes of the stimuli and therefore took longer. The experiment duration
was mostly between 20 to 30 minutes (excluding the introduction). All acquired subject
data were saved in a pseudonymized way. Only a hard copy linking the data to the
participant’s name is kept.
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Chapter 5
Results and Discussion

In this chapter results of both parts of the thesis are presented. At first, the results
of an analysis of the interrelations and mutual information carried out on the distance
metrics between different HRTF datasets are discussed. Based on these findings, it is
proceeded to the selection of distance metrics suitable for the JND experiment. The
findings from section 5.1 are used as basis for the listening test paradigm previously
proposed in section 4.3. In the second part of this chapter, the results of the JND
listening test are discussed.

5.1 Distance Metrics Selection for JND experiment
The range of values for each of the distance metrics for each examined dataset (as
mentioned in section 4.1) was determined. Spectral components in between 20 Hz and
13 kHz were included in the computations.

Distance metric Dataset Minimum Median Maximum
DISSD Real to MRA PCA HRTF 1.4 22.8 264.8
DISSD Ideal to MRA PCA HRTF 0.6 16.3 221.3
DISSD Real to Ideal PCA HRTF 0.4 8.8 180.8
DMSE Real to MRA PCA HRTF 0.001 0.101 16.204
DMSE Ideal to MRA PCA HRTF 0.0005 0.092 15.654
DMSE Real to Ideal PCA HRTF 0.0001 0.005 0.863
DCB Real to MRA PCA HRTF 1.6 · 10−7 74.0 · 10−7 3406.5 · 10−7

DCB Ideal to MRA PCA HRTF 0.3 · 10−7 44.9 · 10−7 3393.4 · 10−7

DCB Real to Ideal PCA HRTF 7.1 · 10−7 23.4 · 10−7 511.8 · 10−7

DMF CD Real to MRA PCA HRTF 0.06 1.83 36.26
DMF CD Ideal to MRA PCA HRTF 0.01 1.51 31.65
DMF CD Real to Ideal PCA HRTF 0.003 0.20 32.93
DLLSE Real to MRA PCA HRTF 0.04 0.20 0.94
DLLSE Ideal to MRA PCA HRTF 0.0002 0.004 0.10
DLLSE Real to Ideal PCA HRTF 0.04 0.20 0.78

Table 5.1. Range of values for all used distance metrics, computed for all HRTF comparison
datasets on which analysis of interrelationships and mutual information was carried out.

The results can be found in Table 5.1. It is possible to observe that the highest
distance metric values were determined for the Real HRTF to MRA PCA HRTF dataset.
The second highest distance metric values were observable for Ideal PCA HRTF to
MRA PCA HRTF and the lowest observable values were for Real HRTF to Ideal PCA
HRTF. The exception can be found for the LLSE metric, where the Real HRTF to
Ideal PCA HRTF dataset has higher values than Ideal PCA to MRA PCA HRTF.

32



. . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Distance Metrics Selection for JND experiment

However, the difference in distance metric values between the mentioned dataset is
not as high as the difference between these two datasets and Real HRTF to MRA PCA
HRTF dataset. That is understandable as MRA of PCA is an individualization method
using anthropometric values to determine weights for MRA of PC reconstruction and
therefore an approximation of PC reconstruction with ideal weights. Hence the biggest
difference can be determined when comparing the twice approximated data (MRA PCA
HRTF) to the measurement (Real HRTF).

To help to understand how the distance metric values are linked to the subjective
perception of the difference between stimuli, a JND listening experiment is proposed in
section 4.3. The difference between stimuli is not rated as greater or smaller, but rather
as perceivable or not. Additionally, the test also includes questions about subjective
perceptual attributes (coloration and localization) and thus tries to find a connection
between distance metrics and these attributes.

5.1.1 Principal Component Analysis

To analyze the information provided by each distance metric, the PCA was used. At
first, the analysis on the distance datasets with one weighted mean distance value
(calculated over all spatial directions) between pairs of HRTF sets (resulting in 5 x
47 matrix for each dataset, respectively) will be discussed. The explained variation
(i. e. information) by each PC for every inspected dataset can be found in Table 5.2.
The distance metric values were normalized before performing the analysis. Usually,
the number of PCs that explain at least 95 % variance of the original data is kept. Here
it is visible that for every dataset the first two PCs are enough to keep the required
variance/information of the original data. For Real HRTF to Ideal PCA HRTF dataset
even the first PC would be enough to keep the required variance. In accordance with
Table 5.1 the biggest variations (the lowest explained variation by PC 1) are found for
dataset Ideal PCA HRTF to MRA PCA HRTF and the lowest variations in the data
(the highest explained variation by PC 1) are found for dataset Real HRTF to Ideal
PCA HRTF.

Explained var. by PC (%)
Dataset Ideal to MRA PCA HRTF Real to MRA PCA HRTF Real to Ideal PCA HRTF
PC 1 93.7 94.2 96.0
PC 2 6.2 5.6 3.1
PC 3 0.1 0.1 1.0

Table 5.2. Principal component analysis performed on mean over all direction values for
different distance datasets.

As can be seen in Figure 5.1, the highest loading (coefficient) for the first PC shows
the metric MFCD. The highest loading for the second PC shows the metric MSE for
two datasets out of three. For the Real HRTF to Ideal PCA HRTF dataset the metric
LLSE shows the highest loading for the second PC. However, the second PC in this
dataset keeps just 3.1 % of the explained variation and therefore MFCD and MSE can
be considered as more important.
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Figure 5.1. Biplot of first two principal components for each distance metric dataset with
mean over all directions values.

Afterwards, the PCA was also performed on datasets that provide distance metric
value for each direction between two HRTF sets (5 x 2304 matrix for each person,
5 distance metrics for 2304 directions, resulting in 47 matrices in total for each dataset).
For every person for all three datasets, two PCs were enough to keep 95 % variance
of the original data, hence the highest loadings for the first two PCs for each person
were examined (which distance metric from the five examined metrics has the highest
loading for PC 1 and which for PC 2). The results can be found in Table 5.3. It can
be observed that the highest loading for the first PC also show metrics MFCD and
MSE similarly to the mean over all directions datasets. The highest loadings for the
second PC are more difficult to describe, yet LLSE and again MSE metrics seem to
be important. LLSE metric again shows the highest loading values for the second PC
mostly for the Real HRTF to Ideal PCA HRTF dataset and here additionally also quite
often for the Ideal PCA HRTF to MRA PCA HRTF dataset.

Dataset Distance metric Highest loading PC 1 Highest loading PC 2
Ideal to MRA PCA HRTF DISSD 0 11

DMSE 42 5
DCB 1 0

DMF CD 4 10
DLSSE 0 21

Real to MRA PCA HRTF DISSD 0 2
DMSE 1 42
DCB 0 0

DMF CD 46 1
DLSSE 0 2

Real to Ideal PCA HRTF DISSD 0 0
DMSE 0 1
DCB 0 0

DMF CD 47 0
DLSSE 0 46

Table 5.3. Principal component analysis performed on 5 x 2304 matrix for each person (47
in total), i. e. five different distance metric values for each direction. The highest loadings

(coefficients) for first two PCs were recorded.
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5.1.2 Factor Analysis

In the second part of the analysis of the interrelations and information provided by
distance metrics between different HRTF datasets, factor analysis model was utilized.
It attempts to describe the variables (distance metrics) in dependence on a smaller
number of latent factors. They are also known as “common factors” as they may affect
several variables in common. For each distance metric specific variance was observed,
it describes an independent random variability that can’t be described by the common
factors. We are looking for metrics that show high specific variation as those metrics
shall provide the most information outside of the factor analysis model and shall be
less dependent on the other metrics. The specific variation for each distance metric
(for mean over all directions values resulting into a 5 x 47 matrix for each dataset,
respectively) for all three analysed datasets can be found in Table 5.4. The metric
ISSD shows the highest specific variation for two datasets and the second highest for
the third dataset and i. e. MFCD shows the second highest specific variation for the
first two datasets and the highest specific variation for the third dataset. Therefore
they can be considered as important and providing the most information outside of the
model. LLSE metric shows the lowest specific variation for three datasets out of three.

Specific variation (-)
Dataset Ideal to MRA PCA HRTF Real to MRA PCA HRTF Real to Ideal PCA HRTF
DISSD 0.81 0.68 0.33
DMSE 0.01 0.13 0.29
DCB 0.34 0.30 0.02

DMF CD 0.42 0.48 0.78
DLSSE 0.14 0.01 0.01

Table 5.4. Factor analysis performed on mean over all direction values for different distance
datasets - specific variation not explained by common factor for each distance metric.

The loadings for the latent factors are displayed in Figure 5.2. CB and MSE metrics
have always the highest loadings for the same latent factor and therefore cover almost
the same information. This makes sense as CB is computed as MSE with frequency
weighting, based on critical bandwidths (see section 3.3.1). ISSD and MSE (and hence
CB) have always the highest loading for different latent factors and therefore probably
cover different information. LLSE and ISSD have for two datasets out of the three
examined datasets the highest loading for the same latent factor and also probably
provide similar information. MFCD has similar loading for both underlying latent
factors and thus can’t be described by by a singe latent factor sufficiently.

The factor analysis was also performed on distance metrics datasets with values for
each direction (5 x 2304 matrix for each person, 5 distance metrics for 2304 directions -
47 matrices in total for each dataset). In Table 5.5 it is recorded which metric has the
highest specific variation as well as for which latent factor has the metric the highest
loading (whether the distance metric for given person has the highest loading for F1
or F2, i. e. can be explained by the first or rather the second latent factor). Again, as
for the mean over all directions distance values, we can observe that ISSD and MFCD
have the highest specific variations.
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Figure 5.2. Biplot of loadings of different distance metrics for two underlying factors. Fac-
tor analysis was performed for each distance metric dataset.

For all datasets, we can also observe that ISSD and MSE have the highest loadings
for different latent factors. MSE and CB, also as in the mean over all directions distance
values, have mostly the highest loadings for the same latent factors and therefore cover
the same information. For the Real HRTF to Ideal PCA HRTF dataset, LLSE shows
the highest loading for the same latent factor as ISSD. Hence, LLSE might provide
similar information as ISSD even for this dataset. This dataset also shows the smallest
distance metric values as can be seen in Table 5.1 and LLSE shows the highest loading
for the second PC - Table 5.3.

Dataset Highest load. F1 Highest load. F2 Highest spec. var.
Ideal to MRA PCA HRTF DISSD 7 40 33

DMSE 40 7 0
DCB 40 7 0

DMF CD 12 35 9
DLSSE 8 39 5

Real to MRA PCA HRTF DISSD 7 40 30
DMSE 40 7 0
DCB 40 7 1

DMF CD 10 37 13
DLSSE 7 40 3

Real to Ideal PCA HRTF DISSD 31 16 41
DMSE 16 31 3
DCB 14 37 0

DMF CD 10 37 3
DLSSE 31 16 0

Table 5.5. Factor analysis performed on 5 x 2304 matrix for each person (47 in total), i. e.
five different distance metric values for each direction. Whether the metric had higher
loading for underlying factor 1 or 2 was recorded as well as the highest specific variation

from all distance metrics.

5.1.3 Correlation Analysis
Finally, correlation analysis was performed on all datasets. The correlation coefficients
were computed for all three HRTF distance datasets both for mean over all directions
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distance values datasets and for datasets that provide distance metrics for each di-
rection. Both Spearman’s and Pearson’s correlation coefficients were estimated. Here,
mostly the findings using Spearman’s correlation coefficient are presented and discussed
as most of the metrics do not conform to the normal distribution. That can be seen
from the histograms in the correlation plots (Figures 5.3, 5.5, 5.4) for the mean over all
directions distance metric values. Correlation plots with Pearson’s coefficient can be
found in Appendix C.

Figure 5.3. Correlation plot between all mean over all direction distance metric values
- Spearman’s coefficient, MRA PCA HRTF to Ideal PCA HRTF dataset. Significant

correlation coefficients are displayed in red.

In all mentioned figures it can be shown that metric CB is highly correlated with
MSE (the correlation coefficient is way higher than 0.5), which also corresponds with
findings from the factor analysis. MFCD metric shows low correlation to MSE and ISSD
metric (except for Real HRTF to Ideal PCA HRTF dataset) and seems to be correlated
with CB and LLSE distance metrics. The correlation coefficient can for some cases be
significant (displayed in red) however, a low correlation around 0.3 does not have such
a high effect in predicting one distance metric based on the other. LLSE metric also
seems to be correlated with most of the other metrics but lower than MFCD, which
makes MFCD metric preferable for further considerations and analysis.
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Figure 5.4. Correlation plot between all mean over all direction distance metric values -
Spearman’s coefficient, Real HRTF to MRA PCA HRTF dataset. Significant correlation

coefficients are displayed in red.

In Figure 5.5 for the Real HRTF to Ideal PCA HRTF dataset it can be observed
that LLSE metric is highly correlated with ISSD. That makes it also possible to leave
out LLSE metric for further considerations as for this dataset LLSE showed the highest
loading for the second PC and hence seemed more important.

Figure 5.5. Correlation plot between all mean over all direction distance metric values -
Spearman’s coefficient, Real HRTF to Ideal PCA HRTF dataset. Significant correlation

coefficients are displayed in red.

Further, the correlation analysis was performed on distance metrics datasets with
values for each direction (5 x 2304 matrix for each person, 5 distance metrics for 2304 di-
rections - 47 matrices in total for each dataset). Spearman’s correlation coefficients were
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examined as the Spearman’s coefficient is more robust to outliers and can determine
the monotonous relationship between variables, while Pearson’s coefficient tends to de-
tect just linear relationships. It was decided to track significant correlation coefficients
higher than 0.5 or lower than -0.5 because almost all computed correlation coefficients
between two distance metrics were significant. The reason for that being a high number
of input data (2304 values for each distance metric), therefore enough evidence existed
even for a really low correlation between variables. Besides, low correlation does not
provide enough information about the other variable and might not be that helpful
in predicting one variable based on the other. In Tables 5.6, 5.7, 5.8 the significant
Spearman’s correlation coefficients higher than 0.5 or lower than -0.5 between different
distance metrics are displayed.

DISSD DMSE DCB DMF CD DLSSE

DISSD - 6 1 8 9
DMSE 6 - 47 0 0
DCB 1 47 - 3 0

DMF CD 8 0 3 - 20
DLSSE 9 0 0 20 -

Table 5.6. Significant Spearman’s correlation higher than 0.5 or lower than -0.5 between
different distance metrics performed between two distance metrics on values for each direc-
tion (5 x 2304 matrix for each person, 5 distance metrics for 2304 directions - 47 matrices

in total for each dataset), MRA PCA HRTF to Ideal PCA HRTF dataset.

DISSD DMSE DCB DMF CD DLSSE

DISSD - 3 0 8 10
DMSE 3 - 47 0 36
DCB 1 47 - 1 24

DMF CD 8 0 1 - 12
DLSSE 10 36 24 12 -

Table 5.7. Significant Spearman’s correlation higher than 0.5 or lower than -0.5 between
different distance metrics performed between two distance metrics on values for each direc-
tion (5 x 2304 matrix for each person, 5 distance metrics for 2304 directions - 47 matrices

in total for each dataset), Real HRTF to MRA PCA HRTF dataset.

DISSD DMSE DCB DMF CD DLSSE

DISSD - 9 0 0 16
DMSE 9 - 38 0 35
DCB 0 38 - 35 1

DMF CD 0 0 35 - 3
DLSSE 16 35 1 3 -

Table 5.8. Significant Spearman’s correlation higher than 0.5 or lower than -0.5 between
different distance metrics performed between two distance metrics on values for each direc-
tion (5 x 2304 matrix for each person, 5 distance metrics for 2304 directions - 47 matrices

in total for each dataset), Real HRTF to Ideal PCA HRTF dataset.

It can be noted that CB and MSE distance metrics are highly correlated for all
datasets (some sparse exceptions can be found for Real HRTF to Ideal PCA HRTF
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dataset). LLSE distance metric seems to be correlated with almost all other metrics
mainly for Real HRTF to MRA PCA HRTF and Real HRTF to Ideal PCA HRTF
datasets and thus should not provide much new information.

ISSD metric shows overall low correlation to other distance metrics, the highest
number of significant high correlations coefficients being for Real HRTF to Ideal PCA
HRTF dataset for LSSE metric. That also corresponds to analysis for the same dataset
for mean over all directions distance metric values. MFCD and MSE also present a low
correlation between each other and ISSD.

5.1.4 Conclusion
On the basis of the analyses carried out ISSD, MSE and MFCD metrics shall provide the
most diverse and varied information about differences between pairs of HRTFs. It shall
hold true both for directional and mean over all directions dataset. These metrics shall
be the least correlated in between. ISSD shall show the highest specific variation that
could not be explained by “common factors”. Also, ISSD and MSE should be correlated
with different latent factors. MFCD and MSE showed also the highest loadings for the
first PC in principal component analysis. These three distance metrics were used for
stimuli selection as described in section 4.3.2 and later examined w. r. t. perceptual
influence in section 5.2.
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5.2 Listening Test Findings
The listening test was performed as described in section 4.3.3. The whole concept and
design based on the findings from the previous sections are described in section 4.3.
The results of the listening test are divided into two parts. The first one is concerned
with findings of JND of the selected distance metrics. The second one discusses the
additional questions, i. e. whether perceptual attributes can be predicted by distance
metric values and if there is a link between perceptual attributes and any independent
variable as introduced in section 4.3.1.

5.2.1 JND Test
The proposed listening test was mainly aimed as a JND test for the selected distance
metrics (ISSD, MSE and MFCD). The test was meant as a pre-study to gain first
insights into the audible threshold of these metrics and into their connection to per-
ceptual attributes. The paradigm of the JND test was the 3AFC experiment, i. e.
the participant was presented with three stimuli and they should determine the odd
one. The stimuli were pre-selected during the design of the JND test so that they shall
cover the range of the slope of the psychometric function, which is usually used to
determine the audible threshold. The stimuli were preselected in such a way that the
range of the slope of the psychometric function should have been covered for all three
distance metrics. The audible threshold shall be at the point where for 2/3 of trials
the odd stimulus was determined correctly. The distance metrics were computed for
the datasets mentioned in section 4.1 - all datasets for intermodal as well as intramodal
comparisons were included. Based on the pre-selection of the stimuli, only intramodal
and intermodal datasets obtained for Ideal PCA HRTF and MRA PCA HRTF datasets
were considered for the study. The choice of this subset is explained in section 4.3.2.

The JND for the distance metrics could be examined for each combination of the
independent variables mentioned in Section 4.3.1. For each condition, 6 stimuli were
presented and thus could be used for the threshold determination. The conditions are
illustrated in Table 5.9.

Mirroring Side Comparison
Yes Ipsi Intermodal (Ideal to MRA)
No Ipsi Intermodal (Ideal to MRA)
Yes Contra Intermodal (Ideal to MRA)
No Contra Intermodal (Ideal to MRA)
Yes Ipsi Intramodal (Ideal)
No Ipsi Intramodal (Ideal)
Yes Contra Intramodal (Ideal)
No Contra Intramodal (Ideal)
Yes Ipsi Intramodal (MRA)
No Ipsi Intramodal (MRA)
Yes Contra Intramodal (MRA)
No Contra Intramodal (MRA)

Table 5.9. Combination of the independent variables for the listening test.

The mirrored and normal playbacks were displayed in the same plot as the distance
metric values were the same. As can be seen in Figures 5.6, 5.7, C.4, C.5, C.6, C.7 the
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high values for one distance metric do not mean high values for other metrics as well
(the stimuli/directions are distinguished by colors). Therefore, if we can see a trend
resembling a psychometric function (e. g. in figure 5.6 for MSE metric) for one metric,
it is very likely that we won’t see such a trend for other metrics. The idea is that the
audible threshold could be given by a linear or other combination of these metrics.

Figure 5.6. Probability of correct answer for three distance metrics. Intramodal compar-
ison (Ideal PCA HRTF dataset) for normal (dots) and mirrored (crosses) playback, of

stimuli optimized for ipsi-lateral directions.

It can be noticed that for most independent variable combinations there is a difference
between correct answers for mirrored and normal playback. The biggest difference can
be noted in Figure 5.7. However, there should be a right ear advantage, and thus
more differences determined correctly should appear for the mirrored playback for the
ipsi-lateral side (the source originally being on the left and after mirroring on the right
side) and for normal playback for the contra-lateral side (the source being on the right
side). That might be the case observing Figure C.5 (ipsi-, mirrored, more differences
correctly determined) and e. g. Figure C.4 (contra-, normal, more differences correctly
determined), where we can see the described tendency. This tendency may be true for
some kind of differences (e. g. different spatial and spectral cues for intra-modal cases).
That might imply that we react better to sources on the right side. Other independent
variable combinations can be found in the Appendix, however, these findings can apply
to all combinations of independent variables.
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Figure 5.7. Probability of correct answer for three distance metrics. Intermodal compar-
ison (Ideal PCA HRTF to MRA PCA HRTF dataset) for normal (dots) and mirrored

(crosses) playback, of stimuli optimized for contra-lateral directions.

5.2.2 Additional questions related to perceptual attributes
The additional questions introduced in the second block of the experiment are con-
cerned with the prediction of perceptual attributes (coloration and localization) based
on distance metric values. The link between perceptual attributes and any independent
variable is also examined.

In Figure 5.8 the dependence between each distance metric and coloration/ lo-
calization is displayed. The scales to assess these differences went from 0 to 100,
where 0 meant the stimuli do not differ at all in terms of the stimuli source loca-
tion/coloration and 100 meant the stimuli differ extremely in terms of the stimuli
source location/coloration. The scales were continuous and the participant was pro-
vided with an option to express that there exists no perceivable difference. It can be
noted that almost all differences were assessed below point 20 on the scale. That makes
sense as it was a JND test and thus the differences between the stimuli were really
low. Overall, the perceived differences in coloration were higher than for localization.
These attributes were examined for all independent variables together as we are in-
terested in the common link between the metric and the attribute. For most of the
metrics, we can observe no obvious link. However, there might be a link between MSE
and coloration/localization. The relationship between MSE and localization/coloration
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was evaluated using the Spearman’s correlation coefficient. A weak link was found
for MSE and coloration r(70) = 0.234, p = 0.048 as well as for MSE and localization
r(70) = 0.24, p = 0.04. However these results could be strongly influenced by outliers.
Also after interviewing some of the participants, the problem with assessing stimuli
that differ in loudness arose. Some of the participants judged a difference in loudness
as difference in coloration whilst others as difference in localization. For the future
study a question concerning the loudness difference shall be considered. Also the stim-
uli chosen as example stimuli for differences in coloration might have been to extreme
and hence providing more example stimuli with different kinds of coloration change
might be advantageous.

Figure 5.8. Dependence of coloration/localization on distance metrics (DISSD, DMSE ,
DMF CD) values. Different colors mark all 72 stimuli and allow for recognizing the same

stimuli between subfigures.

Further, the relationship between independent variables and coloration/localization
was analysed. In Figures 5.9, 5.10, 5.11 the boxplots for pairs of independent variables
and localization/coloration differences are displayed. Again, it can be noted that the
differences in coloration were overall higher than localization differences.
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Figure 5.9. Dependence of coloration/localization on different stimuli source location.

The smallest difference in the perceivable attributes was probably for different stimuli
source locations as can be seen in Figure 5.9. The broadest range of values can be
observed for coloration assessment for stimuli from the ipsi-lateral side and surprisingly
for mirroring of the stimuli source. The bigger changes in coloration for the ipsi-lateral
side might be explained by the fact that there might be a more perceivable loudness
level for the ipsi-lateral ear and the differences could be better assessed or the changes
in loudness might be considered as changes in coloration.

Figure 5.10. Dependence of coloration/localization on different comparisons.

The broadest range of values for localization assessment can be probably noted for
intra-modal comparisons of HRTFs (Figure 5.10). That might suggest that there might
be bigger localization differences when comparing HRTFs of the same modality for
different people, rather than when comparing HRTFs of different modalities for the
same person. However, further studies with bigger differences between stimuli shall be
proposed in order to assess these differences.
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Figure 5.11. Dependence of coloration/localization on mirroring of the source stimuli.

The biggest difference in coloration and probably also in localization, although still
not significant, might be observed for mirroring of the source stimuli in Figure 5.11.
That might also correspond to findings from Section 5.2.1, where often more differences
between stimuli were correctly determined for non-mirrored (normal) playback for the
ipsi-lateral side and for mirrored playback for the contra-lateral side stimuli. Broader
differences for coloration assessment can be observed (Figure 5.12) for mirroring sources
for the stimuli directions form the ipsi-lateral side as for contra-lateral side (Figure 5.13)
the differences were not so broad, confirming the theory that we can react better to
sources on the right side. However, not so big differences could be observed for normal
playback of the stimuli.

Figure 5.12. Dependence of coloration/localization on mirroring of the source stimuli and
source location - ipsi-lateral side.
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Figure 5.13. Dependence of coloration/localization on mirroring of the source stimuli and
source location - contra-lateral side.
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Chapter 6
Summary and Outlooks

The present work focused on the comparison of head-related transfer functions (HRTFs).
Different levels of individualization of HRTFs exist and their comparison is enabled by
various distance metrics. The thesis consists of two main parts. In the first part,
the behaviour and interrelations of several objective distance metrics for HRTFs were
inspected. In the second part, based on these findings a listening experiment was
proposed to examine the audible threshold for given objective distance metrics. Fur-
thermore, the test also assesses the additional questions whether perceptual attributes
can be predicted by distance metric values and whether there exists a link between sub-
jective perceptual attributes and any independent variable as mentioned in section 4.3.1
(i. e. different comparisons of HRTFs, mirroring of the source stimuli, different sides of
the directions).

Five distinct distance metrics were considered for the analysis of the provided mu-
tual information and their interrelations. Only metrics focused on directional differences
were assessed, meaning that a direct comparison of spectra led to a set of distance val-
ues for each sound incidence direction, respectively. Three metrics (MFCC, CB-MSE
and LLSE) rely on psychoacoustic effects, while the other two (MSE and ISSD) display
mostly numerical errors. To analyze the interaction of different distance metrics for
HRTF comparison, the distance metrics were computed between HRTFs of different
modalities (Real measured HRTFs: “Real HRTF”, reconstructed HRTFs using “ideal”
weights PCA: “Ideal PCA HRTF” and reconstructed HRTFs using MRA of princi-
pal components with “reconstructed” weights: “MRA PCA HRTF”, as described in
section 4.1).

The range of values for the above mentioned distance metrics for different compar-
isons of HRTFs was inspected. The highest values could be observed for comparison
of Real HRTF to MRA PCA HRTF dataset and the lowest values for comparison of
Real HRTF to Ideal PCA HRTF. That corresponds to the idea that MRA of PC is
an individualization method using anthropometric values and thus an approximation
of PC reconstruction with ideal weights, which for its part is an approximation of the
measured data. Hence the biggest differences were observed between the twice approx-
imated data (MRA PCA HRTF) to the measurement (Real HRTF).

The analysis of the interaction and interrelations between the mentioned distance
metrics was performed on the set of directional distance metrics between HRTFs as
well as on the set of weighted mean distance measures, where there is one distance
value between a pair of HRTF sets. On the basis of principal component analysis,
factor analysis and correlation analysis ISSD, MSE and MFCD have shown to provide
the most diverse and varied information. These metrics are the least correlated and
carry the information of the other metrics analysed. MSE and MFCD showed the
highest loadings for the first PC in principal component analysis. ISSD and MSE are
correlated with different “common” factors and ISSD shall as well show the highest
specific variation that could not be explained by them.
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A listening test was then proposed and conducted to examine the audible threshold

for ISSD, MSE and MFCD distance metrics. The test was implemented using MATLAB
App GUI, the proposed paradigm was the 3AFC experiment. The audible threshold
was examined for different conditions of independent variables as described in table 5.9
(i. e. combinations of different comparisons of HRTFs, mirroring of the source stimuli
and different sides of the directions). It could be observed that high values for one
distance metric do not mean high values for other metrics. In consequence, if we
observe a trend resembling a psychometric function for one metric, it is very likely that
we won’t see such a trend for other metrics. Therefore the idea is that the audible
threshold could be given by a linear or other combination of these metrics. In further
work, the model for determining the audible threshold shall be examined. It might also
be good to consider the values of other distance metrics. It could also be observed that
there is a difference between the proportions of correct answers for mirroring of the
source stimuli for different conditions. This difference could correspond to the right ear
advantage presumption that listening with the right ear might show different behaviour
than to listening compared stimuli with the left ear.

In the second part of the listening test, additional questions regarding subjective
perceptual attributes (localization and coloration) were introduced. To assess these
questions, unipolar continuous scales were used with a range from 0 to 100. The over-
all perceivable differences were low as the designed test was mainly a just noticeable
difference test. However, the perceived differences were higher for coloration than for
localization. There was a weak link observed between the MSE distance metric and
coloration and localization, yet these results might be strongly influenced by outliers.
Besides, by examining the relationships between independent variables and perceptual
attributes, a broader range of coloration values for stimuli with ipsi-lateral sound inci-
dence side could be observed, corresponding to the fact that for stimuli with ipsi-lateral
sound incidence side might have higher loudness level and differences could be better
assessed. Also a broader range of coloration values was observed for sources mirrored
to the right side of the head and stimulus variation of the right ear signal, confirming
the theory that we can react better to sources on the right side.

Based on feedback received from participants, a question concerning the difference
in loudness shall be introduced in a follow-up experiment, as some participants judged
a difference in loudness to contribute to the difference in coloration whilst others as a
difference in localization. More example stimuli of different kinds of coloration changes
should be presented before the start of the experiment. Stimuli covering a broader
range of values could be introduced to assess a wider range of differences in perceptual
attributes. Some conditions (combinations of independent variables as described in
table 5.9) might be eliminated in the future as it might not be necessary to cover
them all and in order to gain more values for the statistical evaluation. Further, for
later examination of HRTFs it would be favourable to have one distance metric for
binaural signal, as for now we have been using binaural signals but have been evaluating
differences of one ear only. A weighting function to gain one distance metric for both
ears might be proposed and verified in future listening experiments.
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Appendix A
Thesis proposal

. Analyze the interaction and mutual information between different objective
distance metrics for HRTF comparison, using tools like correlation analysis or
factor analysis.. Reduce the given metrics to a smaller set of measures suitable for a listening
experiment and covering both spatial and spectral aspects.. Design a listening experiment paradigm to examine just noticeable differences
and give first insights into various perceptual attributes (e.g. changes in sound
coloration, spatial aspects and audible artifacts), which might be predicted by
the respective distance metrics.
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Appendix B
Lists of Acronyms

HRTF Head-related transfer function.
ITD Interaural time difference.
ILD Interaural level difference.

LTI system Linear time independent system.
HRIR Head-related impulse response.
DTF Directional transfer function.
PCA Principal component analysis.

FA Factor analysis.
MRA Multiple regression analysis.
SHD Spherical Harmonics Decomposition.
MSE Mean Square Error.

CB-MSE Critical Bands Mean Squared Error.
IISD Inter-subject Spectral Difference.
CD Correlation Distance.

MFCD Mel-frequency Cepstral Distortion.
MFCC Mel-frequency Cepstral Coefficients

SD Spectral Difference.
LLSE The Loudness Level Spectrum Error.

GTFB Grammatone Filterbank.
ERB Equivalent Rectangular Bandwith.
JND Just Noticable Difference.

IACC Interaural Cross-Correlation.
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Appendix C
Additional figures

Figure C.1. Correlation plot between all mean over all direction distance metric values -
Pearson’s coefficient, MRA PCA HRTF to Ideal PCA HRTF dataset. Significant correla-

tion coefficients are displayed in red.
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Figure C.2. Correlation plot between all mean over all direction distance metric values -
Pearson’s coefficient, Real HRTF to Ideal PCA HRTF dataset. Significant correlation

coefficients are displayed in red.

Figure C.3. Correlation plot between all mean over all direction distance metric values -
Pearson’s coefficient, Real HRTF to MRA PCA HRTF dataset. Significant correlation

coefficients are displayed in red.
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Figure C.4. Probability of correct answer for three distance metrics. Intramodal compar-
ison (Ideal PCA HRTF dataset) for normal (dots) and mirrored (crosses) playback, of

stimuli optimized for contra-lateral directions.
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Figure C.5. Probability of correct answer for three distance metrics. Intramodal compar-
ison (MRA PCA HRTF dataset) for normal (dots) and mirrored (crosses) playback, of

stimuli optimized for ipsi-lateral directions.
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Figure C.6. Probability of correct answer for three distance metrics. Intramodal compar-
ison (MRA PCA HRTF dataset) for normal (dots) and mirrored (crosses) playback, of

stimuli optimized for contra-lateral directions.
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Figure C.7. Probability of correct answer for three distance metrics. Intermodal compar-
ison (Ideal PCA HRTF to MRA PCA HRTF dataset) for normal (dots) and mirrored

(crosses) playback, of stimuli optimized for ipsi-lateral directions.
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