České vysoké učení technické v Praze Fakulta elektrotechnická Katedra telekomunikační techniky

DISERTAČNÍ PRÁCE

Ing. Bc. Michal Šusta

Polynomy se stejnoměrným zvlněním v číslicovém zpracování signálu

Školitel: prof. Ing. Pavel Zahradník, CSc. Doktorský studijní program: P2612 Elektrotechnika a informatika Studijní obor: 2601V013 Telekomunikační technika

Praha, květen 2021

Poděkování

Děkuji svému školiteli prof. Ing. Pavlu Zahradníkovi, CSc. za vědecké vedení, spolupráci, ochotu a trpělivost v průběhu studia a při vykonávání společných vědecký prací a pracovních úkolů.

Čestné prohlášení

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje v souladu s Metodickým pokynem o dodržování etických principů při přípravě vysokoškolských závěrečných prací.

V Praze dne 26. května 2021

Seznam publikací a projektů

Doktorand: Ing. Bc. Michal Susta

Články - WoS SCI-Expanded kvartil - Q2

- Zahradnik P. (25%), Susta M. (25%), Simak B. (25%) a Vlcek M. (25%). "Cascade Structure of Narrow Equiripple Bandpass FIR Filters". In: *IE-EE Transactions on Circuits and Systems II: Express Briefs* 64.4 (dub. 2017), 407--411. ISSN: 1549-7747, 1558-3791. DOI: 10.1109/TCSII. 2016.2574243. URL: http://ieeexplore.ieee.org/document/7480412/.
- [2] Zahradnik P. (25%), Susta M. (25%), Vlcek M. (25%) a Simak B. (25%).
 "Degree of Equiripple Narrow Bandpass FIR Filter". In: *IEEE Transactions on Circuits and Systems II: Express Briefs* 62.8 (srp. 2015), 771--775. ISSN: 1549-7747, 1558-3791. DOI: 10.1109/TCSII.2015.2433333. URL: http://ieeexplore.ieee.org/document/7107989/.

Konference

- [3] Pavel Zahradnik, Michal Susta, Boris Simak a Miroslav Vlcek. "Approximation of Equiripple Low-pass FIR Filters". In: 2018 IEEE Seventh International Conference on Communications and Electronics (ICCE). Hue: IEEE, čvc 2018, 285--290. ISBN: 9781538636787 9781538636794. DOI: 10. 1109/CCE.2018.8465751. URL: https://ieeexplore.ieee.org/document/8465751/.
- [4] Michal Susta, Pavel Zahradnik, Radek Klof, Petr Zalesky a Boris Simak. "Digital broadband camera based on a line scanning sensor". In: 2017 International Conference on Information and Digital Technologies (IDT). Zilina, Slovakia: IEEE, čvc 2017, 355--358. ISBN: 9781509056897. DOI: 10. 1109/DT.2017.8024322. URL: http://ieeexplore.ieee.org/ document/8024322/.

- [5] Pavel Zahradnik, Michal Susta, Boris Simak a Miroslav Vlcek. "Robust design of optimal equiripple cascade narrow-band FIR filters". In: 2017 2nd International Conference on Telecommunication and Networks (TEL-NET). Noida: IEEE, srp. 2017, 1--6. ISBN: 9781509067107. DOI: 10.1109/ TEL \ hyphenNET. 2017.8343527. URL: https://ieeexplore. ieee.org/document/8343527/.
- [6] Pavel Zahradnik, Michal Susta, Boris Simak a Miroslav Vlcek. "Improved design of optimal notch FIR filters". In: 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE). Ha-Long City, Quang Ninh Province, Vietnam: IEEE, čvc 2016, 302--305. ISBN: 9781509018017. DOI: 10.1109/CCE.2016.7562653. URL: http://ieeexplore.ieee.org/document/7562653/.
- [7] Pavel Zahradnik, Boris Simak, Michal Susta a Miroslav Vlcek. "Narrowest band-pass digital FIR filters". In: 2015 European Conference on Circuit Theory and Design (ECCTD). Trondheim, Norway: IEEE, srp. 2015, 1--4. ISBN: 9781479998777. DOI: 10.1109/ECCTD.2015.7300070. URL: http://ieeexplore.ieee.org/document/7300070/.

Ostatní články

- [8] Ing. Michal Šusta. "Měření aktivity pohyblivých částí strojů". In: TecniCall 1 (břez. 2015), s. 25. ISSN: 1805-1030. URL: https://media.cvut.cz/ cs/publikace/20150402-tecnicall-1-2015.
- [9] Ing. Michal Šusta, doc. Ing. Jiří Chod CSc. a Ing. Pavel Tichý MBA. "Využití 3D tisku při řešení projektu HeRo - Health Robot". In: DPS Elektronika od A do Z 2 (břez. 2014), 12--15. ISSN: 1805-5044. URL: https: //www.dps-az.cz/vyvoj/id:2135/vyuziti-3d-tisku-prireseni-projektu-hero-health-robot.
- [10] Michal Šusta, Pavel Zahradnik a Boris Šimák. "Laboratory Measurement Instrument for Testing Broadband Image Sensor". In: *Elektrorevue* 21.6 (2019), 161--165. ISSN: 1213-1539. URL: http://www.elektrorevue. cz/cz/clanky/komunikacni-technologie/10/laboratorymeasurement-instrument-for-testing-broadband-imagesensor/.

Granty a spolupráce na grantových projektech

- VI20152019043 Unikátní všestranná bezpečnostní kamera založená na nanotechnologiích
- FV10163 Automatizovaný systém pro prostorové monitorování hluku
- FV10746 Nová generace slepecké hole s navigací a bezdrátovou komunikací
- TA03011396 Pokročilá navigace nevidomých
- FR-TI2/662 HeRo Health Robot

Obsah

A	Abstract	1
\mathbf{S}	eznam symbolů	3
1	Úvod	5
2	Současný stav řešené problematiky	7
	2.1 Základní analytické aproximační metody	8
	2.1.1 Butterworthova aproximace	8
	2.1.2 Čebyševova aproximace	9
	2.1.3 Inverzní Čebyševova aproximace	10
	2.1.4 Cauerova stejnoměrná aproximace	10
	2.2 Základní neanalytické aproximační metody	10
	2.2.1 Pascalova aproximace	11
	2.2.2 Hřebenové filtry	11
3	Cíle disertační práce	13
4	Polynomy	15
	4.1 Základní definice	15
	4.2 Prostor polynomů	19
	4.3 Tenzor součinu	23
	4.3.1 Diskrétní konvoluce	30
	4.3.2 Binomická věta	31
5	Zolotarevovy polynomy	35
	5.1 Definice Zolotarevových polynomů	35
	5.1.1 Rozbor dílčích funkcí	36
	5.1.1.1 K Úplný eliptický integrál	36
	5.1.1.2 K' Komplementární úplný eliptický integrál	37
	5.1.1.3 q Eliptický nome	37
	5.1.1.4 q' Komplementární eliptický nome	38
	5.1.1.5 H Jacobiho eta funkce	38
	5.1.1.6 Eliptické funkce	39

5.2 Řešení výpočtu funkcí a jeho aplikace v jazyce MATLAB 5.2.1 Metody výpočtů	$40 \\ 42$
5.2.2 Řešení pro funkční řady	42
5.2.3 Řešení pro jednotlivé funkce	42
5.2.31 K Úplný eliptický integrál	42
5.2.3.2 H Jacobiho eta funkce	58
5.3 Řešení Zolotarevových polynomů	59
5.3.1 Definiční obor Zolotarevových polynomů	59
5.3.2 Rozbor definiční křivky	60
6 Legenderova transformace	63
6.1 Princip Legenderovy transformace	63
6.1.1 Legenderovy polynomy	64
6.1.1.1 Ortogonalita Legenderových polynomů	64
6.1.2 Proces transformace	65
6.1.3 Vlastnosti transformace	66
6.2 Aplikace Legenderovy transformace	69 69
6.2.1 Legenderova transformace Zolotarevova polynomu	69 80
6.2.2 Legenderova transformaça – noviplný obraz	80
6.2.4 Legenderova transformaça funkca sinc	00
0.2.4 Legenderova transformate funkte sint	30
7 Extrémy a nuly Zolotarevových polynomů	95
7.1 Analytické řešení	95
7.2 Numerické řešení pomocí Legenderovy	
transformace	102
8 Legenderova aproximace	105
8.1 Motivace k Legenderově aproximaci	105
8.2 Definice Legenderovy aproximace	118
8.2.1 Analytické vlastnosti a definice hlavní funkce	119
8.2.2 Legenderova goniometrika	120
9 Závěr	125
9.1 Napineni cilu disertachi prace	125
9.2 Moznosti pro dalsi vyzkum	127
Příloha 1	129
Seznam obrázků	137
Comerce to healph	1 4 1
Seznam tabulek	141
Seznam kódů	143
Seznam literatury	145

Abstract

Abstrakt:

Tato disertační práce pojednává o integrální polynomiální transformaci založené na rozkladu funkce do báze Legenderových polynomů. Na tomto základě je pak zavedena aproximace reálné funkce. Uvedeny jsou příklady konkrétních aplikací těchto konstrukcí. Jsou zde také analyzovány Zolotarevovy polynomy z hlediska jejich algebraických vlastností.

Klíčová slova:

analýza funkce, aproximace, filtr, funkční operátor, Legenderův polynom, polynom, polynomiální transformace, stejnoměrně zvlněný polynom, Zolotarevův polynom

Abstract:

This doctoral thesis deals with integral polynomial transform based on decomposition of function to the base of Legendre polynomials. On these foundations is then implemented the approximation of real function. There are given examples of concrete applications of these constructions. Also Zolotarev polynomial are analysed there with respect to their algebraic properties.

Keywords:

approximation, equiripple polynomial, filter, function analysis, functional operator, Legendre polynomial, polynomial, polynomial transform, Zolotarev polynomial

Seznam symbolů

*	konvoluce
.	absolutní hodnota
$\ .\ $	norma
$\langle . \rangle$	lineární obal, uzavřený interval
a_i	číselný koeficient
α	skalární násobek
arc	cosh arkus hyperbolického kosinu
arc	dn arkus Jacobiho deltaaplitudy
arc	sn arkus eliptického sinu
\mathbb{C}	množina komplexních čísel
cn	eliptický kosinus
cos	kosinus
cos	h hyperbolický kosinus
coth	n kotangens
D[] množina definičního oboru
dim	{} dimenze prostoru
dn	Jacobiho deltaaplituda
e	Eulerovo číslo
err	$_{f}$ chybová funkce k funkci f
f	reálná funkce
\hat{f}_N	neúplný Legenderův obraz funkce f stupně N
\widetilde{f}_{∞}	(x) Legenderova řada funkce f
\widetilde{f}_N	úplný Legenderův obraz funkce f stupně N
φ	funkce komplexního argumentu
\mathbb{G}_n	Abelova grupa polynomů stupně nejvýše n
G_N	Legenderova goniometrika řádu N
H	Jacobiho eta funkce
H_k	Heavisideova funkce
$\Im\{\}$	imaginární část
i	index, imaginární jednotka
$oldsymbol{I}_i$	implicitní báze prostoru \mathbb{P}_n
j	index, imaginární jednotka
k	index, přirozená proměnná, reálný parametr
K	úplný eliptický integrál
K'	komplementární úplný eliptický integrál
$\hat{\mathfrak{L}}_N$	Legenderova transformace stupně N - neúplný obraz
± 1	

\mathfrak{L}_N	Legenderova transformace stupně N - úplný obraz
L_N^f	Legenderova aproximace funkce f řádu N
ln	přirození logaritmus
max	maximum
min	minimum
\mathbb{N}	množina přirozených čísel
n	index, přirozená proměnná
n!	faktoriál čísla n
p	komplexní proměnná
${\cal P}$	zobrazení $\mathbb{P}_n \to \mathbb{C}^{n+1}$
\mathbb{P}_n	lineární prostor polynomů stupně nejvýše n
π	Ludolfovo číslo
П	operátor součinu
q	eliptický nome
\mathbb{Q}	množina iracionálních čísel
q'	komplementární eliptický nome
$\Re\left\{ ight\}$	reálná část
\mathbb{R}	množina reálných čísel
Σ	operátor sumy, reálná část normovaného komplexního kmitočtu
sin	sinus
sinh	hyperbolický sinus
sn	eliptický sinus
t	proměnná času
$\mathcal{T}_{ij}^{N}\left(m,n ight)$	posunutý reverzibilní Kroneckerův tenzor
$\mathfrak{T}_{ij}^k(N)$	zobecněný posunutý reverzibilní Kroneckerův tenzor
$T_n^{\tilde{g}}$	Taylorův rozvoj funkce g řádu n
tg	tangens
θ	Jacobiho theta funkce
u	komplexní proměnná
w	reálný parametr, reálná proměnná
x	reálná proměnná
x^i	kontravariantní souřadnice
x_i	kovariantní souřadnice
y	reálná proměnná
\mathbb{Z}	množina celých čísel
z	komplexní proměnná
$Z_{p,q}$	Zolotarevův polynom s koeficient y p a q

Kapitola 1 Úvod

Prakticky ve všech oborech aplikovaných technických věd se setkáváme s potřebou nahradit funkci, či její část, takovou konstrukcí, která umožňuje provedení výpočtů s těmito funkcemi s menšími výpočetními nároky. Díky svým analytickým vlastnostem představuje často takovou konstrukci právě polynom. Nalezení dalších polynomiálních aproximačních metod je proto vysoce perspektivním směrem výzkumu. Zejména pak v partiích teorie obvodů, při řešení aproximačních úloh, například v návrhu elektrických filtrů, figurují v algoritmech návrhových metod především polynomy se stejnoměrným zvlněním.

Tato práce se proto věnuje studiu třídy polynomů a rozvoji znalostí výpočtů s těmito funkcemi. Práce nejprve rozvádí základní definice polynomiální algebry. Současně zde studuje možnosti rozšíření těchto definic o algebraické konstrukce umožňující aplikace zejména v číslicovém zpracování.

Dále je zavedena Legenderova transformace. Jedná se integrální polynomiální transformaci široké třídy reálných funkcí. Tato transformace umožňuje vyjádření funkce ve tvaru polynomu, díky čemuž je například možno aplikovat zejména integrodiferenciální operátory na tuto funkci. Vzhledem k tomu, že obrazem této transformace je právě polynom, poskytuje tento aparát výrazné zjednodušení, nebo dokonce, v některých případech, jednu z výhradních možností, jak tyto operace uskutečnit.

Na základě získaných poznatků je pak zavedena Legenderova aproximace. Jsou zde uvedeny výchozí matematické souvislosti s Legenderovou transformací, na níž je tato aproximace založena.

Z přehledu obsahu současné literatury týkající se tématu je zřejmé, že své místo nalezla, v rámci této problematiky, řešení založená na osvědčených postupech. Nicméně, již z podstaty aproximačních úloh plyne, že aplikace takového postupu přináší vždy nutnost volby mezi kvalitou výsledku a kvantitou požadavků na získané řešení. Právě rozdíly mezi těmito aspekty se jednotlivé úlohy liší. Proto je vhodné, a z hlediska rozvoje této problematiky perspektivní, zabývat se možnostmi rozšíření dosavadních znalostí o nové matematické konstrukce tohoto druhu a studovat jejich vlastnosti.

Kapitola 2 Současný stav řešené problematiky

V současné době představují nejužívanější návrhové postupy, vedoucí ve svém výsledku na izoextremální polynomy, především algoritmy založené na konzervativních aproximačních úlohách. Mezi tato řešení patří zejména Butterworthova, Čebyševova nebo Cauerova aproximace, které jsou detailně popsány v nejrůznějších literárních zdrojích. Z domácích jsou to například publikace [16], [42] nebo [41].

Zajisté se s uplatněním těchto metod setkáme i v jejich automatizovaných aplikacích. I v základní výbavě tolik užívaného systému, jako je jazyk MATLAB, nalezneme funkce založené na, v podstatě mechanické, aplikaci těchto analytických řešeních. O takovýchto možnostech využití prostředí MATLAB pojednává například publikace [40]. Zatímco je zde obecně kladen důraz na analytický přístup k problému, a to především z důvodu determinismu výsledků takového postupu, přístup numerických návrhových metod není v takovýchto aplikacích příliš akcentován, neboť jeho implementace naráží na konkrétní problémy. Těmi jsou především:

- Výpočetní náročnost řešení
- Problematika výpočtů s velkými čísly v desetinné čárce
- Problematika determinismu výsledku řešení

Ze zmíněných aspektů je však nejdůležitější právě determinismus výsledku, neboť konzervativní postupy představují možnost stanovení klíčových parametrů aplikovaného řešení jako vstupního parametru vlastního procesu.

Metodika numerických aproximačních algoritmů se majoritně zakládá spíše na aplikaci intuitivních matematických konstrukcí. Například návrh hřebenových filtrů nebo filtrů založený na Pascalově aproximaci představuje užití mechanicky vytvářených přenosových funkcí k odvození zapojení výsledného obvodu. Principy, na kterých jsou tyto algoritmy založeny popisuje například publikace [7]. Na podobných principech se však zakládají také metody principiálně vycházející z řešení analytických, jako je například algoritmus Linkwitz-Riley, o kterém pojednává článek [23].

2.1 Základní analytické aproximační metody

Za základní metody, jejichž výsledkem je aproximace předmětu tohoto procesu polynomem, lze vzít bez pochyby v úvahu Butterworthovu, Čebyševovu nebo Cauerovu aproximaci.

Tyto metody jsou osvědčenou součástí standardních návrhových postupů prakticky od dob svého vzniku. Důvodem jejich dominantního postavení mezi ostatními, především konstrukčními, metodami je řada výhod, které představují při jejich aplikaci značná pozitiva, a to jak pro jejich uživatele, tak pro výsledek samotný.

Mezi základní vlastnosti těchto postupů patří:

1. Analytika

Postup řešení úloh a jejich výsledek mají obecně transcendentní matematická vyjádření. Lze je tedy beze zbytku formulovat konečnými výrazy. Díky tomu tyto metody nalezly své uplatnění dávno před možností využití výpočetních technologií, především bez potřeby jejich numerické algoritmizace.

2. Determinismus

Vstupními parametry těchto algoritmů jsou klíčové hodnoty jejich výsledků a jsou známy vztahy mezi těmito veličinami. Díky tomu je znám postup a náročnost jeho řešení pro konkrétní vstupní parametry před uskutečněním výpočtu.

3. Schematismus

Vzhledem k tomu, že formalismus souvisejících výpočtů v je aplikacích těchto aproximačních metod definován pro obecnou množinu vstupních parametrů unitárně, je postup řešení pro různé vstupy v jisté úrovni zobecnění stejný. V praxi to znamená, že základní výpočetní úkony při řešení konkrétních aproximačních úloh představují dosazování do empirických vztahů.

Následující přehled shrnuje základní vlastnosti nejužívanějších analytických aproximačních metod.

2.1.1 Butterworthova aproximace

Butterworthova aproximace je metodou vedoucí, ve svém výsledku, na maximálně plochou charakteristiku modulu přenosové funkce obvodu. Tato vlastnost je dána způsobem, kterým je aproximující polynom konstruován. Výchozím výpočetním postupem je Taylorův rozvoj, přičemž pro daný stupeň aproximačního polynomu

platí, že, kromě koeficientu náležející nejvyšší mocnině základní proměnné, jsou všechny ostatní koeficienty nulové. Tento fakt má následující důsledky:

- Výsledná charakteristická funkce je rovna celočíselné mocnině základní proměnné
- Póly přenosové funkce jsou rozloženy ekvidistantně po kružnici v komplexní rovině se středem v počátku
- Modul přenosové funkce nevykazuje v celém intervalu argumentu extrémy mimo hraniční body
- Přenosovou funkci tvoří reciproký polynom

Motivací k zavedení tohoto aproximačního postupu bylo historicky nalezení tzv. minimaxu aproximované funkce. Tato aproximační metoda má však tu nevýhodu, že spád modulu přenosové funkce je ze všech konvenčních analytických metod nejmenší. V důsledku je tedy míra rozdílu mezi přenosem na hranicích propustného a nepropustného pásma normované dolní propusti konstruované na základě této metody nejnižší.

Tato metoda je podrobně vyložena například v publikacích [16] nebo [37].

Originální práci autora této metody S. Butterwortha pojednávající o tomto tématu lze nalézt v článku [3].

2.1.2 Čebyševova aproximace

Čebyševova aproximace je založena na konstrukci Čebyševových polynomů. Tyto polynomy zaujímají v algebře diferenciálního kalkulu důležité místo, neboť tvoří bázi řešení Čebyševovy aproximační diferenciální rovnice.

Čebyševovy polynomy jsou definovány na otevřeném intervalu (-1; 1), přičemž vykazují izoextremalitu na intervalu $\langle -1; 1 \rangle$ oboru hodnot. Této vlastnosti je pak využito při konstrukci výsledné charakteristické funkce, neboť tato pak vykazuje izoextremální průběh jejího modulu v propustném pásmu. V pásmu nepropustném pak vykazuje tato charakteristika padý charakter, podobně jako v případě charakteristiky založené na aproximaci Butterworthově.

Dá se dokázat, že Čebyševovy polynomy jsou v geometrické interpretaci goniometrické harmoniky obalené na varietě pláště válce v prostoru a axonometricky promítnuté na plochu tečnou na tento plášť.

Póly přenosové funkce jsou rozloženy na elipse ležící v komplexní rovině položené symetricky vůči počátku, přičemž přenosovou funkci obecně tvoří racionálně lomená funkce.

Výhodou této aproximační metody je relativně strmý spád modulu přenosové funkce v přechodovém pásmu mezi intervalem propustného a nepropustného pásma.

Principy a metodiku této aproximační úlohy představuje například publikace [44].

O životě a díle autora této aproximační metody P. Čebyševa pojednává například článek [31].

2.1.3 Inverzní Čebyševova aproximace

Tato metoda vychází z Čebyševovy aproximační metody, přičemž využívá komplementárnosti dolní a horní normované propusti. Tímto přechodem je pak dosaženo izoextremality modulu přenosové funkce v nepropustném pásmu, a analogicky, padé charakteristiky v pásmu propustném.

Výhodou této aproximační metody je, obdobně jako v případě přímé Čebyševovy metody, relativně strmý spád modulu přenosové funkce v přechodovém pásmu mezi intervalem propustného a nepropustného pásma.

Výsledkem této aproximační úlohy je též racionálně lomená funkce.

Detailní popis této metody lze nalézt například v literatuře [44].

2.1.4 Cauerova stejnoměrná aproximace

Cauerova aproximace je metoda založená na konstrukci přenosové funkce, jejíž modul vykazuje izoextremální průběh jak v propustném, tak v nepropustném pásmu.

Charakteristická funkce je pak racionálně lomenou funkcí, která sestává z jednotlivých eliptických frakcí, jejichž konstrukce vychází z řešení nelineární diferenciální rovnice. Toto řešení pak představuje kalkulaci Jacobiho eliptických integrálů. Tyto jsou však vyššími transcendentními funkcemi, proto jejich analytické řešení nelze vyjádřit v podobě konečné formule. Z tohoto důvodu se k jejich řešení užívá výhradně metod numerických. Těmito řešeními a jejich aplikacemi se v dalším zabývá také tato práce.

Výkladem tématiky k této aproximační úloze se nabývá například publikace [6].

2.2 Základní neanalytické aproximační metody

Jako neanalytické aproximační metody lze označit ty návrhové postupy, které jsou založeny na mechanickém přístupu ke konstrukci jejich výsledků, přičemž se nemusí vždy jednat přímo o metody ryze numerické.

Základem těchto metod je obvykle vytyčení konkrétních bodů definičního oboru přenosové funkce v tolerančním schematu a následné přímé dosazení těchto hodnot do jednotlivých frakcí přenosové funkce, popřípadě funkce charakteristické.

Výsledkem těchto metod je obecně anizoextremální racionálně lomená přenosová funkce, popřípadě reciproký polynom s tímto charakterem.

Mezi výhody takového postupu patří rychlost a jednoduchost výpočtu, zatímco mezi nevýhody patří zejména vyšší míra lability výsledného systému a především nedeterminovaný průběh přenosové funkce, zvláště jejího modulu.

Jako konkrétní příklady těchto algoritmů lze uvést Pascalovu aproximaci nebo konstrukci hřebenových filtrů. Těmito tématy se podrobně zabývají například publikace [7] nebo [9]. Tyto metody se liší především tím, že zatímco v případě Pascalovy aproximace je tato metoda založena na volbě parametrů charakteristické funkce, v případě hřebenových filtrů se jedná o volbu parametrů funkce přenosové.

2.2.1 Pascalova aproximace

Pascalova aproximace je intuitivní mechanická metoda založená na konstrukci charakteristické funkce z kořenových činitelů. Tyto její kořenové činitele jsou voleny na reálné ose, přičemž jsou na této množině rozloženy s konstantní vzdáleností mezi nimi. Výsledkem je pak polynom, který, jak je z postupu návrhu zřejmé, prochází nulami právě v těchto zvolených bodech. Avšak, tento polynom je zásadně anizoextremální, neboli jeho zvlnění je značně nestabilní.

Mezi výhody takového postupu patří jednoduchost a rychlost řešení. Mezi nevýhody pak obecně nepredikovatelné chování přenosové funkce, neboť to následně vyplyne až z vlastního výsledku tohoto postupu.

Podrobný popis této metody lze nalézt například v publikacích [22] a [7].

2.2.2 Hřebenové filtry

Princip konstrukce hřebenových filtrů spočívá v nalezení přenosové funkce takovým způsobem, že její kořenové činitele jsou ztotožněny s body v komplexní rovině, jejichž poloha odpovídá poloze normovaných frekvencí, které mají být filtrem potlačeny. Poloha těchto bodů je obvykle volena tak, aby tyto kořenové činitele byly rovnoměrně rozmístěny na kružnici v komplexní rovině se středem v počátku. Takto volené rozmístění představuje tu výhodu, že útlum přenosové funkce je nejvyšší na celočíselných násobcích základní úhlové frekvence. Tím pádem jsou výsledným systémem filtrovány také vyšší harmonické složky vstupního signálu.

Typickou aplikací je pak filtrování harmonického rušení z užitečného signálu. Zdrojem takového rušení je obvykle síťové napětí na vstupu napájení obvodu nebo elektromagnetické parazitní vazby s ostatními spotřebiči v jeho bezprostřední blízkosti.

Při konstrukci těchto filtrů je však nutné vzít v úvahu stabilitu výsledného filtru a volit činitele přenosové funkce s ohledem na tuto nutnost.

Mezi výhody takového návrhového postupu patří izoextremalita výsledné přenosové funkce, ovšem, při dodržení rovnoměrného rozmístění kořenových činitelů na

kružnici v komplexní rovině se středem v počátku.

Nevýhodou je pak zřejmá jednoúčelovost takového řešení a tedy nízká variabilita ve volbě konkrétního tolerančního schematu.

Podrobným výkladem této metody se zabývá například publikace [9].

Kapitola 3 Cíle disertační práce

Tato disertační práce si klade za cíl zavést integrální polynomiální transformaci na základě dosavadních poznatků z partií aplikované matematiky užité v teorii obvodů a podrobit tento aparát podrobnému zkoumání. Výsledkem pak bude její využití v konkrétní úloze, která zaujímá v teorii obvodů eminentní postavení, a to v aproximaci reálné funkce polynomem, zejména pak polynomem se stejnosměrným zvlněním na vlastní podmnožině jeho definičního oboru.

Práce dále naváže na práci [39], kdy doplní problematiku Zolotarevových polynomů o nové poznatky. Především zde budou zkoumána nová analytická řešení jejich podstatných parametrů. Při hledání těchto řešení bude aplikována zavedená Legenderova transformace.

Za základní cíle si tato disertační práce klade zejména výčet následujících úkolů:

1. Rozbor polynomiálních funkcí

Tento cíl představuje rozbor obecných polynomů, zejména z hlediska algebraických vlastností třídy polynomiálních funkcí. Tento úkol znamená především zavedení prostoru polynomů a dále zobrazení mezi tímto prostorem a aritmetickým komplexním prostorem. Na tomto základě budou dále studovány možnosti užití nabytých poznatků, zejména při řešení výpočtů algebraických operací mezi polynomy.

2. Zavedení Legenderovy transformace

Pro zavedení Legenderovy transformace je v prvé řadě nezbytné uskutečnit rozbor vlastností Legenderových polynomů a možností jejich analytických vyjádřeních. Na tomto základě je pak možno definovat Legenderovu transformaci jakožto integrální polynomiální operátor nad množinou obecně reálných funkcí a vyšetřit její vlastnosti.

3. Aplikace Legenderovy transformace

Představit možnosti zavedené Legenderovy transformace její aplikací na některé základní funkce, které figurují zejména v teorii obvodů, zvláště pak v partiích elektrických filtrů. Konfrontovat výsledky těchto aplikací s konvenčními postupy v řešení podobných úloh.

4. Zavedení Legenderovy aproximace

Definovat Legenderovu aproximaci na základě zavedené Legederově transformaci a studovat její vlastnosti.

5. Aplikace Legenderovy aproximace

Aplikovat Legenderovu aproximaci pro konstrukci polynomů s izoextremálním průběhem a pro získání stejnoměrně zvlněné funkce pro užití v aproximačních úlohách v teorii obvodů.

6. Rozbor Zolotarevových polynomů

Rozbor základních algebraických vlastností Zolotarevových polynomů analytickými metodami, konkrétně nalezení analytického vyjádření jejich nulových bodů a polohy extrémů.

Kapitola 4 Polynomy

Prakticky ve všech partiích analýzy a syntézy obvodů se nevyhnutelně setkáváme s algebraickými operacemi s polynomy. Jak v analýze, tak v syntéze, patří sčítání a násobení polynomů k základním početním operacím. Je proto nanejvýše vhodné, a z hlediska rozvoje užitečných znalostí perspektivní, prohlubovat nástroje tohoto početního aparátu, který umožní tyto operace agregovat a definovat je tak, abychom v jejich použitích nalezli zjednodušení těchto výpočtů, a zároveň, aby tento aparát umožnil analýzu vlastností výsledků jeho aplikací.

Výhoda takového přístupu se taktéž následně projeví, zejména v oblasti polynomiálních transformací, jak bude ukázáno v dalším.

4.1 Základní definice

Polynomem budeme rozumět funkci definovanou v souladu s obecnou konvencí:

Definice 1. Polynom $f : \mathbb{C} \to \mathbb{C}$ stupně *n* proměnné *x* je funkce:

$$f(x) = \sum_{i=0}^{n} a_i x^i; \ x \in \mathbb{C}, \ n \in \mathbb{N} \cap \{0\}, \ a_i \in \mathbb{C}, \ a_n \neq 0$$
(4.1)

, kde konstanty a_i nazýváme koeficienty polynomu. Polynom stupně n proměnné x značíme $p_n(x)$.

Polynom tedy chápeme jako součet součinů konstant a obecně mocniny proměnné.

Součtem dvou polynomů rozumíme:

Definice 2. Nechť $n, m \in \mathbb{N} \cap 0$, $n \ge m$ Součet polynomů $p_n(x)$ a $q_m(x)$ je polynom:

$$r_{n}(x) = p_{n}(x) + q_{m}(x) = \sum_{i=0}^{m} (a_{i} + b_{i})x^{i} + \sum_{j=m+1}^{n} a_{j}x^{j}; \ p_{n}(x) =$$

$$= \sum_{i=0}^{n} a_{i}x^{i}, \ q_{m}(x) = \sum_{i=0}^{m} b_{i}x^{i}$$
(4.2)

Součet dvou polynomů je tedy součet součinů součtů jejich koeficientů u příslušných mocnin proměnné s těmito mocninami proměnné. Pakliže je stupeň jednoho polynomu vyšší než stupeň polynomu druhého, pak zbývající členy, které nemají v polynomu druhém koeficienty k součtu, jsou k výsledku součtu přičteny beze změny. Stupeň součtu dvou polynomů je pak roven stupni vyššímu ze stupňů sčítanců. Potud je součet polynomů redukován na aplikaci algebraického součtu násobků jednotlivých mocnin násobených konstantami koeficientů.

Dále definujme násobek polynomu konstantou:

Definice 3. Nechť $\alpha \in \mathbb{C}$ je číslo a $p_n(x)$ je polynom. Pak násobkem polynomu p číslem α je:

$$\alpha \cdot p_n\left(x\right) = \sum_{i=0}^n \alpha a_i x^i \tag{4.3}$$

Tato definice plyne z distributivity násobení na komplexním číselném oboru.

Konečně součinem polynomů definujeme:

Definice 4. Součin polynomů $p_n(x)$ a $q_m(x)$ je polynom:

$$r_{n+m}(x) = p_n(x) \cdot q_m(x) = \sum_{k=0}^{n+m} \sum_{i=0}^k a_i b_{k-i} x^k;$$

$$p_n(x) = \sum_{i=0}^n a_i x^i, \ q_m(x) = \sum_{i=0}^m b_i x^i$$
(4.4)

Podrobme nyní tuto definici součinu polynomů důkladnému rozboru. Je zřejmé, že součin dvou polynomů je polynom, jehož stupeň je roven součtu stupňů sčítanců. Avšak, pro koeficienty součinu platí vztah, který je na první pohled nepříliš zřejmý. Jeho význam vyplyne ve chvíli, kdy součin polynomů rozepíšeme na součin mnohočlenů. Pro dva polynomy $p_n(x)$ a $q_m(x)$ pišme:

$$p_n(x) = a_0 x^0 + a_1 x^1 + \dots + a_n x^n, \ q_m(x) = b_0 x^0 + b_1 x^1 + \dots + b_m x^m$$
(4.5)

A pro jejich součin $r_k(x)$, kde k = m + n můžeme psát:

$$r_{k}(x) = p_{n}(x) \cdot q_{m}(x) =$$

$$= (a_{0}x^{0} + a_{1}x^{1} + \dots + a_{n}x^{n}) \cdot (b_{0}x^{0} + b_{1}x^{1} + \dots + b_{m}x^{m}) =$$

$$= a_{0}x^{0}(b_{0}x^{0} + b_{1}x^{1} + \dots + b_{m}x^{m}) + a_{1}x^{1}(b_{0}x^{0} + b_{1}x^{1} + \dots + b_{m}x^{m}) + \dots$$

$$\dots + a_{n}x^{n}(b_{0}x^{0} + b_{1}x^{1} + \dots + b_{m}x^{m}) =$$

$$= (a_{0}b_{0}x^{0+0} + a_{0}b_{1}x^{0+1} + \dots + a_{0}b_{m}x^{0+m}) + \dots$$

$$\dots + (a_{1}b_{0}x^{1+0} + a_{1}b_{1}x^{1+1} + \dots + a_{n}b_{m}x^{n+m})$$

$$\dots + (a_{n}b_{0}x^{n+0} + a_{n}b_{1}x^{n+1} + \dots + a_{n}b_{m}x^{n+m})$$

$$(4.6)$$

, kde kumulací koeficientů u odpovídajících mocnin proměnné získáváme:

$$r_{k}(x) = p_{n}(x) \cdot q_{m}(x) =$$

$$= (a_{0}b_{0}) x^{0} + (a_{0}b_{1} + a_{1}b_{0}) x^{1} + (a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}) x^{2} +$$

$$+ (a_{0}b_{3} + a_{1}b_{2} + a_{2}b_{1} + a_{3}b_{0}) x^{3} + \cdots$$

$$\cdots + (a_{n-1}b_{m} + a_{n}b_{m-1}) x^{n+m-1} + (a_{n}b_{m}) x^{n+m}$$

$$(4.7)$$

Podstatným faktem je to, že součet hodnot indexů u koeficientů jednotlivých součinitelů se rovná mocnině, u které se v součinu akumulují. Jinými slovy koeficient součinu je roven součtu součinů všech těch koeficientů součinitelů, jejichž součet indexů je roven právě mocnině součinu, které příslušejí. Součin dvou polynomů můžeme tedy přepsat takto:

$$r_{k}(x) = p_{n}(x) \cdot q_{m}(x) = \sum_{i=0}^{n+m} c_{i}x^{i}; \ c_{i} = \sum_{\substack{k \in \{0,1,\dots,n\}\\h \in \{0,1,\dots,m\}\\k+h=i}} a_{k}b_{h}$$
(4.8)

Pro názornost ještě rozepišme vztahy pro jednotlivé koeficienty součinu.

Vezměme například dva polynomy dány následovně:

Nechť jsou dány polynomy $p_6(x)$ a $q_4(x)$ takto:

$$p_{6}(x) = a_{6}x^{6} + a_{5}x^{5} + a_{4}x^{4} + a_{3}x^{3} + a_{2}x^{2} + a_{1}x^{1} + a_{0}x^{0}$$

$$q_{4}(x) = b_{4}x^{4} + b_{3}x^{3} + b_{2}x^{2} + b_{1}x^{1} + b_{0}x^{0}$$
(4.9)

Pro součin těchto polynomů aplikací vztahu 4.8 získáváme:

$$r_{10}(x) = p_6(x) \cdot q_4(x) = r_{10}x^{10} + r_9x^9 + \dots + r_1x^1 + r_0x^0$$
(4.10)

, kde pro koeficienty součinu aplikací vztahu 4.7 získáváme:

$$r_{0} = a_{0}b_{0}$$

$$r_{1} = a_{0}b_{1} + a_{1}b_{0}$$

$$r_{2} = a_{0}b_{2} + a_{1}b_{1} + a_{2}b_{0}$$

$$r_{3} = a_{0}b_{3} + a_{1}b_{2} + a_{2}b_{1} + a_{3}b_{0}$$

$$r_{4} = a_{0}b_{4} + a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1} + a_{4}b_{0}$$

$$r_{5} = a_{1}b_{4} + a_{2}b_{3} + a_{3}b_{2} + a_{4}b_{1} + a_{5}b_{0}$$

$$r_{6} = a_{2}b_{4} + a_{3}b_{3} + a_{4}b_{2} + a_{5}b_{1} + a_{6}b_{0}$$

$$r_{7} = a_{3}b_{4} + a_{4}b_{3} + a_{5}b_{2} + a_{6}b_{1}$$

$$r_{8} = a_{4}b_{4} + a_{5}b_{3} + a_{6}b_{2}$$

$$r_{9} = a_{5}b_{4} + a_{6}b_{3}$$

$$r_{10} = a_{6}b_{4}$$

$$(4.11)$$

Výše uvedené souvislosti vedou k myšlence, že zavedením vhodné algebraické

konstrukce by bylo možno součin dvou polynomů definovat takovým způsobem, aby tato operace byla nejenom zjednodušena, ale aby také poskytovala možnost jejího rozšíření užitelného při analýze a syntéze obvodů.

Vyjděme z předpokladu, že polynom reprezentují plně jeho koeficienty. Vskutku, klademe-li si otázku, zda polynom je zcela určen svými koeficienty, dojdeme nevyhnutelně k následující úvaze, kterou můžeme uspořádat do formy korektního tvrzení:

Věta 1. Polynom $p_n(x)$ stupně n je dán svými koeficienty jednoznačně, neboli, množina jeho koeficientů určuje funkci polynomu unikátně.

Důkaz. Předpokládejme dva polynomy s různými koeficienty stupně n, a to $p_n(x)$ a $q_n(x)$, které jsou dány:

$$p_n(x) = \sum_{i=0}^n a_i x^i$$
 (4.12)

$$q_n(x) = \sum_{i=0}^n b_i x^i$$
 (4.13)

$$\{a_0, a_1, \dots, a_n\} \neq \{b_0, b_1, \dots, b_n\}$$
(4.14)

, přičemž tyto zadávají stejnou funkci. Pak jejich rozdíl je dán :

$$r_n(x) = p_n(x) + (-1)q_n(x) = p_n(x) - q_n(x) = \sum_{i=0}^n r_i x^i = \sum_{i=0}^n (a_i - b_i)x^i$$
(4.15)

, kde pro jednotlivé koeficienty rozdílu tedy platí:

$$r_i = a_i - b_i \tag{4.16}$$

Pokud mají oba polynomy zadávat stejnou funkci, musí platit, že výsledek jejich rozdílu 4.15 je nulový, tedy, že pro všechny koeficienty rozdílu platí:

$$\forall i: r_i = 0 \tag{4.17}$$

To je ovšem pravda pouze v případě, že všechny koeficienty menšence i menšitele jsou si rovny. To je však spor s předpokladem, že jejich koeficienty jsou různé.

Dva polynomy jsou si tedy rovny pouze tehdy, jsou-li si rovny všechny jejich koeficienty.

4.2 Prostor polynomů

V tuto chvíli můžeme zavést vektorový prostor polynomů. Pro korektnost takové definice je nutné nejprve dokázat, že jistá množina polynomů skutečně zavádí vektorový prostor.

Lemma 1. Množina všech polynomů \mathbb{G}_n stupně nejvýše n tvoří s operací součtu dle definice 2 Abelovu grupu.

Důkaz.

1. Uzavřenost grupy

Součet dvou polynomů dle definice 2 je vždy polynom stupně nejvýše stupně vyššího z obou sčítanců.

2. Asociativita

Asociativita součtu polynomů plyne z asociativity množiny komplexních čísel.

3. Neutrál grupy

Neutrálem $p_e = 0$ množiny polynomů stupně nejvýše n je polynom nulový, neboli polynom stupně nejvýše n, jehož všechny koeficienty jsou rovny nule. Součet jakéhokoliv polynomu s polynomem nulovým jej nezmění, neboť polynom je svými koeficienty určen jednoznačně (věta 1) a koeficienty polynomu sečteny s nulou (definice 2) jsou identické s původními.

4. Inverzní prvek

Ke každému polynomu stupně m daným:

$$p_m(x) = \sum_{i=0}^m a_i x^i; \ m \le n$$
 (4.18)

existuje na množině všech polynomů stupně nejvýše n polynom daný:

$$q_m(x) = \sum_{i=0}^m b_i x^i$$
 (4.19)

, pro jehož koeficienty platí:

$$\forall i \in \{0, 1, .., m\}: \ b_i = -a_i \tag{4.20}$$

Součet těchto dvou polynomů pak dává:

$$p_{e} = p_{m}(x) + q_{m}(x) = \sum_{i=0}^{m} a_{i}x^{i} + \sum_{i=0}^{m} b_{i}x^{i} = \sum_{i=0}^{m} (a_{i} + b_{i})x^{i} =$$

$$= \sum_{i=0}^{m} (a_{i} - a_{i})x^{i} = 0$$
(4.21)

5. Komutativita

Komutativita součtu polynomů stupně nejvýše ndle definice 2 plyne z komutativity součtu komplexních čísel.

Věta 2. Abelova grupa \mathbb{G}_n polynomů stupně nejvýše n dle definice 2 se skalárním násobkem dle definice 3 tvoří vektorový prostor \mathbb{P}_n nad tělesem komplexních čísel.

Důkaz. Nechť $a, b \in \mathbb{C}; P_1, P_2 \in \mathbb{P}_n;$

1. Asociativita skaláru

$$a\left(b\cdot P_{1}\right) = (ab)\cdot P_{1} \tag{4.22}$$

Plyne z definice 3 a distributivity komplexních čísel.

2. Distributivita skaláru

$$a(P_1 + P_2) = aP_1 + bP_2 \tag{4.23}$$

Plyne z definice 2 a definice 3 a distributivity komplexních čísel.

3. Distributivita vektoru

$$(a+b) \cdot P_1 = (a \cdot P_1 + b \cdot P_1) \tag{4.24}$$

Plyne z definice 2 a definice 3 a distributivity komplexních čísel.

4. Invariance jedničky

$$1 \cdot P_1 = P_1 \tag{4.25}$$

Plyne z definice 3.

Z právě dokázaných tvrzení plyne, že množina polynomů stupně nejvýše n skutečně zadává vektorový prostor \mathbb{P}_n . Nyní vyšetřeme jeho dimenzi. Definujme bázi prostoru \mathbb{P}_n takto:

Definice 5. Množinu polynomů zadanou:

$$\forall i \in \{1, .., n+1\}: \ \mathbf{I}_i = \{x_i^{i-1}\}; \ x \in \mathbb{C}$$
(4.26)

nazveme implicitní bází prostoru \mathbb{P}_n

Věta 3. Implicitní báze dle definice 5 je bází prostoru \mathbb{P}_n a jeho dimenze je rovna $\dim \{\mathbb{P}_n\} = n + 1.$

Důkaz. Lineární obal implicitní báze dle definice můžeme zapsat:

$$\langle \mathbf{I}_i \rangle = \langle x_1^0, x_2^1, \dots, x_n^{n+1} \rangle = \sum_{i=0}^n a_i x_{i+1}^i = \mathbb{P}_n; \ \forall a_i \in \mathbb{C}, \ \forall i \in \{0, 1, \dots, n\}$$
(4.27)

, tedy lineární obal implicitní báze je roven množině \mathbb{P}_n . Lineární nezávislost vektorů implicitní báze ověříme položením:

$$\sum_{i=0}^{n} a_i x_{i+1}^i = p_e \equiv 0 \tag{4.28}$$

Je zřejmé, že jedinou kombinací souřadnic, které zadává nulový polynom, je vektor nulových souřadnic, přičemž počet bázových vektorů implicitní báze je roven n + 1.

Implicitní báze dle definice 5 je tedy bází prostoru \mathbb{P}_n a jeho dimenze je rovna $\dim \{\mathbb{P}_n\} = n + 1.$

Vzhledem k právě dokázaným souvislostem můžeme zavést izomorfismus, který umožní početní operace s polynomy redukovat a podstatně zjednodušit. Definujme izomorfismus mezi prostorem \mathbb{P}_n a aritmetickým prostorem nad tělesem komplexních čísel takto:

Definice 6. Zobrazení $\mathcal{P} : \mathbb{P}_n \to \mathbb{C}^{n+1}$ je dáno: Nechť $P \in \mathbb{P}_n$ je vektor, jehož souřadnice vůči implicitní bázi jsou:

$$(p_0, p_1, \dots, p_n)_{(\boldsymbol{I}_n)}$$
 (4.29)

, a tedy platí:

$$P = \sum_{i=0}^{n} p_i x_{i+1}^i \tag{4.30}$$

Pak pro obraz A tohoto vektoru platí:

$$A = \mathcal{P}(P) = (a_1, a_2, \dots, a_{n+1})_{(S)}; \ \forall m \in \{1, 2, \dots, n+1\}: \ a_m = p_{m-1} \ (4.31)$$

, kde S je kanonická báze prostoru \mathbb{C}^{n+1} .

Věta 4. Zobrazení \mathcal{P} zavedené definicí 6 je izomorfismus.

Důkaz. Nechť $\{P_1, P_2, \ldots, P_m\} \in \mathbb{P}_n; \{a_1, a_2, \ldots, a_m\} \in \mathbb{C}, m \in \mathbb{N}$

1. Linearita

$$\mathcal{P}\left(a_{1}P_{1} + a_{2}P_{2} + \dots + a_{m}P_{m}\right) =$$

$$= \mathcal{P}\left(a_{1}\sum_{i=0}^{n} p_{i1}x_{i+1}^{i} + a_{2}\sum_{i=0}^{n} p_{i2}x_{i+1}^{i} + \dots + a_{m}\sum_{i=0}^{n} p_{im}x_{i+1}^{i}\right) =$$

$$= \mathcal{P}\left(\sum_{i=0}^{n} a_{1}p_{i1}x_{i+1}^{i} + \sum_{i=0}^{n} a_{2}p_{i2}x_{i+1}^{i} + \dots + \sum_{i=0}^{n} a_{m}p_{im}x_{i+1}^{i}\right) =$$

$$= \mathcal{P}\left(\sum_{i=0}^{n} (a_{1}p_{i1} + a_{2}p_{i2} + \dots + a_{m}p_{im})x^{i}\right) =$$

$$= (a_{1}p_{11} + a_{2}p_{12} + \dots + a_{m}p_{1m}, a_{1}p_{21} + a_{2}p_{22} + \dots + a_{m}p_{2m}, \dots$$

$$\dots, a_{1}p_{n1} + a_{2}p_{n2} + \dots + a_{m}p_{nm}) =$$

$$= (a_{1}p_{11}, a_{1}p_{21}, \dots, a_{1}p_{n1}) + (a_{2}p_{12}, a_{2}p_{22}, \dots, a_{2}p_{n2}) + \dots$$

$$\dots + (a_{m}p_{1m}, a_{m}p_{2m}, \dots, a_{m}p_{nm}) =$$

$$= a_{1}\left(p_{11}, p_{21}, \dots, p_{n1}\right) + a_{2}\left(p_{12}, p_{22}, \dots, p_{n2}\right) + \dots$$

$$\dots + a_{m}\left(p_{1m}, p_{2m}, \dots, p_{nm}\right) =$$

$$= a_{1}\mathcal{P}(P_{1}) + a_{2}\mathcal{P}(P_{2}) + \dots + a_{m}\mathcal{P}(P_{m})$$

2. Injektivita

Vzhledem k tomu, že dle věty 1 množina koeficientů určuje polynom, coby vektor prostoru \mathbb{P}_n jednoznačně, je vzhledem k definici zobrazení \mathcal{P} injektivní eo ipso.

3. Surjektivita

Vzhledem k definici polynomu 1 a definici 7 je zobrazení $\mathcal P$ surjektivní e
o ipso.

Zobrazení \mathcal{P} dle definice 7 je izomorfismus.

Definujme ještě zobrazení inverzní k izomorfismu \mathcal{P} . Tato definice je spíše formální, neboť inverzní zobrazení vyplývá implicitně právě z jeho izomorfismu.

Definice 7. Inverzní zobrazení \mathcal{P}^{-1} k zobrazení \mathcal{P} dané definicí 7 je izomorfismus a pro jeho obraz platí: Nechť $C_1 \in \mathbb{C}^{n+1}$ a $P_1 \in \mathbb{P}_n$. Pak platí:

$$(C_1)_{(\mathbf{S})} = (c_1, c_2, \dots, c_{n+1})_{(\mathbf{S})}$$
(4.33)

$$P_1 = \mathcal{P}^{-1}(C_1) = \sum_{i=0}^n p_i x_{i+1}^i; \ \forall m \in \{1, 2, \dots, n+1\}: \ p_{m-1} = c_m$$
(4.34)

4.3 Tenzor součinu

Nyní máme dostatečný podklad pro zavedení konstrukcí umožňující operace s polynomy s využitím poznatků zejména multilineární algebry. Díky definici izomorfismu \mathcal{P} , kterým jednoznačně zobrazíme polynom na aritmetický vektor, můžeme početní operace výrazně zjednodušit.

Začněme následující úvahou:

Rozpisem 4.7 koeficientů součinu dvou polynomů aplikací vztahu 4.31 získáváme názorné schéma, které motivuje zavedení následující konstrukce:

Mějme dva polynomy $p, q \in \mathbb{P}_n$ a jejich obrazy $A = \mathcal{P}(p)$ a $B = \mathcal{P}(q)$. Pro souřadnice těchto obrazů platí:

$$(A)_{(\mathbf{S})} = (a_1, a_2, \dots, a_{n+1})_{(\mathbf{S})}$$
(4.35)

$$(B)_{(\mathbf{S})} = (b_1, b_2, \dots, b_{n+1})_{(\mathbf{S})}$$
(4.36)

Zaveď
me matici $c_{ij} \in \mathbb{C}^{(n+1),(n+1)},$ kde pro jednotlivé její prvky pišme:

$$c_{ij} = a_i b_j ; \quad \forall i, j \in \{1, 2, \dots, n+1\}$$

$$(4.37)$$

V maticovém zápisu můžeme tento vztah znázornit následovně:

$$c_{ij} = \begin{pmatrix} a_1b_1 & a_1b_2 & a_1b_3 & \cdots & a_1b_{n+1} \\ a_2b_1 & a_2b_2 & a_2b_3 & \cdots & a_2b_{n+1} \\ a_3b_1 & a_3b_2 & a_3b_3 & \cdots & a_3b_{n+1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n+1}b_1 & a_{n+1}b_2 & a_{n+1}b_3 & \cdots & a_{n+1}b_{n+1} \end{pmatrix}$$
(4.38)

Věnujme nyní pozornost hodnotám indexů. Ze vztahu 4.7 jsme vyvodili závěr, že pro koeficienty součinu polynomů je podstatná hodnota odpovídající indexem součtu indexů koeficientů jeho součinitelů. Znázorněme součet indexů v matici 4.38 maticí tak, aby hodnoty na jejích pozicích odpovídali hodnotám součtů indexů koeficientů jejich obrazů:

$$\widetilde{c}_{ij} = (i-1) + (j-1) =$$

$$= \begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 & \cdots & n \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & \cdots & n+1 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & \cdots & n+2 \\
3 & 4 & 5 & 6 & 7 & 8 & 9 & \cdots & n+3 \\
4 & 5 & 6 & 7 & 8 & 9 & 10 & \cdots & n+4 \\
5 & 6 & 7 & 8 & 9 & 10 & 11 & \cdots & n+5 \\
6 & 7 & 8 & 9 & 10 & 11 & 12 & \cdots & n+6 \\
\vdots & \ddots & \vdots \\
n & n+1 & n+2 & n+3 & n+4 & n+5 & n+6 & \cdots & n+n
\end{pmatrix}$$

$$(4.39)$$

Jednotlivé koeficienty součinu dvou polynomů p a q jsou dány součtem těch členů matice 4.38, jejichž souřadnice v matici 4.38 se rovnají těm souřadnicím v matici 4.39, pro které platí, že index koeficientu součinu je roven hodnotám matice 4.39 na pozicích těmito souřadnicemi daných.

Z matice 4.39 je tedy zřejmé, že koeficienty součinu polynomů p a q jsou dány součtem prvků na diagonálních pozicích matice 4.39. Taková poloha prvků matice však není příliš výhodná pro algebraické operace. Definovat například takovou operaci nad touto maticí, jejímž výsledkem by byl výběr právě těch prvků, jejichž součet odpovídá konkrétním koeficientům součinu polynomů, nebo aby výsledkem této operace byl přímo tento součet, by bylo zbytečně komplikované. Tato situace se ale zásadně změní ve chvíli, kdy vyjdeme opět ze schematismu daného maticí 4.39 a provedeme jeho úpravu následovně:

Zaveď me nyní, pro názornost, matici:

	0	1	2	3		n-1	n	_	_	_	_		_	-)	
	—	1	2	3		n-1	n	n+1	_	_	_		—	-	
	—	_	2	3		n-1	n	n+1	n+2	_	_		_	-	
$\widetilde{d}_{kh} =$	—	—	_	3		n-1	n	n+1	n+2	n+3	_		—	-	
	÷	÷	÷	÷	·	÷	÷	÷	÷	÷	÷	·	:	:	
	—	_	_	—		n-1	n	n+1	n+2	n+3	n+4		n + (n - 1)	-	
	/-	_	_	—		_	n	n+1	n+2	n+3	n+4		n + (n - 1)	n+n	
														(4.40))

Prvky této matice bez hodnoty symbolizují prázdnou množinu. Pro takto definovanou matici již lépe nalezneme operaci nad touto maticí, jejíž aplikací získáme koeficienty součinu polynomů, pokud správně zavedeme matici součinu koeficientů součinitelů ve stejné souvislosti, jako v případě matic 4.38 a 4.39.

Přepišme proto matici 4.38, pro zatím mechanicky, po vzoru matice 4.40 v tom smyslu, aby indexy prvků této matice odpovídaly indexům prvků matice 4.40 tak, aby hodnoty matice 4.38 na pozici dané těmito indexy odpovídaly pozicím sčítanců dávající koeficienty součinu polynomů p a q, kdy index těchto koeficientů je roven hodnotě matice 4.40, tedy:

	(a_1b_1)	a_1b_2	a_1b_3	a_1b_4		a_1b_n	a_1b_{n+1}	_	_	_	_		_	-)
	-	a_2b_1	a_2b_2	a_2b_3		$a_2 b_{n-1}$	a_2b_n	a_2b_{n+1}	_	_	_		_	-
	-	_	a_3b_1	a_3b_2		$a_{3}b_{n-2}$	$a_{3}b_{n-1}$	a_3b_n	a_3b_{n+1}	_	_		_	-
$d_{kh} =$	-	_	_	a_4b_1		a_4b_{n-3}	a_4b_{n-2}	a_4b_{n-1}	a_4b_n	a_4b_{n+1}	_		_	-
	1 :	÷	÷	÷	·	:	:	÷	÷	:	:	·	÷	:
	-	_	_	_		$a_n b_1$	$a_n b_2$	$a_n b_3$	$a_n b_4$	$a_n b_5$	$a_n b_6$		$a_n b_{n+1}$	-
	(–	_	_	_	• • •	-	$a_{n+1}b_1$	$a_{n+1}b_2$	$a_{n+1}b_3$	$a_{n+1}b_4$	$a_{n+1}b_5$		$a_{n+1}b_n$	$a_{n+1}b_{n+1}$
														(4.41)

Z takto zavedeného formalismu je zřejmé, že koeficienty součinu polynomů p a q jsou dány součtem prvků ve sloupcích matice 4.41, přičemž index koeficientu tohoto součinu je dán hodnotou h - 1 sloupcového indexu této matice zmenšeného o jedničku, neboli hodnotou matice 4.40 na odpovídajících pozicích v těchto sloupcích.

Toto je nyní již tvar matice, který umožňuje, ovšem po jejím korektním zavedením, aplikací základní algebraické maticové operace výpočet koeficientů součinu polynomů. Před definováním této operace se ještě zastavme před definicí matice 4.41 jako takové. Zatímco v případě takto mechanicky konstruovaného objektu se jedná pouze o názornou pomůcku, pro následující korektní definici je nutné vypořádat se s otázkou prázdných prvků matice 4.41. Je zřejmé, že v součtu působí neutrálně nulový prvek matice. Je proto nutné najít takový předpis, který umožní zadat matici 4.41 korektně v souladu s tímto požadavkem. Pro tyto účely pokračujme s názornou pomůckou, kterou nám poskytuje matice 4.41 a doplňme ji následovně:

Sledujme vývoj indexů jednotlivých členů v okolí prázdných prvků matice 4.41 a doplňme indexy a jim odpovídající členy čistě symbolicky. V následujícím přepisu matice 4.42 nemají doplněné znaky význam indexů a prvků matice, ale mají pouze pomocný symbolický význam:

	$\begin{pmatrix} a_1b_1 \end{pmatrix}$	a_1b_2	a_1b_3	a_1b_4		a_1b_n	$a_1 b_{n+1}$	$\mathbf{a_1}\mathbf{b_{n+2}}$	$\mathbf{a_1}\mathbf{b_{n+3}}$	$a_1b_{n+4}\\$	$a_1b_{n+5}\\$	•••	$\mathbf{a_1}\mathbf{b_{n+n}}$	a_1b_{n+n+1}
	a_2b_0	a_2b_1	a_2b_2	a_2b_3		$a_2 b_{n-1}$	a_2b_n	$a_2 b_{n+1}$	$a_2 b_{n+2} \\$	$\mathbf{a_2}\mathbf{b_{n+3}}$	$a_2b_{n+4} \\$		$a_2 b_{n+n-1} \\$	$\mathbf{a_2}\mathbf{b_{n+n}}$
	a_3b_{-1}	a_3b_0	a_3b_1	a_3b_2		$a_{3}b_{n-2}$	a_3b_{n-1}	a_3b_n	a_3b_{n+1}	$a_3b_{n+2} \\$	$a_3b_{n+3}\\$		$a_3b_{n+n-2}\\$	a_3b_{n+n-1}
$e_{kh} =$	a_4b_{-2}	a_4b_{-1}	a_4b_0	a_4b_1		a_4b_{n-3}	a_4b_{n-2}	a_4b_{n-1}	a_4b_n	a_4b_{n+1}	$a_4b_{n+2}\\$		$a_4b_{n+n-3}\\$	a_4b_{n+n-2}
	÷	÷		÷	÷.,	÷	÷	÷	÷	÷	÷	۰.	÷	:
	$\mathbf{a_n b_{-n+2}}$	$a_n b_{-n+3} \\$	$a_n b_{-n+4} \\$	$a_n b_{-n+5} \\$		$a_n b_1$	$a_n b_2$	$a_n b_3$	$a_n b_4$	$a_n b_5$	$a_n b_6$		$\mathbf{a_n}\mathbf{b_{n+1}}$	$a_n b_{n+2}$
	$a_{n+1}b_{-n+1}$	$a_{n+1}b_{-n+2} \\$	$a_{n+1}b_{-n+3} \\$	$a_{n+1}b_{-n+4} \\$		$\mathbf{a_{n+1}b_0}$	$a_{n+1}b_1$	$a_{n+1}b_2$	$a_{n+1}b_3$	$a_{n+1}b_4$	$a_{n+1}b_5$		$a_{n+1}b_n$	$\mathbf{a_{n+1}b_{n+1}} \big/$
														(4.42)

Takto symbolicky doplněná matice bude korektním zápisem v případě, že nekladné indexy doplníme na kladné a hodnotu, jež indexují, položíme rovnu nule. V tom případě bude platit, bez podmínky existence prázdných prvků matice, že koeficienty součinu polynomů budou rovny, v příslušném pořadí, součtu prvků ve sloupcích takto definované matice.

K zavedení souvislého algebraického popisu takové konstrukce vyjděme z výše uvedené myšlenkové konstrukce a definujme matici:

	b_1	b_2	b_3	b_4	• • •	b_n	b_{n+1}	0	0	0	0	• • •	0	0	1
	0	b_1	b_2	b_3	• • •	b_{n-1}	b_n	b_{n+1}	0	0	0	• • •	0	0	
	0	0	b_1	b_2	• • •	b_{n-2}	b_{n-1}	b_n	b_{n+1}	0	0	• • •	0	0	
$f_{kh} =$	0	0	0	b_1	• • •	b_{n-3}	b_{n-2}	b_{n-1}	b_n	b_{n+1}	0	• • •	0	0	
	:	÷	÷	÷	·	÷	÷	÷	÷	÷	÷	۰.	÷	:	
	0	0	0	0		b_1	b_2	b_3	b_4	b_5	b_6		b_{n+1}	0	
	$\left(0 \right)$	0	0	0	• • •	0	b_1	b_2	b_3	b_4	b_5	• • •	b_n	b_{n+1}	ł
														(4.43)	5)

Neformální konstrukce takové matice je nasnadě, neboť se jedná o matici, jejíž řádky jsou tvořeny vektorem B, jakožto obrazem transformace \mathcal{P} polynomu q, tak, že první řádek je tvořen popořadě jeho souřadnicemi, a každý další řádek pak týmž vektorem posunutým o jednu pozici ve sloupci matice oproti předchozímu. Zbývající volné prvky matice jsou nulové.

Součet sloupců matice 4.41 dostaneme násobením matice 4.43 sloupcovým vektorem A, jakožto obrazem \mathcal{P} transformace polynomu p, zleva:

$$R = A^{T} f_{kh} = = (a_{1}b_{1}, a_{1}b_{2} + a_{2}b_{1}, a_{1}b_{3} + a_{2}b_{2} + a_{3}b_{1}, \dots, a_{n}b_{n+1} + a_{n+1}b_{n}, a_{n+1}b_{n+1})$$
(4.44)

Tento vektor je pak obrazem součinu vzorů obrazů vektorů A a B, neboli součinu polynomů p a q. Zaved'me nyní formální zápis této operace. Vyjděme z následují konstrukce:

Vezměme vektor B, sledujme význam sloupců matice 4.43 a konfrontujme je. Vidíme, že její sloupce jsou tvořeny vektorem B tak, že první prvek prvního sloupce je roven prvnímu prvku vektoru B, přičemž každý další sloupec začíná dalším prvkem vektoru B od předešlého a sloupec je pak tvořen všemi předchozími souřadnicemi vektoru B sestupně vůči jejich pořadí. Výsledek 4.18 pak dává maticový součin zleva sloupcovým vektorem A^T .

Pro předpis tohoto vztahu zaveď me translaci reverzibilního Kroneckerova tenzoru následovně:

Definice 8. Nechť δ_{kh} je dvakrát kovariantní Kroneckerův tenzor. Pak posunutým reverzibilním Kroneckerovým tenzorem s parametry N, i a j definujeme tenzor:

$$\mathcal{T}_{kh}^{N}(i,j) = \delta_{(N+1-k+i)\ (h+j)} = \delta_{(k+j)\ (N+1-h+i)}: \ \delta_{rs} = \begin{cases} 1; \ r=s\\ 0; \ r\neq s \end{cases};$$

$$N \in \mathbb{N}; \ k,h \in \{1,2,\dots,N\}; \ i,j \in \mathbb{N}: \ |i-j| < N \end{cases}$$
(4.45)

Smysl takovéto definice vyplývá z podstaty vztahu 4.44, konkrétně z definice matice 4.43. Prostřednictví definice 8 můžeme formálně zapsat vztah pro operaci, která prakticky umožní "posouvání" souřadnic vektoru o určitý počet pozic. Tato operace, například ve zpracování signálu má své místo, neboť se v její aplikaci jedná vlastně o klouzavé okno. Ukažme, co vlastně tenzor 4.45 představuje:

Uvažujme maticový zápis tenzoru 4.45 a identifikujme čtvercovou matici $t_{ij} \in \mathbb{C}^{m,m}$ takto:

Jedná se tedy o čtvercovou matici, která má na vedlejší diagonále, která je posunuta o a - b pozic směrem k pravému dolnímu rohu, jedničky. Na jiných pozicích potom nuly. Pro případ b > a je situace analogická, nicméně diagonála je pak posunuta o b - a pozic směrem k levému hornímu rohu.

Například pro $\mathcal{T}_{ij}^{6}(a, b)$ platí následující výčet:
Sledujme nyní výsledek násobení těchto matic sloupcovým vektorem zprava:

Mějme například vektor $v\in \mathbb{C}^6,$ jehož kontravariantní souřadnice vzhledem ke kanonické báziS jsou:

$$(v)_{(\mathbf{S})} = \left(v^1, v^2, v^3, v^4, v^5, v^6\right)_{(\mathbf{S})} = v^i \tag{4.54}$$

Tyto jsou rovny jejich kovariantním souřadnicím $v_i=v^i$ k báziS. Pak součiny s maticemi 4.47 až 4.53 dávají:

$$\mathcal{T}_{ij}^{6}(4,5) \cdot v^{i} = \begin{pmatrix} 0 & 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v^{1} \\ v^{2} \\ v^{3} \\ v^{4} \\ v^{5} \\ v^{6} \end{pmatrix} = \begin{pmatrix} v_{5} \\ v_{4} \\ v_{3} \\ v_{2} \\ v_{1} \\ 0 \end{pmatrix}$$
(4.57)

$$\mathcal{T}_{ij}^{6}(5,5) \cdot v^{i} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & \mathbf{1} \\ 0 & 0 & 0 & \mathbf{1} & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 \\ 0 & 0 & \mathbf{1} & 0 & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 & 0 & 0 \\ \mathbf{1} & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} v^{1} \\ v^{2} \\ v^{3} \\ v^{4} \\ v^{5} \\ v^{6} \end{pmatrix} = \begin{pmatrix} v_{6} \\ v_{5} \\ v_{4} \\ v_{3} \\ v_{2} \\ v_{1} \end{pmatrix}$$
(4.58)

Vidíme tedy, že tenzor dle definice 4.45 skutečně splňuje funkci operátoru, který posouvá souřadnice vektoru vůči svým pozicím v závislosti na svých parametrech. Je zřejmé, že, po uspořádání těchto výsledků pro takové parametry tenzoru 4.45, pro které výsledek součinu s vektorem projdou jeho souřadnice všechny pozice, do sloupců matice sekvenčně, vyjde analog s maticí 4.43:

$$\hat{f}_{ik} = \mathcal{T}_{ij}^{6} (k - 1, 5) \cdot v^{j} = \\
= \left(\mathcal{T}_{ij}^{6} (0, 5) \cdot v^{j}; \ \mathcal{T}_{ij}^{6} (1, 5) \cdot v^{j}; \ \mathcal{T}_{ij}^{6} (2, 5) \cdot v^{j}; \ \cdots; \ \mathcal{T}_{ij}^{6} (10, 5) \cdot v^{j} \right) = \\
= \begin{pmatrix} v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & 0 & 0 & 0 & 0 \\ 0 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & 0 & 0 & 0 \\ 0 & 0 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & 0 & 0 \\ 0 & 0 & 0 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} & 0 \\ 0 & 0 & 0 & 0 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ 0 & 0 & 0 & 0 & v_{1} & v_{2} & v_{3} & v_{4} & v_{5} & v_{6} \\ \end{pmatrix}$$

$$(4.62)$$

Pro získání konečného tvaru obrazu součinu polynomů dle předlohy 4.44 vezměme například vektor $w \in \mathbb{C}^6$, jehož kontravariantní souřadnice vzhledem ke kanonické bázi S jsou:

$$(w)_{(\mathbf{S})} = \left(w^1, w^2, w^3, w^4, w^5, w^6\right)_{(\mathbf{S})} = w^i$$
(4.63)

Konečný tvar obrazu součinu polynomů, jejichž obrazy \mathcal{P} transformace jsou vektory v a w, získáme standardním skalárním součinem obrazu w se sloupci matice 4.62, tedy tenzorovým součinem:

$$r_{k} = \hat{f}_{ik} \cdot w^{i} =$$

$$= (w_{1}v_{1}, w_{1}v_{2} + w_{2}v_{1}, w_{1}v_{3} + w_{2}v_{2} + w_{3}v_{1}, \dots, w_{5}v_{6} + w_{6}v_{5}, w_{6}v_{6}) = (4.64)$$

$$= r_{k} \cdot \delta^{kp} = r^{p}$$

Souřadnice vektoru r^p jsou souřadnice obrazu součinu polynomů, jejichž obrazy jsou vektory v a w. Nyní proveď me inverzní \mathcal{P} transformaci tohoto vektoru v jeho obecném vyjádření a získejme tak vztah pro součin dvou polynomů v přímé formě. Pro tento účel zaveď me ještě zobecněný posunutý reverzibilní Kroneckerův tenzor:

Definice 9. Zobecněným posunutým reverzibilním Kroneckerovým tenzorem je dvakrát kovariantní a jednou kontravariatní tenzor s parametrem N:

$$\mathfrak{T}_{ij}^k(N) = \mathcal{T}_{ij}^N(k-1, N-1); \ N \in \mathbb{N}; \ k \in \{1, 2, \dots, 2N-1\}$$
(4.65)

, kde $\mathcal{T}_{ij}^{N}(m,n)$ je tenzor dle definice 8. Pro vektor R platí:

$$r^k = \mathfrak{T}^k_{ij}(6)w^i v^j \tag{4.66}$$

Pro vzor vektoru ${\mathcal P}$ transformace platí:

$$s(x) = \mathcal{P}^{-1}(v^{i}) \cdot \mathcal{P}^{-1}(w^{i}) = v(x) \cdot w(x) = \mathcal{P}^{-1}(r^{k}) = r^{k} \mathbf{I}_{k} = \sum_{i=0}^{k} r^{k} x^{k} \quad (4.67)$$

, neboli, s uvážením vztahu 4.66:

$$s(x) = \sum_{i=0}^{k} r^{k} x^{k} = \mathfrak{T}_{ij}^{k}(6) w^{i} v^{j} x_{k}^{k-1}; \ x_{k}^{k-1} \in \boldsymbol{I}$$
(4.68)

Získané poznatky můžeme využít ke konečné definici součinu polynomů s užitím získaného algebraického aparátu následovně:

Definice 10. Nechť jsou dány dva polynomy $p_n, q_m : \mathbb{C} \to \mathbb{C}$:

$$p_n(x) = \sum_{i=0}^n a_{i+1} x^i, \ q_m(x) = \sum_{i=0}^m b_{i+1} x^i; \ n \ge m$$
(4.69)

, kde $n \ge m$ jsou jejich stupně,
a $a^i = a_i \ge b_i$ jsou vektory jejich koeficientů. Pak součinem polynom
ů $p_n \ge q_m$ je polynom $s : \mathbb{C} \to \mathbb{C}$ stupně
 r = n + m:

$$s_{r}(x) = \sum_{i=0}^{r} c^{r+1} x^{r} = p_{n}(x) \cdot q_{m}(x) = \mathfrak{T}_{ij}^{k}(m) a^{i} b^{j} x_{k}^{k-1}; \ x_{k}^{k-1} \in \boldsymbol{I}: \ x_{k}^{k-1} = x^{k-1}$$

$$(4.70)$$

Vektor:

$$c^k = \mathfrak{T}^k_{ij}(n) \, a^i b^j \tag{4.71}$$

pak tvoří koeficienty tohoto součinu.

4.3.1 Diskrétní konvoluce

Sledujme ještě vztah mezi maticí 4.62 a vektorem w. Pakliže dva vektory v a w ztotožníme s posloupnostmi jejich souřadnic následovně:

$$\widetilde{v}: \{1, 2, \dots, n+1\} \to \mathbb{C}; \quad \widetilde{v}(i) = v^i \tag{4.72}$$

$$\widetilde{w}: \{1, 2, \dots, m+1\} \to \mathbb{C}; \quad \widetilde{w}(i) = w^i \tag{4.73}$$

, pak zřejmě vztah 4.71 vede na jejich diskrétní konvoluci. Definujme tedy diskrétní konvoluci dvou posloupností:

Definice 11. Nechť jsou dány posloupnosti:

$$\hat{x}: \{1, 2, \dots, N\} \to \mathbb{C} \tag{4.74}$$

$$\hat{h}: \{1, 2, \dots, M\} \to \mathbb{C} \tag{4.75}$$

$$\hat{y}: \{1, 2, \dots, N+M\} \to \mathbb{C} \tag{4.76}$$

$$N \ge M \tag{4.77}$$

, a jsou dány vektory:

$$x \in \mathbb{C}^{N}, \ h \in \mathbb{C}^{M}, y \in \mathbb{C}^{N+M} : \ x^{i} = \hat{x}[i], h^{j} = \hat{h}[j], \ y^{k} = \hat{y}[k]$$
 (4.78)

Pak diskrétní konvoluce posloupností x a h je dána:

$$y^{k} = \mathfrak{T}_{ij}^{k}\left(N\right) x^{i} h^{j} \tag{4.79}$$

$$\hat{y} = \hat{x} * \hat{h} \tag{4.80}$$

Není bez zajímavosti, že vztah 4.79 je shodný se vztahem pro koeficienty součinu dvou polynomů, neboť z výše uvedeného zřejmě platí, že:

Posloupnost koeficientů součinu dvou polynomů je rovna konvoluci posloupností koeficientů jeho součinitelů.

4.3.2 Binomická věta

Stejně jako diskrétní konvoluci lze zapsat využitím tenzoru 4.65, lze podobně zapsat vztah známý jako binomická věta:

$$(x+y)^{n} = \sum_{i=0}^{n} {n \choose i} x^{i} y^{n-i}$$
(4.81)

Tento vztah dává do souvislosti taktéž kladnou celočíselnou mocninu součtu proměnné $x \in \mathbb{C}$ a čísla $y \in \mathbb{C}$ a polynom stupně právě rovného této mocnině. Jeho koeficienty jsou rovny kombinačním číslům:

$$\binom{n}{k} = \frac{n!}{k! \left(n-k\right)!} \tag{4.82}$$

Sledujme nyní vztah 4.81, který zle zřejmě přepsat následovně:

$$(x+y)^{n} = \sum_{i=0}^{n} \binom{n}{i} x^{n-i} y^{i} = \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \cdots$$

$$\cdots + \binom{n}{n-2} x^{2} y^{n-2} + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n} =$$

$$= \frac{n!}{0! \, n!} x^{n} + \frac{n!}{1! \, (n-1)!} x^{n-1} y + \frac{n!}{2! \, (n-2)!} x^{n-2} y^{2} + \cdots$$

$$\cdots + \frac{n!}{(n-2)! \, 2!} x^{2} y^{n-2} + \frac{n!}{(n-1)! \, 1!} x y^{n-1} + \frac{n!}{n! \, 0!} y^{n}$$
(4.83)

S uvážením toho, že tento výraz zadává vlastně standardní skalární součin dvou vektorů, můžeme psát:

Nechť jsou dány obecně vektory $a, b \in \mathbb{C}^{n+1}$ a čísla $x, y \in \mathbb{C}$. Pak pro kontravariantní souřadnice vektorů a a b platí:

$$(a^i)_{(S)} = x^{i+1}$$
 (4.84)

$$(b^i)_{(S)} = y^{i+1}$$
 (4.85)

Pak, s uvážením vztahu 4.83, pišme v maticovém násobení:

$$(x+y)^{n} = a \cdot \begin{pmatrix} \frac{n!}{0!n!} & 0 & \cdots & 0 & 0\\ 0 & \frac{n!}{1!(n-1)!} & \cdots & 0 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & \cdots & \frac{n!}{(n-1)!1!} & 0\\ 0 & 0 & \cdots & 0 & \frac{n!}{n!0!} \end{pmatrix} \cdot \begin{pmatrix} b^{n+1}\\ b^{n}\\ \vdots\\ b^{2}\\ b^{1} \end{pmatrix}$$
(4.86)

Vidíme, že souřadnice vektor
u b^T jsou zapsány reverzně. S využitím definice 11 můžeme v
ztah 4.86 zapsat následovně:

Vzhledem k identitám 4.84 a 4.85 platí:

$$(x+y)^{n} = n! \cdot \left(\frac{x^{0}}{0!}, \frac{x^{1}}{1!}, \dots, \frac{x^{n}}{n!}\right) \cdot \left(\begin{array}{ccccccc} 0 & 0 & \cdots & 0 & 1\\ 0 & 0 & \cdots & 1 & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 1 & \cdots & 0 & 0\\ 1 & 0 & \cdots & 0 & 0 \end{array}\right) \cdot \left(\begin{array}{c} \frac{y^{0}}{0!}\\ \frac{y!}{1!}\\ \vdots\\ \frac{y^{n-1}}{(n-1)!}\\ \frac{y^{n}}{n!} \end{array}\right)$$
(4.88)

, kde výsledkem je standardní skalární součin:

$$(x+y)^{n} = n! \cdot \left(\frac{x^{0}}{0!}, \frac{x^{1}}{1!}, \dots, \frac{x^{n-1}}{(n-1)!}, \frac{x^{n}}{n!}\right) \cdot \left(\frac{y^{n}}{n!}, \frac{y^{n-1}}{(n-1)!}, \dots, \frac{y^{1}}{1!}, \frac{y^{0}}{0!}\right)$$
(4.89)

Pokud zavedeme vektory:

$$\hat{x}, \hat{y} \in \mathbb{C}^{n+1} \tag{4.90}$$

$$(\hat{x}^k)_{(\mathbf{S})} = \frac{x^{k-1}}{(k-1)!} = \left(\frac{x^0}{0!}, \frac{x^1}{1!}, \dots, \frac{x^{n-1}}{(n-1)!}, \frac{x^n}{n!}\right)$$
 (4.91)

$$(\hat{y}^k)_{(\mathbf{S})} = \frac{y^{k-1}}{(k-1)!} = \left(\frac{y^0}{0!}, \frac{y^1}{1!}, \dots, \frac{y^{n-1}}{(n-1)!}, \frac{y^n}{n!}\right)$$
 (4.92)

, pak lze binomickou větu přepsat do tvaru:

$$(x+y)^n = n! \cdot \mathfrak{T}^n_{ij}(n) \,\hat{x}^i \hat{y}^j \tag{4.93}$$

Kapitola 5 Zolotarevovy polynomy

Zolotarevovy polynomy lze zavést několika způsoby lišícími se přístupem k jejich analytickým a algebraickým vlastnostem. Na každý z těchto způsobů vedou různé motivace, nicméně, v případě aplikací v užitých partií teorie obvodů, je výhodný způsob vedoucí z výchozí implicitní analytické definice. Tento způsob zavedení Zolotarevových polynomů představuje tato kapitola. Vzhledem k tomu, že veškeré potřebné souvislosti byly vypracovány v mé práci [39], je tato kapitola jejím výňatkem. Veškerá tvrzení a vztahy v ní užité se nachází v práci [39], jsou zde dokázány a nachází se zde také postupy k jejich odvození, včetně metodik jejich výpočtů a grafických interpretací.

5.1 Definice Zolotarevových polynomů

Zolotarevovy polynomy v pojetí, jež bude předmětem zájmu, představují parametrické reálné funkce reálné proměnné. Ačkoliv, jak bude podrobně vysvětleno dále, jedná se o reálné funkce komplexní proměnné, kdy argument Zolotarevova polynomu zavádíme jako reálný parametr komplexní křivky 5.4. Zolotarevův polynom stupně n, s parametry p, q a k definujeme:

$$Z_{p,q}\left(w \mid k\right) = \frac{(-1)^{p}}{2} \left[\left(\frac{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)} \right)^{n} + \left(\frac{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)} \right)^{n} \right]$$
(5.1)

$$n = p + q \tag{5.2}$$

$$p, q \in \mathbb{N}, \qquad k \in (0, 1), \qquad u \in \mathbb{C}$$
 (5.3)

$$w = \frac{sn^2\left(u \mid k\right) \cdot cn^2\left(\frac{p}{n}K\left(k\right) \mid k\right) + cn^2\left(u \mid k\right) \cdot sn^2\left(\frac{p}{n}K\left(k\right) \mid k\right)}{sn^2\left(u \mid k\right) - sn^2\left(\frac{p}{n}K\left(k\right) \mid k\right)} \in \langle -1, 1 \rangle \quad (5.4)$$

, kde

- H je Jacobiho eta funkce
- K Jacobiho úplný čtvrtperiodý eliptický integrál prvního druhu
- sn eliptický sinus
- cn eliptický kosinus
- \boldsymbol{k} eliptický modul

Definiční obor polynomu je v komplexní rovině zadán implicitně, a to rovnicí 5.4. Tato zobrazuje komplexní křivky definičního oboru na reálný interval. Problematika definičního oboru bude podrobně rozebrána v dalším.

Zolotarevův polynom stupně n, s parametry p, q a k lze též zavést prostřednictvím Čebyševova polynomu stupně n identitou:

$$Z_{p,q}\left(w \mid k\right) = (-1)^{p} T_{n} \left\{ \frac{1}{2} \left[\frac{H\left(u + \frac{p}{n} K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n} K\left(k\right) \mid k\right)} + \frac{H\left(u - \frac{p}{n} K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n} K\left(k\right) \mid k\right)} \right] \right\}$$
(5.5)

5.1.1 Rozbor dílčích funkcí

5.1.1.1 K Úplný eliptický integrál

Úplný čtvrtperiodý Jacobiho eliptický integrál prvního druhu je definován:

$$K(k) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - k^2 \cdot \sin^2 x}}, \qquad k \in (0, 1), \qquad x \in \mathbb{R}$$
(5.6)

kde číslo k je eliptický modul. Obvykle je úplný eliptický integrál zaveden parametrem m, kdy mezi tímto parametrem a modulem k platí:

$$m = k^2 \tag{5.7}$$

Úplný eliptický integrál je pak definován:

$$K(m) = \int_0^{\frac{\pi}{2}} \frac{dx}{\sqrt{1 - m \cdot \sin^2 x}}, \qquad m \in (0, 1), \qquad (5.8)$$

Neúplný eliptický integrál prvního druhu je definován:

$$F(k,\varphi) = \int_0^{\varphi} \frac{dx}{\sqrt{1 - k^2 \cdot \sin^2 x}}, \qquad k \in (0,1), \qquad (5.9)$$

a nebo, podobně jako v případě úplného integrálu, s parametrem m:

$$F(m,\varphi) = \int_0^{\varphi} \frac{dx}{\sqrt{1 - m \cdot \sin^2 x}}, \qquad m \in (0,1), \qquad (5.10)$$

kde mezi parametrem m a modulem k platí vztah 5.7.

Překážku ve výpočtu těchto integrálů předsavuje fakt, že je nelze vyjádřit konečným počtem elementárních funkcí, neboť jsou vyššími transcendentními funkcemi (podobně jako například integrálsinus, integrálexponenciela a podobně). To vylučuje jejich čistě analytické řešení a je proto nutné nalézt takový způsob řešení, který umožní výpočet s chybou zanedbatelnou či akceptovatelnou. Jedním z těchto způsobů, kromě striktně numerických, jako například integrace Simpsonovou metodou, je užití rozvoje funkce Taylorovou řadou a vět o integraci řady.

Základním problémem při rozvoji funkcí řadami je určení množiny definičního oboru řady, na němž řada konverguje, tedy v rámci mocninných řad ekvivalentně, určení poloměru konvergence řady. Existuje mnoho vět vyjadřujících vztahy mezi koeficienty mocninných řad a množinou, resp. poloměrem konvergence, jako například Cauchyovo kritérium konvergence, D'Alambertovo kritérium konvergence apod. Jak bude v následujícím ukázáno, existují i jiné možnosti určení poloměru konvergence mocninné řady, v tomto případě Taylorovy, jež mohou být v mnohých případech výpočetně méně náročné, a které budou použity i při řešení eliptických integrálů.

5.1.1.2 K' Komplementární úplný eliptický integrál

Komplementární Jacobiho eliptický integrál prvního druhu lze definovat prostřednictvím úplného integrálu prvního druhu:

$$K'(k) = K(k') \tag{5.11}$$

, kdekje komplementární parametr. Mezi tímto a parametrem k platí vztah:

$$k' = \sqrt{1 - k^2}, \qquad k \in (0, 1)$$
 (5.12)

5.1.1.3 q Eliptický nome

Parametr, s nímž jsou často eliptické funkce definovány, se nazývá eliptický *nome*. Význam zavádění různých parametrů pro stejné eliptické funkce spočívá v různorodosti definičního oboru pro různé tyto parametry. Například funce theta jsou definovány pro nome:

$$q \in \mathbb{C} : |q| < 1 \tag{5.13}$$

Jeho definičním oborem je tedy interiér jednotkového kruhu se středem v počátku komplexní roviny. V definicích theta funkcí se pak zavádí transformace mezi eliptickým nome a parametrem τ vztahem:

$$\tau = -\frac{j}{\pi} ln(q), \qquad q \in \mathbb{C} : |q| < 1 \tag{5.14}$$

Definičním oborem funkce 5.14 je pak množina $\tau \in \mathbb{C} : \mathfrak{I} \{\tau\} > 0$, čili horní polorovina komplexní roviny bez reálné osy. Vztah 5.14 reprezentuje konformní zobrazení mezi otevřeným jednotkovým kruhem v komplexní rovině a otevřenou polorovinou komplexní roviny. Inverzní vztah je pak dán:

$$q = e^{i\pi\tau}, \qquad q \in \mathbb{C} : |q| < 1 \tag{5.15}$$

Často jsou pak theta funkce zavedeny pro reálný parametr $k \in (0, 1)$. Vztah mezi parametrem k a eliptickým nome je dán:

$$q = e^{-\pi \frac{K'(k)}{K(k)}}, \qquad k \in (0,1)$$
 (5.16)

Zřejmě též platí:

$$\tau = j \frac{K'(k)}{K(k)}, \qquad k \in (0,1)$$
(5.17)

5.1.1.4 q' Komplementární eliptický nome

Komplementární eliptický nome souvisí s definicí komplementárního úplného čtvrtperiodého eliptického integrálu prvního druhu, tedy se vztahem 5.11. Eliptický nome, jakožto funkce parametru k, je, jak bylo uvedeno v 5.16, dán:

$$q(k) = e^{-\pi \frac{K'(k)}{K(k)}}, \qquad k \in (0,1)$$
 (5.18)

, pak komplementem parametruklze zavést komplementární eliptický nome:

$$q'(k) = q(k') = e^{-\pi \frac{K'(k')}{K(k')}} = e^{-\pi \frac{K(k)}{K'(k)}}, \qquad k \in (0,1)$$
(5.19)

5.1.1.5 H Jacobiho eta funkce

Jacobiho eta funkce je definována prostřednictvím Jacobiho theta funkce, a sice translačním přechodem argumentu funkce a transformací parametru. Jacobiho theta funkce je obecně definována například řadou:

$$\vartheta\left(z,\tau\right) = \sum_{n \in \mathbb{Z}} e^{\left[\pi i n^2 \tau + 2\pi i n z\right]}, \qquad z \in \mathbb{C}, \qquad Im\{\tau\} > 0 \tag{5.20}$$

Dále je definována takzvaná Jacobiho theta funkce s racionálními charakteristikami:

$$\vartheta_{a,b}(z,\tau) = e^{\left[\pi i a^2 \tau + 2\pi i a(z+b)\right]} \vartheta \left(z + a\tau + b, \tau\right) = \sum_{n \in \mathbb{Z}} e^{\left[\pi i (a+n)^2 \tau + 2\pi i (a+n)(z+b)\right]}, \ z \in \mathbb{C}, \ Im\{\tau\} > 0, \ a, b \in \mathbb{Q}$$
(5.21)

Pro definici Jacobiho eta funkce je pak významný zvláštní případ Jacobiho theta funkce, a sice:

$$\vartheta_{1}(z,\tau) = -\vartheta_{\frac{1}{2},\frac{1}{2}}(z,\tau) = \vartheta_{\frac{1}{2},\frac{1}{2}}(-z,\tau) = -\sum_{n\in\mathbb{Z}} e^{\left[\pi i \left(\frac{1}{2}+n\right)^{2}\tau + 2\pi i \left(\frac{1}{2}+n\right)\left(z+\frac{1}{2}\right)\right]}, \ z\in\mathbb{C}$$
(5.22)

Jacobiho theta funkce je též zavedena transformací parametru τ na eliptický nomeqvztahem:

$$q = e^{i\pi\tau} \tag{5.23}$$

, nebo také transformací mezi eliptickým nome a parametrem k vztahem:

$$q = e^{-\pi \frac{K'(k)}{K(k)}} \tag{5.24}$$

Jacobiho eta funkce je pak definována:

$$H(u \mid k) = \vartheta_1(z \mid k) \circ \left(\frac{\pi u}{2K(k)}\right) = \vartheta_1\left(\frac{\pi u}{2K(k)} \mid k\right), \ u, z \in \mathbb{C}, \ k \in (0, 1)$$
(5.25)

Tuto lze pak rozvinou například řadou:

$$H(u \mid k) = 2e^{-\pi \frac{K'(k)}{4K(k)}} \sum_{n=0}^{\infty} \left\{ (-1)^n e^{-\pi \frac{n(n+1)K'(k)}{K(k)}} \sin\left[\frac{\pi (2n+1)}{2K(k)}u\right] \right\}, \ u \in \mathbb{C}, \ k \in (0,1)$$
(5.26)

5.1.1.6 Eliptické funkce

Tyto komplexní funkce komplexní proměnné vykazují zvláštní formu periodicity, a to jak vůči reálné, tak vůči imaginární ose. V komplexní rovině, jakožto definičním oboru, vytvářejí jistou pravidelnou "síť" tvořící obdelníkové podmnožiny, na kterých jsou části těchto funkcí, coby parciální funkce definované právě na těchto obdelnících, hodnotami identické. Pro eliptický sinus jsou těmito obdelníky všechny prvky množiny d_{sn} :

$$d_{sn} = \{ \langle 4mK(k), 4(m+1)K(k) \rangle \times i \langle 2nK'(k), 2(n+1)K'(k) \rangle \mid m, n \in \mathbb{Z} \}$$
(5.27)

, z čehož přímo plyne, že obecně je eliptický sinus hodnotami identický vůči všem prvkům množiny D_{sn} :

$$D_{sn} = \left\{ \begin{array}{c} \langle 4mK(k) + a, 4(m+s)K(k) + a \rangle \times \\ \times i \langle 2nK'(k) + b, 2(n+t)K'(k) + b \rangle \end{array} \middle| m, n \in \mathbb{Z}, \ s, t \in \mathbb{N}, \ a, b \in \mathbb{R} \right\}$$
(5.28)

, a platí tedy:

$$sn(u \mid k) = sn(u + 4mK(k) + i2nK'(k) \mid k), \ u \in \mathbb{C}, \ m, n \in \mathbb{Z}, \ k \in (0, 1)$$
(5.29)

Eliptický kosinus vykazuje podobnou formu periodicity, avšak podmnožiny jeho definičního oboru, vůči kterým jsou parciální funkce v hodnotách identické, jsou množinami poněkud složitějšími, než jsou obdelníkové množiny v případě eliptického sinu. Jsou jimi jisté lichoběžníky opět pravidelně pokrývající rovinu komplexních čísel. Vlastnosti periodicity vyjadřuje obdoba identity 5.29 pro eliptický kosinus:

$$cn(u \mid k) = cn(u + 4mK(k) + 2n(K(k) + iK'(k)) \mid k), \ u \in \mathbb{C}, \ m, n \in \mathbb{Z}, \ k \in (0,1)$$
(5.30)

Definice eliptických funkcí spočívá ve složení základních goniometrických funkcí a eliptické amplitudy. Eliptická amplituda je jisté interní zobrazení k neúplnému Jacobiho eliptickému integrálu prvního druhu. Je-li neúplný Jacobiho eliptický integrál definován:

$$u\left(\varphi \mid k\right) = \int_{0}^{\varphi} \frac{d\alpha}{\sqrt{1 - k^{2} \sin^{2} \alpha}}, \qquad \varphi \in \mathbb{C}, \qquad k \in (0, 1)$$
(5.31)

, pak eliptická amplituda je definována:

$$\varphi\left(u \mid k\right) = am\left(u \mid k\right) = u_{-1}\left(\varphi \mid k\right) \tag{5.32}$$

Eliptický sinus a kosinus je pak dán složením sinu a kosinu a eliptické amplitudy, tedy:

$$sn(u \mid k) = \sin(z) \circ \varphi(u \mid k) = \sin(am(u \mid k)), \ z, u \in \mathbb{C}, \ k \in (0, 1)$$
 (5.33)

$$cn\left(u\mid k\right) = \cos\left(z\right)\circ\varphi\left(u\mid k\right) = \cos\left(am\left(u\mid k\right)\right), \ z, u \in \mathbb{C}, \ k \in (0,1) \quad (5.34)$$

Vzhledem k tomu, že eliptická amplituda a tedy i eliptické funkce jsou vyššími transcendentními funkcemi, je k jejich výpočtům nutno užít některých aditivních nebo multiplikativních identit. Pro eliptický sinus platí identita:

$$sn\left(u \mid k\right) = \frac{2e^{-\frac{\pi K'(k)}{4K(k)}}}{\sqrt{k}} \sin\left(\frac{\pi u}{2K(k)}\right) \prod_{n=1}^{\infty} \frac{1 - 2e^{-\frac{2\pi nK'(k)}{K(k)}} \cos\left(\frac{\pi u}{K(k)}\right) + e^{-\frac{4\pi nK'(k)}{K(k)}}}{1 - 2e^{-\frac{\pi(2n-1)K'(k)}{K(k)}} \cos\left(\frac{\pi u}{K(k)}\right) + e^{-\frac{\pi(4n-2)K'(k)}{K(k)}}} \quad (5.35)$$
$$, \ u \in \mathbb{C}, \ k \in (0,1)$$

, pro eliptický kosinus pak:

$$cn\left(u\mid k\right) = \frac{2\sqrt{k'e^{-\frac{\pi K'(k)}{4K(k)}}}}{\sqrt{k}}\cos\left(\frac{\pi u}{2K(k)}\right) \prod_{n=1}^{\infty} \frac{1+2e^{-\frac{2\pi nK'(k)}{K(k)}}\cos\left(\frac{\pi u}{K(k)}\right) + e^{-\frac{4\pi nK'(k)}{K(k)}}}{1-2e^{-\frac{\pi(2n-1)K'(k)}{K(k)}}\cos\left(\frac{\pi u}{K(k)}\right) + e^{-\frac{\pi(4n-2)K'(k)}{K(k)}}}, \quad (5.36)$$
$$, \ u \in \mathbb{C}, \ k \in (0,1)$$

Tyto identity lze pak implementovat v jazyce MATLAB s výhodou, neboť součiny v nich figurující konvergují "velmi rychle" a nároky na paměť i čas potřebné k výpočtu se tím snižují. Kód funkce pro výpočet eliptického sinu je uveden v kódu 5.1, a eliptického kosinu v kódu 5.2.

Poznámka 1. Pro účely studia Zolotarevových polynomů byly eliptické funkce definovány pouze pro reálný parametr v intervalu $k \in (0, 1)$, ačkoliv tyto jsou obecně definovány pro širší množinu parametrů.

5.2 Řešení výpočtu funkcí a jeho aplikace v jazyce MATLAB

S jazykem MATLAB dodává výrobce velké množství matematických funkcí implementovaných a optimalizovaných pro použití v uživatelských výpočtech, a to jak v podobě funkčních bloků pracujících s maticemi čísel ve smyslu vstupních nebo výstupních hodnot a nebo funkcí pro symbolické výpočty knihovny *symbolic*. V obou těchto případech se setkáváme, zejména v souvislosti s výpočty Zolotarevových polynomů, s vážnými nedostatky znemožňujícími jejich použití. Těmito nedostatky ve většině případů jsou:

```
1
  function [sn_]=sn(u,k)
2
  pr=20;
3 \mid \text{nome}=q(k);
4 | K_k = K(k);
5
  sn_t=1;
7
   for n=1:pr
8
       t_=(1-(2*(nome^{(2*n)})*cos((pi*u)/(K_k)))+...
9
            (nome^{(4*n)}))./(1-(2*(nome^{(2*n)}-1))*...
10
            \cos((pi*u)/(K_k)) + (nome^{((4*n)-2)});
11
       if (sum(sum(isnan(t)))==0)
12
            sn_t=sn_t.*t_;
13
       else
14
            continue
15
       end
16
  end
18 sn_=sn_t.*(((2*(nome^(1/4)))/(k^(1/2)))*...
19
       sin((pi*u)/(2*K_k)));
```

Kód 5.1: Eliptický sinus

```
1
  function [cn_]=cn(u,k)
2 pr=20;
3 \mid \text{nome}=q(k);
4 | K_k = K(k);
5
  cn_t=1;
7
   for n=1:pr
8
       t_=(1+(2*(nome^{(2*n)})*cos((pi*u)/(K_k)))+...
9
            (nome^{(4*n)}))./(1-(2*(nome^{(2*n)}-1))*...
            \cos((pi*u)/(K_k)) + (nome^{((4*n)-2)});
10
       if (sum(sum(isnan(t_))) == 0)
11
12
            cn_t=cn_t.*t_;
13
       else
14
            continue
15
       end
16
  end
18
   cn_=cn_t.*(((2*(nome^(1/4))*(k_comp(k)^(1/2)))/...
19
        (k^(1/2)))*cos((pi*u)/(2*K_k)));
```

Kód 5.2: Eliptický kosinus

• Definice funkce pro nedostatečnou množinu definičního oboru, jako například v případě eliptických funkcí, kde tyto jsou implementovány pouze pro reálný

definiční obor, což je pro výpočty Zolotarevových polynomů nedostačující.

• Úplná absence funkce, jako například v případě Jacobiho eta funkce, inverzních eliptických integrálů apod.

Z těchto důvodů je nutno výše zmíněné nedostatky řešit dodatečným programováním funkcí potřebným k výpočtům. Na tyto funkce jsou kladeny mnohé nároky, a to jak z hlediska časové efektivity, přesnosti výpočtu, paměťových nároků a pod. Z tohoto důvodu je nutno sledovat zmíněná kritéria v závislosti na užití konkrétních programových konstrukcí a volbě vhodných matematických formulací jednotlivých problémů.

5.2.1 Metody výpočtů

V případě implementace matematické funkce jakožto zobrazení mezi číselnými množinami patří mezi zásadní otázky při jejich řešení existence analytického řešení výpočtu. V případě, že problém umožňuje analytické řešení, nabízí se k posouzení možnost využití symbolické knihovny a jejích mnohých výhod oproti výpočtům striktně numerickým. Těmi jsou například implementace elementárních funkcí, integrace, derivace, limity, implementace Heavisideovy funkce nebo Dirackovy delta funkce atd. V případě, že analytické řešení neexistuje nebo není objektivně výhodné, je nutno užít numerických metod výpočtů, jako je tomu například v případě vyčíslování vyšších transcendentních funkcí. I k těmto účelům je v vhodné užití nástrojů symbolických výpočtů, kdy symbolická knihovna disponuje například funkcí pro výpočet Taylorových nebo Fourierových řad a pod.

5.2.2 Řešení pro funkční řady

Nejčastějším problémem, se kterým se setkává řešení funkcí pro výpočty Zolotarevových polynomů je vyčíslování vyšších transcendentních funkcí, jako jsou eliptické integrály a jejich inverzní funkce. Zároveň však integrandy Jacobiho eliptických integrálů jsou složenými algebraickými nebo transcendentními meromorfními funkcemi. Tyto pak lze řešit například integrací Taylorova rozvoje nebo užitím evaluace částečných rozvojů aditivních nebo multiplikativních identit. U těchto je však nutno věnovat pozornost množinám definičního oboru, konkrétně pak oboru konvergence řad.

5.2.3 Řešení pro jednotlivé funkce

5.2.3.1 K Úplný eliptický integrál

Věnujme rozboru řešení výpočtů hodnot této funkce širší prostor. Závěry k tohoto podrobného zkoumání nabudou na významu v dalších kapitolách.

Úplný Jacobiho eliptický integrál prvního druhu je definován vztahem 6.38. Jedná se v podstatě o křivkový integrál v komplexní rovině, ovšem vzhledem k tomu, že meze integrálu jsou, stejně jako integrand, ryze reálnými, jedná se o integrál

určitý. To, že se v případě Jacobiho eliptických integrálů jedná o křivkové integrály v komplexní rovině je zřejmé v případě, že například Jacobiho eliptický integrál druhého druhu definujeme meromorfním rozšířením integrandu jakožto komplexní funkce komplexní proměnné, přičemž horní mez integrálu je též komplexním číslem.

Pro řešení Jacobiho eliptických integrálů se jako optimální z hlediska implementačního jeví užití mocninných rozvojů. Klíčovými otázkami jsou v těchto případech vždy volba středu řady rozvoje a určení poloměru konvergence řady.

Výpočet integrálu bude tedy proveden integrací mocninného rozvoje integrandu. Vzhledem k metodě vyšetřování poloměru konvergence, která bude definována a aplikována níže, zavedeme nejprve, nyní pouze zdánlivě bezúčelně, Jacobiho eliptický integrál, jak bylo zmíněno výše, jako křivkový integrál v komplexní rovině meromorfním rozšířením integrandu takto:

$$K(k) = \int_0^{\frac{\pi}{2}} \frac{dz}{\sqrt{1 - k^2 \cdot \sin^2 z}}, \qquad k \in (0, 1), \qquad z \in \mathbb{C}$$
(5.37)

Rozvoj integrandu do Laurentovy řady je vhodné provést tak, aby řada vykazovala nulovou hlavní část, tedy tak, aby byla pouze mocninnou řadou s kladnými mocninami. To předpokládá volbu středu mimo pól integrandu nebo podstatnou singularitu.

$$f(z) = \frac{1}{\sqrt{1 - k^2 \cdot \sin^2 z}}, \qquad k \in (0, 1), \qquad z \in \mathbb{C}$$
 (5.38)

Vyšetřeme nyní singularity funkce

Póly funkce jsou body množiny komplexních čísel splňující rovnici

$$\sqrt{1 - k^2 \cdot \sin^2 z} = 0, \qquad k \in (0, 1), \qquad z \in \mathbb{C}$$
 (5.39)

$$1 - k^2 \cdot \sin^2 z = 0 \tag{5.40}$$

$$k^2 \cdot \sin^2 z = 1 \tag{5.41}$$

$$z = x + iy, \qquad x, y \in \mathbb{R}$$

$$\sin z = \sin x \cdot \cosh y + i\cos x \cdot \sinh y \qquad (5.42)$$

$$k \cdot \sin z = k \cdot \sin x \cdot \cosh y + ik \cdot \cos x \cdot \sinh y = \pm 1 \tag{5.43}$$

$$\sin x \cdot \cosh y + i\cos x \cdot \sinh y = \pm \frac{1}{k} \tag{5.44}$$

$$\sin x \cdot \cosh y = \pm \frac{1}{k} \wedge \cos x \cdot \sinh y = 0 \tag{5.45}$$

Řešení pro pravou stranu výroku 5.45 je dáno řešením pro výrok

$$\cos x = 0 \quad \forall \quad \sinh y = 0 \tag{5.46}$$

tedy

$$x \in \left\{ \pi \left(\frac{1}{2} + m\right) \mid m \in \mathbb{Z} \right\} \lor y = 0$$
(5.47)

Řešení pro levou stranu výroku 5.45 je pak dáno řešením rovnice

$$\sin x \cdot \cosh y = \pm \frac{1}{k} \tag{5.48}$$

Z řešení pro výrok 5.46 získáváme pro řešení rovnice 5.39 výrok

$$\left(x \in \left\{\pi\left(\frac{1}{2}+m\right) \mid m \in \mathbb{Z}\right\} \lor y = 0\right) \land \left(\sin x \cdot \cosh y = \pm \frac{1}{k}\right)$$
(5.49)

Aplikací zákonů Booleovy algebry dostáváme výrok

$$\left(x \in \left\{\pi\left(\frac{1}{2}+m\right) \mid m \in \mathbb{Z}\right\} \wedge \sin x \cdot \cosh y = \pm \frac{1}{k}\right) \vee \left(y = 0 \wedge \sin x \cdot \cosh y = \pm \frac{1}{k}\right)$$
(5.50)

Pro pravou stranu výroku získáváme

$$\sin x = \pm \frac{1}{k} \in (-\infty, -1) \cup (1, \infty)$$
 (5.51)

Pro pravou stranu výroku 5.50 tedy řešení pro reálné části pólů neexistuje. Z levé strany výroku 5.50 dostáváme řešení

$$x \in \left\{ \pi \left(\frac{1}{2} + m\right) \mid m \in \mathbb{Z} \right\}$$
(5.52)

$$\pm \cosh y = \pm \frac{1}{k} \Rightarrow y = \pm \operatorname{arccosh} \frac{1}{k}$$
(5.53)

Póly funkce 5.38 jsou pak dány

$$z_p = x + iy = \pi \left(\frac{1}{2} + m\right) \pm i \ \operatorname{arccosh} \frac{1}{k}, \ m \in \mathbb{Z}, \ k \in (0, 1)$$
(5.54)

Póly funkce 5.38 jsou tedy rozmístěny symetricky vůči reálné ose komplexní roviny vzdálené od ní o hodnotu rovnou absolutní hodnotě výrazu 5.53. Tato vzdálenost je závislá na parametru k. Absolutní hodnota imaginární části pólů je pro konkrétní parametr k konstantní. Póly jsou ve směru reálné osy od sebe vzdáleny o Ludolfovo číslo a jejich reálné části jsou konstantní nezávisle na parametru k, a jsou tedy rovny celočíselným násobkům Ludolfova čísla s afinitou jeho poloviny od imaginární osy komplexní roviny. Závislost imaginárních částí pólů na parametru k je vynesena v grafu 5.1.

Aplikací Čauchy-Riemannových podmínek na integrand 5.38 získáváme rovnosti:

$$f(z) = \frac{1}{\sqrt{1 - k^2 \cdot \sin^2 z}} = |z = x + iy, \ x, y \in \mathbb{R}| = f(x + iy) = \frac{1}{\sqrt{1 - k^2 \cdot \sin^2 (x + iy)}}$$
(5.55)

$$\frac{\partial}{\partial x} \left[\frac{1}{\sqrt{1 - k^2 \cdot \sin^2\left(x + iy\right)}} \right] = \frac{k^2 \cos\left(x + iy\right) \sin\left(x + iy\right)}{\left[1 - k^2 \sin^2\left(x + iy\right)\right]^{\frac{3}{2}}} \tag{5.56}$$

Obrázek 5.1: Závislost absolutní hodnoty imaginární části pólů funkce 5.38 na parametruk

Obrázek 5.2: Norma funkce 5.38

Obrázek 5.3: Reálná část funkce 5.38

Obrázek 5.4: Imaginární část funkce 5.38

Obrázek 5.5: Imaginární část funkce 5.38

Obrázek 5.6: Restrikce normy funkce 5.38 podle reálné osy

Obrázek 5.7: Závislost normy funkce 5.38 podle reálné os
y v závislosti na parametru \boldsymbol{k}

$$\frac{\partial}{\partial y} \left[\frac{1}{\sqrt{1 - k^2 \cdot \sin^2(x + iy)}} \right] = i \frac{k^2 \cos(x + iy) \sin(x + iy)}{\left[1 - k^2 \sin^2(x + iy)\right]^{\frac{3}{2}}}$$
(5.57)

$$i\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} \tag{5.58}$$

Z Cauchy-Riemannových podmínek plyne, že funkce 5.38 je holomorfní v celé komplexní rovině vyjma bodů odpovídajícím pólům 5.54.

Funkci 5.38 můžeme rozvinout do Laurentovy řady s nulovou hlavní částí, a tedy do řady o středu mimo pól. Restrikcí rozvoje integrandu podle reálné osy je tedy pak hledanou aproximací pro výpočet integrálu 6.38.

Rozvoj funkce holomorfní v okolí $U(z_0,r), 0 < r \leq \infty$ mimo singularitu je dán:

$$f(z) = \sum_{n=0}^{\infty} a_n \left(z - z_0 \right), \ z \in U(z_0, r) \subseteq \mathbb{C}, \ z_0 \in \mathbb{C}$$

$$(5.59)$$

, kde

$$a_n = \frac{f^{(n)}(z_0)}{n!} \tag{5.60}$$

Tato řada konverguje na otevřeném kruhu o středu z_0 a poloměru rovnému nejmenší vzdálenosti středu řady od pólů funkce, je tedy

$$r = \min_{\forall z_p} |z_p - z_0| \tag{5.61}$$

Restrikce rozvoje 5.59 holomorfního rozšíření reálné funkce podle reálné osy je rovna Taylorově řadě této funkce. Bude-li střed řady 5.59 reálným číslem, lze na základě vlastností konvergence Laurentových řad vyvodit důsledek o konvergenci Taylorových řad reálných funkcí:

Věta 5. Nechť $I \subseteq \mathbb{R}, f(x) : I \to \mathbb{R}, x \in \mathbb{R}$ a existuje Taylorův rozvoj funkce f o středu $x_0 \in \mathbb{R}$ na jistém intervalu $J \subseteq I$. Existuje-li $F(z) : G \to \mathbb{C}, z \in (I \subset G \subseteq \mathbb{C})$ jako holomorfní rozšíření funkce f, tedy je

 $F(z) : G \to \mathbb{C}, z \in (I \subset G \subseteq \mathbb{C})$ jako holomorfni rozsireni funkce f, tedy je $F(z) = f(x) \circ z$, pak poloměr konvergence r řady Taylorova rozvoje funkce f je roven poloměru největšího kruhu v definičním oboru funkce F o středu v bodě x_0 , na kterém je funkce F holomorfní.

Důkaz.Věta je přímím důsledkem vlastností konvergence Laurentových řad aplikovaných na řady s nulovou hlavní částí. $\hfill\square$

Smysl holomorfního rozšíření funkce 5.38 jakožto integrandu v definici funkce 6.38 vyplývá právě při hledání poloměru konvergence mocninného rozvoje této funkce. Aplikací věty 5 získáváme, že pro poloměr konvergence r Taylorovy řady funkce 5.38 o středu x_0 je roven:

$$r = \min_{\forall z_p \in \mathcal{Z}_P} |z_p - x_0| = \min_{m \in \mathbb{Z}} \left\{ \sqrt{\left[\pi \left(\frac{1}{2} + m \right) - x_0 \right]^2 + \operatorname{arccosh}^2 \left(\frac{1}{k} \right)} \right\}$$
(5.62)

$$\mathcal{Z}_P = \left\{ \pi \left(\frac{1}{2} + m \right) \pm i \ \operatorname{arccosh} \frac{1}{k} \ \middle| \ m \in \mathbb{Z} \right\}$$
(5.63)

Ze vztahu 5.62 plyne hned několik závěrů platných pro poloměr konvergence Taylorovy řady funkce 5.38. Předně, poloměr konvergence závisí z hlediska charakteristik funkce pouze na parametru k, tedy na hodnotě eliptického modulu. Dále je pak jeho hodnota stejná pro všechny středy řady je stejnou vzdáleností od dolních nebo horních krajních bodů všech intervalů dělení \mathfrak{D} :

$$\mathfrak{D} = \{ \langle \pi m, \pi \left(m + 1 \right) \rangle \mid m \in \mathbb{Z} \}$$
(5.64)

Konečně, nevětšího poloměru konvergence řada nabývá při středech rovných číslům z množiny \mathfrak{R}_M :

$$\mathfrak{R}_M = \{\pi m \mid m \in \mathbb{Z}\}\tag{5.65}$$

, neboli celočíselným násobkům Ludolfova čísla. Tento největší poloměr je pak roven:

$$r_{max} = \sqrt{\frac{\pi^2}{4} + \operatorname{arccosh}^2\left(\frac{1}{k}\right)} > \frac{\pi}{2}$$
(5.66)

Naopak nejmenšího poloměru konvergence řady bude dosaženo při volbě středu řady rovnému číslu z množiny \mathfrak{R}_M :

$$\mathfrak{R}_m = \left\{ \frac{\pi}{2} m \mid m \in \mathbb{Z} \right\}$$
(5.67)

, neboli celočíselným násobkům poloviny Ludolfova čísla. Tento nejmenší poloměr je pak roven:

$$r_{min} = \operatorname{arccosh} \frac{1}{k} > 0 \tag{5.68}$$

Sledujme nyní graficky vliv na kvalitu aproximace funkce 5.38 částečným rozvojem do Taylorovy řady v závislosti na jejím středu. V grafech 5.16 až 5.27 jsou červeně vykresleny průběhy reálné funkce coby restrikce funkce 5.38 podle reálné osy pro různé parametry k. Modře jsou pak vykresleny částečné mocninné rozvoje pro řády rozvojů rovným 10, 20 a 26 a pro středy řad rovným 0 a $\frac{\pi}{4}$. Tyto mocninné rozvoje jsou podle výše zmíněného restrikcemi částečných Laurentových řad funkce 5.38 v totožných středech. Tyto částečné Laurentovy rozvoje jsou pro normu funkce 5.38 o parametru k = 0.7 z důvodů ilustrativních pro různé stupně rozvoje a středy rovny 0, $\frac{\pi}{4}$ a $\frac{\pi}{2}$ vykresleny v grafech 5.8 až 5.15.

Při porovnání grafů 5.16 a 5.27 je zřejmé, že ve sledovaném intervalu $\langle 0, \frac{\pi}{2} \rangle$ danému mezemi integrace integrálu 6.38 se grafy aproximačních polynomů v blízkosti hraničních bodů sledovaného intervalu lépe přimykají ke grafům aproximovaných funkcí při středu rovnému číslu $\frac{\pi}{4}$ něž v případě středu rovnému číslu 0. Chyby aproximací jsou patrny zejména v blízkosti hraničním bodům sledovaného intervalu. Dále je dle očekávání kvalita aproximace lepší při vyšším stupni rozvoje. Sledujme konečně chybu aproximace ve sledovaném intervalu. Pro jednotlivé

Obrázek 5.8: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 8 o středu v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.9: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 20 o středu v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.10: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 120 o středu v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.11: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 8 o středu v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.12: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 20 o středu v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.13: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 80 o středu v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.14: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 8 o středu v bodě $z_0 = \frac{\pi}{2}$ a jeho restrikce podle reálné osy (modře)

Obrázek 5.15: Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně) a jejího částečného Laurentova rozvoje stupně n = 80 o středu v bodě $z_0 = \frac{\pi}{2}$ a jeho restrikce podle reálné osy (modře)

KAPITOLA 5. ZOLOTAREVOVY POLYNOMY 5.2. ŘEŠENÍ VÝPOČTU

Obrázek 5.16: Rozvoj stupněn=10o středu $z_0=0$ prokod 0.05 do 0.35

Obrázek 5.17: Rozvoj stupně n=26o středu $z_0=0$ prokod 0.05 do 0.35

Obrázek 5.18: Rozvoj stupněn=10o středu $z_0=0$ prokod 0.4 do 0.7

Obrázek 5.19: Rozvoj stupněn=26o středu $z_0=0$ prokod 0.4 do 0.7

Obrázek 5.20: Rozvoj stupněn=10o středu $z_0=0$ prokod 0.8 do 0.95

Obrázek 5.21: Rozvoj stupněn=26o středu $z_0=0$ prokod 0.8 do 0.95

Obrázek 5.22: Rozvoj stupněn=10o středu $z_0=\frac{\pi}{4}$ prokod 0.05 do 0.35

Obrázek 5.23: Rozvoj stupněn=20o středu $z_0=\frac{\pi}{4}$ prokod 0.05 do 0.35

Obrázek 5.24: Rozvoj stupněn=10o středu $z_0=\frac{\pi}{4}$ prokod 0.4 do 0.7

Obrázek 5.25: Rozvoj stupněn=20o středu $z_0=\frac{\pi}{4}$ prokod 0.4 do 0.7

Obrázek 5.26: Rozvoj stupněn=10o středu $z_0=\frac{\pi}{4}$ prokod 0.8 do 0.95

Obrázek 5.27: Rozvoj stupněn=20o středu $z_0=\frac{\pi}{4}$ prokod 0.8 do 0.95

Obrázek 5.28: Chyba aproximace pro $n=16,\,z_0=\frac{\pi}{4}$ akod 0.05 do 0.45

Obrázek 5.29: Chyba aproximace pro $n=16,\,z_0=\frac{\pi}{4}$ akod 0.5 do 0.95

 parametry k jsou průběhy chyby aproximace pro řád rozvoje rovný 16 a střed řady rovný $\frac{\pi}{4}$ vyneseny v grafech 5.28 a 5.29. Chyba aproximace je dána vztahem:

$$E(x) = f(x) - \sum_{n=0}^{R} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n, \quad x \in U(x_0, r) \subset \mathbb{R}$$
 (5.69)

, kde x_0 je střed řady a r poloměr konvergence řady. Vyšetření chyby určitého integrálu 6.38 vypočteného integrací řady bude provedeno horními a dolními integrálními součty chybové funkce 5.69. Integrální součty budou provedeny pro intervalové rozdělení:

$$D = \left\{ \left\langle \frac{\pi}{2} \left(n - 1 \right) \cdot 10^{-6}, \frac{\pi}{2} n \cdot 10^{-6} \right\rangle \mid n = \left\{ 1, 2, 3, \dots, 10^{6} \right\} \right\} = \left\{ \left\langle 0, \frac{\pi}{2} 10^{-6} \right\rangle, \left\langle \frac{\pi}{2} 10^{-6}, \pi 10^{-6} \right\rangle, \left\langle \pi 10^{-6}, 3\frac{\pi}{2} 10^{-6} \right\rangle, \dots, \left\langle \frac{\pi}{2} \left(1 - 10^{-6} \right), \frac{\pi}{2} \right\rangle \right\}$$
(5.70)

Dolní integrální součet je pak dán:

$$s(D) = \Delta x \sum_{i=1}^{10^6} E(x_i)$$
 (5.71)

, a horní integrální součet:

$$S(D) = \Delta x \sum_{i=0}^{10^{6}-1} E(x_{i})$$
(5.72)

, kde

$$x_i = \left\{ \frac{\pi}{2} i \mid i \in \{0, 1, 2, \dots, 10^6\} \right\}$$
(5.73)

KAPITOLA 5. ZOLOTAREVOVY POLYNOMY 5.2. ŘEŠENÍ VÝPOČTU

k	s(D)	S(D)	ΔS_E
0.05	$-1.115438922050781 \cdot 10^{-13}$	$-1.115432036998366 \cdot 10^{-13}$	$6.885052415065026 \cdot 10^{-19}$
0.10	$-1.326338889916690 \cdot 10^{-12}$	$-1.326294275195584 \cdot 10^{-12}$	$4.461472110546046 \cdot 10^{-17}$
0.15	$3.791312954792049 \cdot 10^{-12}$	$3.791775591250215 \cdot 10^{-12}$	$4.626364581661073\cdot 10^{-16}$
0.20	$1.023185018322552 \cdot 10^{-10}$	$1.023202829904319\cdot 10^{-10}$	$1.781158176760201 \cdot 10^{-15}$
0.25	$6.942436592131878 \cdot 10^{-10}$	$6.942433438436060 \cdot 10^{-10}$	$-3.153695817718032 \cdot 10^{-16}$
0.30	$2.841411383854962 \cdot 10^{-9}$	$2.841371022338712 \cdot 10^{-9}$	$-4.036151625006582 \cdot 10^{-14}$
0.35	$7.630656395497742 \cdot 10^{-9}$	$7.630401615062989\cdot 10^{-9}$	$-2.547804347533788\cdot10^{-13}$
0.40	$9.790264218961657 \cdot 10^{-9}$	$9.789295481294693 \cdot 10^{-9}$	$-9.687376669639856\cdot 10^{-13}$
0.45	$-2.738641076835532 \cdot 10^{-8}$	$-2.738878657856735\cdot 10^{-8}$	$-2.375810212030684 \cdot 10^{-12}$
0.50	$-2.347133516746285 \cdot 10^{-7}$	$-2.347153599136557 \cdot 10^{-7}$	$-2.008239027196819 \cdot 10^{-12}$
0.55	$-9.039021043023888 \cdot 10^{-7}$	$-9.038875606364549 \cdot 10^{-7}$	$1.454366593394184 \cdot 10^{-11}$
0.60	$-2.186509672986831 \cdot 10^{-6}$	$-2.186417847522377\cdot 10^{-6}$	$9.182546445410427\cdot 10^{-11}$
0.65	$-1.880584998369962 \cdot 10^{-6}$	$-1.880301314266362 \cdot 10^{-6}$	$2.836841036007284 \cdot 10^{-10}$
0.70	$1.197395173615674 \cdot 10^{-5}$	$1.197425723366962 \cdot 10^{-5}$	$3.054975128748014 \cdot 10^{-10}$
0.75	$6.756927540990074 \cdot 10^{-5}$	$6.756741359438765 \cdot 10^{-5}$	$-1.861815513093607\cdot 10^{-9}$
0.80	$1.211385744512799 \cdot 10^{-4}$	$1.211283108238104 \cdot 10^{-4}$	$-1.026362746947226\cdot 10^{-8}$
0.85	$-4.574798247859691\cdot 10^{-4}$	$-4.574810486448278\cdot 10^{-4}$	$-1.223858858711863\cdot 10^{-9}$
0.90	$-2.1\overline{40045243191482\cdot 10^{-3}}$	$-2.139887427980916\cdot 10^{-3}$	$1.578152105659141 \cdot 10^{-7}$
0.95	$1.385950568642374 \cdot 10^{-2}$	$1.385883399639387 \cdot 10^{-2}$	$-6.716900298742168 \cdot 10^{-7}$

Tabulka 5.1: Horní a dolní integrální součty a jejich rozdíl pro k od 0.05 do 0.95

jsou hraniční body intervalů rozdělení D, a

$$\Delta x = x_i - x_{i-1}, \ \forall i, i \neq 0 \tag{5.74}$$

je diference těchto hraničních bodů. V tabulce 9.2 jsou pro různé hodnoty parametru k, pro řád rozvoje rovný 16 a střed roven $\frac{\pi}{4}$ vypsány hodnoty integrálních součtů 5.71 a 5.72 chybové funkce 5.69 a jejich rozdíl $\Delta S_E = S(D) - s(D)$:

Na tomto místě by bylo již možno definovat konkrétní aparát pro vyšetřování vlivu aproximace konečnými polynomiálními rozvoji na chyby výpočtů a možnosti implementace. Z tabulky 9.2 je zřejmé, že se vzrůstající hodnotou parametru kchyba aproximace roste. Při nejvyšší hodnotě parametru k v tabulce 9.2 rovnému hodnotě 0.95 je chyba dokonce v řádu 10^{-2} . Z tendence růstu chyby v závislosti na hodnotě parametru lze usoudit, že bude-li se parametr k blížit k hraniční hodnotě rovné číslu 1, bude chyba aproximace růst ještě intenzivněji. To je konečně důsledkem toho, že poloměr konvergence se vzrůstající hodnotou parametru kklesá, a to tak, že čím blíže se parametr blíží hraničnímu bodu 1, tím klesá rychleji. Důvod je zřejmý z grafu 5.1 a rovnice 5.62. V blízkosti hraničnímu bodu 1 parametru k je závislost poloměru konvergence konkávní a klesající. Z těchto důvodu je tedy za účelem nižší chyby aproximace, zejména při vyšších hodnotách parametru k, účelné zavést takový způsob polynomiální aproximace, který bude vykazovat nižší chybovost. Chyba aproximace částečným Taylorovým rozvojem je důsledkem odchylky funkce a její aproximace zvyšující se se vzdáleností od bodu odpovídajícímu středu řady. Naopak, v okolí středu řady je chyba menší blíže středu. V bodě středu je pak aproximační polynom identický s aproximovanou funkcí. Tyto vlastnosti jsou dány samou podstatou Taylorova rozvoje funkce,

která spočívá v definici Taylorova polynomu jakožto funkce mající s rozvíjenou funkcí styk určitého řádu, který je dán stupněm polynomu. Z těchto vlastností Taylorových řad plyne, že chybu aproximace lze snížit vhodnou volbou středu řady za předpokladu stanoveného stupně aproximace. Dalšího snížení chyby lze pak dosáhnout pouze zvýšením stupně rozvoje. Jinou variantu řešení podává rozdělení definičního oboru aproximované funkce na dílčí podmnožiny a aproximovat parciální funkce vzniklé tímto rozdělením.

5.2.3.2 H Jacobiho eta funkce

Pro implementaci Jacobiho eta funkce lze s výhodou užít rozvoje první theta funkce v řadu:

$$\vartheta_1(z,q) = 2q^{\frac{1}{4}} \sum_{n=0}^{\infty} \left\{ (-1)^n q^{n(n+1)} \sin\left[(2n+1) z \right] \right\}, \ |q| < 1, \ z \in \mathbb{C}$$
(5.75)

V rozvoji 5.75 figuruje, jakožto parametr funkce, eliptický nome. Mezi ním a parametrem k platí vztah 5.24. Jacobiho eta funkce je pak dána translací proměnné theta funkce dle vztahu 5.25. Dostáváme tak řadu pro eta funkci ve tvaru:

$$H(u \mid k) = 2e^{-\pi \frac{K'(k)}{4K(k)}} \sum_{n=0}^{\infty} \left\{ (-1)^n e^{-\pi \frac{n(n+1)K'(k)}{K(k)}} \sin\left[(2n+1) \frac{\pi u}{2K(k)} \right] \right\}$$
(5.76)
, $k \in (0,1), \ u \in \mathbb{C}$

Implementace funkce pro výpočet Jacobiho eta funkce v jazyce MATLAB je pak syntaktickým vyjádřením řady 5.76 v hyearchii funkcí pro Jacobiho první theta funkci a eliptický nome:

```
1
   function [Th]=theta_1(z,q)
3 pr=30;
4
   [r,s]=size(z);
5
   Th_t(r,s)=0;
7
   for n=0:1:pr
8
       Th_t_n=(((-1)^n)*(q^(n*(n+1)))*sin(((2*n)+1)*z));
9
       if (sum(sum(isnan(Th_t_n)))==0)
10
            Th_t=Th_t+Th_t_n;
11
       else
12
            continue
13
       end
14
   end
16 | \text{Th}=\text{Th}_t*2*(q^(1/4));
```

Kód 5.3: První theta funkce

1 function nome=q(k)

$$3 | nome=exp(-((pi*K_(k))./K(k)));$$

Kód 5.4: Eliptický nome z parametru k

1 function [eta]=H(u,k)

 $3 | eta=theta_1(((u*pi)/(2*K(k))),q(k));$

Kód 5.5: Jacobiho eta funkce

Konstrukce kódu 5.5 zřejmě odpovídá vyjádření řady 5.76, nicméně podstatnou otázkou v případě aditivních a multiplikativních rozvojů je jejich řád aplikovaný na konkrétní úlohu. Hodnota řádu konečného rozvoje je vždy otázkou volby mezi přesností výpočtu a výpočetních nároků. Vzhledem k tomu, že řada 5.75 konverguje "velmi rychle" s rostoucím řádem rozvoje, postačuje, vzhledem preciznosti vyjádření desetinných míst v jazyce MATLAB, pro plné vyjádření theta funkce v rozsahu definičního podoboru plně postačujícím pro potřeby výpočtů a v celém intervalu pro parametr k řád rozvoje určený přiřazením v řádku 3. kódu 5.3.

5.3 Řešení Zolotarevových polynomů

5.3.1 Definiční obor Zolotarevových polynomů

Definičním oborem Zolotarevových polynomů je dle vztahu 5.1 množina komplexních čísel. Avšak předmětem zájmu je pouze určitá funkce vzniklá složením Zolotarevova polynomu a křivky zadané rovnicí 5.4. Vzhledem k tomu, že křivka je zadaná rovnicí 5.4 implicitně, nelze vyjádřit Zolotarevův polynom jakožto funkci proměnné w. Křivka je touto rovnicí zadána právě tak, že parametr w figurující v rovnici 5.4 je reálný a zároveň z intervalu $\langle -1, 1 \rangle$. Že rovnice 5.4 spolu s touto podmínkou pro parametr w zadává skutečně křivku bude dokázáno v dalším spolu s rozborem vlastností tohoto parametru a jeho souvislostí s vlastnostmi polynomů.

Bez nároku na matematickou korektnost lze problém složení Zolotarevova polynomu a křivky 5.4 vyjádřit ilustrativně takto:

Necháme-li parametr w probíhat v reálném intervalu $\langle -1, 1 \rangle$, bude každému číslu w_0 z tohoto intervalu odpovídat určité komplexní číslo (čísla) u_0 z definičního oboru funkce 5.4. Je to právě to číslo, které vyhovuje rovnici 5.4 a konkrétnímu w_0 , tedy po dosazení u_0 do rovnice 5.4 získáváme právě w_0 . A právě toto číslo u_0 příslušné konkrétnímu w_0 je třeba dosadit do rovnice 5.1. Dosadíme-li takto všechna čísla u_0 do rovnice 5.1 a vytvoříme-li funkci přiřazující každému w_0 funkční hodnotu vzniklou dosazením u_0 příslušejícímu w_0 podle rovnice křivky 5.4 do rovnice 5.1, získáme tak funkci, jež je předmětem zájmu, tedy Zolotarevův polynom.

5.3.2 Rozbor definiční křivky

Za účelem rozboru rovnice křivky 5.4 definujme funkci:

$$W_{p,q}(u \mid k) = \frac{sn^{2}(u \mid k) \cdot cn^{2}\left(\frac{p}{n}K(k) \mid k\right) + cn^{2}(u \mid k) \cdot sn^{2}\left(\frac{p}{n}K(k) \mid k\right)}{sn^{2}(u \mid k) - sn^{2}\left(\frac{p}{n}K(k) \mid k\right)} \quad (5.77)$$

, $u \in \mathbb{C}, \ k \in (0, 1)$

$$n = p + q \tag{5.78}$$

Předpis funkce 5.77 je stejný, jako předpis rovnice 5.4. Jedná se však o komplexní funkci komplexní proměnné s reálným parametrem. Hledaná křivka je vlastně parciální funkcí funkce 5.77. Je to právě ta podmnožina zobrazení 5.77, pro kterou platí, že právě na ni nabývá funkce 5.77 hodnot z intervalu $\langle -1, 1 \rangle$, a tedy její imaginární část je rovna nule.

Zolotarevův polynom stupně n=p+qs parametry p,qakpak, na základě závěrů v [39], definujeme:

$$Z_{p,q}(w \mid k) = \begin{cases} (-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(\frac{p}{n}K(k) + jarcsn\left(\frac{sn\left(\frac{p}{n}K(k)\mid k\right)}{cn\left(\frac{p}{n}K(k)\mid k\right)}\sqrt{\frac{1+w}{1-w}}\mid k'\right)\mid k\right)}{H\left(-\frac{p}{n}K(k) + jarcsn\left(\frac{sn\left(\frac{p}{n}K(k)\mid k\right)}{cn\left(\frac{p}{n}K(k)\mid k\right)}\sqrt{\frac{1+w}{1-w}}\mid k'\right)\mid k\right)}\right]\right\}, w \in A \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(arcsn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{k^{2}sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k\right) + \frac{p}{n}K(k) + jK'(k)\mid k}\right]\right\}, w \in B \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(K(k) + \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k\right) - \frac{p}{n}K(k) + jK'(k)\mid k}\right]\right\}, w \in C \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(K(k) - \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k'\right)\mid k}\right)\right]\right\}, w \in C \\ (5.79) \end{cases} \end{cases}$$

$$A = \left\langle -1, cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) \right\rangle$$
$$B = \left\langle cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) , \frac{cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) k'^{2}}{dn^{2} \left(\frac{p}{n} K(k) \mid k \right)} \right)$$
$$C = \left\langle \frac{cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) k'^{2}}{dn^{2} \left(\frac{p}{n} K(k) \mid k \right)} , 1 \right\rangle$$

$$A \cap B \cap C = \emptyset \tag{5.80}$$

$$A \cup B \cup C = \langle -1, 1 \rangle \tag{5.81}$$

, nebo, Zolotarevův polynom stupněn=p+qs parametry p,q a k je také roven identitě:

$$Z_{p,q}(w \mid k) = \left\{ \begin{array}{c} (-1)^{p+n} \cos\left(2n\varphi_{H\alpha}\left(w \mid k\right)\right), & w \in A \\ \\ \left. \left. \left. \left(\frac{4\left(\left(\frac{2sn^{2}\left(\frac{p}{n}K(k) \mid k\right) + w - 1}{k^{2}sn^{2}\left(\frac{p}{n}K(k) \mid k\right)(w + 1\right)} \right) \right) + \frac{p}{n}K(k) + jK'(k) \mid k \right) \right\} \right\}, w \in B \\ \\ \left. \left. \left(\frac{4\left(\left(\frac{2sn^{2}\left(\frac{p}{n}K(k) \mid k\right)(w + 1\right)}{k^{2}sn^{2}\left(\frac{p}{n}K(k) \mid k\right)(w + 1\right)} \right) \right) + \frac{p}{n}K(k) + jK'(k) \mid k \right) \right\} \right\}, w \in B \\ \\ \left. \left(-1\right)^{p} \cos\left(2n\varphi_{H\gamma}\left(w \mid k\right)\right), & w \in C \end{array} \right) \right\}$$
(5.82)

$$A = \left\langle -1, cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) \right\rangle$$
$$B = \left\langle cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) , \frac{cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) k'^{2} \right)}{dn^{2} \left(\frac{p}{n} K(k) \mid k \right)} \right\rangle$$
$$C = \left\langle \frac{cn^{2} \left(\frac{p}{n} K(k) \mid k \right) - sn^{2} \left(\frac{p}{n} K(k) \mid k \right) k'^{2} }{dn^{2} \left(\frac{p}{n} K(k) \mid k \right) k'^{2} }, 1 \right\rangle$$

, kde funkce $\varphi_{H\alpha}(w \mid k)$ je definována rovnicí 5.83 a funkce $\varphi_{H\gamma}(w \mid k)$ 5.84. Jedná se o kompaktní tvar rovnice 5.79.

$$\varphi_{H\alpha}\left(w \mid k\right) = \arg\left\{ H\left(\frac{p}{n}K\left(k\right) + jarcsn\left(\frac{sn\left(\frac{p}{n}K\left(k\right) \mid k\right)}{cn\left(\frac{p}{n}K\left(k\right) \mid k\right)}\sqrt{\frac{1+w}{1-w}} \mid k'\right)} \mid k\right)\right\} \quad (5.83)$$

$$\varphi_{H\gamma}\left(w \mid k\right) = \arg\left\{ H\left(K\left(k\right) + \frac{p}{n}K\left(k\right) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right) + w - 1}{sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right)\left(w + 1\right)}} \mid k'\right)} \mid k\right)\right\} \quad (5.84)$$

5.3. ŘEŠENÍ POLYNOMŮ KAPITOLA 5. ZOLOTAREVOVY POLYNOMY
Kapitola 6

Legenderova transformace

K zavedení této transformace mě vedla potřeba najít takové zobrazení na množině reálných funkcí, které umožní vyjádřit vzor funkce 6.24 v jejím polynomiálním tvaru, tz. ve formě funkce dle vztahu 4.1. Předpokladem pro takovou konstrukci byl fakt, že tento předpis funkce je trascendentním vyjádřením polynomu obecného stupně, jak plyne z její definice. Vyjádření funkce polynomiální identitou na základě jejího obecného tvaru představuje výhodu a prakticky, v obecném případě, jedinou možnost, jak provádět nad těmito funkcemi analytické transformace, zejména aplikace integrálních a diferenciálních funkcionálů a funkčních operátorů, tedy operace tolik nezbytné pro aplikace v kalkulu syntézy a analýzy systémů pro zpracování signálů.

Legenderova transformace představuje zejména možnost vhodného uplatnění numerických metod. To především proto, že numerické výpočty s polynomy jsou dnes standardně hojně zastoupeny jak v hardwarové výbavě aritmetických jader signálových procesorů, tak v základních knihovnách programovacích jazyků a dalších návrhových nástrojů. Výpočty, na kterých je transformace založena, je proto možné optimalizovat stejně tak pro řešení v reálném čase, jako pro nástroje s výpočty užívané v syntéze a analýze obvodů. Například v syntéze filtrů aplikujeme algoritmy pro výpočty s funkcemi ve tvaru polynomů a racionálních lomených funkcí konečných stupňů, jakožto výsledků aproximací obecných funkcí. Forma těchto aproximací má pak klíčový význam pro výsledek syntézy a vlastnosti konstrukce zapojení obvodu.

6.1 Princip Legenderovy transformace

Legenderova transformace je založena na rozkladu funkce do ortogonální polynomiální báze, kde bázovými funkcemi jsou Legenderovy polynomy. Legenderovy polynomy vykazují zásadní výhodu, a sice ortogonalitu na stejné množině definičního oboru identickým s definičním oborem polynomů Zolotarevových. Stejně jako v případě Čebyševovy nebo Butterwothovy aproximace lze vhodnými substitucemi a normováním dosáhnout rozvoje i mimo tento definiční interval.

6.1.1 Legenderovy polynomy

Definice Legenderových polynomů je motivována řešením Legenderovy diferenciální rovnice ve tvaru:

$$(x^{2}-1)\frac{d}{dx}(x^{2}-1)^{n} = 2nx(x^{2}-1)^{n}$$
(6.1)

Zde nacházíme v motivaci k jejich zavedení jistou analogii. Podobně jako v případě polynomů Čebyševových, primární definiční vztah determinuje atributy jisté množiny funkcí a vztahů mezi nimi. Ačkoliv je jejich podstatou řešení konkrétní diferenciální rovnice, umožňují jejich specifické vlastnosti užití v dalších úlohách obecnějšího charakteru.

Legenderovy polynomy jsou definovány, mimo jiné, vztahy:

$$P_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (x-1)^{n-k} (x+1)^k$$
(6.2)

$$P_n(x) = \sum_{k=0}^n \binom{n}{k} \binom{-n-1}{k} \binom{1-x}{2}^k$$
(6.3)

$$P_n(x) = 2^n \cdot \sum_{k=0}^n x^k \begin{pmatrix} n \\ k \end{pmatrix} \begin{pmatrix} \frac{n+k+1}{2} \\ n \end{pmatrix}$$
(6.4)

V případě sudého stupně je polynom funkcí sudou, jelikož koeficienty Legenderova polynomu stupně n ve tvaru:

$$P_{n}(x) = \sum_{k=0}^{n} p_{n} [k+1] x^{k}$$
(6.5)

, kde p_n je posloupnost těchto koeficientů, se u lichých mocnin základní proměnné rovnají nule. V případě lichého stupně polynomu se koeficienty u sudých mocnin proměnné rovnají nule, proto jsou výsledné polynomy funkcemi lichými. Grafy a koeficienty Legenderových polynomů stupňů od 0 do 30 uvedeny v *Příloze 1*.

6.1.1.1 Ortogonalita Legenderových polynomů

Legenderovy polynomy jsou vzájemně ortogonální funkce v intervalu $\langle -1; 1 \rangle$. To je zásadní vlastnost pro jejich užití jako bázových funkcí v integrální transformaci, neboť tato implikuje absenci váhové funkce a tudíž zásadní zjednodušení souvisejících výpočtů.

Definujeme-li standardní skalární součin reálných funkcí:

$$S = \int_{A} f_1(x) f_2(x) dx$$
 (6.6)

, kde A je uzavřený interval integrace, pak pro Legenderovy polynomy platí:

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \frac{2}{2n+1} \delta_{mn}$$
(6.7)

, kde δ_{mn} je Kroneckerův tenzor.

Z vlastností symetrie pak plyne, že pro stupeň Legenderova polynomu větší než0 platí:

$$\int_{-1}^{1} P_n(x) \, dx = 0 \; ; \quad n \in \mathbb{N}$$
 (6.8)

6.1.2 Proces transformace

Podstata Legenderovy transformace spočívá v rozkladu funkce f(x) na součet váhovaných polynomiálních bází:

$$f(x) = \sum_{k=0}^{N} a_k P_k(x)$$
(6.9)

, kde číslo $N \in \mathbb{N}$ nazýváme stupněm transformace. Váhy Legenderový polynomů jsou pak dány:

$$a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx$$
(6.10)

, kde $P_n(x)$ je Legenderův polynom stupně n.

Funkce f(x) je pak dána jejím rozkladem na intervalu $\langle -1; 1 \rangle$ vztahem 6.10. Legenderovu transformaci pak můžeme zavést následovně:

Definice 12. Legenderova transformace: Nechť je dána funkce $f(x) \in \mathbb{R}$; $x \in \langle -1; 1 \rangle$ taková, že:

$$\int_{-1}^{1} |f(x)| dx < \infty$$
 (6.11)

Pak Legenderův obraz stupně N je funkce:

$$F(x) = \sum_{k=0}^{N} a_k P_k(x) \; ; \quad x \in I \supseteq \langle -1; 1 \rangle \; , \quad I \subseteq \mathbb{R}$$
 (6.12)

, kde číslo a_k nazýváme k-tým koeficientem transformace. Tyto koeficienty jsou pak dány:

$$a_n = \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx$$
(6.13)

Interval $\langle -1; 1 \rangle$ nazýváme *intervalem transformace*.

Platí-li identita $f(x) \equiv F(x)$ pro daný stupeň N transformace, pak funkci F(x) nazýváme *úplným Legenderovým obrazem* funkce f(x) stupně N. Značme tento úplný obraz funkce f(x):

$$\mathfrak{L}_{N}\left(f\right) = \widetilde{f}_{N} \tag{6.14}$$

Neplatí-li identita $f(x) \equiv F(x)$ pro daný stupeň N transformace, pak funkci F(x) nazýváme *neúplným Legenderovým obrazem* funkce f(x) stupně N. Značme tento neúplný obraz funkce f(x):

$$\hat{\mathfrak{L}}_N(f) = \hat{f}_N \tag{6.15}$$

Pakliže číslo Nve výrazu 6.12 je nevlastní, tj
. $N=\infty,$ pak výraz 6.12 nazýváme Legenderovou řadou.

Věta 6. Obraz Legenderovy transformace funkce $f(x) \in \mathbb{R}$; $x \in \mathbb{R}$ integrabilní na intervalu transformace je určen jednoznačně.

Důkaz. Ze vztahu 6.7 plyne ortogonalita Legenderových polynomů. Tím pádem je možno funkci f(x) zapsat ve tvaru řady:

$$f(x) = \sum_{i=0}^{\infty} a_i P_i(x) ; \quad x \in \langle -1; 1 \rangle$$
(6.16)

Jedná se o lineární kombinaci ortogonální báze $\{P_i(x)\}; x \in \langle -1; 1 \rangle$. Pro souřadnice $\{a_i\} \in \mathbb{R}$ vůči této bázi lze zapsat skalární součin:

$$\int_{-1}^{1} f(x) P_{k}(x) dx = \int_{-1}^{1} \left[P_{k}(x) \sum_{i=0}^{\infty} a_{i} P_{i}(x) \right] dx =$$

$$= \sum_{i=0}^{\infty} a_{i} \left[\int_{-1}^{1} P_{i}(x) P_{k}(x) dx \right] = a_{k} \frac{2}{2k+1}$$
(6.17)

Z toho plyne, že:

$$a_{k} = \frac{2k+1}{2} \int_{-1}^{1} f(x) P_{k}(x) dx \qquad (6.18)$$

6.1.3 Vlastnosti transformace

Legenderova transformace je založena na rozkladu vzoru do ortogonální báze. Je však třeba dokázat, že množina Legenderových polynomů zkutečně tvoří bázi:

Věta 7. Množina Legenderových polynomů $P = \{P_i(x)\}_{i=0}^n$ dle definice v kapitole 6.1.1 tvoří bázi prostoru \mathbb{P}_n všech polynomů stupně nejvýše n dle definice 2.

Důkaz. Prostor funkcí integrabilních na intervalu Legenderovy transformace tvoří s operací násobení reálným číslem a skalárním součinem dle vztahu 6.6 lineární prostor se skalárním součinem. Jeho podprostorem je pak prostor \mathbb{P}_n všech polynomů stupně nejvýše n dle definice 2. Tento prostor má dle věty 3 dimenzi rovnu n+1.

Báze prostoru \mathbb{P}_n proto sestává
zn+1lineárně nezávislých funkcí z tohoto prostoru.

Lineární nezávislost Legenderových polynomů množiny P zajišťuje jejich ortogonalita dle vztahu 6.7, a protože jejich počet je dle předpokladu n+1, a všechny náleží prostoru \mathbb{P}_n , tvoří tato množina bázi prostoru všech polynomů stupně nejvýše n.

Obecně je obrazem Legenderovy transformace polynom nevlastního stupně. Avšak v případě, že vzorem je funkce identická s polynomem konečného stupně, byť vyjádřená v obecné analytické formě, je úplný Legenderův obraz této funkce polynom stupně téhož. Tento závěr plyne z vlastnosti izomorfismu Legenderovy transformace, přičemž stupeň transformace je pak dán dimenzí podprostoru generovaného bází všech těch Legenderových polynomů, pro něž koeficienty transformace jsou nenulové. Následující věta shrnuje tyto souvislosti v kompaktní formě:

Věta 8. Úplný Legenderův obraz $\mathfrak{L}_N(f)$ funkce f(x); $x \in \langle -1; 1 \rangle$, identické s polynomem $P_f(x) \equiv f(x)$ konečného stupně N, je polynom \tilde{f}_N stupně téhož.

Důkaz. Definiční suma 6.12 ve tvaru:

$$\widetilde{f}_{N}(x) = \sum_{k=0}^{N} a_{k} P_{k}(x)$$
(6.19)

je lineární kombinací ortogonální báze Legenderových polynomů a koeficientů transformace. Dle definičního vztahu 6.5 je Legenderův polynom lineární kombinací implicitní báze dle definice 5. Protože je tedy výraz 6.19 lineární kombinací lineárních kombinací implicitní báze, pak dle věty 2 tento výraz udává též lineární kombinaci implicitní báze, jejíž souřadnice jsou dány dle definice 2. Pak vzhledem k tomu, že dle věty 1 je obecně polynom dán jednoznačně svými koeficienty, a v souladu s předpokladem, že vzor f(x) je identický s polynomem $P_f(x)$, je polynom \tilde{f}_N dán jednoznačně a tím i jeho stupeň, jež je roven stupni polynomu $P_f(x)$, neboť dle definice 6.14 platí $\tilde{f}_N(x) \equiv f(x)$.

Otázkou ovšem zůstává, zdali skutečně vzor Legenderovy transformace je svým obrazem popsán unikátně, a to bez ohledu na to, jestli necháme tento vzor algoritmem Legenderovy transformace projít i "dále", než do stupně polynomu identickému se vzorem. Jinými slovy, měli bychom si být jisti, že pokud je vzor identický s polynomem konečného stupně, jsou všechny koeficienty v definiční sumě 6.12, jejichž index je vyšší než je stupeň polynomu identickému vzoru, rovny nule.

Věta 9. Nechť f(x); $x \in \langle -1; 1 \rangle$ je vzor Legenderovy transformace a platí $P_f(x) \equiv f(x)$, kde $P_f(x)$ je polynom stupně N. Pak koeficienty Legenderovy řady $\tilde{f}_{\infty}(x)$ dle definice 12 Legenderových polynomů stupně vyššího než N jsou rovny nule, neboli platí $\tilde{f}_{\infty}(x) = \tilde{f}_N(x)$.

Důkaz. Díky větě 8 víme, že pro vzor f(x) existuje úplný Legenderův obraz $\tilde{f}_N(x)$. Budeme-li hledat koeficienty Legenderovy řady dle vztahu 6.13 v definici 12, pak pro tyto dostáváme:

$$\begin{aligned} a_n &= \frac{2n+1}{2} \int_{-1}^{1} f(x) P_n(x) dx = \\ &= \frac{2n+1}{2} \int_{-1}^{1} \left[\tilde{f}_N(x) + \sum_{k=N+1}^{\infty} 0 \cdot P_k(x) \right] P_n(x) dx = \\ &= \frac{2n+1}{2} \int_{-1}^{1} \left[\sum_{k=0}^{N} a_k P_k(x) + \sum_{k=N+1}^{\infty} 0 \cdot P_k(x) \right] P_n(x) dx = \\ &= \frac{2n+1}{2} \int_{-1}^{1} \left[\sum_{k=0}^{N} a_k P_k(x) P_n(x) + \sum_{k=N+1}^{\infty} 0 \cdot P_k(x) P_n(x) \right] dx = \\ &= \frac{2n+1}{2} \sum_{k=0}^{N} \left[a_k \int_{-1}^{1} P_k(x) P_n(x) dx \right] + \frac{2n+1}{2} \sum_{k=N+1}^{\infty} \left[0 \cdot \int_{-1}^{1} P_k(x) P_n(x) dx \right] = \\ &= \frac{2n+1}{2} \sum_{k=0}^{N} \left[a_k \left(\frac{2}{2n+1} \delta_{kn} \right) \right] + 0 = a_k \frac{2n+1}{2} \left(\frac{2}{2n+1} \delta_{kn} \right) = \\ &= \left| \frac{\delta_{kn}}{\delta_{kn}} = 1; \ k = n \\ &= a_{k=n} \end{aligned}$$

$$(6.20)$$

Koeficienty Legenderovy řady jsou pro Legenderovy polynomy stupně vyššího, než je stupeň polynomu identického se vzorem, nulové a Legenderova řada je proto rovna úplnému Legenderově obrazu $\tilde{f}_N(x)$ stupně N funkce $P_f(x) \equiv f(x)$.

Věta 9 vlastně dává smysl definici Legenderovy transformace, neboť nám zaručuje, že její obraz bude "složen" pouze z těch váhovaných Legenderových polynomů, které jsou "potřebné" pro výsledek transformace. Jinými slovy, aplikujeme-li na funkci Legenderovu transformaci, bude její obraz vždy stejný, i když budeme ve výpočtech koeficientů pokračovat i pro bázové Legenderovy polynomy stupňů vyšších, než je stupeň polynomu identického se vzorem.

Poznámka 2. Vysvětleme ještě princip Legenderovy transformace myšlenkovým konstruktem:

Věty 8 a 9 nám zaručují, že vzor Legenderovy transformace je polynom, byť nevlastního stupně, daný lineární kombinací navzájem ortonormálních Legenderových polynomů. Integrál 6.13 zadává vlastně skalární součin vzoru s bázovými vektory prostoru funkcí, jehož prvkem je právě vzor transformace. Výsledkem tohoto skalárního součinu je pak, po součinu s převrácenou hodnotou normy bázové funkce, souřadnice vzoru vůči této bázi. Pokud si představíme vzor jako sumu 6.12, pak s ohledem na distributivitu skalárního součinu, bude nenulový pouze ten skalární součin s identickou bází násobené právě svou souřadnicí. Tato souvztažnost platí právě díky ortogonalitě Legenderových polynomů.

6.2 Aplikace Legenderovy transformace

V následujícím budeme aplikovat Legenderovu transformaci v různých úlohách, a to jak v případě úplného, tak neúplného Legenderova obrazu, v závislosti na charakteru vzoru transformace.

6.2.1 Legenderova transformace Zolotarevova polynomu

Jak bylo popsáno v kapitole 5, Zolotarevův polynom je obecně definován analytickým výrazem. Implicitní, jistým způsobem výchozí, forma takového vyjádření je následující:

$$Z_{p,q}\left(w \mid k\right) = \frac{\left(-1\right)^{p}}{2} \left[\left(\frac{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)} \right)^{n} + \left(\frac{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)} \right)^{n} \right];$$

$$n = p + q$$

$$p, q \in \mathbb{N}, \qquad k \in (0, 1), \qquad u \in \mathbb{C}$$
(6.21)

, kde definičním oborem je komplexní křivka zadaná:

$$w = \frac{sn^{2}\left(u \mid k\right) \cdot cn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right) + cn^{2}\left(u \mid k\right) \cdot sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right)}{sn^{2}\left(u \mid k\right) - sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right)} \in \langle -1, 1 \rangle$$

$$(6.22)$$

, a stejně tak lze přejít k vyjádření prostřednictvím argumentu Čebyševova polynomu následovně:

$$Z_{p,q}\left(w \mid k\right) = \left(-1\right)^{p} T_{n} \left\{ \frac{1}{2} \left[\frac{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)} \right] \right\}$$
(6.23)

Pro výpočty v aplikacích je však výhodnější takový tvar Zolotarevova polynomu,

kde funkce je vyjádřena explicitně a její argument je proměnnou na reálném definičním oboru výchozího parametru implicitní křivky 6.22. Takovým vyjádřením je například výraz prostřednictvím argumentu hyperbolometrické funkce:

$$Z_{p,q}(w \mid k) = \left\{ \begin{array}{c} (-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(\frac{p}{n}K(k) + jarcsn\left(\frac{sn\left(\frac{p}{n}K(k)\mid k\right)}{cn\left(\frac{p}{n}K(k)\mid k\right)}\sqrt{\frac{1+w}{1-w}}\mid k'\right)\mid k\right)}{H\left(-\frac{p}{n}K(k) + jarcsn\left(\frac{sn\left(\frac{p}{n}K(k)\mid k\right)}{cn\left(\frac{p}{n}K(k)\mid k\right)}\sqrt{\frac{1+w}{1-w}}\mid k'\right)\mid k\right)}\right\}, w \in A \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(arcsn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{k^{2}sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k\right) + \frac{p}{n}K(k) + jK'(k)\mid k\right)}{H\left(arcsn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{k^{2}sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k\right) - \frac{p}{n}K(k) + jK'(k)\mid k\right)}\right\}\right\}, w \in B \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left[\frac{H\left(K(k) + \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k\right) - \frac{p}{n}K(k) + jK'(k)\mid k\right)}\right]\right\}, w \in C \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left(\frac{H\left(K(k) - \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k'\right) \mid k\right)}\right\}\right\}, w \in C \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left(\frac{H\left(K(k) - \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k'\right) \mid k\right)}\right\}\right\}, w \in C \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left(\frac{H\left(K(k) - \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k'\right) \mid k\right)}\right\}\right\}, w \in C \\ \left(-1)^{p} \cosh\left\{n \cdot ln\left(\frac{H\left(K(k) - \frac{p}{n}K(k) + jarcdn\left(\sqrt{\frac{2sn^{2}\left(\frac{p}{n}K(k)\mid k\right) + w-1}{sn^{2}\left(\frac{p}{n}K(k)\mid k\right)(w+1)}\mid k'\right) \mid k\right)}\right\}\right\}$$

$$A = \left\langle -1, cn^2 \left(\frac{p}{n} K(k) \mid k \right) - sn^2 \left(\frac{p}{n} K(k) \mid k \right) \right\rangle$$

$$B = \left\langle cn^2 \left(\frac{p}{n} K(k) \mid k \right) - sn^2 \left(\frac{p}{n} K(k) \mid k \right) , \frac{cn^2 \left(\frac{p}{n} K(k) \mid k \right) - sn^2 \left(\frac{p}{n} K(k) \mid k \right) k'^2}{dn^2 \left(\frac{p}{n} K(k) \mid k \right)} \right)$$

$$C = \left\langle \frac{cn^2 \left(\frac{p}{n} K\left(k\right) \mid k\right) - sn^2 \left(\frac{p}{n} K\left(k\right) \mid k\right) {k'}^2}{dn^2 \left(\frac{p}{n} K\left(k\right) \mid k\right)} , 1 \right\rangle$$

, nebo také prostřednictvím funkce goniometrické:

$$Z_{p,q}(w \mid k) = \left\{ \left. (-1)^{p} \cosh\left\{ n \cdot \ln\left[\frac{\left(-1 \right)^{p+n} \cos\left(2n\varphi_{H\alpha}\left(w \mid k\right)\right), & w \in A \right)}{\left. \frac{1}{2sn^{2}\left(\frac{p}{n}K(k)\right|k\right)(w+1)} \right| k + \frac{p}{n}K(k) + jK'(k) k \right)} \right\}, w \in B \\ \left. \left. \left(\frac{1}{2sn^{2}\left(\frac{p}{n}K(k)\right)(w+1)} \right| k + \frac{p}{n}K(k) + jK'(k) k k + \frac{p}{n}K(k) + jK'(k) k k - \frac{p}{n}K(k) + \frac{p}{n}K($$

Odvození a důkazy těchto vztahů lze nalézt v [39]. Výsledkem Legenderovy transformace Zolotarevova polynomu je pak jeho vyjádření v přímé polynomiální formě, kterou získáme vyjádření ve tvaru:

$$Z_{p,q}(w \mid k) = \sum_{m=0}^{N} a_m P_m(w) = \sum_{m=0}^{N} \frac{a_m}{2^m} \sum_{k=0}^{m} {\binom{m}{k}}^2 (w-1)^{m-k} (w+1)^k \quad (6.26)$$

, nebo lépe pak:

$$Z_{p,q}(w \mid k) = \sum_{m=0}^{N} a_m P_m(w) = \sum_{m=0}^{N} \frac{a_m}{2^m} \sum_{k=0}^{m} w^k \binom{m}{k} \binom{\frac{m+k+1}{2}}{m}$$
(6.27)

Prostřednictvím ekvivalentních algebraických úprav můžeme přejít do základních forem polynomů, např. formy součtu základních členů:

$$Z_{p,q}(w \mid k) = \sum_{k=0}^{n} a_k w^k$$
(6.28)

, nebo formy součinu kořenových činitelů:

$$Z_{p,q}(w \mid k) = A \prod_{k=0}^{n} (w - b_k)$$
(6.29)

Tato forma ovšem v obecném případě předpokládá numerická řešení, neboť její algebraické řešení je pro stupeň polynomu vyššího než 4 nemožné nalézt. V případě Zolotarevých polynomů lze však tuto formu vyjádřit, neboť její analytické řešení existuje a je vypracováno v následující kapitole.

Podrobme nyní Zolotarevův polynom Legenderově transformaci:

Uvažujme Zolotarevův polynom stupně n v přímé explicitní formě 6.24. Legenderovou transformací získáváme Zolotarevův polynom $Z_{p,q}(w|k)$ ve formě 6.30, kde její koeficienty jsou dány a_m :

$$a_{m} = \int_{-1}^{1} Z_{p,q} (w \mid k) P_{m} (w) dw = \\ = \int_{-1}^{cn^{2} \left(\frac{p}{n}K(k)\mid k\right) - sn^{2} \left(\frac{p}{n}K(k)\mid k\right)} \frac{(-1)^{p}}{2^{m}} \sum_{k=0}^{m} \left(\frac{m}{k}\right)^{2} (w-1)^{m-k} (w+1)^{k} \cdot \frac{(m-1)^{p}}{2^{m}} \left(\frac{m}{k}\right)^{2} (w-1)^{m-k} (w+1)^{k} \cdot \frac{(m-1)^{p}}{2^{m}} \left(\frac{m}{k}\left(\frac{p}{k}K(k)\mid k\right)} \sqrt{\frac{1+w}{1-w}} \mid k'\right) \mid k\right) \\ + \int_{cn^{2} \left(\frac{p}{n}K(k) + jarcsn\left(\frac{sn\left(\frac{p}{n}K(k)\mid k\right)}{cn\left(\frac{p}{n}K(k)\mid k\right)} \sqrt{\frac{1+w}{1-w}} \mid k'\right) \mid k\right)} \right] dw + \\ + \int_{cn^{2} \left(\frac{p}{n}K(k) - sn^{2} \left(\frac{p}{n}K(k)\right) + \frac{(m-1)^{p}}{2^{m}} \sum_{k=0}^{m} \left(\frac{m}{k}\right)^{2} (w-1)^{m-k} (w+1)^{k} \cdot \frac{(m-1)^{p}}{2^{m}} \left(\frac{m}{k}\left(\frac{m-1}{k}\right) - \frac{m^{2} \left(\frac{p}{n}K(k) + \frac{m-1}{k}\right)}{\frac{1}{k^{2}sn^{2} \left(\frac{p}{n}K(k)\right) + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} - \frac{m^{2} \left(\frac{p}{n}K(k) + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} + \frac{1}{2^{m}} \sum_{k=0}^{m} \left(\frac{m}{k}\right)^{2} (w-1)^{m-k} (w+1)^{k} \cdot \frac{1}{k^{2}sn^{2} \left(\frac{p}{n}K(k) + \frac{1}{k}\right) - \frac{p}{n}K(k) + jK'(k) \mid k} \right)}{\frac{1}{m} \left(\frac{1}{k}\left(\frac{1}{k}\left(\frac{1}{k}\left(\frac{p}{n}K(k) + \frac{p}{n}K(k) + \frac{1}{k}\right) - \frac{p}{n}K(k) + \frac{1}{k}\left(\frac{1}{k}\right) - \frac{p}{n}K(k) + \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} - \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} - \frac{1}{k^{2}(k)} + \frac{1}{k^{2}(k)} - \frac{1}{k^{2}($$

Pro vztah 6.30 povede analytický přístup k výpočtu na značně komplikované řešení. Avšak, díky vyjádření funkce 6.21 v přímé formě 6.24 o argumentu w lze výpočet řešit snadno numericky. Pro numerické řešení lze zvolit například přístup typický pro strojové řešení, kde je obecně integrál:

$$s = \int_{a}^{b} f_{1}(x) f_{2}(x) dx$$
(6.31)

nahrazen součtem součinů diferencí a funkčních hodnot integrandu v jich krajní mezi daných dělením intervalu definičního oboru:

$$S(I) = \sum_{i=0}^{L-1} (x_i - x_{i-1}) f_1(x_i) f_2(x_i)$$
(6.32)

$$I = \langle a; b \rangle \tag{6.33}$$

$$x_i = a + \frac{b-a}{L}i\tag{6.34}$$

Nyní můžeme vyjádřit Zolotarevův polynom ve formě:

$$Z_{p,q}(w \mid k) = \sum_{k=0}^{N} z_k P_k(w)$$
(6.35)

Kolektivizací tohoto výrazu dostáváme Zolotarevův polynom v základním přímém tvaru polynomu, tedy ve tvaru sumy váhovaných mocnin základní proměnné:

$$Z_{p,q}(w \mid k) = \sum_{k=0}^{N} \breve{z}_k w^k$$
(6.36)

Metodu numerického výpočtu implementuje algoritmus 6.1 v jazyce MATLAB.

```
1 function [koefs, zeros, exts]=koeficienty(p,q_I,k,del)
3 syms x legender_I_poly legender_I_poly_n
4 | n=p+q_I;
6 [a]=koefs I(p,q I,k,del);
8 legender_I_poly=0;
10 for ii=0:n
11
       legender_I_poly_n=0;
12
       for i=0:ii
13
           legender_I_poly_n=legender_I_poly_n+...
14
                (((comb_I(ii,i)^2)*(((x-1)^(ii-i))*...
15
                ((x+1)^i)));
16
       end
17
       legender_I_poly=legender_I_poly+(((1/(2^ii))*...
18
           a(ii+1)) *legender_I_poly_n);
19 | end
21 |legender_I_koefs_I_=sym2poly(collect(legender_I_poly));
23 | Z_poly=legender_I_koefs_I_*[x.^(n:-1:0)].'
25 koeficienty_=vpa(sym2poly(collect(Z_poly)).',20);
26 |nuly=sort(vpa(roots(sym2poly(collect(Z_poly))),20));
27 |extremy=sort(vpa(roots(sym2poly(collect(diff...
28
       (Z_poly))),20));
30 [function [a]=koefs_I(p1,q_I1,k1, del)
32 n1=p1+q I1;
33 K_Ik1=K_I(k1);
34 | K_IK_II = K_I | (k1);
35 | k_1 = k_comp_I(k1);
36 u_01=u0_I (p1, q_I1, k1);
38 sn01=sn_nas_I(u_01,k1);
39 cn01=cn_nas_I(u_01,k1);
40 dn01=dn_nas(u_01,k1);
41 | A_B_x = (cn01^2) - (sn01^2);
42 |B_C_x=((cn01^2)-((sn01*k_1)^2))/(dn01^2);
44 A_x=-1: (1/del):A_B_x;
```

Kód 6.1: Numerický algoritmus v jazyce MATLAB, část 1.

6.2. APLIKACE

```
45 B_x=A_B_x: (1/del):B_C_x;
46
   C_x=B_C_x: (1/del):1;
48
       arg_A_N_x=u_01+(j*arcsn_I((sn01/cn01)*...
49
            sqrt((1+A_x)./(1-A_x)), k_1));
50
       arg_A_D_x=-u_01+(j*arcsn_I((sn01/cn01)*...
51
            sqrt((1+A_x)./(1-A_x)), k_1));
52
       arg_Z_H_I_x=H_I(arg_A_N_x,k1)./H_I(arg_A_D_x,k1);
53
       Z_x(1:length(A_x)) = ((-1)^{p1}) * cos(n1*...
54
            acos(0.5*(arg_Z_H_I_x+...
            (arg Z H I x.^(-1))));
55
57
       arg_B_N_x=u_01+(j*K_IK_I1)+arcsn_I(sqrt(((2*...
58
            (sn01<sup>2</sup>))+B_x-1)./(((k1*sn01)<sup>2</sup>)*(B_x+1))),k1);
59
       arg_B_D_x=-u_01+(j*K_IK_I1)+arcsn_I(sqrt(((2*...
60
            (sn01<sup>2</sup>))+B_x-1)./(((k1*sn01)<sup>2</sup>)*(B_x+1))),k1);
61
       arq Z H I x=H I(arq B N x,k1)./H I(arq B D x,k1);
62
       Z_x((length(A_x)+1):(length(A_x)+length(B_x)))=...
63
            ((-1)^p1)*cos(n1*acos(0.5*(arg_Z_H_I_x+...
64
            (arg_Z_H_I_x.^(-1))));
66
       arg_C_N_x=K_Ik1+u_01+(j*arcdn_I(sqrt(((2*...
67
            (sn01^2) + C_x-1) . / (((sn01)^2) * (C_x+1))), k_1);
68
       arg_C_D_x=K_Ik1-u_01+(j*arcdn_I(sqrt(((2*...
69
            (sn01<sup>2</sup>))+C_x-1)./(((sn01)<sup>2</sup>)*(C_x+1))),k_1));
70
       arg_Z_H_I_x=H_I(arg_C_N_x,k1)./H_I(arg_C_D_x,k1);
71
       Z_x((length(A_x)+length(B_x)+1):(length(A_x)+...
72
            length(B_x)+length(C_x)))=((-1)^p1)*...
73
            \cos(n1 \times a\cos(0.5 \times (arg_Z_H_I_x+...
74
            (arg_Z_H_I_x.^(-1))));
76 | x = [A_x, B_x, C_x];
78
   for i=0:n1
79
       a(i+1)=integ_I(x,real(Z_x).*...
80
            (legender_I(x,i)/(2/((2*i)+1))));
81
   end
83 | A=(a);
85 pol_tmp=0;
87 for i=0:n1
88
       pol_tmp=pol_tmp+(a(i+1)*legender_I(x,i));
89
   end
```

Kód 6.2: Numerický algoritmus v jazyce MATLAB, část 2.

```
91 [function [arcsn_I_]=arcsn_I(fi,k)
93 | for i=1:length(fi)
94
        arcsn_I__(i) =F_I(asin(fi(i)),k);
95 | end
96 |arcsn_I_=arcsn_I_;
98 [function [arcdn_I_]=arcdn_I(fi,k)
100 | arcdn_I_=arcsn_I (sqrt ((1-(fi.^2)) / (k^2)), k);
102 [function [cn_]=cn_nas_I(u,k)
103 prec=20;
104 \mid nome=q_I(k);
105 | K_I_KK=K_I(k);
106 | cn_t=1;
108 | for n=1:prec
109
        t_=(1+(2*(nome^{(2*n)})*cos((pi*u)/(K_I_k)))+...
110
             (nome^(4*n)))./(1-(2*(nome^((2*n)-1))*...
111
            \cos((pi*u)/(K_I_k)) + (nome^{((4*n)-2)});
113
        if (sum(sum(isnan(t_)))==0)
114
            cn_t=cn_t.*t_;
115
        else
116
            continue
117
        end
118 end
120 cn_=cn_t.*(((2*(nome^(1/4))*(k_comp_I(k)^(1/2)))/...
121
        (k^(1/2)))*cos((pi*u)/(2*K_I__Ik)));
123 [function [F_I_int]=F_I(fi,k)]
125 %F_I_int=GAM_F_I(fi,k);%sin
127 | for i=1:length(fi)
128
        F_I_int_(i) = ellipticF((fi(i)), k^2);
129 | end
131 |F_I_int=F_I_int_;
```

Kód 6.3: Numerický algoritmus v jazyce MATLAB, část 3.

```
133 function [eta]=H_I(u,k)
135 | eta=theta_1_I(((u*pi)/(2*K_I(k))), q_I(k));
137 [function [int_komplet_comp]=K_I_I(k)
139 | if ~ ((k>0) \& (k<1)) 
140
                     Chyba: k musí náležet (0;1)!');
        error('
141 end
143 |int_komplet_comp=K_I(k_comp_I(k));
145 function k_=k_comp_I(k)
146 | k_= sqrt(1-(k.^2));
148 [function [int komplet]=K I(k)
150 int_komplet=GAM_K_I(k);
152 [function [GAM_K_I__I]=GAM_K_I(k)
154 prec=1000;
156 a k=1+k;
157 b_k=1-k;
158 a_temp=0;
159 b_temp=0;
161 for i=1:prec
162
        a_temp = (a_k+b_k)/2;
163
        b_temp=sqrt(a_k.*b_k);
164
        a_k=a_temp;
165
        b_k=b_temp;
166 end
168 GAM_K_I__I=pi./(2*a_k);
170 [u0_I_]=u0_I(p,q_I,k)
172 | u0_I_=(p/(p+q_I)) * K_I(k);
174 [function [sn_]=sn_nas_I(u,k)
175 prec=20;
176 \mid nome=q_I(k);
```

Kód 6.4: Numerický algoritmus v jazyce MATLAB, část 4.

```
177 K_I__Ik=K_I(k);
178 |sn_t=1;
180 | for n=1:prec
181
        t_=(1-(2*(nome^{(2*n)})*cos((pi*u)/(K_I_k)))+...
182
             (nome^(4*n)))./(1-(2*(nome^((2*n)-1))*...
183
             \cos((pi \star u) / (K_I_k)) + (nome^{((4 \star n) - 2)});
185
        if (sum(sum(isnan(t_))) == 0)
186
             sn_t=sn_t.*t_;
187
        else
188
             continue
189
        end
190 | end
192
    sn_=sn_t.*(((2*(nome^{(1/4))})/(k^{(1/2)}))*...
        sin((pi*u)/(2*K I Ik)));
193
195 | function nome=q_I(k)
197 \mid nome = exp(-((pi * K_I_{k}))./K_{k}(k)));
199 [function [dn_]=dn_nas(u,k)
200 |prec=20;
201 \mid \text{nome}=q \text{ I(k)};
202 K_I_Ik=K_I(k);
203 |dn_t=1;
205 \mid for n=1:prec
206
        t_=(1+(2*(nome^{(2*n)-1}))*cos((pi*u)/...
207
              (K_1_k)) + (nome^{((4*n)-2)})./...
208
              (1-(2*(nome^{(2*n)-1}))*cos((pi*u)/...
209
              (K_I_k)) + (nome^{((4 + n) - 2))};
210
            if (sum(sum(isnan(t_)))==0)
211
             dn_t=dn_t.*t_;
212
        else
213
             continue
214
        end
215 | end
217 \mid dn_=dn_t.*sqrt(k_comp_I(k));
219 [function [Th]=theta_1_I(z,q_I)
220 |pr=30;
221
   [r,s]=size(z);
222 | Th_t(r, s) = 0;
```

Kód 6.5: Numerický algoritmus v jazyce MATLAB, část 5.

6.2. APLIKACE

```
224
   for n=0:1:pr
225
       Th_t_n=(((-1)^n)*(q_1^(n*(n+1)))*sin(((2*n)+1)*z));
226
       if ((sum(sum(isnan(Th_t_n))) == 0) & ...
227
                (sum(sum(isinf(Th_t_n))) == 0))
228
           Th t=Th t+Th t n;
229
       else
230
            continue
231
       end
232
   end
234 | Th=Th_t*2*(q_1^(1/4));
236 | function [comb_I] = comb_I(n,k)
238 comb_I_=factorial(n)/(factorial(n-k)*factorial(k));
240 [function [legender_I_] = legender_I (x, n)
242 legender_I_tmp=0;
244 | for k=0:n
245
       legender_I_tmp=legender_I_tmp+(comb_I(n,k)^2)*...
246
            (((x-1).^{(n-k)}).*((x+1).^{k}));
247
   end
249 |legender_I_=(1/(2^n)) *legender_I_tmp;
251
   function [integ_I_]=integ_I(x,y)
253 | if (length(x)) = length(y) )
254
       disp('Lengths of input parameters must be equal !')
255
       integ_I_=NaN;
256
       return
257 end
259
   260
        ((y(2:end)-y(1:end-1))/2))]'));
```

Kód 6.6: Numerický algoritmus v jazyce MATLAB, část 6.

6.2.2 Legenderova transformace - úplný obraz

Užijme nyní Legenderovu transformaci na konkrétní Zolotarevův polynom prostřednictvím algoritmu 6.1. Koeficienty obrazu transformace vycházejí následovně:

$m{k}$	\breve{z}_k
0	-0.95835883383
1	4.6530257073
2	131.17819492
3	-197.1973604
4	-2945.286543
5	2167.4538335
6	24754.706344
7	-9423.082278
8	-99339.821501
9	20353.015406
10	213155.43045
11	-23401.04493
12	-251463.07451
13	13749.651786
14	153929.12856
15	-3253.4064319
16	-38222.2586

Tabulka 6.1: Hodnoty koeficient
ů $Z_{5,11}(w \left| 0.7 \right)$ dle vztahu 6.36

Sledujme nyní vývoj obrazu transformace prostřednictvím zobrazení částečných součtů sumy 6.35. Definujme částečný Zolotarevův polynom vztahem:

$$z_{p,q}^{M}(w \mid k) = \sum_{m=0}^{M} a_{m} P_{m}(w) = \sum_{m=0}^{M} \frac{a_{m}}{2^{m}} \sum_{n=0}^{m} {\binom{m}{n}}^{2} (w-1)^{m-n} (w+1)^{n} \quad (6.37)$$

Obrázek 6.1: Nahoře: Součin Legenderova polynomu stupně 1 a koeficientu a_1 . Dole: Částečný Zolotarevův polynom $z_{5,11}^1 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.2: Nahoře: Součin Legenderova polynomu stupně 2 a koeficientu a_2 . Dole: Částečný Zolotarevův polynom $z_{5,11}^2 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.3: Nahoře: Součin Legenderova polynomu stupně 3 a koeficientu a_3 . Dole: Částečný Zolotarevův polynom $z_{5,11}^3 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.4: Nahoře: Součin Legenderova polynomu stupně 4 a koeficientu a_4 . Dole: Částečný Zolotarevův polynom $z_{5,11}^4 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.5: Nahoře: Součin Legenderova polynomu stupně 5 a koeficientu a_5 . Dole: Částečný Zolotarevův polynom $z_{5,11}^5(w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.6: Nahoře: Součin Legenderova polynomu stupně 6 a koeficientu a_6 . Dole: Částečný Zolotarevův polynom $z_{5,11}^6 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.7: Nahoře: Součin Legenderova polynomu stupně 7 a koeficientu a_7 . Dole: Částečný Zolotarevův polynom $z_{5,11}^7 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.8: Nahoře: Součin Legenderova polynomu stupně 8 a koeficientu a_8 . Dole: Částečný Zolotarevův polynom $z_{5,11}^8 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.9: Nahoře: Součin Legenderova polynomu stupně 9 a koeficientu a_9 . Dole: Částečný Zolotarevův polynom $z_{5,11}^9 (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.10: Nahoře: Součin Legenderova polynomu stupně 10 a koeficientu a_{10} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{10} (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11} (w \mid 0.7) \pmod{e}$

Obrázek 6.11: Nahoře: Součin Legenderova polynomu stupně 11 a koeficientu a_{11} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{11} (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.12: Nahoře: Součin Legenderova polynomu stupně 12 a koeficientu a_{12} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{12} (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.13: Nahoře: Součin Legenderova polynomu stupně 13 a koeficientu a_{13} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{13} (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.14: Nahoře: Součin Legenderova polynomu stupně 14 a koeficientu a_{14} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{14} (w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.15: Nahoře: Součin Legenderova polynomu stupně 15 a koeficientu a_{15} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{15}(w \mid 0.7) \pmod{e}$ a Zolotarevův polynom $Z_{5,11}(w \mid 0.7) \pmod{e}$

Obrázek 6.16: Nahoře: Součin Legenderova polynomu stupně 16 a koeficientu a_{16} . Dole: Částečný Zolotarevův polynom $z_{5,11}^{16} (w \mid 0.7)$, tj. již úplný Zolotarevův polynom (modře - v zákrytu) a Zolotarevův polynom $Z_{5,11}(w \mid 0.7)$ (červeně)

6.2.3 Legenderova transformace - neúplný obraz

Aplikujme nyní Legenderovu trasformaci úplný Jakobiho eliptický integrál:

$$K(k) = \int_0^{\frac{h}{2}} \frac{dz}{\sqrt{1 - k^2 \cdot \sin^2 z}}, \qquad k \in (0, 1), \qquad z \in \mathbb{C}$$
(6.38)

Definicí a vlastnostmi této funkce jsme se zabývali v kapitole 5.1.1.1. Avšak, v kapitole 5.2.3.1 jsme se obsáhle věnovali způsobu výpočtu hodnot této funkce. Základní metodikou pro tuto úlohu byl zvolen Taylorův rozvoj integrandu funkce 6.38 a následná integrace tohoto rozvoje. Jedním z důležitých závěrů tohoto rozboru byl fakt, že Taylorův rozvoj konverguje vždy pouze na určitém intervalu definičního oboru funkce 6.38. Jak bylo podrobně rozebráno, důvodem toho faktu je skutečnost, že integrand funkce 6.38 vykazuje póly rozmístěné v komplexní rovině takovým způsobem, že lze vždy nalézt jeho Taylorův rozvoj pouze na množině ne větší než jedné periody integrandu funkce 6.38. Pro užití v kalkulacích se Zolotarevovými polynomy byla aproximace Taylorovým rozvojem dostatečná. Aproximovat ale tuto funkci Taylorovým rozvojem, například na intervalu dvou celých period, tedy není možné, a to ani celou Taylorovou nebo Laurentovou řadou, důvody objasňuje kapilola 5.2.3.1. Podmnožinou Laurentova rozvoje je právě rozvoj Taylorův.

Jak známo z poznatků komplexní analýzy, takové funkce, jejichž Laurentů rozvoj konverguje pouze na určitých mezikružích vymezených jejich izolovanými singularitami - póly, jsou v aplikovaných partiích matematicky bohatě zastoupeny. Právě, nevýhodou diferenciálního principu aproximace je, že rozvoj je kvalitativně rozvojem lokálním, neboť vychází z analýzy funkce v jediném jejím bodě - středu rozvoje. Oproti tomu Legenderova integrální transformace analyzuje funkci obecně na vlastní podmnožině jejího definičního oboru.

Úkolem je tedy nalézt neúplný Legenderův obraz funkce 5.38, tedy:

$$f(z) = \frac{1}{\sqrt{1 - k^2 \cdot \sin^2 z}}; \quad k \in (0, 1) \ , \quad z \in \mathbb{C}$$
(6.39)

na širším intervalu, například za účelem aplikace integrodiferenciálních operací, lze aplikovat na tuto funkci Legenderovu aproximaci a nalézt její neúplný Legenderův obraz. Výsledkem tedy bude polynom, kterým lze, s jistou chybou, funkci nahradit a operovat dále s tímto neúplným obrazem. Definujme funkci odvozenou od 6.39 následovně:

$$F(x \mid k) = \frac{1}{\sqrt{1 - k^2 \sin^2\left(4.5\frac{\pi}{2}p\right)}}; \ x \in \langle -1; 1 \rangle \ , \quad k \in (0; 1)$$
(6.40)

Funkce 6.40 se od 6.39 liší translací v argumentu, a to tak, že na interval transformace $\langle -1; 1 \rangle$ zobrazuje několik period funkce 6.39, přičemž v krajních bodech definičního oboru funkce přechází co nejstrměji.

Zaveď
 me nyní neúplný Legenderův obraz funkce 6.40 stupně ${\cal N}=18,$ například pr
ok=0.7,dle 6.15:

$$\hat{\mathcal{L}}_{28}\left(F\left(x \mid k = 0.7\right)\right) = \hat{F}_{28}\left(x \mid k = 0.7\right)$$
(6.41)

Současně určeme chybu transformace:

$$\operatorname{err}_{\hat{F}} = F\left(x \mid k = 0.7\right) - \hat{F}_{28}\left(x \mid k = 0.7\right); \ x \in \langle -1; 1 \rangle \tag{6.42}$$

Výsledky jsou uvedeny v grafech 6.17 a 6.18. V grafu 6.17 je současně zobrazen Taylorův polynom stejného stupně rozvoje funkce 6.40 o středu v bodě x = 0.

Obrázek 6.17: Grafy funkcí 6.40, 6.41 a Taylorova rozvoje funkce 6.40 stupně ${\cal N}=28$ o středu $x_0=0$

Jak lze vidět, dle očekávání se polynom Taylorova rozvoje "zastaví" na hranicích jistého intervalu, protože Taylorova řada konverguje na komplexním rozšířením funkce pouze na kruhu vymezeném nejbližším pólem (viz. kapitola 5.2.3.1).

6.2.4 Legenderova transformace funkce sinc

Vypočítejme nyní neúplný Legenderův obraz funkce sinc definované:

$$\operatorname{sinc}\left(x\right) = \begin{cases} \frac{\sin(x)}{x} \; ; & x \in \mathbb{R} \setminus \{0\}\\ 1 \; ; & x = 0 \end{cases}$$
(6.43)

Obrázek 6.18: Graf chybové funkce 6.42

Tato funkce zastává, zejména v teorii obvodů, významnou roli, avšak její základní charakteristikou je, že není možné vyjádřit její integrál analyticky, neboť ten je vyšší transcendentní funkcí.

Aplikace Legenderovy transformace nabízí možnost výpočtu integrálu funkce sinc na uzavřeném intervalu. To je možné zejména proto, že integrand ve vztahu 6.13 je součinem s polynomem, proto se proměnná v čitateli funkce 6.43 vykrátí s jednotlivými členy Legendrových polynomů. Problém nastává u konstantních členů, avšak, vzhledem k tomu, že funkce 6.13 je integrál určitý, lze k analytickému výpočtu těchto členů využít například rozvoje funkce 6.43 ve funkční řadu:

$$sinc(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n+1)!}$$
(6.44)

, která tím přechází v řadu číselnou. Pro numerická řešení odpadá i tento problém.

Pro účel Legenderovy transformace definujme její restrikci na interval transformace $\langle -1; 1 \rangle$, a to tak, aby se na tomto intervalu translací argumentu projevilo několik průchodů funkce nulou, tedy:

$$\operatorname{sinc}\left(4\pi x\right) = \begin{cases} \frac{\sin(4\pi x)}{4\pi x} ; & x \in \langle -1; 1 \rangle \setminus \{0\} \\ 1 ; & x = 0 \end{cases}$$
(6.45)

K aproximaci funkce 6.45 užijme neúplný Legenderův obraz $sinc_{20}(x)$ stupně N = 20. Zároveň definujme chybovou funkci:

$$err_{sinc20}(x) = sinc(4\pi x) - sinc_{20}(x)$$
 (6.46)

Tyto funkce jsou vyneseny v grafech 6.19 a 6.20. Současně je zde zobrazen i graf Taylorova rozvoje $T_{20}^{sinc}\left(x\right)$ funkce 6.45 stejného stupněN=20.

Obrázek 6.19: Grafy funkcí 6.45, $\widehat{sinc}_{20}(x)$ a Taylorova rozvoje funkce 6.45 stupně N = 20 o středu $x_0 = 0$

Obrázek 6.20: Graf chybové funkce 6.46

Jak lze z těchto výsledků vidět, je aproximace funkce 6.45 na intervalu transformace velmi kvalitní a oproti Taylorově rozvoji je aproximace kvalitní rovnoměrně stejně po celém intervalu transformace.

94

Kapitola 7

Extrémy a nuly Zolotarevových polynomů

Klíčové analytické vlastnosti Zolotarevových polynomů byly zkoumány v kapitole 5. Závěry plynoucí z těchto získaných poznatků lze aplikovat na další rozbor vlastností těchto funkcí, zejména nyní, na vyšetření polohy jejich lokálních extrémů a nulových bodů. Ačkoliv jsou Zolotarevovy polynomy z definice polynomy obecného stupně, je možné díky jejich transcendentnímu explicitnímu vyjádření nalézt analytické algebraické řešení této úlohy. K analytickému přístupu k tomuto problému lze s výhodou využít vyjádření Zolotarevova polynomu ve formě polynomu Čebyševova.

Pro strojové řešení je možné užít numerických metod. K tomuto účelu může sloužit například vyjádření Zolotarevova polynomu, prostřednictvím Legenderovy transformace, v polynomiálním tvaru a následná aplikace standardních numerických algoritmů na tento výsledek pro nalezení jeho kořenů.

7.1 Analytické řešení

Předmětem zájmu je nyní množina poloh lokálních extrémů a nul Zolotarevových polynomů v jejich krajních částech značených α and β . Výchozí formou vyjádření bude vztah 7.1, kde Zolotarevův polynom je vyjádřen prostřednictvím definovaného argumentu Čebyševova polynomu:

$$Z_{p,q}\left(w \mid k\right) = (-1)^{p} T_{n} \left\{ \frac{1}{2} \left[\frac{H\left(u + \frac{p}{n} K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n} K\left(k\right) \mid k\right)} + \frac{H\left(u - \frac{p}{n} K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n} K\left(k\right) \mid k\right)} \right] \right\};$$

$$n = p + q$$

$$p, q \in \mathbb{N}, \qquad k \in (0, 1), \qquad u \in \mathbb{C}$$
(7.1)

$$w = \frac{sn^{2}\left(u \mid k\right) \cdot cn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right) + cn^{2}\left(u \mid k\right) \cdot sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right)}{sn^{2}\left(u \mid k\right) - sn^{2}\left(\frac{p}{n}K\left(k\right) \mid k\right)} \in \langle -1, 1 \rangle$$

$$(7.2)$$

Obrázek 7.1: Příklad Zolotarevova polynomu pro hodnoty p=7, q=4ak=0.7Vyjádření tohoto vztahu v goniomerickém tvaru dostáváme:

$$Z_{p,q}\left(w \mid k\right) = (-1)^{p} T_{n} \left\{ \frac{1}{2} \left[\frac{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)} \right] \right\} = (-1)^{p} \cos \left\{ n \cdot \arccos \left\{ \frac{1}{2} \left[\frac{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u - \frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)} \right] \right\} \right\}$$
(7.3)

Z této formy vyjádření plyne, že pro extrémy a nuly Čebyševova polynomu platí pro argument kosinu:

Pro extrémy v části α :

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K(k)\middle|k\right)}{H\left(u-\frac{p}{n}K(k)\middle|k\right)} + \frac{H\left(u-\frac{p}{n}K(k)\middle|k\right)}{H\left(u+\frac{p}{n}K(k)\middle|k\right)}\right]\right\} = m\pi; m \in \{1, \dots, q-1\}$$

$$(7.4)$$

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K(k)\middle|k\right)}{H\left(u-\frac{p}{n}K(k)\middle|k\right)} + \frac{H\left(u-\frac{p}{n}K(k)\middle|k\right)}{H\left(u+\frac{p}{n}K(k)\middle|k\right)}\right]\right\} = m\frac{\pi}{2}; m \in \{1, \dots, q\}$$

$$(7.5)$$

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K(k)\middle|k\right)}{H\left(u-\frac{p}{n}K(k)\middle|k\right)} + \frac{H\left(u-\frac{p}{n}K(k)\middle|k\right)}{H\left(u+\frac{p}{n}K(k)\middle|k\right)}\right]\right\} = l\pi; l \in \{1, \dots, p-1\}$$

$$(7.6)$$

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K(k)\middle|k\right)}{H\left(u-\frac{p}{n}K(k)\middle|k\right)} + \frac{H\left(u-\frac{p}{n}K(k)\middle|k\right)}{H\left(u+\frac{p}{n}K(k)\middle|k\right)}\right]\right\} = l\frac{\pi}{2}; l \in \{1, \dots, p\}$$

$$(7.7)$$

Pro část α získáváme řešení:

Pro extrémy v části α získáváme řešení rovnice:

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}\right]\right\} = m\pi \quad (7.8)$$

$$\arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}+\frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}\right]\right\}=\pi\frac{m}{n}$$
(7.9)

$$\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)} = 2\cos\left(\pi\frac{m}{n}\right)$$
(7.10)

$$\begin{split} &\frac{H\left(u + \frac{p}{n}K(k) \mid k\right)}{H\left(u - \frac{p}{n}K(k) \mid k\right)} + \frac{H\left(u - \frac{p}{n}K(k) \mid k\right)}{H\left(u + \frac{p}{n}K(k) \mid k\right)} = \\ &= \frac{H^{2}\left(u + \frac{p}{n}K(k) \mid k\right) + H^{2}\left(u - \frac{p}{n}K(k) \mid k\right)}{H\left(u + \frac{p}{n}K(k) \mid k\right) + \left(u - \frac{p}{n}K(k) \mid k\right)} = \\ &= \left|u = jx, x \in \mathbb{R} : H\left(u - \frac{p}{n}K(k) \mid k\right) = -\overline{H\left(u + \frac{p}{n}K(k) \mid k\right)}\right|^{2} = \\ &= -\frac{H^{2}\left(u + \frac{p}{n}K(k) \mid k\right) + \left[-\overline{H\left(u + \frac{p}{n}K(k) \mid k\right)}\right]^{2}}{H\left(u + \frac{p}{n}K(k) \mid k\right) + \left[-\overline{H\left(u + \frac{p}{n}K(k) \mid k\right)}\right]^{2}} = \\ &= -\frac{H^{2}\left(u + \frac{p}{n}K(k) \mid k\right) + \left[-\overline{H\left(u + \frac{p}{n}K(k) \mid k\right)}\right]^{2}}{\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left||H\left(u + \frac{p}{n}K(k) \mid k\right)| + \left[-\overline{H\left(u + \frac{p}{n}K(k) \mid k\right)}\right]^{2}}{\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left||H\left(u + \frac{p}{n}K(k) \mid k\right)| + \frac{p}{n}K(k) \mid k\right)\right|^{2}}{\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right| + \frac{p}{n}K(k) \mid k\right)\right|^{2}}{\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|\right|^{2}\left(e^{j2\arg\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right)}\right)^{2}}{\left||H\left(u + \frac{p}{n}K(k) \mid k\right)\right|^{2}} = \\ &= e^{j2\arg\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\} + e^{-j2\arg\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}} = \\ &= \cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) + j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) + \\ &+ \cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) + j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) + \\ &+ \cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) - j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) = \\ &= 2\cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) - j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right)\right) = \\ &= 2\cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) - j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) = \\ &= 2\cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right\}\right) - j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right)\right) = \\ &= 2\cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right) - j\sin\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right)\right) = \\ &= 2\cos\left(2\arg\left\{H\left(u + \frac{p}{n}K(k) \mid k\right)\right)\right) = 2\cos\left(\frac{\pi}{n}\right) \end{aligned}$$

$$\arg\left\{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)\right\} = \frac{\pi}{2}\frac{m}{n}$$
(7.12)

Implementace funkce 7.12 jakožto argumentu (funkce fáze) funkce
 $H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)$, s ohledem na charakter její monotonie, uvažujeme pouze restrikci definičního oboru části α :

$$\varphi_{\alpha}^{H_{+}}\left(u \mid k\right) = \arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}, u \in \left\{u = jx : x \in \langle 0; K'\left(k\right) \rangle\right\}$$
(7.13)
získáváme pro extrémy v části α prostřednictvím inverzní funkce k funkci 7.13:

$$\underbrace{u_{\alpha}^{E}(m) = \varphi_{\alpha}^{H_{+}}\left(\frac{\pi}{2}\frac{m}{n}\right) \in \{jx \mid x \in \langle 0; K'(k) \rangle\}, m \in \{1, \dots, q-1\}}_{=}$$
(7.14)

Pro nulové body v části α získáváme rovnici podobné rovnici 7.8:

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}\right]\right\} = m\frac{\pi}{2} \quad (7.15)$$

$$\arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}+\frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}\right]\right\}=\frac{m\pi}{n\frac{\pi}{2}}\qquad(7.16)$$

$$\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)} = 2\cos\left(\frac{m}{n}\frac{\pi}{2}\right)$$
(7.17)

Řešení této rovnice přechodem k argumentu funkce $H\left(u + \frac{p}{n}K(k) \mid k\right)$ je analogické k řešení rovnice 7.8, a stejně tak pro nulové body v části α píšeme:

$$\arg\left\{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)\right\} = \frac{\pi}{4}\frac{m}{n}$$
(7.18)

Pro nulové body platí rovnice:

, kde figuruje opět inverní funkce k funkci 7.13.

Extrémy a nuly v části γ jsou dány řešením podobné rovnice, jako v případě části α . Avšak rozdíl spočívá v odlišném chování funkcí $H\left(u + \frac{p}{n}K(k) \mid k\right)$ a $H\left(u - \frac{p}{n}K(k) \mid k\right)$, což zohledňuje rovnice 7.23. Tento rozdíl spočívá ve znaménku před operátorem komplexního sdružení.

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}\right]\right\} = l\pi \qquad (7.20)$$

$$\arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}+\frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}\right]\right\}=\pi\frac{l}{n} \qquad (7.21)$$

$$\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)} = 2\cos\left(\pi\frac{l}{n}\right)$$
(7.22)

$$\begin{aligned} \frac{H\left(u + \frac{p}{n}K(k) \mid k\right)}{H\left(u - \frac{p}{n}K(k) \mid k\right)} + \frac{H\left(u - \frac{p}{n}K(k) \mid k\right)}{H\left(u + \frac{p}{n}K(k) \mid k\right)} &= \\ &= \frac{H^{2}\left(u + \frac{p}{n}K(k) \mid k\right) + H^{2}\left(u - \frac{p}{n}K(k) \mid k\right)}{H\left(u - \frac{p}{n}K(k) \mid k\right)} = \\ &= \left|u = K\left(k\right) + jx, x \in \mathbb{R} : H\left(u - \frac{p}{n}K\left(k\right) \mid k\right) = \overline{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}\right| = \\ &= -\frac{H^{2}\left(u + \frac{p}{n}K\left(k\right) \mid k\right) + \left[\overline{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}\right]^{2}}{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right) + \left[\overline{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}\right]^{2}} = \\ &= -\frac{H^{2}\left(u + \frac{p}{n}K\left(k\right) \mid k\right) + \left[\overline{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}\right]^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{H^{2}\left(u + \frac{p}{n}K\left(k\right) \mid k\right) + \left[\overline{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)}\right]^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\|^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\|^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\|^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\|^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right|^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\|^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right)^{2}}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}}{\left|\left|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}\left(e^{j2\arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}\right)^{2}} = \\ &= -\frac{\left(\left\|H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right)^{2}\left(e^{j2\arg\left\{H\left(u +$$

$$\arg\left\{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)\right\} = \frac{\pi}{2}\frac{l}{n}$$
(7.24)

$$\varphi_{\gamma}^{H_{+}}\left(u \mid k\right) = \arg\left\{H\left(u + \frac{p}{n}K\left(k\right) \mid k\right)\right\}, u \in \left\{u = jx : x \in \langle 0; K'\left(k\right) \rangle\right\} \quad (7.25)$$

$$\underbrace{ u_{\gamma}^{E}(l) = \varphi_{\gamma}^{H_{+}}\left(\frac{\pi}{2}\frac{l}{n}\right) \in \{K(k) + jx \mid x \in \langle 0; K'(k) \rangle\}; l \in \{1, \dots, p-1\} }_{(7.26)}$$

Pro nulové body v části γ dostáváme:

$$n \cdot \arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right) \mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right) \mid k\right)}\right]\right\} = l\frac{\pi}{2} \quad (7.27)$$

$$\arccos\left\{\frac{1}{2}\left[\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}+\frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}\right]\right\}=\frac{l}{n}\frac{\pi}{2}\qquad(7.28)$$

$$\frac{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)} + \frac{H\left(u-\frac{p}{n}K\left(k\right)\mid k\right)}{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)} = 2\cos\left(\frac{l}{n}\frac{\pi}{2}\right)$$
(7.29)

$$\arg\left\{H\left(u+\frac{p}{n}K\left(k\right)\mid k\right)\right\} = \frac{\pi}{4}\frac{l}{n}$$
(7.30)

$$\underbrace{u_{\gamma}^{N}(l) = \varphi_{\gamma}^{H_{+}}\left(\frac{\pi}{4}\frac{l}{n}\right) \in \{K(k) + jx \mid x \in \langle 0; K'(k) \rangle\}; l \in \{1, \dots, p\}}_{=}$$
(7.31)

Nalezení příslušných hodnot parametru w odpovídajících všem lokálním extrémům a nulám získáme přímým řešením rovnice 7.2 pro tyto body. Konečný tvar rovnic pro hodnoty parametru w odpovídající lokálním extrémům a nulám Zolotarevových polynomů dostáváme v následujícím tvaru:

Pro lokální extrémy platí:

,

$$\begin{split} w_{p,q}^{E}(k) &= \left\{ \frac{sn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{m}{n}\right)\mid k\right) \cdot cn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right) + cn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{m}{n}\right)\mid k\right) \cdot sn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right)}{sn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{n}{n}\right)\mid k\right) - sn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right)} \\ & \cup \frac{sn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{1}{n}\right)\mid k\right) \cdot cn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right) + cn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{1}{n}\right)\mid k\right) \cdot sn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right)}{sn^{2}\left(\varphi_{\alpha}^{H_{+}}-1\left(\frac{\pi}{2}\frac{1}{n}\right)\mid k\right) - sn^{2}\left(\frac{p}{n}K\left(k\right)\mid k\right)} \\ & \left| m \in \{1, \dots, q-1\}, l \in \{1, \dots, p-1\} \right. \right\} \end{split}$$
(7.32)

Pro nulové body platí:

$$w_{p,q}^{N}(k) = \left\{ \frac{sn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{m}{n}\right) \mid k\right) \cdot cn^{2} \left(\frac{p}{n}K(k) \mid k\right) + cn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{m}{n}\right) \mid k\right) \cdot sn^{2} \left(\frac{p}{n}K(k) \mid k\right)}{sn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{n}{n}\right) \mid k\right) - sn^{2} \left(\frac{p}{n}K(k) \mid k\right)} \cup \frac{sn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{l}{n}\right) \mid k\right) \cdot cn^{2} \left(\frac{p}{n}K(k) \mid k\right) + cn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{l}{n}\right) \mid k\right) \cdot sn^{2} \left(\frac{p}{n}K(k) \mid k\right)}{sn^{2} \left(\varphi_{\alpha}^{H_{+}} - 1\left(\frac{\pi}{4}\frac{l}{n}\right) \mid k\right) - sn^{2} \left(\frac{p}{n}K(k) \mid k\right)} \right| \\ \left| m \in \{1, \dots, q\}, l \in \{1, \dots, p\} \right\} \right\}$$

$$(7.33)$$

7.2 Numerické řešení pomocí Legenderovy transformace

Příklad numerické metody výpočtu nulových bodů a polohy lokálních extrémů Zolotarevových polynomů uvádí algoritmus 6.1 v jazyce MATLAB. Principem jeho funkce je implementace následujících kroků:

- 1. Vyčíslení Zolotarevova polynomu dle hodnot vstupních parametrů
- 2. Vyčíslení Legenderových polynomů dle parametrů
- 3. Výpočet Legenderova obrazu Zolotarevova polynomu
- 4. Výpočet Zolotarevova polynomu ve tvaru 4.1 kolektivizací Legenderova obrazu
- 5. Výpočet nulových bodů z tohoto tvaru
- 6. Výpočet numerické derivace (diference)
- 7. Výpočet polohy lokálních extrémů

Výsledky jsou pro Zolotarevův polynom $Z_{5,11}(w|0.7)$ zobrazeny v tabulkách níže. Polohy nulových bodů jsou uvedeny v tabulce 7.1, polohy lokálních extrémů pak v tabulce 7.2.

i	$w=n_i$
1	-0.99524135324
2	-0.95748626227
3	-0.88342728048
4	-0.7759513786
5	-0.63925851505
6	-0.47872347704
7	-0.30074096185
8	-0.11261328567
9	0.077306554383
10	0.25809971216
11	0.40366454728
12	0.68608603885
13	0.78984302307
14	0.88845153976
15	0.95911630549
16	0.99575668269

Tabulka 7.1: Poloha nulových bodů funkce $Z_{5,11}(w \left| 0.7 \right.)$ v proměnné w

j	$w=e_j$
1	-0.98102459667
2	-0.9248441734
3	-0.83363172138
4	-0.710945808
5	-0.56159302282
6	-0.39147711876
7	-0.20745340474
8	-0.017296108604
9	0.16976003352
10	0.3388219115
11	0.55293617122
12	0.73520912245
13	0.84197083784
14	0.92782181918
15	0.98194783006

Tabulka 7.2: Poloha lokálních extrémů funkce $Z_{5,11}(w \left| 0.7 \right)$ v proměnné w

Kapitola 8 Legenderova aproximace

V teorii obvodů, zejména v syntéze elektrických filtrů, se setkáváme s úlohou nalézt takový tvar určité obvodové funkce, který umožní její aplikaci v návrhu struktury zapojení výsledného systému. Vzhledem k charakteru prvků, které máme pro konstrukci elektrických obvodů k dispozici, pracujeme v syntéze lineární obvodů s jejich idealizovanými náhradami, jejichž matematické modely indukují obvodové funkce ve formě obecně funkcí racionálně lomených. Linearita matematických obrazů obvodových prvků tedy zaručuje, že za jistých předpokladů lze z dané obvodové funkce syntetizovat obvod tak, aby tento vykazoval své obvodové charakteristiky v souladu s tímto výchozím předpokladem.

Konkrétní obvodové charakteristiky představující vstupní informaci o funkci obvodu. Pro syntézu lineárních systémů realizovatelných konečným počtem prvků jsou tedy těmito charakteristikami funkce ve tvaru polynomů, popřípadě jejich podílů. Také proto je teorie polynomiálních funkcí tolik důležitým aparátem a prohlubování jeho znalostí a jejich rozšiřování je zásadním úkolem pro rozvoj teorie elektrických obvodů jako takové.

Podstatná část postupů syntézy lineárních elektrických filtrů je založena na aproximaci teoretické ideální charakteristiky obvodu polynomem, potažmo racionální lomenou funkcí, a následné realizaci obvodu vykazující tuto charakteristiku. Polynomiální aproximace jsou proto eminentně důležitým matematickým aparátem.

Lagenderova aproximace představuje další možnost řešení úlohy nalézt takový polynom, který, vůči aproximované funkci, vykazuje určité vlastnosti určující jeho kvalitativní parametry.

8.1 Motivace k Legenderově aproximaci

Princip Legenderovy aproximace funkce je založen na Legenderově transformaci popsané v kapitole 6. Jak bylo vysvětleno, pakliže vzorem Legenderovy transformace je funkce identická s polynomem, existuje konečný stupeň úplného obrazu této transformace (viz. definice 12). Avšak, obecně jsme také definovali neúplný obraz transformace definicí 12. Je tedy možno získat obraz funkce, který aproximuje vzorovou funkci polynomem, ovšem obecně, jak je pro polynomiální charakteristické, s určitou chybou.

Poznámka 3. Taylorovým rozvojem funkce g(x) řádu n o středu x_0 nazýváme, v souladu s definicí 5.59 v kapitole 5.2.3.1, řadu:

$$T_{n}^{g}(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_{0})}{k!} (x - x_{0})^{k}; \quad x_{0} \in \mathbb{R}, \quad x \in \mathbb{R}, \quad n \in \mathbb{N}$$
(8.1)

Pakliže budeme hovořit o řádu n Taylorova rozvoje, myslíme tím obecně polynom řádu n dle definice 8.1. Stejně tak, hovoříme-li o řádu Legenderovy transformace N, myslíme tím obecně polynom řádu N dle definice 6.12. V obou případech jsou tedy výsledkem aproximace určitého řádu polynomy řádu téhož.

Ještě předtím, než Legenderovu aproximaci zavedeme korektně, pojď me nyní tento aparát motivovat myšlenkově. Pro tento účel studujme následující úlohu:

Aproximujme jistou funkci jejím neúplným Legenderovým obrazem:

Vezměme například základní goniometrickou funkci:

$$f(x) = \cos(4.5\pi x) \quad ; \quad x \in \langle -1; 1 \rangle \tag{8.2}$$

Tuto funkci nyní na intervalu definičního oboru aproximujme jejím neúplným Legenderovým obrazem \hat{f}_{18} stupně N = 18. Výsledek je graficky znázorněn v grafu 8.1.

Současně je zde, pro porovnání kvality aproximace, graf Taylorova rozvoje $T_{18}^{f}(x)$ stejného stupně N = 18 o středu x = 0.

Jak lze vidět, funkce f(x) je aproximována na celém interval definičního oboru kvalitněji. Původem tohoto faktu je skutečnost, že Taylorův rozvoj je principiálně založen na analýze lokálního chování funkce, a sice v bodě středu rozvoje. Naopak Legenderova transformace je operátorem integrálním založeném na funkcionálu analyzujícím obraz transformace na celém jejím definičním oboru.

Vypočtěme nyní chybu aproximace a znázorněme ji graficky. Pro tento účel definujme funkci:

$$err_{\hat{f}} = f(x) - \hat{f}_{18}(x) \; ; \quad x \in \langle -1; 1 \rangle$$
(8.3)

Tato funkce nám poskytuje kvantitativní chybu aproximace. Graf této chybové funkce je zobrazen v grafu 8.2.

Jak lze z těchto výsledků vidět, je aproximace funkce 8.2 v jejím definičním oboru, oproti Taylorově rozvoji, zásadně kvalitnější.

Podrobme nyní stejné analýze funkci:

$$g(x) = \cos\left(\frac{\pi}{2}x\right) ; \quad x \in \langle -1; 1 \rangle$$
 (8.4)

Obrázek 8.1: Grafy funkcí 8.2, \hat{f}_{18} a Taylorova rozvoje funkce 8.2 stupněN=18o středu $x_0=0$

Obrázek 8.2: Graf chybové funkce 8.3

Jedná se tedy o "horní kladnou půlvlnu" kosinu. Aproximace této funkce je v okolí počátku jejího definičního oboru často užívaná také ve fyzikálních úlohách, kdy například goniometrická funkce figuruje v argumentu diferenciální rovnice, avšak její řešení je hledáno pouze na jistém omezeném intervalu. Pak náhrada

této funkce polynomem představuje zásadní zjednodušení výpočtu.

Tuto funkci nyní aproximujme opět na intervalu definičního oboru aproximujme jejím neúplným Legenderovým obrazem \hat{g}_4 stupně N = 4. Současně opět znázorněme i graf Taylorova rozvoje $T_4^g(x)$ stejného stupně N = 4 o středu $x_0 = 0$. Výsledek je graficky znázorněn v grafu 8.3.

Obrázek 8.3: Grafy funkcí 8.4, \hat{g}_4 a Taylorova rozvoje funkce 8.4 stupněN=4o středu $x_0=0$

A současně též znázorněme chybovou funkci:

$$err_{\hat{g}} = g(x) - \hat{g}_4(x) \; ; \quad x \in \langle -1; 1 \rangle$$
(8.5)

, a zároveň chybovou funkci:

$$err_{T4} = g(x) - T_4^g(x) ; \quad x \in \langle -1; 1 \rangle$$
 (8.6)

, která vyjadřuje tutéž chybu pro Taylorův rozvoj $T_4^g(x)$.

Tyto funkce jsou zobrazeny v grafu 8.4.

Opět lze z těchto výsledků vidět, že Legenderova aproximace je na intervalu definičního oboru kvalitnější.

Doposud byl předmětem zájmu výsledek Lagenderovy aproximace v definičním oboru jejího vzoru. Zkoumejme nyní tento výsledek i mimo něj.

Zobrazme nyní funkci f_{18} , která je neúplným Legenderovým obrazem funkce 8.2 v širším intervalu v grafu 8.5.

Jak lze z grafu 8.5 vidět, funkce \hat{f}_{18} mimo interval definičního oboru 8.2 "padá"

Obrázek 8.5: Grafy funkcí 8.2 a \hat{f}_{18}

velice strmě.

Vezměme nyní v úvahu jinou funkci, tentokrát takovou, která již může představovat charakteristiku dolní propusti. Takovou funkci můžeme definovat například

takto:

$$h(x) = H_1(x+1) - H_0(x-1) ; \quad x \in \mathbb{R}$$
(8.7)

, kde ${\cal H}_k$ jsou Heavisideovi funkce definované:

$$H_k = \begin{cases} 0 \; ; \quad x < 0 \\ k \; ; \quad x = 0 \\ 1 \; ; \quad x > 0 \end{cases} ; \quad x, \; k \in \mathbb{R}$$
(8.8)

Zobrazme nyní neúplný Legenderův obraz \hat{h}_{10} na intervalu $\langle -1; 1 \rangle$ funkce 8.7 stupně 10 i mimo interval transformace. Spolu s funkcí 8.7 jsou tyto grafy zobrazeny v grafu 8.6.

Obrázek 8.6: Grafy funkcí 8.7 a \hat{h}_{10}

Chybová funkce:

$$err_{\hat{h}} = h(x) - \hat{h}_{10}(x) ; \quad x \in \langle -1; 1 \rangle$$
 (8.9)

je zobrazena v grafu 8.7

Jak lze vidět z grafů 8.6 a 8.7, aproximace splňuje určitou představu o jejím účelu. Proveď me ještě stejnou analýzu pro funkci 8.8 pro stupeň transformace N = 18. Výsledky jsou uvedeny v grafech 8.8 a 8.9.

Zkusme nyní zvýšit stupeň stejné úlohy na N = 40. V grafech 8.10 a 8.11 jsou

Obrázek 8.8: Grafy funkcí 8.8 a \hat{h}_{18}

zobrazeny výsledky této aproximace.

Jak lze vidět, graf funkce obraz \hat{h}_{40} , aproximující polynom se více "přimyká" k aproximované funkci 8.7 a "padá" strměji. Avšak, "daní" za tuto kvalitu jsou vyšší hodnoty chybové funkce 8.9, zejména v okolí bodů skoku funkce 8.7. Původem

Obrázek 8.10: Grafy funkcí 8.8 a \hat{h}_{40}

tohoto chování je Rungeovův jev, jistým způsobem analogický k jevu Gibbsovu. Teto jev se například projeví tím více, čím "ostřejší" přechody funkce vykazuje.

Zde opět nacházíme další výhodu integrálního charakteru Legenderovy transformace. Díky její definici totiž může být obrazem Legenderovy transformace jakákoliv funkce, pro kterou je definiční integrál definován. Chápeme-li funkcionál

Obrázek 8.11: Graf chybové funkce pro funkci h_{40}

6.13 jako integrál v Newtonově pojetí, pak lze konstatovat, že obrazem Legenderovy trasformace může být jakákoliv funkce složená z jednotlivých fragmentů definovaných na různých vlastních restrikcích intervalu integrace.

Aplikujme nyní tuto myšlenku na funkce 8.4 a 8.8 v následujícím smyslu:

Vyjádřeno myšlenkovým konstruktem: Pakliže "otupíme" ostré skoky funkce 8.8 tak, že její "hrany" předefinujeme "okraji" funkce 8.2, neboli "čvrtvlnami" kosinu. Korektně tedy definujme tuto funkci následovně:

$$s(x) = \begin{cases} \cos(4.5\pi x); & x \in \left\langle -1; -\frac{4}{4.5} \right\rangle \\ 1; & x \in \left\langle -\frac{4}{4.5}; \frac{4}{4.5} \right\rangle \\ \cos(4.5\pi x); & x \in \left(\frac{4}{4.5}; 1\right\rangle \end{cases}$$
(8.10)

Hraniční body $-\frac{4}{4.5}$ a $\frac{4}{4.5}$ jsou body "vrcholů" krajních "čtvrtvln" funkce 8.2. Funkce je tedy spojitá na intervalu $\langle -1; 1 \rangle$. Proveď me nyní Legenderovu transformaci funkce 8.10 stupně N = 18 a podrobme výsledky stejnému zkoumání jako v předchozích případech. Tyto jsou uvedeny v grafech 8.12 a 8.13.

Jak lze z grafu 8.12 vidět, aproximační polynom se mimo interval transformace, oproti předchozím případům, "zdvyhá", neboli nabývá kladných hodnot.

Aproximační úloha v návrhu filtrů, jak bude korektně specifikováno dále, spočívá

Obrázek 8.13: Graf chybové funkce pro funkci 8.10

především v kvalitě aproximace v intervalech propustného pásma, na tomto místě je to interval transformace, a v kvantitě v intervalech pásma nepropustného. Vzhledem k tomu, jakou roli zaujímá aproximační funkce v charakteristikách obvodu, není na tomto místě podstatné, že funkce $\hat{s}_{18}(x)$ nabývá mimo interval transformace kladných hodnot. Proto nyní provedeme porovnání s předchozími

výsledky na normách těchto funkcí.

Porovnejme výsledky stejné transformace o stejném stupni N = 18 pro funkce 8.7 a 8.10, které jsme získali v předchozím rozboru, avšak ve tvaru jejich norem. Výsledek uvádí grafy 8.14 a 8.15.

Jak lze vidět z grafů 8.14 a 8.15, dle předpokladů funkce 8.10 splňuje požadavky aproximační úlohy lépe v tom smyslu, že mimo interval transformace, tedy v předpokládaném nepropustném pásmu, "stoupá" rychleji než funkce 8.7. Tuto skutečnost vykazuje právě díky pozvolnému ("hladkému") přechodu funkce 8.10 v krajích intervalu transformace oproti funkci 8.7, kde je tento přechod skokový.

Vraťme se ještě k aproximaci funkce 8.2 a zaměřme se na rozbor chování jejího aproximujícího neúplného Legenderova obrazu mimo interval transformace $\langle -1; 1 \rangle$. Definujme nyní funkci:

$$q(x) = -\cos(4\pi x) \quad ; \quad x \in \langle -1; 1 \rangle \tag{8.11}$$

Funkce 8.11 se od funkce 8.2 liší v translaci argumentu. Zatímco na hranicích intervalu definičního oboru funkce 8.2 vykazuje největší spád v tom smyslu, že její jednostranné derivace zde nabývají lokálního maxima, pak v případě funkce 8.11 je tomu naopak, tedy její jednostranné derivace zde nabývají lokálního minima, konkrétně zde jsou rovny:

$$q'_{+}(-1) = 0$$
, $q'_{-}(1) = 0$ (8.12)

Obrázek 8.15: Grafy chybových funkcí pro funkce $\hat{s}_{18}(x)$ a $h_{18}(x)$

Porovnejme nyní neúplné Legenderovy obrazy stupně ${\cal N}=28$ funkcí 8.2 a 8.11 a jejich chybových funkcí:

$$err_{\widehat{f28}} = f(x) - \hat{f}_{28}(x) ; \quad x \in \langle -1; 1 \rangle$$
 (8.13)

$$err_{\hat{q}} = f(x) - \hat{q}_{28}(x) ; \quad x \in \langle -1; 1 \rangle$$
(8.14)

Výsledky jsou zobrazeny v grafech 8.16 a grafech 8.17.

Jak lze z těchto výsledků vidět, je v intervalu transformace $\langle -1; 1 \rangle$ aproximace kvalitnější pro funkci 8.2. To vyplývá z hodnot chybových funkcí 8.13 a 8.13. Nicméně, zaměříme-li se na hodnoty neúplných Legenderových obrazů funkcí 8.2 a 8.11 mimo interval transformace, pak zjišťujeme, že neúplný Legenderův obraz funkce 8.11 vykazuje větší spád, neboli, v jazyku aproximační úlohy v návrhu filtru, lepší selektivitu v nepropustném pásmu.

Nyní je na řadě ptát se o původu tohoto chování. Jak plyne z definiční sumy 6.12 Legenderova obrazu, jeho podstata spočívá v součtu jednotlivých Legenderových polynomů váhovaných koeficienty transformace. Vzhledem k tomu, že všechny nuly Legenderových polynomů jsou reálné, a leží v intervalu transformace, rostou Legenderovy polynomy mimo interval transformace tím rychleji, čím vyšší je jejich stupeň. Tím je dáno, že ke strmějšímu spádu neúplného Legenderova obrazu přispívají členy definiční sumy 6.12 tím více, čím vyšší je jejich řád. Proto mimo interval transformace vykazuje větší strmost ten Legenderův obraz, jehož koeficienty transformace nabývají vyšších hodnot pro jejich vyšší indexy.

Obrázek 8.17: Grafy chybových funkcí pro funkce 8.2 a 8.11

Shrňme nyní tyto motivační poznatky získané předchozími pokusy, na jejichž základě můžeme dále zavést aparát metody aproximace založené na Legenderově transformaci korektně:

1. Neúplný Legenderův obraz určitých funkcí vede na polynom, který s jistou kvalitou aproximuje vzor transformace na intervalu této transformace. Mi-

mo tento interval vykazuje polynom neúplného obrazu velmi strmý spád. Původ tohoto chování polynomu nalezneme jako přímý důsledek vlastností holomorfních funkcí, pokud si uvědomíme, že polynom reálné proměnné je restrikcí jeho komplexního originálu.

- 2. Kvalita aproximace funkce, coby vzoru pro neúplný Legenderův obraz, závisí jednak na řádu Legenderovy transformace, ale také na charakteru ("tvaru") vzoru samotného.
- 3. Na stupni neúplného Legenderova obrazu a charakteru vzoru závisí též míra spádu neúplného obrazu mimo interval transformace.
- 4. Míra spádu neúplného Legenderova obrazu mimo interval transformace závisí také na charakteru funkce k okolí hraničních bodů intervalu transformace.

8.2 Definice Legenderovy aproximace

V předchozí kapitole jsme se zabývali pokusy, jejichž výsledky ukazují, že Legenderovu transformaci lze využít v úlohách aproximace funkcí na intervalu transformace, zejména v aplikaci neúplného Legenderova obrazu. Je zřejmé, že interval transformace lze vhodnou translací přizpůsobit například normováním intervalu definičního oboru obrazu transformace, jako například v případě funkce 8.2.

Pro aproximaci v návrhu filtrů je však podstatné chování funkce mimo interval definičního oboru Legenderova obrazu. Tuto množinu obvykle ztotožňujeme s nepropustným pásmem dolní propusti, která představuje výchozí vzor aproximace.

Definice 13. Legenderova aproximace: Nechť je dána funkce

 $f(x) \in \mathbb{R}; x \in \langle -1; 1 \rangle.$ Pak polynom: $L_N^f(x) = \hat{f}_N; x \in \mathbb{R}, N \in \mathbb{N} \setminus \{\infty\}$ nazýváme Legenderovou aproximací funkce f řádu N.

Definice 13 zavádí polynom L jako funkci definovanou na množině reálných čísel, zatímco Legenderovy obrazy předpokládají jejich definiční obor v intervalu transformace. Výsledkem Legenderovy aproximace je polynom konečného řádu, a proto je zaručen jeho definiční obor na celém reálném kontinuu. V případě Legenderovy řady, kdy obecně řád transformace není konečný, není zaručena konvergence mimo interval transformace.

Z výše uvedeného je zřejmé, že Legenderova aproximace vede na výsledek, který zavádí určitou kvalitu pro aproximaci funkce v intervalu definiční transformace, a zároveň, v jisté souvislosti, kvantitu mimo tento interval. Kapitola 8.1 byla věnována zkoumání neúplných Legenderových obrazů různých funkcí. Zároveň zde byl kladen důraz na souvislost mezi vzorem transformace funkce a chování jejího vzoru mimo interval transformace. Jak bylo ukázáno, na toto chování má vliv především tvar funkce v okolí hraničních bodů intervalu transformace.

Smysl zavedení definice 13 spočívá právě v tom, že, na rozdíl od Legenderovy

transformace, kde předmětem zájmu je právě kvalita náhrady funkce jejím obrazem na intervalu transformace, v případě Legenderovy aproximace je předmětem zájmu chování obrazu na celém jeho definičním oboru, tj. na celé množině reálných čísel.

8.2.1 Analytické vlastnosti a definice hlavní funkce

Definice 14. Nechť je dána funkce $f(x) \in \mathbb{R}$; $x \in \langle -1; 1 \rangle$ a její Legenderova aproximace $L_N^f(x)$ stupně N.

Pak funkci f nazýváme hlavní funkcí Legenderovy aproximace. Její definiční obor, tj. interval $\langle -1; 1 \rangle$, nazýváme hlavním intervalem Legenderovy aproximace. Množinu definičního oboru funkce $L_N^f(x)$ mimo hlavní interval, tj. množinu $\mathbb{R} \setminus \langle -1; 1 \rangle$, nazýváme vedlejší množinou Legenderovy aproximace. Interval $(-\infty; -1)$ nazýváme levým vedlejším intervalem, a interval $(1; \infty)$ pravým

Interval $(-\infty; -1)$ nazyvame *levym vedlejším intervalem*, a interval $(1; \infty)$ pravy vedlejším intervalem Legenderovy aproximace.

Jak bylo ukázáno v kapitole 8.1, na průběh funkce $L_N^f(x)$ mimo interval transformace závisí právě na hlavní funkci a stupni aproximace.

Definujme nyní požadavky na průběh funkce $L_N^f(x)$ mimo hlavní interval. V souladu s požadavky na aproximaci v návrhu filtrů požadujme, aby funkce $L_N^f(x)$ vykazovala na vedlejším intervalu následující parametry:

- 1. Funkce je monotónní na vedlejších intervalech. Tím je zaručeno, že funkce na vedlejších intervalech nevykazuje žádné lokální extrémy.
- Růst nebo spád funkce na vedlejších intervalech je taktéž monotónní, neboli funkce je na vedlejších intervalech konvexní, nebo konkávní. Tím je zaručeno, že funkce je na vedlejších intervalech klesá nebo roste "stále strměji".

Výše definované požadavky lze shrnout následujícími vztahy:

$$\left[\left(\frac{d}{dx}L_{N}^{f}\left(x\right)>0\right)\vee\left(\frac{d}{dx}L_{N}^{f}\left(x\right)<0\right)\right]\wedge\left[\left(\frac{d^{2}}{dx^{2}}L_{N}^{f}\left(x\right)>0\right)\vee\left(\frac{d^{2}}{dx^{2}}L_{N}^{f}\left(x\right)<0\right)\right];$$

$$x\in\left(-\infty;-1\right),\quad x\in\left(1;\infty\right)$$
(8.15)

Pokud si uvědomíme, že funkce $L_N^f(x)$ je vždy polynom, je derivace obecného řádu polynomem taktéž. Vztah lze ekvivalentně vyjádřit následovně:

$$\left(\frac{d}{dx}L_{N}^{f}\left(x\right)\neq0\right)\wedge\left(\frac{d^{2}}{dx^{2}}L_{N}^{f}\left(x\right)\neq0\right);\ x\in\left(-\infty;-1\right)\cup\left(1;\infty\right)$$
(8.16)

Z tohoto vztahu plyne, že polynomy $\frac{d}{dx}L_N^f(x)$ a $\frac{d^2}{dx^2}L_N^f(x)$ na vedlejší množině nevykazují žádné reálné nuly, neboli:

$$\nexists x \in (-\infty; -1) \cup (1; \infty) : \frac{d}{dx} L_N^f(x) = 0 , \quad \frac{d^2}{dx^2} L_N^f(x) = 0$$
(8.17)

Na řešení těchto souvztažností vedou dvě obecná tvrzení. Prvním je Gaussova-Lucasova věta. Ta nám říká, že nuly derivací obecného polynomu leží v oblasti komplexní roviny dané vnější opsanou konvexní množinou vymezenou jeho nulami. V případě, že všechny nuly polynomu leží na reálné ose, získáme reálnou restrikcí tohoto teorému analogické tvrzení, v němž figuruje na místě komplexní konvexní množiny reálný interval. Nuly derivace takového polynomu tedy leží uvnitř intervalu vymezeném nulami originálu.

Druhý tvrzením je věta, jejíž podstata je poněkud složitější a lze ji nalézt například v [45] *na str. 556.* Ta říká, že nuly lineární kombinace ortogonálních polynomů splňujících jistou podmínku leží v konkrétně definované množině komplexních čísel. Touto podmínkou je, aby nuly ortogonálních polynomů náleželi intervalu $\langle -1; 1 \rangle$. Tuto větu lze definovat korektně takto:

Věta 10. Nechť $\{p_i(z)\}_{i=0}^N$ je množina polynomů stupně i takových, že všechny jejich nuly leží v intervalu $\langle -1; 1 \rangle$, a zároveň se všechny tyto nuly navzájem liší.

Potom platí, že nuly polynomu danému lineární kombinací množiny p_i , tedy polynomu:

$$P(z) = \sum_{i=0}^{N} a_i p_i(z)$$
(8.18)

leží v interieru elipsy:

$$\frac{x^2}{(R+R^{-1})^2} + \frac{y^2}{(R+R^{-1})^2} = \frac{1}{4} ; \quad z = x + jy : \quad x, y \in \mathbb{R}$$
(8.19)

, kde $R = \max\{2 + \sqrt{3}; \rho\}$, přičemž ρ je ryze kladný kořen rovnice:

$$-|a_N|t^N + \sum_{i=0}^{N-1} |a_i|t^i = 0$$
(8.20)

Důkaz.

Důkaz lze nalézt v publikaci [45] na str. 557.

Z definice 13 je zřejmé, že Legenderova aproximace podléhá tvrzení věty 10.

8.2.2 Legenderova goniometrika

Pro účely aproximace v návrhu filtrů zaveď me na základě předchozích poznatků aproximační algoritmus založená na Legenderově aproximaci. Na výsledek aproximace klad me následující, v aproximačních úlohách v návrhu filtrů obligátní, požadavky:

- 1. Aproximační funkce vykazuje v hlavním intervalu izoextremální průběh.
- 2. Aproximační funkce nabývá v hlavním intervalu hodnot v intervalu $\langle -1; 1 \rangle$, resp. hodnoty její normy v hlavním intervalu nepřestoupí ve svých lokálních extrémech hodnotu 1.

Rozhodujícím v této úloze je definice hlavní funkce.

S ohledem na výše vznešené požadavky definujme nyní Legenderovu aproximaci s goniometrickou hlavní funkcí následovně:

Definice 15. Nechť $g[N](x), x \in \langle -1; 1 \rangle$ je funkce definovaná:

$$g[N](x) = \begin{cases} \cos(n\pi x); \ n = \frac{N}{4}: \ \frac{N}{4} \in \mathbb{N}, \ n = \frac{N\pm 2}{4}: \ \frac{N\pm 2}{4} \in \mathbb{N} \\ \sin(n\pi x); \ n = \frac{N}{4} - 1: \ \frac{N}{4} - 1 \in \mathbb{N}, \ n = \frac{N\pm 2}{4} - 1: \ \frac{N\pm 2}{4} - 1 \in \mathbb{N} \\ x \in \langle -1; 1 \rangle, \quad N \in \mathbb{N} \end{cases}$$

$$(8.21)$$

Pak polynom $G_N = L_N^{g[N]}$ stupně N nazveme Legenderovou goniometrikou N-tého řádu.

Definujme chybovou funkci následovně:

$$err_{GN}(x) = g[N](x) - G_N(x)$$

$$(8.22)$$

Průběhy Legenderových goniometrik řádu $N = \{8, 9, 16, 17, 26, 27, 36, 37\}$ včetně jejich chybových funkcí jsou vyneseny v grafech 8.2.2 až 8.2.2.

Obrázek 8.19: Legenderova goniometrika řádu 9 a její chybová funkce

Obrázek 8.20: Legenderova goniometrika řádu 16 a její chybová funkce

Obrázek 8.21: Legenderova goniometrika řádu 17 a její chybová funkce

Kapitola 9

Závěr

Cílem této práce bylo podrobné zkoumání možností v zavedení integrální polynomiální transformace založené na poznatcích zejména lineární algebry, matematické analýzy a vlastností Legenderových polynomů. Dále byly zkoumány další vlastnosti Zolotarevových polynomů, zejména analytické řešení pro jejich nuly a polohu extrémů.

Výsledky pak byly aplikovány v dílčích úlohách.

Dále byla zavedena Legenderova transformace a z ní vycházející Legenderova aproximace. Z dosažených výsledků je zřejmé, že tento aparát představuje možnosti aplikovatelné v užitých partiích matematiky, zejména v teorii obvodů. Ovšem, díky obecnému charakteru těchto konstrukcí, je bezpochyby možné nalézt jejich uplatnění i v ostatních oblastech technických věd, neboť v každém jejich oboru se nevyhnutelně setkáváme k výpočty, jejichž analytické řešení je ve své přímé podobě značně komplikované, či je dokonce nemožné takové řešení nalézt. Příkladem takových početních úloh je řešení integrálních a diferenciálních rovnic jedné nebo více proměnných.

Byly také studovány další analytické vlastnosti Zolotarevových polynomů, také užitím výsledků získaných zavedením Legenderovy transformace. Tento rozbor navazoval na mou práci [39].

9.1 Naplnění cílů disertační práce

Cíle této disertační práce byly vytyčeny v kapitole 3. Zhodnocení naplnění těchto cílů je následující:

1. Rozbor polynomiálních funkcí

Tento cíl představuje rozbor obecných polynomů, zejména z hlediska algebraických vlastností třídy polynomiálních funkcí. Tento úkol znamená především zavedení prostoru polynomů a dále zobrazení mezi tímto prostorem a aritmetickým komplexním prostorem. Na tomto základě budou dále studovány možnosti užití nabytých poznatků, zejména při řešení výpočtů algebraických operací mezi polynomy.

Definicí a rozborem polynomiálních funkcí se zabývá kapitola 4. Jsou zde de-

finovány základní algebraické operace nad těmito funkcemi. Dále je v části 4.2 definován lineární prostor polynomů a lineární zobrazení mezi tímto prostorem a komplexním aritmetickým prostorem. V části 4.3 je pak definován tenzor součinu, prostřednictvím jehož je zaveden součin polynomů, diskrétní konvoluce a binomická věta.

2. Zavedení Legenderovy transformace

Pro zavedení Legenderovy transformace je v prvé řadě nezbytné uskutečnit rozbor vlastností Legenderových polynomů a možností jejich analytických vyjádřeních. Na tomto základě je pak možno definovat Legenderovu transformaci jakožto integrální polynomiální operátor nad množinou obecně reálných funkcí a vyšetřit její vlastnosti.

Legenderova transformace je zavedena v kapitole 6. V části 6.1 jsou vysvětleny základní principy, na nichž je Legenderova transformace založena. Konkrétně jsou pak v podčásti 6.1.1 definovány Legenderovy polynomy. Dále je v podčástech 6.1.2 a 6.1.3 vyložen proces Legenderovy transformace a její vlastnosti.

3. Aplikace Legenderovy transformace

Představit možnosti zavedené Legenderovy transformace její aplikací na některé základní funkce, které figurují zejména v teorii obvodů, zvláště pak v partiích elektrických filtrů. Konfrontovat výsledky těchto aplikací s konvenčními postupy v řešení podobných úloh.

Legenderova transformace je aplikována v části 6.2, kdy v podčásti 6.2.1 je provedena Legenderova transformace Zolotarevova polynomu a je tak nalezen jeho přímý polynomiální tvar, jeho nulové body a poloha extrémů. V částech 6.2.2 a 6.2.3 je aplikována Legenderova transformace na Zolotarevův polynom na úplný Jacobiho eliptický integrál, přičemž je představena aplikace úplného a neúplného Legenderova obrazu. V podčásti 6.2.4 je pak podrobena Legenderově transformaci funkce *sinc*. Výsledky těchto aplikací jsou pak pro úplný Jacobiho eliptický integrál a funkci *sinc* konfrontovány s výsledky Taylorova rozvoje pro tyto funkce.

V části 7.2 je potom představena metodika numerického řešení nalezení nulových bodů a polohy extrémů Zolotarevových polynomů prostřednictvím Legenderovy transformace.

V části 8.1 je v motivačních úlohách aplikována Legenderova transformace na reálné funkce a tyto výsledky jsou opět konfrontovány s výsledky Taylorova rozvoje těchto funkcí.

4. Zavedení Legenderovy aproximace

Definovat Legenderovu aproximaci na základě zavedené Legederově transformaci a studovat její vlastnosti.

Legenderova aproximace byla definována v části 8.2. Dále byly v podčásti 8.2.1 zkoumány její základní analytické vlastnosti a byla zde definována hlavní funkce Legenderovy aproximace.

5. Aplikace Legenderovy aproximace

Aplikovat Legenderovu aproximaci pro konstrukci polynomů s izoextremálním průběhem a pro získání stejnoměrně zvlněné funkce pro užití v aproximačních úlohách v teorii obvodů.

Jako aplikace Legenderovy aproximace byla v podčásti 8.2.2 definována Legenderova goniometrika a byly zde představeny příklady základních Legenderových goniometrik.

6. Rozbor Zolotarevových polynomů

Rozbor základních algebraických vlastností Zolotarevových polynomů analytickými metodami, konkrétně nalezení analytického vyjádření jejich nulových bodů a polohy extrémů.

V návaznosti na mou práci [39] byly další vlastnosti Zolotarevových polynomů studovány v kapitole 7, zejména pak analytické řešení nalezení nulových bodů a polohy extrémů těchto polynomů.

Po zhodnocení těchto výsledků lze konstatovat, že cíle disertační práce byly naplněny.

9.2 Možnosti pro další výzkum

Témata a závěry v této práci dosažené představují široké možnosti pro další výzkum.

V případě Legenderovy transformace je možné například studovat možnosti jejího rozvoje pro transformaci komplexních funkcí komplexní proměnné a pro transformace funkcí více proměnných. Současně je vhodné zabývat se způsoby automatizovaných výpočtů v podobě univerzálních funkcí pro užití například v knihovnám pro vývoj se signálovými procesory, neboť tyto jsou standardně vybaveny procesory umožňující rychlé výpočty v desetinné čárce.

Dále je vhodné směřovat výzkum ke studiu analytického vyjádření kvantitativních měr chybových charakteristik této transformace.

Legenderova aproximace pak poskytuje možnosti rozboru jejího rozšíření, zejména pak v případě obecných definic jejích *hlavních funkcí* a vlastností z těchto definic plynoucích. V aplikacích pak představuje možnost dalšího rozvoje znalostí studium metodik návrhu obvodů založených na této aproximaci a související návrhových postupů.

Analýza a rozbor Zolotarevových polynomů nabízí rozšíření jejich vyjádření pro definiční obor více proměnných. Užití takových konstrukcí lze pak nalézt například ve zpracování vícerozměrných signálů.

Příloha 1

Obrázek 9.1: Grafy Legenderových polynomů pro stupně od 1 do 5

a_n	P_0	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
a_0	1	0	-0.5	0	0.375	0	-0.3125	0	0.27344
a_1	_	1	0	-1.5	0	1.875	0	-2.1875	0
a_2	—	—	1.5	0	-3.75	0	6.5625	0	-9.8438
a_3	—	_	_	2.5	0	-8.75	0	19.688	0
a_4	—	_	_	_	4.375	0	-19.688	0	54.141
a_5	—	—	_	_	—	7.875	0	-43.313	0
a_6	—	_	_	_	—	—	14.438	0	-93.844
a_7	_	_	_	_	—	_	_	26.813	0
a_8	_	_	_	_	_	_	_	_	50.273

Tabulka 9.1: Tabulka koeficient
ů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 0 d
o8

a_n	P_9	P_{10}	P_{11}	P_{12}	P_{13}	P_{14}	P_{15}
a_0	0	-0.24609	0	0.22559	0	-0.20947	0
a_1	2.4609	0	-2.707	0	2.9326	0	-3.1421
a_2	0	13.535	0	-17.596	0	21.995	0
a_3	-36.094	0	58.652	0	-87.979	0	124.64
a_4	0	-117.3	0	219.95	0	-373.91	0
a_5	140.77	0	-351.91	0	747.82	0	-1420.9
a_6	0	351.91	0	-997.09	0	2368.1	0
a_7	-201.09	0	854.65	0	-2706.4	0	7104.3
a_8	0	-427.32	0	2029.8	0	-7104.3	0
a_9	94.961	0	-902.13	0	4736.2	0	-18155
a_{10}	-	180.43	0	-1894.5	0	10893	0
a_{11}	-	_	344.45	0	-3961.2	0	24757
a_{12}	-	_	_	660.19	0	-8252.4	0
<i>a</i> ₁₃	-	_	—	—	1269.6	0	-17140
<i>a</i> ₁₄	-	—	—	—	—	2448.5	0
a_{15}	_	_	_		_	_	4733.8

Tabulka 9.2: Tabulka koeficient
ů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 9 do 15

Obrázek 9.2: Grafy Legenderových polynomů pro stupně od 6 do 10

a_n	P_{16}	P_{17}	P_{18}	P_{19}	P_{20}
a_0	0.19638	0	-0.18547	0	0.1762
a_1	0	3.3385	0	-3.5239	0
a_2	-26.708	0	31.715	0	-37.001
a_3	0	-169.15	0	222.01	0
a_4	592.02	0	-888.03	0	1276.5
a_5	0	2486.5	0	-4085	0
a_6	-4973	0	9531.6	0	-17021
a_7	0	-16340	0	34041	0
a_8	20425	0	-51062	0	$1.1489 \cdot 10^5$
a_9	0	56735	0	$-1.5319 \cdot 10^5$	0
<i>a</i> ₁₀	-45388	0	$1.5319 \cdot 10^{5}$	0	$-4.4424 \cdot 10^5$
<i>a</i> ₁₁	0	$-1.1141 \cdot 10^5$	0	$4.0385 \cdot 10^{5}$	0
<i>a</i> ₁₂	55704	0	$-2.6924 \cdot 10^5$	0	$1.0433\cdot 10^6$
<i>a</i> ₁₃	0	$1.2426 \cdot 10^{5}$	0	$-6.4202 \cdot 10^5$	0
<i>a</i> ₁₄	-35504	0	$2.7515 \cdot 10^5$	0	$-1.5133 \cdot 10^{6}$
a_{15}	0	-73374	0	$6.0534\cdot10^5$	0
a_{16}	9171.8	0	$-1.5133 \cdot 10^5$	0	$1.3242 \cdot 10^{6}$
<i>a</i> ₁₇	_	17804	0	$-3.1157 \cdot 10^5$	0
<i>a</i> ₁₈	-	_	34619	0	$-6.4045 \cdot 10^5$
a_{19}		_		67416	0
<i>a</i> ₂₀	_				$1.3146 \cdot 10^5$

Tabulka 9.3: Tabulka koeficient
ů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 16 do 20

a_n	P_{21}	P_{22}	P_{23}	P_{24}	P_{25}
a_0	0	-0.16819	0	0.16118	0
a_1	3.7001	0	-3.8683	0	4.0295
a_2	0	42.552	0	-48.354	0
a_3	-283.68	0	354.6	0	-435.19
a_4	0	-1773	0	2393.5	0
a_5	6382.7	0	-9574.1	0	13882
a_6	0	28722	0	-46275	0
a_7	-65651	0	$1.1899 \cdot 10^{5}$	0	$-2.0493 \cdot 10^5$
a_8	0	$-2.3798 \cdot 10^5$	0	$4.611 \cdot 10^5$	0
a_9	$3.702 \cdot 10^5$	0	$-8.1973 \cdot 10^5$	0	$1.6907 \cdot 10^{6}$
a_{10}	0	$1.1476 \cdot 10^{6}$	0	$-2.7051 \cdot 10^{6}$	0
<i>a</i> ₁₁	$-1.2519 \cdot 10^{6}$	0	$3.4428 \cdot 10^{6}$	0	$-8.6071 \cdot 10^{6}$
a_{12}	0	$-3.4428 \cdot 10^{6}$	0	$1.0042 \cdot 10^{7}$	0
a_{13}	$2.6483 \cdot 10^{6}$	0	$-9.2692 \cdot 10^{6}$	0	$2.858 \cdot 10^{7}$
a_{14}	0	$6.6209 \cdot 10^{6}$	0	$-2.4497 \cdot 10^7$	0
a_{15}	$-3.5311 \cdot 10^{6}$	0	$1.6331\cdot 10^7$	0	$-6.3693 \cdot 10^{7}$
a_{16}	0	$-8.1657 \cdot 10^{6}$	0	$3.9808 \cdot 10^{7}$	0
a_{17}	$2.882 \cdot 10^{6}$	0	$-1.8733 \cdot 10^{7}$	0	$9.6007\cdot 10^7$
a_{18}	0	$6.2444 \cdot 10^{6}$	0	$-4.267 \cdot 10^{7}$	0
a_{19}	$-1.3146 \cdot 10^{6}$	0	$1.3475\cdot 10^7$	0	$-9.6569 \cdot 10^{7}$
a_{20}	0	$-2.6949 \cdot 10^{6}$	0	$2.8971 \cdot 10^{7}$	0
a_{21}	$2.5666 \cdot 10^5$	0	$-5.5182 \cdot 10^{6}$	0	$6.208\cdot 10^7$
a ₂₂	-	$5.0166 \cdot 10^5$	0	$-1.1287 \cdot 10^{7}$	0
a_{23}	-	_	$9.815\cdot 10^5$	0	$-2.3065 \cdot 10^{7}$
a_{24}	-	_	_	$1.9221 \cdot 10^{6}$	0
a_{25}	-	_	_		$3.7673\cdot 10^6$

Tabulka 9.4: Tabulka koeficient
ů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 21 do 25

a_n	P_{26}	P_{27}	P_{28}	P_{29}	P_{30}
a_0	-0.15498	0	0.14945	0	-0.14446
a_1	0	-4.1845	0	4.3339	0
a_2	54.398	0	-60.675	0	67.176
a_3	0	525.85	0	-626.98	0
a_4	-3155.1	0	4075.3	0	-5172.5
a_5	0	-19562	0	26897	0
a_6	71726	0	$-1.0759 \cdot 10^5$	0	$1.569 \cdot 10^5$
a_7	0	$3.3814\cdot 10^5$	0	$-5.3795 \cdot 10^5$	0
a_8	$-8.4534 \cdot 10^5$	0	$1.4793\cdot 10^6$	0	$-2.488 \cdot 10^{6}$
a_9	0	$-3.2874 \cdot 10^{6}$	0	$6.0818\cdot 10^6$	0
a_{10}	$5.9174 \cdot 10^{6}$	0	$-1.2164 \cdot 10^{7}$	0	$2.3719\cdot 10^7$
a_{11}	0	$1.9904\cdot 10^7$	0	$-4.3125 \cdot 10^{7}$	0
a_{12}	$-2.6539 \cdot 10^7$	0	$6.4688\cdot 10^7$	0	$-1.4734 \cdot 10^{8}$
a_{13}	0	$-7.9616\cdot10^{7}$	0	$2.0402\cdot 10^8$	0
a_{14}	$7.9616 \cdot 10^7$	0	$-2.3316 \cdot 10^{8}$	0	$6.2662\cdot 10^8$
a_{15}	0	$2.1762\cdot 10^8$	0	$-6.6839 \cdot 10^{8}$	0
a_{16}	$-1.6321 \cdot 10^{8}$	0	$5.8485\cdot 10^8$	0	$-1.8799 \cdot 10^9$
a_{17}	0	$-4.1283 \cdot 10^{8}$	0	$1.5481 \cdot 10^{9}$	0
a_{18}	$2.2935\cdot 10^8$	0	$-1.0321 \cdot 10^{9}$	0	$4.0423\cdot 10^9$
a_{19}	0	$5.432 \cdot 10^8$	0	$-2.553 \cdot 10^9$	0
a_{20}	$-2.1728 \cdot 10^8$	0	$1.2765 \cdot 10^{9}$	0	$-6.2549 \cdot 10^9$
a_{21}	0	$-4.8629 \cdot 10^8$	0	$2.9785 \cdot 10^9$	0
a_{22}	$1.3263 \cdot 10^8$	0	$-1.0831 \cdot 10^9$	0	$6.9048 \cdot 10^9$
a_{23}	0	$2.8255\cdot 10^8$	0	$-2.4017 \cdot 10^9$	0
a_{24}	$-4.7092 \cdot 10^7$	0	$6.0042\cdot 10^8$	0	$-5.3037 \cdot 10^9$
a_{25}	0	$-9.6067 \cdot 10^{7}$	0	$1.2729 \cdot 10^{9}$	0
a_{26}	$7.3898 \cdot 10^{6}$	0	$-1.9583\cdot10^8$	0	$2.6926 \cdot 10^{9}$
a_{27}		$1.4506 \cdot 10^{7}$	0	$-3.9891 \cdot 10^8$	0
a_{28}			$2.8494\cdot 10^7$	0	$-8.1207 \cdot 10^{8}$
a_{29}				$5.6005 \cdot 10^{7}$	0
a_{30}					$1.1014 \cdot 10^{8}$

Tabulka 9.5: Tabulka koeficient
ů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 26 do 30

Obrázek 9.3: Grafy Legenderových polynomů pro stupně od 11 do 15

Obrázek 9.4: Grafy Legenderových polynomů pro stupně od 16 do 20

Obrázek 9.5: Grafy Legenderových polynomů pro stupně od 21 do 25

Obrázek 9.6: Grafy Legenderových polynomů pro stupně od 26 do 30

Seznam obrázků

5.1	Závislost absolutní hodnoty imaginární části pólů funkce 5.38 na pa-	
	rametru k	45
5.2	Norma funkce 5.38	45
5.3	Reálná část funkce 5.38	45
5.4	Imaginární část funkce 5.38	46
5.5	Imaginární část funkce 5.38	46
5.6	Restrikce normy funkce 5.38 podle reálné osy	46
5.7	Závislost normy funkce 5.38 podle reálné osy v závislosti na para-	
	metru k	46
5.8	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 8$ o středu	
	v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)	49
5.9	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 20$ o středu	
	v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)	49
5.10	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n=120$ o středu	
	v bodě $z_0 = 0$ a jeho restrikce podle reálné osy (modře)	50
5.11	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 8$ o středu	
	v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)	50
5.12	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 20$ o středu	
	v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)	51
5.13	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 80$ o středu	
	v bodě $z_0 = \frac{\pi}{4}$ a jeho restrikce podle reálné osy (modře)	51
5.14	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 8$ o středu	
	v bodě $z_0 = \frac{\pi}{2}$ a jeho restrikce podle reálné osy (modře)	52
5.15	Graf normy funkce 5.38 a její restrikce podle reálné osy (červeně)	
	a jejího částečného Laurentova rozvoje stupně $n = 80$ o středu	
	v bodě $z_0 = \frac{\pi}{2}$ a jeho restrikce podle reálné osy (modře)	52
5.16	Rozvoj stupně $n = 10$ o středu $z_0 = 0$ pro k od 0.05 do 0.35	53
5.17	Rozvoj stupně $n = 26$ o středu $z_0 = 0$ pro k od 0.05 do 0.35	53
5.18	Rozvoj stupně $n = 10$ o středu $z_0 = 0$ pro k od 0.4 do 0.7	53
5.19	Rozvoj stupně $n = 26$ o středu $z_0 = 0$ pro k od 0.4 do 0.7	53

5.20	Rozvoj stupně $n = 10$ o středu $z_0 = 0$ pro k od 0.8 do 0.95	53
5.21	Rozvoj stupně $n = 26$ o středu $z_0 = 0$ pro k od 0.8 do 0.95	54
5.22	Rozvoj stupně $n = 10$ o středu $z_0 = \frac{\pi}{4}$ pro k od 0.05 do 0.35	54
5.23	Rozvoj stupně $n = 20$ o středu $z_0 = \frac{\pi}{4}$ pro k od 0.05 do 0.35	54
5.24	Rozvoj stupně $n = 10$ o středu $z_0 = \frac{\pi}{4}$ pro k od 0.4 do 0.7	54
5.25	Rozvoj stupně $n = 20$ o středu $z_0 = \frac{\pi}{4}$ pro k od 0.4 do 0.7	54
5.26	Rozvoj stupně $n = 10$ o středu $z_0 = \frac{4}{4}$ pro k od 0.8 do 0.95	55
5.27	Rozvoj stupně $n = 20$ o středu $z_0 = \frac{\pi}{4}$ pro k od 0.8 do 0.95	55
5.28	Chyba aproximace pro $n = 16, z_0 = \frac{4}{4}$ a k od 0.05 do 0.45	55
5.29	Chyba aproximace pro $n = 16$, $z_0 = \frac{\pi}{4}$ a k od 0.5 do 0.95	56
6.1	Nahoře: Součin Legenderova polynomu stupně 1 a koeficientu a_1 .	
	Dole: Částečný Zolotarevův polynom $z_{5,11}^1$ ($w \mid 0.7$) (modře) a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	81
6.2	Nahoře: Součin Legenderova polynomu stupně 2 a koeficientu a_2 .	
	Dole: Částečný Zolotarevův polynom z_{511}^2 ($w \mid 0.7$) (modře) a Zo-	
	lotarevův polynom $Z_{5,11}(w \mid 0.7)$ (červeně).	81
6.3	Nahoře: Součin Legenderova polynomu stupně 3 a koeficientu a_3 .	
	Dole: Částečný Zolotarevův polynom $z_{5.11}^3$ ($w \mid 0.7$) (modře) a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	82
6.4	Nahoře: Součin Legenderova polynomu stupně 4 a koeficientu a_4 .	
	Dole: Částečný Zolotarevův polynom $z_{5,11}^4$ ($w \mid 0.7$) (modře) a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	82
6.5	Nahoře: Součin Legenderova polynomu stupně 5 a koeficientu a_5 .	
	Dole: Cástečný Zolotarevův polynom $z_{5,11}^5 (w \mid 0.7) \pmod{e}$ a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	83
6.6	Nahoře: Součin Legenderova polynomu stupně 6 a koeficientu a_6 .	
	Dole: Cástečný Zolotarevův polynom $z_{5,11}^{o}(w \mid 0.7) \pmod{e}$ a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	83
6.7	Nahoře: Součin Legenderova polynomu stupně 7 a koeficientu a_7 .	
	Dole: Castečný Zolotarevův polynom $z_{5,11}^{\prime}(w \mid 0.7) \pmod{2}$ a Zo-	0.4
C O	lotarevuv polynom $Z_{5,11}(w \mid 0.7)$ (cervene)	84
6.8	Nahore: Soucin Legenderova polynomu stupne 8 a koeficientu a_8 .	
	Dole: Castecny Zolotarevuv polynom $z_{5,11}^{\circ}(w \mid 0.7) \pmod{2}$ a Zo-	04
<i>c</i> 0	lotarevuv polynom $Z_{5,11}(w 0.7)$ (cervene)	84
0.9	Nanore: Soucin Legenderova polynomu stupne 9 a koencientu a_9 .	
	bole. Casteeny zoiotarevuv polynom $z_{5,11}(w \mid 0.7)$ (modre) a zo-	95
6 10	Nabože Součin Logendorova polynomi stuppě 10 a koeficientu q	80
0.10	Nanore: Souch Legenderova polynomu stupne 10 a koencientu a_{10} . Dele: Čéstečný Zeleterovův polynom z^{10} ($u \mid 0.7$) (medře) a Ze	
	bole. Casteeny zoiotarevuv polynom $z_{5,11}(w \mid 0.7)$ (modre) a zo-	85
6 11	Nahoře: Součin Logendorova polynomu stupně 11 a koeficientu a_{11}	90
0.11	Nahore. Součin Legenderova polynomu stupne 11 a Koencientu a_{11} . Dole: Částečný Zolotarevův polynom z^{11} ($w \mid 0.7$) (modře) a Zo-	
	lotarevův polynom $Z_{r,1}(w 0.7)$ (moure) a 20-	86
6 1 2	Nahoře: Součin Legenderova polynomu stupně 12 a koeficientu a_{12}	00
0.12	Dole: Částečný Zolotarevův polynom z_{-1}^{12} , $(w \mid 0.7)$ (modře) a Zo-	
	lotarevův polynom $Z_{5,11}(w 0.7)$ (červeně)	86
		00

6.13	Nahoře: Součin Legenderova polynomu stupně 13 a koeficientu a_{13} .	
	Dole: Casteeniy Zolotarevuv polyhom $z_{5,11}^{\circ}(w \mid 0.7)$ (modre) a Zo-	97
614	Nabaže: Soužin Lagendoneva nalimentu stunně 14 a kosticientu s	01
0.14	Nanore: Soucin Legenderova porynomu stupne 14 a koencientu a_{14} .	
	Dote: Casteeniy Zolotarevuv polynom $z_{5,11}^{-}(w \mid 0.7)$ (modre) a Zo-	07
6 15	Nobeže: Soužin Legendereus polymerus stuppě 15 o kosticientu s	01
0.15	Nahore: Souch Legenderova polynomu stupne 15 a koencientu a_{15} .	
	Dole: Casteeniy Zolotarevuv polyhom $z_{5,11}(w \mid 0.7)$ (modre) a Zo-	00
6 16	Not a $z_{5,11}(w 0.7)$ (cervene)	00
0.10	Nahore: Souch Legenderova polynomu stupne 10 a koencientu a_{16} .	
	Dole. Castecny zolotarevuv polynom $z_{5,11}$ ($w \mid 0.7$), tj. již upiny Zeletarevuv polynom (modře v zákrytu) a Zeletarevuv polynom	
	Zolotarevuv polyholii (modre - v zakrytu) a Zolotarevuv polyholii $Z = (au \mid 0.7)$ (žervenč)	00
6 17	$\Sigma_{5,11}(w 0.7)$ (cervene)	00
0.17	Grafy funkci 0.40, 0.41 a Taylorova fozvoje funkce 0.40 stupile $N = 28$ o střodu $x_{\rm c} = 0$	00
6 1 8	$N = 28.0$ Streut $x_0 = 0$	90 01
6 10	Graft funkci 6.45. \widehat{sing} (x) a Taylorova rozvojo funkce 6.45 stuppo	91
0.15	Grafy function 45, $sinc_{20}(x)$ a rayiorova fozvoje funcce 0.45 stupile $N = 20$ o střodu $x_2 = 0$	02
6 20	$N = 200$ stretu $x_0 = 0$	$\frac{92}{02}$
0.20		92
7.1	Příklad Zolotarevova polynomu pro hodnoty $p=7, q=4$ a $k=0.7$	96
8.1	Grafy funkcí 8.2, \hat{f}_{18} a Taylorova rozvoje funkce 8.2 stupně $N = 18$	
	o středu $x_0 = 0$	107
8.2	Graf chybové funkce 8.3	107
8.3	Grafy funkcí 8.4, \hat{g}_4 a Taylorova rozvoje funkce 8.4 stupně $N = 4$	
	o středu $x_0 = 0$	108
8.4	Grafy chybových funkcí 8.5 a 8.6	109
8.5	Grafy funkcí 8.2 a \hat{f}_{18}	109
8.6	Grafy funkcí 8.7 a \hat{h}_{10}	110
8.7	Graf chybové funkce 8.9	111
8.8	Grafy funkcí 8.8 a \hat{h}_{18}	111
8.9	Graf chybové funkce pro funkci \hat{h}_{18}	112
8.10	Grafy funkcí 8.8 a \hat{h}_{40}	112
8.11	Graf chybové funkce pro funkci \hat{h}_{40}	113
8.12	Grafy funkcí 8.10 a $\hat{s}_{18}(x)$	114
8.13	Graf chybové funkce pro funkci 8.10	114
8.14	Grafy funkcí 8.10, $\ \hat{s}_{18}(x)\ = \ \hat{h}_{18}(x)\ $	115
8.15	Grafy chybových funkcí pro funkce $\hat{s}_{18}(x)$ a $\hat{h}_{18}(x)$	116
8.16	Grafy funkcí 8.2, 8.11, $\hat{f}_{28}(x) = \hat{q}_{28}(x)$	117
8.17	Grafy chybových funkcí pro funkce 8.2 a 8.11	117
8 1 8	· · · · · -	
0.10	Legenderova goniometrika řádu 8 a její chybová funkce	121
8.19	Legenderova goniometrika řádu 8 a její chybová funkce Legenderova goniometrika řádu 9 a její chybová funkce	121 122
8.19 8.20	Legenderova goniometrika řádu 8 a její chybová funkce Legenderova goniometrika řádu 9 a její chybová funkce Legenderova goniometrika řádu 16 a její chybová funkce	121 122 122
8.19 8.20 8.21	Legenderova goniometrika řádu 8 a její chybová funkce Legenderova goniometrika řádu 9 a její chybová funkce Legenderova goniometrika řádu 16 a její chybová funkce Legenderova goniometrika řádu 17 a její chybová funkce	121 122 122 122

8.23	Legenderova goniometrika řádu 27 a její chybová funkce	123
8.24	Legenderova goniometrika řádu 36 a její chybová funkce	123
8.25	Legenderova goniometrika řádu 37 a její chybová funkce	124
9.1	Grafy Legenderových polynomů pro stupně od 1 do 5	129
9.2	Grafy Legenderových polynomů pro stupně od 6 do 10	130
9.3	Grafy Legenderových polynomů pro stupně od 11 do 15	134
9.4	Grafy Legenderových polynomů pro stupně od 16 do 20	134
9.5	Grafy Legenderových polynomů pro stupně od 21 do 25	135
9.6	Grafy Legenderových polynomů pro stupně od 26 do 30	135

Seznam tabulek

5.1	Horní a dolní integrální součty a jejich rozdíl pro k od 0.05 do 0.95	57
6.1	Hodnoty koeficient ů $Z_{5,11}(w \left 0.7 \right)$ dle vztahu 6.36 $\ . \ . \ . \ . \ .$	80
$7.1 \\ 7.2$	Poloha nulových bodů funkce $Z_{5,11}(w 0.7)$ v proměnné w Poloha lokálních extrémů funkce $Z_{5,11}(w 0.7)$ v proměnné w	103 103
9.1	Tabulka koeficientů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 0 do 8	129
9.2	Tabulka koeficientů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 9 do 15	130
9.3	Tabulka koeficientů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 16 do 20	131
9.4	Tabulka koeficientů a_k dle definice 6.5 pro Legenderovy polynomy stupně od 21 do 25	132
9.5	Tabulka koeficient ů a_k dle definice 6.5 pro Legenderovy polynomy	
	stupně od 26 do 30 \ldots	133

Seznam kódů

5.1	Eliptický sinus	41
5.2	Eliptický kosinus	41
5.3	První theta funkce	58
5.4	Eliptický nome z parametru k	59
5.5	Jacobiho eta funkce	59
6.1	Numerický algoritmus v jazyce MATLAB, část 1	74
6.2	Numerický algoritmus v jazyce MATLAB, část 2	75
6.3	Numerický algoritmus v jazyce MATLAB, část 3	76
6.4	Numerický algoritmus v jazyce MATLAB, část 4	77
6.5	Numerický algoritmus v jazyce MATLAB, část 5	78
6.6	Numerický algoritmus v jazyce MATLAB, část 6	79

Seznam literatury

- [1] G. Petit Bois. *Tables of indefinite integrals*. New York: Dover Publications, Inc., 1961. ISBN: 486-60225-7.
- [2] B. Budinský. Analytická a diferenciální geometrie. Vydání 1. Praha: SNTL, 1983.
- [3] S. Butterworth. "On the Theory of Filter Amplifiers". In: *Experimental Wireless and the Wireless Engineer* 7 (1930), 536-541.
- [4] I. Cerný. Analýza v komplexním oboru. Vydání 1. Praha: Academia, 1983.
- [5] I. Cerný. Základy analysy v komplexním oboru. Vydání 1. Praha: Academia, 1967.
- [6] R. W. Daniels. Approximation methods for electronic filter design: with applications to passive, active, and digital networks. McGraw-Hill Book Company, 1974. ISBN: 0-07-015308-6.
- H. G. Dimopoulos. Analog electronic filters: theory, design and synthesis. Springer, 2012. ISBN: 978-94-007-2189-0.
- [8] A. C. Dixon. The elementary properties of the elliptic functions. Londýn: Macmillan a Co., 1894.
- K. C. Pohlmann F. A. Everest. Master handbook of acoustics. McGraw-Hill Education, 2015. ISBN: 9780071841030.
- [10] A. Fletcher. *Guide to Tables of Elliptic Functions*. MTAC, 1948.
- [11] A. G. Greenhill. The applications of elliptic functions. Vydání. Londýn: Macmillan a Co., 1892.
- [12] H. Hancock. Elliptic integrals. Vydání 1. New York: John wiley & sons, 1917.
- [13] H. Hancock. Theory of elliptic functions. Vydání 1. New York: John wiley & sons, 1910.
- [14] A. Jeffrey Hui- Hui Dai. Handbook of Mathematical Formulas and Integrals. Vydání 4. Oxford: Elsevier Inc., 2008. ISBN: 978-0-12-374288-9.
- [15] I.M. Ryzhik I.S. Gradshteyn. Table of Integrals, Series, and Products. Vydání
 7. Oxford: Elsevier Inc., 2007. ISBN: 978-0-12-373637-6.
- [16] M. Vlček J. Bičák M. Laipert. Lineární obvody a systémy. Vydání 1. Ceská technika - nakladatelství ČVUT, 2007. ISBN: 978-80-01-03649-5.
- [17] V. Jarník. Diferenciální počet I. Vydání 6. Praha: Academia, 1974.

- [18] V. Jarník. Diferenciální počet II. Vydání 2. Praha: Academia, 1956.
- [19] V. Jarník. *Diferenciální rovnice v kopmplexním oboru*. Vydání 1. Praha: Academia, 1975.
- [20] V. Jarník. Integrální počet I. Vydání 4. Praha: Academia, 1963.
- [21] V. Jarník. Integrální počet II. Vydání 1. Praha: Academia, 1955.
- [22] G. Kasapoglu et al. "Coefficients Calculation in Pascal Approximation for Passive Filter Design". In: *Computation* 6.1 (2018). ISSN: 2079-3197. DOI: 10.3390/computation6010018.
- [23] S. H. Linkwitz. "Active crossover networks for noncoincident drivers". In: Journal of the audio engineering society 24.1 (ún. 1976), 2-8.
- [24] I. A. Stegun M. Abramowitz. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. ninth Dover printing, tenth GPO printing. New York: Dover, 1964.
- [25] R. Unbehauen M. Vlcek. "Zolotarev Polynomials and Optimal FIR Filters". In: *IEEE Trans. Signal Processing* 47.2 (1999), 717-730.
- [26] R. Unbehauen M. Vlček P. Zahradnik. "Analytical Design of FIR Filters". In: *IEEE Transactions on Signal Processing* (2000), 2705-2709.
- [27] R. Unbehauen M.Vlček P. Zahradník. "Analytical Approach to the Design of FIR Filters". In: Proc. of European Conference on Circuit Theory and Design ECCTD'99, Stresa-Italy 1 (1999), 209-212.
- [28] D. Mumford. Tata Lectures on Theta I. Boston: Birkhäuser, 1983. ISBN: 0-8176-3109-7.
- [29] D. Mumford. *Tata Lectures on Theta II*. Boston: Birkhäuser, 1984. ISBN: 3-7643-3109-7.
- [30] D. Mumford. *Tata Lectures on Theta III*. Boston: Birkhäuser, 1991. ISBN: 0-8176-4570-5.
- [31] F. Jongmans P. Butzer. "P. L. Chebyshev (1821-1894)". In: Journal of Approximation Theory 96.1 (1999), 111-138. DOI: 10.1006/jath.1998.
 3289.
- [32] P. Boreš P. Martínek J. Hospodka. *Elektrické filtry*. Vydání 1. Vydavatelství ČVUT, 2003. ISBN: 80-01-02765-1.
- [33] J. Uhlíř P. Neumann. *Elektronické obvody a funkční bloky 1*. Vydání 2. Vydavatelství ČVUT, 2005. ISBN: 80-01-03281-7.
- [34] J. Uhlíř P. Neumann. *Elektronické obvody a funkční bloky 2*. Vydání 1. České vysoké učení technické, 2001. ISBN: 80-01-02394-X.
- [35] M. Vlček P. Zahradnik. "Analytical Design Method for Optimal Equiripple Comb FIR Filters". In: *IEEE Transactions on Circuits and Systems II* 52.2 (2005), 112-115.
- [36] M. Vlček P. Zahradnik. "Equiripple Approximation of Half-Band FIR Filters". In: *IEEE Transactions on Circuits and Systems II-Express Briefs* 56.12 (2009), 941-945.

- [37] M. E. Van Valkenburg R. Schaumann. *Design of analog filters: passive, active RC.* Vydání 4. Oxford University Press, 2001. ISBN: 0-19-511877-4.
- [38] M. R. Spiegel. Schaum's Outline of Mathematical Handbook of Formulas and Tables. Vydání. New York: McGraw-Hill, 1968.
- [39] M. Šusta. "Aproximace v návrhu číslicových filtrů". Diplomová práce. ČVUT v Praze, fakulta elektrotechnická, 2013.
- [40] F. J. Taylor. Digital filters: principles and applications with MATLAB. Lightning Source UK Ltd., 2018. ISBN: 978-0-470-77039-9.
- [41] M. Vlček V. Davídek M. Laipert. Analogové a číslicové filtry. Vydání 2. Vydavatelství ČVUT, 2006. ISBN: 80-01-03026-1.
- [42] I. Zemánek V. Havlíček. *Elektrické obvody 2.* Vydání 1. Ceské vysoké učení technické v Praze, 2008. ISBN: 978-80-01-03971-7.
- [43] I. Zemánek V. Havlíček M. Pokorný. *Elektrické obvody 1*. Vydání 1. Ceská technika-nakladatelství ČVUT, 2005. ISBN: 80-01-03299-X.
- [44] M. E. Van Valkenburg. Analog filter design. Vydání 2. CBS College Publishing, 1987. ISBN: 0-03-059246-1.
- [45] R. Vermes. "On the zeros of a linear combination of polynomials". In: *Pacific journal of mathematics* 19.3 (1966), 553-559.
- [46] S. Winder. Analog and digital filter design. Vydání 2. Newnes, 2007. ISBN: 0-7506-7547-0.
- [47] D. Zwillinger. Standard mathematical tables and formulae. Vydání 32. Boca Raton: Taylor & Francis Group, LLC, 2012. ISBN: 978-1-4398-3548-7.