
PREPRINT

J. Sobotka, J. Novák: FlexRay ECU mission critical parameters measurement,

Measurement. Vol. 100, March 2017, pp. 213-222.

https://doi.org/10.1016/j.measurement.2016.12.051

FlexRay ECU mission critical parameters measurement

Jan Sobotka 1, Jiří Novák 1

1 Czech Technical University in Prague, Faculty of Electrical Engineering, Technická 2,

166 27 Prague 6, Czech Republic

jan.sobotka@fel.cvut.cz, jnovak@fel.cvut.cz

Abstract

Network operation of a FlexRay ECUs (Electronic Control Units) in passenger cars is influenced by the

significant number of parameters that have to be written into the ECU FlexRay controller. To keep the

FlexRay network robust, the correct parameter values must be set in all ECUs of the FlexRay

communication cluster. This is not a trivial task since particular ECUs are supplied by different

manufacturers and any manufacturer can change some parameter either by mistake or even

intentionally. Effect of such a change is generally unpredictable and can often be observed under

specific operational conditions only. The most serious effect is a global FlexRay network failure which

usually leads to the fatal vehicle malfunction. Hence it was necessary to develop, implement and

validate new dedicated measurement methods enabling evaluation of actual values of the most critical

FlexRay parameters at the OSI (Open Systems Interconnection) data-link layer and thus the ECUs

individual acceptances testing for system integrator verification purposes. As the mass production

FlexRay controllers are not applicable due to a lack of test specific features, deployment of these

methods is enabled by utilization of unique FPGA-based FlexRay controller implementation. Proposed

measurement methods are focused on parameters specifying the FlexRay wakeup protocol, FlexRay

startup procedure, and the FlexRay synchronization mechanism. Each measurement method is

described in details including its limits and prerequisites. All the developed methods were validated by

experiments on real FlexRay networks and results are included in the paper. Two different types of

FlexRay controller core (Freescale and Bosch E-Ray) were used in EUTs (ECU under test) to eliminate the

risk of measurement method dependence on a specific controller implementation.

Keywords
FlexRay, ECU, parameter, synchronization, startup, testing

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 2 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

1. Introduction

Passenger car manufacturers play a role of a system integrator today, as a substantial part of vehicle

subsystems is supplied by their contractors. This is especially true for vehicle electronics, where

particular ECUs are supplied by different manufacturers. Nevertheless, the ECUs have to collaborate

seamlessly together. ECUs collaboration takes place through vehicle communication network

technologies like CAN, LIN or FlexRay, expected network functionality is thus vital for reliable and safe

vehicle operation.

In the case of FlexRay ECU, communication behaviour is affected by tens of parameters that must be set

according to the vehicle manufacturer specification for the FlexRay cluster robustness and reliability.

The vehicle manufacturer may not rely on ECU manufacturer declaration of conformity (in terms of

correct parameter values) and has to measure the actual parametrization instead. This approach is

common for CAN and LIN networks, where the number of critical parameters is lower, and

measurement methods and instruments are widely available. As far as we know, such measurement

methods are not available for the FlexRay technology at all.

ECU

FlexRay
Communication
Stack

⁞

OSI layers

Data link

Application

Synchronization

Startup

Wakeup

· pClusterDriftDamping
· pOffsetCorrectionOut
· pRateCorrectionOut
· ⁞

Physical

· pdListenTimeout
· gdCASRxLowMin
· gdCASRxLowMax
· ⁞

· pWakeupChannel
· gdWakeupRxLow
· gdWakeupRXIdle
· ⁞

Parameters

...

Figure 1: Scope and objectives of the paper

Figure 1 defines the scope and objectives of the paper. FlexRay communication stack within an ECU

complies with the OSI model. Data-link layer entities and protocols are implemented by the FlexRay

communication controller – the chip provided by the semiconductor manufacturer. Here it is important

to emphasize that the paper does not focus on the chip implementation testing and validation; it is

expected to work in accordance with the standard. However, the data-link layer behaviour is also

significantly influenced by parametrization of its protocols and entities. Values of particular parameters

are set by the ECU firmware, and thus it is the responsibility of the ECU manufacturer to set the required

parameter values. ECU is a black (or at best a grey) box from the car manufacturer point of view. He

knows what parameter values should be set (he has specified them), but he has no access to the ECU

firmware to verify them. Car manufacturer, therefore, needs measurement methods and instruments

providing for measuring these parameter values without having access to internal ECU data.

The paper proposes a set of measurement methods that are capable to reveal actual parametrization of

FlexRay controller in particular ECU. It thus allows for the car manufacturer an independent evaluation

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 3 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

of component conformity, which is crucial for the vehicle functionality within the wide operating

conditions. The methods are based on idea that the actual parameter values can be extracted from the

bus communication by observation of the reaction to the appropriate generated stimuli. As neither the

standard FlexRay controllers nor the available FlexRay analysis and simulation tools are able to generate

all necessary stimuli, dedicated instrument was designed and implemented [1]. As usual in practice, the

time dedicated for measurement is limited [2] and all described methods are thus designed to respect

this fact.

The methods described in this paper are not intended for the mass production line measurement.

Instead, they are envisioned for usage during ECU development and deployment in a pre-production

vehicle integration and evaluation phase. Production phase firmware and ECU parametrization have to

stay unchanged or, in the case of necessary changes, the measurements should be passed again.

The paper is organized into following sections. First, a brief necessary overview of FlexRay protocol

relevant parts is provided. Next section describes related work, followed by motivation for this research.

Major part, describing the measurement methods, is divided into three sections corresponding to the

FlexRay wakeup, startup and synchronization processes. Measurement of wakeup and startup

parameters is easier in comparison with measurement of time synchronization parameters. Despite this

fact, the corresponding methods are included to provide comprehensive survey. Last sections deal with

analysis of measurement accuracy, implementation details, and with results of measurements on real

systems.

2. Description of relevant parts of FlexRay communication system

Description of FlexRay Communication System can be found in book [3] or directly in ISO protocol

specification [4], which is the primary information source. Following paragraphs are focused on relevant

principles only. Shortly, FlexRay is high speed (up to 10 Mbit/s) communication technology primarily

intended for automotive applications. Both time triggered and event triggered communication is

possible and redundant physical layer topology can be used for increased reliability.

Wakeup procedure serves to drive network from low power mode (e.g. after a car is unlocked) [5] to

normal operation mode. The procedure starts with ECUs in either standby or sleep mode, where at least

bus drivers are powered. The process is controlled at application layer by the ECU firmware. An ECU

initiating the cluster wakeup starts sending a wakeup pattern to the bus on one of redundant channels.

Another ECU, which recognizes the wakeup pattern, wakes up and continues the process by sending the

wakeup pattern to the second FlexRay channel (if it is present). After the wakeup is finished and all the

ECUs are woken up, they continue with a startup phase. Below the methods for evaluation of proper

wakeup pattern transmission and recognition are provided.

Communication startup phase is intended to initialize the communication cycle and clock

synchronization. Start of the FlexRay network depends on a network type. FlexRay specification

distinguishes three network types: TT-L, TT-D and TT-E according to clock synchronization principle. In

TT-L network the nodes are synchronized using a single clock master. TT-D cluster uses distributed clock

synchronization mechanism which will be discussed in next paragraph. Last TT-E type uses an external

time gateway. This work is focused on TT-D FlexRay network type, which is the most widespread. For the

startup process, the network is divided into coldstart and noncoldstart nodes (ECUs). Only the coldstart

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 4 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

ones are active during the communication startup. First coldstart node, which does detect no bus

communication, becomes a leading coldstart node. This node immediately sends CAS (Collision

Avoidance Symbol) and then starts sending startup frames (normal frames with a startup flag set)

according to the TDMA communication schedule. Following coldstart node initializes its clock

synchronization and joins communication in communication cycle No. 4. Finally the noncoldstart nodes

join the communication. Below the methods for evaluation of proper ECU startup parameter values are

provided.

FlexRay normal operation phase is based on the modified TDMA (Time Division Multiple Access)

communication cycle structure, as depicted in Figure 2. The individual ECUs’ clocks are synchronized

using distributed clock synchronization algorithm. ECUs labelled as synchronization nodes are sending

frames with sync flag set within the static segment slots. Other (non-synchronization) ECUs only correct

theirs clock according to the synchronization nodes. All nodes measure an arrival time of

synchronization frames locally. Based on the arrival time deviations the clock corrections are calculated

using a Fault-tolerant midpoint (FTM) algorithm [6] and applied in particular nodes.

A

B

. . .

. . .

Static Slots Minislots Symbol Window Idle

ID 3 ID x ID i MTSID i ID iID 2ID 1

ID 1 ID 2 ID 3 ID x ID i ID i

Communication Cycle

Time triggered com. Event triggered com. Service com.

ECU 1 ECU 2 ECU 3 ECU n

Figure 2: FlexRay communication overview

Behaviour of clock synchronization process is controlled by several parameters. Below the methods for

measurement of their values are provided.

3. Related work

Growing complexity of automotive embedded systems requires new measurement and validation

techniques [7]. Similar research focused on other vehicle distributed systems (mostly the CAN) was

conducted in past. The CAN interface configuration is much simpler than that for the FlexRay, since only

few parameters are used, such as time quantum, length of particular bit segments and synchronization

jump width. Especially one of them is critical for the ECU with CAN interface deployment – it is the

sample point position within the bit time. The risk of incorrect setting and the measurement method is

described in [8].

Scope of this paper is a measurement and validation of FlexRay configuration parameters affecting

behaviour of individual nodes forming a communication cluster. TEODACS project [9] was the largest

activity related to this work. It was targeted at general deployment and validation of FlexRay based

distributed system. Under this project the method for remote measurement of offset correction was

published [10]. This measurement technique is used in section 6 as a part of several here presented

measurement methods. Authors of [11] and [12] have focused on extraction of FlexRay cluster global

parameters. They rely on passive bus communication monitoring approach only. The limitation of this

approach is inability to reveal the values of all parameters, especially the local node-specific parameters

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 5 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

that define node-specific behaviour within the wakeup, startup and synchronization mechanisms. These

parameters apply at boundary conditions that are not usually reached during normal operation. Paper

[12] supports our conviction, that the approach based on application of active stimuli is needed. This

work is thus an expected extension of communication parameters extraction methods based on passive

bus observation. It provides for validation of FlexRay system by means of each single FlexRay node

parameters measurement as mentioned in section 1. Compared to papers [11] and [12] we use both the

passive communication monitoring as well as the active stimuli to force the necessary FlexRay node

response. Presented work can therefore be viewed as a complement to already published passive

monitoring based methods of global cluster parameters identification.

The paper extends and validates our preliminary results published in conference proceedings [1] and

[13]. Measurement algorithms are described more precisely with important details. Also some

inconsistencies, e. g. imprecise pdListenTimeout measurement published in [1] are explained and

corrected. Simulation of measurement of pOffsetCorrectionOut validation from [13] is supported by

experimental results. Moreover, limits of offset correction measurement are derived and described by

equations 9 and 10.

4. Motivation for measurement of configuration parameters

Significant FlexRay node parameter is a pRateCorrectionOut, which determines maximal possible rate

correction value the node is allowed to apply. Let’s consider the following situation. Desired value of

pRateCorrectionOut parameter in ECU specification is 601 µT, which is maximal value for communication

speed 10 Mb/s and communication cycle length 5 ms. This value allows the FlexRay controller to correct

maximal permitted oscillator deviation, which is defined by standard [4] as 1500 ppm of oscillator’s

nominal frequency.

Let assume that in the ECU delivered from the supplier the configured pRateCorrectionOut value is not

601, but only 300 µT instead. Such a violation of node parameters specification would not influence

ECU’s behaviour under most conditions unless the local oscillator’s frequency reaches deviation higher

than 750 ppm from nominal value (more precisely from the cluster average value). In this moment the

ECU ends communication and goes to the halt state, while it would continue operating with correct

parameterization. Using a crystal oscillator natural behaviour [14], this probably happens after long time

(several years) due to crystal aging in combination with high or low temperatures [15]. To detect this

kind of specification breach special testing methods are needed, allowing the car manufacturer to ask

the ECU supplier to fix the parametrization already in pre-production.

Wrong value of pdListenTimout is another example of a manufacturer specification breach.

pdListenTimout value specifies a time spent in a coldstart listen phase. According to specification [4] the

pdListenTimout value has to be calculated according equation (1).

𝑝𝑑𝐿𝑖𝑠𝑡𝑒𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡[𝜇𝑇] = 2 × (𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒[𝜇𝑇] + 𝑝𝑅𝑎𝑡𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑢𝑡[𝜇𝑇]) (1)

Depending on communication cycle schedule, lower as well as higher parameter values can cause

problems with FlexRay cluster startup (e.g. leading coldstart node change or startup phase extension).

Three possible example scenarios are shown in Figure 3. All cases consider two coldstart nodes in

communication network.

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 6 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

I. CAS

Static segment
Node 1 Node 2

Frame

<
pdListenTimeout2

II. CAS Frame

pdListenTimeout2

CAS

III. CAS

pdListenTimeout2

CAS

pdListenTimeout1

CAS CAS

pdListenTimeout2

. . . pColdStartAttempts == 0

Figure 3: Effects of wrong pdListenTimeout value

The first case labelled I. shows situation when the gap between Collision Avoidance Symbol (CAS) and

startup frame in static slot (actual pdListenTimeout of node 2) is shorter than the required

pdListenTimeout. In this case the startup behaviour of the cluster is not seriously affected. The second

scenario shows the change of leading coldstart node. Node’s 2 pdListenTimeout timer expires before the

node 1 sends its first startup frame (assigned key slot is later in static segment of communication cycle)

and cluster startup is thus a bit delayed. Case III. means that pdListenTimeout parameters in both nodes

are too small; the nodes are alternating in coldstart leading and the startup delay is significant. To

prevent all these problems an evaluation of pdListenTimeout parameter actual value is necessary.

Examples presented above show that the problems originated in a wrong ECU parametrization may

occur later (caused by components ageing), under specific operating conditions (e.g. extreme

temperature), under the spare part change or under the simultaneous influence of already mentioned

effects. This kind of problems is hard to reveal because of their sporadic nature. Evaluation of

configuration parameter can dramatically increase confidence in FlexRay network fault free operation

during the car life cycle. Apposite measurement methods for FlexRay configuration critical parameters

were therefore developed and they are presented in following sections.

Wakeup parameters

Bus communication starts with a wakeup procedure, which is intended to power up and force the

FlexRay POC (Protocol Operational Control) automaton of each connected node to the ready state.

Responsibility for proper wakeup of a node is divided among the bus driver, host (an MCU) and FlexRay

communication controller. Bus driver should be able to recognize the wakeup pattern and to wakeup

other components including the host MCU and communication controller. Remaining steps are driven

by the host with support of communication controller. Summary of relevant parameters is in Tab. 1.

Table 1 Wakeup parameters summary

Parameter Range

pWakeupChannel Channel A | B

gdWakeupRxLow 8 - 59 gdBit

gdWakeupRxIdle 8 - 59 gdBit

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 7 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

gdWakeupRxWindow 76 - 485 gdBit

gdWakeupTxIdle 45 - 180 gdBit

gdWakeupTxActive 15 - 60 gdBit

pWakeupPattern 0 – 63

Parameter gdBit expresses nominal bit time, for bit rate 10 Mbit/s it is equal to 100 ns.

pWakeupChannel

pWakeupChannel denotes channel where the wakeup pattern is transmitted by the node. Evaluation is

simple and based on a bus observation only. If the node does not detect wakeup pattern, it sends

wakeup pattern on the channel defined by pWakeupChannel.

gdWakeupTxIdle, gdWakeupTxActive, pWakeupPattern

These three parameters define the wakeup pattern waveform. gdWakeupTxIdle defines duration of bus

idle state. gdWakeupTxActive is a time period of low bus state. Wakeup symbol consists of one

gdWakeupTxActive followed by gdWakeupTxIdle. Wakeup pattern is a sequence of several wakeup

symbols specified by pWakeupPattern. Evaluation of these parameters is possible by an oscilloscope or

bus sampling with reasonable sampling period (lower than gdBit/2 period).

gdWakeupRxLow, gdWakeupRxIdle, gdWakeupRxWindow

Complementary to wakeup pattern transmission, wakeup pattern recognition is controlled by

gdWakeupRxLow, gdWakeupRxIdle and gdWakeupRxWindow. Relationship between parameters is

shown in Figure 4. For the proper node wakeup it is crucial to test its ability to recognize wakeup pattern

on the bus.

Idle

RxD

Data_0

gdWakeupRxLowgdWakeupRxIdlegdWakeupRxLow

gdWakeupRxWindow

gdWakeupRxIdle

Figure 4: Wakeup pattern in context wakeup window

Testing of wakeup pattern recognition uses assumption, that if node has recognized the wakeup

pattern, it does not send wakeup pattern itself. Selected wakeup pattern parameter is being decreased

from the maximal permitted length until the wakeup pattern is not detected by EUT. This principle is

used for gdWakeupRxLow and gdWakeupRxIdle. The third parameter is evaluated by changing right side

of inequality 2. Modification of gdWakeupRxLow value can be used.

𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝑊𝑖𝑛𝑑𝑜𝑤 ≥ 2 ∙ 𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝐼𝑑𝑙𝑒 + 𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝐿𝑜𝑤 (2)

Evaluation of the wakeup parameters is straightforward, but integral part of the exhaustive validation of

FlexRay controller parametrization. Similar principle is used for LIN (Local Interconnect Network) cluster

wakeup testing [16]. In contrary, the LIN wakeup signal timing is fully defined by the standard.

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 8 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

5. Startup parameters

Startup is a key process intended to initialize time synchronization for whole cluster. Critical parameters

influencing a startup procedure are summarized in Tab. 2. A correct setting of FlexRay startup

parameters is necessary to ensure fault-free cluster startup.

Table 2 Startup parameters summary

Parameter Range

vColdstartInhibit True | False

pdListenTimeout 1926 - 2567692 μT

cdCASRxLowMin 29 gdBit

gdCASRxLowMax 28 - 254 gdBit

gColdStartAttempt 2 - 31

Type of node

Test of the startup related parameters has to be distinguished by type of FlexRay node. Four node types

are considered in following test. They are TT-D and TT-L, both in variants of coldstart or noncoldstart.

Coldstart or noncoldstart node is determined by vColdstartInhibit parameter. The parameter is of

Boolean type. True denotes ability to start communication (coldstart node) while False defines

noncoldstart node. Coldstart node starts sending startup frame, which could be detected by the tester.

gColdStartAttempt

The test is relevant for TT-D coldstart node only, because TT-L coldstart never terminates coldstart

attempt (it sends two startup and synchronization frames). Evaluation of gColdStartAttempt is possible

by counting of received startup frames according to equation 3.

𝑔𝐶𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝐴𝑡𝑡𝑒𝑚𝑝𝑡 =
𝑁𝑅𝑆𝐹

𝑁𝐹𝐶𝐴

(3)

Where NRSF is a number of received Startup frames

NFCA is a number of startup frames per coldstart attempt defined by standard, equals to 5

Collision avoidance symbol

Collision avoidance symbol length shall be between cdCASRxLowMin and gdCASRxLowMax, otherwise it

does not have to be recognized. The same idea as for wakeup pattern parameters measurement is used.

If the collision avoidance symbol is not detected, the tested node tries to send collision avoidance

symbol by itself. Iterative algorithm is used, where tester starts sending the collision avoidance symbol

with a little bit lower length than the minimal permitted value for cdCASRxLowMin discovering. Next the

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 9 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

tester continues increasing collision avoidance symbol length to gdCASRxLowMax. The range of

recognized symbol lengths is finally evaluated.

pdListenTimeout

Measurement of pdListenTimeout uses a property that pdListenTimeout timer is restarted when the idle

state is recognized on the bus. After the timeout expiration the ECU sends a collision avoidance symbol.

The time interval measured between collision avoidance symbols should be corrected by

cChannelIdleDelimiter and cdCASActionPointOffset values (standard defined constants) that affect bus

idle recognition and collision avoidance symbol transmission. The principle is shown in Figure 5 and

expressed by equation 4, where ts_CAS means timestamp of CAS.

Bus

cChannelIdleDelimiter pdListenTimeout cdCASActionPointOffset

CAS

Tester EUT

CAS

RESET
pdListenTimeout

CAS

Figure 5: pdListenTimeout measurement

𝑝𝑑𝐿𝑖𝑠𝑡𝑒𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑡𝑠_𝐶𝐴𝑆𝐸𝑈𝑇 − 𝑡𝑠_𝐶𝐴𝑆𝑇𝑒𝑠𝑡𝑒𝑟 − 𝑐𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑙𝑒𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 − 𝑐𝑑𝐶𝐴𝑆𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 (4)

6. Evaluation of Clock Synchronization Parameters

Functionality of a FlexRay synchronization mechanism is influenced by four parameters. First parameter

is local time unit microtick, which nominal value is specified by pdMicrotick. pOffsetCorrectionOut and

pRateCorrectionOut are the maximal limit values for offset and rate part of clock correction. Rate

correction is additionally reduced by pClusterDriftDamping parameter. Incorrect parametrization is

difficult to reveal under the normal operating conditions. Example of such violation and its consequence

is provided in section Motivation for evaluation of configuration parameters. Parameter names and

their ranges are recapitulated in Tab. 3.

Table 3 List of measured parameters

Parameter Permitted range

pdMicrotick (µT) 12.5 ns, 25 ns, 50 ns

pClusterDriftDamping 0 - 10 μT

pOffsetCorrectionOut 15 - 16082 μT

pRateCorrectionOut 3 - 3846 μT

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 10 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

Cycle length control and measurement

All presented methods are based on knowledge of communication cycle length (duration time). Cycle

length is measured using a principle depicted in Figure 6. All incoming frames are marked by timestamp.

Cycle 2n Cycle 2n + 1

Static segment

S1 S2 S3 Si

Static segment

S1 S2 S3 Si

Cycle length of node under test

Cycle length of FPGA based FlexRay tester

Figure 6: Cycle length measurement

EUT cycle length is synchronized by FTM algorithm. For three synchronization frames (two of them with

the same cycle length are generated by the tester) two of three measured time deviations (the highest

and the lowest one) are discarded. The EUT frame deviation is always zero and therefore it is either the

highest or the lowest one (other two are the same). The remaining deviation value is always that

generated by the tester and EUT is thus forced to follow its communication cycle length.

Offset correction measurement

Some methods presented later need to be aware of the value of the offset correction in particular

communication cycle. Method for offset correction measurement published in [10] can be utilized. In

our opinion, there is a mistype in formula in section III.C of [10], where the even and odd

communication cycles are swapped. Offset correction is applied in odd communication cycle. To obtain

offset correction with correct sign it is necessary to subtract even cycle length from odd cycle length.

Presumption for proper use of the method is short term oscillator stability (constant rate correction).

Magnitude of offset correction can be calculated according to the equation 5.

𝑂𝐶(2𝑛 + 1) = 𝐶𝐿(2𝑛 + 1) − 𝐶𝐿(2𝑛) (5)

Where OC (2n+1) is offset correction applied in odd communication cycle (2n+1)

 CL (2n+1) is length of odd communication cycle

 CL (2n) is length of previous even communication cycle

pdMicrotick

Usually pdMicrotick is directly derived from local clock source. Depending on desired communication

speed, three nominal values are possible - 12.5 ns, 25 ns and 50 ns. Complete communication cycle

schedule is derived from this parameter. The pdMicrotick parameter represents minimal possible

change in the FlexRay node timing. The change is observable by a frame transmit time for frames

transmitted in a static slot. Proposed method deals with the presumption that clock synchronization

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 11 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

works with microtick resolution and two FlexRay nodes are never synchronized absolutely. Cycle length

is affected by components from equation 6.

𝐶𝐿(2𝑛 + 1) = 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 + 𝑅𝐶(2𝑛 + 1) + 𝑂𝐶(2𝑛 + 1) (6)

Where CL (2n+1) is length of odd communication cycle (2n+1)

RC (2n+1) is a Rate Correction value applied within the cycle

 OC (2n+1) is an Offset Correction value applied within the cycle

A small difference between EUT and tester communication cycle lengths (denoted ∆) always exists. This

small difference is being accumulated over few communication cycles until it exceeds magnitude of 1 μT

(as shown in Figure 7). Within the following odd communication cycle the EUT synchronization

mechanism corrects the difference by adding 1 μT to actual offset correction value. pdMicrotick value

can thus be evaluated by precise measurement of EUT communication cycle lengths. Minimal distance

in communication cycles histogram is equal to pdMicrotick.

2n 2n + 1 2n + i

CL + Δ CL + 2Δ CL i·Δ
≥1µT

Figure 7: Cycle difference accumulation

pClusterDriftDamping

The parameter value is subtracted from the actual calculated value of rate correction. The

pClusterDriftDamping can be interpreted as the insensitivity zone of rate correction. Clock frequency

difference below this limit has to be corrected by offset correction (red squares in Figure 8). For

example, if pClusterDriftDamping is equal to 5 μT and the clock frequency difference is higher than 5 μT

per cycle, minimal applied offset correction is 10 μT each odd communication cycle.

2n 2n + 1

CLnom+RC2n

2n + 2 2n + 3

CLnom+RC2n OC2n+1 CLnom+RC2n+2CLnom+RC2n+2 OC2n+3

Figure 8: Offset correction affected by pClusterDriftDamping

For the parameter measurement it is necessary to assure that the tester and the EUT clock difference is

higher than maximal permitted pClusterDriftDamping value, which is 10 μT. Afterwards, the value can

be extracted from measured cycle lengths according to equation 7 (it does not reflect sporadic 1 μT

corrections). Division by two reflects the accumulation of the parameter over two communication

cycles.

𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑟𝑖𝑓𝑡𝐷𝑢𝑚𝑝𝑖𝑛𝑔 =
𝐶𝐿(2𝑛 + 1) − 𝐶𝐿(2𝑛)

2

(7)

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 12 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

Where CL (2n+1) is length of odd communication cycle

 CL (2n) is length of previous even communication cycle

pRateCorrectionOut

An idea for pRateCorrectionOut measurement is to slightly push the EUT synchronization mechanism to

its limits. After the limit is reached, EUT stops sending frames. The measurement takes place in even

communication cycles, since only even cycles are not affected by the offset correction. Maximal and

minimal measured cycle lengths determine the value of pRateCorrectionOut according to equation 8.

Either positive or negative Rate correction value is applied (lengthening and shortening of

communication cycle). To obtain the actual value of the parameter it is necessary to divide the

measured difference of cycle lengths by two.

𝑝𝑅𝑎𝑡𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑢𝑡 =
𝐶𝐿𝑚𝑎𝑥 − 𝐶𝐿𝑚𝑖𝑛

2 × 𝑝𝑑𝑀𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘

(8)

Where CLmax is maximal measured cycle length during pushing synchronization mechanism

CLmin is minimal measured cycle length during pushing synchronization mechanism

Figure 9 depicts this measurement step by step. First cycles are of the same length (EUT and tester are

synchronized). Next, the tester starts forcing EUT to shorten its communication cycle using the principle

described in section Cycle length control and measurement. When the lower limit is discovered, the

tester starts with increasing the communication cycle length and the upper limit is discovered

consequently. Missing communication is expressed by white bars in Figure 9.

Ev
en

 c
yc

le
 le

n
gt

h
 d

if
fe

re
n

ce

fr
o

m
 n

o
m

in
al

 [
µ

T]

Communication cycle number

0

+ pRateCorrectionOut

- pRateCorrectionOut

0 n

Tester communication cycle length
EUT communication cycle length

Figure 9: Rate correction affected by pClusterDriftDamping

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 13 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

pOffsetCorrectionOut

The offset correction is calculated using FTM algorithm from the deviations measured in each odd

communication cycle. This value is applied at the end of the same communication cycle. Thus the offset

correction value evaluation is only possible within the corresponding odd communication cycle. EUT

offset correction is induced by fast shift of the tester’s synchronization frames time position. This shift

magnitude should be corrected by EUT offset correction, which value is measured using the method

described in section Offset correction measurement. If the required offset correction value is higher than

the pOffsetCorrectionOut limit, only this limit value is applied. This method is further limited by the

actual duration of the static slot. The shifted test frame may not violate the static slot boundaries. Area

of possible synchronization frames shifting is expressed by green shaded area in Figure 10.

Frame

Action
point

gdStaticSlot

Figure 10: Offset correction measurement limitation

Maximal negative offset correction value (frame shift towards start of static slot) that can be measured

is limited by gdActionPointOffset and is denoted by minus superscript in equation 9.

𝑂𝐶−[𝜇𝑇] = 𝑔𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 × (𝑔𝑀𝑎𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 ÷ 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒) (9)

Maximal positive offset correction value (a frame shift towards the end of static slot) that can be

measured is limited by the frame length, gdStaticSlot and gdActionPointOffset and is denoted by plus

superscript in equation 10.

𝑂𝐶+[𝜇𝑇]
= (𝑔𝑑𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑙𝑜𝑡 − 𝑔𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡)
× (𝑔𝑀𝑎𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 ÷ 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒) − 𝐹𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ

𝐹𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ[𝜇𝑇]
= (𝑔𝑑𝑇𝑆𝑆𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 + 𝑐𝑑𝐹𝑆𝑆 + 80𝑔𝑑𝐵𝑖𝑡(ℎ𝑒𝑎𝑑𝑒𝑟 + 𝑡𝑟𝑎𝑖𝑙𝑒𝑟)
+ 2 × 𝑔𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ × 10 + 𝑐𝑑𝐹𝐸𝑆)
× (𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑃𝑒𝑟𝐵𝑖𝑡 ÷ 𝑝𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑃𝑒𝑟𝑀𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘)

(10)

Definition of all parameters used in equations above can be found in FlexRay standard [4].

Frame shifted over the limits is marked invalid by EUT internally and thus not used for synchronization.

This behaviour can be used for evaluation of gdActionPointOffset and gdStaticSlot parameters.

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 14 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

7. Validation of measurement methods on real FlexRay network

Proposed methods were implemented as a part of developed FlexRay controller and tester. The

controller is designed in VHDL and implemented on Altera Cyclone FPGA. The NIOS II microprocessor is

used as a control element and runs testing methods implemented in C language. Two EUT types were

used. The first is based on a 16 bit microprocessor MC9S12XF with integrated Freescale FlexRay

controller. The second is based on 32 bit microprocessor TMS570LS31 from Texas Instruments with

integrated Bosch FlexRay controller called E-Ray [17]. Both controllers are implemented according to

specification version 2.1 [18]. The implementation of the FlexRay controller and design of startup testing

methods was supported by the master thesis [19].

FlexRay network used for practical evaluation of presented methods was parameterized according to

the Tab. 4. Parameters closely related to measurement methods are explained in corresponding

paragraphs; detailed description of each parameter can be found in FlexRay Communication System

Specification [4]. Testing network consisted of just two nodes (Tester and EUT) – see Figure 1.

Table 4 Test Network Configuration

Parameter Value

gdActionPointOffset 3 MT

gdDynamicSlotIdlePhase 1

gdMinislot 40

gdStaticSlot 50

gdSymbolWindow 13 MT

gdTSSTransmitter 11 gdBit

gMacroPerCycle 5000 MT

gNumberOfMinislots 22

gNumberOfStaticSlots 60

gOffsetCorrectionStart 4920 MT

pClusterDriftDamping 1 μT

pDecodingCorrection 56 μT

pDelayCompensation[A] 1 μT

pDelayCompensation[B] 1 μT

pdListenTimeout 401202 μT

pLatestTx 21

pMacroInitialOffset[A] 5 MT

pMicroInitialOffset[A] 5 μT

pMacroInitialOffset[B] 23 MT

pMicroInitialOffset[B] 23 μT

pMicroPerCycle 200000 μT

pMicroPerMacroNom 40 μT

Measured values were compared with values configured in communication controller registers. As far as

we know similar work with comparable results was not published. The results fully correspond with

assumptions with respect to clock frequencies difference discussed in section Measurement accuracy

and speed. To eliminate this issue, the validation tests are made using the tester clock frequency very

close to clock frequency of the EUT (driven by arbitrary generator Tektronix AFG3102). The tester clock

frequency was 80.0206 MHz for the ECU with E-Ray controller and 80.0011 MHz for the ECU with

Freescale controller. Pre-set values of particular measured parameters are chosen from interval of all

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 15 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

possible values. Global FlexRay controller’s settings are mentioned in Table 4 (with exception of

measured parameters). Bus monitoring was done by Tektronix DPO4034 oscilloscope.

Table 5 Selected experimental results

Parameter Actual Value Measured on E-Ray Measured on Freescale

gdCASRxLowMin 29 gdBit 29 gdBit 29 gdBit

gdCASRxLowMax 64 | 83 | 120 gdBit 64 | 83 | 120 gdBit 64 | 83 | 120 gdBit

pdListenTimeout [μT] 1926 | 401202 | 800000 1933 | 401211 | 800009 1934 | 401211 | 800010

pdMicrotick 25 ns 25 ns 25 ns

pClusterDriftDamping 1 | 3 | 10 μT 1 | 3 | 10 μT 1 | 3 | 10 μT

pRateCorrectionOut 500 | 600 | 700 μT 499| 600 | 699 μT 500 | 599 | 700 μT

Real measurement of parameters gdCASRxLowMin and gdCASRxLowMax shows that designed methods

are able to identified actual values with bit level resolution precisely. Measurement of pdListenTimeout

parameter after subtraction of CAS symbol length according to equation 4 contains an error of 10 μT or

250 ns maximally. This error is caused by combination of three factors. They are the remaining

difference in tester and EUT clock frequencies, delay in receiving path of controller and tester time

stamping implementation. The practical impact of this error on result usability is nevertheless negligible.

Methods for pdMicrotick and pClusterDriftDamping identification work fully within expectations. Vital

evaluation pRateCorrectionOut works according to presumptions.

Results of offset correction limits evaluation are summarized in the Table 6. Due to the limits

represented by equations 9 and 10, two FlexRay network schedules were used. First schedule labelled as

default setup is the setup previously mentioned in Table 4. Modified setup enables the full range

measurement of permitted offset correction. Schedule of the static segment was changed to static slot

length 100 MT, 30 static slots per communication cycle and action point offset 10 MT.

Table 6 pOffsetCorrectionOut measurement (all values in T)

Set Value Expected Measured on E-Ray Measured on Freescale

pOffsetCorrectionOut OC+ OC- OC+ OC- OC+ OC-

1201Default setup 224 120 230 130 230 128

1201 Modified setup 1201 400 1200 410 1201 410

300 Modified setup 300 300 300 300 300 300

Results correspond with presumptions with exception of static slot boundaries violation. Experiments

demonstrate that the used controllers consider received frames valid approximately 10 μT before and

after the defined static slot boundaries. All experimental results indicate that presented methods are

able to evaluate critical parameters of a single FlexRay node.

8. Measurement accuracy and speed

Tester and EUT clock frequencies are never equal. There is always small difference between frequencies,

usually few microticks per communication cycle in terms of FlexRay. Clock frequencies difference is

necessary to take into account for presented parameters evaluation. It is assumed that difference of

oscillator frequencies is at worst 1500 ppm from nominal value. This is the maximal permitted clock

deviation according to standard [4]. For nominal 80 MHz clock frequency it is equal to deviation of up to

120 kHz. Quality of used oscillator should be subject of special testing.

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 16 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

Test objective is to reveal EUT parameters values from communication controller registers; therefore it

is necessary to know EUT actual clock frequency or minimize clock differences between the tester and

the EUT. Our experiments were done using the second approach. Before the measurement the clock

source (Tektronix AFG3102) was set as close to the EUT actual clock frequency as possible. The tester

clock frequency setting was done using observation of tester rate and offset correction actual values.

Achieved clock difference was better than 1 μT per communication cycle. Explanation can be found in

paragraph about pdMicrotick measurement. According to [14] the short term stability the measurement

methods rely on is usually not the issue.

In the context of intended application measurement time is not critical. Moreover, it is short – typically

in the range of few communication cycles. An overview of measurement times is stated to provide

complete characteristics of the presented methods. Results are summarized in Tab. 7. Measurement

time always depend on the parameter value and mostly on global network setup. Presented methods

can be divided into two groups. Measurement algorithms from the first group work in a fixed number of

steps. In the second group there are iterative algorithms, where the number of steps depends on

parameter value and network setup. Measurement time estimation is provided in Tab. 7. in the column

Approximate Time.

Table 7 Overview of measurement duration

Parameter Range Algorithm - number of

steps

Approximate Time

pdListenTimeout [μT] 1926 – 2567692 μT fixed 2× pdListenTimeout

cdCASRxLowMin + Max

[gdBit]

29 - 254 Depends on

cdCASRxLowMax

gdCASRxLowMax –

cdCASRxLowMin

pdListenTimeout

gColdStartAttempt 2 - 31 Depends on

gColdStartAttempt

(5× pMicroPerCycle

+ pdListenTimeout) ×

gColdStartAttempt

pdMicrotick [ns] 12.5; 25; 50 Depend on clock

difference
1.25 s

pClusterDriftDamping [μT] 0 - 10 Depend on

pClusterDriftDamping

pMicroPerCycle ×

pClusterDriftDamping

× 2

pOffsetCorrectionOut [μT] 15 - 16082 Fixed 2x pMicroPerCycle

pRateCorrectionOut [μT] 3 - 3846 Depend on

pRateCorrectionOut

pRateCorrectionOut *

2 * pMicroPerCycle

 worst case time for experimental setup given in Tab. 4.

9. Conclusion

The aim of this work is to fill the gap in the area of FlexRay communication system available

measurement and testing techniques. The paper proposes the novel complex set of methods for

measurement of the data-link layer parameters of a FlexRay network node. Presented methods cover

the parameters related to all three FlexRay node operational control states, i.e. the cluster wakeup,

startup and normal operation. Individual measurement methods are described in detail; they were

designed with respect to usability in a real world testing by means of a straightforward implementation

and short execution time. Compared to the cited publications the new methods are based not only on

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 17 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

passive communication monitoring, but active stimuli are used as well. The validity of presented

measurement methods is checked by experiments. Experiments have been conducted on real FlexRay

ECUs based on two different FlexRay controller implementations (Freescale and Bosch E-Ray) to avoid

implementation specific result. Commented experimental results with measurement setup and

discussion of measurement accuracy are included. The experimental results prove the validity of all new

methods. For pOffsetCorrectionOut measurement method, they simultaneously show its fundamental

dependence on static slot configuration.

Acknowledgements

This work was supported by the Grant Agency of the Czech Technical University in Prague, project

Model-Based Testing methods for automotive electronics systems (SGS16/171/OHK3/2T/13), and by the

Technological Agency, Czech Republic, programme Centres of Competence, project # TE01020020 Josef

Božek Competence Centre for Automotive Industry.

References

1. Sobotka, J. and Novák, J. "FlexRay controller with special testing capabilities"'2012

International Conference on Applied Electronics', 2012.

2. Shreejith, S., Fahmy, S. A. and Lukaseiwycz, M. "Accelerating validation of time-triggered

automotive systems on FPGAs"'Field-Programmable Technology (FPT), 2013 International

Conference on', 2013, pp. 4-11.

3. Obermaisser, R., ed. (2011), Time-Triggered Communication, CRC Press.

4. ISO 17458-2:2013 Road vehicles – FlexRay communications system – Part 2: Data link layer

specification (January 2013)

5. Schmutzler, C., Simons, M. and Becker, J. "On demand dependent deactivation of automotive

ECUs"'Design, Automation Test in Europe Conference Exhibition (DATE), 2012', 2012, pp. 69-

74.

6. J. L. Welch and N. A. Lynch, "A New Fault-Tolerant Algorithm for Clock Synchronization",

Information and Computation, vol. 77, no. 1, pp. 1-36, April 1988.

7. Desogus, M., Reorda, M., Sterpone, L., Avantaggiati, V., Audisio, G. and Sabatini, M.

"Validation and robustness assessment of an automotive system" 'Design and Test Symposium

(IDT), 2013 8th International', 2013, pp. 1-6.

8. Novák, J.: New Measurement Method of Sample Point Position in Controller Area Network

Nodes. Measurement. 2008, vol. 2008, no. 41, p. 300-306. ISSN 0263-2241.

9. Armengaud, E., Watzenig, D., Steger, C., Berger, H., Gall, H., Pfister, F. and Pistauer, M.

"TEODACS : A new vision for testing dependable automotive communication systems"'

Industrial Embedded Systems, 2008. SIES 2008. International Symposium on', 2008, pp. 257-

260.

10. Armengaud, E. and Steininger, A. "Remote Measurement of Local Oscillator Drifts in FlexRay

Networks" 'DATE: 2009 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE &

EXHIBITION, VOLS 1-3', IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, Design,

Automation and Test in Europe Conference and Exhibition, Nice, FRANCE, APR 20-24, 2009,

2009, pp. 1082-1087

https://doi.org/10.1016/j.measurement.2016.12.051

PREPRINT 18 of 18

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051

11. Heinz, M., Hoss, V. and Muller-Glaser, K. "Physical Layer Extraction of FlexRay Configuration

Parameters" 'Rapid System Prototyping, 2009. RSP '09. IEEE/IFIP International Symposium on',

2009, pp. 173-180.

12. ARMENGAUD, Eric; STEININGER, Andreas; HORAUER, Martin. Automatic Parameter

Identi cation in FlexRay based Automotive Communication Networks. In: Emerging

Technologies and Factory Automation, 2006. ETFA'06. IEEE Conference on. IEEE, 2006. p.

897-904.

13. Sobotka, J. and Novák, J. "METHODS FOR MEASUREMENT OF FLEXRAY NODE BASIC

TIMING PARAMETERS"'XX IMEKO World Congress', 2012.

14. H.-P. Company. Fundamentals of Quartz Oscillators. In HP Application Note 200-2, 1997.

15. Johnson, R., Evans, J., Jacobsen, P., Thompson, J. and Christopher, M. "The changing

automotive environment: high-temperature electronics," Electronics Packaging Manufacturing,

IEEE Transactions on (27:3), 2004, pp. 164-176.

16. ISO 17987-6:2016 Road vehicles -- Local Interconnect Network (LIN) -- Part 6: Protocol

conformance test specification (October 2016)

17. "Semiconductors & Sensors." FlexRay Communication Controller IP. Robert Bosch GmbH, n.d.

Web. 28 Aug. 2012. <http://www.bosch-semiconductors.de/en/ipmodules/flexray/flexray.asp>.

18. FlexRay Consortium, FlexRay Protocol Specification V2.1 Rev. A, 2005.

19. Martin Paták. Methods for testing the flexray start-up mechanism. Master’s thesis, CTU in

Prague, 2012.

https://doi.org/10.1016/j.measurement.2016.12.051

