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Abstract 

Network operation of a FlexRay ECUs (Electronic Control Units) in passenger cars is influenced by the 

significant number of parameters that have to be written into the ECU FlexRay controller. To keep the 

FlexRay network robust, the correct parameter values must be set in all ECUs of the FlexRay 

communication cluster. This is not a trivial task since particular ECUs are supplied by different 

manufacturers and any manufacturer can change some parameter either by mistake or even 

intentionally. Effect of such a change is generally unpredictable and can often be observed under 

specific operational conditions only. The most serious effect is a global FlexRay network failure which 

usually leads to the fatal vehicle malfunction. Hence it was necessary to develop, implement and 

validate new dedicated measurement methods enabling evaluation of actual values of the most critical 

FlexRay parameters at the OSI (Open Systems Interconnection) data-link layer and thus the ECUs 

individual acceptances testing for system integrator verification purposes. As the mass production 

FlexRay controllers are not applicable due to a lack of test specific features, deployment of these 

methods is enabled by utilization of unique FPGA-based FlexRay controller implementation. Proposed 

measurement methods are focused on parameters specifying the FlexRay wakeup protocol, FlexRay 

startup procedure, and the FlexRay synchronization mechanism. Each measurement method is 

described in details including its limits and prerequisites. All the developed methods were validated by 

experiments on real FlexRay networks and results are included in the paper. Two different types of 

FlexRay controller core (Freescale and Bosch E-Ray) were used in EUTs (ECU under test) to eliminate the 

risk of measurement method dependence on a specific controller implementation.  
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1. Introduction 

Passenger car manufacturers play a role of a system integrator today, as a substantial part of vehicle 

subsystems is supplied by their contractors. This is especially true for vehicle electronics, where 

particular ECUs are supplied by different manufacturers. Nevertheless, the ECUs have to collaborate 

seamlessly together. ECUs collaboration takes place through vehicle communication network 

technologies like CAN, LIN or FlexRay, expected network functionality is thus vital for reliable and safe 

vehicle operation.  

In the case of FlexRay ECU, communication behaviour is affected by tens of parameters that must be set 

according to the vehicle manufacturer specification for the FlexRay cluster robustness and reliability. 

The vehicle manufacturer may not rely on ECU manufacturer declaration of conformity (in terms of 

correct parameter values) and has to measure the actual parametrization instead. This approach is 

common for CAN and LIN networks, where the number of critical parameters is lower, and 

measurement methods and instruments are widely available. As far as we know, such measurement 

methods are not available for the FlexRay technology at all. 
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Figure 1: Scope and objectives of the paper 

Figure 1 defines the scope and objectives of the paper. FlexRay communication stack within an ECU 

complies with the OSI model. Data-link layer entities and protocols are implemented by the FlexRay 

communication controller – the chip provided by the semiconductor manufacturer. Here it is important 

to emphasize that the paper does not focus on the chip implementation testing and validation; it is 

expected to work in accordance with the standard. However, the data-link layer behaviour is also 

significantly influenced by parametrization of its protocols and entities. Values of particular parameters 

are set by the ECU firmware, and thus it is the responsibility of the ECU manufacturer to set the required 

parameter values. ECU is a black (or at best a grey) box from the car manufacturer point of view. He 

knows what parameter values should be set (he has specified them), but he has no access to the ECU 

firmware to verify them. Car manufacturer, therefore, needs measurement methods and instruments 

providing for measuring these parameter values without having access to internal ECU data. 

The paper proposes a set of measurement methods that are capable to reveal actual parametrization of 

FlexRay controller in particular ECU. It thus allows for the car manufacturer an independent evaluation 
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of component conformity, which is crucial for the vehicle functionality within the wide operating 

conditions. The methods are based on idea that the actual parameter values can be extracted from the 

bus communication by observation of the reaction to the appropriate generated stimuli. As neither the 

standard FlexRay controllers nor the available FlexRay analysis and simulation tools are able to generate 

all necessary stimuli, dedicated instrument was designed and implemented [1]. As usual in practice, the 

time dedicated for measurement is limited [2] and all described methods are thus designed to respect 

this fact. 

The methods described in this paper are not intended for the mass production line measurement. 

Instead, they are envisioned for usage during ECU development and deployment in a pre-production 

vehicle integration and evaluation phase. Production phase firmware and ECU parametrization have to 

stay unchanged or, in the case of necessary changes, the measurements should be passed again.  

The paper is organized into following sections. First, a brief necessary overview of FlexRay protocol 

relevant parts is provided. Next section describes related work, followed by motivation for this research. 

Major part, describing the measurement methods, is divided into three sections corresponding to the 

FlexRay wakeup, startup and synchronization processes. Measurement of wakeup and startup 

parameters is easier in comparison with measurement of time synchronization parameters. Despite this 

fact, the corresponding methods are included to provide comprehensive survey. Last sections deal with 

analysis of measurement accuracy, implementation details, and with results of measurements on real 

systems. 

2. Description of relevant parts of FlexRay communication system 

Description of FlexRay Communication System can be found in book [3] or directly in ISO protocol 

specification [4], which is the primary information source. Following paragraphs are focused on relevant 

principles only. Shortly, FlexRay is high speed (up to 10 Mbit/s) communication technology primarily 

intended for automotive applications. Both time triggered and event triggered communication is 

possible and redundant physical layer topology can be used for increased reliability.  

Wakeup procedure serves to drive network from low power mode (e.g. after a car is unlocked) [5] to 

normal operation mode. The procedure starts with ECUs in either standby or sleep mode, where at least 

bus drivers are powered. The process is controlled at application layer by the ECU firmware. An ECU 

initiating the cluster wakeup starts sending a wakeup pattern to the bus on one of redundant channels. 

Another ECU, which recognizes the wakeup pattern, wakes up and continues the process by sending the 

wakeup pattern to the second FlexRay channel (if it is present). After the wakeup is finished and all the 

ECUs are woken up, they continue with a startup phase. Below the methods for evaluation of proper 

wakeup pattern transmission and recognition are provided.  

Communication startup phase is intended to initialize the communication cycle and clock 

synchronization. Start of the FlexRay network depends on a network type. FlexRay specification 

distinguishes three network types: TT-L, TT-D and TT-E according to clock synchronization principle. In 

TT-L network the nodes are synchronized using a single clock master.  TT-D cluster uses distributed clock 

synchronization mechanism which will be discussed in next paragraph. Last TT-E type uses an external 

time gateway. This work is focused on TT-D FlexRay network type, which is the most widespread. For the 

startup process, the network is divided into coldstart and noncoldstart nodes (ECUs). Only the coldstart 
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ones are active during the communication startup. First coldstart node, which does detect no bus 

communication, becomes a leading coldstart node. This node immediately sends CAS (Collision 

Avoidance Symbol) and then starts sending startup frames (normal frames with a startup flag set) 

according to the TDMA communication schedule. Following coldstart node initializes its clock 

synchronization and joins communication in communication cycle No. 4. Finally the noncoldstart nodes 

join the communication. Below the methods for evaluation of proper ECU startup parameter values are 

provided. 

FlexRay normal operation phase is based on the modified TDMA (Time Division Multiple Access) 

communication cycle structure, as depicted in Figure 2. The individual ECUs’ clocks are synchronized 

using distributed clock synchronization algorithm. ECUs labelled as synchronization nodes are sending 

frames with sync flag set within the static segment slots. Other (non-synchronization) ECUs only correct 

theirs clock according to the synchronization nodes. All nodes measure an arrival time of 

synchronization frames locally. Based on the arrival time deviations the clock corrections are calculated 

using a Fault-tolerant midpoint (FTM) algorithm [6] and applied in particular nodes.  

A
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. . .

. . .

Static Slots Minislots Symbol Window Idle

ID 3 ID x ID i MTSID i ID iID 2ID 1

ID 1 ID 2 ID 3 ID x ID i ID i

Communication Cycle
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Figure 2: FlexRay communication overview 

Behaviour of clock synchronization process is controlled by several parameters. Below the methods for 

measurement of their values are provided. 

3. Related work 

Growing complexity of automotive embedded systems requires new measurement and validation 

techniques [7].  Similar research focused on other vehicle distributed systems (mostly the CAN) was 

conducted in past. The CAN interface configuration is much simpler than that for the FlexRay, since only 

few parameters are used, such as time quantum, length of particular bit segments and synchronization 

jump width. Especially one of them is critical for the ECU with CAN interface deployment – it is the 

sample point position within the bit time. The risk of incorrect setting and the measurement method is 

described in [8]. 

Scope of this paper is a measurement and validation of FlexRay configuration parameters affecting 

behaviour of individual nodes forming a communication cluster. TEODACS project [9] was the largest 

activity related to this work. It was targeted at general deployment and validation of FlexRay based 

distributed system. Under this project the method for remote measurement of offset correction was 

published [10]. This measurement technique is used in section 6 as a part of several here presented 

measurement methods. Authors of [11] and [12] have focused on extraction of FlexRay cluster global 

parameters. They rely on passive bus communication monitoring approach only. The limitation of this 

approach is inability to reveal the values of all parameters, especially the local node-specific parameters 

https://doi.org/10.1016/j.measurement.2016.12.051


PREPRINT   5 of 18 
 

Final paper at https://doi.org/10.1016/j.measurement.2016.12.051 
 

that define node-specific behaviour within the wakeup, startup and synchronization mechanisms. These 

parameters apply at boundary conditions that are not usually reached during normal operation. Paper 

[12] supports our conviction, that the approach based on application of active stimuli is needed. This 

work is thus an expected extension of communication parameters extraction methods based on passive 

bus observation. It provides for validation of FlexRay system by means of each single FlexRay node 

parameters measurement as mentioned in section 1. Compared to papers [11] and [12] we use both the 

passive communication monitoring as well as the active stimuli to force the necessary FlexRay node 

response. Presented work can therefore be viewed as a complement to already published passive 

monitoring based methods of global cluster parameters identification. 

The paper extends and validates our preliminary results published in conference proceedings [1] and 

[13]. Measurement algorithms are described more precisely with important details. Also some 

inconsistencies, e. g. imprecise pdListenTimeout measurement published in [1] are explained and 

corrected. Simulation of measurement of pOffsetCorrectionOut validation from [13] is supported by 

experimental results. Moreover, limits of offset correction measurement are derived and described by 

equations 9 and 10. 

4. Motivation for measurement of configuration parameters  

Significant FlexRay node parameter is a pRateCorrectionOut, which determines maximal possible rate 

correction value the node is allowed to apply. Let’s consider the following situation. Desired value of 

pRateCorrectionOut parameter in ECU specification is 601 µT, which is maximal value for communication 

speed 10 Mb/s and communication cycle length 5 ms. This value allows the FlexRay controller to correct 

maximal permitted oscillator deviation, which is defined by standard [4] as 1500 ppm of oscillator’s 

nominal frequency.  

Let assume that in the ECU delivered from the supplier the configured pRateCorrectionOut value is not 

601, but only 300 µT instead. Such a violation of node parameters specification would not influence 

ECU’s behaviour under most conditions unless the local oscillator’s frequency reaches deviation higher 

than 750 ppm from nominal value (more precisely from the cluster average value). In this moment the 

ECU ends communication and goes to the halt state, while it would continue operating with correct 

parameterization. Using a crystal oscillator natural behaviour [14], this probably happens after long time 

(several years) due to crystal aging in combination with high or low temperatures [15]. To detect this 

kind of specification breach special testing methods are needed, allowing the car manufacturer to ask 

the ECU supplier to fix the parametrization already in pre-production. 

Wrong value of pdListenTimout is another example of a manufacturer specification breach. 

pdListenTimout value specifies a time spent in a coldstart listen phase. According to specification [4] the 

pdListenTimout value has to be calculated according equation (1).  

𝑝𝑑𝐿𝑖𝑠𝑡𝑒𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡[𝜇𝑇]  =  2 ×  (𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒[𝜇𝑇]  +  𝑝𝑅𝑎𝑡𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑢𝑡[𝜇𝑇])  (1) 

Depending on communication cycle schedule, lower as well as higher parameter values can cause 

problems with FlexRay cluster startup (e.g. leading coldstart node change or startup phase extension). 

Three possible example scenarios are shown in Figure 3. All cases consider two coldstart nodes in 

communication network.  
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Figure 3: Effects of wrong pdListenTimeout value 

The first case labelled I. shows situation when the gap between Collision Avoidance Symbol (CAS) and 

startup frame in static slot (actual pdListenTimeout of node 2) is shorter than the required 

pdListenTimeout. In this case the startup behaviour of the cluster is not seriously affected. The second 

scenario shows the change of leading coldstart node. Node’s 2 pdListenTimeout timer expires before the 

node 1 sends its first startup frame (assigned key slot is later in static segment of communication cycle) 

and cluster startup is thus a bit delayed. Case III. means that pdListenTimeout parameters in both nodes 

are too small; the nodes are alternating in coldstart leading and the startup delay is significant. To 

prevent all these problems an evaluation of pdListenTimeout parameter actual value is necessary. 

Examples presented above show that the problems originated in a wrong ECU parametrization may 

occur later (caused by components ageing), under specific operating conditions (e.g. extreme 

temperature), under the spare part change or under the simultaneous influence of already mentioned 

effects. This kind of problems is hard to reveal because of their sporadic nature. Evaluation of 

configuration parameter can dramatically increase confidence in FlexRay network fault free operation 

during the car life cycle. Apposite measurement methods for FlexRay configuration critical parameters 

were therefore developed and they are presented in following sections.  

Wakeup parameters 

Bus communication starts with a wakeup procedure, which is intended to power up and force the 

FlexRay POC (Protocol Operational Control) automaton of each connected node to the ready state. 

Responsibility for proper wakeup of a node is divided among the bus driver, host (an MCU) and FlexRay 

communication controller. Bus driver should be able to recognize the wakeup pattern and to wakeup 

other components including the host MCU and communication controller. Remaining steps are driven 

by the host with support of communication controller. Summary of relevant parameters is in Tab. 1. 

Table 1 Wakeup parameters summary 

Parameter Range 

pWakeupChannel Channel A | B 

gdWakeupRxLow 8 - 59 gdBit 

gdWakeupRxIdle 8 - 59 gdBit 
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gdWakeupRxWindow 76 - 485 gdBit 

gdWakeupTxIdle 45 - 180 gdBit 

gdWakeupTxActive 15 - 60 gdBit 

pWakeupPattern 0 – 63 

 

Parameter gdBit expresses nominal bit time, for bit rate 10 Mbit/s it is equal to 100 ns. 

pWakeupChannel 

pWakeupChannel denotes channel where the wakeup pattern is transmitted by the node.  Evaluation is 

simple and based on a bus observation only. If the node does not detect wakeup pattern, it sends 

wakeup pattern on the channel defined by pWakeupChannel.  

gdWakeupTxIdle, gdWakeupTxActive, pWakeupPattern 

These three parameters define the wakeup pattern waveform. gdWakeupTxIdle defines duration of bus 

idle state. gdWakeupTxActive is a time period of low bus state. Wakeup symbol consists of one 

gdWakeupTxActive followed by gdWakeupTxIdle. Wakeup pattern is a sequence of several wakeup 

symbols specified by pWakeupPattern. Evaluation of these parameters is possible by an oscilloscope or 

bus sampling with reasonable sampling period (lower than gdBit/2 period).   

gdWakeupRxLow, gdWakeupRxIdle, gdWakeupRxWindow 

Complementary to wakeup pattern transmission, wakeup pattern recognition is controlled by 

gdWakeupRxLow, gdWakeupRxIdle and gdWakeupRxWindow. Relationship between parameters is 

shown in Figure 4. For the proper node wakeup it is crucial to test its ability to recognize wakeup pattern 

on the bus.  

Idle

RxD

Data_0

gdWakeupRxLowgdWakeupRxIdlegdWakeupRxLow

gdWakeupRxWindow

gdWakeupRxIdle

Figure 4: Wakeup pattern in context wakeup window 

Testing of wakeup pattern recognition uses assumption, that if node has recognized the wakeup 

pattern, it does not send wakeup pattern itself. Selected wakeup pattern parameter is being decreased 

from the maximal permitted length until the wakeup pattern is not detected by EUT. This principle is 

used for gdWakeupRxLow and gdWakeupRxIdle. The third parameter is evaluated by changing right side 

of inequality 2. Modification of gdWakeupRxLow value can be used. 

𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝑊𝑖𝑛𝑑𝑜𝑤 ≥ 2 ∙ 𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝐼𝑑𝑙𝑒 + 𝑔𝑑𝑊𝑎𝑘𝑒𝑢𝑝𝑅𝑥𝐿𝑜𝑤 (2) 

Evaluation of the wakeup parameters is straightforward, but integral part of the exhaustive validation of 

FlexRay controller parametrization.  Similar principle is used for LIN (Local Interconnect Network) cluster 

wakeup testing [16]. In contrary, the LIN wakeup signal timing is fully defined by the standard.  

https://doi.org/10.1016/j.measurement.2016.12.051
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5. Startup parameters 

Startup is a key process intended to initialize time synchronization for whole cluster.  Critical parameters 

influencing a startup procedure are summarized in Tab. 2. A correct setting of FlexRay startup 

parameters is necessary to ensure fault-free cluster startup. 

 

Table 2 Startup parameters summary 

Parameter Range 

vColdstartInhibit True | False 

pdListenTimeout 1926 - 2567692 μT 

cdCASRxLowMin 29 gdBit 

gdCASRxLowMax 28 - 254 gdBit 

gColdStartAttempt 2 - 31 

Type of node 

Test of the startup related parameters has to be distinguished by type of FlexRay node. Four node types 

are considered in following test. They are TT-D and TT-L, both in variants of coldstart or noncoldstart. 

Coldstart or noncoldstart node is determined by vColdstartInhibit parameter. The parameter is of 

Boolean type. True denotes ability to start communication (coldstart node) while False defines 

noncoldstart node. Coldstart node starts sending startup frame, which could be detected by the tester.  

gColdStartAttempt 

The test is relevant for TT-D coldstart node only, because TT-L coldstart never terminates coldstart 

attempt (it sends two startup and synchronization frames). Evaluation of gColdStartAttempt is possible 

by counting of received startup frames according to equation 3.  

𝑔𝐶𝑜𝑙𝑑𝑆𝑡𝑎𝑟𝑡𝐴𝑡𝑡𝑒𝑚𝑝𝑡 =
𝑁𝑅𝑆𝐹

𝑁𝐹𝐶𝐴

 
(3) 

Where  NRSF   is a number of received Startup frames 

NFCA   is a number of startup frames per coldstart attempt defined by standard, equals to 5 

Collision avoidance symbol 

Collision avoidance symbol length shall be between cdCASRxLowMin and gdCASRxLowMax, otherwise it 

does not have to be recognized. The same idea as for wakeup pattern parameters measurement is used. 

If the collision avoidance symbol is not detected, the tested node tries to send collision avoidance 

symbol by itself. Iterative algorithm is used, where tester starts sending the collision avoidance symbol 

with a little bit lower length than the minimal permitted value for cdCASRxLowMin discovering. Next the 
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tester continues increasing collision avoidance symbol length to gdCASRxLowMax. The range of 

recognized symbol lengths is finally evaluated.  

pdListenTimeout 

Measurement of pdListenTimeout uses a property that pdListenTimeout timer is restarted when the idle 

state is recognized on the bus. After the timeout expiration the ECU sends a collision avoidance symbol. 

The time interval measured between collision avoidance symbols should be corrected by 

cChannelIdleDelimiter and cdCASActionPointOffset values (standard defined constants) that affect bus 

idle recognition and collision avoidance symbol transmission. The principle is shown in Figure 5 and 

expressed by equation 4, where ts_CAS means timestamp of CAS. 

Bus

cChannelIdleDelimiter pdListenTimeout cdCASActionPointOffset

CAS

Tester EUT

CAS

RESET
pdListenTimeout

CAS

 

Figure 5: pdListenTimeout measurement 

 

𝑝𝑑𝐿𝑖𝑠𝑡𝑒𝑛𝑇𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑡𝑠_𝐶𝐴𝑆𝐸𝑈𝑇 − 𝑡𝑠_𝐶𝐴𝑆𝑇𝑒𝑠𝑡𝑒𝑟 − 𝑐𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝐼𝑑𝑙𝑒𝐷𝑒𝑙𝑖𝑚𝑖𝑡𝑒𝑟 − 𝑐𝑑𝐶𝐴𝑆𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 (4) 

 

6. Evaluation of Clock Synchronization Parameters 

Functionality of a FlexRay synchronization mechanism is influenced by four parameters. First parameter 

is local time unit microtick, which nominal value is specified by pdMicrotick. pOffsetCorrectionOut and 

pRateCorrectionOut are the maximal limit values for offset and rate part of clock correction. Rate 

correction is additionally reduced by pClusterDriftDamping parameter. Incorrect parametrization is 

difficult to reveal under the normal operating conditions. Example of such violation and its consequence 

is provided in section Motivation for evaluation of configuration parameters. Parameter names and 

their ranges are recapitulated in Tab. 3. 

Table 3 List of measured parameters 

Parameter Permitted range 

pdMicrotick (µT) 12.5 ns, 25 ns, 50 ns 

pClusterDriftDamping 0 - 10 μT 

pOffsetCorrectionOut 15 - 16082 μT 

pRateCorrectionOut 3 - 3846 μT 
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Cycle length control and measurement 

All presented methods are based on knowledge of communication cycle length (duration time). Cycle 

length is measured using a principle depicted in Figure 6. All incoming frames are marked by timestamp.  

Cycle 2n Cycle 2n + 1

Static segment

S1 S2 S3 Si

Static segment

S1 S2 S3 Si

Cycle length of node under test

Cycle length of FPGA based FlexRay tester

 

Figure 6: Cycle length measurement 

EUT cycle length is synchronized by FTM algorithm. For three synchronization frames (two of them with 

the same cycle length are generated by the tester) two of three measured time deviations (the highest 

and the lowest one) are discarded. The EUT frame deviation is always zero and therefore it is either the 

highest or the lowest one (other two are the same). The remaining deviation value is always that 

generated by the tester and EUT is thus forced to follow its communication cycle length. 

Offset correction measurement 

Some methods presented later need to be aware of the value of the offset correction in particular 

communication cycle. Method for offset correction measurement published in [10] can be utilized. In 

our opinion, there is a mistype in formula in section III.C of [10], where the even and odd 

communication cycles are swapped. Offset correction is applied in odd communication cycle. To obtain 

offset correction with correct sign it is necessary to subtract even cycle length from odd cycle length. 

Presumption for proper use of the method is short term oscillator stability (constant rate correction). 

Magnitude of offset correction can be calculated according to the equation 5. 

𝑂𝐶(2𝑛 + 1) = 𝐶𝐿(2𝑛 + 1) − 𝐶𝐿(2𝑛) (5) 

 

Where OC (2n+1) is offset correction applied in odd communication cycle (2n+1)  

 CL (2n+1) is length of odd communication cycle 

 CL (2n) is length of previous even communication cycle 

pdMicrotick  

Usually pdMicrotick is directly derived from local clock source. Depending on desired communication 

speed, three nominal values are possible - 12.5 ns, 25 ns and 50 ns. Complete communication cycle 

schedule is derived from this parameter. The pdMicrotick parameter represents minimal possible 

change in the FlexRay node timing. The change is observable by a frame transmit time for frames 

transmitted in a static slot. Proposed method deals with the presumption that clock synchronization 
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works with microtick resolution and two FlexRay nodes are never synchronized absolutely. Cycle length 

is affected by components from equation 6.  

 

𝐶𝐿(2𝑛 + 1) = 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 + 𝑅𝐶(2𝑛 + 1) + 𝑂𝐶(2𝑛 + 1) (6) 

 

Where  CL (2n+1) is length of odd communication cycle (2n+1) 

RC (2n+1) is a Rate Correction value applied within the cycle 

 OC (2n+1) is an Offset Correction value applied within the cycle 

A small difference between EUT and tester communication cycle lengths (denoted ∆) always exists. This 

small difference is being accumulated over few communication cycles until it exceeds magnitude of 1 μT 

(as shown in Figure 7). Within the following odd communication cycle the EUT synchronization 

mechanism corrects the difference by adding 1 μT to actual offset correction value. pdMicrotick value 

can thus be evaluated by precise measurement of EUT communication cycle lengths. Minimal distance 

in communication cycles histogram is equal to pdMicrotick. 

2n 2n + 1 2n + i

CL + Δ CL + 2Δ CL i·Δ
≥1µT

Figure 7: Cycle difference accumulation 

pClusterDriftDamping 

The parameter value is subtracted from the actual calculated value of rate correction. The 

pClusterDriftDamping can be interpreted as the insensitivity zone of rate correction. Clock frequency 

difference below this limit has to be corrected by offset correction (red squares in Figure 8). For 

example, if pClusterDriftDamping is equal to 5 μT and the clock frequency difference is higher than 5 μT 

per cycle, minimal applied offset correction is 10 μT each odd communication cycle.  

2n 2n + 1

CLnom+RC2n

2n + 2 2n + 3

CLnom+RC2n OC2n+1 CLnom+RC2n+2CLnom+RC2n+2 OC2n+3  

Figure 8: Offset correction affected by pClusterDriftDamping 

For the parameter measurement it is necessary to assure that the tester and the EUT clock difference is 

higher than maximal permitted pClusterDriftDamping value, which is 10 μT. Afterwards, the value can 

be extracted from measured cycle lengths according to equation 7 (it does not reflect sporadic 1 μT 

corrections). Division by two reflects the accumulation of the parameter over two communication 

cycles. 

𝑝𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐷𝑟𝑖𝑓𝑡𝐷𝑢𝑚𝑝𝑖𝑛𝑔 =
𝐶𝐿(2𝑛 + 1) − 𝐶𝐿(2𝑛)

2
 

(7) 
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Where CL (2n+1) is length of odd communication cycle 

 CL (2n) is length of previous even communication cycle 

 

pRateCorrectionOut 

An idea for pRateCorrectionOut measurement is to slightly push the EUT synchronization mechanism to 

its limits. After the limit is reached, EUT stops sending frames. The measurement takes place in even 

communication cycles, since only even cycles are not affected by the offset correction. Maximal and 

minimal measured cycle lengths determine the value of pRateCorrectionOut according to equation 8. 

Either positive or negative Rate correction value is applied (lengthening and shortening of 

communication cycle). To obtain the actual value of the parameter it is necessary to divide the 

measured difference of cycle lengths by two. 

 

𝑝𝑅𝑎𝑡𝑒𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑂𝑢𝑡 =
𝐶𝐿𝑚𝑎𝑥 − 𝐶𝐿𝑚𝑖𝑛

2 × 𝑝𝑑𝑀𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘
 

(8) 

 

Where  CLmax is maximal measured cycle length during pushing synchronization mechanism  

CLmin is minimal measured cycle length during pushing synchronization mechanism 

Figure 9 depicts this measurement step by step. First cycles are of the same length (EUT and tester are 

synchronized). Next, the tester starts forcing EUT to shorten its communication cycle using the principle 

described in section Cycle length control and measurement. When the lower limit is discovered, the 

tester starts with increasing the communication cycle length and the upper limit is discovered 

consequently. Missing communication is expressed by white bars in Figure 9.  
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Figure 9: Rate correction affected by pClusterDriftDamping 
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pOffsetCorrectionOut 

The offset correction is calculated using FTM algorithm from the deviations measured in each odd 

communication cycle. This value is applied at the end of the same communication cycle. Thus the offset 

correction value evaluation is only possible within the corresponding odd communication cycle. EUT 

offset correction is induced by fast shift of the tester’s synchronization frames time position. This shift 

magnitude should be corrected by EUT offset correction, which value is measured using the method 

described in section Offset correction measurement. If the required offset correction value is higher than 

the pOffsetCorrectionOut limit, only this limit value is applied. This method is further limited by the 

actual duration of the static slot. The shifted test frame may not violate the static slot boundaries. Area 

of possible synchronization frames shifting is expressed by green shaded area in Figure 10. 

Frame

Action 
point

gdStaticSlot
 

Figure 10: Offset correction measurement limitation 

Maximal negative offset correction value (frame shift towards start of static slot) that can be measured 

is limited by gdActionPointOffset and is denoted by minus superscript in equation 9. 

𝑂𝐶−[𝜇𝑇] = 𝑔𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡 × (𝑔𝑀𝑎𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 ÷ 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒) (9) 

 

Maximal positive offset correction value (a frame shift towards the end of static slot) that can be 

measured is limited by the frame length, gdStaticSlot and gdActionPointOffset and is denoted by plus 

superscript in equation 10. 

𝑂𝐶+[𝜇𝑇] 
= (𝑔𝑑𝑆𝑡𝑎𝑡𝑖𝑐𝑆𝑙𝑜𝑡 − 𝑔𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑜𝑖𝑛𝑡𝑂𝑓𝑓𝑠𝑒𝑡)
× (𝑔𝑀𝑎𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒 ÷ 𝑝𝑀𝑖𝑐𝑟𝑜𝑃𝑒𝑟𝐶𝑦𝑐𝑙𝑒) − 𝐹𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ 

 

𝐹𝑟𝑎𝑚𝑒𝐿𝑒𝑛𝑔𝑡ℎ[𝜇𝑇]
= (𝑔𝑑𝑇𝑆𝑆𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑟 + 𝑐𝑑𝐹𝑆𝑆 + 80𝑔𝑑𝐵𝑖𝑡(ℎ𝑒𝑎𝑑𝑒𝑟 + 𝑡𝑟𝑎𝑖𝑙𝑒𝑟)
+ 2 × 𝑔𝑃𝑎𝑦𝑙𝑜𝑎𝑑𝐿𝑒𝑛𝑔𝑡ℎ × 10 + 𝑐𝑑𝐹𝐸𝑆)
× (𝑐𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑃𝑒𝑟𝐵𝑖𝑡 ÷ 𝑝𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝑃𝑒𝑟𝑀𝑖𝑐𝑟𝑜𝑡𝑖𝑐𝑘) 

 

(10) 

Definition of all parameters used in equations above can be found in FlexRay standard [4]. 

Frame shifted over the limits is marked invalid by EUT internally and thus not used for synchronization. 

This behaviour can be used for evaluation of gdActionPointOffset and gdStaticSlot parameters.  
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7. Validation of measurement methods on real FlexRay network 

Proposed methods were implemented as a part of developed FlexRay controller and tester. The 

controller is designed in VHDL and implemented on Altera Cyclone FPGA. The NIOS II microprocessor is 

used as a control element and runs testing methods implemented in C language. Two EUT types were 

used. The first is based on a 16 bit microprocessor MC9S12XF with integrated Freescale FlexRay 

controller. The second is based on 32 bit microprocessor TMS570LS31 from Texas Instruments with 

integrated Bosch FlexRay controller called E-Ray [17]. Both controllers are implemented according to 

specification version 2.1 [18]. The implementation of the FlexRay controller and design of startup testing 

methods was supported by the master thesis [19].  

FlexRay network used for practical evaluation of presented methods was parameterized according to 

the Tab. 4. Parameters closely related to measurement methods are explained in corresponding 

paragraphs; detailed description of each parameter can be found in FlexRay Communication System 

Specification [4]. Testing network consisted of just two nodes (Tester and EUT) – see Figure 1. 

Table 4 Test Network Configuration 

Parameter Value 

gdActionPointOffset 3 MT 

gdDynamicSlotIdlePhase 1 

gdMinislot 40 

gdStaticSlot 50 

gdSymbolWindow 13 MT 

gdTSSTransmitter 11 gdBit 

gMacroPerCycle 5000 MT 

gNumberOfMinislots 22 

gNumberOfStaticSlots 60 

gOffsetCorrectionStart 4920 MT 

pClusterDriftDamping 1 μT 

pDecodingCorrection 56 μT 

pDelayCompensation[A] 1 μT 

pDelayCompensation[B] 1 μT 

pdListenTimeout 401202 μT 

pLatestTx 21 

pMacroInitialOffset[A] 5 MT 

pMicroInitialOffset[A] 5 μT 

pMacroInitialOffset[B] 23 MT 

pMicroInitialOffset[B] 23 μT 

pMicroPerCycle 200000 μT 

pMicroPerMacroNom 40 μT 

 

Measured values were compared with values configured in communication controller registers. As far as 

we know similar work with comparable results was not published. The results fully correspond with 

assumptions with respect to clock frequencies difference discussed in section Measurement accuracy 

and speed. To eliminate this issue, the validation tests are made using the tester clock frequency very 

close to clock frequency of the EUT (driven by arbitrary generator Tektronix AFG3102).  The tester clock 

frequency was 80.0206 MHz for the ECU with E-Ray controller and 80.0011 MHz for the ECU with 

Freescale controller. Pre-set values of particular measured parameters are chosen from interval of all 
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possible values. Global FlexRay controller’s settings are mentioned in Table 4 (with exception of 

measured parameters). Bus monitoring was done by Tektronix DPO4034 oscilloscope. 

Table 5 Selected experimental results 

Parameter Actual Value Measured on E-Ray Measured on Freescale 

gdCASRxLowMin 29 gdBit 29 gdBit 29 gdBit 

gdCASRxLowMax 64 | 83 | 120 gdBit 64 | 83 | 120 gdBit 64 | 83 | 120 gdBit 

pdListenTimeout [μT] 1926 | 401202 | 800000  1933 | 401211 | 800009  1934 | 401211 | 800010  

pdMicrotick 25 ns 25 ns 25 ns 

pClusterDriftDamping 1 | 3 | 10 μT 1 | 3 | 10 μT 1 | 3 | 10 μT 

pRateCorrectionOut 500 | 600 | 700 μT 499| 600 | 699 μT 500 | 599 | 700 μT 

 

Real measurement of parameters gdCASRxLowMin and gdCASRxLowMax shows that designed methods 

are able to identified actual values with bit level resolution precisely. Measurement of pdListenTimeout 

parameter after subtraction of CAS symbol length according to equation 4 contains an error of 10 μT or 

250 ns maximally. This error is caused by combination of three factors. They are the remaining 

difference in tester and EUT clock frequencies, delay in receiving path of controller and tester time 

stamping implementation. The practical impact of this error on result usability is nevertheless negligible. 

Methods for pdMicrotick and pClusterDriftDamping identification work fully within expectations. Vital 

evaluation pRateCorrectionOut works according to presumptions.   

Results of offset correction limits evaluation are summarized in the Table 6. Due to the limits 

represented by equations 9 and 10, two FlexRay network schedules were used. First schedule labelled as 

default setup is the setup previously mentioned in Table 4. Modified setup enables the full range 

measurement of permitted offset correction. Schedule of the static segment was changed to static slot 

length 100 MT, 30 static slots per communication cycle and action point offset 10 MT. 

Table 6 pOffsetCorrectionOut measurement (all values in T) 

Set Value Expected Measured on E-Ray Measured on Freescale 

pOffsetCorrectionOut  OC+ OC- OC+ OC- OC+ OC- 

1201Default setup 224 120 230 130 230 128 

1201 Modified setup 1201 400 1200 410 1201 410 

300 Modified setup 300 300 300 300 300 300 

Results correspond with presumptions with exception of static slot boundaries violation. Experiments 

demonstrate that the used controllers consider received frames valid approximately 10 μT before and 

after the defined static slot boundaries. All experimental results indicate that presented methods are 

able to evaluate critical parameters of a single FlexRay node.  

8. Measurement accuracy and speed 

Tester and EUT clock frequencies are never equal. There is always small difference between frequencies, 

usually few microticks per communication cycle in terms of FlexRay. Clock frequencies difference is 

necessary to take into account for presented parameters evaluation. It is assumed that difference of 

oscillator frequencies is at worst 1500 ppm from nominal value. This is the maximal permitted clock 

deviation according to standard [4]. For nominal 80 MHz clock frequency it is equal to deviation of up to 

120 kHz. Quality of used oscillator should be subject of special testing. 
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Test objective is to reveal EUT parameters values from communication controller registers; therefore it 

is necessary to know EUT actual clock frequency or minimize clock differences between the tester and 

the EUT. Our experiments were done using the second approach. Before the measurement the clock 

source (Tektronix AFG3102) was set as close to the EUT actual clock frequency as possible. The tester 

clock frequency setting was done using observation of tester rate and offset correction actual values. 

Achieved clock difference was better than 1 μT per communication cycle. Explanation can be found in 

paragraph about pdMicrotick measurement. According to [14] the short term stability the measurement 

methods rely on is usually not the issue. 

In the context of intended application measurement time is not critical. Moreover, it is short – typically 

in the range of few communication cycles. An overview of measurement times is stated to provide 

complete characteristics of the presented methods. Results are summarized in Tab. 7. Measurement 

time always depend on the parameter value and mostly on global network setup. Presented methods 

can be divided into two groups. Measurement algorithms from the first group work in a fixed number of 

steps. In the second group there are iterative algorithms, where the number of steps depends on 

parameter value and network setup. Measurement time estimation is provided in Tab. 7. in the column 

Approximate Time.  

Table 7 Overview of measurement duration 

Parameter Range Algorithm - number of 

steps 

Approximate Time 

pdListenTimeout [μT] 1926 – 2567692 μT fixed  2× pdListenTimeout 

cdCASRxLowMin + Max 

[gdBit] 

29 - 254 Depends on 

cdCASRxLowMax 

gdCASRxLowMax – 

cdCASRxLowMin  

pdListenTimeout  

gColdStartAttempt 2 - 31 Depends on 

gColdStartAttempt 

(5× pMicroPerCycle 

+ pdListenTimeout) × 

gColdStartAttempt 

pdMicrotick [ns] 12.5; 25; 50 Depend on clock 

difference 
1.25 s 

pClusterDriftDamping [μT] 0 - 10 Depend on 

pClusterDriftDamping 

pMicroPerCycle × 

pClusterDriftDamping 

× 2 

pOffsetCorrectionOut [μT] 15 - 16082 Fixed 2x pMicroPerCycle 

pRateCorrectionOut [μT] 3 - 3846 Depend on 

pRateCorrectionOut 

pRateCorrectionOut * 

2 * pMicroPerCycle 

 worst case time for experimental setup given in Tab. 4. 

9. Conclusion 

The aim of this work is to fill the gap in the area of FlexRay communication system available 

measurement and testing techniques. The paper proposes the novel complex set of methods for 

measurement of the data-link layer parameters of a FlexRay network node. Presented methods cover 

the parameters related to all three FlexRay node operational control states, i.e. the cluster wakeup, 

startup and normal operation. Individual measurement methods are described in detail; they were 

designed with respect to usability in a real world testing by means of a straightforward implementation 

and short execution time. Compared to the cited publications the new methods are based not only on 
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passive communication monitoring, but active stimuli are used as well. The validity of presented 

measurement methods is checked by experiments. Experiments have been conducted on real FlexRay 

ECUs based on two different FlexRay controller implementations (Freescale and Bosch E-Ray) to avoid 

implementation specific result. Commented experimental results with measurement setup and 

discussion of measurement accuracy are included. The experimental results prove the validity of all new 

methods. For pOffsetCorrectionOut measurement method, they simultaneously show its fundamental 

dependence on static slot configuration.  
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