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Abstract                                                                                                                                 

This thesis is aimed at the experimental evaluation of camera based ADAS system. With a 

major focus on cameras, a comprehensive overview of the currently used sensor technologies 

is presented, along with their concepts, types, and limitations. For the purpose of evaluating 

the experiment, photographs are shot at eight different sites in Prague city, both during the 

day and night. These images are examined using a proposed object detection algorithm. The 

experiment is designed with an emphasis on quantitative and qualitative measurement of 

data analysis. 

Keywords: Object detection, Computer Vision, Autonomous Vehicles, Sensors  
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1. Introduction 

The number of road traffic accidents is one of the world's major societal issues today. 

Accident reduction technologies are becoming increasingly important for automotive 

companies as consumers place a greater emphasis on safety. The development of driver 

assistance systems began with the introduction of the Anti-lock Braking System (ABS) into 

serial manufacturing in the late 1970s. Although Advanced Driver Assistance Systems 

(ADAS) cannot totally prevent accidents, they can better protect us from some of the human 

variables that cause most traffic incidents. Object detection is a critical issue for ADAS. 

Convolutional neural networks (CNN) have lately gained significant success in object 

detection, outperforming older algorithms that employ hand-engineered features. Popular 

CNN detectors, however, do not achieve very excellent object recognition accuracy because 

of the demanding driving environment e.g., huge object size variation, object occlusion, and 

poor lighting conditions. 

 

In recent years, there has been a substantial surge in research interest supporting the 

development of the autonomous vehicle, which is an automotive platform capable of 

perceiving and reacting to its immediate surroundings in an attempt to navigate roadways 

without human involvement. Object detection is one of the most important prerequisites to 

autonomous navigation in many autonomous driving systems, as it allows the car controller 

to account for obstacles when considering possible future trajectories; as a result, we need 

object detection algorithms that are as accurate as possible.  

 

The goal of this thesis is to analyze the fundamentals of currently utilized sensor 

technologies for such object detection, with a specific focus on visual sensors (cameras). 

This thesis also researches the environmental factors at work in the artificial intelligence 

industry, as well as their direct engagement in training big data models. The experiment 

model was then effectively designed to accommodate these findings by focusing on 

quantitative and qualitative analysis of the experimental data.  
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2. Sensor Overview 

Sensors are advanced systems that sense and respond to some kind of feedback from the 

physical world, converting it into an electrical signal that can be measured.  A sensor 

transforms a physical phenomenon into a digital signal (or, in some cases, an observable 

analog voltage), which is then displayed on a human-readable display or transmitted for 

further processing. It senses environmental changes and responds to any output on another 

system. The basic input may be light, heat, motion, humidity, pressure, or any of a variety 

of other environmental phenomena. The appropriate choice of a sensor is dependent on 

awareness of the application type, product variables, and operating environment conditions. 

Along with temperature, scale, safety class, and whether the sensor needs a discrete or analog 

input, sensor repetition accuracy, sensor reaction time, and sensing range are other factors 

taken into account during sensor selection. Choosing the right sensor for the appropriate 

application would aid in the most reliable and accurate optimization of the whole system. 

 

 Sensors are categorized as active, or passive based on their power requirements and 

mode of function. An active sensor is a sensing device that requires an external source of 

power to operate, whereas passive sensors simply detect and respond to some kind of 

feedback from the physical environment [9]. Active sensors emit energy to scan objects and 

locations, during which a sensor senses and analyses the radiation reflected or backscattered 

by the target. GPS, Radar and LiDAR are few examples of active sensor-based technologies, 

in which the time interval between emission and return is determined to evaluate an object's 

position, distance, and direction. Passive sensors produce power within themselves to run, 

which is why they are referred to as self-generating types. The quantity being calculated 

provides the energy required for operation. Passive sensors collect radiation produced or 

reflected by the target or its surroundings. The most frequent source of radiation detected by 

passive sensors is reflected sunlight. Film imaging, infrared, charge-coupled instruments, 

and radiometers are all examples of passive remote sensors.  

 

2.1 Radar Sensor  

Radar is an electromagnetic sensor that works by broadcasting radio waves out and then 

detecting reflections off of objects. The word RADAR stands for “Radio Detection and 

Ranging”. Radar is a detection device which uses radio waves to determine the range, angle, 

altitude or velocity of an object. These radio waves used in radar are equipped to travel well 

through air, fog, clouds, snow etc. The targets can be any moving objects such as automotive 

vehicles, people, animals, birds, insects or even rain. In addition to determining the presence, 

position, and velocity of such objects, radar can also obtain their size and shape.   

Radar is an active sensor which has a transmitter that acts as its own source of 

illumination to detect objects. Usually, it resides in the microwave region of the 

electromagnetic spectrum measured in hertz (cycles per second) at frequencies ranging from 

around 400 MHz to 40 GHz [2]. However, for long-range applications it is used at lower 

frequencies i.e., HF (high frequency; 3 MHz – 30 MHz) and also at infrared and optical 

frequencies. Depending on the range of frequency it uses, the physical size of a radar system 

can vary from the size of a palm to the size of a soccer field [1].  
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Radar waves travel through the air at almost the speed of light which is roughly 300,000 km 

per hour. The most commonly used radar releases a chain of intermittent pulses in order to 

detect the object and is often called the pulse radar. This power focused, high radio pulses 

propagate at a speed of light and are directed in one direction with the help of an antenna. 

The antenna works both as a transmitter and receiver with the use of a vital equipment called 

“duplexer” which is a part of the radar apparatus.  The duplexer performs the duty of 

swapping the antenna back and forth between transmitter and receiver. While the antenna is 

transmitting, it cannot receive and vice-versa. A radar antenna serves the purpose of 

concentrating or focusing, the radiated power in a small angular sector of space. The antenna 

is one of the most critical parts of the radar system. It transfers the transmitter energy from 

the transmitter to the environment with the necessary distribution and efficiency, while 

ensuring the signal has required pattern in space. And it provides the target position updates 

while on reception. Figure 1 shows the internal structure of a typical radar system.  

 

 

Figure 1. Block diagram of a typical radar system [8] 

Upon receiving the transmitted signal, radar then evaluates the distance of the object 

depending on the information received using the formula: 

                                                                     𝑑 =  
𝑐𝑇

2
                                                               (1) 

 

where, d is the distance to the target, c is the speed of propagation of waves and T is 

the time taken for the waves to complete the round-trip. With the potential to detect a moving 

or stationary object, radar’s major advantage over other sensors like LiDAR is its ability to 

function in adverse weather and lighting conditions. It also takes low power to radiate signals 

that are capable of penetrating insulators. However, its inability to tell a target’s color, 

internal aspects, or to recognize objects behind certain conducting sheets are its major 

downsides.  

 

2.1.1 Detection Principles 

The fundamental principle of radar operation is simple. The radar device transmits    

electromagnetic energy and analyzes the energy that is transmitted back to it by an object. It 

is a principle similar to that of an echo using short-wave microwaves instead of sound waves. 

When in contact with an object, the waves resound and thus, the distance and direction to 

the target can be accurately measured.  
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The measurement of an object’s range from a radar antenna can be determined by these 

properties of an electromagnetic waves:  

a) Reflection of Electromagnetic Waves 

The electromagnetic waves return as they land on the electrically conductive 

surface. If these waves are obtained back at the site of origin, this means that there 

is an obstruction in the direction of propagation. 

b) Constant Speed 

The electromagnetic waves travel through air at a constant at approximately the 

speed of light (300,000 km/s). This constant speed allows the distance between the 

reflected target and the radar site to be evaluated by calculating the running time of 

the emitted pulses.  

c) Direction of Travel 

The energy typically travels through a straight line, and only deviates due to 

atmospheric and weather conditions. By using radar antenna, this energy can be 

directed in a desired direction. This helps in knowing the azimuth and elevation of 

the target along with this its direction.  

 

The fundamental concepts described above can be used in the design and application of 

a fully operational radar system, which then enables the distance, orientation, and elevation 

of the reflected target to be calculated with precision. 

 

2.1.2 Performance 

The maximum range of a radar system depends largely on the average power of its 

transmitter and its antenna size. In common cases, where transmitter and receiver are at the 

same location, the power returning to the receiving antenna can be defined by the equation: 

 

                                                          𝑃𝑟 =  
𝑃𝑡𝐺𝑡𝐴𝑟𝜎𝐹4

(4𝜋)2𝑅4                                                   (2) 

where, 𝑃𝑡  – transmitter power 

 𝐺𝑡 – gain of the transmitting antenna  

 𝐴𝑟 – effective aperture of the receiving antenna  

𝑅  – is the range (total distance from the transmitter to target and target back to 

receiver)  

 𝜎   – radar cross section, or scattering coefficient of the target 

 𝐹   – pattern propagation factor  

  

The equation (2) indicates that the received power decreases as the fourth power of the 

range, which means that the received power from distant targets is comparatively weak. 

Some of the limiting factors that affect the performance of a radar in its environment include 

its beam path and range, signal noise or interference, clutter and jamming. 

 

2.1.3 Power Limitations 

Depending on the application, the radar system comes in different forms of shape, 

size and range of frequency. The frequency of a long-range surveillance radar can be 
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somewhere from 50-1000 MHz, when systems used for moderate-range and marine purposes 

utilizes a range of 2-4 GHz to 8-12 GHz, respectively [1].  

The radiofrequency (RF) used in some radar systems are limited due to its human-

environment hazards as well as bad interferences caused to other equipment used in fields 

like radio astronomy. Frequent exposure to these kind of radar frequencies can cause harmful 

effect on human beings as well as other living organisms. If this radiofrequency radiation is 

absorbed by human body in excessive amounts, it can generate heat. This can lead to burns 

and body damage. For the same reason, the radar systems used in automobiles are regulated 

to a certain level of frequency and power by governments. Regulation specifies to decrease 

the power of radars when the vehicle on which radar is mounted to is stopped, or not moving. 

The power density should be below the threshold limit of 1 mW/cm adopted to human 

exposure level to RF radiation [15]. In the EU, the automotive radar system is limited to 

77GHz to 81 GHz (79 GHz). 

 

2.1.4 Signal Attenuation 

The reduction or lack of signal strength is generally known as signal attenuation. 

Attenuation happens as the signal is transmitted through the medium which may be affected 

by different factors, such as atmospheric conditions and propagation route barriers, resulting 

in a smaller detection range. 

Radar loses some of its strength while it travels through the atmosphere. The atmosphere 

induces losses in radar signal propagation due to atmospheric attenuation, and spread of 

beams [11]. The analysis shows, the greatest influence of all the causes in attenuation is 

atmospheric gases and rain [12]. This attenuation generally occurs due to atmospheric gases 

like oxygen and water vapor including fog and rain. The attenuation of radio waves in the 

atmosphere, Latm, needs to be calculated in order to measure the detecting wavelength. This 

attenuation is defined by the following formula: 

 

                                            𝐿𝑎𝑡𝑚 = 2 ∙  𝐷𝑎𝑡𝑚  ∙  (𝛾𝑔 + 𝛾𝑅)                                                    (3) 

where,  𝛾𝑔:    specific attenuation due to atmospheric gases (dB/km) 

             𝛾𝑅:    specific attenuation due to rain (dB/km) 

 𝐷𝑎𝑡𝑚:    target detection distance in the Earth’s atmosphere 

From equation (3), it is clear that the atmospheric attenuation is directly proportional to the 

intensity of rain and atmospheric gases.    

Along with the attenuation caused by weather conditions, the radars used in automobiles 

are subjected to material attenuation. Automobile radars are usually integrated behind an 

emblem or bumper. The radiofrequency (RF) transmission loss of the radome material 

attenuates twice since the signal has to pass through the material on the way to target and 

on the way back, producing reduced detection range [13]. Radomes are large dome-shaped 

structures that shield radars from bad weather, but at the same time allow electromagnetic 

signals to be obtained by radar without any interference or attenuation [14]. The reflectivity 
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and uniformity of the radome material is also an important factor that impairs radar 

performance. For instance, metallic particles in paint can create reflections, and an RF 

mismatch in the base material can produce interference signals within the radome, near the 

sensor [13]. These interference signals are received and downturned in the receiver chain, 

reducing the detection sensitivity of the radar. Many car manufactures aim to minimize this 

effect by tilting the radome so that the transmitted radar signal is mirrored elsewhere and 

not directly back to the front end of the receiver. 

2.1.5 SNR 

In signal processing, noise is a general term for unintended (and usually unknown) 

changes that the signal may suffer during recording, storage, delivery, processing or 

conversion [22]. Noise usually occurs as unpredictable deviations superimposed on the ideal 

echo signal received by the radar receiver. The lower the power of the desired signal, the 

more difficult it is to separate it from the noise. 

 

SNR is a ratio that determines the difference in level between the signal and the noise within 

a desired signal, often expressed in decibels [dB]. The lower the noise produced by the 

receiver, the higher the ratio of signal to noise. In radars, signal to noise ratio, SNR or S/N 

is a method of measuring the sensitivity of the radio receiver [21]. SNR in general can be 

defined as:  

                   𝑆𝑁𝑅 =  
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
                                                                   (4) 

 

where, P is the average power in 𝑃𝑠𝑖𝑔𝑛𝑎𝑙  and  𝑃𝑛𝑜𝑖𝑠𝑒 . According to the equation, the higher a 

radar system's SNR, the better it is at distinguishing actual targets from noise signals. It is 

also important to ensure that all signal and noise are measured at the same or equivalent 

point in the device and within the same circuit bandwidth [21]. Noise floor is another 

measure of performance that affect range performance.  It can be defined as a measure of the 

signal generated by the sum of all noise sources and unwanted signals inside the device. A 

target that’s too far away generates too little signal to surpass the noise floor and cannot be 

detected. Detection thus requires a signal that exceeds the noise floor by at least the signal 

to noise ratio.  

 

2.2 LiDAR Sensor 

LiDAR, an acronym for “Light Detection and Ranging” and “Laser imaging Detection 

and Ranging” is a type of sensor used to detect its surroundings. Typically, a LiDAR sensor 

emits pulsed light waves into the surrounding environment which bounce off from the 

objects and return to the sensor.  It emits usually up to 150, 000 pulses of laser light of either 

visible ultra-violet or near infrared light at the targets. The sensor then uses the time it took 

for each pulse to return to the sensor to calculate the distance it travelled. Like radar, the 

distance is then computed using equation (1). 

 

A LiDAR is an active system which generates its own energy – in this case, light – to 

measure things in its vicinity. Its rapidly firing light beams using visible, near infrared or 
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ultra-violet light to map out the environment around it. It can then get both the sense of 

physical dimension and motion of the object it falls on to. Traditional LiDAR units use lasers 

at wavelength 905 nanometers [5]. The pulsed lasers track the time it takes at nano second 

speed for the signal to return to its source. This allows the LiDAR to produce a 3D model of 

the surface or object. A LiDAR system consists of four main components: a transmitter for 

transmitting laser pulses, a receiver for intercepting pulse echoes, an optical analysis system 

for processing input data, and a powerful computer for visualizing a live, three-dimensional 

image of the system environment. Photodetector and optics are elements that play a vital role 

in data collection and analysis in the LiDAR system [3]. A full LiDAR system can include 

other main components such as phased arrays and microelectromechanical devices. All of 

these elements work together to provide a 3D representation of the target. 

 

 

               Figure 2. LiDAR on a latest smartphone [17] 

Based on the platform it used there are mainly two types of LiDAR systems: Airborne 

LiDAR and Terrestrial LiDAR. Airborne LiDAR is installed on drones and helicopters to 

collect data from the ground surface while the terrestrial LiDAR is the system implemented 

in moving vehicles or tripods to collect data points. Today, LiDAR is even installed in some 

modern smartphones which makes photography more efficient and precise and also, 

enhances the capabilities of augmented reality. In the case of self-driving cars, LiDAR is 

used to generate 3D maps in which the car can navigate. Using shorter wavelength laser 

lights, it is capable to precisely measure much smaller objects. Its major advantage is 

accuracy and precision.  

 

2.2.1 Detection principles 

  The LiDAR sensor senses targets and measures some of the characteristics of the 

targets, such as distance, speed, reflectivity, angular location. The LiDAR device uses laser 

beams of chosen wavelength from the ultraviolet to the infrared spectrum. The laser-

composed emitter sends light pulses and sets a timer. Objects in the LiDAR Field of View 

(FOV) reflects these light pulses back to the detector, which consists of an electro-optical 

system that converts the light signal into an electrical signal. The quantum efficiency of the 

detector relates to how effectively the photoelectric detector converts the received photons 

obtained from the event into power electronics. The optical efficiency of the receiver relates 

to the percentage of the light obtained that goes into the optical aperture, including the 

spectral filter [25]. In most LiDAR devices, a spectral filter is used to exclude incoming light 
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outside a specific spectral band centered at the wavelength of the laser.  The converted 

electrical signal is then interpreted by an electronic chain to acquire target information [16]. 

The observed target would then appear as a point cloud in the LiDAR monitor. When several 

laser transmitters are combined, monitoring capacities are massively expanded, acquiring 

millions of individual reflection points simultaneously.  

 

2.2.2 Performance 

 Laser radar signal produced by the laser launches to the atmosphere. The target 

reflects back the signals and gets into the laser receiving system, after travelling back through 

the atmosphere. Laser radar power at that time can be defined as: 

 

      𝑃𝑟 =  𝐺𝑑 𝜂𝑠𝜂𝑞𝜂𝑟𝑃𝑡𝐴Δ/(𝑅2Ωlaser) 𝐴r/(𝑅2Ωt)𝑇𝑎𝑡𝑚
2               (4) 

 

 where,  𝑃𝑟  – is the instantaneous value of the echo-signal powered at wavelength 𝜆, 𝐺𝑑 – is 

the receiver gain,  𝜂𝑠 – is the optical efficiency, 𝜂𝑞  – is the detector quantum efficiency, 𝜂𝑟 

– is the reception efficiency, 𝑃𝑡 – is the laser emission power, 𝐴Δ – is the effective area of 

the target reflection aperture,  𝐴r – is the area of receiving aperture, Ωlaser – is the solid angle 

of the laser beam, Ωr – is the solid angle of the echo laser beam, 𝑅  – is the current range, 

Tatm – is the atmospheric transmittance coefficient.  

 

2.2.3 Power Limitations 

  Like all autonomous technologies, LiDAR also comes with its downfall. One key 

limitation of LiDAR sensors is that it cannot see beyond solid objects, which is true for any 

system that relies on signals travelling in a straight line [4]. If the system is obscured with 

anything in close range, a huge amount of data is lost. Likewise, adverse weather conditions 

and clashing signals from other systems are also not favorable for LiDAR’s function. It is 

also unclear what so much laser activity would do to other biological and mechanical 

systems in the environment. For example, Luminar a tech company, works on a LiDAR 

system that operates at 1550 nm versus the traditional 905 nm, and there are claims that it 

could potentially damage the human eye cornea [5]. 

 

A tracking microwave (X-band) radar has a frequency of 10 GHz which corresponds to 

a wavelength of 3 cm and a typical search (L-band) radar has a frequency of 1 GHz and a 

wavelength of 30 cm [18]. A typical eye-safe LiDAR will have a frequency of 200 THz and 

a wavelength of 1.5 𝜇m which is 20, 000 times smaller than the wavelength of a X-band 

tracking radar and 200, 000 smaller that the L-band search radar. Laser radiation can damage 

the eye by burning the retina after magnification, or by burning the surface of the eye. Lasers 

of greater than ~1.5 𝜇m or less than than 0.4 𝜇m are better because the water in the eye 

absorbs wavelengths in these areas, restricting light from concentrating on the retina [18].  It 

is common for LiDAR to operate at 1.5 𝜇m or longer and it rarely operates below 0.4 𝜇m. 

The traditional LiDAR used for ADAS system in automobiles utilizes a wavelength of 905 

nm accounting for the human eye-safety threshold.  
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Depending on the application, cost can also be a consideration when selecting a LiDAR 

system. The major setback of implementing LiDAR system in modern self-driving 

technology is its cost. Google’s system originally costs up to $75,000 [5]. Even though 

companies like Luminar and Velodyne are bringing down the price range from $100 to 

$1000, the real question lies on how many of these sensors each car or system needs in 

order to get the desired result. Its inability to read words, recognize colors, and its relatively 

large physical size also adds up to its downfalls, where typical cameras usually excel. The 

major benefit and distinction of LiDAR over radar is that the beam divergence or how fast 

the beam spreads when the distance is much smaller. 

 

2.2.4 Signal Attenuation 

Similar to radar, LiDAR drops its signal strength as the signal makes its way back to 

the sensor. Reflection, diffraction, absorption in various climatic conditions are the few 

causes for this reduction in signal power. 

Target reflectivity, the difference in the material of a target, reflects the laser light in 

varying intensities. For instance, a car has a windshield made of glass, body made of metal 

and bumpers with plastic. It is experienced that the signal to noise values for the car body is 

greater for a set distance relative to the windshield and bumper [16]. Objects like metal can 

be seen at a longer distance compared to less reflective material. Weather effects are other 

reasons that impairs the LiDAR detection range. Moist air acts as a screen for the infrared 

radiation. Both fog and rain minimize the laser intensity by absorption and diffusion of the 

laser beam by tiny water droplets. Fog and rain then serve as a screen on LiDAR sensors that 

restrict their capabilities and range of detection. Glaring sun that dazzles the LiDAR during 

the daytime can also factor in laser energy attenuation. The signal-to-noise ratio (SNR) of 

LiDAR equation backscattering is often attenuated by noise and interference such as 

nonlinear turbulence, background noise, dark current, electronic noise readout and 

atmospheric turbulence [24]. Target signals get polluted with the noise and affect the 

effective working range and target precision. 

 

2.3 Flash LiDAR 

LiDAR can be mainly divided into two based on the illumination method, scanning 

LiDAR and Flash LiDAR. Flash LiDAR is a method of implementation under Solid-state 

Lidars [7].  While convectional scanner LiDAR uses mechanical rotation to spin the sensor 

for 360-degree detection, Flash LiDAR does not move the laser or light all. It functions like 

a camera, delivering a flash light to detect the entire surrounding area at once, and processing 

the details using an image sensor. Figure 3 shows multiple 3D flash LiDAR sensors used 

around a car for its 360o coverage.  
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Figure 3. 3D Flash Lidar units providing 360° coverage [10] 

As this method captures the entire scene in a single image as opposed to mechanical 

scanners, data acquisition is much faster. Also, it utilizes only a single flash to capture the 

entire image. Thus, making the images immune to distortion caused by vibration effects. A 

downside to this method is retroreflectors. Retroreflectors reflect most of the light in 

different directions and have minimal back scatter, hence blinding the entire sensor and 

rendering it useless [7]. Even though the light source of Flash Lidar is more powerful, the 

detecting distance and field of view is much lower compared to normal scanning LiDAR.  

3. Camera 

This chapter focuses on analyzing the principles of camera, which is one of the main 

objectives of this paper. A camera is an optical instrument or device that has the ability to 

capture and record both pictures and videos. Essentially, light rays bounce in different 

directions, and when all these light rays come together on a digital camera sensor, they create 

an image [6]. The lens of the camera takes all the light rays that bounce around and uses a 

glass to redirect them to a single point, producing a sharp image. 

Today, cameras are available in all kinds of forms ranging from a button size to 

professional hand-held camera. They’re utilized in various applications from surveillance to 

autonomous driving. The main internal components of a camera include multiple sensors, a 

shutter, mirror, pentaprism, diaphragm and a CPU to process the image. Cameras with 

advanced capabilities can be seen in almost every smartphone today. Similar to human 

vision, cameras in autonomous cars utilizes the same feature available in modern cameras. 

Using multiple cameras, the surrounding of the car is visualized and processed back to its 

CPU providing a better understanding of the environment around it and the information 

necessary to assist in autonomous driving.  

 

Resembling a solar panel, a modern digital camera’s sensor is divided up to millions of 

red, green and blue pixels i.e., megapixels. The sensor converts it into energy when light hits 

the pixel and a built-in computer reads just how much energy is being generated. Measuring 

how much energy each pixel has, enables the sensor to determine which areas of the picture 

are light or dark [6]. Using each pixel’s color value, a camera’s computer is able to assess 

the colors in the scene by looking what other nearby pixels are recorded. Gathering all the 

pixels together, the computer is able to estimate the approximate color and shape in the 
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scene. Since each pixel is gathering light information, having a larger sensor helps in packing 

numerous megapixels and thus, making high resolution low-light images possible. 

 

Cameras are much less expensive compared to LiDAR-like systems and essentially help 

bring down the cost of self-driving cars for the end-consumers. The availability of the 

cameras in the market in different forms makes it easier to incorporate it into the design of 

the car making it more appealing to the customers. Unlike both radar and LiDAR systems, 

it can also interpret the color, words, and street signs on the road. Just like human eyes, the 

main drawback of cameras is the change in lighting conditions where the subject matter 

becomes obfuscated. Situations like strong shadows, bright lights from the sun or oncoming 

cars can cause confusion. Its strong dependency on powerful machine or deep learning to 

interpret the exact distance, location or position of an object only using its raw image data 

makes it difficult to implement, as opposed to sensors like radar and LiDAR. It is one of the 

reasons why automotive companies like Tesla use a combination of both cameras and radars 

to make self-driving possible.   

 

3.1 Detection Principles   

A digital image, which is simply an array of numbers with each number representing a 

brightness value, or grey-level value, for each picture element, or pixel, is created by a chain 

of physical events. This physical chain of events is called an “imaging chain”. Understanding 

the physical process that produces an image helps in clarifying many questions about the 

quality of the image and its limitations. The physical process of producing an image can be 

broken down into the individual steps that bind together to create the imaging chain. By 

modeling the links mathematically in the image chain and analyzing the device as a whole, 

the relationships between the links and the consistency of the final image product can be 

known, thereby reducing the probability that the camera will not meet standards when it is 

operational. Modeling and analyzing the end-to-end image creation process from scene 

radiometry to image display is crucial to understanding the device parameters required to 

achieve the optimal image quality. 

 

The imaging chain, the method by which the image is created and viewed can be defined as 

a sequence of physical events, i.e., beginning with the light source and ending with the 

display of the image produced. The key links of the imaging chain are the radiometry, the 

camera, the processing, the display, and the image perception [33]. A block diagram of the 

image chain is shown in Figure 5.  

 

 

Figure 4. Imaging chain model [33] 
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Mathematical models representing the image chain can be used to simulate the real images 

that the camera would generate when it is built. This is a very helpful and valuable 

application of the imaging chain, since it helps the image content to be visualized during the 

design process and can detect design flaws before the hardware development costs are 

incurred. It can also help identify the image quality differences between different designs to 

help us understand how the images will be processed, displayed and interpreted. Many 

objects, such as waves, points, and circles, have basic mathematical representations that will 

prove very useful for mathematically modeling the image chain. A simple one-dimensional 

wave stationary in time, can be represented by the cosine function with amplitude A, 

wavelength 𝜆, and phase 𝜙: 

 

      𝑓(𝑥) = 𝐴𝑐𝑜𝑠(2𝜋
𝑥

𝜆
− 𝜙) = 𝐴𝑐𝑜𝑠(2𝜋𝜉0𝑥 − 𝜙)           (5) 

where, 𝜉0   is the spatial frequency of the wave, i.e., the number of cycles that occur per unit 

distance. 

 

i. Radiometry 

Radiometry is the science of measuring electromagnetic radiation with a set of 

techniques including visible light. These techniques in optics characterize the propagation 

of radiation power in space, as opposed to photometric techniques that characterize the 

contact of light with the human eye [32]. The radiometry of the imaging chain is very 

important since this radiometry defines the energy that the camera "senses" to generate the 

final image that we see and determines the strength of the signal that will be generated by 

the sensor. It describes the light that enters the camera in the imaging chain. The energy 

recorded by the camera is in the form of electromagnetic radiation, a self-propagating wave 

composed of oscillating electrical and magnetic fields produced by the acceleration of 

charged particles. For electromagnetic waves, the relationship between the wavelength and 

frequency is given by: 

                                                          𝑐 =  𝜆𝑣                                     (6) 

 

where, c =  2.9979 x 108 m/s, the speed of electromagnetic waves in vacuum. Digital 

cameras designed to form images falls under the visible region of the spectrum within a 

range of 0.4 - 0.8 𝜇𝑚.  

 

In the scope of electromagnetic waves in the visible spectrum, the amplitude determines the 

brightness and the frequency determines the colour. It is then much more straightforward to 

represent a propagating wave mathematically: 

 

                                         𝐸(𝑥, 𝑡) = 𝐴𝑒2𝜋𝑖(
𝑥

𝜆
−𝑣𝑡)−𝜙  =  𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡)−𝜙                               (7) 

Where, 𝑘 =  
2𝜋

𝑥
 and 𝜔 = 2𝜋𝑣. This function is related to cosine and sine waves by the Euler 

relation: 

                                                𝑒2𝜋𝑖𝑥 = cos(2𝜋𝑥) + 𝑖𝑠𝑖𝑛(2𝜋𝑥)                                  (8) 
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ii. Optics 

The optical components of the camera shape the electromagnetic radiation of the image 

generated by the sensor. Modeling the propagation of electrometric waves through optical 

elements is key to understanding the accuracy of the image that is produced. In the radiance 

of the image, photons are released in multiple directions from light sources or are dispersed 

in several directions. The lens absorbs these divergent rays in such a way that they converge 

to the irradiance image on the sensor surface. In radiometry, irradiance is the radiant flux 

(optical power) received by a surface per unit area whereas, radiance (brightness) is the 

radiant flux emitted, transmitted or received by a given surface, per unit solid angle, per unit 

projected area [32]. 

Optical irradiance, the irradiance image at the sensor surface prior to capture, can be 

computed by accounting for a number of factors like, the lens f-number, magnification, 

relative illumination, fall-off in intensity with lens field height and by blurring the optical 

irradiance image by different methods [35]. The camera equation specifies a basic model for 

translating the scene radiance function, 𝐿𝑠𝑐𝑒𝑛𝑒, to the optical irradiance region of the sensor, 

I. The equation of the camera is: 

 

                                           𝐼𝑖𝑚𝑎𝑔𝑒(𝑥, 𝑦, 𝜆) ≅  
𝜋𝑇(𝜆)

4(𝑓/#)2 𝐿𝑠𝑐𝑒𝑛𝑒(
𝑥

𝑚
,

𝑦

𝑚
, 𝜆)                                 (9) 

 

where, the term f/# is the effective f-number of the lens (focal length divided by the effective 

aperture), m is the magnification of the lens, and 𝑇(𝜆) is the transmissivity of the lens. The 

camera equation maintains the center of the image with fair accuracy (i.e., on the optical 

axis). 

 

iii. Digital Sensor  

The camera sensor senses the light shaped by the optics to produce a record of the image. 

Image sensors convert the optical irradiance image into a two-dimensional array of voltage 

samples, one sample per pixel. Each sample is linked to the position in the image space. 

Generally, pixel locations are arranged in order to form a regular, two-dimensional sampling 

array to match the spatial sampling grids of common output devices.  

 

In most digital image sensors, the transmission of photons to electrons is linear: precisely, 

the photodetector (either CCD or CMOS) reaction increases linearly with the number of 

incident photons. The photodetector wavelength sensitivity can differ depending on the 

material properties of the silicon substrate, such as its thickness. But even so, the response 

is linear in that the detector adds up the response across wavelengths. Ignoring system 

imperfections and noise,  the number of electrons can be rounded up around the aperture and 

wavelength spectrum for the ith photodetector and can be written as: 

 

                                               ∬ 𝑆𝑖(𝜆) 𝐴𝑖(𝑥) 𝐼(𝜆, 𝑥) 𝑑𝜆𝑑𝑥
𝜆,𝑥

                                             (10) 

where, the mean reaction of the photodetector to the irradiance image (𝐼(𝜆, 𝑥), 

photons/sec/nm/m2) is determined by the quantum spectral efficiency of the sensor (𝑆(𝜆), e-

/photon), the aperture function over space 𝐴𝑖(𝑥), and the exposure period (T, sec).  
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The key part of a digital camera is its sensor. The sensor is crucial in deciding the image 

size, resolution, low light performance, field depth, dynamic range, lenses, as well as the 

actual scale of the camera. The image sensor is a solid-state unit, part of the camera hardware 

that absorbs light and transforms what it sees to an image. The sensor consists of millions of 

cavities called photosites. The number of photosites is equal to the number of pixels the 

camera has. These photosites open when the shutter opens and shuts when the exposure is 

over. The photons that strike each photosite are perceived as electrical signals that differ in 

intensity depending on how many photons were actually recorded in the cavity. Simply said, 

the sensor operates as the shutter opens and absorbs the photons that strike it and transforms 

it to an electrical signal that the processor in the camera reads and interprets as colors. This 

detail is then stitched together to create an image. 

 

A modern digital camera sensor is typically available in one of two types. It is either a 

Complementary Metal Oxide Semiconductor (CMOS) or a Charge Coupled Device (CCD) 

sensor [27]. Sensors of both types turn light into electric charge and then transform it into 

electronic signals. Every pixel's charge is transported through a relatively restricted number 

of output nodes (typically just one) in a CCD sensor before being converted to voltage, 

buffered, and delivered off-chip as an analog signal [74]. The entire pixel may be dedicated 

to light capture, and the output is consistent which is a key factor in image quality. In a 

CMOS sensor, each pixel has its own charge-to-voltage conversion, and the sensor generally 

contains amplifiers, noise-correction, and digitization circuits, allowing the chip to produce 

digital bits. These additional functionalities complicate the design and diminish the space 

available for light collection. With each pixel performing its own conversion, uniformity 

suffers, but it is also massively parallel, allowing for great overall bandwidth and speed. 

CMOS are widely used in today’s modern digital cameras. Each sensor has distinct strengths 

and limitations that provide advantages in certain applications. 

 
Figure 5. CMOS camera layout [28] 

In a camera, as the image sensor receives incident light (photons) which are focused 

through the lens or other optics, depending on if the sensor is CCD or CMOS, the information 

would be passed to the next level as either a voltage or a digital signal [28]. Figure 5 is a 

schematic of a CMOS sensor which transforms photons to electrons, then to a voltage, and 

then to a digital value using an on-chip Analog-to-Digital converter (A/D). 
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iv. Image processing  

The digital sensor output is a "raw" digital image composed of an array of digital count 

values reflecting the brightness, or gray level, of a pixel in the image for each value. Image 

processing is commonly used in the image chain to increase the quality of image data. It is 

a broad field that comprises of feature detection, compression and classification [36].  

The camera acquires knowledge about the visual scene by first focusing and 

transmitting light through the optical device and then using an image sensor and an analog-

to-digital (A/D) converter to sample the visual information. The exposure control 

mechanism adjusts the aperture size and the shutter speed based on the measured energy in 

the sensor by communicating with the gain controller to collect sensor values using a CCD 

or a CMOS sensor [37]. After an A/D conversion, various preprocessing operations are 

conducted on the acquired image data such as linearization, dark current compensation, flare 

compensation and white balance [38]. The aim of preprocessing is to remove noise and 

artifacts, eliminate flawed pixels, and create a precise representation of the scene captured. 

The image processing is used to perform estimation and interpolation operations on the 

sensor values after the sensor image data is preprocessed, in order to recreate the image's 

complete color representation and/or change its spatial resolution. Conventional digital 

cameras can be differentiated as three-sensor and single-sensor devices, based on the number 

of sensors used in the camera hardware [40]. Imaging pipeline of a single sensor device is 

shown in Figure 6.  

 

 
Figure 6. A single sensor imaging device [40] 

 

The form of the CFA used in the imaging chain depends on the complexity and actual form 

of image processing operations. A color filter array (CFA) or color filter mosaic (CFM) in 

digital imaging is a mosaic of tiny color filters mounted over an image sensor's pixel sensors 

to capture color detail [39].  

 
Figure 7. CFA based image acquisition [40] 

 

Each pixel of the raw CFA sensor image has its own spectrally selective filter in the single-

sensor imaging pipeline. The most commonly used color filters are RGB CFAs with 

alternative solutions including arrays constructed using Cyan-Magenta-Yellow (CMY) and 

other complementary colors. Among these, the Bayer pattern is widely used because of the 

ease of subsequent processing steps. Compared to R or B parts, this pattern comprises twice 

as many G parts, reflecting the fact that the spectral response of Green filters is similar to 

the luminance response of the human visual system [41]. 
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Numerous image processing operations is performed in the camera pipeline after the 

CFA image is obtained. A technique called demosaicking or CFA interpolation is the most 

important step in a single-sensor imaging pipeline [40]. Usually, each pixel in the image of 

the sensor is red, green or blue. To view an image, each pixel must have a red, green and 

blue value. By interpolating the missing values, the display image from the sensor pixel 

mosaic can be build. This method of interpolation is called "demosaicking" [35]. In one 

dimension, the interpolation of a missing value is given by the function: 

 

                 𝑓(𝑥) =  ∑ 𝑓(𝑛∆𝑥)ℎ𝑖𝑛𝑡𝑒𝑟𝑝(𝑥 − 𝑛∆𝑥)  =  𝑓(𝑥) ∗ ℎ𝑖𝑛𝑡𝑒𝑟𝑝(𝑥) ∞
𝑛= −∞                   (11) 

 

where, ∆𝑥 is the sampling interval and ℎ𝑖𝑛𝑡𝑒𝑟𝑝(𝑥) is the interpolation function [33].  

 

 
Figure 8. An illustration of color filter array (CFA) sampling [35] 

Each pixel captures information about only one colour band. Figure 8 shows, (a) A cropped 

image from a Mackay ray chart, (b-d) the red, green, and blue CFA samples, respectively, 

from a Bayer CFA. Demosaicking algorithms rely on a wide variety of techniques for signal 

processing. The similarity of all these camera image processing techniques along with 

limited resources for single-sensor imaging devices, suggests that the objective is to unify 

these processing steps in order to provide the end-user with an integrated, cost-effective, 

imaging solution.  

 

v. Display  

The display media will modify the content of the depicted image, while the original data 

recorded by the camera remains unchanged. Generally, the user has control over the image 

quality associated with viewing the images on the display and has the ability to optimize the 

quality with adequate lighting and calibration. Modeling the display component of the image 

chain involves knowledge of the display device that will be used, i.e. encoding, video card, 

and monitor parameters, in order to accurately model the blurring, contrast, and brightness 

effects that will be placed on the image. 

A great deal of time and cost can be invested in a camera to capture high-resolution 

pictures, but if the quality of the display device is low, then all the effort may be in vain. The 

primary image-quality considerations for the show are resolution, contrast, and brightness. 

The transfer function of the cathode ray tube (CRT) monitor can be modeled as the Fourier 

transform of the Gaussian spot that approximates the brightness profile of the pixel shown 

[42]. Assuming radial symmetry, the display transfer function is given by: 

                                            𝐻𝑑𝑖𝑠𝑝𝑙𝑎𝑦−𝐶𝑅𝑇 (𝜌) =  𝑒−2𝜋2𝜎𝑠𝑝𝑜𝑡
2 𝜌2

                                          (12) 
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where, 𝜎𝑠𝑝𝑜𝑡   is the standard deviation of the Gaussian spot. Flat panel displays, such as a 

liquid crystal display (LCD), have rectangular profiles, so the transfer function is given by: 

 

               𝐻𝑑𝑖𝑠𝑝𝑙𝑎𝑦−𝑓𝑙𝑎𝑡 𝑝𝑎𝑛𝑒𝑙 (𝜉, 𝜂) = 𝑠𝑖𝑛𝑐(𝑑𝑥𝜉, 𝑑𝑦𝜂) =  
sin (𝜋𝑑𝑥𝜉)

𝜋𝑑𝑥𝜉
 
sin (𝜋𝑑𝑦𝜂)

𝜋𝑑𝑦𝜂
                 (13) 

 

 where, 𝑑𝑥and 𝑑𝑦  are the widths of the pixel elements in the x and y directions, respectively.  

 

In reality, each pixel on a color display consists of a cluster of three separate color pixels 

(red, green, and blue) that our eye physically combines to see the color it desires. Color 

displays usually have reduced resolution, i.e., transfer functions that blur the image more 

due to the spatial distribution of three pixels relative to a single pixel on a monochrome 

display. 

 

vi. Image Interpretation  

Understanding how the image will be perceived and interpreted is the final stage of the 

image chain. But this understanding affects the design of the other elements of the image 

chain. The visual interpretation of an image can be performed both by human and a 

computer. For example, the intended use of the image could be for automatic detection 

algorithms like the ones employed in autonomous vehicle. Here, the image is not for viewing 

at all, in which case the optimum configuration of the image chain is likely to be different 

from that designed for viewing the images. 

The Human Visual System (HVS) can be modeled and treated as an imaging chain 

to get a better understanding of the image interpretation by a viewer. Starting with the 

radiometry from the image monitor, then replacing the eye with the camera, the brain with 

the image processor, and the cognitive visualization of the image with the display. The eye 

pupil functions as the camera opening; thus, the optical transfer function (OTF) for the eye 

can be modeled as a Gaussian function that depends on the size of the pupil, i.e.,: 

 

                                                       𝐻𝑒𝑦𝑒−𝑜𝑝𝑡𝑖𝑐𝑠 (𝜌) =  𝑒−2𝜋2𝜎𝑒𝑦𝑒
2 𝜌2

                                   (14) 

where,                         

 

       𝜎𝑒𝑦𝑒 =  √𝜎0
2 + (𝐶𝑎𝑏 𝑑𝑝𝑢𝑝𝑖𝑙)2                                             (15) 

 

with, 𝜌 in units of cycles/deg. The parameters  𝜎0 and 𝐶𝑎𝑏  are constants, and 𝑑𝑝𝑢𝑝𝑖𝑙   is the 

diameter of the pupil. 

 

3.2 Signal Attenuation 

A standard camera image loses its clarity and contrast along the periphery due to optical 

attenuation. Bad weather - particularly heavy rain and snow are mainly the reason for poor 

image or weak signal in a camera system. Cameras have similar limitations as human eye. 

In other word their “vision” is impaired by poor lighting or adverse weather conditions like 

heavy snowfall/rain, swirling dust/snow, dense fog etc. Strong sunshine, road surface 

reflections, ice or snow covering the road, a dirty road surface, or obscure lane markings can 
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dramatically reduce the ability of the camera to detect the side of a lane, a pedestrian, a 

bicycle, a large animal or another vehicle. These conditions can reduce the operation of 

camera-dependent systems or cause these systems to temporarily stop working. 

 

As the light passes through the lens and reaches the image sensor, the light waves 

undergo diffraction and interference which also ultimately influence the quality of the image. 

Diffraction refers to the spreading of waves around obstacles. Diffraction is a result of 

interference, which in physics, is the net effect of the convergence of two or more wave 

trains on the intersection or coincidental path. Diffraction happens to all which have 

wavelike properties like sound, electric radiation, such as light, x-ray, and gamma rays; and 

with extremely small moving particles, such as atoms, neutrons, and electrons [29]. 

Diffraction of light happens as a light wave travels around a corner or through an aperture 

or a slit that is physically approximate in size or much less than the wavelength of the light. 

Lens diffraction in camera occurs as the light starts to scatter or diffract when going through 

a tiny opening such as the camera’s aperture. Light rays entering through the narrow aperture 

will begin to diverge and interfere with each other. These divergent rays then travel various 

lengths, others shift out of phase and tend to interact with each other— adding in some areas 

partly or totally and cancelling out in others. This interference results in a diffraction pattern 

with peak intensities where the amplitude of the light waves adds, and less light where they 

deduct. Resolution is the smallest measurement that can be accurately distinguished by a 

sensor. In any electronic device that measures minor voltage changes, electrical noise is the 

overriding factor that restricts the smallest possible measurement [20]. Electrical noise 

creates graininess in images captured by the camera, and it becomes impossible to see small 

objects if the objects are the same as the noise induced granularity.  

 

3.3 SNR 

Signal to noise ratio is used to determine the sensitivity of a camera and how they 

perform at different light regimes. A number of photons 𝑃 falling on a camera pixel with a 

quantum efficiency 𝐷𝑄𝐸 will generate a signal of 𝑁𝐸 electrons and can be defined as:  

 

                                                          𝑁𝐸 =  𝐷𝑄𝐸 ∙ 𝑃                                                           (16) 

 

The incoming photons have an intrinsic difference in the noise or ambiguity of the signal 

itself. This is known as "Shot" photon noise and can be represented as  𝛿𝑠𝑖𝑔𝑛𝑎𝑙 = √𝑁𝐸. 

Considering the noise generated during the internal process, sensor implementation and 

package of a camera design, SNR can be written as: 

 

                                              
𝑆

𝑁
=  

𝐷𝑄𝐸∙𝑃

√(𝛿𝑠𝑖𝑔𝑛𝑎𝑙
2 +𝛿𝑑𝑎𝑟𝑘

2 +𝛿𝑟𝑒𝑎𝑑𝑜𝑢𝑡
2 )

                                            (17) 

 

where, 𝛿𝑟𝑒𝑎𝑑𝑜𝑢𝑡 is noise generated during the readout process and 𝛿𝑑𝑎𝑟𝑘 is the noise created 

by thermally induced electrons and often referred to as a dark signal since its produced in 

the absence of light [26]. 
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The detected signals that reach the image sensor contains the actual signal and background 

signal (background noise). In order to detect the target by identifying it from the background 

noise it requires a high signal-to-noise ratio. Aiming for higher SNR, results in better image 

quality and quantitative analyses. Three main undesired signal components (noise)  usually 

included in the measurement of the total signal-to-noise ratio of image sensor are described 

below. 

 

i. Photon noise: 

Photon noise results from the underlying statistical fluctuation in the image sensor 

incident photon arrival rate. The photoelectrons produced within the semiconductor system 

constitute a signal, the magnitude of which fluctuates spontaneously with photon incidence 

at each pixel on the image sensor [31]. The interval between photon arrivals is governed by 

the Poisson statistics and can be represented as: 

 

                                           𝑝ℎ𝑜𝑡𝑜𝑛 𝑛𝑜𝑖𝑠𝑒 =  √𝑠𝑖𝑔𝑛𝑎𝑙                                               (18) 

 

ii. Dark noise: 

Dark noise is the result of statistical variation in the amount of electrons thermally 

produced within the silicon structure of the image sensor, which is independent of the 

photon-induced signal but strongly dependent on the temperature of the device. The rate of 

generation of thermal electrons at a given image sensor temperature is referred to as dark 

current [30]. Similar to photon noise, dark noise follows Poisson's relationship to dark 

current, which is equal to the square-root of the number of thermal electrons produced. 

 

iii. Read noise: 

Read noise or readout noise is a combination of noise from the pixel and the A/C. The 

Read Noise (RN) sensor is the corresponding noise level in RMS electrons at the camera 

output in the dark and at zero integration time. The main contribution to noise reading 

normally comes from the on-chip preamplifier, and this noise is applied equally to each 

image pixel [30]. This buildup is different for a CMOS sensor and a CCD sensor.  

 

3.4 Limitations 

Optical cameras can provide high-definition images. However, they can get costly, 

require considerable data processing, and are unable to provide range detail. Depending on 

the application, extreme weather conditions, the need for substantial data processing 

capacity, and expense will all hinder the use of cameras as vision sensors. The following 

chapter discusses some of the camera's limitations when used in an autonomous driving 

environment. 
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4. Traffic Sign Detection and Recognition 

Traffic Sign Detection and recognition (TSDR) is an essential part of the ADAS. It is 

specifically designed to work in a real-time environment through the quick acquisition and 

analysis of track signs to increase driver safety. Traffic sign detection is conventionally 

classified into colour-based methods, shape-based methods and hybrid methods (colour-

shaped methods) [50]. In the case of unmanned vehicles and the driving assistance systems, 

the safety issue is often the highest priority relative to the comfort or practicality of them. 

The key aim of driving assistance system (DAS) is to gather valuable insights for drivers in 

order to minimize their effort in safe driving. Drivers must pay attention to different factors, 

including vehicle speed and orientation, distance between vehicles, moving traffic, and 

potentially dangerous or unexpected accidents ahead. If these systems are able to gather such 

information beforehand, it can substantially reduce the driving pressure on drivers and make 

driving safer and simpler.  

 

Road signs are placed to direct, warn and control traffic. They offer guidance to help 

drivers run their cars in a manner that assures the traffic safety. The difficulty in recognizing 

these signs can be largely due to fading of colors, outdoor lighting conditions, obstacles or 

weather conditions like rain, fog etc. A vision-based system for the detection and recognition 

of road signs is therefore desirable to attract the attention of the driver in order to avoid 

traffic hazards. Computer vision devices with the advantage of high resolution can be used 

to identify and distinguish road boundaries, barriers and signs. Vision technologies using 

visual sensing devices such as cameras have been used in a wide range of applications, such 

as identification, classification, navigation, monitoring and control. For the purpose of driver 

assistance, vision systems have been used to detect, distinguish and record items such as 

road signs and road signals. Generally, in a camera-based system, spatial and temporal 

knowledge of dynamic scenes is derived from video input sequences, and noise is then 

filtered out [43]. 

 In road sign recognition, color is a local feature that can be derived from a single pixel. 

On the other hand, shape is a global feature, and must be determined by a neighborhood of 

pixels. Detection of road signs is very challenging in bad weather conditions due to the effect 

of constantly varying outside illumination. While the real colors of the road signs are initially 

very well regulated, the apparent colors are influenced by the lighting of different colors in 

their natural settings. Moreover, with the effects of sunshine, coloring on signs also fades 

away with time. The hue component of the HSI (hue, saturation, and intensity) model is 

invariant to light and shadow [44]. The hue aspect is also appropriate for the extraction of 

color characteristics, considering the volatility of the weather and the natural and artificial 

damage to road signs.  

 

In a camera-based system, the most conventional detection method uses color and shape 

features to locate the positions of traffic signs in a single frame. The shape feature is the 

character of contour, which shows the contrast between the object and the background. The 

shape feature is also more robust compared to the color information since its invariant to 

changing light conditions. In addition, when the resolution of the traffic signs is minimal, 

the connected region of homogeneous colors is divided up by noise. Therefore, the shape 
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feature is introduced as the initial step in detecting the traffic sign. Then using the color 

feature to review the detection results of the first stage. 

 

4.1 Shape Detector 

The most common approach used for shape-based identification is Hough 

Transformation (HT) and its derivatives [46]. Hough transform is a method of extraction of 

features used in image recognition, computer vision, and digital image processing. The 

purpose of the technique is to locate imperfect instances of objects within a certain class of 

shapes by means of a voting process [45]. The shape detector locates the area of the spherical 

object using the center and radius of the object. Any other circular objects are also observed, 

such as a car tire, which is considered a “false” positive candidate. For instance, if the sign 

is circular, it operates on the gradient of the image and uses the existence of the shapes that 

vote the center point for the circular sign. The center of the circular object is identified by a 

threshold of the total of all the voting outcomes at various radii [46]. And all the voting 

values of the detected center are tested at various radii, and the resulting radius of the 

maximum vote is the radius of the circular object.  

 

4.2 Color Detector 

The color detector generally consists of a segmentation stage by setting the threshold for 

a given color space to extract the color from the image [47]. The state of the lighting varies 

with different time and weather outside, so the color detector must be invariant to the change 

in illumination. Color information is useful in minimising the number of early mentioned 

false positive candidates. Traditionally, digital color cameras use a Bayer filter on its sensors. 

Color information for one pixel is expressed by the intensity of the Red, Green and Blue 

(RGB) elements. In reality, objects may be assumed to have the color of the light leaving 

their surfaces. 

 

Considering the change of illumination influences the intensity at each wavelength, but does 

not affect the ratio of the intensity at each wavelength, the color value of the camera sensor 

varies linearly with the change of the illumination in the RGB color space [48]. This 

characteristic can be used to build a color space based on RGB and can be expressed by a 

set of equations:  

 

                                           𝐴𝑛𝑔𝑙𝑒(𝑅) = 𝑅/√𝑅2 + 𝐺2 + 𝐵2                                           (19) 

                                           𝐴𝑛𝑔𝑙𝑒(𝐺) = 𝐺/√𝑅2 + 𝐺2 + 𝐵2                                            (20) 

                                           𝐴𝑛𝑔𝑙𝑒(𝐵) = 𝐵/√𝑅2 + 𝐺2 + 𝐵2                                            (21) 

                                      𝐴𝑛𝑔𝑙𝑒(𝑅)2 +  𝐴𝑛𝑔𝑙𝑒(𝐺)2 +  𝐴𝑛𝑔𝑙𝑒(𝐵)2 = 1                           (22) 
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4.3 Challenges in Recognition 

While the traffic signals have been designed for fast and simple comprehension by 

humans, they are not so readily identifiable by the computer. Traffic signals are flat objects 

with simple shapes, colors and pictograms. They might seem easy to solve even from the 

point of recognition area. However, there are numerous challenges that make it impossible 

to identify road signs. Few of the most common ones are discussed below. 

 

(a) Video Source (Camera) 

Recognition depends on the quality of the image sensor (CMOS/CCD) and the image 

output format. Color or gray cameras may be used for different resolutions, configurations, 

compression speeds, etc. Issues can occur not only from setting the camera, but also if the 

camera is not correctly mounted in the car, so that vibration and blur may appear in the video 

sequences. The focus of the camera should also be set to infinity with the autofocus turned 

off to avoid negative adjustments of the focus.   

 

(b) Lighting and Weather Conditions 

There are variations in the acquisition of images by daytime and darkness, even by the 

effect of the light source. Thus the shade of the colors of the objects can be seen distinctly 

from the variations of the lighting. Issues often inevitably lead to reflection from some light 

source, such as sunshine in the daytime or street lights in the night. The captured image is 

also influenced by rain, snow or fog. For example, road signs can be covered in snow or 

poorly visible in the fog as seen in Figure 9. 

 

 

Figure 9. Traffics signs in different weather conditions [49] 

(c) Occlusion and Damage 

All kind of objects that obstruct the surface of the road signs, such as trees, cars, 

pedestrians, poles or objects on the road. Shadows may cause another particular occlusion. 

The traffic sign will then alter its meaning, e.g. the shadow from the power line to the priority 

road sign can be observed as the end of the priority road. Traffic signals can be affected not 

only by sunshine, but also by graffiti or weather over time (strong breeze, storm, raining). 

They can be dusty, scribbled, tilted, rusty, etc. 

 

(d) Scene Complexity: 

Multiple traffic signals may appear on the traffic scene to be identified in the image 

impacts, resulting in an increase in computational complexity and thus a decrease in real-
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time processing. Cascading of traffic signs having multiple signs placed side by side will 

also increase the scene complexity by appearing as one.  

 

(e) Unavailability of Public Database: 

A database is a key requirement for developing any TSDR system. It is used for training 

and testing the detection and recognition methods. The lack of big, well structured, and free 

public image databases is one of the challenges facing this area of research. For instance, 

only 600 training images and 300 assessment images are included in the most widely used 

database (GTSDB database). Of the seven categories classified in the Vienna Convention, 

only three categories of track signs for identification are protected by the GTSDB: 

prohibitive, obligatory and harmful [51].  To resolve the database scarcity problem, one of 

the ideas is to create a unified global database containing a large number of images and 

videos for road scenes in various countries around the world. 

 

Detection and recognition of traffic signals are caught by the performance of the 

system in real-time. Precision and speed are certainly the two major criteria required for 

practical applications. A system with elegant algorithms and powerful hardware is needed 

to achieve these requirements. Convolutional Neural Network (CNN) based learning 

approaches with GPGPU technologies are a good alternative [52]. It is difficult to tackle the 

issue of traffic signal detection very well in terms of different lighting, motion blur, 

occlusion, and so on. More efficient and stable methods therefore need to be established. 
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5. Experiments 

This chapter deals with the methodology, equipment and data processing used for the 

experiments performed on the images captured in various traffic and light conditions.  The 

photos investigated were captured using a semi-professional DSLR camera with a maximum 

resolution of 5184 x 3456 pixels, with an effective resolution of 18,1 megapixels. An EF 

(Electro-focus) prime lens with 50 mm focal length and maximum aperture of f/1.8 was used 

on the device during the experiment. The lens also comes with a focusing distance of 0,35 

meter with a maximum magnification of 0,21x. These images were then analyzed using a 

deep learning based object recognition algorithm known as YOLO, which stands for “You 

Only Look Once”. 

 

5.1 Experiment Design 

The experiment was designed to determine the minimum criteria for image quality while 

preserving the relevant object detection standard, with an emphasis on quantitative and 

qualitative measurement data analysis. Two different approaches were employed within 

various ways attempt to discover the algorithm's limit. The first approach was to limit the 

images to three different resolutions: 1280 x 960 pixels, 640 x 480 pixels and 320 x 240 

pixels before running the detector. The second approach was to convert the smallest sized 

image to black and white after decreasing the saturation of all common colors except green 

and then, validate the algorithm's recognition variations. These two approaches were 

proposed while keeping environmental hazards in mind.  

 

The artificial-intelligence industry is often compared to the oil industry: data, like oil, 

can be a highly profitable asset once mined and refined. Deep learning, like its fossil-fuel 

analog, has a massive environmental effect. The model training method for natural-language 

processing (NLP), a branch of artificial intelligence that focuses on teaching computers to 

understand human language has achieved many notable success achievements in machine 

translation, sentence completion, and other common benchmarking activities over the last 

two years [67]. However, such advancements have compelled training ever larger models on 

massive data sets of sentences scraped from the internet. The method is computationally 

expensive as well as extremely energy consuming. 

 

The first explanation on how this machine learning models consume energy is that the 

datasets used to train these models are becoming increasingly large. After being trained on 

a dataset of 3 billion words, the BERT (Bidirectional Encoder Representations from 

Transformers) model, a Transformer-based machine learning technique created by Google 

for natural language processing pre-training achieved best-in-class NLP results in 2018. 

Later in 2020, Generative Pre-trained Transformer 3 (GPT-3) an autoregressive language 

model that uses deep learning to generate human-like text was trained and published using 

a weighted dataset of approximately 500 billion words, which dwarfed all the previous 

attempts [66]. On each piece of data, they are fed during preparation, neural networks 

perform a lengthy series of mathematical operations (both forward and back propagation), 

updating their parameters in complex ways. As a result, larger datasets translate to increased 

compute and energy requirements. 
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The intense experimentation and tuning needed to build a model is another aspect behind 

AI's significant energy consumption. Today, machine learning is largely an experiment in 

trial and error. During training, practitioners will often create hundreds of iterations of a 

given model, experimenting with various neural architectures and hyperparameters before 

finding an optimal configuration. Researchers from the University of Massachusetts, 

Amherst, conducted a life cycle evaluation for training many common big AI models in a 

paper released on June 5th, 2019. The study found that training big data models like BERT, 

produces significant carbon emissions, roughly equivalent to a trans-American flight for one 

person [64]. Table 1 shows a typical carbon footprint benchmark of CO2 emission, 

demonstrating that training a single 213 million parameters NLP deep-learning model with 

an architecture search currently generates the same carbon footprint as five American cars, 

including gasoline. 

 

 

Table 1. Common Carbon footprint benchmarks [65] 

The process of training these machine learning models is just the beginning of a 

model's lifecycle. Once a model has been trained, it is used in the real world. The method of 

deploying AI models to take action in real-world environments, known as inference, requires 

much more energy than training does. Nvidia predicts that inference, rather than training, 

accounts for 80% to 90% of the cost of a neural network [66]. Considering the artificial 

intelligence (AI) at the heart of a self-driving car, to learn to drive, neural networks must 

first be trained. Once training is completed and the autonomous vehicle is deployed, the 

model then continuously infers in order to control the environment—nonstop, day after day, 

for as long as the vehicle is in operation. And greater the number of parameters in these 

models, the greater the energy needs for this ongoing inference.  

 

The second approach, which consisted of converting the image to black and white while 

decreasing all of the prominent colors except green, was also a step towards reducing the 

image size before running the algorithm. Digital images are computer-stored electronic 

copies of images. They are simply a group of numbers on a computer's hard drive that 

identify the individual elements of an image and how they are organized. Pixels (short for 

“picture elements”) are these elements, and they are arranged in a grid pattern, with each 

pixel providing details about its color or intensity. When an image is viewed on a computer 

screen or printed on paper, its actual dimension is determined by two factors: image size and 

image resolution. The image size corresponds to the number of pixels of an image, which is 

measured by the number of pixels between the image's horizontal and vertical sides, such as 

640 x 480 pixels. The density at which pixels are displayed is referred to as image resolution, 
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i.e., how many pixels are displayed per inch of screen or paper. This is often expressed as 

dots per inch, or dpi, pixels per inch, or ppi, which is a more precise expression [68]. Figure 

10 shows this concept. 

 

Figure 10.  Pixels per inch [71] 

If it is in BW (black and white), a pixel contains 8 bits (1 byte). For colored pictures, it 

employs the RGB (Red, Green, Blue) color scheme, which is represented as 1 byte each or 

24 bits (3 bytes) per pixel. This is often referred to as an image's bit depth [69]. The bit depth 

is determined by the number of bits used to identify each pixel. Each color has a differing 

degree calculated by exponential values ranging from 256 colors for 8-bit images and 

16,777,216 colors for 24-bit (3 bytes) images [69, 70]. As a result, a bit depth of 24 bits 

reflects 16.7 million tonal color representations. Image quality is simply the width (W) and 

height (H) of an image measured in pixels. The image size from the resolution can then be 

determined as: 

 

                             
(W x H x BitDepth) 

8 bits/ bytes
=  (W x H x BitDepth) x 1 byte/8bits                  (23) 

 

According to the aforementioned formula, a color image with a resolution of 1280 x 960 

pixels would be roughly 3,68 MB, while the same image with resolution of 640 x 480 pixels 

and 320 x 240 pixels would be only equivalent to less than one MB, with sizes 0,92 MB and 

0,23 MB, respectively. These same images of equivalent resolution in black and white will 

be even smaller with 1,22 MB, 0,30 MB, and 0,076 MB in size, respectively. These 

calculations are included in the Appendix B. Based on the dimensions, these image sizes are 

an approximation. They can differ from image to image based on the color, depth, and 

luminance characteristics. Even if the bit depth is 24, for example, not all of those bits will 

exhibit a uniform tone or color, but rather gradients of the RGB color spectrum's range.  

 

5.2 Method of Measurement 

      For the experiment, the camera was set to exposure bracketing mode, which captured a 

sequence of images at various exposures with a single click. This function aids in the making 

of photographs with limited adjustments to the context in various light settings. A total of 

eight separate locations inside Prague city were selected, each with its own set of traffic 

complications. These locations were photographed both during the day and night. All the 

photographs were shot handheld at standard car dashboard height, including the nighttime 

images of the eight-stop route. These eight sites featured a variety of traffic situations such 

as trams, motorbikes, pedestrian crossings, parked cars, and dead ends. The detection 

evaluation was carried out on all the eight locations, however, the photographs from only 
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three of the eight locations were used in the results and discussion section of the experiment, 

and the others, along with the nighttime images, are included in the Appendix A.  

 

5.3 Method of Data Processing 

Object detection is a computer vision activity that involves both localizing and 

classifying one or more objects within an image [53]. It is a complex computer vision process 

that involves both efficient object localization (finding and drawing a bounding box around 

each object in an image) and object classification (predicting the correct type of object that 

was localized). Table 2 demonstrates the distinction between localization and classification. 

 

Localization Classification 

 

Figure 11. Here is the CAT [73] 

 

Figure 12. This is an image of CAT [73] 

Table 2. Localization vs Classification 

 

5.3.1 YOLO for Object Detection 

“You Only Look Once”, or YOLO, family of models is a collection of end-to-end 

deep learning models created by Joseph Redmon for fast object detection. The method 

employs a single deep convolutional neural network (originally a version of GoogLeNet, 

later revised and named DarkNet) that divides the input into a grid of cells, each of which 

predicts a bounding box and object classification directly [53]. As a result, a large number 

of candidates bounding boxes are produced, which are then combined into a final prediction 

by a post-processing stage. At the time of this writing, there are three major versions of the 

approach: YOLOv1, YOLOv2, and YOLOv3. The first edition proposed the general 

architecture, the second improved the concept and used predefined anchor boxes to improve 

bounding box proposal, and the third refined the model architecture and training mechanism 

even further. The model’s accuracy is similar, and they are popular for object detection due 

to their detection speed, which is often demonstrated in real-time on video or with camera 

feed input. When trained and evaluated on the same set of images, YOLO outperforms 

detection approaches like R-CNN (Region Based CNN) by a wide margin, and since it has 

a general idea of the objects detected, it is less likely to fail when exposed to new images or 

inputs. 

All of the appropriate versions of YOLO, as well as its pre-trained weights and 

configurational files, can be found in J Redmon's original repository and on his website. This 

website compares each version based on its accuracy and frame per second (FPS) rate, and 
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depending on the version, there are pre-trained files and guidance on how to access and run 

it on one's device. Since YOLOv3 outperforms its predecessors in terms of speed and 

precision, it was chosen as the solution for this experiment. 

 

 

Figure 13.  Different versions of YOLO with their specifications [72] 

 Network Architecture 

The network architecture of YOLO can be explained from a high-level diagram as 

shown in Figure 14. The system is split into two main components: The Feature Extractor 

and the Detector, all of which are multi-scale. When a new image is sent, it is first processed 

by the feature extractor so that we can achieve feature embeddings at three (or more) 

different scales. These features are then fed into one of three (or more) branches of the 

detector to obtain bounding boxes and class information [54]. 

 

Figure 14. Network Architecture [54] 

i. Feature extractor 

The feature extractor YOLOv3 uses the early mentioned single deep CNN named 

Darknet-53. Darknet-53 employs the idea of skip connections to help activations propagate 

through deeper layers without gradient loss, successfully expanding the network from 19 to 

53 layers, opposed to previous YOLO models.  

 

 

Table 3. Darknet-53 [56] 
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This structure is demonstrated in Table 3. Skip connections in deep architectures, as the 

name implies, skip several layers in the neural network and feed the output of one layer as 

the input to the subsequent layers (instead of only the next one) [55].  

 

ii. Multi-scale Detector 

To extract features, YOLOv3 employs successive 3x3 and 1x1 convolutional layers, as 

well as the Residual Networks concept [58]. Residual blocks are essentially a subset of 

highway networks that lack gates in their skip connections. In essence, residual blocks enable 

memory (or information) to flow from the first to the last layers [57]. YOLOv3 contains 5 

residual blocks. Each residual block is made up of many residual units. Figure 15 depicts the 

structure of one residual unit.  

 

Figure 15. The structure of Residual unit [59] 

The residual unit allows the network depth to be increased while avoiding gradient 

fading. Consider each rectangle's layers from Table 3 to be a residual block. To minimize 

dimension, the entire network is a chain of many blocks intermixed with several strides and 

two convolution layers. There is only a bottleneck structure (1x1 followed by 3x3) and a 

skip relation within the block. Since YOLOv3 is intended to be a multi-scaled detector, it 

needs features from multiple scales in addition to the detection head appended to the feature 

head. As a result, features from the last three remaining blocks are all included in the 

subsequent identification.  

 

YOLOv3 detects targets on three different scales using feature maps. A CNN's feature 

maps capture the outcome of adding filters to an input image. In other words, the feature 

map is the output of each layer. The aim of visualizing a feature map for a given input picture 

is to achieve a better understanding of the features that the CNN detects [60]. The input 

image is down sampled five times. The targets in the last three down sampled layers are 

predicted by YOLOv3. To detect small targets at scale 3, the feature map is down sampled 

by 8. The feature map down sampled by 16 is used to detect medium-sized targets at scale 

2. At scale 1, a function map that has been down sampled by 32 is used to detect large targets 

[59]. Since a small feature map provides deep semantic knowledge and a broad feature map 

provides finer-grained information about the targets, feature fusion is used to detect them. 

To perform feature fusion, YOLOv3 resizes the deeper layer's feature maps by up sampling. 

The feature maps would then be the same size at different scales. YOLOv3 concatenates the 

features from the earlier layer with the features from the deeper layer. As a result, YOLOv3 

performs well in detecting both big and small targets. 
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iii. Anchor Box Prediction 

Anchor boxes, which are used in Faster R-CNN (Region Based Convolution Neural 

Network), were added in YOLOv3. Anchor boxes are a set of initial candidate boxes that 

have a specified width and height. The initial anchor box selection has a direct impact on 

detection precision and detection time. Instead of manually selecting anchor boxes, YOLO 

v3 uses K-means clustering on the dataset to identify good priors [59].  

 

K-means clustering is a basic and widely used unsupervised machine learning algorithm. 

The goal of K-means is simple: group related data points together and uncover underlying 

patterns. K-means seeks a fixed number (k) of clusters in a dataset to accomplish this 

objective [62]. A cluster is a group of data points that have been aggregated together due to 

such similarities. K-means clusters will represent the distribution of samples in each dataset, 

making it simpler for the network to make good predictions. 

 

The goal of object detection is to obtain a bounding box as well as the class of the object. 

The bounding or anchor box is usually represented in tx, ty, tw, th format. If the cell is offset 

from the top left corner of the image by (cx, cy) and the bounding box prior has width and 

height pw, ph, then the predictions correspond to [56]: 

 

                                                    𝑏𝑥 =  𝜎(𝑡𝑥) +  𝑐𝑥          (24) 

                𝑏𝑦 =  𝜎(𝑡𝑦) +  𝑐𝑦                                                     (25) 

       𝑏𝑤 =  𝑝𝑤𝑒𝑡𝑤                                                             (26) 

                                                    𝑏ℎ =  𝑝ℎ𝑒𝑡ℎ                                        (27) 

During training the sum of squared error loss is used. Ground truth is a term used in statistics 

and machine learning to refer to the process of comparing machine learning outcomes to the 

real world.  If the ground truth for any coordinate prediction is 𝑡∗̂, then the gradient is the 

ground truth value (calculated for the ground truth box) minus the prediction: 𝑡∗̂ − 𝑡∗ [56]. 

By inverting the equation above, this ground truth value can be effectively coupled. 

 

Figure 16. Bounding boxes with dimension priors and location [61] 

YOLOv3 uses logistic regression to estimate an objectness score for each bounding box. 

This should be 1 if the bounding box prior overlaps a ground truth object by more than any 

other bounding box prior [56]. If the bounding box prior is not the strongest but does overlap 

a ground truth object by more than any threshold, it neglects the prediction. Generally, it 
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uses a threshold of 0,5. The method only assigns one bounding box prior to each ground 

truth object. If a bounding box prior is not allocated to a ground truth object, there is no loss 

of coordinate or class predictions; only objectness is lost. 

 

iv. Class prediction 

Using multi label classification, each box predicts the groups that the bounding box will 

contain. Yolov3 employs logistics regression classifier in order to classify the objects. 

Logistic Regression is a ‘Statistical Learning' approach that falls in the category of 

‘Supervised' Machine Learning (ML) techniques that are used for ‘Classification' tasks. 

Logistic regression is a classification algorithm that is used when the target variable's value 

is categorical in nature. It is most widely used where the data in question has a binary output, 

that is, when it belongs to either of two classes or is either a 0 or 1. The results of such an 

algorithm in a classification task fall into one of many pre-determined classes [63]. When 

given multiple input variables, the classification model tries to predict the output value, 

categorizing the case. Provided a particular dataset comprising various classes of objects, it 

may predict whether or not an object belongs to that specific group. At the time of 

experiment, there are two pre-set weight files, yolov3 and yolov3-tiny, ready for use. Since, 

yolov3-tiny is generally used for detection of smaller objects, for the experiment, only the 

yolov3.weight file was used. yolov3 file is the most recent and provides the necessary 

weights, as well as a model that has already been trained on the COCO dataset, which 

contains 80 classes, which includes the requisite objects to be observed and more. 

 

5.4 Results and Discussion   

The findings of the experiments on the investigated images are discussed in this section 

using the two image processing methods described in Section 5.1. The findings are divided 

into two sections: daytime and nighttime, with both approaches (reducing image size and 

rendering them black and white) applied to each. Only the normally exposed photographs 

were converted to black and white during the analysis. 

A qualitative and quantitative analysis of the photographs was then carried out to 

determine the results of the recognition of both methods. The analysis was conducted based 

on an ego-vehicle, which is a vehicle whose action is of primary interest in each respective 

scenario. From the photographer's Point of View (POV), who can be considered as a 

potential car in a real-world situation, my POV was regarded as the ego-vehicle’s POV for 

the experiment analysis.  

 

Quantitative analysis only considers the number of observed elements, while qualitative 

analysis will have semantic information - for example, a weight ranging from 0 to 1 is 

assigned to each object in the image based on its "worth of recognition," i.e., a car in front 

of an ego-vehicle has weight 1, whereas a tree on the sidewalk with less meaning to the ego-

vehicle's path has weight 0.  Prior to conducting this qualitative study, each object is given 

a predefined general weight, independent of its position or importance, but based on the 

likely fatality risk if the object is involved in an accident. Table 4 lists the predefined weight 

assigned to each item in this manner. 
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Object Weight 

Cars 0,9 

Trams 0,7 

Cyclist  1 

People  1 

Trees  0,8 

Table 4. General Weight of the Objects 

These predefined weights are then adjusted based on the previously specified semantic 

information. During this study, variables such as driving direction, distance, and object 

position are also considered. In addition, when a target's evasive maneuver is taken into 

account, it is given a higher weight. The overall final weight of a target is then calculated 

based on the potential seriousness of the contact/crash, the distance from the ego-vehicle, 

and the time-to-collision etc. 

 

5.4.1 Daytime  

i) Location 1  

The collages for the study were designed in a way that the first image is of resolution 

1280 x 960 pixels, and the second image (top-right) is with a resolution of 640 x 480 pixels. 

The grid of four images on the bottom-right corner, including the black and white 

photograph, are 320 x 240 pixels in resolution.  

 

 

Figure 17.  Jirásek Bridge [Location 1] 

Figure 17 shows a location on the Jirásek bridge on a relatively cloudy day, which has four 

lanes, two in each direction. This location is further studied in Figure 18 by segmenting it 

into distinct zones, each with its own weight. We also imagine ourselves to be behind the 

blue car and to assess the situation as the ego-vehicle. 
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Figure 18. Weight distribution [Location 1] 

 Each zone is assigned a weight based on how much the targets inside these zones 

impact us as the ego-vehicle. Thus, in this particular scenario, zone 1 has the highest weight 

and is assigned a weight of 1 because any target inside this zone has a significant effect on 

ego-vehicle’s path. Whereas zones 2 and 3 are assigned weights of 0,5 and 0,1, respectively, 

since they have less influence in our direction of travel. Similarly, before analyzing the 

detector results, a separate weight is allocated to each target based on its lane, direction, 

distance and time-to-collision respective to the path of the ego-vehicle, in order to compute 

the total weight or worth of a target's recognition. These individual weights are then 

multiplied together to determine the overall weight of each target. The formula would then 

look like: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑎𝑟𝑔𝑒𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑂𝑏𝑗𝑒𝑐𝑡 𝑤𝑒𝑖𝑔ℎ𝑡  𝑥  𝐿𝑎𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡  𝑥  𝑍𝑜𝑛𝑒 𝑤𝑒𝑖𝑔ℎ𝑡  

                                   𝑥 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑊𝑒𝑖𝑔ℎ𝑡 𝑥 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑊𝑒𝑖𝑔ℎ𝑡 𝑥 𝑇𝑖𝑚𝑒 𝑊𝑒𝑖𝑔ℎ𝑡        (28) 

Targets in the same direction of ego-vehicle have a direction weight of 0,5 and targets in the 

opposite direction have a weight of 1 since they are more prone to a dangerous collision. For 

example, the blue car in front of us has an object weight of 0,9 and a lane weight of 1 since 

it is on the same lane as our drive. Direction, distance and time-to-collision carries a product 

weight of 0,5 since it’s the closest to us. The car is also in zone 1, so it has a zone weight of 

1.  As a result, the total weight of the blue car as a target will be: 

 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝐵𝑙𝑢𝑒 𝑐𝑎𝑟  = 0,9 ∙  1 ∙ 1 ∙ 0,5 ∙ 1 ∙ 1 = 0,45 

 

Similarly, for the cyclist, it is important to note that, despite the fact that cyclist is on a 

different lane, it has an object weight of 1 which is greater than that of the blue car, because 

the cyclist here is more vulnerable to a fatal accident. If the overall weight of the cyclist 
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carrying a lane weight of 0,75 and direction – 0,5; distance – 0,9; time – 0,9 weights is then 

evaluated, the result is:  

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑤𝑒𝑖𝑔ℎ𝑡𝑐𝑦𝑐𝑙𝑖𝑠𝑡  =  1 ∙  0,75 ∙ 1 ∙ 0,5 ∙ 0,9 ∙ 0,9 = 0,30 

 

To further determine the necessary weights of other targets, the location was segmentized to 

few more zones and a top view of this is illustrated in Figure 19.  The weight of each zone 

is given in Table 5. 

 

Zones Weight 

Zone 1 1 

Zone 2 0,5 

Zone 3 0,1 

Zone 4 0,3 

Zone 5 0,2 

Zone 6 0 

Table 5. Weights of Different Zones [Location 1] 

 

Figure 19. Top view [Location 1] 

The targets in locations are split into groups of respective zones to compare the algorithm's 

detected effects and calculation simplicity. Table 6 shows the calculated weights of each 

target. 
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 Zone 1 Zone 2 Zone 3  

Weights Car 1 Cyclist Car 2 Car 3 Car 4 Car 5 

 

Object 

Weight 
0,9 1 0,9 0,9 0,9 0,9 

Lane Weight 1 0,75 1 1 1 1 

Zone Weight 1 1 0,5 0,1 0,1 0,1 

Direction 

Weight 
0,5 0,5 0,5 0,5 0,5 0,5 

Distance 

Weight 
1 0,9 0,8 0,3 0,2 0,1 

Time Weight 1 0,9 0,8 0,3 0,2 0,1 
Total 

Sum 

Overall 

Weight 
0,450 0,303 0,144 0,0040 0,0018 0,00045 0,9032 

 

Zone 5 Zone 6   

Car 1 Car 2 Car 3 Car 4 Car 5 
People on foot 

walk 

 

Object 

Weight 
0,9 0,9 0,9 0,9 0,9 1 

Lane Weight 0,5 0,2 0,2 0,5 0,5 0,10 

Zone Weight 0,2 0,2 0 0 0 0 

Direction 

Weight 
1 1 1 1 1 1 

Distance 

Weight 
0,7 0,4 0,3 0,2 0,1 0,1 

Time Weight 0,7 0,4 0,3 0,2 0,1 0,1 
Total 

Sum 

Overall 

Weight 
0,12 0,012 0 0 0 0 0,1320 

Table 6. Calculated Weights [Location 1] 

The final result is then calculated as the sum of weights of all the targets in each zone:  

              𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 =  ∑ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑍𝑜𝑛𝑒 𝑖
6
𝑖=1                         (24) 

 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 1 =  0,753 + 0,144 + 0,00625 + 0 +  0,132 + 0 = 1,0352 
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 Detected results  

When compared to the initial target count, the underexposed, naturally exposed, black 

and white 320 x 240 resolution images revealed no differences in detection. As a result, their 

total weight distribution remains unchanged.  However, the overexposed image, Figure 20, 

showed some significant detection changes. 

 

 

Figure 20. Overexposed 320x240 [Location 1] 

The total weight distribution for this image was then calculated only using the observed 

target weights in the image. The overall weight distribution is depicted in Table 7. 

 

Zone 1 

Weights  Car 1 Cyclist  

Object Weight 0,9 1 

Lane Weight 1 0,75 

Zone Weight 1 1 

Direction Weight 0,5 0,5 

Distance Weight 1 0,9 

Time Weight 1 0,9 Total Sum 

Overall Weight 0,450 0,303 0,753 

Table 7. Detected Weights - Overexposed [Location 1]. 

As seen in Figure 20, zero targets were detected in all the other zones, so the total sum of 

those zones is equal to zero. When the two outcomes are then compared: 

 

a) Zone 1, Zone 2 and Zone 3: 

     𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑧𝑜𝑛𝑒𝑠 1−3 = 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 −  𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑   

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑧𝑜𝑛𝑒𝑠 1−3 =  0,9032 −  0,753 = 0,1502 

               16.62% decrease ↓  
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b) Zone 4, Zone 5 and Zone 6: 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑧𝑜𝑛𝑒𝑠 4−6 =  0,1320 − 0 =  0,1320 

                100% decrease ↓ 

c) Overall weight: 

        𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − 𝑇𝑜𝑡𝑎𝑙 𝑆𝑢𝑚𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑         (25) 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  1,0352 − 0,753 =  0,2822 

                  27.26% decrease ↓ 

According to the final result, the margin of difference between the predefined and detected 

total target weight is considered high. When the overall weight of targets in the same 

direction decreased by 16,62 percent, the opposite direction decreased by 100 percent since 

no targets were detected. The overall weight of location 1 has a decrease of 27,26 percent, 

indicating that the detector failed to detect a considerable number of important targets in the 

path of ego-vehicle. It is worth noting that, the blue car and the cyclist are the most critical 

to the direction of the ego-vehicle, and they both were identified even though the scene 

complexity was compromised. 

 

 Detection faults 

When the detected pictures from Figure 17 are closely examined, it is clear that the 

algorithm did not perform well in identifying the appropriate classes for the targets under 

adverse lighting and image quality conditions. While the underexposed 320 x 240 resolution 

picture failed to recognize the bicycle, in the overexposed picture with similar resolution, it 

got confused whether the blue car belonged to the class car or truck. Even though the 

objective in both pictures is to recognize the target, detecting only the person without the 

bicycle or not knowing whether the target is a car or truck can lead to many confusions in a 

real-world fully autonomous system. The algorithm may detect it as a person who’s walking 

at a much slower pace, when the actual target is a cyclist who travels at a much faster rate. 

This might end up influencing the decision the autonomous system has to make in the event 

of a collision. 

 

ii)   Location 2 

The location in Figure 21 has a dead zone at the end of the lane, which adds a new set of 

road complication for the detector. Also, there are cars parked on both sides of the lane, with 

a left turn being the right way of exit. 
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Figure 21. Janáčkovo nábř [Location 2] 

 

 
Figure 22. Weight Distribution [Location 2] 

The photograph was taken on a clear day and the street has just one lane and is one way. 

There are no vehicles traveling from the opposite direction. We visualize ourselves as the 

ego-vehicle behind the grey car making the left turn. Figure 23 shows the top view of 

location 2.  
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Figure 23. Top View [Location 2] 

The location is split into three different zones and assigned different weights to them as 

shown in Table 8.    

Zones Weight 

Zone 1 1 

Zone 2 0 

Zone 3 0,1 

Table 8. Different Weight of Zones [Location 2] 

Here, the zone 2 has a weight of zero since the targets in the zone have no impact on the ego-

vehicle's movement, making all of the target weight in that specific zone equal to zero. The 

remaining targets are then split into two categories: Zone 1 and Zone 3. Table 9 shows the 

weight distribution of the targets in location 2.   

 

 
Zone 1 Zone 3  

Car 1 Car 2 Car 1 Car 2 Car 3 Tree 

 

Object Weight 0,9 0,9 0,9 0,9 0,9 0,8 

Lane Weight 1 0,8 0,6 0,6 0,6 0,4 

Zone Weight 1 1 0,1 0,1 0,1 0,1 

Direction Weight 0,5 0,7 0,4 0,4 0,2 0 

Distance Weight 0,9 1 0,2 0,1 0,1 0,1 

Time Weight 1 1 0,2 0,1 0,1 0,1 Total Sum 

Overall Weight 0,450 0,504 0,000864 0,000216 0,000108 0 0,9551 

Table 9. Weight Distribution [Location 2] 
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It is important to note that how Car 2 (parked car) in zone 1 has a higher weight here than 

the Car 1 (moving car) in front. This is because the parked car is critical to the direction of 

ego-vehicle’s left turn and there’s a higher chance of collision than the moving car.  The 

total weight of the targets in location 2 is then the sum of overall target weights of all the 

zones. 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2 =  ∑ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑍𝑜𝑛𝑒 𝑖

3

𝑖=1

 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2 =  0,954 + 0 + 0,001188 = 0,9551 

 

 Detected results  

The detected results of location 2 did not show any significant changes in target count. 

The overexposed, naturally exposed, black and white 320 x 240 resolution images revealed 

almost no differences in detection. As a result, their total weight distribution remains 

unchanged.  However, the underexposed image, Figure 24, failed to recognize one parked 

car, showing a very minor difference in overall target count. The trees are also not detected 

by the algorithm which is no different in case of all other exposure and size levels. 

 

 

Figure 24. Underexposed 320x240 [Location 2] 

It is a fair to say that the algorithm detects no trees, proving that the overall total weight 

calculated to zero for tree in Table 9 is appropriate. Table 10 shows the detected target 

results of Figure 24. 

 

 
Zone 1 Zone 3  

Car 1 Car 2 Car 1 Car 2 

 
Object Weight 0,9 0,9 0,9 0,9 

Lane Weight 1 0,8 0,6 0,6 

Zone Weight 1 1 0,1 0,1 



 48 

Direction Weight 0,5 0,7 0,4 0,4 

Distance Weight 0,9 1 0,2 0,1 

Time Weight 1 1 0,2 0,1 Total Sum 

Overall Weight 0,450 0,504 0,000864 0,000216 0,9550 

Table 10. Detected Weights - Underexposed [Location 2] 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  0,9551 − 0,9550 =  0,0001 

                 0.01% decrease ↓ 

The weight gap between detected and defined is only 0.01 percent, which is almost 

negligible, proving that the target that wasn’t recognized in Figure 24 is less significant to 

the ego-vehicle’s course and thus, proving that the weight allocated to that target in location 

2 is close to the ground truth. 

 

 Detection faults 

The street at Location 2 leads to a dead zone, which is indicated by two different traffic 

signs. One sign, as seen in Figure 25 from Google Maps, is obscured by trees, making it 

almost impossible for the detector or a new driver on the roadway to notice.  

 

 

Figure 25. Traffic sign obscured by trees [19] 

 
As a result, the second sign, which is painted on the road as seen in Figure 22, is critical for 

detection. The detection results of the location 2 show that the algorithm never identified the 

road sign. This can be for the reason that the algorithm hasn't been trained to look for traffic 
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signs on the road, or simply because these specific signs aren't included in the dataset used 

for the experiment. 

 

 

Figure 26. Detected traffic signs [23] 

Figure 26 indicates that the dataset has not been trained for a wide range of road signs, with 

the exception of key road signs such as STOP, which are more general. This flaw or failure 

in traffic sign identification is critical when it comes to an autonomous vehicle system and 

the study of its future advancements. 

 

iii) Location 3 

This location in Karlovo námesti portrays a set of different traffic complications from 

location 1 and 2. The location includes a tram line next to the driving lane, parked cars, 

pedestrian crossing and traffic signals, providing a combination of different complexities.  

 

 

Figure 27. Karlovo námesti [Location 3] 

The photo was taken on a clear day with moderate amount of traffic on the road. We visualize 

ourselves to be behind the light blue car driving straight the lane. Figure 28 depicts the zone 

segmentation from the perspective of ego-vehicle.  
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Figure 28. Weight Distribution [Location 3] 

 

 

Figure 29. Top View [Location 3] 

 
The location is split into four different zones and assigned different weights to them as shown 

in Table 11.    
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Zones Weight 

Zone 1 1 

Zone 2 0,8 

Zone 3 0,3 

Zone 4 0,1 

Table 11. Zone Weights [Location 3] 

The weight distribution of the targets is shown in Table 12.  

 

Zone 1 Zone 2  

Car 1 Car 2 Car 3 
Person 

(Crossing) 
Bike 

 

Object 

Weight 
0,9 0,9 0,9 1 1 

Lane 

Weight 
1 0,7 0,7 0,8 1 

Zone 

Weight 
1 1 1 0,8 0,8 

Direction 

Weight 
0,5 0,2 0 0,5 0,5 

Distance 

Weight 
0,9 0,2 0,1 0,8 0,3 

Time 

Weight 
1 0,2 0,1 0,8 0,3 

Total 

Sum 

Overall 

Weight 
0,405 0,00504 0 0,204 0,036 0,4972 

 

Zone 4 Zone 3  

Tram Tree 
People 

(waiting) 
Car 1 Car 2 

Car 

3 

Car 

4 

 

Object 

Weight 
0,7 0,9 1 0,9 0,9 0,9 0,9 

Lane 

Weight 
0,3 0 0,8 1 0,7 0,7 1 

Zone 

Weight 
0,1 0,1 0,1 0,3 0,3 0,3 0,3 
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Direction 

Weight 
0,5 0 0,3 0,4 0,5 0,5 0,5 

Distance 

Weight 
0,4 0 0,2 0,2 0,1 0 0 

Time 

Weight 
0,4 0 0,2 0,2 0,1 0 0 

Total 

Sum 

Overall 

Weight 
0,00168 0 0,00096 0,00432 0,000945 0 0 0,0079 

Table 12. Weight Distribution [Location 3] 

It is worth noting that there are two kinds of pedestrians in this location: the pedestrian 

waiting to cross the street and those waiting for the tram. And they both have a different 

weight, with the pedestrian crossing bearing a higher weight. The total weight of the targets 

in location 3 is then the sum of overall weight of targets in all the zones. 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 3 = ∑ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑍𝑜𝑛𝑒 𝑖

4

𝑖=1

  

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 3 =  0,4972 + 0,0079 = 0,5051 

 

 Detected results  

Only the black and white image with the resolution of 320 x 240 had changes in the 

detection results of location 3, while the remainder of the images of varying sizes and 

exposure levels remained unchanged. Figure 30 shows that it failed to identify the majority 

of targets in Zone 3. 

 

 

Figure 30. Black & White 320 x 240 [Location 3] 
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Zone 1 Zone 2  

Car 1 Car 2 Car 3 Person (Crossing) Bike 

 

Object Weight 0,9 0,9 0,9 1 1 

Lane Weight 1 0,7 0,7 0,8 1 

Zone Weight 1 1 1 0,8 0,8 

Direction Weight 0,5 0,2 0 0,5 0,5 

Distance Weight 0,9 0,2 0,1 0,8 0,3 

Time Weight 1 0,2 0,1 0,8 0,3 Total Sum 

Overall Weight 0,405 0,00504 0 0,204 0,036 0,4972 

 Zone 4 Zone 3 

 

 Tram Tree People (waiting) Car 1 

Object Weight 0,7 0,9 1 0,9 

Lane Weight 0,3 0 0,8 1 

Zone Weight 0,1 0,1 0,1 0,3 

Direction Weight 0,5 0 0,3 0,4 

Distance Weight 0,4 0 0,2 0,2 

Time Weight 0,4 0 0,2 0,2 Total Sum 

Overall Weight 0,00168 0 0,00096 0,00432 0,00696 

Table 13. Detected Weights - Black & White [Location 3] 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 3 = ∑ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑍𝑜𝑛𝑒 𝑖

4

𝑖=1

  

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 3 =  0,4972 + 0,00696 = 0,5041 

 

The overall weight difference between defined and detected are then found:  

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  0,5051 − 0,5041 =  0,0010 

0,197 % decrease ↓ 

 

Having weight drop of only 0.197 percent between detected and defined is again proving 

that, the weight allocated to the targets in location 3 is close to the ground truth and the 

undetected targets in Figure 28 are unimportant to the ego-vehicle’s course. 
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 Detection faults 

From the detected images of location 3, it is seen the algorithm classified the tram as a 

bus. In a real-world scenario, if an autonomous vehicle’s detection system makes a similar 

mistake, the consequences can be severe. The tram always follows the path of its track, with 

a degree of freedom in one to four directions whereas, a bus can move in any direction. 

Because of this uncertainty, the detector can make incorrect conclusions or judgements in 

the case of a collision depending on the target's movement. Similarly, Figure 27 shows that 

the pedestrian crossing traffic sign or zebra-lines on the road was never identified. This is 

critical to the course of any vehicle, and it can be improved by training the algorithm with 

new data that includes a diverse collection of traffic signs. 

 

5.4.2 Nighttime  

i) Location 2 

Location 2, Janáčkovo nábř street from the Section 5.4.1 is used for the nighttime study, 

and the remaining locations are added in Appendix A. The location has cars parked on both 

sides with a dead zone, and a left turn as the right of way exit. 

 

 

Figure 31. Janáčkovo nábř - Nighttime [Location 2] 

 
Similarly, we consider ourselves to be the ego-vehicle behind the car making the left turn, 

with the similar zone weights given in Table 8. From Figure 31, it is evident that the 

overexposed picture shows more detail than the normally exposed image.  For the same 

reason, to be more articulate, Figure 32 the overexposed image at nighttime was used to 

show the segmentized zones and weight distribution of the location, while Figure 33 

represents the top perspective of Location 2 at night. 



 55 

 

Figure 32. Weight distribution - Nighttime [Location 2] 

 

Figure 33. Top View - Nighttime [Location 2] 

 
Since the Zone 2 has a weight of zero, it makes all of the targets in that specific zone equal 

to zero. The remaining targets are then split into two categories: Zone 1 and Zone 3. Table 

14 shows the weight distribution of the targets in location 2 during nighttime. 
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Zone 1 Zone 3 

 

Car 1 Car 2 Car 3 Car 4 Car 1 Car 2 Tree 

Object 

Weight 
0,9 0,9 0,9 0,9 0,9 0,9 0,8 

Lane 

Weight 
1 0,8 0,8 0,8 0,6 0,6 0,4 

Zone 

Weight 
1 1 1 1 0,1 0,1 0,1 

Direction 

Weight 
0,5 0,7 0,4 0,3 0,4 0,4 0 

Distance 

Weight 
0,9 1 0,4 0,2 0,2 0,1 0,1 

Time 

Weight 
1 1 0,4 0,2 0,2 0,1 0,1 

Total 

Sum 

Overall 

Weight 
0,450 0,504 0,0460 0,00864 0,000864 0,000216 0 1,00972 

Table 14. Weight Distribution - Nighttime [Location 2] 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2−𝑁𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒 =  ∑ 𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑍𝑜𝑛𝑒 𝑖

3

𝑖=1

 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 2−𝑁𝑖𝑔ℎ𝑡𝑡𝑖𝑚𝑒 =  1,00864 + 0 + 0,00108 = 1,00972 

 

 Detected results  

The observed findings of location 2 showed major changes in target count in each 

exposure level during the night. As a result, the analysis was carried out on all of the various 

exposure levels and sizes that revealed variations. When the overexposed image of 320 x 

240 resolution detected more targets, all three sizes of normally exposed pictures detected 

fewer targets. In comparison, black and white and underexposed 320 x 240 resolution images 

failed to detect any targets at all.  

 

i)  Normally exposed 

Starting with normally exposed 1280 x 960 resolution image, Figure 34 shows the 

detector failed to detect the cars in zone 3 from the scene. Even though these targets have 

lesser significance compared to other targets in the location, it affects the overall weight 

distribution. In addition, a new target has been identified in Zone 2, but since the zone has a 

weight of zero, it has no effect on the total weight. The new weight distribution for this image 

is calculated in Table 16. 
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Figure 34. Normally exposed 1280 x 960 - Nighttime [Location 2] 

 

 
Zone 1 Zone 2 

 

Car 1 Car 2 Car 3 Car 1 

Object Weight 0,9 0,9 0,9 0,9 

Lane Weight 1 0,8 0,8 0,8 

Zone Weight 1 1 1 0 

Direction Weight 0,5 0,7 0,4 0,2 

Distance Weight 0,9 1 0,4 0,1 

Time Weight 1 1 0,4 0,1 Total Sum 

Overall Weight 0,450 0,504 0,0460 0 1,00 

Table 15.  Weight Distribution 1280 x 960 - Nighttime [Location 2] 

Zone 2 and 3 has overall weight of zero each, leaving only zone 1. The weight difference is 

then calculated as:  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 1,00972 − 1,00 =  0,00972 

0,962 % decrease ↓ 

The naturally exposed 1280 x 960 resolution night image showed only a 0,962 percent 

decrease compared to the defined overall weight distribution. 
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For the second analysis of normally exposed pictures, both 640 x 480 and 320 x 240 

resolution pictures showed similar detection results. Figure 35 shows the 320 x 240 

resolution picture in normal light condition.  

 

 

Figure 35. Normally exposed 320 x 240 - Nighttime [Location 2] 

In Figure 35 it is seen that the detector failed to detect the Car 1 (driving car) taking the left 

turn from the scene. This target is critical to ego-vehicle’s path and has relatively higher 

significance compared to other targets. However, a target in zone 2 was detected similar to 

the previous analysis, which is again not counted toward the final weight distribution. The 

final weight distribution of this image is then calculated in Table 16.  

 

 
Zone 1 Zone 2 

 

Car 2 Car 3 Car 1 

Object Weight 0,9 0,9 0,9 

Lane Weight 0,8 0,8 0,8 

Zone Weight 1 1 0 

Direction Weight 0,7 0,4 0,2 

Distance Weight 1 0,4 0,1 

Time Weight 1 0,4 0,1 Total Sum 

Overall Weight 0,504 0,0460 0 0,55 

Table 16. Weight Distribution - Normally exposed 320 x 240 – Nighttime [Location 2] 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 1,00972 − 0,55 =  0,45972 

45,52 % decrease ↓ 

There is a 45,52 percent decrease in total weight distribution, demonstrating how important 

the Car 1 is to the ego-vehicle's course and also showing that the defined weight distribution 

for this car in Table 14 was close to the ground truth. 
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ii)  Overexposed 

This analysis was performed on the overexposed 320 x 240 resolution image, and since 

there is more light in the image, the detector was able to detect more number of targets than 

the normally exposed images. 

 

 

Figure 36. Overexposed 320 x 240 - Nighttime [Location 2] 

There are three new targets detected in Zone 2 including a car on the driving lane and two 

parked on either side. But these targets won’t affect the overall weight distribution since 

they’re in Zone 2. Thus, the new weight distribution of the overexposed image would be 

then similar to that in Table 14.   

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 1,00972 − 1,00972 =  0 

0 % decrease ↓ 

This 0% drop, also with new targets detected, demonstrates that the weights are appropriately 

assigned to the zones and its targets.  

 

iii) Underexposed and Black and White 

The 320 x 240 resolution underexposed, and black and white photographs failed to detect 

any of the targets in both images. A lack of sufficient light and quality may have resulted in 

the detector failing to pick up any details in these images. 

 

Figure 37. Underexposed and Black & White 320 x 240 - Detected - [Location 2] 
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If the new weight distribution for these images is then calculated, it would result in a 100 

percent drop.  

 

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 =  𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑓𝑖𝑛𝑒𝑑 − O𝑣𝑒𝑟𝑎𝑙𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑  

𝑊𝑒𝑖𝑔ℎ𝑡 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 1,00972 − 0 =  1,00972 

100 % decrease ↓ 

 

 Detection faults 

The detector failed to identify the signs for dead zone or any traffic signs at that location, 

similar to the detection flaws of location 2 in Section 5.4.1. Detection, in particular, becomes 

substantially more difficult under low light settings as compared to daytime. To increase the 

low-light performance of detecting systems used in autonomous vehicles, it is not only 

necessary to train these datasets, but use enhanced sensors to improve the quality of 

recognition. Only sensors with superior low-light performance can identify the existence of 

these targets, further assisting the detector in categorizing them accordingly. 

 

5.5 Summary of Results 

This section summarizes the results obtained from the experiments including the 

locations examined in Appendix A. All of the photographs from these eight sites were 

reduced from their original size of 5184 x 3456 pixels to three distinct sizes: 1280 x 960, 

640 x 480, and 320 x 240 pixels, respectively. The experiment’s second approach was to 

convert the normally exposed 320 x 240 resolution image to black and white in order to 

minimize the size even further. These photographs were then run using the algorithm to 

compare the detection results to their benchmark photographs captured during both day and 

night.  

Table 17 demonstrates the benchmark and detected weight distribution of each location 

during the day and night. The table also indicates the exposure level and image size at which 

the detected images varied, as well as the percentage of overall weight drop.  

 

A weight drop of more than 20% is regarded too high since these images failed to identify 

the most significant targets on the ego-vehicle's route. This allows us to examine the aspects 

that had the greatest effect on weight drop in all locations in terms of image quality and 

lighting conditions. Only the identified pictures that differed in detection from the original 

picture are included in the table. 
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Location Time Weight Image Exposure 
Image 

Size 
Weight ↓ drop % 

Location 1 

Day 1,0352 Benchmark 5184 x 3456 N/A 

Night 0,5320 Benchmark 5184 x 3456 N/A 

Day 0,753 Overexposed 320 x 240 27,62 % 

Night 0,516 Underexposed 320 x 240 3,00 % 

Night 0,450 Black & white 320 x 240 15,41 % 

Location 2 

Day 0,9551 Benchmark 5184 x 3456 N/A 

Night 1,0097 Benchmark 5184 x 3456 N/A 

Day 0,0001 Underexposed 320 x 240 0,01% 

Night 0,0097 Normal 1280 x 960 0,962% 

Night 0,4597 Normal 320 x 240 45,52% 

Night 0 Underexposed 320 x 240 100 % 

Night 0 Black & white 320 x 240 100 % 

Location 3 

Day 0,5051 Benchmark 5184 x 3456 N/A 

Night 0,4906 Benchmark 5184 x 3456 N/A 

Day 0,0010 Black & white 320 x 240 0,197% 

Night 0,4846 Underexposed 320 x 240 1,22% 

Night 0,4846 Black & white 320 x 240 1,22% 

Location 4 

Day 0,8756 Benchmark 5184 x 3456 N/A 

Night 0,6570 Benchmark 5184 x 3456 N/A 

Day 0,8756 - - 0% 

Night 0,6570 - - 0% 

Location 5 

Day 0,6680 Benchmark 5184 x 3456 N/A 

Night 0,2394 Benchmark 5184 x 3456 N/A 

Day 0,3870 Overexposed 320 x 240 42,06% 

Night 0,0864 Black & white 320 x 240 63,90% 

Location 6 

Day 0,2632 Benchmark 5184 x 3456 N/A 

Night 0,371 Benchmark 5184 x 3456 N/A 

Day 0,2160 Underexposed 320 x 240 17,93% 

Night 0,0360 Black & white 320 x 240 90,29% 
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Location 7 

Day 0,7090 Benchmark 5184 x 3456 N/A 

Night 0,0648 Benchmark 5184 x 3456 N/A 

Day 0,4930 Overexposed 320 x 240 30,46% 

Night 0,0648 - - 0% 

Location 8 

Day 0,723 Benchmark 5184 x 3456 N/A 

Night 0,273 Benchmark 5184 x 3456 N/A 

Day 0,273 Black & white 320 x 240 62,24% 

Night 0 Underexposed 320 x 240 100% 

Table 17. Final Results 

Table 17 shows that all of the images with any change in overall weight have a resolution of 

320 x 240 pixels, with the exception of Location 2, where a normally exposed photograph 

at night with a size of 1280 x 960 pixels showed a weight drop of less than 1%. When closely 

examined, the majority of the photos that showed a substantial weight shift in detection were 

at night and in extreme lighting conditions, either overexposed or underexposed. Aside from 

locations 3, 4, and 7, black and white nighttime photographs at all sites revealed a minimum 

weight reduction of 15%. In the preliminary design of the experiment, the targets in each 

location were given different weights by category, with an aim to find the minimum 

conditions in which the algorithm could find the worthy of recognition objects. The numbers 

in Table 17 reveal that the weights assigned to the targets at these locations for the 

experiment were appropriate.  

 

The experimental findings conclude that an image with a resolution of at least 320 x 

240 pixels is required for the detector to effectively recognize all of the relevant targets in 

the ego-vehicle's course. Furthermore, based on the results, it is reasonable to conclude that, 

if the detection model in any autonomous system is designed to process black and white 

pictures to reduce the data load, the photos must be a minimum of 640 x 480 pixels in order 

for the detector to perform efficiently. 
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6. Conclusion  

The aim of this work was to identify the minimum criteria of the picture quality required 

for object detection while maintaining relevant object detection level. The paper begins with 

investigating the concepts of existing sensor technologies for object identification, with a 

particular emphasis on the visual sensor camera. Each sensor was considerably researched, 

as were their object recognition methods, types, attenuation, and limitations, while the 

camera received a fairly in-depth study. An appropriate experimental method was chosen 

based on the environmental factors at work in the artificial intelligence industry. The 

experiment was performed using a deep learning based algorithm, on photographs taken 

from eight different locations around Prague city both during the day and night.  

 

Two different approaches of data processing were employed in which the photographs 

were downsized into three different resolutions, with the smallest size colorized to black and 

white, before running the algorithm for detection. The results of this detection were then 

compared to the weights of targets in each location, assigned based on its worth of 

recognition to the course of the ego-vehicle. When the experimental recording was evaluated 

in this manner, both the lighting and minimum image quality requirements needed for the 

algorithm to perform effectively was found. It is observed that the detector is especially 

sensitive under severe lighting settings such as overexposure and underexposure. 

Furthermore, the detector performs poorly in detecting objects in lower resolution pictures 

of 320 x 240 pixels, resulting in considerable variations in detection. At night, the 

underexposed images also demonstrated poor detecting ability. 

 

 Based on the experimental results, the minimum image quality required for successful 

recognition is 320 x 240 pixels for a color image and 640 x 480 pixels for a black and white 

image. It can also be stated that the detector requires ambient illumination to work optimally. 

However, in a real-world setting, this is not the case. In real world, lighting may range from 

extremely bright to completely dark. Different weather conditions like fog, snow, rain etc. 

also have an impact on the lighting conditions outside. These considerations are taken into 

account and possible enhancements can be addressed further as a topic for future study. 
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7. Future Improvements 

There are various ways the experiment can be improved to test the algorithm more 

thoroughly. The experiment in this thesis was only carried out in varied lighting and at 

different times of the day. However, performing these experiments in various weather 

situations, such as rain, fog, and snow, can provide more precise findings on how the 

algorithm functions. This will provide a better knowledge of how to determine the detector's 

limit. In addition, the experiment in this research was limited to static images. Testing it on 

motion pictures can provide an additional layer of analysis. The experiment was also limited 

to a single field of view (FOV); however, adding several FOVs to each site can further 

enhance the findings. Furthermore, the photographs could be captured from a car using a 

mounted camera for better results as it can better simulate a real ADAS system. These are 

some of the few aspects that can be addressed in the future to minimize the number of 

untested states and thus, improving the results in terms of ultimately determining the 

detector's limit and evaluating whether the experimental algorithm is still valid. 
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Appendix A: Remaining Locations  

Similar analysis from Section 5.4 was carried out on the remaining locations. Both their 

daytime and nighttime photos, along with their weight distribution and top views, are 

included here. The calculations of these locations are included in the excel file named 

Appendix_Calculations. 

 

I. Daytime 

i) Location 4 

 

Figure I: Palackeho bridge [Location 4] 

 

Figure II: Top view [Location 4] 
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The location in Figure I is on the Palckeho bridge is a two-way road with both trams and 

cars sharing the same lanes. Since the bridge is narrow and relatively short, the location has 

been split into two different zones. We picture ourselves as the ego-vehicle behind the 

cyclist. 

 

ii) Location 5 

 
Figure III: Zborovska road [Location 5] 

 
Figure IV: Top view [Location 5] 
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Figure III depicts a three-way road with two lanes in the opposite direction of the ego-

vehicle's path and one lane in the same direction. The location was divided into three zones, 

with Zone 2 bearing a weight of zero. Here, the ego-vehicle is behind the dark blue car 

waiting for the traffic signal.  

 

iii) Location 6 

 

Figure V: Resslova road [Location 6] 

 

 

Figure VI: Top view [Location 6] 
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iv) Location 7 

 
Figure VII: Štěpánská road [Location 7] 

 
Figure VIII: Top view [Location 7] 

 
Location 7 is on the Štěpánská road which is a two-way street one lane in each direction. As 

seen in Figure VII, the ego-vehicle is coming from the direction next to the parked green car.  
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v) Location 8 

 

Figure IX: Žitná road [Location 8] 

 

Figure X: Top view  [Location 8] 
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II. Nighttime  

i) Location 1 

Since location 2 has already been covered in Section 5.4.2 for the nighttime analysis, 

the remaining nighttime photographs of other sites, as well as their top views, are 

investigated here. 

 

 
Figure XI: Jirasek Bridge - Nighttime [Location 1] 

 
Figure XII: Top view  - Nighttime [Location 1] 
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ii) Location 3 

 
Figure XIII: Karlovo námesti - Nighttime [Location 3] 

 
Figure XIV: Top view  - Nighttime [Location 3] 
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iii) Location 4 

 
Figure XV: Palackeho bridge - Nighttime [Location 4] 

 
Figure XVI: Top view  - Nighttime [Location 4] 
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iv) Location 5 

 
Figure XVII: Zborovská road - Nighttime [Location 5] 

 
Figure XVIII: Top view  - Nighttime [Location 5] 
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v) Location 6 

 
Figure XIX: Resslova road - Nighttime [Location 6] 

 
Figure XX: Top view - Nighttime [Location 6] 

At night the location 6 had more targets on the road compared to the daytime which resulted 

in a higher overall weight. 
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vi) Location 7 

 
Figure XXI: Štěpánská road - Nighttime [Location 7] 

 
Figure XXII: Top view - Nighttime [Location 7] 
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vii)  Location 8 

 
Figure XXIII: Žitná road - Nighttime [Location 8] 

 
Figure XXIV: Top view - Nighttime [Location 8] 
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Appendix B: Image Size Calculations  

RGB Black & White 

W = 1280 pixels 

H = 960 pixels 

BitDepth = 24 bits/pixel 

= (1280 x 960) x 24 bits/pixel 

= 1 228 800 pixels x 24 bits/pixel 

= 29 491 200 bits / 8 bits/byte 

= 29 491 200 bits x 1 byte / 8 bits 

= 3 686 400 bytes 

≈ 3,68 MB 

W = 1280 pixels 

H = 960 pixels 

BitDepth = 8 bits/pixel 

= (1280 x 960) x 8 bits/pixel 

= 1 228 800 pixels x 8 bits/pixel 

= 9 830 400 bits / 8 bits/byte 

= 9 830 400 bits x 1 byte / 8 bits 

= 1 228 800 bytes 

≈ 1,22 MB 

W = 640 pixels 

H = 480 pixels 

BitDepth = 24 bits/pixel 

= (640 x 480) x 24 bits/pixel 

= 307 200 pixels x 24 bits/pixel 

= 7 372 800 bits / 8 bits/byte 

= 7 372 800 x 1 byte / 8 bits 

= 921 600 bytes 

≈  0,9216 MB 

W = 640 pixels 

H = 480 pixels 

BitDepth = 8 bits/pixel 

= (640 x 480) x 8 bits/byte 

= 307 200 pixels x 8 bits/byte 

= 2 457 600 bits / 8 bits/byte 

= 2 457 600 x 1 byte / 8 bits 

= 307 200 bytes 

≈  0,3072 MB 

W = 320 pixels 

H = 240 pixels 

BitDepth = 24 bits/pixel 

= (320 x 240) x 24 bits/pixel 

= 76 800 pixels x 24 bits/pixel 

= 1 843 200 bits / 8 bits/byte 

= 1 843 200 x 1 byte / 8 bits 

= 230 400 bytes 

≈ 0,2304 MB 

W = 320 pixels 

H = 240 pixels 

BitDepth = 8 bits/pixel 

= (320 x 240) x 8 bits/pixel 

= 76 800 pixels x 8 bits/pixel 

= 614 400 bits / 8 bits/byte 

= 614 400 x 1 byte / 8 bits 

= 76 800 bytes 

≈ 0,0768 MB 

Table I: Image Size Calculations 
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