

Czech Technical University

Faculty of Mechanical Engineering

Department of Instrumentation and Control

Industrial IoT Web Application for Motor

Characteristic Monitoring

Master Thesis

Sami Jradi

Supervisor: Ing. Vladimír Hlaváč, Ph.D.

Co-supervisor: MSc. Manuel Aguado Puertas (Siemens DI FA APC3)

Declaration of Authorship
I, Sami Jradi, declare that this thesis titled, ‘Industrial IoT Web Application for Motor

Characteristic Monitoring’ and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a master’s degree

at this University.

• Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

• Where I have consulted the published work of others, this is always clearly

attributed.

• Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

Czech Technical University

Abstract
Faculty of Mechanical Engineering

Department of Instrumentation and Control Engineering

Master of Science

Industrial IoT Web Application for Motor Characteristic Monitoring

By Sami Jradi

This thesis is based on the technology of web development to build the back-end of an

application for motor characteristic monitoring in the field of industrial IoT. The purpose

of the web application is to receive data such as velocity, acceleration, position and torque

from an industrial servo motor connected to a Siemens SIMOTION D PLC using MQTT

protocol, and then analyze this data in the form of charts. The resulting chart would be

known as the load curve which will offer the chance to perform predictive maintenance

on the hardware functioning inside the factory. The backend of the application will be

written in the Java programming language using Spring Boot application framework. This

backend will then be connected to an SQL database such as PostgreSQL where all the

essential data of the application will be stored. An API documentation will be generated

using Swagger containing all required endpoints for the frontend developers to

implement the user interface. After building both the backend and frontend of the

application, an image file can be created using Docker which will run on industrial devices

used in factory automation.

České vysoké učení technické v Praze

Abstrakt
Fakulta strojní

Ústav přístrojové a řídící techniky

Master of Science

Průmyslová webová aplikace IoT pro monitorování charakteristik motorů

By Sami Jradi

Základem této práce je vývoj podpůrné serverové aplikace (back-end), monitorující

charakteristiky motorů v oblasti průmyslového IoT (internetu věcí). Účelem této

podpůrné aplikace je přijímat změřená data, jako je rychlost, zrychlení, poloha a točivý

moment z průmyslového servomotoru připojeného k PLC Siemens SIMOTION D. Data jsou

přijímána pomocí protokolu MQTT a poté zpracovávána do formy grafů. Výsledný graf,

známý jako křivka zatížení, nabízí možnost předvídat a v předstihu provádět údržbu

hardwaru během jeho užívání v průmyslovém provozu. Podpůrná serverová aplikace

(back-end) byla vytvořena v programovacím jazyce Java s využitím aplikačního rámce

Spring Boot a následně propojena s SQL databází (použit PostgreSQL), kam se ukládají

změřená a vypočtená data. Dokumentace API (Application Programming Interface, popis

jak volat tuto serverovou podporu) byla vygenerována pomocí programu Swagger

(framework pro návrh, tvorbu a dokumentaci API) a obsahuje popis veškerých možných

přístupových bodů a volání, které mohou tvůrci nejen webových aplikací (na straně

klienta, front-end) využívající vytvořenou serverovou podporu (back-end)

implementovat. Po sestavení podpůrné aplikace na straně serveru i aplikace na straně

klienta lze pomocí virtualizačního prostředí Docker vytvořit image (obraz paměti), který

lze spouštět na průmyslových zařízeních používaných v tovární automatizaci.

6

Acknowledgements

First of all, I would like to thank my supervisor Ing. Vladimír Hlaváč, Ph.D. for his valuable

help, knowledge, and guidance. At the same time, I would like to thank Siemens Digital

Industries for providing me with the tools and opportunity for completing this project, as

well as giving me the chance to be part of the team at the Application Center in Prague

(APC3).

In addition, a special mention goes to my co-supervisor and team leader at Siemens Digital

Industries, MSc. Manuel Aguado Puertas. This project was possible thanks to his ability in

guiding the efforts of development towards successful delivery as well as his project

management skills.

I would like to thank my family and friends that have supported me during my time in

Prague, who have also contributed greatly to producing this work.

7

Contents

Declaration of Authorship ... 2

Abstract ... 4

Abstrakt ... 5

Acknowledgements .. 6

List of Abbreviations .. 10

1. Introduction ... 11

1.1 Load Curve ... 11

1.1.1 Industrial Edge Platform ... 12

1.1.2 SIMOTION D PLC ... 13

1.1.3 OPC Communication ... 14

1.1.4 MQTT .. 15

1.1.5 Load Profile ... 16

2. Research and Requirements .. 21

2.1 Architectural Overview .. 21

2.1.1 The Back-end .. 21

2.1.2 API Controller.. 23

2.1.3 The Front-end ... 24

2.1.4 Database ... 25

3. Implementation ... 28

3.1 Back-End Implementation ... 28

3.1.1 Java ... 28

3.1.2 Spring Boot ... 29

3.1.3 Spring Data JPA ... 31

3.1.4 OPC XML-DA Library ... 34

3.1.5 MQTT Library .. 36

3.2 Front-End Implementation .. 38

3.2.1 Angular .. 38

3.2.2 Communication with the Back-end .. 38

3.3 Database .. 40

8

3.3.1 PostgreSQL .. 40

3.3.2 PostgreSQL JDBC Driver .. 40

4. Evaluation .. 43

4.1 Configuration Screen ... 43

4.2 Overview Screen .. 48

4.3 Entity Relationships ... 54

5. Testing ... 56

5.1 Results .. 58

6. Conclusion.. 61

References ... 62

9

10

List of Abbreviations

IIoT Industrial Internet of Things

PLC Programmable Logic Controller

OPC Open Platform Communications

MQTT Message Queuing Telemetry Transport

QoS Quality of Service

N.m Newton-meter

rpm Rotations per minute

API Application Programming Interface

MVC Model View Controller

HTTP Hypertext Transfer Protocol

HTML Hypertext Markup Language

CSS Cascading Style Sheets

SQL Structured Query Language

RDBMS Relational Database Management System

JPA Java Persistence API

JVM Java Virtual Machine

JSON JavaScript Object Notation

JDBC Java Database Connectivity

CRUD Create, Read, Update and Delete

11

1. Introduction

Industrial Internet of Things (also known as Industrial IoT or IIoT) refers to an industrial

framework whereby a large number of devices or machines are connected and

synchronized through the use of software tools and third platform technologies in a

machine-to-machine and Internet of Things context. The idea behind machine-to-machine

communication is to reduce human interventions as much as possible so that the highest

level of automation could be achieved. [1]

Figure 1 The place of machine-to-machine or M2M on the Internet of Everything [1]

 One of the most significant advantages of the Industrial Internet of Things is the

elimination of human errors and manual labor, as well as an improvement in overall

productivity and cost savings, both in terms of time and money. We must not overlook the

potential applications of IIoT in quality control and maintenance. In the future, IIoT is

likely to force more unified system protocols and architectures, allowing devices to

interact more seamlessly and improving interoperability.

1.1 Load Curve

The Load Curve is a web application designed for monitoring the characteristic of motors

which are controlled by a SIMOTION D PLC in a factory. The application will be able to

connect to the OPC (Open Platform Communications) server of the PLC and retrieve

12

information about connected motors. After saving the configuration, we will be able to

receive data about the motor describing its current velocity, acceleration, position and

torque through a communication protocol known as MQTT (Message Queuing Telemetry

Transport) that is publishing this data from another web application known as SIMOTION

Trace Connector. After processing this data, the application is expected to display four

separate charts. The first three charts will represent the velocity, acceleration and torque

as functions of time, while the final chart will contain the load profile of the motor, the

load point, as well as the torque-speed characteristic that is documented in the catalogue

of the motor. The application will be provided to customers as part of the Siemens

Industrial Edge Computing Platform.

1.1.1 Industrial Edge Platform

Industrial Edge is the SIEMENS platform to host applications from different vendors on a

computing platform close to the shopfloor. Thus, enables the extensions of automation,

deployment of demanding stream processing and learning algorithms as well as the

hosting from integration code to site automation. [2]

Figure 2 Core Functionalities of Industrial Edge [2]

Industrial Edge addresses the following core functionalities:

a) Write applications in various programming languages, participating from the

whole power of the docker community

• Simple creation of applications

• Publishing of applications to different tenants

13

b) Comprehensive Edge Device Management

• Simple onboarding of Edge devices operated in industrial networks

• Secured firmware management with power fail-safe update over the air

c) Integrated Application Management for deployment, configuration, and lifecycle

management

d) Publish Web Applications on Site

• Reverse proxy for controlled publishing from Web Apps on site

• Integrated user management for on-site access control

This Edge platform combines all the benefits of edge and cloud computing – optimally

tailored to the customer’s specific requirements. It allows analysis of all the data at the

machine or preprocess it quickly and instantly. The optimized data points can then be

transferred more quickly to the cloud where, for example, access to more computing

power and larger storage capacities is available. Among other things, this permits a

precise analysis of data over longer periods of time. Based on the type of application, the

customer decides whether and how he would like to use the cloud in addition to Industrial

Edge.

1.1.2 SIMOTION D PLC

SIMOTION is a motion control system which offers an optimized all-in-one solution for

production machines as well as being able to handle all necessary tasks for the entire

machine automation. In this thesis, the hardware used will be SIMOTION D which is a

drive-based platform for users who require a drive integrated and a very compact

solution for their machines.

SIMOTION D offers all features of a regular Programmable Logic Controller (PLC), in

addition to speed and position control, pressure control, temperature control and

synchronous operations for electrical and hydraulic axes.

14

Figure 3 SIMOTION D in a factory setup [3]

SIMOTION D is recommended wherever there is a need to implement complex

applications in a small space. As the controller and drive are combined in a single system,

SIMOTION D takes up very little space in the control cabinet. It provides an ideal solution

for complex multi-axis machines requiring shortest cycle times as well as optimal product

quality through a deterministic and reproducible machine behavior. Moreover, multi-axis

machines whose modules are each controlled by a SIMOTION controller can mutually

exchange process values in isochronous mode (distributed gearing), thus achieving

distributed automation solutions.

1.1.3 OPC Communication

Open Platform Communications (OPC) is a series of standards and specifications for

industrial telecommunication. These specifications define the interface between Clients

and Servers, as well as Servers and Servers, and include features such as access to real-

time data, alarm and event tracking, historical data access, and other applications.

The original standard, known as OLE for Process Control, was created in 1996 by an

industrial automation task force. The aim of the standard when it was first released was

to abstract PLC specific protocols (such as Modbus, Profibus, and others) into a

standardized interface that would enable HMI/SCADA systems to communicate with a

"middle-man" who would translate generic-OPC read/write requests into device-specific

15

requests and vice versa. As a result, an entire industry of products has emerged, enabling

end-users to introduce systems using best-of-breed products that all communicate

seamlessly through OPC. [4]

Figure 4 OPC-Hardware relationship [5]

OPC's benefit comes from the fact that it's an open standard, which means lower prices

for manufacturers and more choices for consumers. For their devices to connect with any

OPC client, hardware manufacturers just need to have a single OPC server. Through

including OPC client capabilities in their products, software vendors can immediately

make their products compliant with thousands of hardware devices. Users can choose any

OPC client software they need, being assured that they will communicate seamlessly with

their OPC-enabled hardware.

1.1.4 MQTT

MQTT is a lightweight publish/subscribe protocol that connects IoT devices with a small

footprint and low bandwidth. MQTT is an event-driven protocol that allows messages to

be pushed to clients, unlike HTTP's request/response model. This architecture separates

clients from one another, allowing for a highly scalable solution without relying on data

producers and data consumers. [6]

The MQTT broker and MQTT clients are at the heart of MQTT. The broker is responsible

for sending messages between the sender and the receivers. The client publishes a

message to the broker, and other clients can subscribe to the broker to receive messages.

Each MQTT message includes a topic. A client publishes a message for a specific topic and

MQTT clients subscribe to the topics they want to receive. The broker uses the topics and

the list of subscribers to send messages to the appropriate clients. Messages that can't be

dispatched to MQTT clients who aren't connected, can be buffered by a MQTT broker.

When network links are unreliable, this becomes extremely useful. To support the reliable

delivery of messages, the protocol supports three different types of quality of service

16

(QoS) messages: 0-at most once, 1-at least once, and 2-exactly once. QoS is a key feature

of the protocol MQTT.

QoS gives the customer the power to choose a level of service that matches their network

reliability and application logic.

• At most once - the message is sent only once, and the client and broker take no

additional steps to acknowledge delivery (fire and forget).

• At least once - the message is re-tried by the sender multiple times until

acknowledgement is received (acknowledged delivery).

• Exactly once - the sender and receiver engage in a two-level handshake to ensure

only one copy of the message is received (assured delivery).

Figure 5 MQTT Publish / Subscribe Architecture example [6]

1.1.5 Load Profile

The load profile is used for the purpose of motor sizing. Proper sizing is a crucial aspect

of motor selection. If a motor is undersized, it will not be able to control the load, leading

to overshoot and ringing. If the motor is oversized, it may control the load, but it will also

be larger and heavier, as well as more expensive in terms of price and cost of operations.

[7]

Every motor will have rated values of voltage, current, speed and power. Normally these

are visible on the motor’s nameplate and/or given in the documentation. In general, rated

values represent the maximum values that the motor should be subjected to in normal

conditions. However, the rated torque is often not given on the nameplate but is a very

important parameter for appropriately sizing the motor. In both DC and AC induction

motors, operating current is proportional to the torque, so exceeding the rated torque is

likely to lead to overheating and burnout of the motor windings. Exceeding the rated

torque also risks mechanical damage to couplings and the drive shaft. Simply, if the load

is constant then sizing the motor consists of choosing a motor whose rated torque is

17

slightly above the torque required by the load. The torque produced by a motor varies

with speed and the torque produced by a load also varies with speed. If the motor torque

is greater than the load torque, then the load will accelerate. If the load torque is greater

than the motor torque, then the load will decelerate.

Figure 6 A motor that will start the load and get up to speed correctly

Figure 7 A motor that will never start

 Some loads do not present a constant torque even after they have got up to full speed.

This presents a variable power to the motor and complicates the sizing problem. In this

case we should ensure that:

18

• Peak load torque < Rated motor torque

• The effective load torque (root mean square load torque) and effective load speed

requirements must be less than 100% of the rated motor torque and speed and

ideally greater than 75%.

• The motor can start the load and get it up to speed from the initial position.

The point at which the effective torque and effective speed meet is called the load point

or operating point. The coordinates of this point can be calculated by the following

formulas:

𝑀𝑒𝑓𝑓 = √
1

𝑇
 ∙ ∑ 𝑀𝑖

2 ∙ 𝑡𝑖

𝑛

𝑖=1

 (1)

𝑛𝑒𝑓𝑓 = √
1

𝑇
 ∙ ∑ 𝑛𝑖

2 ∙ 𝑡𝑖

𝑛

𝑖=1

 (2)

𝑇 … 𝑐𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑚𝑒𝑛𝑡

𝑡 … 𝑠𝑎𝑚𝑝𝑙𝑒 𝑡𝑖𝑚𝑒

𝑛 … 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

 If the motor were to be operated at this operating point, the same temperature rise would

occur as in the actual load cycle. This point is now entered in its torque-speed diagram for

each motor that is considered in the sizing process. If the operating point is below the

characteristic curve for S1 operation, the corresponding motor is able to meet the

required load cycle from a thermal point of view. All motors that meet this condition are

retained for further design steps while all others are eliminated. In figure 8, we can

observe that motor 1 is suitable for the load cycle while motor 2 would be thermally

overloaded and therefore cannot be used.

19

Figure 8 Characteristic of Motor 1 and Motor 2 [8]

To get a better idea of the required motor for a specific application, then the load torque

and speed will be compared to the torque characteristic of the motor. This is done by

measuring the torque and speed of the motor during operation and then converting these

measurements to their absolute values. We call this the load curve, and it represents the

possible effective torque vs the possible effective speed.

Figure 9 An example of a load curve below the characteristic

20

Figure 10 An example of a load curve above the characteristic

In figure 9, we can observe that the load curve or load profile is directly lower than the

characteristic, this marks this motor as suitable for operation since the load/operating

point falls below the characteristic as well. While in figure 10, the chosen motor should

not be used at all and more sizing measurements have to be performed to find a better

suited one for the required application.

21

2. Research and Requirements

2.1 Architectural Overview

This chapter describes an architectural overview of the application. Based on the

requirements of the software, the development of the web application has been

considered. The architecture consists of three main components: the back-end and front-

end systems communicating with an API controller, and the database. The web

application will be built as a “3-tier architecture” which comprises from a data tier,

business tier and a presentation tier.

Figure 11 An overview of the proposed architecture

2.1.1 The Back-end

The server side of a website is referred to as the backend. It organizes and stores data, as

well as ensuring that everything on the client side of the website functions properly. It's

the section of the website you can't see or communicate with. It's the part of the app that

doesn't interact with users directly. The parts and characteristics developed by backend

designers are indirectly accessed by users through a front-end application. The backend

includes activities such as writing APIs, developing libraries, and dealing with machine

components without user interfaces or even scientific programming systems.

The back-end uses the Model-View-Controller (MVC) architectural pattern. The MVC

pattern in Software Engineering Architecture is defined as an application being separated

into three logical components: Model, View and Controller.

22

• Model:

All data-related logic will be represented by this part in the architecture. This

involves determining the data's structure. To put it another way, this contains the

definitions for many of the types used in the application. In many cases, the model

here refers to the type of data that we are dealing with. This component also

notifies its dependents about data changes.

• View:

Contains the application's user interface (UI) logic. This section of the framework

encapsulates the user interface logic, which involves items like dropdown buttons

and web pages that the end user can manipulate.

• Controller:

Controllers serve as a layer between the Model and View components, processing

all business logic generated by user input. It's in charge of handling inputs from

the View components, manipulating data with the Model component's models,

and eventually interacting with the View components to make the final output to

the end user.

Figure 12 MVC Architecture [9]

The MVC pattern's benefit is that it allows for a separation of concerns and code. Since the

model is independent of the view, any changes to the model have no effect on the overall

architecture. It's also simple to test each of these components, and they're reusable. It's

possible to make multiple views for a single model. In addition, working in a development

23

team helps you to work on various parts of the web app at the same time without

interfering with each other. The key drawback of the MVC architectural pattern lies in its

complexity. It requires an understanding of the information flow between the various

components.

2.1.2 API Controller

To handle the communication between back-end and front-end, an API is provided. An

application programming interface (API) is a collection of concepts and protocols for

creating and integrating software applications. It's often referred to as a contract between

an information provider and an information user, specifying the content that the client

(the call) is required to provide and the content that the producer is required to provide

(the response). In other words, if you want to connect with a program or device to access

information or perform a function, an API allows you to communicate your request to the

system so that it can understand and react. [10]

The API controller is used to execute back-end requests. One method is provided for each

available endpoint. This controller builds an HTTP request based on the arguments of the

method. HTTP stands for Hypertext Transfer Protocol and is used to structure requests

and responses over the internet. HTTP requires data to be transferred from one point to

another over the network. The internet contains a large number of resources that are

hosted on various servers. Your browser must be able to send a request to the servers and

view the resources for you in order to access these resources. HTTP specifies a collection

of request methods for specifying the desired action for a given resource. Although they

can also be nouns, these request methods are sometimes referred to as HTTP verbs. [11]

• GET: The GET method requests a representation of the specified resource.

Requests using GET should only retrieve data.

• POST: The POST method is used to submit an entity to the specified resource, often

causing a change in state or side effects on the server.

• PUT: The PUT method replaces all current representations of the target resource

with the request payload.

• DELETE: The DELETE method deletes the specified resource.

• PATCH: The PATCH method is used to apply partial modifications to a resource.

24

2.1.3 The Front-end

The front end of a website is the aspect where the user communicates with directly. It is

often referred to as the application's "client side." Anything that users see explicitly is

included: text colors and styles, images, graphs and tables, buttons, colors, and the

navigation menu. The languages used for Front End development are HTML, CSS, and

JavaScript. Front End developers create the structure, design, behavior, and content of

anything that appears on the browser screen when websites, web applications, or mobile

apps are opened. The front end's main goals are responsiveness and results. [12]

• HTML:

HTML stands for Hyper Text Markup Language. It is used to design the front end

portion of web pages using markup language. HTML is the combination of

Hypertext and Markup language. Hypertext defines the link between the web

pages. The markup language is used to define the text documentation within tag

which defines the structure of web pages.

• CSS:

Cascading Style Sheets fondly referred to as CSS is a simply designed language

intended to simplify the process of making web pages presentable. CSS allows you

to apply styles to web pages. More importantly, CSS enables you to do this

independent of the HTML that makes up each web page.

• JavaScript:

JavaScript is a famous scripting language used to create the magic on the sites to

make the site interactive for the user. It is used to enhancing the functionality of a

website to running cool games and web-based software.

The front-end runs in the users’ browser and helps them to communicate with the

software in a user-friendly manner. Even if not directly, it uses an MVC-like pattern.

Separation of concerns (SoC) is used in the front-end architecture. It is a concept that

allows various logic, such as user interface functionality, business logic, and infrastructure

logic, to be separated. The MVC architectural pattern is also included in the SoC.

25

Figure 13 Separation of Concerns Architecture [13]

2.1.4 Database

SQL stands for Structured Query Language. A query language is a kind of programming

language that's designed to facilitate retrieving specific information from databases. To

put it in other words, SQL is the language of databases. A relational (SQL) database is a

database that stores related information across multiple tables and allows you to query

information in more than one table at the same time. The computing world quickly

realized the value of being able to access several records with a single command that does

not require specifying how to get to a specific record.

The relational database management system (RDBMS) that we used today rely on SQL as

the engine that allows us to perform all the operations required to create, retrieve, update,

and delete data as needed. From an open-source perspective these RDBMSs include

MySQL, MariaDB, and PostgreSQL as the most commonly used open-source RDBMS in

production today. In this project the used database will be PostgreSQL. PostgreSQL is an

object-relational database management system (ORDBMS), instead of a purely RDBMS

system like MySQL and MariaDB. This means that PostgreSQL data models can be based

on relational database models but can also be object-oriented as well. In practice, that

means we see PostgreSQL utilized in more complex and varied data models, while we see

MariaDB and MySQL used for more lightweight data models. [14]

It's easier to grasp how a relational database works if we consider an example. Assume a

business owner who wants to keep track of sales data. He could create an Excel

spreadsheet with all the details he needs in separate columns, such as the order number,

date, amount due, shipment tracking number, customer name, address, and phone

number.

26

Figure 14 Example of an Excel Spreadsheet

This setup would be adequate for monitoring the data he needs at first, but when he

begins to receive repeated orders from the same customer, he’ll notice that their name,

address, and phone number are stored in several rows of the spreadsheet. This redundant

data will take up unwanted space and reduce the reliability of the sales tracking system

as the company expands and the amount of orders being tracked increases. The company

may also have problems with data integrity. There's no guarantee that every field will be

filled with the correct data form or that the name and address will be entered consistently.

Figure 15 A diagram of how the Relational Database would look like [15]

We can prevent any of these problems by using a relational database, such as the one seen

in the diagram above. Two tables may be set up, one for orders and the other for

customers. Each customer will have a unique ID number, as well as the name, address,

and phone number already being monitored, in the 'customers' table. The 'orders' table

will include the order number, date, sum due, and tracking number, as well as a column

for the customer ID, rather than a separate field for each piece of customer data. This

allows us to retrieve all of the customer information for any given order, but we just have

to store it once in our database rather than listing it for each order.

27

Here's a list of commonly used SQL commands:

• SELECT - extracts data from a database

• UPDATE - updates data in a database

• DELETE - deletes data from a database

• INSERT INTO - inserts new data into a database

• CREATE DATABASE - creates a new database

• ALTER DATABASE - modifies a database

• CREATE TABLE - creates a new table

• ALTER TABLE - modifies a table

• DROP TABLE - deletes a table

• CREATE INDEX - creates an index (search key)

• DROP INDEX - deletes an index

Note: For an expanded view into SQL and its commands, refer to Chris Fehily’s “SQL

(Database Programming) 2014” from Questing Vole Press. [16]

28

3. Implementation

This chapter describes the implementation details concerning the architectural

components given, as well as the technology choice regarding each component. An overall

technology choice is realized with respect to the application scalability and a potential

increase of the requirements. The three main architectural components are the back-end,

the front-end and the database.

3.1 Back-End Implementation

In this section we will discuss the technologies used to develop the back-end of the web

application. These technologies include Java programming language, Spring Boot

Framework, Spring Data JPA, OPC XML-DA library by OPC Foundation, and the Eclipse

Paho MQTT library. Finally, a small example of the build implementation of the back-end

will be demonstrated.

3.1.1 Java

Java is a class-based, object-oriented programming language that is designed to have as

few implementation dependencies as possible. It is a general-purpose programming

language intended to let application developers write once, run anywhere (WORA),

meaning that compiled Java code can run on all platforms that support Java without the

need for recompilation. Java applications are typically compiled to bytecode that can run

on any Java Virtual Machine (JVM) regardless of the underlying computer architecture.

The use of compiled byte-code allows the interpreter (the virtual machine) to be small

and efficient (and nearly as fast as the CPU running the compiled code).

Java is extremely portable. The same Java application will run identically on any

computer, regardless of hardware features or operating system, as long as it has a Java

interpreter. Besides portability, another of Java's key advantages is its set of security

features which protect a PC running a Java program from malicious programs (such as

viruses). You can safely run a Java applet downloaded from the Internet, because Java's

security features prevent these types of applets from accessing a PC's hard drive or

network connections. Most Web browsers contain a JVM to run Java applets.

29

There are three main components of Java – Java Virtual Machine (JVM), Java Development

Kit (JDK), and the Java Runtime Environment (JRE). JDK or Java Development Kit is where

the developers write their code and run it through the JRE or Java Runtime Environment.

Then the code is translated through the JVM which resides inside the JRE along with the

java packages or libraries. [17]

In this thesis, Java is chosen for building this application due to its strong support for web

development. A Java web application is a collection of dynamic resources (such as

Servlets, JavaServer Pages, Java classes and jars) and static resources (such as HTML

pages and pictures). A Java web application can be deployed as a WAR (Web ARchive) file.

A WAR file is a zip file which contains the complete content of the corresponding web

application. A servlet is a Java class which answers a HTTP request within a web container.

JavaServer Pages (JSP) are files which contain HTML and Java code. The web container

compiles the JSP into a servlet at the first time the JSP is accessed.

Figure 16 Java Web Application Request Handling [18]

3.1.2 Spring Boot

The Spring Web MVC framework provides Model-View-Controller (MVC) architecture and

ready components that can be used to build scalable and flexible web applications. The

MVC pattern distinguishes the various aspects of an application (input logic, business

logic, and user interface logic) while maintaining a good scalability between them. A

DispatcherServlet, which manages all HTTP requests and responses, is at the heart of the

Spring framework.

30

Figure 17 The request processing workflow of the Spring Web MVC DispatcherServlet [19]

After receiving an HTTP request, DispatcherServlet consults the HandlerMapping to call

the appropriate Controller. The Controller takes the request and calls the appropriate

service methods based on used GET or POST method. The service method will set model

data based on defined business logic and returns view name to the DispatcherServlet. The

DispatcherServlet will take help from ViewResolver to pick up the defined view for the

request. Once view is finalized, The DispatcherServlet passes the model data to the view

which is finally rendered on the browser. All the above-mentioned components, such as

HandlerMapping, Controller, and ViewResolver are parts of WebApplicationContext.

Spring Boot is an open source, microservice-based Java web framework. It is built on top

of the Spring framework, and it comes with many dependencies that can be integrated

into the Spring application. So basically, it’s an extension of the Spring Framework, but it

has some specific features that make the application easier for working within the

developer ecosystem. That extension includes pre-configurable web starter kits that help

facilitate the responsibilities of an application server that are required for other Spring

projects. The Spring Boot auto configuration comes down to three simple annotations:

@SpringBootApplication, @EnableAutoConfiguration, and @ComponentScan.

@SpringBootApplication is used in the application's entry point, and the class it resides

in must have access to the application's main method. The annotation is needed and will

provide each of the other two annotations in the application since the

@SpringBootApplication includes both inside.

31

Figure 18 @SpringBootApplication example

@EnableAutoConfiguration enables Automatic Configuration for each of the

representing classes. It automatically configures your Spring application based on the JAR

dependencies you added in the project.

Figure 19 @EnableAutoConfiguration example

Finally, the @ComponentScan will search all of the beans and package declarations at

startup.

Figure 20 @ComponentScan example

3.1.3 Spring Data JPA

Spring Data JPA provides repository support for the Java Persistence API (JPA). It eases

development of applications that need to access JPA data sources. Mapping Java objects

to database tables and vice versa is called Object-relational mapping (ORM). The Java

32

Persistence API (JPA) is one possible approach to ORM. With JPA developers can map,

store, update and retrieve data from relational databases to Java objects and vice versa.

A class which should be persisted in a database must be annotated with @Entity. Thus,

the class will be called an Entity. JPA uses a database table for every entity. Persisted

instances of the class will be represented as one row in the table. All entity classes must

define a primary key and have a non-arg constructor. JPA allows to auto-generate the

primary key in the database via the @GeneratedValue annotation. The table name

corresponds to the class name. It can be changed with the annotation

@Table(name="NEWTABLENAME").

The fields of the Entity are the saved in the database. JPA is able to use either the instance

variables (fields) or the corresponding getters and setters to access these fields. It will

persist all fields by default, however if some field is not required to be saved then the

@Transient annotation can be used above the field. Each field will be mapped to a column

with the name of the field and can be changed by using the annotation @Column

(name="newColumnName").

Figure 21 An example of an Entity with JPA

JPA allows to define relationships between classes. These relationships are set using the

following annotations: @OneToOne, @OneToMany, @ManyToOne, @ManyToMany. A

relationship can be bidirectional or unidirectional. In a bidirectional relationship both

classes store a reference to each other while in a unidirectional case only one class has a

reference to the other class. Within a bidirectional relationship we need to specify the

owning side of this relationship in the other class with the attribute "mappedBy", for

example: @ManyToMany(mappedBy="attributeOfTheOwningClass").

33

Spring Data JPA provides repository support for the JPA. It simplifies the development of

applications that need access to JPA data sources. In addition, Spring Data JPA reduces the

amount of boilerplate code required by JPA. That makes the implementation of the

persistence layer easier and faster. When Spring Data generates a new Repository

implementation, it examines all of the methods specified by the interfaces and attempts

to generate queries automatically based on the names of the methods. For generating the

repository, we need to add the annotation @Respository. [20]

Figure 22 An example of a Repository with Spring Data JPA

After the Spring Data JPA code is ready, next step is to create service class and define

methods that we will have to work with database table. We will need to inject the

repository class with annotation @Autowired.

Figure 23 An example of using the repository in a service

34

The last step would be to create a controller class to expose the API and allow the front-

end of the application to send requests. The controller class in Spring Boot is in charge of

handling incoming REST API requests and returning the view to be made as a response.

The @Controller or @RestController annotations are used to annotate the controller

classes in Spring. These classes are labelled as request handlers so that Spring can

recognize them as RESTful resources during runtime. @RestController is a specialized

version of the controller. It includes the @Controller and @ResponseBody annotations,

and as a result, simplifies the controller implementation. While the @PathVariable

annotation can be used to handle template variables in the request URI mapping and use

them as method parameters. [21]

Figure 24 An example of a Spring Boot Controller

3.1.4 OPC XML-DA Library

OPC XML-DA is a java library developed by the OPC Foundation and released in July 2003.

From the firmware version 4.1 on, the OPC XML-DA server is integrated in the SIMOTION

runtime. By means of standard Ethernet or PROFINET connection, it is possible to realize

a data exchange between this OPC server and a client application. This makes it possible

to access to certain program variables as well as to system functions of the control without

additional engineering tools.

35

Figure 25 Schematic structure of the client-server system [22]

OPC XML-DA uses an open standard that can be used by many operating systems. The real

communication between the terminals is realized via the SOAP (Simple Object Access

Protocol, a permanently defined XML data structure). SOAP is based upon the http

protocol. This already shows that, from the hardware side, a data exchange via OPC XML-

DA is based upon an Ethernet connection.

As a principle, the communication with OPC XML is a client-server system. An OPC server

makes certain data available, and an OPC client is in the position to call data from the

server or to change them on the server. To do so, a server has to offer certain determined

methods and data interfaces according to OPC specification, which can be accessed to by

the client. For example, each server has to offer a read function, which permits the client

to read out an existing variable or data set of the server. A further function “write” that

realizes a writing, thus a change of a variable made available by the server.

A communication between OPC client and OPC server has to always be initiated by the

client side so that the call back mechanism of the server with OPC XML-DA cannot be

realized easily. To come to know about a changed value in the OPC server within a certain

time interval, an OPC XML-DA client will request this value continuously at least one time

within the desired time interval (called polling). If the value to be requested does not

change within a series of cycles, it will still be requested each time and transmitted to the

client. In case of very short time intervals, this leads to a high network communication

and, depending on the system, to a high system load. To reduce this system load, OPC

XML-DA offers the function “subscription”.

The following OPC functionalities are provided by the library:

36

• Read: the current value of the selected variable is read from the OPC server. In

addition to this ItemPath and ItemName can be entered to these fields manually.

• Write: Writing of the device’s variables being specified in the input fields ItemPath

and ItemName.

• Connect: By changing the URL a connection to a new device can be established.

Doing so, the existing variable tree is renewed.

• Subscribe: Subscription can be initialized. After the input of the required values,

the variable being indicated in the field ItemPath and ItemName is registered for

a Subscription.

3.1.5 MQTT Library

The Paho Java Client is a Java-based MQTT client library for developing applications that

run on the Java Virtual Machine (JVM) or other Java-compatible platforms. Paho is an

open-source project that aims to provide stable open-source implementations of open

and standard messaging protocols for new, existing, and emerging Machine-to-Machine

(M2M) and Internet of Things (IoT) applications. It's reliable, and it's used to link to MQTT

brokers by a wide variety of companies from various industries all over the world.

A MqttClient object exposes all MQTT operations. The user must first construct an

instance of this MqttClient before linking, posting, or subscribing. In order to link to a

MQTT broker, a MqttClient requires a URL and a client identifier. The port to which we

want to link must also be specified, and the MQTT client identifier must be unique. [23]

Figure 26 An example of MqttClient instance

After the creation of the MqttClient we need to connect to the broker first before we are

able to do any MQTT operation. Connecting to a MQTT broker is very easy as well as

checking if the client is already connected.

37

Figure 27 Connecting to an MqttClient

After the connection to a broker is established, the next step is to publish a MQTT message.

With the Paho library this is very straightforward with one line. We can control all

relevant MQTT information like the topic, the payload, the Quality of service and if the

message should be retained. Paho expects to connect to the MQTT broker first, otherwise

we’ll receive a MqttException.

Figure 28 Publishing a Mqtt message

In order to receive messages a client must subscribe to one or more MQTT topics. If you

want to react on incoming MQTT messages, you need to set a callback first. This callback

is called on specific events, for example when a message arrives. To subscribe to

messages, we can use the method subscribe, which takes a topic and a QoS level as

parameter.

Figure 29 Subscribing to Mqtt topics

38

3.2 Front-End Implementation

The front-end of the application will be developed and provided by colleague of mine who

is a Front-end Developer at Siemens Digital Industries, thus it is not part of my thesis

project. For this reason, this section will be short and brief. It will contain a short

description of the framework used which is AngularJS, as well as some explanation about

the communication established with the back-end.

3.2.1 Angular

Angular is a JavaScript MVC framework for developing interactive web applications on the

client side. There is no need to learn another syntax or language since it is entirely based

on HTML and JavaScript. The AngularJS framework transforms static HTML into dynamic

HTML. It enhances HTML's functionality by incorporating built-in attributes and

elements, as well as allowing users to build custom attributes using simple JavaScript.

The architecture is based on the well-known MVC model (Model-View-Controller). This is

a design pattern that can be seen in almost all modern web applications. The business

logic layer, the data layer, and the presentation layer are all divided into different parts in

this pattern. The division into various parts is done to make it easier to handle each one.

To build any application that involved DOM manipulation, a lot of JavaScript had to be

written. But with Angular, a lesser amount of code is needed to write for DOM

manipulation.

AngularJS can take care of routing which means moving from one view to another. This is

the key fundamental of single page applications; wherein you can move to different

functionalities in your web application based on user interaction but still stay on the same

page. [24]

3.2.2 Communication with the Back-end

Both the backend and the frontend work together to achieve a common purpose. The

backend receives HTTP requests from the browser. The HTTP headers or request body of

those requests can contain data. The aim may be to request new data or to send data

created by the user to the backend. HTTP requests are created and sent from inside the

user's browser. Each request receives a response, which includes information from the

HTTP headers and the request body. Those responses are returned to the user's browser

from the backend. The requests that are executed are as a result of a user clicking a link

39

or as a result of background JS code. However, there are other factors, such as the browser

reading the incoming HTML and noticing that it needs to load a resource, such as a JS file,

an image, or a CSS file. It then requests each of them with a single new HTTP request. This

usually occurs while a website is loading.

The backend normally responds with HTML-formatted responses, other static files (CSS,

JS, images, etc.), or JSON-formatted data in the HTTP body. While Simple HTTP requests

without a body, Form data, and JSON-formatted data are all sent by the frontend. [25]

40

3.3 Database

This section will revolve around the database used in the application which is PostgreSQL

as well as the database driver library that will connect the database to Java and allow for

CRUD operation to be made.

3.3.1 PostgreSQL

PostgreSQL (also known as Postgres) is an open-source object-relational database

management system with an emphasis on extensibility and compliance with industry

standards. It is available for free as an open-source solution and is licensed under the

PostgreSQL License, which is a permissive software license. It can handle a wide range of

workloads, from single-machine applications to broad Internet-facing applications with a

large number of concurrent users.

PostgreSQL is highly extensible, in addition to being free and open source. When it comes

to database configuration and management, PostgreSQL succeeds in two ways. For

instance, it complies with SQL requirements to a high degree. This strengthens its

compatibility with other programs. Second, PostgreSQL provides users with metadata

access. Since its process is catalog-driven, PostgreSQL is extensible. PostgreSQL differs

from conventional relational database systems in that it stores much more information in

its catalogs, including not only table and column information, but also data types,

functions, access methods, and so on. [26]

3.3.2 PostgreSQL JDBC Driver

Java Database Connectivity (JDBC) is a Java application programming interface (API) that

describes how a client can communicate with a database. It is a component of the Java

Standard Edition framework that offers methods for querying and updating data in a

database, with a focus on relational databases. The PostgreSQL JDBC Driver enables Java

programs to link to a PostgreSQL database using standard Java code that is database

agnostic. It's written in pure Java and uses the PostgreSQL native network protocol to

communicate. As a result, the driver is platform independent; once compiled, it can be

used on any device. [27]

In this project we will be creating a Spring-Boot application which will interact with

PostgreSQL doing CRUD operations. First, we need to configure Spring Boot to use

41

PostgreSQL as our data source. We can do that simply by adding the PostgreSQL database

url, username, and password in the "src/main/resources/application.properties" file.

Figure 30 Postgres configuration with Spring Boot

Now we need to create an entity class to map with the corresponding table in the database,

as follows:

Figure 31 Demo entity to be persisted in Postgres

42

The next step would be to declare a repository interface as follows:

Figure 32 Creating a Repository for our Demo entity

The last part is to create a controller for this demo to expose these CRUD operations and

allow HTTP requests to be done:

Figure 33 The controller which exposes these CRUD operations

43

4. Evaluation

After building the web application, this section will focus on the functionalities of the app

and the working principle behind them. The app will consist of four screens and one pop

up window for configuration and setup. For the purpose of demonstration, some demo

data has been imported into the app.

4.1 Configuration Screen

The configuration screen is used to connect to a PLC, browse the variables stored in its

memory and create the setup of a motor axis for later measurements. In order to do that

we need to click on the “Connect new axis” button. After clicking on this button, a pop-up

window will appear to allow us to create our setup.

Figure 34 Connect new axis pop-up window

In figure 34 we can see the various fields which need to be filled before a setup came be

saved. The first step is to choose a name for our machine and then enter its IP address and

44

hit the connect button. This action will send a GET request to the server and the server

will respond by connecting to the machine and retrieving the required data. This data is

then sent back to the front end as a response body in the form of JSON. An example of the

response should be as follows:

{

 "type": "D445",

 "ipAddress": "192.168.1.7",

 "serialNumber": "ST-KN6031549",

 "firmware": "V 5.3.1.9",

 "status": "CONNECTED",

 "statusTime": "2021-04-12T20:43:33.663+02:00",

 "machineNodes": [

 {

 "node": "Red_Axis",

 "saved": false

 },

 {

 "node": "Blue_Axis",

 "saved": false

 }

]

}

The response includes a property called “machineNodes”. This property is a list of the

available axes inside this machine and each axis contains a Boolean variable showing

whether this axis has been already configured and saved or not. If the variable “saved” is

false, then we will be able to select the axis from the list in the pop-up window. This action

will produce another GET request to the server where the response is a JSON containing

all information needed about the axis.

{

 "name": "Red_Axis",

 "motorType": "1FK7 synchronous motor",

 "motorMLFB": "1FK7022-5AK7x",

 "motorCode": "23726",

 "axisType": "LINEAR",

 "gearRatio": 10.0,

 "maxSpeed": 200000.0,

 "maxAcceleration": 10000.0,

 "maxJerk": 500.0,

 "dcLinkVoltage": 328.0,

 "possibleVoltages": "600.0,540.0,650.0,720.0"

}

As we can see in the response, we have a property called “dcLinkVoltage” which reads the

current DC link voltage at the time of measurement. While below it we have

“possibleVoltages” which tells us the possible voltages that this type of motor can have

45

when running in a 3-phase operating state. For obtaining accurate measurements then a

voltage has to be selected from the drop-down menu under the name “DC LINK

VOLTAGE”.

Figure 35 DC link voltage drop-down menu

The last step needed before saving the setup is to enter a MQTT topic for which this axis

configuration will subscribe to and receive the relevant data from the MQTT server in

order to create the charts. By clicking inside the “TRACE INPUT SOURCE FIELD” we are

then able to select “MQTT and Trace Connector” and then write our MQTT inside the next

field. Trace Connector is another IoT web application by Siemens Digital Industries which

performs measurements from a PLC and then publishes the data on an MQTT server. The

final setup window should now look as in figure 36.

46

Figure 36 Resulting setup window with all fields entered

The configuration table consists of six columns: axis name, machine name, IP address of

the machine, type of machine, time of creation of configuration and current status. In

addition, at the end of every row we have three buttons. The first button opens a pop-up

window which shows the details of the saved axis while the last two buttons are for

editing or deleting the axis respectively.

Figure 37 Axis details pop-up window

47

Figure 38 A full screenshot of the configuration window

48

4.2 Overview Screen

In the overview screen, we will display a list of all measurements of each axis connected.

These measurements are known as “Traces” and each “Trace” object will contain

information about the axis as well as a list of values of the measurements done. When

loading the Overview page, the server will send a response of a list of all available “Trace”

object. For this section a demo axis has been created with mock data and it’s would be as

follows:

{

 "id": 92,

 "axisName": "Axis_Demo1",

 "axisType": "LINEAR",

 "motorMLFB": "1FK7011-5AK7x",

 "gearRatio": 200.0,

 "maxSpeed": 7200000.0,

 "maxAcceleration": 360000.0,

 "maxJerk": 18000.0,

 "dcLinkVoltage": 600.0,

 "machineName": "My Demo Machine 1",

 "measurements": {

 "id": 87,

 "measurementName": "Load Curve Edge App",

 "traceStartType": "IMMEDIATE",

 "duration": 166,

 "ipAddress": "192.168.1.8",

 "tracejobId": 101,

 "cycletime": 1,

 "timestamp": 702250513000,

 "machineSerialNumber": "ST-M123456789",

 "machineFirmwareVersion": "V 5.3.1.9"

 },

 "loadCurve": {

 "id": 93,

 "datetime": 702250513000,

 "cycleTime": 1

 },

 "timestamp": 702250513000,

 "duration": 166

}

49

Figure 39 A full screenshot of the Overview window

50

This response contains an object “Measurements” which includes all information about

the measurements received over MQTT. However, in this response the list of values of the

measurements is being suppressed to avoid the congestion of too many data being sent

on each request. To access this data an “Analyse” button will be available next to each

measurement which sends two responses. One response will include the values for the

position, speed and acceleration charts and the second response will include the values

for the torque characteristic, load curve and operating point. The responses are as follows:

{

 "velocity": {

 "axisX": [...],

 "axisY": [...]

 },

 "acceleration": {

 "axisX": [...],

 "axisY": [...]

 },

 "position": {

 "axisX": [...],

 "axisY": [...]

 }

}

{

 "torqueCharacteristic": {

 "axisX": [...],

 "axisY": [...]

 },

 "loadProfile": {

 "axisX": [...],

 "axisY": [...]

 },

 "effectiveSpeed": 606.8984425107654,

 "effectiveTorque": 0.17676690952747628

}

51

Figure 40 A full screenshot of the overview Analyse window

52

In addition to the “Analyse” button, we have “Analyse Selected”. This button enables us to

view all load profiles of the selected axes in one page for the purpose of comparison. The

response will be the same as in the Analyse window, except that it will be repeated three

times, once for each axis.

53

Figure 41 A full screenshot of the Analyse Selected window

54

4.3 Entity Relationships

When sending requests, the server is accessing the database to make queries and send the

data in the form of responses. These responses contain objects that have a relationship

with one another. These relationships can be split into two groups.

The first group is responsible for the Configuration window. It includes three entities:

Machine, Axes and Data Input/Output. A Machine has a “One To Many” relationship with

an Axis, meaning that one Machine can have multiple axes or contains a list of axes. While

an Axis has a “One To One” relationship with Data Input/Output. Data I/O is responsible

for managing the MQTT connection for each axis thus it has the Axis ID as a foreign key.

The resulting Entity-Relationship diagram of this group is as shown in figure 42.

Figure 42 E-R diagram of the first group

On the other hand, the second group deals with the data of measurements that we are

receiving and want to display in the form of charts. This group includes four entities which

are: Measurements, Axis Variables, Traces and Load curve. Measurements has a “One To

Many” relationship with Axis Variable, so each measurement contains a set of variables

such as velocity, acceleration and position of the axis. While a Trace is an entity that hold

all info of its respective axis and has a “One To One” relationship with both Measurements

and Load Curve. The Load Curve entity holds information about the torque characteristic

of the axis, which is retrieved from catalogue data of the axis’s motor, as well as the load

profile and effective torque/speed which are processed on the server side. Figure 43

shows the Entity-Relationship diagram of the second group.

55

Figure 43 E-R diagram of the second group

56

5. Testing

As we arrive to the final chapter, this application will be tested with a real factory set up

that includes a SIMOTION PLC connected to a packaging machine. The packaging machine

is provided by Czech manufacturer Viking Mašek and uses servo motors and a SIMOTION

PLC provided by Siemens.

Figure 44 Packaging machine from Viking Mašek

57

Figure 45 Electrical cabinet of the packaging machine

58

5.1 Results

In the test, the Cross Seal Axis was selected for the measurement since it would carry a

significant amount of torque. The configuration of the axis is shown in figure 46 below.

Figure 46 Configuration of Cross Seal Axis

After saving the configuration, then we are able to trigger a measurement while the

machine is in its normal operating state. The duration of the measurement has been set

to 10000 milliseconds to allow the axis to perform many cycles. Four different properties

are expected to be measured: speed, acceleration, position, and torque. In addition, the

torque-speed characteristic of the motor type will be loaded from catalogue data stored

on the server side of the application.

59

Figure 47 Results of the measurement of the Cross Seal Axis

60

In figure 47, we can see the output of the measurement and proof that the application is

able to provide the required functionality which it was intended to when connected to a

real-life factory setup. In the figure we observe how the position, speed, accelerations are

changing in a cyclic manner according to the movement of the axis in the machine. In

addition, the load profile and operating point fall below the torque characteristic of the

motor which confirms that a suitable motor was selected with a lot more room left to

increase the torque due to the big gap between the two curves.

61

6. Conclusion

This thesis has examined the possibility of developing an Industrial IoT web application

used in the field of factory automation and production machines. The work done for this

thesis includes developing the back-end or the server-side of the application where the

logic is being done, or in other words, the data is being processed. In addition, the server-

side of the application includes the creation and administration of the database as well.

Other parts of the project such as the front-end of the application was completely

developed by other software developers at Siemens Digital Industries.

The application is able to connect to a PLC using its OPC server and read variables stored

inside its memory. By selecting an axis from the list, the application is then able to detect

the properties of this axis and allow the user to save the configuration. After finalizing the

setup, the user is then able to send a measurement over MQTT to the application and

perform visualization of the data in charts. The application has proved to be functional,

practical and user friendly when tested with a real-life factory setup. Future work can be

done to enhance the usability of the application such as adding compatibility with other

types of PLCs other than SIMOTION and allowing the user to trigger measurements

directly from the application rather than sending the data from another application using

MQTT.

62

References

[1] "IIoT- the Industrial Internet of Things (IIoT)," [Online]. Available: https://www.i-scoop.eu/internet-of-things-

guide/industrial-internet-things-iiot-saving-costs-innovation/industrial-internet-things-iiot/.

[2] "Official Siemens Documentation," [Online]. Available: https://documentation.mindsphere.io/resources/html/manage-

my-sinumerik-edge-app-management/en-US/user-docu/industrialedge.html.

[3] "Siemens.com," [Online]. Available: https://new.siemens.com/global/en/products/automation/systems/motion-

control/simotion-hardware/simotion-d.html.

[4] "OPC Foundation," [Online]. Available: https://opcfoundation.org/about/what-is-opc/.

[5] "OPC Data Hub," [Online]. Available: https://www.opcdatahub.com/WhatIsOPC.html.

[6] "MQTT.org," [Online]. Available: https://mqtt.org/.

[7] G. Kirckof, Servomotor Sizing and Application, International Society of Automation, 2012.

[8] "Servo Technik," [Online]. Available: http://www.servotechnik.de/fachwissen/auslegung/f_beitr_00_708.htm.

[9] "Medium," [Online]. Available: https://medium.com/@eugeneteu/intro-to-software-engineering-architecture-model-

view-controller-c29805284de6.

[10] "Red Hat," [Online]. Available: https://www.redhat.com/en/topics/api/what-is-a-rest-api.

[11] "MDN Web Docs," [Online]. Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods.

[12] J. Duckett, Web Design with HTML, CSS, JavaScript and jQuery Set, Wiley, 2014.

[13] "O'Rielly," [Online]. Available: https://www.oreilly.com/library/view/programming-javascript-

applications/9781491950289/ch05.html.

[14] "Open Logic," [Online]. Available: https://www.openlogic.com/blog/what-sql-database.

[15] "Data Quest," [Online]. Available: https://www.dataquest.io/blog/sql-basics/.

[16] C. Fehily, SQL (Database Programming), Questing Vole Press, 2017.

[17] "Science Direct," [Online]. Available: https://www.sciencedirect.com/topics/computer-science/java-programming-

language.

[18] "Oracle Documentation," [Online]. Available: https://docs.oracle.com/javaee/6/tutorial/doc/geysj.html.

[19] "Tutorials Point," [Online]. Available: https://www.tutorialspoint.com/spring/spring_web_mvc_framework.htm.

63

[20] "Vogella," [Online]. Available: https://www.vogella.com/tutorials/JavaPersistenceAPI/article.html.

[21] "Stack Abuse," [Online]. Available: https://stackabuse.com/controller-and-restcontroller-annotations-in-spring-boot/.

[22] "industry.siemens.com," Data exchange via OPC XML - Description and example for the data exchange, [Online]. Available:

https://cache.industry.siemens.com/dl/files/938/27097938/att_78439/v1/faq_opc_xml_da_datenaustausch_v10_en.pdf.

[23] "Eclipse," [Online]. Available: https://www.eclipse.org/paho/index.php?page=clients/java/index.php.

[24] "Java T Point," [Online]. Available: https://www.javatpoint.com/what-is-angularjs.

[25] "Build.vsupalov," [Online]. Available: https://build.vsupalov.com/how-backend-and-frontend-communicate/.

[26] "Fastware," [Online]. Available: https://www.postgresql.fastware.com/what-is-postgresql.

[27] "PostgreSQL Official Documentation," [Online]. Available: https://jdbc.postgresql.org/documentation/head/intro.html.

