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ABSTRACT 

This Master’s thesis focuses on the methods that could be applied for detection and 

following analysis of burnt areas using Sentinel-2 data. The main purpose of this study 

is to compare the burnt areas differentiated by the supervised classification during the 

5 years with the CORINE system classes as well as to show the spectral evolution of 

the land cover affected by fires.  
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ABSTRAKT 

Tato diplomová práce je zaměřena na metody, které lze využít k detekci a analýze 

spálenišť pomocí dat družic Sentinel-2. Hlavním cílem této práce je porovnání 

klasifikovaných spálenišť pomocí řízené klasifikace v pětiletém období s třídami 

CORINE systému a zobrazit časový vývoj půdního krytu zasaženého požáry.  
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Dálkový průzkum Země, Sentinel-2, QGIS, CORINE, řízená klasifikace, ARVI, 

NDVI, NBR 
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Introduction 

There is no doubt that forests are one of the most important parts of the Earth’s 

vegetation. During the last two decades, forests have been facing enormous 

deforestation. This decrease of forest areas has both a human and natural origin. One 

of the important natural factors causing deforestation is fire, which appears in various 

types of forests worldwide. 

Millions of hectares of forests all over the world are burned every year. Satellite remote 

sensing can be used as a great source describing the damage and recovery process of 

the areas affected by the fire. It is well-known that satellite data have been used to 

monitor areas affected by fires. Nowadays, there is an increasingly greater need to 

improve post-fire detection using satellite data because of the climate changes, which 

bring a greater and more frequent risk of natural hazards and related disasters in the 

whole world. 

As a part of the project “Geo-harmonizer: EU-wide automated mapping system for 

harmonization of Open Data based on FOSS4G and Machine Learning“ [1], this thesis 

deals with the burnt areas detection in the Mediterranean forest land cover, where fires 

occur the most in comparison with the rest of the European vegetation. 

Supervised classification of the satellite multispectral Sentinel-2 data could take a big 

part in the detection of the burnt areas. In this thesis, one of the main goals is to find a 

suitable combination of the raster bands for the following classification. Due to this 

fact, the research related to forest fire detection has been done and additional indices 

were included in the classification and for future analysis.  

These indices are used for the supervised classification as well as for the graphical 

representation. The final analysis is primarily based on the spectral changes of the 

burnt areas (both pre and post-fire) and their homogenous surroundings. This spectral 

evolution of the land cover is done through multitemporal analysis from 2015 until 

2020. 
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Aims of thesis 

The main goal of this paper is to detect burnt areas in temporal development. In this 

thesis, Sentinel-2 data and CORINE Land Cover classes will be used.  

The burnt area class obtained by classification from Sentinel-2 data is going to be 

compared to the CORINE Land Cover’s Burnt Area class. It will be determined 

whether the burnt areas classified from the satellite data are depicted in the CLC Burnt 

Area class or not, and if so, in what type of vegetation they appear and for how long 

the burnt areas classified from the Sentinel-2 images can be distinguished in CLC.    

Even though numerous studies have already focused on the extraction of the burnt 

areas using spectral indices, there still could be many other options for using them 

more effectively and in an easier way when detecting burnt areas.  

The following problem statements and investigation topics will be considered in this 

thesis: 

1) Choosing a suitable area based on the frequency and severity of the forest fires 

occurring on the land – selecting bands and indices with references to the 

bibliography 

2) Determining the selection of the seasons and years for providing analysis of 

temporal development 

3) Proposing methodology for the analysis and following evaluation according to 

the research 

4) Comparing the classified areas with the areas specified in CORINE Land 

Cover 

5) Evaluating the temporal development in the different types of vegetation 
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1 Research 

As said before, forest fires are a major issue, which affects various types of vegetation. 

During the last few decades, the number of forest fires has been increasing so there is 

an important reason to continue to find new methods for burnt area analysis. Due to 

this fact, the research on past studies dealing with fire detection has been drawn up.  

This research is mainly based on the methods of pre and post-fire detection using 

satellite data. Regarding the information acquired, studies related to this topic have 

been the subject of examination since the late 1980s. 

Thanks to gradual development of the satellite data, there are more and more resources 

that can be used for analysis. Nowadays, we can use a lot of resources to take 

advantage of. The text below brings a list of cases, which were used for the thesis and 

its aims. 

Case 1 - Forest fires in Portugal 

One of the most crucial resources for this thesis is a study “Detection of changes in 

forest landcover type after fires in Portugal” whose primary goal is to detect the 

changes in the forest landcover type after fires in Portugal using the Atmosphere 

Resistant Vegetation Index. The ARVI images from the year before the fire are 

compared to the images obtained two years post-fire and the differenced image is 

computed. Thanks to this, the burnt area could be analyzed.  

The study lasted from 1990 to 1998. A single Landsat TM image from spring and 

summer from each year was required. The methodology is based on a spectral change 

identification technique using vegetation index differencing.   

This article shows that the ARVI for the regrowth of vegetation is higher than for burnt 

areas. The mean value and standard deviation are computed from the  ARVI 

differenced image.  

For the change of spectral analysis, the land cover is analyzed for test areas. In order 

to regard the spectral evolution of the land cover over forest areas, 5 types of test areas 

are recognized: Shrubland-Shrubland (Sh-Sh), Eucalyptus-Eucalyptus (Eu-Eu), Pine- 
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Shrubland (Pi-Sh), and Pine-Eucalyptus (Pi-Eu). The last test area type was divided 

into two different sub-types in the first (Pi-Eu-92) or the second year (Pi-Eu-93) after 

the fire. 

In conclusion, the study indicates that the regrowth of the shrubland and pine is slower 

in comparison with the regrowth of the Eucalyptus.[2] 

Case 2 - Forest fires in Greece 2016 

The next useful study “Evaluating and comparing Sentinel-2A and Landsat-8 

Operational Land Imager (OLI) spectral indices for estimating fire severity in a 

Mediterranean pine ecosystem of Greece” [3] compares 3 fire severity indices (CBI, 

Geometrically structured CBI, weighted CBI) and spectral indices derived from 

Sentinel-2A and Landsat 8. In the study they use Normalized Difference Vegetation 

Index, Normalized Burn Ratio, differenced Normalized Burn Ratio, differenced 

Normalized Difference Vegetation Index and 7 Sentinel-2A specific indices. It focuses 

on the pre and post-fire September 2016. The study used Landsat 8 images processed 

for L1T terrain and Sentinel-2A images processed to Level L1C (both acquired in 

August and September 2016).  

The sample plots were chosen 3 weeks after the fires and randomly selected areas, 

which were placed within Calabrian pine dominated areas characterized by 4 levels of 

burn severity – unburned, low severity, moderate severity, and high severity. At the 

center point of each area, digital photos were taken, and the Global Navigation Satellite 

System coordinates were recorded. There were four identified  strata (substrate, herbs 

and low shrubs, tall shrubs and low trees, and tall trees). For each stratum, the fire 

severity was assigned a value from 0 to 3 (as described in CBI). The final CBI value 

of severity was calculated by combining the strata values of each area. 

The results of the analysis of the separability demonstrate that in case of the spectral 

response over the electromagnetic spectrum in both sensors, the lowest separability 

was found in blue to red spectral bands of the post-fire images, with the green band 

presents both in Sentinel (0.20) and Landsat (0.30) higher values. 

The first red edge band of Sentinel (B5) shows a low separability value while the wide 

NIR (B8) and the two narrow NIR (B7 and B8A) bands (NIR shoulder) indicate more 
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efficient discrimination of burned-unburned areas thanks to their sensitivity in the 

reflectance of leaf pigments and ash deposition. 

Landsat-based spectral indices indicate higher values of separability unlike the indices 

generated from Sentinel. The dNBR had a higher separability value compared to the 

wider NIR band (B8). 

The results showed that the dNBR is slightly more able to estimate field-based fire 

severity data in comparison to the other examined spectral indices that are mainly 

reported in the most remotely sensed estimation of fire and burn severity 

worldwide.[3] 

Case 3 - Forest fires in Greece 1991-1999 

The paper “Multitemporal LANDSAT TM data for monitoring the effects of forest fires 

and vegetation recovery processes in the Mediterranean areas” describes uses of 

Landsat TM bands for vegetation discrimination. The study lasted from 1991 until 

1999.  

Each selected band is used for getting particular information:  

• TM band 4 (post-fire imagery) - for highlighting the areas affected by fires 

• TM band 7, band 4, band 1 (post-fire imagery) - the extent of fires in RGB 

color 

• multi-temporal RGB color to detect spectral changes (pre-fire, immediately 

post-fire and the following year in spring).  

Thanks to the DN (Digital Number) values, the burnt areas are identified. 

The next step is to find out the burnt areas in the pre-fire imagery.  This is done to 

study relations between the original vegetation and the natural re-growth rates. The 

first several classes are recognized thanks to their different combinations of digital 

values (based on their inherent spectral reflectance). The training samples are 

identified, and a numerical description of the spectral attributes of each land cover type 

is developed (the land cover maps were available). The categorization of every pixel 

in the image data is carried out using the Maximum Likelihood algorithm. 
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The supervised classification is being applied (pre-fire images). Landsat TM band 3 is 

significant for discriminating the vegetation types (the chlorophyll absorption range), 

TM band 4 to determine veg. types, health, and biomass content, TM band 5 gives a 

good contrast among vegetation types. The color composites derived from these bands 

help to determine training samples.  

For the monitoring of the vegetation condition, the NDVI was used. Vegetated areas 

show high values thanks to their high NIR reflectance and low real reflectance. Rock 

and bare soil have similar reflectance in the two bands, the result is near 0. 

The differences among NDVI images of successive years were used to observe the 

recovery of the vegetation. The different images were classified with an unsupervised 

statistical method to group and map areas showing homogeneous differences of NDVI 

values.  

The growth model was determined after the NDVI averages were computed. Using the 

latest NDVI, the future of the vegetation could have been forecasted.  

As a result, the easiest solution could be the 7-4-1 TM band combination of the 

immediate post-fire image, in RGB using the PCI. This process was followed by 

masking and raster to polygon operations to create an area of interest to focus on the 

next part of the analysis.  

In the case of monitoring and modeling vegetation growth, the NDVI values reached 

pre-fire levels in an average of 2 or 3 years. The unsupervised classification of the 

NDVI differences was done to identify and group zones with homogeneous growth 

rates. It was computed that in a few areas, the activity was higher than in the pre-fire 

times.[4] 

Case 4 - Forest fires in Spain 

In “Modeling rates of ecosystem recovery after fires by using Landsat TM data”, nine 

Landsat images from 1984 to 1994 are used. The landscape is separated into units 

depending on their spatial patterns of types of shrubs. There are three types of 

differentiated vegetation types: sparse shrubs, dense shrubs, and trees plus shrubs. 
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The degree of photosynthetic activity is examined using the NDVI and the differences 

in humidity conditions by the infrared region in the Landsat TM5 band. 

Firstly, imagery is converted into apparent reflectance by sensor calibration 

coefficients. To minimize the effect of the atmosphere, an empirical atmospheric 

normalization is performed. The reference image is used to normalize multitemporal 

data sets regarding another reference image (image with the lowest contribution of 

atmospheric reflectance). A selection of pseudo-invariant pixels is chosen from each 

TM scene. 

The topographic effect (TM data) is corrected by the Minnaert Method. To compute 

angles, DMT was used (1:10 000 scales). It is evaluated for each different TM band 

(because of the wavelength difference). 

The areas affected by fires (during 1984-85) are masked to avoid the selection of the 

wrong training areas (areas with repetitive fires during the observation period) to get 

the post-fire period to be as long as possible. The annual maps of burnt land for the 

multitemporal series analyzed are performed.  

For the comparison, the fire masks are taken from 3 NDVI images that correspond one 

year before the fire and 2 years post-fire. The difference between the first year and the 

second year after the fire is also considered to determine the regenerative process of 

vegetation. 

In the end, a multitemporal unsupervised classification is done to mask the burned 

lands each year. To verify the accuracy of the classification, aerial photos are used.  

As a result, the vegetation after the fire (1989) is in a similar condition as before the 

fire.[5] 

Case 5 -Forest fires in Greece 

Another method that should be mentioned is described in “Monitoring fire – affected 

wildlands in the Mediterranean region by applying a remote sensing and GIS 

approach”. This method was applied on imagery from the late 1980s and uses the 

Modified Soil Adjusted Vegetation Index (MSAVI).  
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For the estimation of the vegetation cover, the areas without any vegetation and 

forested sites are used. No burned sites are chosen. The pine forests are used as a 

reference for forested sites. The MSAVI values are compared to ground-acquired 

vegetation cover data for 39 reference areas. To check the quality, 14 validation sites, 

in addition, are appended. 

For the evaluation of the extent of regeneration, the difference in vegetation cover 

between the two image acquisition dates is applied. The datasets had to be 

georeferenced.   

The potential of natural regeneration after a fire depends on the availability of water 

for plant regrowth in the dry period. Deep soils store more water and carry denser 

vegetation. Since the correlation between MSAVI and vegetation cover is high, values 

delivered using MSAVI from imagery acquired in the dry period can be used to 

estimate the water storage capacity. But it can be used only if the area has not been 

affected by fires for a long time. The accuracy was assessed by comparing the PNR 

estimates for the14 validation sites.  

The risk of soil erosion in a burning forest was computed using the slope length 

exponent, topographic factor, slope, slope length.  

For calculating the risk of desertification, the combination of the potential of natural 

regeneration and the risk of soil erosion was used. It was divided into five classes, with 

values going from a minimum of 2 (without any risk) for 1 class, to a maximum of 

10(very high risk) for class 5. 

The result of this study gives a possibility of how to monitor and map land cover and 

related changes over geographical areas. [6] 

Case 6 - Forest fires in Italy 

The next study “On the Use of Satellite Sentinel-2 Data for Automatic Mapping of 

Burnt Areas and Burn Severity” focuses on the pre and post-fire analysis of the fire, 

which took place in August 2017 in Italy. 

The main purpose is to develop a model that can automatically detect the burned areas 

using Sentinel-2 data using NBR and dNBR.                      
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The dNBR maps should highlight the burnt areas, characterize burn severity levels, 

and provide indications of the changes induced by fire. 

To overcome the disadvantage of the fixed threshold values, one of the most effective 

ways to inform about the effects of fire, is to use a statistical analysis: Moran, Getis-

Ord, and Geary to enhance fire severity levels.  In this study, these three analyses were 

used to compare their effectivity. 

The local indicators provide a new image with a value of the autocorrelation for each 

pixel. They can identify discrete spatial patterns. These indicators show a different 

concept of spatial association: 

• Local Moran’s I: a high value of the index means positive correlation both for 

high values and for low values of intensity; 

• Local Geary’s C: detects areas of differences between events; 

• Getis and Ord’s Gi: a high value of the index means a positive correlation for 

high values of intensity, while a low value of the index means a positive 

correlation for low values of intensity. 

In this study, the dNBR maps and the classification from the different LISA indices 

are observed to categorize the burn severity levels without using a fixed threshold. The 

K-means algorithm is used. 

The dNBR map is analyzed from the difference between pre and post-fire indices. 

After the analysis, it is discovered that some of the computed values don’t fit. Because 

of this, the classification needed to be improved. The unsupervised classification based 

on K-means is applied to dNBR and to the outputs of LISA, Getis-Ord’s Gi, Geary, 

and Moran obtained from dNBR. 

The outputs from the classification of the Getis–Ord Gi, Geary are not able to capture 

the burn severity and are also affected by commission errors. Moran is able to better 

discriminate fire-affected from unaffected areas and to reliably characterize burn 

severity.[7] 
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Case 7 - Forest fires in Turkey 

Another study named “Assessment of Fire Severity and Post-Fire Regeneration based 

on Topographical Features using Multitemporal Landsat Imagery: A CASE STUDY 

in MERSIN, TURKEY” aims their attention to fire severity and post-fire regeneration. 

In the study, they use a total of 4 Landsat ETM+ images obtained from the USGS 

archives. One pre-fire image was obtained on 7th April 2008 and 3 post-fire images 

on 14 September 2008, 19th June 2011, and 13th July 2014. All of the images are 

geometrically corrected and resampled. 

To produce the DEM, the ASTER GDEM is used. All analyses for determining burn 

severity and vegetation regeneration are carried out using ERDAS IMAGINE (2013) 

and ArcGIS (v. 10.0) software packages. 

For the mapping of burn severity, the NBR is calculated from pre and post-fire ETM+ 

scenes. After that, the pre and post-NBR ratios are differenced to calculate burn 

severity.  

The detailed overview of dNBR values demonstrates that positive values show an 

decrease in vegetation, that negative shows an increase.  

The post-fire regeneration analysis is performed on the multitemporal analysis of the 

NDVI and SAVI images. NDVI values range from -1 to +1, where low values (0.1 and 

below) show the absence of vegetation and high values (0.6 to 1) indicate dense and 

healthy vegetation. The SAVI was applied to estimate vegetation regrowth rates. 

The analysis of vegetation regeneration demonstrates that vegetation cover has 

recovered to around 60% of the pre-fire levels after 6 years according to NDVI-SAVI 

multitemporal validation. Post-fire SAVI spatial patterns show a relatively rapid 

regeneration compared to NDVI. The use of SAVI to determine post-disturbance 

recovery could be an alternative to NDVI.  

The recovery of the vegetation is better on north-facing slopes compared to south-

facing slopes (related to northern hemisphere dynamics). This is investigated using 

ASTER GDEM.[8] 
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Case 8 - Forest fires in Australia 

Last but not least, the study “A Remote Sensing Approach to Mapping Fire Severity in 

South-Eastern Australia using Sentinel-2 and Random Forest” zeroes in on finding 

out the fire severity in Australian forests. Eight fires (in variable types of climate zones 

– temperate, Mediterranean, subtropical, semi-arid zones) are selected based on the 

availability of high-resolution 4-band (B, G, R, NIR) post-fire digital aerial photos. 

To generate digitalized spatial polygons of homogenous sample areas of fire severity 

classes, the Aerial Photograph Interpretation is used. The classification of severity is 

done in ArcMap 10.4, producing five severity classes based on levels of vegetation 

scorch and consumption of canopy and understory layers. These layers are used to 

determine various degrees and post-fire changes of biomass and foliage cover, 

woodlands, shrubs - with strong correlations and field based measures of fire severity. 

This classification was introduced by Hudak et al., McCarthy et al, Collins et al. 

Random sampling points are generated in polygons of Aerial Photograph 

Interpretation severity classes. The generated number of sampling points is as large as 

possible while being randomly distributed and representative of the real-world 

occurrences of fire severity classes in each fire. For every sampling point in each fire, 

corresponding pixel values are extracted for each candidate fire severity index using 

the raster and shapefile packages in R. 

Then, the Sentinel-2 imagery (low cloud cover), which is close to the start and end 

date of each fire, is selected. The Sentinel-2 SWIR bands were pan-sharpened to 10m 

resolution. To fit a local linear relationship between each low-resolution SWIR band 

and the high-resolution red band using the pixels in a 7 by 7 window, a robust 

regression technique was used.  

The band pixels with a low resolution are recalculated to ones with a higher resolution 

using the local regression model. The 10 m surface reflectance images are recombined 

into a single stack of Sentinel-2 bands at 10 m resolution that corresponds to the 

equivalent Landsat TM bands (B, G, R, NIR, SWIR1, SWIR2). 
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In the study, they try a lot of candidate fire severity indices computed from the bands 

mentioned above. They conclude that the BSI classification is not useful for fire 

severity classification.  

Previous studies indicate dNBR is better than differenced NDVI for fire severity 

classification (Veraverbeke et al., 2010; Collins et al., 2018). However, these 

reflectance-based indices are included because they are the closest analogous 

reflectance-based indices to the fractional cover indices of change in bare cover and 

change in total vegetative cover. 

Random forest modeling generates an ensemble of regression trees, through a 

bootstrap aggregated sampling of training data. At each node in a decision tree, a 

random selection of predictor variables is evaluated for their ability to split training 

data into response classes, with the variable leading to the most homogeneous 

classification being selected. The models are compared for each candidate severity 

index: for each fire, in combination, and for all fires. This is done to test the model for 

further processing. 

Then, the effect of the landscape on Random forest is being examined. The limitations 

of classification are the dense canopy, shadow cast by steep slopes, or rugged terrain. 

The goal is to quantify their effect on the classification.  

Foliage Projective Cover, an indicator of long-term canopy density (robust to seasonal 

variation), is developed from a model, calibrated to ground-based measurements using 

fractional cover transects, and validated against LiDAR data. 

A high-resolution version of Foliage Projective Cover developed by Fisher et al. 

(2016) is used, calculated from SPOT5 satellite imagery across four consecutive 

summers (2008–2011).  

The Terrain Ruggedness Index is a standard index defined as the mean difference 

between a central pixel and its surrounding cells (Wilson et al., 2007). This index is 

derived from the 1s Shuttle Radar Topography Mission, Digital Elevation Model. 

The differences in community structure can also affect the fire severity indices. 

Because of that, the analysis is restricted to dry sclerophyll forests.   
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Regarding the results, time series plots for the Sir Ivan Fire show greater separation 

between pre and post-fire pixel values with increasing severity for NBR, bare fractions, 

and green cover fractions. The other studied fires demonstrate the same trends in NBR 

and fractional cover pixel values. The comparison of each fire severity index shows 

the comparable accuracy of each fractional cover index to each reflectance-based 

index. There is a consistent trend of increasing Kappa scores and balanced accuracy 

with models that included at least one of the NBR-based indices with at least one of 

the fractional cover-based indices.[9] 

Conclusion 

For the purpose of this thesis, it was decided to use NDVI, ARVI and NBR indices for 

the pre and post-fire analysis. As emerged from the research, all three indices can be 

applied to estimate vegetation regrowth rates. It can be used to compute the fire 

severity, and they can be used as an alternative to each other plus their computation is 

not an exacting task, which is a great benefit. All these indices are the vegetation 

indices and they are all computed using NIR wavelengths. 
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2 Methodology 

In this chapter, the methodology will be described.  

2.1 Area  

As a first step, a suitable area to be analyzed was selected. The area of interest was 

chosen in the European territory.  

In the beginning, an area of frequent occurrence of forest fires had to be chosen. The 

selection was executed using CORINE Land Cover vector layers and Sentinel 

Playground (https://apps.sentinel-hub.com/sentinel-playground).  

The CLC was downloaded from the website (https://land.copernicus.eu/pan-

european/corine-land-cover). The selection of the analyzed burnt areas was done based 

on the available CLC layers from 2000, 2006, 2012, and 2018.  

Once the data was available, the layers were visually compared with each other, and 

the places with frequent fires were picked. Following the thoroughgoing comparison, 

the Iberian Peninsula was considered to be the most fire-affected area in the whole of 

Europe. 

Afterward, it was determined if the burnt area class from the CLC 2012 or CLC 2018 

was distinguishable in the Sentinel-2 data from 2015. It was done using the Sentinel 

Playground browser. For the recognition of the burnt areas, the satellite image was 

displayed in infrared color (displayed in NIR, R, and B). This band combination was 

chosen because of its use for vegetation detection and its great recognition of burnt 

areas. The vegetation emerges in the shades of red, soils from dark to light browns, 

and urban areas are visible in yellow or gray.  Burnt areas appear in black, dark grey, 

or brown.    

It was found out that the burnt area class from CLC 2012 was no longer visible in the 

satellite images from 2015. However, one area demonstrated in the CLC 2018 was still 

noticeable in the satellite image from 2015. 
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After that, six vector layers were created in QGIS. These layers showed the burnt areas 

determined in the CORINE Land Cover with a minimum 6-year period (intersection 

of 2000 and 2006, 2006 and 2012, 2012 and 2018), 12-year period (2000 and 2012, 

2006 and 2018), and 18-year period (2000 and 2018). The CLC class of burnt areas 

needed to be selected from the whole vector CLC layer. It was carried out by the 

Extract by Attribute function in QGIS. Then, the intersection of each pair of years was 

done by the Intersect function.  

According to the results of the intersection, it was concluded that no same burnt areas 

from each CORINE Land Cover were registered in the others. It signifies that the full 

regeneration of the forested areas (defined in CLC) affected by fires lasts for less than 

six years.   

After the careful analysis using CORINE Land Cover, the place with frequent forest 

fires in the Mediterranean forest vegetation had been found.   

2.1.1 Location 

The study area is located on the Portugal-Spain border. The area of interest is 

the100x100km2 square that is equal to the size of the Sentinel-2 tile. 

 

Figure 1: Study Area 
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2.1.2 Climate and Vegetation 

The place is situated in the subtropical climate zone, which signifies that it is prone to 

forest fires. The climate is classified as a Hot-Summer Mediterranean climate. It is 

characterized by hot dry summers and mild winters.  

The Mediterranean climate zone is associated with typical Mediterranean forests, 

woodlands, and shrub biomes. Extremely characteristic of this climate are sclerophyll 

shrublands, which typically consist of densely growing evergreen shrubs. [10] 
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2.2 Data 

As a part of the project, for which the aim is to work with open-source data as much 

as possible, only open - source data was used.  

The first open-source data to be mentioned are data required from CORINE Land 

Cover. This inventory consists of vector data and provides information on the land 

cover in most of Europe. The purpose of using these layers in this study was to find 

suitable areas for the analysis, to compare the burnt areas depicted in the CORINE 

Land Cover with the ones classified from the Sentinel-2 imagery. 

Other crucial data were satellite multi-spectral image data, particularly data acquired 

from Sentinel-2 satellites (2A and 2B), which can be downloaded from the European 

Space Agency website using the Copernicus Open Access Hub.  

2.2.1 Raster Data: Sentinel-2  

Sentinel-2 satellites provide data and imagery that are central to the European 

Commission’s Copernicus program. The project came to existence for a purpose of 

global observation of the Earth in a high resolution.  

Each of the two Sentinel-2 (2A and 2B) satellites uses a wide-swath high-resolution 

multispectral imager with 13 spectral bands with a spatial resolution of 10-m, 20-m, 

and 60-m. Swath width is 290-km, therefore the mission is providing global coverage 

of the surface every 10 days (with the first spacecraft), every 5 days if both are in orbit.  

These two satellites are on the same orbit (786 km above the Earth), 180° apart for 

optimal coverage and data delivery. The coverage limits are from between latitudes 

56° south and 84° north. Both are operated by a Flight Control Team from ESOC, 

which is a part of the European Space Agency. Sentinel-2A has been in orbit since 23rd 

June 2015, Sentinel-2B since 7th March 2017. The estimated lifetime period is about 7 

years. [11] 
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Product Types 

Sentinel-2 MSI products are divided into 5 levels (product types), but only 2 of them 

are available for users. 

The Level-0 products are compressed raw image data in IPS format. It is used as the 

foundation of Level-1 products.  

The Level-1A products are obtained by decompressing the Level-0 data. In this 

product, a geometric model is developed.  

The Level-1B products provide radiometrically corrected imagery in Top of 

Atmosphere radiance values and in sensor geometry. These products include the 

geometric model that is used to generate the Level-1C product.  

All of these products are 25 km across track by 23 km along track granule. They are 

not released to users. 

The first products that are available for users are the Level-1C products. They are 

composed of 100x100km2 tiles in the UTM/WGS84 projection. These products result 

from using a DEM to project the image in cartographic geometry. Level-1C are 

resampled at 10, 20, and 60 meters. Level-1C products include Cloud Masks. 

Unlike the Level-1C products, Level-2A products contain atmospheric corrections. 

The Level-2A product provides Bottom of Atmosphere reflectance images acquired 

from Level-1C products. It is also composed of 100x100 km2 tiles in the UTM/WGS84 

projection. These products were generated since March 2018 over Europe.[12] 

Spectral Bands 

The main sensor is an optical sensor MSI, a push broom scanner measuring the Earth’s 

reflected radiance in 13 spectral bands. The scanner provides a wide spectral coverage 

over the visible, near infrared and short-wave infrared domains, with medium spatial 

resolution from 10-m to 60-m depending on the wavelength. 

Thanks to the high revisit time of the mission, the 10-m and 20-m spatial resolution 

bands of Sentinel-2 A and B missions support disaster relief efforts. It includes 

identifying areas being at risk from natural hazards such as areas liable to burns, floods 

and earthquakes.  
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As said, MSI consists of 13 spectral bands. Four spectral bands with 10-m resolution 

in visible and NIR wavelengths, six spectral bands with 20-m in red edge, NIR and 

SWIR wavelengths and three 60-m bands for detection of aerosols, water vapor, cirrus 

clouds and for atmospheric correction. [13] 

 

Figure 2: Wavelengths and Bandwidths of the 3 Spatial Resolutions of the MSI instruments [14] 

 

Figure 3:Sentinel-2 10 m spatial resolution bands: B2 (490 nm), B3 (560 nm), B4 (665 nm) and B8 (842 nm) [13] 
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Figure 4: SENTINEL-2 20 m spatial resolution bands: B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), 

B11 (1610 nm) and B12 (2190 nm) [13] 

 

Figure 5:SENTINEL-2 60 m spatial resolution bands: B1 (443 nm), B9 (940 nm) and B10 (1375 nm) [13] 

Imagery used 

For the purpose of this thesis, it was needed to choose a suitable area of the frequent 

occurrence of forest fires. If available, summer and spring imagery was acquired 

(choosing of this area is described in the chapter of “Area selection”). Because of the 

inaccessibility of Level-2A products from every year, some of the applied images were 

Level-1C, which required atmospheric correction. 

Eleven high-resolution, cloudless (less than 2%) images displaying the same area were 

captured, one from November 2015, two from 2016 (August and April), two from 

2017 (beginning of September and March), two from 2018 (August and May), two 

from 2019 (beginning of September and the end of May), and last but not least, two 

images from 2020 (August and March). Each summer and spring image is chosen to 

have a close acquisition date to the date of fire and for the elimination of significant 

phenological changes.  
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An RGB (B4, B3, B2) natural-color image of the area of interest is displayed below in 

Fig 6. 

 

Figure 6: Sentinel-2A image of the area of interest acquired in August 2020 
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Tile Acquisition Date Sensor Level of Product 

  2015-11-12 Sentinel-2A MSIL1C 

  2016-04-30 Sentinel-2A MSIL1C 

  2016-08-28 Sentinel-2A MSIL1C 

  2017-03-16 Sentinel-2A MSIL1C 

  2017-09-02 Sentinel-2A MSIL2A 

T29TPE 2018-05-15 Sentinel-2B MSIL2A 

  2018-08-28 Sentinel-2A MSIL1C 

  2019-05-25 Sentinel-2A MSIL2A 

  2019-09-12 Sentinel-2A MSIL2A 

  2020-03-10 Sentinel-2A MSIL2A 

  2020-08-27 Sentinel-2A MSIL2A 

Table 1: Specifications of images used in this study 

The following spectral bands of 10-m and 20-m spectral resolution were applied – B2, 

B3, B4, B5, B6, B7, B8, B8a, B11, and B12. Moreover the spectral indices are 

computed from a few of them. All of the 20-m resolution bands were resampled to 10-

m for the following analysis. 

Products 

As said, input data for the workflow were the Level 1C and Level 2A products, from 

which indices and classification were carried out. The data preparation of both Level-

1C and Level-2A products for future analysis is described.   

Level-1C Product 

First, in the case of Level-1C products, it is necessary to apply a TOA correction. This 

is done to be able to separate the actual reflectance that was given off from the object 

on the Earth’s surface from the atmospheric disturbances that are part of the reflected 

energy recorded by the sensor. [15] 

The TOA correction was applied on each band in SCP in the Preprocessing menu. 

After all of the bands to be used for the following classification (all except B1, B9, 
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B10) were loaded, the Apply DOS1 atmospheric correction function was selected in 

the window.  

After that, all of the corrected bands were resampled to 10 m spatial resolution. The 

resampling was performed in QGIS by SAGA’s Resampling function. A Nearest 

Neighbor downscaling algorithm was used. This method assigns the digital number of 

the closest input pixel to the corresponding output pixel and it preserves original values 

in the unchanged scene. 

Level-2A Product 

Since the Level-2A product includes the atmospheric correction, only the resampling 

of the bands was executed. The resampling method used was the same as in the case 

of the Level-1C products. 

Selecting the Seasons and Years 

Since the satellite data which were chosen for the evaluation are available from June 

2015, the period of examination lasted from 2015 to 2020. From each year, a satellite 

image from both spring and the end of the summer were acquired. These two seasons 

were chosen based on the spectral signatures of the vegetation in these times of the 

year and due to the forest occurrence. 

Choosing the Signature Space  

Another important part was a selection of the signature space. The space was based on 

suitable vegetation indices for detection of the burnt areas. 

Regarding the initial findings from references, numerous vegetation indices1 (new 

channels calculated from equation (1)-(X)) were applied to detect the forest fire and 

the future development of the burnt area in Mediterranean types of forest vegetation.  

For our purpose, the most suitable should be vegetation indices ARVI and NDVI as 

well as the index NBR and dNBR. Normalized Difference Vegetation Index and 

Normalized Burn Ratio both play an important part in every study and indicate very 

 

1 combinations of surface reflectance at two or more wavelengths computed to highlight a particular 

property of vegetation 
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precise results in the case of post-fire temporal development. Due to this fact, these 

two indices were used in the workflow of this thesis.  

The use of dNBR also seemed to be very helpful according to the research 

(Lasaponara, Tucci and Ghermandi, 2018). Based on the research, dNBR, calculated 

from the NBR pre and post-fire, was used to estimate the burn severity. A higher value 

of this differenced index shows more serious damage, whereas the negative dNBR 

values indicate regrowth following a fire. From the dNBR, burn severity levels can be 

obtained. 

Another index that was used in the study is an Atmosphere Resistant Vegetation Index. 

According to the first study mentioned here (Barbosa, Caetano and Santos, 2000), the 

index indicated high values for vegetation cover, low values for forest burnt areas, and 

even lower values for terrain mobilization.  

Modified Soil Adjusted Vegetation Index is not suitable for the examination. As said, 

since the correlation between MSAVI and vegetation cover is high, values delivered 

from MSAVI from imagery acquired in the dry period can be used to estimate the 

water storage capacity. Nevertheless, this index could be used only if the area had not 

been affected by fires for a long time (Gallaun and Banninger,1996).  

Another index mentioned is a Soil-adjusted Vegetation Index. Based on the study, 

post-fire SAVI spatial values showed a relatively rapid regeneration compared with 

NDVI. The use of SAVI to determine post-disturbance recovery could be an 

alternative option to NDVI (Tonbul, Kavzoglu and Kaya, 2016). For the purpose of 

this thesis, it was decided to choose NDVI rather than SAVI because this index is used 

more frequently for the burnt areas’ analysis. 

However, since this thesis aims to get more accurate results and find a different, simple 

way of burnt area detection and temporal development, modifications of the workflow 

were necessary. 

Computation of indices is one of the methods of spectral image enhancement. It is used 

to distinguish subtle spectral changes. The resolution can be improved because the 

image created by dividing the two bands shows changes in the slopes of the spectral 
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reflectance curves between the two bands regardless of their absolute values. These 

changes are different for each material in some bands. 

Normalized Difference Vegetation Index (NDVI) 

The first vegetation index used to determine the burnt region was NDVI. This index is 

well known for identifying the vegetated areas and their condition.  

The NDVI is computed both from NIR and R bands, which stand for the spectral 

reflectance measurements acquired in the red and near-infrared regions: 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
  (1) 

For Sentinel-2, it is defined as: 

𝑁𝐷𝑉𝐼 =
𝐵8−𝐵4

𝐵8+𝐵4
  (2) 

The NDVI values range from -1 to +1. The low values (-0.1 to 0.1) show the absence 

of vegetation (e.g. water, urban areas, rock, sand, snow, or burnt areas), the positive 

values represent shrub and grassland (0.2 to 0.4).  If there is much more reflected 

radiation in NIR wavelengths than in the visible ones, the vegetation in this pixel 

should be dense. It means that high values (0.5 to 1) indicate dense and healthy 

vegetation.[16] 

Atmospherically Resistant Vegetation Index (ARVI) 

To reduce the dependence of the atmospheric effects, in comparison to NDVI, this 

modification was developed by Kaufman and Tanré, 1992.  

The modification includes the atmospheric information contained in the blue channel: 

𝐴𝑅𝑉𝐼 =
𝑁𝐼𝑅−𝑅𝐵

𝑁𝐼𝑅+𝑅𝐵
  (3) 

In Sentinel-2: 

𝐴𝑅𝑉𝐼 =
𝐵8−𝑅𝐵

𝐵8+𝑅𝐵
  (4) 

Where RB is a combination of the B and R channels: 

𝑅𝐵 = 𝑅 − 𝛾(𝐵 − 𝑅)  (5) 
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Sentinel-2: 

𝑅𝐵 = 𝐵2 − 𝛾(𝐵2 − 𝐵4) (6) 

For a purpose of this study, 𝛾 (an atmospheric self-correcting factor) was set to 1 since 

the aerosol model is not available. 

The ARVI values should show similar values to the NDVI. According to the study 

(Barbosa, Caetano and Santos, 2000), ARVI has a similar dynamic range, but it is 

four times less sensitive to atmospheric effects than the NDVI. [17] 

Normalized Burn Ratio (NBR) 

The NBR is an index used for detecting the burnt areas and classifying their severity. 

It was first used by Key and Benson, 2005 for fire effects monitoring. The formula is 

similar to the NDVI, but the SWIR wavelength is used instead of the R wavelength: 

𝑁𝐵𝑅 =
𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
  (7) 

In Sentinel-2 defined as: 

𝑁𝐵𝑅 =
𝐵8−𝐵12

𝐵8+𝐵12
  (8) 

 

As said, healthy vegetation shows very high reflectance in the NIR and the low 

reflectance SWIR. In the case of burnt areas, it is the opposite. High NBR values depict 

healthy vegetation, and a low value indicates bare soil or an area recently affected by 

the fire. 

Burn severity is interpreted by the differenced NBR, which is going to be described 

later. 

All these three indices were used for the supervised classification as additional 

channels to the Sentinel-2 bands B2, B3, B4, B5, B6, B7, B8, B8a, B11, and B12. 
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2.2.2 Vector Data: CORINE Land Cover 

The Corine Land Cover inventory was initiated in 1985 by the European Commission. 

The first product appeared in 1990, and since the year 2000 is updated every 6th year 

(2000, 2006, 2012, 2018). The CLC consists of 44 land cover classes. Land cover 

classes are displayed below (Fig.7). 

                               

                             

Figure 7: CLC Classes [18] 

The CORINE Land Cover database is created Europe-wide on a 1 : 100 000 scale. It 

uses a Minimum Mapping Unit of 25-ha for areas and a minimum width of 100-m for 

linear phenomena. A detailed description of the CORINE data collection methodology 

and definition of classes are available at [19]. 
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For the aim of this work, mainly data from CLC 2018 were used. CLC data from 2006 

and 2012 serve for the primal visual comparison of the burnt area classes.  

The base for the CORINE Land Cover 2018 is satellite data from Sentinel-2 and 

Landsat 8 for gap filling. The geometric accuracy of these satellite data (Sentinel-2)  

is ≤ 10 m.  The geometric accuracy for CLC is better than 100 m, thematic accuracy  

is ≥ 85%. Access to the data is free for all users. [20] 

Burnt Areas 

Burnt Area class is defined in CLC as natural woody vegetation cover affected by 

recent fires. This class includes burnt areas within a year of image acquisition, burnt 

forest areas, sclerophyllous vegetation, moors and heathlands, transitional woodland-

shrub, and areas with sparse vegetation. Burnt areas are visible on satellite images in 

a black, dark green, or grey color.  

The class also includes damaged natural woody plants, damaged natural herbaceous 

plants among burnt woody plants, bare soil, and rock covered by ash.  

It excludes damaged crops, however, and it is not applicable for burnt areas where: the 

signs of fresh burn are not visible anymore and  > 50% of area is non-vegetated, burnt 

areas where regeneration has already started on  > 50% of area, burnt natural grassland, 

burnt permanent crops, or human farming management by burning arable lands.[21] 
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2.3 Image Processing 

The next part is to carry out a supervised classification of the study area. For the 

classification and following analysis, QGIS 3.16.3 was used. 

The Maximum Likelihood classification method was used. This method of 

classification in the context of burnt areas analysis was mentioned in one of the studies 

(Patrono, Baptista, and Ebeltjes, 2000) and seemed to be one of the best classification 

methods to be executed. 

For the aim of the supervised classification, the training and testing areas were chosen 

carefully.  

After the classification had been carried out, the accuracy of the training and test areas 

were computed to get as accurate as possible results.  

2.3.1 Classification  

Generally, classification is a process, during which certain informative values are 

assigned to the individual pixels. It aims to replace the values of the radiometric 

characteristics of the original image, which shows the spectral properties of objects, 

by values expressing classes. By this process, which gives information about the types 

of the objects and is defined by pixels with the same digital values, the map is created. 

The classification is based on the usage of certain decision-making rules, so called 

classifiers, according to which all elements of an image can be assigned to a certain 

class. 

In remote sensing, the classification pixel per pixel is used the most frequently. 

Another type of classification is a segment-based classification (composed of more 

pixels). This classification method is used chiefly in the case of data in high resolution. 

The classification rule must be known for executing the classification. This rule 

indicates a relationship that assigns the digital values of image data to the relevant 

parameter value (e.g. type of a land cover). By this process, the values are assigned to 

a specific class.  
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In the majority of the cases, the information classes are not directly recorded in the 

image data. Nevertheless, they can be found indirectly, through radiometric 

characteristics of individual pixels in a multispectral image. On the other hand, image 

data contain so-called spectral classes, which are the parts of the image that are 

homogeneous in terms of their spectral behavior. The class predominantly contains 

several spectral classes, but it depends on the specific classification scheme and the 

classification’s focus.  

The classification rules are composed by the classification signatures. There are many 

types of these signatures – spatial, spectral, temporal, or polarizing. However, in this 

study, only the spectral signatures were used. The rule was unknown and needed be 

created. 

In general, a classification can be divided into an unsupervised or supervised 

classification according to how and at which point the processor intervenes in the 

classification process. These two types of classification can also be combined.  

Unsupervised classification is a method in which the software separates a large number 

of unknown pixels (based on their reflectance values) into clusters or classes. The 

processor is to find out what the individual classes represent. 

2.3.2 Supervised Classification 

In this study, supervised classification was used. The supervised classification 

provides a possibility of creating the classes prior to classification itself by the 

processor. Classification rule is done by the training set, which is created by the 

processor [22] [23]. The classification is based on the idea that a processor can select 

the sample pixels representing specific classes themselves.  

To carry out the classification, it is needed to choose the right classifier. There are a 

lot of options for classifiers. The choice of the classifier depends on the nature of the 

input data and desired output. For this study, the Maximum Likelihood classification 

algorithm was used. 
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Maximum Likelihood  

This statistical method assumes that the distribution of points forming one class of 

training data has a Gaussian distribution.  

In remote sensing, a Maximum Likelihood classification finds out the likelihood that a 

given pixel belongs to a specific class. Each pixel is assigned to the class based on the 

highest probability (if the threshold is not defined). Maximum Likelihood is one of the 

most used types of classifier in remote sensing. [22] 

 

Figure 8: Gaussian distributin. Source:Wikipedia 

Classification Process 

The classification set of signatures is created from the training areas. To define the 

training areas for each class, the ROI (Region of Interest) tool was used. 

Firstly, the classification was executed only using the combination of three vegetation 

indices – NDVI, NBR and ARVI. The result of the classification was not accurate at 

all, so it was needed to think up another combination of multi-band raster to be used 

as a ground truth for the classification. 

After that, the multi-band raster was created, composed the 13 corrected and resampled 

bands (10 plus 3 indices). The training input .scp was used for storing ROIs and 

spectral signatures of the training areas. 

After the definition of classes, the classification was carried out. The SCP enables 

using three types of classifiers – Minimum Distance, Maximum Likelihood, and 

Spectral Angle Mapping. The first classifier was not even tested. The reason is that in 

these types of classifiers, the objects that are classified are groups of measurement 

vectors – all of them are in one field, rather than individual vectors. The results of the 

classification computed from both the Spectral Angle Mapping and Maximum 
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Likelihood were compared (only visually) to each other. The Maximum Likelihood 

method was chosen based on the visual comparison.  

After carrying out the classification, the “salt and pepper” pixels, which occurred in 

the classified image, were eliminated by the Sieve function available in QGIS. This 

function removes smaller polygons than a provided threshold size and replaces them 

with the pixel value of the largest neighbor polygon. [24] The threshold for eliminating 

the pixels was selected based on the classification results of each scene. The minimum 

was 10 pixels and the maximum 30 pixels.  

All eleven scenes were classified the same way. The accuracy and the results of the 

classification are described in the following chapters. 

Training set 

Selection of the training set is one of the most crucial parts of supervised classification. 

The training areas must be selected carefully, based on the processor’s knowledge of 

the area of interest. The number of samples for each class should be selected according 

to the object’s occurrence and samples should be positioned throughout the image. The 

number of training areas depends on the number of categories to be mapped or their 

diversity.  

Firstly, for the whole classification process, the legend and training areas needed to be 

defined. The legend itself followed from the literary sources dealing with the analysis 

of the burnt areas, and field research of the area of interest.  

Five classes based on their spectral signatures were defined. Even though the area of 

interest is heterogeneous, it emerged that for the detection of the areas affected by fire, 

it was enough.  

The training areas were selected primarily according to the spectral signatures in the 

NDVI, computed from the NIR and R bands from Sentinel-2, and the aerial photograph 

of the area in real colors. The input image was displayed in RGB (R = SWIR, G =NIR, 

B=R). This combination of bands allowed better visibility of the condition and density 

of the land cover, including the burnt areas. The training areas were selected based on 

their occurrence and size of the objects. 
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The classes selected for the classification were following: 

1 Burnt Areas 

2 Water 

3 Non – Vegetated Areas 

4 Sparse Vegetation 

5 Dense and Green Vegetation 

These classes were defined for all eleven scenes, which were used as a ground truth 

for the classification. The reference data composed of all 10 bands (B2, B3, B4, B5, 

B6, B7, B8, B8a, B11, B12) plus the vegetation indices (NDVI, ARVI, NBR) for better 

results. 

The most important and the most difficult issue while creating classes was the selection 

of the areas for the “Burnt Areas” class. This was done by visual observation of the 

area of interest in the infrared color combination of spectral bands through the Sentinel 

Hub Playground.  The combination of sentinel bands B8, B4, and B3 enables us to see 

the locations affected by fires very clearly.  These areas are distinguishable because of 

their back, dark grey or light grey color. The color depends on the age of the burnt 

area.  

 

Figure 9: Burnt area (based on Sentinel-2 bands B8, B4, B3). Source: Sentinel Hub Playground 
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After the selection of the training areas and their assignment to the classes, their 

separability was checked by histogram and scatter plot. A histogram showed that 

training areas corresponded to several different object classes at once. The spectral 

separability was also checked by the scatter plot, which demonstrated almost no 

overlap of the classes. However, it was observed that the “Burnt Areas” class may be 

confused with the “No Vegetation” class. Despite this fact, the classification was 

performed.  

Selection of the Test Areas 

For an objective accuracy assessment, it is necessary to use reference data that are not 

the same as training sets. This data serves for the processing of the contingency table. 

The test areas are usually represented by either homogeneous test areas preselected by 

the processor or randomly selected pixels. The second option usually gives a bad 

picture of the classification result, because the number of the selected pixels is 

commonly very low. That’s why the first option was selected for our purpose. 

The representative homogenous test areas differ from the training areas and are 

considerably larger. The training and test areas were selected identically and the 

number of the test areas for each class was lower than training areas. 

Accuracy Assessment 

The last step of the classification is the accuracy assessment. In this study, the 

assessment was done using a classification error matrix (also called confusion or 

contingency table). It is one of the most common means of expressing classification 

accuracy. This matrix works on a category-by-category basis, where the input 

(reference) data are compared to the corresponding test data. It shows how the pixels 

from the training set are assigned to each of the classes. If the number of pixels of 

training areas assigned to a different class (values off the diagonal of the error matrix) 

is high, it indicates that the training areas are not selected appropriately – the classes 

overlap. In this case, it is necessary to select a more suitable training set and repeat the 

classification. The diagonal cells of the matrix contain the number of correctly 

identified pixels. 
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Another possible way to check the accuracy of the training areas is to use a scatter plot. 

It is a graph, in which the values of selected areas of each class from one band are 

plotted (one band on one axis). If the separability of the classes is fine, then the clusters 

of pixel values in training areas don’t overlap.  

The next part of the assessment is an evaluation of accuracy by creating test areas. 

These samples are not identical to the training ones. 

The accuracy can be assessed by several methods: 

1) Overall Accuracy – this accuracy is computed by dividing the sum of the 

correctly identified pixels by the total number of pixels 

𝑂𝐴 =  
1

𝑛
∑ 𝑎𝑘𝑘

𝑁
𝑘=1    (9) 

where 

 n = total number of pixels used for training or test areas 

 N = total number of classified classes 

akk = correctly identified pixels 

2) Average Accuracy – this averages the number of correctly classified pixels of 

each class 

𝐴𝐴 =  
1

𝑁
∑ 𝑎𝑘𝑘

𝑁
𝑘=1   (10) 

3) User’s Accuracy – defines the number of correctly identified pixels of a class, 

divided by total number of pixels of the class in the classified image 

𝑈𝐴𝑖 =
𝑎𝑖𝑖

∑ 𝑎𝑖𝑘
𝑁
𝑘=1

   (11) 

where  

 ∑ 𝑎𝑖𝑘
𝑁
𝑘=1 = total number of pixels classified to the given class 

4) Kappa Index – a measure of how the classification results compare to values 

assigned by chance 

𝜅 =
𝑃0−𝑃𝑐

1−𝑃𝐶
  (12) 

where 

 𝑃0 = agreement between reference data and classified image 

 𝑃𝐶= agreement by chance 
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The range of the kappa coefficient is from 0 to 1. The higher kappa index, the more 

accurate classification. If the kappa index equals 1, the classification is faultless.[22] 

The selection of the training and test data in this thesis is explained in the following 

chapters. 
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2.4 Temporal Development 

Classified burnt areas were compared with the burnt area class determined from 

CORINE Land Cover. As mentioned, it was determined, whether the burnt areas were 

visible in the CLC burnt area class or not, and if so, in what type of vegetation appeared 

and for how long the burnt areas classified from the Sentinel-2 images could be 

distinguished in CLC.    

The next step was to show the temporal analysis of the burnt areas in the different 

types of forested areas. It was done by computation of the mean values, standard 

deviation, modal values, and median of each area and their evolution in time. This 

development was displayed in graphs and additional tables. 

2.4.1 Selection of Burnt Areas 

At first, it was necessary to select the “Burnt Areas” class from the classified image 

for the following analysis. It was carried out using the Raster Calculator tool in QGIS. 

After the “Burnt Areas” class selecting, a new raster layer was created - containing 

values 1 (for burnt areas) and 0 for the rest of the analyzed scene. This raster had to be 

converted to a vector layer to perform analysis of the concordances and differences 

between the classified burnt areas and CLC Burnt Areas class. The raster was 

converted using the Raster to Vector function in QGIS.  

Since the CLC and scenes from Sentinel-2 have a different reference coordinate system 

(CLC-ETRS89 and Sentinel-2-WGS84), the CLC Burn Area class was converted to 

WGS84 to prevent potential errors. This was executed using the Reproject Layer 

function 

2.4.2 Comparison 

Firstly, the visual comparison was executed. It was necessary to find out when the 

burnt area occurred for the first time (before or after the acquisition at a specific scene) 

to calculate the approximate time when the fire broke out.   
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Every two consecutive scenes were visually compared to each other to find out the 

concordances and differences. It was done using Sentinel Hub Playground. According 

to the information required, most of the fires broke out in summer, which was 

predictable because of the type of climate and its behavior during the year – dry and 

warm summer and rainy fall/winter. There were only two exceptions - years 2017 and 

2018, in which forest fires occurred in late September – the burnt areas from this period 

are recognizable from the spring scene from the following year for the first time. 

The next issue to be solved was to determine for how long it was possible to detect the 

burnt areas and whether they were mapped in CORINE Land Cover.  

Comparison with CLC 

At first, classified burnt areas from November 2015 were compared to the Burnt Area 

classes from CLC 2012 and 2018. It was carried out through the Intersection function 

in QGIS.  

In CLC 2012, there was no identical burnt area in comparison with the classified scene 

from 2015. In the case of the year 2018, three places were registered in CLC as well 

as in the 2015 classified scene. 

Other classified burnt areas from remaining years (2016, 2017, 2018) were only 

compared to CLC 2018.  

There were no new classified burnt areas from the April 2016 scene and one identical 

burnt area to CLC 2018 in the case of September 2016.  

The classified scene from March 2017 had also no identical burnt areas to the CLC 

2018. However, in the classified scene from September 2017, six identical areas to the 

CLC 2018 were found.  

The burnt areas classified in the scenes from 2018 are not registered in CLC 2018 at 

all. 
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The classified areas registered in CLC 2018 (Table 2): 

SCENE AREAS - TYPE OF VEGETATION 

 

November 2015 

Area 1 – Sclerophyllous vegetation 

Area 2 – Moors and Heathlands 

Area 3 – Moors and Heathlands 

September 2016 Area 1 – Transitional woodland-shrub 

 

 

September 2017 

Area 1 – Transitional woodland-shrub + Moors 

and Heathlands 

Area 2 – Transitional woodland-shrub + Moors 

and Heathlands Transitional woodland-shrub 

Area 3 - Moors and Heathlands 

Area 4 - Transitional woodland-shrub + 

Coniferous Forests 

Area 5 – Transitional woodland-shrub 

Area 6 - Coniferous Forests 
Table 2: Classified burnt areas registered in CORINE Land Cover 2018 

Comparison with classified Burnt Areas 

The classified areas from each summer (or fall in the case of the year 2015) were 

compared to other classified burnt areas from every remaining year (both spring and 

summer).  

Firstly, the classified areas from each year were divided into several groups depending 

on their detectability in the following years. For example, for the year of 2015, five 

groups were defined – detectable after 1st year (2016), 2nd year (2017), 3rd year (2018), 

4th year (2019), and 5th year (2020). 

In each group, the burnt areas were divided into two other groups – identical areas 

classified in a specific year following the first detection or identical areas not classified 

in the same year (in the case of 2015, there were 10 groups). It enabled the recognition 

of the length of the detectability of the burnt areas. It was determined whether the burnt 

areas were recognizable from both scenes in a specific year following the fire or only 

from one of them. 

It was performed using the Raster Calculator function. As said, value 1 was assigned 

to the burnt areas and value 0 to the rest. To find out the common burnt areas, a new 

raster containing values 0 and 1 was computed using this command: (“1st raster” = 1) 

& (“2nd raster” =1). This new raster showed the common burnt areas. To find out the 

burnt areas that are distinguishable in the first scene and not in the other one, the 
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command (“1st raster” = 1) & (“2nd raster” =0) was used. Another raster containing 

values 0 and 1 was computed.  This process was carried out for each pair of scenes 

(both spring and summer from each year). The scheme of the process is shown below 

(Fig.10): 

 

Figure 10: Scheme of the burnt areas' comparison 

2.4.2 Selection of the Areas to be analyzed 

For the temporal development analysis, it was necessary to select the areas of 

examination. The layers (for each type of forest and depending on the period of the 

first burnt area’s detection) were created and used for the following computation of 

the statistics. This selection of the areas and their assignment to the layers were the 

first steps for the temporal analysis. These were used for the temporal analysis using 

the values computed from the Zonal Statistics. In this chapter, the selection of the areas 

is delineated. 

Division of the Burnt Areas 

The analysis described above helped to determine the detectability of the burnt areas 

in the following years after each fire. According to the analysis, the longest detection 

period was approximately three years since the fire broke out.  The temporal 

development and regeneration of the burnt areas might depend on the type of the 
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forested area. That’s why the sorting of all detected burnt areas, based on the 

vegetation type of forest, was needed. 

The types of the forested areas affected by fire are the following: 

• TRANSITIONAL WOODLAND-SHRUB 

• CONIFEROUS FORESTS 

• MIXED FORESTS 

• SCLEROPHYLLOUS VEGETATION 

The temporal analysis of the burnt areas, caused by the fire events in these types of 

forests, was executed. Other burnt areas that occurred in different types of land cover 

did not take part in the analysis. The reason is the definition of the CLC Burnt Areas 

class (described in chapter 4.1.1). However, this class contains the moors and 

heathlands, which were not part of the temporal development analysis because it was 

not possible to find out reliably if the original land cover was moors and heathlands 

(this was not recognizable from the aerial photographs or from true color images).   

The division was carried out based on the true color image (or aerial photograph) and 

CLC. The initial selection was done by checking the CLC 2012 representation of 

classes in the later affected area. This was used to determine the approximate type of 

land cover. After that, the true color image was checked to make sure that it was the 

type of forest that is represented in CLC.  

Four new vector layers (Transitional Woodland-shrub, Coniferous Forests, Mixed 

Forests and Sclerophyllous Vegetation) were created from the vector layers of burnt 

areas acquired from the classification output. These layers contained all the burnt areas 

classified from every scene (every year). The number of burnt areas in each forested 

area in total is shown in Table 3: 

Layer NUMBER OF BURNT 

AREAS 

Transitional Woodland-

shrub 

11 

Coniferous Forests 1 

Mixed Forests 2 

Sclerophyllous Vegetation 1 
Table 3:Number of Burnt Areas in each layer 
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Selection of the Forested Areas untouched by fires 

For performing the temporal analysis, it was necessary to compare the temporal 

development of the burnt areas with the development of the areas not affected by the 

fire. As in the previous case, the areas were divided into classes saved in four layers 

(Transitional woodland-shrub, Coniferous forests, Mixed forests, and Sclerophyllous 

vegetation). These layers represented homogenous areas for each group. The selected 

forested areas had approximately the same size as the burnt areas representing them 

and were selected to be in the vicinity of the burnt areas. The number of forested areas 

was identical to the number of burnt areas in each vegetation group.  

2.4.3 Computation of dNBR 

At the beginning of the study, it was decided to use the dNBR index as well as the 

other vegetation indices (NDVI, ARVI, NBR) for the temporal development analysis. 

The computation of this index is mentioned in this section because dNBR was not a 

part of the previous classification.  

The computation of dNBR is quite different from the computation of other indices. It 

is created with the aid of pre-fire and post-fire NBR images. This index is used to 

estimate the burn severity. While differencing (prefire – postfire), a more positive 

value indicates more severe damage, the more negative (regrowth). [25] The formula 

is defined as: 

𝑑𝑁𝐵𝑅 = 𝑝𝑟𝑒𝑓𝑖𝑟𝑒𝑁𝐵𝑅 − 𝑝𝑜𝑠𝑡𝑓𝑖𝑟𝑒𝑁𝐵𝑅  (13) 

In the terms of this thesis, the dNBR was computed not only for pre and post-fire 

images; it was computed for every two consecutive scenes to be able to show 

(primarily in graphs) the gradual development of the values of dNBR in each given 

period.  
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2.4.4 Statistical Evaluation 

The statistical analysis shows the development in a table and graphical forms. The 

mean, modal, median value and standard deviation were computed and then 

depicted in graphs. Additionally, the maximum and minimum value for each area was 

calculated. 

At first, it was necessary to clip acquired NDVI, ARVI, NBR, and dNBR images for 

each period, by the extent of each of all 30 selected areas. It was carried out using 

r.mask.vect tool that was available in QGIS with GRASS. The input for this tool was 

a vector layer (burnt / forested area) and a raster one (for index values). The reason 

why the process was executed for every period, not only for the ones post-fire, was 

that the temporal development of the specific areas before the fire was important for 

the comparison of the whole development. The values mentioned in the first paragraph 

determined the radical changes in values that followed the fire. 

The values were obtained using the Zonal Statistics tool. All of the results for each 

type of forest – mean, median, mode, standard deviation, minimum and maximum 

value – are attached to the thesis in the tables (Attachment 1, Attachment 2, Attachment 

3, Attachment 4). The created graphs are displayed and described in the chapter 3.2. 
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2.5 Software 

2.5.1 QGIS 

QGIS is a multiplatform open-source geographic information system, which gives the 

ability to capture and analyze spatial and geographic data. It has a wide community of 

users and provides various types of plugins. Being developed as open-source, it renders 

long-term sustainability of the functioning of the workflow.  

This project was founded in 2002 and its first version came out in 2009. It was 

originally called Quantum QGIS, however in 2013 it was renamed QGIS.  

QGIS contains a lot of tools including the GDAL library, GRASS tools, and SAGA 

tools. One of the important qualities of QGIS is the possibility to install a wide number 

of plugins. Two of these are used in the study – the GRASS Plugin and the SCP Plugin 

(both described in the chapters below). 

For the aim of this thesis, the QGIS 3.16.3 Hannover is being used.[26] 

 

Figure 11: QGIS logo [26] 

Semi-Automatic Classification Plugin 

This plugin allows supervised classification and its pre and post-processing analysis. 

A supervised classification can be applied to remote sensing images. 

It was developed by Luca Congedo. SCP can be applied on satellite images – the 

downloading of data from ASTER, GOES, Landsat, MODIS, Sentinel-1, Sentinel-2, 

and Sentinel-3 is available, as well as many algorithms of classification. The plugin 

requires the installation of GDAL, Numpy, OGR, SciPy, and Matplotlib. [27] 
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2.5.2 GRASS 

The Geographic Resources Analysis Support System (GRASS) GIS is a multiplatform 

open-source GIS, which is used as a tool for analysis of 2D/3D raster and vector data, 

image data and provides a high-quality graphic output.  

GRASS was first released in 1982. In the beginning, it was being developed by 

Construction Engineering Research Laboratory for environmental research. After that, 

numerous private companies, US federal agencies, and universities joined.  

Since 1997, developers from around the World have been continuing in the 

development and release. [28] 

 

Figure 12: GRASS GIS logo [28] 

QGIS with GRASS 

This plugin provides the use of GRASS tools and databases. It includes analysis of 

raster and vector layers, their digitalization, editing attributes, and analyzing vector 

and raster layers with more than 400 GRASS modules. [29] 
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3 Results 

3.1 Classification Results 

In this part, the overall results of the classification are shown. The visual interpretation 

of all classified scenes and the accuracy assessment are depicted below.  

 

Figure 13: Legend 

 

Figure 14:Classified scene from November 2015 

    

Figure 15: Classified scene from April 2016   Figure 16: Classified scene from August 2016 
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Figure 17: Classified scene from March 2017   Figure 18: Classified scene from September 2017 

   

Figure 19: Classified scene from May 2018   Figure 20: Classified scene from August 2018  

   

Figure 21: Classified scene from May 2019   Figure 22: Classified scene from September 2019 
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Figure 23: Classified scene from March 2020   Figure 24: Classified scene from August 2020 

From the classification output, it is obvious that the greatest number of fires occurred 

during summer 2017 (Fig.18). Also, at first glance, the temporal development of 

burnt areas from 2017 is recognizable. A few burnt areas continued to appear until 

March 2020.  

Other significant burnt areas are visible in the classified image from May 2018 

(Fig.19). It was calculated that the fires occurred in September 2017, which is why 

these burnt areas are not distinguishable in the scene from August 2017. 

From this, it can be deduced that it is possible to classify the burnt areas three years 

after the fire started. The next chapters deal with the temporal development of the 

burnt areas in detail. 

The following tables depict the accuracy assessment of the classification. The number 

of correctly and wrongly assigned pixels, and sum of pixels. The assessment was 

realized using the confusion matrix by which the Overall Accuracy (OA) and Kappa 

Index were computed. 

The accuracy was performed in SCP, using the post-processing tool Accuracy. All of 

the values in confusion matrix are represented in pixels. As well as the training sets, 

the testing areas were selected based on the visual interpretation of the land cover in 

Sentinel-2 data and aerial photographs. 
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According to the accuracy results (Table 4, 5, 6. 7), the greatest confusion is between 

classes “Sparse Vegetation” (Class 4) and “Dense Vegetation” (Class 5). 

CLASS 1 2 3 4 5 TOTAL 

1 3266 2 4 0 0 3272 

2 1 1726 0 0 0 1727 

3 369 84 3245 25 69 3792 

4 0 0 192 3988 95 4275 

5 0 0 0 368 7100 7468 

TOTAL 3636 1812 3441 4381 7264 20534 
Table 4: Confusion Matrix (November 2015) 

OA [%] 93.6400 

Kappa 0.8859 

 

CLASS 1 2 3 4 5 TOTAL 

1 851 0 1 0 0 852 

2 0 1756 0 0 0 1756 

3 16 56 3188 87 48 3395 

4 0 0 142 3711 1039 4892 

5 0 0 110 583 6177 6870 

TOTAL 867 1812 3441 4381 7264 17765 
Table 5: Confusion Matrix (April 2016) 

OA [%] 85.4630 

Kappa  0.7407 

 

CLASS 1 2 3 4 5 TOTAL 

1 2504 3 0 0 0 2507 

2 0 1534 0 0 0 1534 

3 37 172 3348 145 28 3730 

4 0 0 39 3580 773 4392 

5 0 103 54 656 6463 7276 

TOTAL 2541 1812 3441 4381 7264 19439 
Table 6: Confusion Matrix (August 2016) 

OA [%] 90.7900 

Kappa  0.8583 
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Table 7: Confusion Matrix (March 2017) 

OA [%] 91.3052 

Kappa  0.8839 

The biggest confusion (Table 8, 9, 10). is between classes “Sparse Vegetation” 

(Class 4) and “Dense Vegetation” (Class 5). 

CLASS 1 2 3 4 5 TOTAL 

1 12683 8 0 0 0 12691 

2 0 1759 0 0 0 1759 

3 6 14 2994 235 83 3332 

4 34 0 377 3677 668 4756 

5 9 31 70 469 6513 7092 

TOTAL 12732 1812 3441 4381 7264 29630 
Table 8: Confusion Matrix (September 2017) 

OA [%] 93.2408 

Kappa  0.8991 

 

CLASS 1 2 3 4 5 TOTAL 

1 3922 3 23 23 0 3971 

2 0 1555 0 0 0 1555 

3 154 216 3170 347 11 3898 

4 9 0 224 3576 429 4238 

5 13 38 24 435 6824 7334 

TOTAL 4098 1812 3441 4381 7264 20996 
Table 9: Confusion Matrix (May 2018) 

OA [%] 90.3904 

Kappa  0.7860 

 

  

CLASS 1 2 3 4 5 TOTAL 

1 1288 0 47 0 0 1335 

2 0 1700 0 0 0 1700 

3 10 112 3252 140 50 3564 

4 4 0 56 3762 456 4278 

5 0 0 86 479 6758 7323 

TOTAL 1302 1812 3441 4381 7264 18200 
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CLASS 1 2 3 4 5 TOTAL 

1 2769 1 27 5 0 2802 

2 0 1796 0 0 0 1796 

3 61 8 2969 242 19 3299 

4 19 0 234 4068 853 5174 

5 1 7 211 66 6392 6677 

TOTAL 2850 1812 3441 4381 7264 19748 
Table 10: Confusion Matrix (August 2018) 

OA [%] 90.5532 

Kappa  0.7812 

The largest confusion in the classified scene from May 2019 is between “Sparse 

Vegetation” (Class 4) and “Dense Vegetation” (Class 5) classes (Table 11). 

CLASS 1 2 3 4 5 TOTAL 

1 2143 1 95 9 21 2269 

2 0 1787 0 0 0 1787 

3 4 0 2919 63 33 3019 

4 27 0 426 4256 333 5042 

5 2 24 1 53 6877 6957 

TOTAL 2176 1812 3441 4381 7264 19074 
Table 11: Confusion Matrix (May 2019) 

OA [%] 88.3548 

Kappa  0.7639 

The error matrix shows the biggest confusion between “Sparse Vegetation” (Class 4) 

and “Dense Vegetation” (Class 5) class (Table 12). 

CLASS 1 2 3 4 5 TOTAL 

1 1514 19 13 14 3 1563 

2 0 1670 0 0 0 1670 

3 27 81 2855 59 41 3063 

4 12 2 317 4393 726 5450 

5 2 40 6 15 6494 6557 

TOTAL 1305 1812 3441 4381 7264 18203 
Table 12: Confusion Matrix (September 2019) 

 

 

OA [%] 88.1144 

Kappa  0.7658 
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Based on the contingency table of the classification of the scenes from 2020 (Table 13 

and 14), the largest number of pixels was assigned wrongly between the “Sparse 

Vegetation” (Class 4) and “Dense Vegetation” (Class 5) classes. 

CLASS 1 2 3 4 5 TOTAL 

1 4890 29 6 0 88 5013 

2 0 1783 0 0 0 1783 

3 72 0 2984 72 55 3183 

4 137 0 396 4215 105 4853 

5 2 0 55 94 7016 7167 

TOTAL 5101 1812 3441 4381 7264 21999 
Table 13: Confusion Matrix (March 2020) 

OA [%] 90.1861 

Kappa  0.8171 

  

CLASS 1 2 3 4 5 TOTAL 

1 1603 43 6 0 0 1652 

2 0 1729 0 0 0 1729 

3 45 12 3303 94 33 3487 

4 4 0 56 3581 126 3767 

5 0 28 76 706 7105 7915 

TOTAL 1652 1812 3441 4381 7264 18550 

Table 14: Confusion Matrix (August 2020) 

OA [%] 85.5991 

Kappa  0.7347 

 

. 
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3.2 Temporal Development Results 

The results of the previously computed statistics were depicted in graphs to create a 

better figure of the acquired results. The graphs were made for individual indices.  

At first, graphs that represented the temporal development of the ARVI, NDVI, NBR, 

and dNBR values were created in such a way that the beginnings of the detection 

coincide for all fires, regardless of the exact date of the first detection.  

Afterward, the percentual improvement over time of the values of each index was 

computed and depicted in graphs. The only exception where the percentual 

improvement could not have been computed was the Sclerophyllous vegetation. The 

first detection of this burnt area is from the November 2015 scene, so these values 

could not have been compared to any other scene. No other scenes from the fall were 

available since the Sentinel-2A satellite was launched in 2015 and Sentinel-2B in 

2017. 

3.2.1 Transitional woodland-shrub 

While creating the graphs of temporal development for this type of forest, only mean 

values and standard deviation were used. The reason for this was to ensure the clarity 

of the graphs. Since eleven areas affected by fire in this type of forest were detected, 

depicting all of the values in graphs would not be reasonable because it would become 

difficult to understand.  

ARVI Index: 

The graphs show ARVI mean values of the Transitional woodland-shrub class 

comparing burnt and untouched areas at Fig. 25. The ARVI standard deviations are 

presented at Fig. 26. 
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Figure 25: Transitional woodland-shrub: Temporal development of mean values - ARVI 

 

Figure 26: Transitional woodland-shrub: Temporal development of standard deviation – ARVI 

Eleven homogenous test areas were collected in order to follow up the spectral 

evolution of the burnt areas and forested areas. It can be observed that in the case of 

the burnt areas’ temporal development using ARVI, mean values rapidly declined in 

the period of the first detection. Regarding the evolution of the burnt areas with time, 

it is clear that the values did not increase constantly in most of the cases. While 

comparing the temporal development, it is necessary to separately compare summer 
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periods, fall periods, and spring periods with each other because of the different 

vegetation phases. As seen, the values of the previously burnt areas are lower in 

summer than in spring. It also depends on in which month the satellite data was 

acquired. 

The graph (Fig.26) depicting the standard deviation shows that the values were not 

appreciably deviated from the average value even in the case of the burnt areas’ 

development. The values representing the burnt areas were lower than for forested 

areas, which is predictable because the other values should not have differed from the 

average value by a lot.  

NDVI Index: 

In the case of the NDVI index, the mean values (Fig.27) showing regrowth had a 

smoother change of development and varied between 0.12 and 0.63. However, the 

ARVI shows values varied between 0.025 and 0.75 (Fig.25).  

As in the previous case, the values of post-fire development of burnt areas were lower 

in the summer periods. The values in the period of the first detection were higher than 

in the case of ARVI, however, this index also showed great visibility of the regrowth 

after the fire. The standard deviation of NDVI also shows smoother development 

varying between 0.04 and 0.23 at Fig. 28 than the ARVI index (Fig. 26) which had a 

range of 0.035 and 0.28.  
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Figure 27: Transitional woodland-shrub: Temporal development of mean values - NDVI 

 

 

Figure 28:Transitional woodland-shrub: Temporal development of standard deviation – NDVI 

NBR Index: 

The NBR index (Fig. 29) indicates lower values for the burnt areas’ development 

mainly in the period of the first detection and after the fire. This index is used mainly 

for burnt area detection and the reason is clear. As in the rest of the indices, the values 
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for the burnt areas are much lower than the ones showing the development of the 

forested areas outside of the burnt areas. In the case of NBR, the mean values in the 

first period of the detection were negative. These values are more or less constant in 

all displayed areas.  

 

 

Figure 29: Transitional woodland-shrub: Temporal development of mean values - NBR 

 

Figure 30: Transitional woodland-shrub: Temporal development of standard deviation – NBR 
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dNBR Index: 

These graphs (Fig. 31 and 32) show the differenced NBR images. In the case of the 

differenced images pre and post the fires, dNBR displayed very high values that were 

not dependent on the order of differencing of the images. The following development 

depended on the order (a summer-spring image showed lower values, spring-summer 

image showed higher values). However, while comparing the matching order 

differenced images, constantly increasing values were visible. 

The range of standard deviation of burnt areas in the case of dNBR is higher as seen 

in Fig. 32. The range is between 0.048 and 0.28.  

 

 

Figure 31: Transitional woodland-shrub: Temporal development of mean values - dNBR 
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Figure 32:Transitional woodland-shrub: Temporal development of standard deviation – dNBR 

In the following tables and graphs, the percentual development of the burnt areas for 

each index is shown. The values’ development is shown based on the period of the 

first detection – summer/spring. Two tables (Table 15 and Table 16) and two graphs 

(Fig. 33 and Fig.34) in total were created for this type of forested area. The percentual 

development was computed for mean values and standard deviation. 
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Summer period – mean values of the burnt areas: 

  
Temporal development in %  

(towards the first detection)   
Area1 Area 2 Area 3 Area 4 Area 5 Area 6 

 Pre-fire 

values 

0.5149 0.4513 0.4458 0.5549 0.6188 0.7378 

 Year after 

first 

detection 

 

 
1st 155 55 95 147 194 128 

ARVI 2nd 110 290 300 170 312 118  
3rd 132 171 367 258 359 144  
4th 214 230 415 

   

        

 Pre-fire 

values 

0.5321 0.4793 

 

0.4771 0.5847 0.6236 0.7426 

 
Year after 

first 

detection 

      

NDVI 1st 102 93 194 62 33 33  
2nd 116 140 285 63 60 53  
3rd 148 170 288 126 77 95  
4th 194 207 361 

   

        

 Pre-fire 

values 

0.2235 0.2304 0.1880 0.4136 0.4825 0.6666 

 Year after 

first 

detection 

      

NBR 1st 57 56 70 53 57 49  
2nd 102 110 101 86 93 84  
3rd 153 111 112 119 127 133  
4th 162 129 155 

   

        

 Pre-fire 

values 

-0.0829 

 

-0.0940 

 

-0.0521 0.0009 -0.0201 

 

-0.0604 

 

 Year after 

first 

detection 

      

 
1st 61 52 58 112 111 106  
2nd 72 71 72 90 94 90 

dNBR 3rd 75 75 79 103 113 95  
4th 83 77 80 

   

Table 15: Transitional woodland-shrub: Temporal improvement of mean values in % 
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This graph (Fig. 33) shows the percentual changes of the mean values over time. All 

of the areas have recorded significant improvement since the first burnt area’s 

detection between 2016 and 2020.  In the case of ARVI. the improvement was by 

several hundred percent. 

 

 

Figure 33: Transitional woodland-shrub: Temporal improvement of mean values in % - Graph 

Table 16 and the following graph (Fig. 34) show that the standard deviation has also 

increased over time. The tables and graphs showing the development of the rest of the 

values (mode. median) are in Attachment 5. 
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Spring period – mean values of the burnt areas:  

     
Area 1 Area 2 Area 3 

 Pre-fire values 0.6109 

 

0.6272 

 

0.6154 

 

 Year after first 

detection 

Temporal development in % 

(towards the first detection) 

ARVI 1st 294 373 142  
2nd 434 

  

     

 Pre-fire values 0.5496 

 
0.6272 

 
0.6377 

  
Year after first 

detection 

Temporal development in % 

(towards the first detection)  
1st 119 51 54 

NDVI 2nd 142 
  

     

 Pre-fire values 0.5917 

 
0.3595 0.3131 

  
Year after first 

detection 

Temporal development in % 

(towards the first detection)  
1st 132 54 94 

NBR 2nd 119 
  

     

 Pre-fire values -0.0231 0.0029 

 

0.0466 

  
Year after first 

detection 

Temporal development in % 

(towards the first detection) 

dNBR 1st 124 107 101  
2nd 105 

  

Table 16: Transitional woodland-shrub: Temporal improvement of standard deviation values in % 
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Figure 34: Transitional woodland-shrub: Temporal improvement of standard deviation values in % - Graph 

3.2.2 Coniferous forests 

The temporal development was depicted in four graphs. In the case of coniferous 

forests. only one burnt area / forested area was analyzed. The graphs (Fig. 35. 36. 37. 

38) show the temporal development of mean value. standard deviation. modal value. 

and median for each index. 

ARVI Index:  

In the period of the first detection of burnt areas (Fig. 35). the values showed low mean 

values. modal values. and median. The values also show regrowth of vegetation over 

time which has not reached the pre-forest state within four years. unlike the transitional 

woodland-shrub area.  
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Figure 35: Coniferous Forests: Temporal development – ARVI 

NDVI Index:  

NDVI values (Fig. 36) show a similar trend and confirm that the recovery of the forest 

takes longer than in the case of transitional woodland-shrub since the final calculated 

NDVI values have not reached the pre-forest NDVI values in two years. 

 

Figure 36: Coniferous Forests: Temporal development – NDVI 
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NBR Index: 

As well as in the previous results. the increase of the NBR mean. median and modal 

values (Fig. 37) after the fire is recognizable. The values for the forested area show an 

almost constant trend. However. they have not reached the pre-fire NBR state in four 

years. 

 

Figure 37: Coniferous Forests: Temporal development – NBR 
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dNBR Index: 

This graph (Fig. 38) also shows the development clearly. The mean value. modal value 

and median faced a significant decrease of mean. mode. and median values in the 

period of the first detection of the burnt area. Standard deviation did not show a lot of 

changes over the analyzed time.  

 

Figure 38: Coniferous Forests: Temporal development – dNBR 
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After that. for each index. percentual improvement of mean values. standard deviation. 

modal values. and median was calculated (Table 17).  

   

 

 

 

 

 

 

ARVI 

mean st.dev mode median 

Pre-fire 

values 

0.5721 0.0834 

 
0.5169 

 
0.5720 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 79 21 78 118 

2nd 89 126 36 75 

3rd 96 135 72 85 

     

      

 Pre-fire 

values 

0.5720 

 
0.0711 

 
0.565 

 
0.5691 

 

 Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

NDVI 

  

1st 56 48 43 22 

2nd 148 108 40 31 

3rd 213 121 33 74 

     

 Pre-fire 

values 

0.4275 

 

0.0999 

 

0.2734 

 

0.4158 

 

 

 

NBR 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

  1st 59 33 34 56 

2nd 82 23 100 80 

3rd 114 18 100 105 

 

 

dNBR 

     

Pre-fire 

values 

-0.03093 

 

0.0486 

 

-0.1498 

 

-0.0383 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 89 53 44 111 

2nd 96 58 185 96 

3rd 104 58 237 103 
Table 17: Coniferous Forests: Temporal improvement of values in % 
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The percentual improvement over time has been quite constant (Fig.39) as well as in 

the case of transitional woodland-shrub. The greatest improvement of mean value was 

registered in the NDVI. The summer value of the burnt area has improved by more 

than 200% in 3 years. The biggest increase of summer modal value is shown in the 

dNBR. 

 

 

Figure 39: Coniferous Forests: Temporal improvement in % - Graph 

3.2.3 Mixed Forests 

In this part. the graphs and tables are displayed. The values acquired from four areas 

(two burnt. two forested) are described.  

ARVI Index:  

In the case of mixed forests. the increase of the modal values (Fig. 40) is not smooth 

as in the previous cases. The mean values do show a monotonous increase in the post-

fire period as in the other types of forests. 
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Figure 40: Mixed Forests: Temporal development – ARVI 

NDVI Index:  

In the case of NDVI (Fig. 41). the minimum modal value is not as low as in the case 

of the ARVI (Fig. 40). In the case of ARVI. the range of modal values is between 0 

and 0.75. The range of the modal values in NDVI is between 0.05 and 0.8. 

 

 

Figure 41: Mixed Forests: Temporal development – NDVI 
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NBR Index:  

The median and mean values (Fig. 42) show the different ranges of mode and mean 

NBR values for comparison with NDVI (Fig. 41) and ARVI (Fig. 40). The 

improvement of values in NBR is slower than in the other indices as depicted in Fig. 

44. 

 

 

Figure 42: Mixed Forests: Temporal development – NBR 

dNBR Index: 

The modal values (Fig. 43). both in the burnt and untouched areas. show a different 

trend than in the other types of forests. Nevertheless. the mean values and median were 

very high in the period before the first detection.  
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Figure 43: Mixed Forests: Temporal development – dNBR 

The improvement over time as follows: 

Summer period – temporal improvement: 

 

 

 

 

 

ARVI 

  

mean st.dev mode median 

Pre-fire 

values 

0.6487 

 

0.0580 

 

0.5919 

 

0.6507 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 282 109 60 218 

2nd 301 10 171 300 

3rd 315 15 262 350 

4th 417 2 284 418 

 

 

 

 

 

NDVI 

     

Pre-fire 

values 

0.6692 

 

0.0486 

 

0.5850 

 

0.6695 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 182 86 291 240 

2nd 269 9 396 345 

3rd 281 7 373 358 

4th 312 8 418 393 
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NBR 

     

Pre-fire 

values 

0.4323 

 
0.0880 

 
0.3333 

 
0.4232 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 161 5 37 148 

2nd 258 34 202 229 

3rd 267 49 200 237 

4th 293 58 210 222 

 

 

 

 

 

 

dNBR 

     

Pre-fire 

values 

0.4232 

 

0.105 

 

-0.1373 

 

0.0892 

 

Year 

after 

first 

detection 

Temporal development in % 

(towards the first detection) 

1st 100 26 51 154 

2nd 118 58 60 117 

3rd 120 78 90 81 

4th 120 51 158 116 
Table 18: Mixed Forests: Temporal improvement of values in % 

The most noticeable increase of the mean values was recorded in the ARVI index 

(Table 18 and Fig. 44). It increased by almost 420% in four years. Another significant 

increase was shown in the NDVI.  
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Figure 44: Mixed Forests: Temporal improvement in % - Graph 

Spring period – temporal improvement: 

 

 

 

 

ARVI 

  

mean st.dev mode median 

Pre-fire 

values 

0.47664 

 

0.0874 

 

0.5000 

 

0.4932 

 

Year 

after first 

detection 

Temporal development in % 

(towards the first detection) 

1st 226 150 89 434 

2nd 182 105 33 196 

 

 

 

 

NDVI 

     

Pre-fire 

values 

0.4089 

 
0.0825 

 
0.4770 

 
0.4170 

 

Year 

after first 

detection 

Temporal development in % 

(towards the first detection) 

1st 100 160 133 100 

2nd 74 113 40 74 

 

 

 

 

NBR 

     

Pre-fire 

values 

0.276 

 
0.1472 

 
0.0101 

 
0.2622 

 

Year 

after first 

detection 

Temporal development in % 

(towards the first detection) 

1st 125 27 100 121 

2nd 109 0 100 105 
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dNBR 

     

Pre-fire 

values 

-0.0503 

 
0.0895 

 
-0.1366 

 
-0.0291 

 

Year 

after first 

detection 

Temporal development in % 

(towards the first detection) 

1st 133 42 200 134 

2nd 96 62 105 100 
Table 19: Mixed Forests: Temporal improvement of values in % 

 

Figure 45: Mixed Forests: Temporal improvement in % - Graph 

From the values and graph (Fig. 45). the percentual improvement after the first year 

was higher than in the second year after the detection in all the cases. The highest 

increase at all was observed in ARVI. 
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3.2.4 Sclerophyllous Vegetation 

In this chapter. only the temporal development of all values is shown. The burnt area 

in sclerophyllous vegetation was classified in the scene from November 2015. The 

temporal development before the fire event was not available. so Fig. 46. 47. 48. and 

49 show only the development after the burnt area was detected. 

ARVI Index: 

Fig. 46 shows by comparison of burnt areas and healthy forest that the decrease in the 

post-fire development in burnt areas was caused by other reasons than the natural post-

fire development. since this decrease of modal values appears also in the healthy forest 

– see spring of the 4th and 5th year. 

 

Figure 46: Sclerophyllous Vegetation: Temporal development – ARVI 
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NDVI Index: 

The NDVI (Fig. 47) shows an almost identical trend of the development of the median 

and mean value of the burnt area. The same trend is visible in the case of a healthy 

forest. 

 

Figure 47: Sclerophyllous Vegetation: Temporal development – NDVI 
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NBR Index: 

The NBR (Fig. 48) also shows increasing modal values in a forested area in the 4th 

summer period. The mean values of the burnt area are increasing. 

 

Figure 48: Sclerophyllous Vegetation: Temporal development – NBR 
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dNBR Index:  

The pre-fire image was not available. The values of the burnt area of differenced NBR 

images in the years after the fire are lower than in the forested area. However. the 

progress of the areas is distinguishable from Fig. 49. 

 

 

Figure 49: Sclerophyllous Vegetation: Temporal development – dNBR 

In all vegetation indices (Fig. 46. 47. 48. 49). the regeneration (regrowth) of the burnt 

area is visible. The mean. modal and median values showed the lowest values in the 

period of the first detection. The values have been increasing since then. All the values 

of the untouched forested areas and the burnt areas are very close to each other. more 

than in other classes. It can be deduced that either the severity of the burnt areas is 

lower than in other classes or the regeneration of the forested areas is more rapid.  
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Discussion 

The results of this thesis are in line with the hypothesis that the vegetation indices 

(NDVI. ARVI. NBR. dNBR) could be used for the pre and post-fire analysis. The 

results corresponded with the claims of Barbosa. Caerano. and Santos. 2000 that the 

spectral changes of the terrain after a fire could have been analyzed using ARVI. The 

other two indices. NDVI and NBR turned out to be another great possibility for the pre 

and post-fire temporal analysis. which had been mentioned in the study of Gibson. 

Danaher. Hehir. Collins. 2020. All three of these indices (plus dNBR) were used in 

the study. however. modifications of the workflow were necessary. For the execution 

of the classification. another ten spectral bands were added to the ground truth raster. 

It was one of the important modifications. Another modification was the computation 

of the dNBR from two consecutive scenes to depict the development in graphs.  

These results should be taken into account when considering how to quite easily carry 

out the temporal pre and post-fire analysis of the forested areas. One of the greatest 

perks of this workflow is that the study can be applied for the analysis of larger areas. 

such as the area of the Sentinel-2 scenes. The researched studies have always analyzed 

smaller areas of interest than in the case of this thesis. 

Due to the unavailability of the cloudless scene from summer 2015. the classification 

had to be executed for the image from fall 2015. It could be considered as one of the 

limitations of the study. because all of the other scenes were acquired in summer. It 

meant that the percentual improvement (regrowth) of the burnt areas classified from 

the 2015 scene could not have been carried out. However. not many problems were 

faced during the processing itself. 

In the future. the same workflow could be applied using SAVI (Soil-adjusted 

Vegetation Index) as well as the other indices. SAVI was tested in the study focusing 

on fire severity and post fire regeneration (Tonbul. Kavzoglu and Kaya. 2016). Future 

studies could also take into account another type of classification or another type of 

classifier.  
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Conclusion 

This thesis aimed to select the area regarding its frequency and severity of forest fires. 

to determine the selection of the seasons and years for future analysis. to find a suitable 

methodology according to the research. to compare the classified burnt areas with the 

CLC Burnt Area class. and to evaluate the temporal development in the various types 

of forested areas. All of these goals were met successfully.  

The results indicated that the burnt areas had been detected from the Sentinel-2 data 

for almost three years. The longest period of burnt area detection by classification was 

observed in the transitional woodland-shrub vegetation type. The study demonstrated 

that the supervised classification using the Maximum Likelihood classifier could have 

been one of the methods for detecting the burnt areas from the satellite data. The 

comparison of the classified burnt area and CLC Burnt Area class showed a lot of 

discrepancy. Most of the classified burnt areas from all eleven scenes (from 2015 to 

2020) were not included in the CLC. The analysis of the temporal development of the 

burnt areas in all types of forests supported the theory that the regeneration had been 

gradual. In several burnt areas. the mean. modal or median values of the indices 

showed the regrowth of the vegetation by almost 450% in three years. Also. the 

temporal development demonstrated significantly decreasing index values in the 

scenes acquired immediately (in a few-months period) after the fire had broken out.  

The classification was carried out for all eleven scenes (between 2015 fall and 2020 

summer). The spectral indices NDVI. ARVI. and NBR were used as additional bands 

for the classification. Five classes based on their spectral signatures were defined and 

the classification using Maximum Likelihood classifier was performed in QGIS. The 

classification's accuracy of all scenes was > 85%.  

The classified burnt areas were compared to the CLC Burnt Area class and analyzed 

the concordances and differences between the classified burnt areas and CLC Burnt 

Areas class. It was discovered that a lot of the classified burnt areas are not depicted 

in the CLC Burnt Area class. from neither 2012 nor 2018. 

Four types of forested areas were distinguished – transitional woodland-shrub. 

coniferous forests. mixed forests. and sclerophyllous vegetation. After the 
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classification. the burnt areas were divided according to the type of forests. in which 

they occurred. 

Mean values. modal values. median. and standard deviation were computed using the 

Zonal Statistic function in QGIS. The temporal analysis of the burnt areas caused by 

the fire events in the types of forests mentioned above was executed and the graphs 

showing the evolution were created.  The analysis showed the increase of the indices’ 

values. which indicated the gradual regeneration of the burnt areas. Post-fire ARVI 

mean values and medians of transitional woodland-shrub and mixed forests showed 

relatively rapid regeneration compared with other indices. However. the greatest 

percentual improvement of mean values in burnt coniferous forests was observed in 

NDVI. The highest median and modal values were in dNBR while comparing with 

other indices. Based on the results of the percentual improvement. the most rapid 

regeneration is shown in the mixed forests. The post-fire temporal development of the 

sclerophyllous vegetation also showed a significant improvement. however. the 

percentual development is not available.  

To conclude. the study showed a suitable option for carrying out the temporal analysis 

of the burnt areas. It could be used as a base for future studies focusing on pre and 

post-fire analysis applied to satellite data. The CORINE data do not allow to detect all 

of the burnt areas in Europe due to long period (2012 – 2018) between CORINE data. 

and due to a necessary level of the forest damage/recovery after the fire. which is 

determined  by the CORINE Class definition for burnt areas. 
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