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Abstract

A three-equation model based around explicit algebraic Reynolds stress modelling is proposed.

The model is built on an existing and tested model, namely, EARSM by Hellsten. As a third

equation, it incorporates an intermittency equation to predict laminar-turbulent transitions in a

boundary layer from γ − SST by Menter. This new formulation aims to take the best from these

two models, concretely the weak anisotropy and an ability to predict boundary layer transitions.

The model was calibrated on a set of flat plate flows under various conditions, and its performance

was tested on simple external and internal aerodynamics cases.

Keywords

Turbulence, k-Omega, gamma SST, OpenFOAM, CFD, fluid dynamics, Laminar-turbulent

transition, Correlation, Local variables, explicit algebraic Reynolds stress model

Abstrakt

V této práci jsme se zabývali novou formulací trojrovnicového turbulentního modelu založeného

na algebraickém Reynoldsově tensoru napětí. Model je vyvtořen na základech modelu EARSM

navrženého Hellstenem a kol. [3]. Jako třetí, doplněná, rovnice je rovnice pro výpočet intermitence

pomocí, které určujeme přechod z laminární to turbulentní mezní vrstvy. Formulace této rovnice je

převzata z γ−SST modelu navrženého Menterema kol. [4]. Tato nově navržená formulace modelu

si dává za cíl převzít z existujících modelů jejich silné stránky. Konkrétně schopnost zachytit

anisotropii proudění a schopnost spočítat přechodovou mezní vrstvu. Tento model byl kalibrován

na souboru úloh obtékání rovné desky za různých okrajových podmínek. Výsledný model byl

otestován na jednoduchých případech vnější a vnitřní aerodynamiky.

Klíčová slova

Turbulence, k-Omega, gamma SST, OpenFOAM, přechod v mezní vrstvě, korelace lokálních

proměnných, explicitní algebraické Reynoldsovo napětí
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1. Introduction

1.1 Thesis goal

This thesis aims to develop a new turbulence model, exploring the laminar-turbulent transition in

the boundary layer. As CFD simulations become more mature over the last decades, the demand

for more accurate results grew. In particular cases of CFD, the simplification to a fully turbulent

boundary layer is not enough. This simplification becomes evident if we require more accurate

knowledge of shear stress, separation point and other boundary layer phenomena dependent on

the state of the boundary layer. Usually, the boundary layer contains laminar, transitional, and

turbulent regions. We are looking for a branch of laminar-turbulent transitional turbulence models

based on intermittency to model these phenomena. Specifically, such models are γ−Reθ [2] model

and its Galilean invariant modification γ−SST [4]. The latter serves as a base for our turbulence

model. We chose this model because it requires only a single additional equation to its base

turbulence model k−ω SST [8], and thus we can reuse this equation for our model. The choice for

our bedrock model landed on the EARSM model written by Hellsten [3]. As its name hints, this

model is based on the algebraic Reynolds stress model formulation. This formulation significantly

improves its performance over the k−ω BSL [8]. Furthermore, the algebraic tensor allows capturing

the anisotropic properties of a flow. A combination of these models, as mentioned earlier, should

provide us with a turbulence model which can capture the transition with higher accuracy than

each of the models alone. We have modified and connected equations from the mentioned models

to develop the turbulence model and later calibrated them to perform to our liking. Because of

the way the model is created, we will refer to it in this thesis as γ − EARSM .

1.1.1 Transition turbulence models

At this point, we will step back for a short moment to quickly explain the circumstances of what

we are modelling. The phenomena we are interested in is called turbulence, best described as a

property of viscous fluid flow, which has attributes: non-deterministic flow fluctuations in both

space and time; turbulent convection of mass, momentum and heat; vorticity, turbulent flow

spatiality and dissipation of turbulent kinetic energy [24]. To see more on this topic, see [24].

We can start with a successful derivation and Reynolds averaging of Navier-Stokes equations.

Generally, for an incompressible assumption, we use Reynolds averaging. With a compressible

assumption, the combination with Favre averaging is more suitable. This set of simplifications and

assumptions is referred to as RANS equations. After averaging, we are left with a new unknown

term called Reynolds stress. This term has to be either resolved or modelled to close Navier-Stokes

equations fully. Presently, the most widely used model for calculating the Reynolds stress term

is the Boussinesq approximation, which replaces this term with a function of two new unknown

1



1.2. WORKFLOW

quantities. These unknown quantities are turbulence kinetic energy - k and some form of the rate of

dissipation of turbulent kinetic energy. Most widely used turbulence models today thus contain two

equations for the calculation of each unknown quantity. The most widely known models are some

forms of k − ε [25], k − ω models [26]. ε being the rate of dissipation of turbulent kinetic energy,

and ω is a specific rate of dissipation. However, there are other models which utilize different

variables than these mentioned. As was already mentioned, we are interested in laminar-turbulent

transition models. One drawback of the previously mentioned models is that they assume a fully

turbulent flow and boundary layer. The latter restrain means that RANS and these equations

generally cannot predict the transition, separation, etc. We can, however, lift this restriction if we

try to model the transition between the laminar and turbulent boundary layer.

Transition is the phase in fluid flow, where the flow transitions from its laminar to a turbulent

state. This transition is driven by several factors and widely differs between situations where the

boundary layer transition occurs. Some of the elements are the interaction with the free-stream

flow, surface roughness, Tollmien-Schlichting waves, initial conditions, separation, etc. However, to

model all these phenomena is not yet plausible. Therefore, transitional turbulence models contain

triggering functions with coefficients that are then empirically correlated with the experimental

data. The most well-known transitional turbulent models are based on intermittency. The equation

for the calculation of the intermittency contains the triggering functions. The most widely known

model is probably called γ − Reθ [2]. Another approach is ’physics-based model of the transition

through laminar fluctuation energy [4].

1.2 Workflow

1.2.1 Implementation into OpenFOAM

We wrote the model to link all the appropriate terms and then was coded using the existing

implementations of the models mentioned above, see further in section 2. The model is based on

the EARSM model formulated by Hellsten, where the underlying formulation is a two-equation

k − ω model. This model bears many similarities to the SST model up to one constant and the

formulation of turbulence eddy viscosity. To stay true to his model, we have retained both fmix

and µt. Hellsten’s formulation is then further interlinked with the intermittency equation through

the production and destruction terms in the equation for ω.

1.2.2 Model calibration

For the calibration, we used the flat plate experiments [19],[23], as they are widely used for laminar-

turbulent transitional turbulence model validation or calibration. These experiments observed and

measured the properties of the fluid flow and the development of a boundary layer on a flat desk

without a pressure gradient and an adverse pressure gradient, which simulates the suction side of

the Rolls-Royce turbine blade. In our numerical studies, we created the pressure gradient by upper

2 chapter 1



1.2. WORKFLOW

surface curvature. The curvature parametric equation is in Chapter 3

To simulate the experiment, we have created a mesh in BlockMesh, which is the standard utility

of the OpenFOAM package and an excellent tool for creating simple meshes of high quality. The

next step was to define our computational domain simulating the ERCOFTAC wind tunnel setup.

Furthermore, we used the base γ −SST to fine-tune our boundary conditions to obtain numerical

results that agree with the data from ERCOFTAC. Our boundary condition choices are in the

table 3.2.

Then we had to calibrate the turbulence model coefficients on these test cases. Zero-pressure

gradient test cases T3 were chosen as our base calibration upon which the adverse pressure gradient

cases T3C were built. This workflow was chosen as zero-pressure cases contain the core physical

phenomena, which all more complex cases accommodate. Since the model coefficients are highly

interconnected, the calibration process was repeated several times to obtain the best combination.

Optimization algorithms were integrated into our workflow to speed up the search for coefficients.

1.2.3 Complex validation simulations

In the final stage, we have chosen representative cases based on real-world application to validate

our turbulence model and compared it with experimental values and other turbulence models,

especially γ − SST as we partially used this model. For that, we have chosen a two-dimensional

simulation of an NLF-0416 airfoil at a wide range of angles of attack, then compared the resulting

section characteristics and pressure distributions. Furthermore, we looked at the laminar to turbu-

lent transition location. Another application case was the turbine blade cascade with a profile from

Von-Karmán Institute for Fluid Dynamics [13]. Here we compared the skin-friction coefficient and

velocities along the blade surface.

chapter 1 3



2. Theory

2.1 Model formulation

As was already foreshadowed in section 1, the mathematical model used during our calculations

is called RANS, Reynolds Averaged Navier Stokes, which, as the name implies, is a form of the

Navier-Stokes equations. However, before any model can be used, we have to connect the mathe-

matical formulation with the physics of our problem through assumptions. In our case, we took up

assumptions such as our fluid is viscous and fully turbulent. Moreover, depending on the particular

case, we either assume a constant density or model our fluid with ideal properties through a con-

stitutive equation. Since a turbulent flow is highly time-dependent and hard to model, averaging

the quantities in the equations over a longer time results in turbulent equations less demanding to

model. One way to do that is through a process called Reynolds averaging. Reynolds averaging is

a statistical approach, where each quantity is divided into its average and time-dependent, fluctu-

ating parts. This process is also called Reynolds decomposition. Each decomposed variable is then

plugged back to the Navier-Stokes formulation, and the equations are time-averaged [24]. In the

case of compressible fluid, Reynolds averaging produces unknown density fluctuation terms. To

remove these terms, we combine the Reynolds averaging with Favre averaging. For further read-

ing, see [24]. To show the basic formulation of RANS equations, we assume that the flow in each

simulation will reach a steady-state and, therefore, no variable is time-dependent. However, the

newly proposed turbulence model is possible to pair with time-dependent formulations of RANS

equations as well. Below is the RANS formulation,

∂

∂xi

(
ρŨi

)
= 0,

∂

∂xj

(
ρŨiŨj

)
= − ∂P

∂xi
+

∂

∂xj
τ ij − ρu′iu′j ,

∂

∂xj

(
ρh̃Ũj

)
= Ũj

∂P

∂xj
+ u′j

∂P

∂xj
+ τij

∂Ui
∂xj
−
∂qj
∂xj
− ∂

∂xj
ρh′u′j ,

(2.1)

where the last equation is only used if we are assuming compressible fluid.

For us, the most important term in these equations is the term −ρu′iu′j , called Reynolds stress. This

is an unknown quantity, which we are missing to have a fully closed system of partial differential

equations. However, we cannot close RANS directly with the equations for Reynolds stress as they

contain unknown correlations. However, we can approximate this Reynolds stress or approximate

unknown quantities in the equations for the Reynolds stress [24]. In RANS equations, the most

common way is the first approach using the Boussinesq hypothesis. This hypothesis assumes that

the molecular transfer of momentum between shear layers in a fluid is analogous to turbulent

momentum transfer [24]. To illustrate that, we can take Couette shear flow in a Newtonian fluid,

where we state that the shear stress in the fluid is proportional to the shear rate, where the

4



2.1. MODEL FORMULATION

proportionality is a scalar constant viscosity µ. In other words, we have a molecular transfer of

momentum in the perpendicular direction to the flow. Due to the Brownian motion of molecules,

there is an exchange of momentum between the fluid layers. If we assume that the turbulence is

also random in motion, we can say that turbulent fluctuations are analogous to Brownian motion.

Then we can use the same relation for shear stress such that the stress is proportional to the shear

rate. In the case of two-dimensional incompressible boundary layer flow, the equation is

−ρu′iu′j = τ tij = µt
∂ui
∂xj

(2.2)

Where the constant of proportionality is the turbulent viscosity µt. The Boussinesq hypothesis for

a general compressible three-dimensional flow is

τ tij = 2µt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρkδij (2.3)

This, however, still does not close our system of equations, but only introduces new quantities

to model. Concretely, the turbulence viscosity µt and turbulent kinetic energy k. At this point,

various turbulence models come to light, specifically algebraic, single-equation and two-equation

models. These models are formulated to calculate these unknown variables, namely, turbulence

viscosity µt and turbulent kinetic energy k. Normally, these models contain equations, which are

in the form of time-dependent convection-diffusion partial differential equations. They are written

in a way that they either µt or both quantities are calculated with or through them [24]. For now,

we will focus on the two-equation models, which are widely used across the industry. These almost

always contain a single equation for turbulence kinetic energy. Whereas the turbulent viscosity is

approximated by the relation in the form µt = µt(k, ε). The ε is called the dissipation of turbulent

energy and can be written as

ε = k3/2/Lt, (2.4)

where Lt is the characteristic length. Turbulence models thus are a way of closing our system of

equations.

Last unknown term is in the enthalpy equation, concretely ρh′u′j . Turbulent heat flux is modeled

using additional turbulent thermal conductivity. This is equivalent to the momentum transfer

assumption, which we used in the Bousinessq approximation. Therefore, we can write

−ρh′u′j =
µt
Prt

∂h

∂xj
(2.5)

Prt =
µtcp
λt

(2.6)

Last term is the
∂qj
∂xj

(2.7)

which can be approximated as laminar thermal heat flux, which is formulated as follows

∂qj
∂xj

=
µ

Pr

∂h

∂xj
(2.8)

These assumptions introduced several new variables, Prt, µ, Pr. However, these variables as

usually assumed constant. In case Prt its value is usually in range 〈0.85, 0.9〉 [24].
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2.1. MODEL FORMULATION

2.1.1 γ − SST model

From Menter’s formulation γ − SST is written as

∂

∂t
(ρk) +

∂

∂xj
(ρujk) = P̃k + P lim

k − D̃k +
∂

∂xj

[
(µ+ σkµt)

∂k

∂xj

]
∂

∂t
(ρω) +

∂

∂xj
(ρujω) = α

Pk
vt
−Dω + Cdω +

∂

∂xj

[
(µ+ σωµt)

∂k

∂xj

]
∂(ργ)

∂t
+
∂ (ρujγ)

∂xj
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σγ

)
∂γ

∂xj

] (2.9)

The Intermittency variable is a percentage representation of the time at which the boundary layer

turbulent fluctuations are present. In laminar flow, that equals to zero and in fully turbulent, that

equals to one [16][2]. where chosen, functions from the k and ω equations are written below,

P̃k = γPk

Pk = µtSΩ

D̃k = max(γ, 0.1) ·Dk

P limk = 5Ck max(γ − 0.2, 0)(1− γ)F limon max(3CSEPµ− µt, 0)SΩ

(2.10)

Term P limk is added to support the production of k and in regions with low turbulence levels.

k − ωSST as stated by Langtry has problems with the production of turbulence intensity and

requires a relatively long-running length [2]. Selected terms from γ equation are

Pγ = FlengthρSγ(1− γ)Fonset

Eγ = ca2ρΩγFturb(ce2γ − 1)
(2.11)

and the turbulent viscosity is written as

µt = ρ
a1 · k

max (a1 · ω, F2 · S)
(2.12)

Another critical variable is Flength, representing the transition length of the boundary layer. Fonset

is then responsible for production initiation, and it is the function in which we are most interested

[4].

2.1.2 EARSM model

Since the assumptions tied to the Boussinesq closure are pretty limiting and in a broad range of

applications, the assumptions do not perform well. To mitigate some of these limitations, we have

chosen an explicit algebraic stress turbulence model. These models are based on the observation

that the ratio between the turbulent shear stress and the turbulent kinetic energy does not change

much in thin shear layers. And thus allow the formulation of Reynolds stress with Reynolds-stress

anisotropy tensor aij as follows [3][24],

aij =
ρu′iu

′
j

ρk
− 2

3
δij (2.13)

“In flows where the anisotropy varies slowly in time and space, the transport equation for the

Reynolds stress anisotropy tensor is reduced to an implicit algebraic relation”[17]. However, the
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2.1. MODEL FORMULATION

implicit formulation has many drawbacks. An explicit formulation was proposed by [18] to solve

some of the problems of the implicit formulation. Advantage of such formulation is a faster

computation time than in the case of six equations for Reynolds stresses. The integration is

done by expansion of the Bousinessq approximation with the algebraic stress tensor, as visible

below

τ tij = 2µt

(
Sij −

1

3

∂uk
∂xk

δij

)
− 2

3
ρkδij − a(ex)

ij ρk (2.14)

With the algebraic stress tensor in an explicit form

a
(ex)
ij = β3

(
Ω∗ikΩ∗kj −

1

3
IIΩδij

)
+ β4

(
SikΩ∗kj − Ω∗ikSkj

)
+ β6

(
SikΩ∗klΩ

∗
lj + Ω∗ikΩ∗klSlj − IIΩSij −

2

3
IV δij

)
+ β9

(
Ω∗ikSklΩ

∗
lmΩ∗mj − Ω∗ikΩ∗klSlmΩ∗mj

)
(2.15)

The standard formulation of EARSM turbulence model as developed by Hellsten [3] is written

as
D(ρk)

Dt
= P − β∗kω +

∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
,

D(ρω)

Dt
= γearsm

ω

k
P − βω2 +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+
σd
ω

max

(
∂k

∂xj

∂ω

∂xj
; 0

) (2.16)

Since the model contains quantity γ, which in the case of EARSM is constant, it represents in-

termittency in γ − SST . For the sake of clarity, in this paper, we will retype γ from EARSM to

γearsm. Main functions and quantities printed below, for further reading, see [3].

P = τij
∂ui
∂xj

S∗ij =
τ

2

(
∂ui
∂xj

+
∂uj
∂xi

)
Ω∗ij =

τ

2

(
∂ui
∂xj
− ∂uj
∂xi

)
− τ

A0
Ω

(r)
ij

τ = max

(
1

β∗ω
, 6.0

√
ν

β∗kω

) (2.17)

with turbulent viscosity written in form

µt = Cµkτ Cµ = −1

2
(β1 +qΩβ6) (2.18)

2.1.3 Proposed formulation of a new model γ − EARSM

As we said in the chapter1 we took EARSM model as our starting point. Then we took over

Menter’s formulation of the intermittency equation without modification, however to interconnect

these models, we had to modify the EARSM formulation as follows,

D(ρk)

Dt
= γµtSΩ + P limk −max(γ, 0.1) ∗ β∗kω +

∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
,

D(ρω)

Dt
= γearsm

ω

k
P − βω2 +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+
σd
ω

max

(
∂k

∂xj

∂ω

∂xj
; 0

)
,

D(ργ)

Dt
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σγ

)
∂γ

∂xj

] (2.19)

To connect the intermittency equation with the existing EARSM model, we had to modify the

production destruction terms and add a production limiter to incorporate intermittency γ terms.
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2.1. MODEL FORMULATION

Furthermore, we have left the turbulence viscosity µt untouched to not interfere with the Hellsten’s

implementation.

The production and destruction terms are as follows:

P = τij
∂ui
∂xj

Pγ = FlengthρSγ(1− γ)Fonset

Eγ = ca2ρΩγFturb(ce2γ − 1)

P limk = 5Ck max(γ−0.2, 0)(1− γ)F limon max(3CSEPµ− µt, 0)SΩ

(2.20)

Specifically, the transition onset Fonset is calculated through a series of expressions,

Fonset = max(Fonset2 − Fonset1, 0), Fonset1 =
Rev

2.2ReΘc

Fonset2 = min(Fonset1, 2.0), Fonset3 = max

(
1−

(
RT
3.5

)3

, 0

) (2.21)

Fturb = e
−

RT
2

4

, RT =
ρk

µω
, Rev =

ρd2
wS

µ

(2.22)

To trigger the production of γ we have to calculate Rec, which sets the critical Reynolds number,

where the transition should occur. It is a function of local variables, concretely Local turbulence

intensity TuL and local pressure gradient λΘL. The formulation of the critical Reynolds number

is

ReΘc = CTU1 + CTU2e
−CTU3TuLFPG (2.23)

Local turbulence intensity is responsible for the turbulence intensity levels inside the boundary

layer, similar to free-stream values. λΘL, on the other hand, functions more like a shape function

since it is not based on the pressure field but rather on the velocity field [4].

TuL = min

100

√
2k

3
ωdω

, 100

 , λΘL = min

(
max

(
−7.57 · 10−3 dV

dy

d2
ω

ν
+ 0.0128,−1.0

)
, 1.0

)
(2.24)

where the min-max formulation of λΘL is for numerical robustness, see further [2]. The last variable

of interest is the FPG function. As Menter [4] have written ”The function FPG(λΘL) is introduced

to sensitize the transition onset to the streamwise pressure gradient.” Concretely, when we are

calculating the model without pressure gradient, ReΘc is constant as the local turbulence intensity

is zero. The function reads as:

FPG =

 if(λΘL ≥ 0) max(min(1 + CPG1λΘL, C
lim
PG1), 0.0)

if(λΘL < 0) max(min(1 + CPG2λΘL + CPG3 min(λΘL + 0.0681, 0), ClimPG2), 0.0)

(2.25)

As will be shown in chapter 4, when calculated numerically, the local pressure gradient, which is

a function of velocity, can trigger FPG even in zero pressure gradient conditions.
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3. Model development

3.1 Model calibration

For the basic calibration of the turbulence model, a set of ERCOFTAC flat-plate experiments was

used. This experimental data consists of zero pressure gradient T3A, T3B, and T3A- cases and

cases with adverse pressure gradients T3C2, T3C3, T3C4 and T3C5.

3.1.1 Calibration workflow

At the beginning of our coefficient calibration, we created three domains, which differ in geometry.

The first domain type is a rectangular channel of constant height made for all zero pressure gradient

cases. Together they are referred to as T3 cases. The second type of domain is for the T3C4 case,

with an upper wall profile based on equation (3.2), where the slip boundary condition is applied.

The last type is for the rest of the adverse pressure gradient cases, T3C2, T3C3, and T3C5. The

upper wall has a curvature defined by equation (3.3). The numerical boundary conditions are the

same across all named cases. The commonality, however, ends here as each case requires unique

boundary condition values.

We do not need to calibrate all constants again for the calibration itself, only those responsible for

the boundary layer transition. Since we are building our new turbulence model out of two already

existing and calibrated models, our main goal is to model the boundary layer transition correctly.

We will focus on adjusting the intermittency equation coefficients such that our turbulence model

sufficiently approximates all experimental test cases T3 and T3C. Calibration of only the inter-

mittency equation will ease the workload, as we do not need to calibrate the whole model again.

Specifically, our focus is on matching the total wall shear stress with the experimental data. We

calculated the total wall shear stress as the surface area under the skin friction coefficient curves

for experimental and numerical data. Specifically, we minimised the error function reads

err =

√(∫ x2

x1

τCFD − τExpdx
)2

, (3.1)

where our x1 and x2 were our first, respectively, last experimental data points. Another good

approach would be to align the ReΘc with the experiment or the midpoint of the transition line.

Midpoint matching can be done, for instance, by finding the maximum gradient of cf in the

transition section. The latter approach would approximate the point of transition.

3.1.2 ERCOFTAC calibration

ERCOFTAC wind tunnel experiment encapsulates the test surface, an inverted flat plate with a

leading edge of radius 75 mm and 1.7 m in total length and boundary layer bleed and pressure

9



3.1. MODEL CALIBRATION

gradient diffusing wall. The measurement probes are only in a length of 1.5 m. For detail see

[22], [23] and figure 3.1. The experiment setup is able to provide a pressure gradient to mimic

Figure 3.1: Setup of flat plane wind tunnel experiment see[23]

the pressure distribution on the turbine blade suction side. In our case, the pressure gradient is

provided by shaping the mesh’s upper surface of the domain to simulate the suction side of the

turbine blade. For the shape, the polynomial equation from [9] was used as follows

y(x) = 1.231x6 − 6.705x5 + 14.061x4−14.113x3 + 7.109x2 − 1.900x+ 0.950 (3.2)

where equation (3.1) corresponds to the upper surface of cases T3C2,T3C3, and T3C5.

y(x) = 1.356x6 − 7.591x5 + 16.513x4−17.510x3 + 9.486x2 − 2.657x+ 0.991 (3.3)

Eq. (3.2) approximates the upper surface of T3C4.

We run the simulation as a two-dimensional with simpleFoam solver. Our selection of two di-

mensions significantly simplifies the case, especially concerning computational time. Furthermore,

we acknowledge that turbulent flow and phenomena concerning the boundary layer are spatial in

nature. However, their effect in our case is negligible. simpleFoam is a solver for incompressible

fluid in steady-state. It is based on the finite volume method and the computational algorithm

named SIMPLE. It is an algorithm where we solve the equation for pressure and velocity sep-

arately. We have chosen 2nd order numerical scheme with cell-limited gradient. Since the flow

we are observing is deeply below the widely accepted value of Ma ≈ 0.3 above which we should

account for compressibility, its usage is adequate in these cases.

All mentioned validation and application cases were run with constant air properties defined

through ν = 1.5 · 10−5[m2/s] if not stated otherwise.

Geometry and boundary conditions

The geometry is in the shape of a cuboid, spanning from x =< −0.05; 1.6 > [m]. The left side has

a boundary condition of velocity inlet. The right side has a pressure outlet. On the upper side, we
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3.1. MODEL CALIBRATION

have a slip condition. On the bottom 0.05 m from the left side, we have a slip wall, from x = 0.0

till the right side, there is a no-slip condition. The mesh was in adherence with the information

in Appendix of Menter; Smirnov; Liu; Avancha[4]. Concretely, the issue around y+, where low-

ering y+ further below 1, can move the laminar-turbulent transition curve further away from the

transition curve obtained from the experiment. We observed this behaviour within our mesh also.

We heightened the region for the T3C cases since the original height had a more unsatisfactory

Figure 3.2: Representative visualization of meshes. Upper one is for zero pressure gradient cases,

meanwhile lower mesh is for adverse pressure cases.

performance. The upper boundary wall curvature distorts the mesh in the region where the tran-

sition occurs. Figure 3.2 meshes are visible representative for zero and adverse pressure gradient.

We do not present the mesh for the T3C4 case as it is visually almost identical to the adverse

pressure gradient mesh at this scale. These sizes provide the best trade-off between computational

time, quality of results, and the mesh. Another factor was steer clear from having a large skewness

ratio and extreme values of minimal and maximal y+. The main simplification introduced into

our mesh was removing the front edge radius and substituting it with a sharp edge. Missing edge

is acknowledged during the model calibration as it could slightly offset the initial rundown of the

friction coefficient around the start of the flat plane. However, the transition point position and

slope should not be affected.

On the figure below are shown results from the grid convergence study using Roaches Grid Con-

vergence Index (GCI) [14]. For this study, we have created three meshes with two times increase

in the total number of grid points above the plate, see Table 3.1. All tested meshes used the same

total expansion ratio of 80 in x-direction and 500 in the y-direction. As a representative variable

to describe the grid convergence, we used the ratio of Rex between the experiment and numeri-

cal results. From the experiment, we took the data point located in the middle of the transition

[2.38 · 105, 0.00375] and its corresponding value of Rex. From the numerical simulation of the T3A
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3.1. MODEL CALIBRATION

Grid Number of vertices Rex ratio no. of cells (x,y)

1 15750 0.8840 (315,50)

2 31500 0.9474 (500,65)

3 63000 0.9654 (600,105)

Table 3.1: Grid information and difference between numerical and experimental transition midpoint

case, we took Rex for the same value of cf = 0.00375.

Rex ratio =

(
Renumx

Reexpx

)
cf=0.00375

(3.4)

For GCI, we have used γ − SST as our turbulence model. After checking if the solutions are in

the asymptotic range of convergence

3.236058

21.8457370.883800
= 1.018686 (3.5)

which is approximately equal to one, we can conclude that we are within the asymptotic range.

To visualize the transition curves, see figure 3.4. It is visible that the difference between the two

Figure 3.3: grid convergence study using GCI

finer meshes is small. Based on this study, we can conclude that the mesh number three from

table 3.1 does not affect the results obtained with this mesh. The mesh size for adverse pressure

gradient cases was chosen separately mesh size of 125x600 cells to mitigate the increased height of

the domain.

Boundary conditions

Since we have created our mesh, the boundary conditions must be tested and adjusted for the

numerical results to fit the experiment. For this initial setup of boundaries, we used the original

γ − SST turbulence model. Furthermore, as a base case, we used the values measured during the
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3.1. MODEL CALIBRATION

Figure 3.4: Visualization of transition curves from GCS

ERCOFTAC experiment. Since the data does not contain specific turbulence dissipation ω, it was

calculated using these relations

ω =
k

η

(
µt
µ

)−1

(3.6)

k =
3

2
(UI)2 (3.7)

Data from the wind tunnel are measured at the beginning of the flat plane. However, we are

imposing our condition 0.05m further away from the leading edge. Therefore, a slight adjustment

was required to fit Tu to the experimental values. In the table below, we can see the optimised

boundary conditions for the calibration of our model. Boundary condition readiness was judged

Case ERCOFTAC data Menter’s γ − SST Used

U0[m/s] Tu [%] U0[m/s] Tu [%] µt/µ(ω) U0[m/s] Tu [%] ω

T3A 5.4 3.0 5.18 3.3 12 (243) 5.4 3.3 264

T3A- 19.8 0.9 19.8 0.9 8.0 (397) 19.8 0.9 397

T3B 9.4 6.0 9.4 6.2 90 (377) 9.4 6.2 353

T3C2 5.0 3.0 5.29 3.0 8.0 (314) 5.29 3.0 320

T3C3 3.7 3.0 4.0 3.0 5.0 (288) 4.0 3.0 288

T3C4 1.2 3.0 1.37 3.0 2.0(84) 1.2 3.0 21

T3C5 8.4 3.0 9.0 3.0 15.0(486) 9.0 3.0 360

Table 3.2: reference boundary conditions

through a pair of graphs of Cf −ReΘ and Tu−ReΘ, where the best fit to the experimental data

was taken.

chapter 3 13



3.1. MODEL CALIBRATION

Coefficient calibration

Our focus was on the coefficients in the γ production terms as we need to match the transition

correctly. On the first run, without doing any modification, the transition curve has a visible

aft shift of the experimental transition curve. Since Menter’s turbulence model was designed, so

that the coefficients Flength, CTU1, CTU2, CTU3 are model parameters and as such are meant to

be adjusted by the user. Our main goal is to match the experimental results using only these

parameters. As Langtry defined ‘Flength in Eq. (3.4) is an empirical correlation that controls the

length of the transition region’[2]. Therefore we will use Flength as our first coefficient. Furthermore,

Langtry showed the effect of this parameter, where for higher values of Flength, the transition is

smoother. On the other hand, lower values produce a sharper transition. Concretely, the values

used by Langtry are 1, 28 & 100. Thus, we tried these values for our calibration as is visible in

graph 3.5. Contrary to Langtry, our transition curve does not smoothen with decreasing Flength.

Figure 3.5: Influence of Flength on the case T3A

From graph 3.6 we can conclude that increasing CTU1 does move the transition downstream.

There is also a slight difference in how does the curve behave in the turbulent boundary layer

region.

If we look at the effect of CTU2 we can see that the coefficient has a much smaller influence on the

transition position, even though the change in the coefficient value is also ±50%, see 3.7.

The coefficient CTU3 differs in that with increasing value the transition moves upstream compared

to other CTU . Furthermore, it does not move evenly. Changing the value to 0.5 makes the curve

almost match the transition position in the experiment. At least in the case of T3A, CTU3 influence

is more comparable to the of Flength than other CTU .

We have just shown the influence of each of the four coefficients on the transition curve. Since

we have no way of knowing which combination will bring the experiment-like results, we use a

minimisation algorithm to find the best combination of the coefficients. To add, we have observed

their effect on the case T3A, but there is no way of knowing if the effect will be the same across all
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Figure 3.6: Influence of CCTU1 on the case T3A

Figure 3.7: Influence of CCTU2 on the case T3A

other validation cases, and we know that it is not. To set at least some boundaries, we will adhere

to Langtry [2] and use the aforementioned Flength values, explicitly 1, 28, and 100. Therefore, we

will have three different sets of coefficients, among which we will choose based on their performance

in our validation cases.

As a minimised variable, we have chosen the L2 norm of the differences between areas under the

numerical and experimental result’s skin friction curve. The curve is taken from the cf − ReΘ

graph of each simulation. To obtain the area, we have numerically integrated the skin friction

curve using the Simpsons rule. For the optimisation algorithm, our choice fell on Constrained

Optimisation By Linear Approximation (COBYLA). COBYLA is a gradient-free minimisation

algorithm using a linear approximation to the objective function. We implemented the algorithm

in python script from SciPy, which is python’s package based around the open-source software of

the same name, see [20]. The disadvantage of COBYLA (and of most minimisation algorithms)
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Figure 3.8: Influence of CCTU3 on the case T3A

is that they cannot guarantee to find global minima. However, to help the algorithm operating

correctly, each coefficient was scaled to range 〈0, 1〉, where the original values corresponding to

the scaled value of 0.5 in each coefficient. COBYLA can then take steps of the same size in each

variable. Before writing in turbulenceProperties file, the values were scaled appropriately back.

Zero pressure gradient

The optimisation is built from physically simpler cases towards the complex ones, as the physical

phenomena only add up. The simplest cases in our validation battery are zero pressure gradi-

ent cases T3. During the optimisation, we have introduced some constraints on the COBYLA

algorithm. Concretely CTU1 was given bounds 〈0.1, 0.75〉, CTU2 & CTU3 were bounded between

〈0.1, 1.0〉. This bounding was based on our previous study of coefficient sensitivity. Furthermore,

we set the bound violation step to 0.025 for all coefficients. However, the optimisation algorithm

did not utilise the boundary violation constrain. Initial step was set to 0.25 with initial condition

CTU1 = 0.2, CTU2 = 0.75, CTU3 = 0.75. In T3A, the difference between the cf values for

laminar and turbulent boundary layer is vast using CFD. Therefore we can never truly match the

experimental results, and COBYLA algorithm would prefer for the transition never to occur, which

is not ideal as the transition visibly occurs near the end of the plate, just not as severely as our

model predicts. To counter this, we have increased the area below the experimental curve by 20%.

In the table 3.3 are calculated the final coefficients, As we can see, COBYLA has fitted all cases

well, where best performance can be with Flength = 28 and worst in case of Flength = 1. The

last-mentioned produced the transition in T3A later than the other two coefficients sets. In the

case of T3A- the performance is similar among all three variations and fits our expectations. We

can further see that in case T3B the best performance had a set of coefficients with Flength = 100.

Turbulence intensity values remained independent of the coefficients.
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(a) T3A cf (b) T3A Tu

(c) T3A- cf (d) T3A- Tu

(e) T3B cf (f) T3B Tu

Figure 3.9: Results from coefficient calibration on zero pressure gradient cases showed on transition

curve

Non-zero pressure gradient

When looking at the results obtained on T3C cases, we can, in general, see a pretty good fit. If

we consider the T3C2, all three versions suffer from separation at Rex = 0.6 · 106, which does

not occur in the experiment. However, the skin friction curve recovers to match the experimental
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Coefficient values

Flength CTU1 CTU2 CTU3

1 156 1420 1.08

28 172 1480 0.64

100 158 1380 0.54

Table 3.3: Coefficient values from optimization

values towards the end of the flat plate. This problem is present in the T3C3 case as well. The

worst performance is visible in T3C4, where the curve does not recover from the separation. T3C5

is the best performing case among these. This case is in terms of boundary conditions and ReΘc

closest to T3A, and therefore we expected a good Cf fit. Overall, the behaviour of γ − EARSM

does not deviate much from the γ − SST performance in these validation cases. The reason for

the otherwise poor performance is the fact that we have not used adverse pressure gradient cases

for the calibration itself, rather just as a confirmation that with well-calibrated Flength and CTU

we can fit T3C cases as well.

As we cannot neglect the performance in the T3C case, a second optimisation is needed. As

our base coefficient, we selected Flength = 28 because of its performance in T3. For the sec-

ond optimisation, our optimisation algorithm of choice was SHGO. As a COBYLA, it is also a

constrained, derivative-free optimisation algorithm. However, SHGO is a global optimisation algo-

rithm. COBYLA works best when a function has a single local minimum. Although it cannot be

proven, the single local minimum condition is plausible in the previous CTU coefficients optimisa-

tion. However, when we incorporate another four coefficients, the plausibility seems less likely, and

our optimisation would be dependent on a correct guess of the initial vector ~x0. For that reason,

we have chosen SHGO, which is a global optimisation algorithm with ensured convergence to a

global minimum. Still, in our case and with the hardware at hand, finding the global minimum is

not plausible from the time perspective. To calculate our error function for a single optimisation

step, we require all cases to be calculated, which is quite time-consuming. The optimisation was,

therefore, ended after reaching sufficient values.

Range of optimized coefficients were extended by CPG1, CPG2, ClimPG2 and CPG3. Even though the

regions of poor performance are in the area of adverse pressure gradient, we have included CPG1 to

optimise the FPG function as a whole. ClimPG2 was taken into account because we have found from

the observation that to see improvements in laminar to turbulent transition from CPG2 we have to

alter the upper limit as well. CPG3 in the case of γ−SST was set to 0, however Menter; Smirnov;

Liu; Avancha states that “CPG3 becomes active in regions with separation, allowing correcting

the ReΘc value there if necessary.”In theory, this coefficient could help us recover in the regions

with separation. Bounding for CTU stayed the same as in the first minimisation. Values for CPG

coefficients were bounded by a maximum of ten times their initial value. We ran optimisation for

all cases and therefore included both zero and adverse pressure gradients. Results are visible in
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(a) T3C2 cf (b) T3C2 Tu

(c) T3C3 cf (d) T3C3 Tu

(e) T3C4 cf (f) T3C4 Tu

(g) T3C5 cf (h) T3C5 Tu

Figure 3.10: Results from coefficient calibration on adverse pressure gradient cases showed on

transition curve
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3.1. MODEL CALIBRATION

the figure 3.12. Turbulence intensity graphs were not included as they remained the same. In the

zero pressure gradient case, their transition curves remained similar to the previous optimisation.

Worst results showed the case T3A- with the late transition. One problem with COBYLA results

was the separation which occurred in cases T3C2 and T3C3. In T3C2, SHGO found a better

transition to the turbulent boundary layer and does not dive with cf below zero. However, it

still stays in the laminar region much longer and therefore diverges from experiments. Case T3C3

optimised with SHGO also does not have a region of separation but exhibits a similar quick fall

and rise of Cf not present in the experimental data. Recovery in T3C4 was not successful, even

with tuned coefficients.

F3 function

Even though we are satisfied with the results obtained by the calibration, we decided to try a

further improvement of the γ−EARSM turbulence model, so we focused on the F3 function from

γ−SST model. Concretely, this function secures that in the the laminar region, k−ω formulation

is ensured. The formulation of the function is as follows

fmix = max(forigmix , F3) F3 = e
−

 Ry
120

8

Ry =
ρy
√
k

µ
(3.8)

Before the implementation of F3 function, we examined the behaviour of fmix function and the

cross-diffusion term in the ω-equation. In the figure 3.11 we see, that without the F3 function,

Figure 3.11: Comparison of fmix functions with and without F3 limiter and cross diffusion therm

fmix switches coefficients to the of the k − ε model. This is the region where the transition from

laminar to turbulent occurs. As Langtry stated, this is not a desired behavior as we want to have

k− ω in the laminar and transition region [2]. We can also see that the cross-diffusion is active in
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this region as well. The cross-diffusion term
(
∂k
∂xj

∂ω
∂xj

)
in the 3.11 is computed with fmix limited

by F3. Therefore, in this region we have a formulation of k − ω with the cross-diffusion term

,however, with coefficients as calibrated by Hellsten. This differs from Langtry[2] implementation.

They used a formulation without cross-diffusion term in the boundary region. Based on [2] we have

implemented the F3 function and did another SHGO optimization with the same settings and for

Flength = 28. The results are then compared with the previous optimization in the figure 3.12.

3.2 Results

3.2.1 Calibration results

The level of fit is, as expected, certainly a trade-off to fit all test cases. The best fit of the newly

proposed model occurs when the transition happens for both average levels of turbulence intensity

and velocity inlet. Such cases are T3A and T3C5. We can, however, see that in all cases, the

transition is steeper than with γ − SST .

Cases with high transitional Reynolds number Rec such as T3C2, T3C3 & T3C4 do not respond

swiftly enough to mimic the experiment. In the case of the model without F3 function, it un-

doubtedly vivacious is that cases T3C2 and T3C3 were able to recover without creating separation.

However, in the case of T3C4, there is a significant separation in our numerical results, and the

flow was not able to reattach itself before the plate end.

In the case with the F3 function, the results are comparably worse than both optimisation re-

sults without the F3 function. Especially in the cases with a pressure gradient, the separation is

undoubtedly not in adherence with the experiment. That being said, we do think that the incorpo-

ration of the F3 function is the correct step. It is possible, however, that the shorter optimisation

time has to be extended.

3.2.2 Further notes

Note that in the T3C3 case’s end, there is a visible curl backwards of Cf . The formulation of Rex

causes this curl. In the simplest case, Rex = Rex(u, x), where the velocity is from free-stream flow

above the boundary layer. As the plate ends with a diverging section, the speed is dropping. This

negative velocity gradient causes the seeming effect that the flow does not reach the plate end.

To see the transition more clearly, see 3.13. This figure shows that the turbulence model catches

the transition correctly. In the case of T3A- γ − EARSM reacts too late and to a much higher

skin friction coefficient, but this is a slightly an edge case, as the inlet velocity is four times higher

than in T3A. Furthermore, the transition occurs at the flat plate end, and thus even though the

transition happened later than we want, we do not have enough data to state the performance of

our calibration in this case. Therefore, an inevitable error is expected. The same is true for T3B,

where both velocity and turbulence intensity are above average. This error is probably due to the

much higher turbulence intensity on the inlet, but the curve response is not severe enough to match
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3.2. RESULTS

(a) T3A cf (b) T3A- cf

(c) T3B cf (d) T3C2 cf

(e) T3C3 cf (f) T3C4 cf

(g) T3C5 cf

Figure 3.12: SHGO optimization results on cases transition curves
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Figure 3.13

the experimental data. Turbulence intensity decays in almost all cases follow the experimental data

closely.

Another compromise rests in CPG2 where we had to use a significantly higher value than the

original. These values result in triggering a transition in the zero pressure gradient case. In theory,

this should not happen as there is no pressure gradient. However, this phenomenon stems from

the definition of λΘL, which calculates the pressure gradient in the boundary layer using the term

dV/dy. This velocity gradient produces λΘL in the zero pressure gradient case as well. The area of

non-zero λΘL in figure 3.14 is a wedge-shaped area near the flat plate. It originates in the middle

of the plate and develops along with the flat plate towards the end.

Figure 3.14: λθL for both γ − SST and γ − EARSM
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3.2.3 Summary of the model

Based on both the results from calibration and the results from validation simulations, we propose

a new turbulence model together with a set of coefficients for the intermittency equation. The

formulation of our turbulence model is as follows

Dk

Dt
= γµtSΩ + P limk −max(γ, 0.1) ∗ β∗kω +

∂

∂xj

[
(ν + σkνT )

∂k

∂xj

]
Dω

Dt
= γearsm

ω

k
P − βω2 +

∂

∂xj

[
(ν + σωνT )

∂ω

∂xj

]
+
σd
ω

max

(
∂k

∂xj

∂ω

∂xj
; 0

)
,

Dγ

Dt
= Pγ − Eγ +

∂

∂xj

[(
µ+

µt
σγ

)
∂γ

∂xj

] (3.9)

where the coefficients in the mixing function fmix were taken over in the form For the equation of

γearsm β σk σω σd

Set 1 0.518 0.0747 1.1 0.53 1.0

Set 2 0.44 0.0828 1.1 1.0 0.4

Table 3.4: EARSM coefficients for the standard formulation of k − ω [3]

intermittency, these are the standard coefficients, which we have not altered, see:

ce2 = 50; ca2 = 0.06; σγ = 1.0 (3.10)

Below are written out the coefficients of the production term, which are the result of our calibration.

with F3 function

Concretely, these coefficients are tuned using the formulation with the F3 function. The coefficients

below have the most significant effect on the zero pressure gradient. However, they retain the

original function and thus are tunable by the user.

Flength = 28.0; CTU1 = 110; CTU2 = 2000.0; CTU3 = 0.85 (3.11)

These coefficients are specifically from FPG function and are active in regions with pressure gradi-

ent. They are tunable by the user as well, however, because of their interconnected nature, their

tuning requires deeper involvement.

CPG1 = 100.0; CPG1lim = 1.5;

CPG2 = −7.34; CPG2lim = 10.0; CPG3 = 0.0
(3.12)

without F3 function

Furthermore, we are writing out the results of optimization without F3 function as well.

Flength = 28.0; CTU1 = 20.0; CTU2 = 1100.0; CTU3 = 0.2 (3.13)

CPG1 = 55.0; CPG1lim = 1.5;

CPG2 = −50.5; CPG2lim = 5.5; CPG3 = 0.0
(3.14)
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4. Aplication cases
For the applications below, we chose to mainly calculate the results with fmix limited by the

F3 function. However, specific results without the F3 function are added to show the difference in

the cases outside of the calibration cases.

4.0.1 Turbine cascade

Figure 4.1: Turbine blade mesh

This case is based upon an experiment done in Genova University, Aerodynamics and Turbo-

machinery Laboratory. Specifically, the experiment consists of a three-blade linear cascade installed

in an open-loop type wind tunnel. The blade design is to embody the typical coolable high-pressure

gas turbine nozzle blades. The blade geometry is two-dimensional and was designed by Von Karman

Institute for Fluid Dynamics. Only the middle blade in the cascade was instrumented. The whole

test section is characterized by chord length c = 300mm pitch-to-chord ratio g/c = 0.7, blade

aspect ratio h/c = 1 and gauging angle = 19.2 deg, see further info at [7]. The simulation is based

on a single blade where the profile is visible in picture 4.1. The unstructured 2D mesh used in this

simulation was provided by doc. Jiří Furst from the Department of Technical Mathematics, faculty

of mechanical engineering, CTU in Prague, and has 18096 cells. The domains consist of velocity

inlet, pressure outlet, and periodic boundaries. We calculated the flow field around a single airfoil

with the assumption of periodic boundary conditions. In this test case, we compare our numerical

results with γ −EARSM to γ − SST and experimental data. We performed all calculations with

Reynolds number equal 5.9·105. The maximum value of y+ = 0.12. The simulation was run both as

incompressible and compressible with simpleFoam and rhoSimpleFoam solvers respectively. Inlet

conditions respect the test conditions from the experiment, see table 4.1. Looking at the skin

friction coefficient comparison, the properties observed during calibration are visible here, namely,

the sharper rise from the laminar to the turbulent boundary layer. There is also a visible aft shift
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Inlet Condition Value

Tt1 293K

Tu 1%

M1is 0.086

Re 5.9 · 106

Table 4.1: Inlet boundary conditions as used in numerical simulation

of the transition curve, but the skin friction coefficient in the turbulent boundary layer is closer

than γ−SST . The total wall shear stress was calculated between s/smax = 〈0.17, 0.91〉 to exclude

oscillations towards the trailing edge. In the table 4.2 γ − EARSM , we see that it overestimates

the experimental value, but still, the values are slightly closer to the experimental value. Results

from compressible and incompressible assumptions are in agreement, which serves as further proof

for relaying on an incompressible formulation. It should be noted that this comparison is made

solely based on skin friction coefficient data. We numerically integrated both experimental and

CFD data as we did in an error function for minimization. The velocity was calculated using the

Turbulence model total wall shear stress

Experiment 1.68e-3

γ − EARSM & F3 (simpleFoam) 1.69e-3

γ − SST (simpleFoam) 1.60e-3

γ − EARSM (simpleFoam) 1.72e-3

Table 4.2: Inlet boundary conditions as used in numerical simulation

isentropic relation, which is based on the assumption of ideal flow. This assumption is visible

around x/c=0.6, a slight dip in the isentropic velocity compared to the experimental values. This

corresponds well with our skin friction plot, where at this coordinate, we can see the transition

from laminar to turbulent occurring. In the figure 4.2 is comparison of boundary layer velocities

with experimental and γ−SST results. The difference between the turbulence models is negligible,

yet there is a slight offset between numerical and experimental data. However, the trend of the

curves is similar and the difference between laminar and turbulent profiles is visible, specifically

between s/smax = 0.52 and s/smax = 0.62. The clock time required for γ − EARSM was 8.5%

higher compared to γ − SST

26 chapter 4



Figure 4.2: Boundary layer velocity profile

(a) cf for both turbulence models (b) c/c1 for γ−EARSM calculated using simpleFoam
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4.0.2 NLF airfoil

Figure 4.4: NLF-0416 airfoil mesh near view [10]

The simulation is based upon NASA research for natural-laminar-flow airfoil for general aviation

applications. The main objective of this design was to create an airfoil that retains up to 30% of

the boundary layer in the laminar state and thus achieves low profile drag. The measurement was

done in Langley low-turbulence Pressure Tunnel (LTPT). The wind tunnel is of single-return type

with a closed throat. The measurements were done for a wide range of flow regimes with variable

Reynolds number, Mach number, and surface roughness. For our study, we have chosen a regime

with Re = 4 · 106 and at free-stream Ma = 0.1. We have studied the airfoil as two-dimensional

with the assumption of compressibility as we expected the local Ma to exceed 0.3. The solver used

was therefore rhoSimpleFoam as we were looking for a steady-state solution. Since we are using

a simplified two-dimensional domain, we were only examining the performance of the airfoil at

angles of attack in the range 〈−4◦, 8◦〉 with increments of 2◦. Examining the airfoil around the

maximum lift is hard as we are expecting separation and loss of lift. However, phenomena such

as separation are spatial, and thus, our results would reflect the experimental results poorly. The

Inlet Condition Value

Minlet 0.1

Tu 0.15%

Tref 540R

Re 4 · 106

Table 4.3: Boundary conditions as used in numerical simulation

maximum value of y+ = 0.59. The figure compares the lift coefficient between γ − EARSM and

γ − SST , where the fit of both turbulence models is practically the same. From the comparison
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of cp, we can see that γ −EARSM has a slightly better fit. Both models overpredict the pressure

coefficient in the peaks at the leading edge of the airfoil. The slope of the curves aft of the pressure

coefficient peak is correct. On the lower surface, we can see that both turbulence models transition

from laminar to turbulent at x/c ≈ 0.65, which agrees with the experimental data. At Re = 4 ·106,

the upper surface boundary layer should be, for the most part, turbulent. We can see that γ−SST

holds laminar boundary layer up to x/c ≈ 0.18 and γ − EARSM transitions at around the same

level. Without the F3 function, the transition is aroundx/c ≈ 0.05. Based on the paper, the

transition location should be around x/c ≈ 0.12 for our lift coefficient value cl = 1.31.

(a) cl comparison for both turbulence models (b) cp comparison for both turbulence models at

anlge of attack 8◦
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5. Conclusion

A new transitional turbulence model based on explicit algebraic Reynolds stress has been de-

veloped and tested. The model is formulated with the EARSM model as its primary model for

solving k and ω, developed by Hellsten. Further, it is coupled with a transitional model γ − SST

developed by Menter; Smirnov; Liu; Avancha. From the γ − SST we took the partial differential

equation for intermittency. The advantage is that its part of the Local Correlation-based Tran-

sition Modeling family of models. Thus all correlations for the transition are calculated locally,

contrary to γ −Reθ. In addition, both γ −SST and EARSM are Galilean invariant, which means

that they are dependent only on a local frame of reference, which is suitable for applications, for

instance, in turbo-machinery.

Concretely, the EARSM model improves the Boussinesq approximation by replacing it with a con-

stitutive model containing effective eddy viscosity and extra anisotropy. Thus, it can model some

of the flow properties which stem from turbulence anisotropy, such as the effects of streamline

curvature.

The equation for intermittency was added to allow us to broaden the range of applications of the

EARSM model to applications where boundary layer transition and separation play a role.

Calibration of the γ −EARSM model was done by calculation of incompressible two-dimensional

flat plate flow and compared with ERCOFTAC flat plate experimental measurements. This experi-

ment provides data on boundary layer development along a flat plate under diverse flow conditions.

Flows under both zero-pressure gradient and adverse pressure gradient were used for the calibra-

tion to broaden the capabilities of the newly calibrated model. In this thesis, we only calibrated

the production terms in the intermittency equation, yet we achieved a good fit to the experimental

data. The calibration was done with the help of optimisation algorithms, concretely SHGO &

COBYLA algorithms were used, where the final optimisation was done using SHGO. We chose

the total wall shear stress on the flat plate as a performance metric and minimised the differ-

ence between experimental and numerical data. We provided two formulations, with and without

the modified blending function. The modified formulation was taken from Menter; Smirnov; Liu;

Avancha to secure k − ω model in the laminar boundary layer. The computational effort did not

rise substantially over the γ − SST .

For validation, we chose an internal and external flow around an airfoil. Concretely, for the ex-

ternal aerodynamics, we chose NFL-0416 airfoil, and for the internal, we opted for a linear blade

cascade with blade design from VKI. Obtained results showed slightly improved performance in

contrast to γ − SST . Notably, the formulation with blending function performed on par even

though the performance on calibration cases was weak. Areas of improvement are the extension

of optimisation time or improve the optimisation process to manage more calculations. However,

further validation would be required to truly see the benefits of combining the transitional turbu-
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lence model and algebraic Reynolds stress.

Further development of better coefficients will be done in the future, as well as tests of turning off

the cross-diffusion term with the modified blending function.
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