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Abstrakt

Fundamentalni diagram je dulezitou charakteristikou toku chodci, kterd umoz-
nuje inzenyrum posuzovat maximélni kapacitu chodcovskych zarizeni. Kla-
sické metody odhadu fundamentalniho diagramu pouzivaji analytické apro-
ximace tohoto vztahu. Nezohlednuji vsak specifické vlastnosti jednotlivych
geometrii a slozeni chodct. Tato bakalarska prace prezentuje datové oriento-
vany pristup k odhadu fundamentalniho diagramu pomoci umélych neurono-
vych siti. To zahrnuje simulovani evakuaci v open-source simulatoru pohybu
chodct, vypocet alternativni miry hustoty — praimérné vzdélenosti ke & nej-
bliz$im sousedtim a nasledné trénovani neuronové sité k odhadu fundamental-
niho vztahu mezi hustotou a rychlosti. Nauc¢ené modely ukazuji vyznamnou
schopnost extrahovat makroskopické vztahy z jednotlivych métreni. Predikce
je poté rozsirena o dalsi priznaky — relativni polohy nejblizsich sousedu a re-
lativni vzdalenost k vychodu. To prispiva k dalsimu sniZzeni chyby predikce
a demonstruje tak pouzitelnost metod strojového uceni v oblasti dynamiky
chodcu.

Klicova slova dynamika chodct, fundamentalni diagram, simulovani po-
hybu chodct, tok v izkém hrdle, uméld inteligence, umélé neurénové sité
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Abstract

The fundamental diagram is a crucial characteristic of pedestrian flow that
enables engineers to judge the maximum capacity of pedestrian facilities. The
classical methods of estimating the fundamental diagram use analytical ap-
proximations of this relationship. However, they fail to take into consider-
ation the specific properties of each geometry and the composition of the
pedestrians. This thesis presents a data-driven approach to estimating the
fundamental diagram via artificial neural networks. This includes simulating
evacuations in an open-source pedestrian simulator, computing an alternative
measurement of density — the mean distance to k-nearest neighbors, and sub-
sequently training a neural network to estimate the fundamental relationship
between density and velocity. The trained models show significant ability
to extract the macroscopic relationship from the individual measurements.
The prediction is then expanded to include more explanatory variables — the
relative positions of nearest neighbors and the relative distance to the exit.
This further reduces the prediction error, demonstrating the applicability of
machine-learning methods in the field of pedestrian dynamics.

Keywords pedestrian dynamics, fundamental diagram, simulating pedes-
trian movement, bottleneck flow, artificial intelligence, artificial neural net-
works
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Introduction

As a result of massive urbanization that has taken place over the last century,
mass gatherings have become increasingly popular. Every major city has its
own set of venues where the public can gather and participate in activities
ranging from football matches to political rallies and protests. This comes
hand in hand with an increased emphasis on the design of security exits and
evacuation routes. In an event attended by thousands of people, every minor
decrease in evacuation time can potentially save lives. Proper understanding
of people’s actions inside large crowds is crucial for optimizing the design of
buildings and ultimately make evacuations quicker and safer.

One of the most important quantitative characteristics of a pedestrian
stream is the fundamental diagram of pedestrian flow — the empirical relation-
ship between the density, velocity, and the flow of a pedestrian stream. It
allows us to estimate quantities such as the maximum pedestrian flow at a
given cross-section, a critical density, past which jams start to occur, or the
maximum density when the traffic completely halts.

Another important use of the fundamental diagram is validating new
pedestrian models. Seeing as conducting evacuation experiments with live
participants is both expensive, and sometimes downright impossible, various
simulation techniques have to be employed. In order for a model to be deemed
realistic, its fundamental diagram has to qualitatively follow a certain shape
— for example, the velocity should be a decreasing function of density, ap-
proaching zero at a maximum density.

Aim of the Thesis

The main goal of this thesis is to present a data-driven approach to estimat-
ing the density—velocity relation using machine learning techniques, namely
artificial neural networks. This includes

e recreating a real experiment conducted at the Czech Technical Univer-



INTRODUCTION

sity [I] in an open-source simulator — JuPedSim, and subsequently vali-
dating the output trajectories,

e training a neural network to predict velocity based purely on density,
and

e working at improving the prediction by introducing extra features, sim-
ilarly to the approach presented in [2].

Motivation

Pedestrian dynamics is a topic that combines elements from various fields of
mathematics, statistics, and even physics. It is also directly connected to the
field of traffic dynamics, which has seen an increase in popularity with the rise
of self-driving and smart cars.

Neural networks are a powerful and versatile tool, capable of solving prob-
lems in a multitude of scientific disciplines. However, their use in the field
of pedestrian dynamics is still somewhat limited and there is great potential
in employing them to solve problems related to the behavior of people in a
crowd. This work could be further extended to predict the entire velocity
vector, and, in turn, be used as a base for computationally efficient pedestrian
simulations.

Structure

This thesis consists of four chapters. The first two chapters provide theoreti-
cal background on the topic of pedestrian dynamics, as it is not a part of the
standard FIT CTU curriculum.
In the first chapter, the main observed variables of pedestrian flow are intro-
duced and details about their relationships and ways to measure them are pro-
vided. The second chapter provides an overview of the methods used to sim-
ulate pedestrian movement. Emphasis is put on the Generalized centrifugal-
force model, which is used in the practical simulation work done in this thesis.
The remaining two chapters are the practical part of the thesis. The third
chapter contains the details of the experiment that is being recreated, fol-
lowed by the actual simulation used to obtain data for further processing. It
concludes with the validation of said data, and the computation of the “mean
k-NN distance” used in the following chapter. The fourth chapter includes
a brief discussion of analytical approximations of the fundamental diagram,
as well as definitions of the relevant neural network concepts. After that,
the fundamental diagram estimation via neural networks takes place. The
thesis concludes with the process of improving the predictions by adding new
explanatory variables and demonstrating the caveats of this approach.



CHAPTER ].

Fundamental Diagram of
Pedestrian Flow

Pedestrian dynamics is a discipline of traffic low theory, a subject which is
not taught at FIT CTU. For this reason, a basic overview of the concepts
relevant to this thesis will be provided. A more comprehensive introduction
can be found in [B].

Many ideas from traffic flow theory can be directly generalized to pedes-
trian dynamics. However, because pedestrians can generally move in two,
or even three dimensions, some concepts have to be appropriately modified.
A complete course on traffic flow can be found in [4]. In this thesis, only a
strictly two-dimensional geometry will be considered (i.e. no vertical move-
ment).

1.1 Observables

A number of variables can be observed while describing the movement of
pedestrian crowds. They can generally be regarded as microscopic or macro-
scopic [4, Ch. 2].

Microscopic variables describe pedestrians on a per-agent level, e.g. indi-
vidual position and its derivatives, velocity and acceleration. Others include
distance headway — the distance to the “next” pedestrian, and time headway
— the time required to travel said distance with the current speed. The con-
cept of headways can be problematic, as it is not always clear who the “next”
pedestrian is unless we limit ourselves to effectively one-dimensional geome-
tries such as narrow corridors, as shown in [5]. However, this quantity can be
somewhat generalized to the average distance to k-nearest neighbors and be
used as a measure of density, as will be presented in this thesis.

Macroscopic variables describe the properties of pedestrian movement on
an aggregated level. The most important ones are density, velocity, and flow.

3



1. FUNDAMENTAL DIAGRAM

In the following sections, these characteristics shall be described in greater
detail. The notation used in this chapter is adapted from [3], where vector
quantities are denoted by a “—” superscript and their respective norms are
written using the same letter, but without the superscript, e.g. [|¥] = v.
Quantities averaged over time will be denoted by () o; and quantities averaged
over space will be denoted by (-) .

1.1.1 Density

Definition 1 (Classical density). The density p of a pedestrian flow is the
number of pedestrians N present in a unit of area A at a given time, i.e.,

N
p= Tl (1.1)

This is known as classical pedestrian density. It has several practical
flaws [6]:

e It can be unclear when a pedestrian is actually “in” said area.
e When viewed as a function of time, it is discontinuous.
e It becomes meaningless as the size of the area approaches zero.

The first problem can easily be solved by taking a fixed point on each pedes-
trian, for example, the tip of their nose. The remaining two problems motivate
us to define a different measurement of density, the so-called Voronoi density,
based on Voronoi diagrams [i].

The Voronoi diagram of a convex 2-D area A, given a finite set of points
X1, %2,...,ZN,is a decomposition of A into so-called Voronoi cells Ay, As, ..., AN,
such that

Ai={Fe A: |7 —&| < 17—,V # i}, (1.2)

that is, A; is the set of all points that are closer to Z; than they are to any
other Z;.

Any two distinct A;, A; are either non-overlapping, or equal to e;;, the set
of points equidistant from A; and A;. A comprehensive theory on Voronoi
diagrams can be found in [§]. An example Voronoi diagram is shown in fig-
ure [1.1).

Voronoi diagrams of pedestrian flow in a given room have the property
that, for each Voronoi cell, there is exactly one pedestrian occupying said cell.
In a sense, every pedestrian “generates” [6] a density distribution p;, which
sum together into a Voronot distribution pa:

. 1/‘A2| iffEAl',
i(T) =

N
and = ;e 1.3
0 otherwise, pa ; pi (1.3)



1.1. Observables
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Figure 1.1: An example Voronoi diagram.
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The Voronoi density can be defined as follows:

Definition 2 (Voronoi density). Let A be an area occupied by N pedestrians
and py4 its Voronoi distribution.
The Voronoi density p, given an area V C A, is

_ Jypad®
p v (1.4)
This has the benefit that the area V can be arbitrarily small and the
density will not degrade to zero. When measuring over the entire area A, the
Voronoi density will be equal to the classical density. It is shown in [6], that
when viewed as a function of time, it does not fluctuate nearly as much as the
classical density does, making it a more suitable measurement of density.

1.1.2 Velocity

It is important to distinguish the microscopic velocity v; of pedestrian i and
the macroscopic velocity v of an entire pedestrian stream.



1. FUNDAMENTAL DIAGRAM

The individual velocity @;(¢) of person i at time ¢ is the time derivative of

their position, i.e. 7;(t) = %i"(t). It is usually measured as the rate of change

of position in a small interval At around t:

Bty = FOH At/?)A—tf(t - Al2). L5

An alternative way of measuring individual velocities over a measurement
area, with a given entry and exit time is:

f(tout) - f(tin)

) te [tina tout]- (16)
tout — tin

UAz,i (t) =
These two measurements do not necessarily correspond. In fact, the former
will generally output higher instant velocities than the latter. This is due
to the fact that the second method assumes that the pedestrian has been
following the straight line Z(tout) — Z(tim). In reality, pedestrians do not move
perfectly straight, their actual path is somewhat curved [6], meaning they
effectively cover more distance in the same amount of time, resulting in higher
instantaneous velocities.

Macroscopic velocity measurements involve averaging individual velocities
either over time, or space. Note that velocity is a vector and speed its norm,
||| = s, however, in the referenced literature it is quite common to refer to
both the vector and its norm simply as “velocity” v, and it should be clear
from the context, which is being referenced.

Definition 3 (Time mean velocity). The time mean velocity of pedestrians
passing a fixed point (e.g. a cross section) xg, over a time period At, is the

arithmetic mean of their individual velocities ¥, s, ..., Un at xg.
1N
<U>At = == Z Q)Z'(.CC()). (17)
N

This method is more commonly used in traffic engineering, where the mea-
surement area is too long to be monitored all at once, for example, a highway.
It is more practical to set up a single measuring station along the road and
measure the vehicles that pass by.

Definition 4 (Space mean velocity). The space mean velocity of pedestrians
at a fixed time %y, over a measurement area Az, is the arithmetic mean of
their individual velocities 97, Us, ..., Un at tg.

| N
(Vaz =+ ;w(to)- (1.8)

This is, in fact, the desirable measurement to use for further analysis [9],
such as the relation with flow and density. In the typical scenario of pedestrian

6



1.2. Fundamental Diagram

experiments, where a camera continuously records the whole measurement
area, this quantity can easily be computed, provided that we can extract the
trajectories from the camera feed. This is not the case for vehicle movement,
where we often only have the time mean velocity (v)a;.

It is shown in [4, Ch. 2|, that the time mean velocity and space mean
velocity are connected via the harmonic mean: “The space mean speed is equal
to the harmonic average of the speeds collected at a cross-section x during a
stationary period.”.

(v)az = ENN1 (1.9)
=1 v (xo)
It follows from the fact that the harmonic mean of a data set is always less than
or equal to the arithmetic mean of said data set, that the time mean velocity
will be an overestimation of the space mean speed. The intuition is that slower
pedestrians will spend more time in the measurement area, therefore skewing
the average measurement towards lower speeds [9].

It should be noted that the concept of spatial and temporal average can
also be applied to density. In this sense, the density defined in the previous
section would correspond to a space mean density (p)a.

1.1.3 Flow

Definition 5 (Flow). The flow J (also called intensity) of a pedestrian stream
is the number of pedestrians N crossing a fixed location per unit of time T

J=—. 1.10
a (1.10)
Flow can also be measured by recording the individual crossing times
t1,ts,...,tn and calculating the inverse of the mean time gap between subse-
quent crossings,

1 1 N1
J=—, where Aty = —— tit1 — ;). 1.11
<At> < > N _1 i:1(2+1 Z) ( )
A different way to measure flow at a cross section of width b is by using the
fundamental relation of pedestrian flow, J = pvb [3]. In this context, the space
mean velocity is used. Since both p and v are functions of time, this relation
allows us to acquire instantaneous flow values. Strictly speaking, the flow
computed using this method is a vector and the area is two-dimensional. For

this reason, only the component normal to the measurement line is considered.

1.2 Fundamental Diagram

It is clear that the variables defined above are connected. For example, people
will, on average, move slower in large crowds than they would on an empty

7



1. FUNDAMENTAL DIAGRAM

street, because their movement is inhibited by the surrounding pedestrians.
The relationships between the characteristics of pedestrian flow are called
the fundamental diagram of pedestrian flow (FD). The reason why only a
single diagram is mentioned, as opposed to multiple diagrams for each pair
of observables, is that, furthermore, these variables are connected via the
fundamental relation of pedestrian flow:

J = pv, (1.12)

a concept inspired by hydrodynamics. This equation allows us to freely circle
between the different representations of the fundamental diagram. From this
point on, the “v” will refer to space mean velocity, unless stated otherwise.

The study of FD dates back to 1934, when Bruce D. Greenshields devised a
decreasing linear relationship between density and velocity of highway traffic,
validating using seven(!) data points [10, 11]. It has since been the target of
extensive research.

As mentioned above, there are multiple equivalent forms of the fundamen-
tal diagram:

o density—velocity v(p),
o density—flow J(p),
o flow—velocity v(J).

All of these diagrams have a certain qualitative shape, which 1 will briefly
showcase. Further details on the shapes and properties of traffic flow FDs are
provided in [12], although most results can be directly applied to pedestrian
traffic. As Schadschneider states in [3], there is no strict consensus on the
numerical values of the graphs:

Although several attempts to measure the fundamental diagram of
pedestrian flow have been made, a lot of points are still controver-
sial. So it is still not clear what the maximal density is which can
be observed in pedestrian streams. Estimates range from about 4
P/m? up to more than 12 P/m?.

Velocity as a function of density This is the most straight-forward re-
lation of the three. It is especially prominent in pedestrian dynamics because
of its relative ease of construction from camera recordings. At very small den-
sities, the average velocity is almost constant at a maximum wvelocity vmax,
which corresponds to a free flow stage. It then monotonically decreases with
increasing density, until it reaches zero at a mazimum density pmax, at which
point the flow completely stops. The exact slope and shape of this downward
curve is still a matter of debate [13]. The Greenshields model is shown in
figure @

8
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70

Mean speed [km/h]
5 g
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Figure 1.2: Greenshields’ p—v diagram [12].

Flow as a function of density The J(p) relation has a quadratic shape. It
starts at the origin and increases until it hits a capacity flow Jmax at a critical
density pe. It then decreases until zero is reached at ppax. The density p.
divides the flow into the so-called free flow branch, where the pedestrians only
marginally affect each other’s movement, and the congested branch, where
jams start to form and the overall flow decreases. An example FD is shown
in figure [L.3.

free-flow  congested

Qeap | _ - _ ___

Y !
0 Jee ki k

Figure 1.3: Example of a p—J fundamental diagram [12].

Velocity as a function of flow The v(J) has a similar shape to the J(p)
curve with a free flow branch and a congestion branch. However, it does not
represent a mathematical function, as two distinct average velocities can be

9



1. FUNDAMENTAL DIAGRAM

observed at a single level of flow — one for each branch. Figure @ contains a
sample J-v diagram.

Us g

Vgt

-
-

0 Geap q

Figure 1.4: Example of a J-v fundamental diagram [12].

1.3 Mean k-NN Distance as a Measure of Density

The practical part of this thesis will focus on estimating the density—velocity
relationship. However, instead of using the density directly, the inverse of
velocity — mean distance headway, shall be used in its modified form of mean
distance to k-nearest neighbors. This section provides a theoretical basis for
using this quantity in the context of pedestrian movement.

In the beginning of section [1.1], the concept of distance headways was men-
tioned. In traffic low theory, where only one-dimensional movement is con-
sidered, distance headways are a microscopic variable that measures the dis-
tance to the “vehicle in front”. Assume a road of length d, starting at a and
ending at b, occupied by N vehicles, positioned at x1,xs,...,zy, such that
a<x)<x9<---<axy <b. Distance headway is the distance d; = (z;+1—x;)
fori € {1,..., N}, where Xn41 = b. If we further assume that the first ve-
hicle is at the beginning of the measurement line, x1y = a, then the mean
distance headway will be equal to the inverse of density:

N N -1
1 1 TN+1—T1 b—a d (N) 1
—_— d = -_— ; —_ N — i —_— = _— — .
N Z-Z:l TN ,-Zzl(x” 1) N N N \d P

This property cannot be easily generalized to pedestrian movement, as
there is no clear choice for the “next” pedestrian. However, if we can find
a partitioning of the measurement area A into sub-areas A, As... Ay, such
that Vi,j € {1,...,N},

o 2 lAil = 4],

o dim(A4; N A4;) < dim(A) (the intersection is at most a line), and

10



1.3. Mean k-NN Distance as a Measure of Density

o there is exactly one pedestrian in each A;,

the equation above will still hold:

1 & | A N\7! 1
N; =5 (\A\) g

This is precisely the case with Voronoi cells, defined in section . This
means that the area of a Voronoi cell can be used as a measure of local density
and when aggregated over the entire area, the actual density can be computed.
In fact, the third assumption can be omitted. Assuming n cells, with N; being
the number of pedestrians in ¢-th cell, such that ), N; = IV, the corresponding
subdensity becomes p; = N;/|A;| and the total density can be obtained via a
weighted harmonic mean of the subdensities with n; as weights:

Y1 Ni N N N

?:1 TZ ?:1 m Z?:l |Az| |A|

In practice, this approach faces several problems. Namely, the cells cor-
responding to the pedestrians at the edge of the crowd will span all the way
to the edges of the measurement area, making them disproportionately large.
This may be solved by introducing a cut-off radius, assigning a maximum
area to the outside cells. But even then, the area of Voronoi cells shows great
variance and is heavily skewed by outliers, as shown in figure [L.5.

1.0 1.5 2.0 25 3.0
Vv Voronoi area

Figure 1.5: Relationship between the square root of Voronoi area and speed.

For this reason, a more robust measure of local density will be used — mean
distance to k-nearest neighbors.

11



1. FUNDAMENTAL DIAGRAM

Definition 6 (Mean k-NN distance). Let & be the position of pedestrian i,
k > 1 a natural number, and 21, 23, . . ., £ the position of k-nearest neighbors

of pedestrian 7 with respect to a metric || - |.
The mean k-NN distance dy, is defined as

D R | (1.13)

Intuitively, if the nearest pedestrians are relatively far away, there is more
room to move freely, at higher velocities. On the other hand, if the nearest
neighbors are very close, there is limited room to move without crashing into
others. Additionally, this measure is naturally bounded by the distance to
the closest pedestrian and the distance to the k-th nearest pedestrian, making
it more robust. After discarding the outliers, this method shows significant
correlation with the square root of the mean Voronoi cell area, and more
importantly, almost a linear relationship with the mean velocity (figure E)

Nevertheless, it can be skewed in situations where there are multiple dis-
tinct crowds in the measurement area and k is larger than the size of either
crowd, therefore indicating low overall density, despite the local density being
high. Such situations can happen during the evacuation of rooms with multi-
ple exits — a crowd will form in front of each exit. This will not be a problem
in this thesis, as only a single-exit geometry will be considered.

Figure 1.6: Relationship between the mean k-NN distance and speed.
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CHAPTER 2

Simulating Pedestrian
Movement

This chapter will provide a basic overview of the methods used to simulate
pedestrian movement. A more detailed description of social-force models will
follow, with emphasis on the Generalized centrifugal-force model, which is used
in the practical part of this thesis.

2.1 Pedestrian Models

As Schadschneider notes in [14], there is a multitude of criteria for classifying
pedestrian models. The following summary is on selected sections from [3]
and [[L14].

Most pedestrian models can be thought of as microscopic or macroscopic.
Macroscopic models treat groups of pedestrian as a homogenous collection
of indistinguishable particles, whose movement is based on macroscopic char-
acteristics of the crowd, such as average density and velocity. Microscopic
models are more complex, in the sense that they treat each pedestrian as an
individual agent that interacts with other pedestrians. More detailed behav-
ior, like individual route planning, can take place. Microscopic models are
further divided into rule-based vs. force-based.

Rule-based models are inspired by human psychology and base their decision-
making process on a predefined set of rules. Each pedestrian has an internal
state and his moves depend on his immediate neighborhood. A prominent ex-
ample of rule-based models are cellular automata (CA) models. The main idea
of CA models is to discretize the geometry into a grid of cells and model each
pedestrian as a cellular automaton, occupying one or more cells. Their move-
ment is realized by transitions between cells, based on probabilities designed
to reflect simple rules:

13



2. SIMULATING PEDESTRIAN MOVEMENT

1. Move closer to your goal.
2. Avoid collisions with other pedestrians.

3. Avoid collisions with terrain.

Example of CA models include Fukui-Ishibashi model, Blue-Adler model, or
Floor Field CA.

On the other hand, the movement in force-based models is determined
by outside forces acting on the pedestrian alongside an internal driving force.
The resulting acceleration is obtained as a superposition of all the forces the
pedestrian “feels”. For example, all agents will feel an attraction force towards
their goal (e.g., a door or an exit), which causes them to move towards that
goal. Additionally, when close together, the agents will act on each other
with a repulsive force that prevents them from crashing. Force-based models
include various versions of the social-force model, which is used in this thesis,
and a high-level overview will shortly be provided.

Force-based approach is not limited to microscopic models, macroscopic
models will generally also be force-based. Other criteria include deterministic
vs. stochastic or discrete vs. continuous. Of course, there are models that
combine multiple approaches such as the lattice gas model. This model works
on a triangular grid, similarly to a cellular automaton, but uses a force-based
approach to compute the agents’ velocities. Again, the following summary is
based on selected chapters from [3].

2.2 Social-Force Models

Social-force [15] models are based on Newton’s second law of motion, F =ma,
with m being the mass and a acceleration. The net force F' is a superposition
of forces that describe

1. the pedestrian’s own motivation to reach his goal,
2. the effect of nearby pedestrians,

3. the effect of the environment, and

4. miscellaneous physical forces, such as friction.

Since acceleration is the second time-derivative of position, the velocity vector
can be found by numerical integration. The basic equation of motion for
pedestrian ¢ is given by

d _, (pers)
mi&vi:Fipes

- (soc)

LR = (emv) | (phys)

+ B B (2.1)
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2.3. Generalized Centrifugal-Force Model

)

The personal driving force F’i(per of pedestrian 7 is the difference of the
desired velocity U,L-(O), usually in the direction of an exit, with magnitude equal
to the average free-flow speed, and the current velocity v¥;, divided by a time
factor T;, which corresponds to a reaction time. It is also proportional to the
mass of the pedestrian m;, although this parameter is often set to unity for
simplicity.
- (pers) 17(0) — 05
Ti

The social force F;'(SOC) is the sum of the forces produced by the other
pedestrians and acting on i, i.e. F;-(SOC) = D j#i Ej(soc). Since it would be
needlessly numerically expensive to compute the forces between every pair
of pedestrians, only the ones in a close radius r. are considered. Because
people generally become uncomfortable when too close to strangers, this acts
as a repulsive force. The exact equation varies from model to model, but
in general, the individual velocities are inversely proportional to the distance
between ¢ and j, taking into consideration the shape of the pedestrian (a circle
or an ellipse) and the angle between v; and j’s position (people only react to
the pedestrians in front of them).

The environment force F_’;(env) is modelled similarly to the social force, i.e.
people do not walk too close to the walls. GCFM uses three points on each
wall within a given range to compute the repulsive force, using a simplified
version of the social force [16].

The physical force ﬁi(phys) can be used to implement concepts such as push
or friction, however, in the model used in this thesis it is neglected.

2.3 Generalized Centrifugal-Force Model

The model that has been used in this thesis to simulate pedestrian move-
ment is the Generalized centrifugal-force model (GCFM). 1t was developed
by M. Chraibi et al. in 2010 [16], and is a generalization of the Centrifugal-
force model (CEM) [17]. The force E'j(soc) in CFM is given by the following
equation:

2
Ej(SOC) = —mikijd—?efj, (2.3)
)

where
e m; is the mass of pedestrian i,
o k;; is a coefficient that represents the field of vision of the pedestrian,

e d;; is the distance between 7 and j,
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2. SIMULATING PEDESTRIAN MOVEMENT

e v;j is the norm of the relative velocity between ¢ and j, and
e ¢;j is the unit direction vector from i to j, i.e., d;/||d:]H

The coefficient k;; ensures that only pedestrians within a 180° field of view
are considered, and the maximum force is attained for the persons directly in
front of ¢. If § is the angle between v; and €}, then k;; is given by

(2.4)
0, otherwise.

cos(f) if @} - ef; > 0 and v} # 0,
kij =
Additionally, v;; is defined such that slower pedestrians are not affected by
faster pedestrians in front of them,

o) e if (0, — %) - €5 > 0,
Uij:{(w 0j) - €5 if (v — v5) - €5 (25)

0, otherwise.

CFM also implements a collision detection technique that prevents excessive
overlap of pedestrians.

The Generalized centrifugal-force model modifies CFM in a way so that
no explicit collision detection is needed. Additional realism is achieved by
assuming a dynamically expanding, elliptical shape of agents, rather than a
static and circular one. The ellipse modelling a pedestrian has the semiaxes a
and b, a being the major semiaxis (in the direction of movement) and b being
the minor semiaxis (in the lateral direction). Both of these axes are functions
of the current velocity. This is motivated by the fact that faster-moving people

(a) need more forward space to maneuver safely, and

(b) tend to sway less laterally (i.e., their trajectories are more “straight”).
This also means that it does not always hold that a > b, such as when standing
still. The semiaxes take the forms

a(vi) = Qmin + Ta Vs, (2.6)
Ui
b(’U@) = bmax — U(O) (bmax - bmin)7 (27)

i
where amin, bmin, Dmax, vfo) can be determined empirically, and 7, is a free
parameter. The modified repulsive force is then given by

(o +viy)?

- (soc)
. €.
/ v
dij

ij = —mikij (2'8)

The difference from CFM is in the extra term 7]1}1(0), where 7 is a free param-

eter that controls the strength of the force. It is proportional to the desire
speed v§0), as faster pedestrians also need more “headroom”. This solves the

problem of vanishing repulsive forces and overlap with low relative velocities,
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2.3. Generalized Centrifugal-Force Model

but introduces oscillation at bottlenecks with high values of 7. Therefore, the
parameter 1 has to be carefully calibrated to get realistic results.

The second difference is in the distance dj; which is the effective distance be-
tween ¢ and j, meaning that the elliptic pedestrian shape is taken into account
and a distance between ellipses is computed.

The authors of [16] have shown that this model can reasonably recreate
human behavior on a quantitative level (i.e., the fundamental diagram), but
will not reproduce certain collective phenomena, such as changing lanes and
overtaking.

The ‘?ﬁical values of GCFM parameters, as given in [3] and [[16], are shown
in table

Table 2.1: Typical parameter values for force-based models.

Parameter Value

0¥ 0.6-1.5 m/s

m; 1

Ti 0.5s

Qmin 0.18 m

Ta 0.5s

bmin 0.20 m

bmax 0.25 m
0.1-0.6
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CHAPTER 3

Practical Simulation

This chapter will start with a summary of the experiment regarding flow at
bottlenecks, conducted at the CTU in Prague in 2014 [[lj. This experiment
was the basis for simulation and subsequent FD estimation done in this thesis.
After that, a description of the simulation process will follow, along with
validation of the simulated data using the fundamental diagram. This chapter
will conclude with processing of the simulated trajectories to compute the
mean k-NN distance for each row of the resulting table.

3.1 Experiment Description

The experiment in question was a part of the “Experimental Study of Phase
Transition in Pedestrian Flow” study by M. Bukacek, P. Hrabak, and M. Kr-
bélek [[1]. It involved a simple artificial room with 3 entrances, each approxi-
mately 50 cm wide, and a single exit 60 cm wide. The room itself was rectan-
gular, with the distance from the middle entrance to the exit being a = 7.2 m
and the width being b = 4.5 m. A schema of the geometry is provided in
figure El!

The pedestrians were composed of 76 student volunteers, who would re-
peatedly pass through the room. The idea of the experiment is described
in [18]:

The volunteers were instructed to enter the room, pass through
it as fast as possible avoiding running, and then return to the
pedestrian cluster in front of the entrance. This technique enabled
to maintain constant flow through the room. The inflow rate was
controlled using three independent signalling devices informing the
pedestrians in the crowd to enter the room trough one of three
available entrances. To simulate random inflow conditions, green
light was alternated by kAR seconds of red light, where k was
generated from geometric distribution. Ah = 0.6 s was the minimal

19



3. PRACTICAL SIMULATION

(@) (b)
Figure 3.1: (a) The diagram of the geometry used in @] and (b) a snapshot
of the experiment [1§].

time step, to which pedestrians were able to react reliably. FEach
round started with empty room.

The room was recorded by three cameras for the entire duration of the ex-
periment. Automatic extraction of the trajectories was possible due to the
students wearing special markers on their head.

Unfortunately, we were unable to obtain the actual trajectory data in time
to reliably incorporate it into the model, therefore artificial data will have to
suffice.

3.2 Simulation

The simulation itself was realized in the open-source framework for simulating
pedestrian movement JuPedSim [19]. The framework is capable of creating
complex simulations in custom geometries, with the main focus on evacuations.
Apart from the simulations themselves, it is capable of visualizing the results
in the form of animations as well as providing basic analysis of the trajectories
by computing the selected characteristics of the pedestrian flow, such as travel
times or densities in given measurement areas.

Geometry The geometry described in the previous section was modelled
using three connected subrooms (named A, B, C):

o A, the main measurement room — 7.2 m x 4.5 m
e B, an initial room (a “spawn point”) — 5.0 m x 4.5 m
e (', an exit corridor — 2.0 m x 0.6 m

The floor plan of the geometry is shown in figure @
At the beginning of the simulation, all agents are randomly distributed
throughout room B and their goal is to reach the far side of room C, where
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3.2. Simulation

Figure 3.2: The geometry modelled in JuPedSim.

an imaginary exit is located. There are three “doors” between room B and
room A in accordance with the original experiment. The random starting
positions lead to random times of entering room A, simulating random inflow
conditions. JuPedSim also supports pedestrian sources that create new agents
continuously over a given period, however, this approach proved more difficult
to calibrate and automate.

Model and agent parameters As mentioned in chapter E, the Generalized
centrifugal-force model was used as the operational model of the individual
pedestrians. In addition to the force parameter 7 described in section @, three
extra parameters are required (f, 7, €). These are used to ensure numerical
stability and do not greatly affect the quality of the simulation. The values of
these parameters were determined by a process of trial-and-error, based off of
the recommended values provided by the developers.

In order to partially simulate the heterogeneity in pedestrian crowds,
JuPedSim allows agent parameters to be modelled as normally distributed
random variables with a mean p and variance o2. The values of y were picked
using the recommendations from table @, with the standard deviation o an
order of magnitude lower. The concrete values are shown in table B.1l.

Number of pedestrians and batch simulation The output of a single
simulation is a set of trajectories, that is, the x and y coordinates of each
agent at each point in time (called a “frame”), along with additional quantities
including the velocity. Since no continuous generation of new pedestrians is
employed, the macroscopic characteristics of the flow are determined solely by
the initial number of pedestrians.

In order to get a diverse dataset for further analysis, it is necessary to run
multiple simulations with different numbers of pedestrians. However, JuPed-
Sim only allows one simulation to be run at a time. For this reason, a script

21



3. PRACTICAL SIMULATION

Table 3.1: Concrete parameter values for simulation.

‘ Parameter Value

Mped 0.375
E‘ fped 5.0
2 | Tped 2.0
2 | epea 0.1
:g Twall 0.2
= | fwall 1.0
Twall 2.0
Ewall 0.1
| 0@ ~ N(1.3,0.2%)
§ T ~ N(0.4,0.0012)
8 | Gmin ~ N(0.15,0.001?)
2 | Ta ~ N(0.35,0.0052)
& | bmin ~ N(0.2,0.0022)
| binax ~ N(0.25,0.0022)

that automates the simulation process has been written. It allows running
multiple simulations in a row, taking the number of agents via a range argu-
ment similar to Python’s range () function. It sets up the output directory
structure, modifies the configuration file of the simulation accordingly, and
runs the simulation, repeating this over the given range.

The next question is what agent numbers to choose. Evacuating more peo-
ple (i.e., high-density situations) is generally going to take longer, resulting
in more data. Indeed, a simulation of 8 pedestrians results in, on average,
approximately 1 100 data points, whereas a simulation of 50 pedestrians pro-
duces more than 24 000 data points. Therefore, it is necessary to conduct more
simulations of low-density evacuations, otherwise the data would be overly bi-
ased. To keep the dataset somewhat balanced, the simulations were classified
into three categories based on the number of pedestrians p € N present.

e p€[0,15) = low density
e p € [15,30) = medium density
e p € [30,00) = high density

The endpoints of these intervals are not precise, as they were chosen solely
based on observing the qualities of the pedestrian crowd in JuPedSim anima-
tions. However, these rough estimates are enough to offset the domination
of high-density simulations. A total of 383108 data points was acquired in
simulations. The distributions of the individual runs are shown in table B.2.
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3.3. Empirical FD of Simulated Data

Table 3.2: Composition of the complete dataset.

p ‘ Agents Iterations Total data points

6 10 11856
§ 8 10 17699
10 10 924 870
|15 5 23051
g 20 5 36 563
25 5 51579
| 30 3 41534
2 | 40 3 73009
50 3 102947

3.3 Empirical FD of Simulated Data

In order to validate the simulation, it is necessary to verify that the empirical
fundamental diagram obtained from the simulated data conforms to the ex-
pected shape described in section @ JuPedSim features a tool for automatic
extraction of selected flow properties from trajectory files. These include the
average spatial density (p)a, in both the classic and Voronoi form as well
as the corresponding spatial average velocity (v)a, as defined in section [L.1].
This tool, however, can only process a single file at a time, which is why it
was necessary to create a batch script, similar to the one in the previous sec-
tion. This allows running the necessary computations over the entire dataset
at once.

The resulting data from which the fundamental diagram will be created

has the following form:
For each time frame t of every simulation S1,59,...,Sy, the mean spatial
density and mean spatial velocity is returned, i.e., t — [{pt) Az, (Vi) Az]. By
averaging over t, we get IV independent points from which the p—v_diagram
can be constructed. The resulting empirical FD is shown in figure B.3.

The shape of the fundamental diagram in both the classical and Voronoi
form matches the theoretical properties described in section [1.2, in that the
average speed decreases monotonically with growing density and tends to zero.
The theoretical range of densities where the average speed is constant is not
present, as the bottleneck is relatively narrow (0.6 m) and the pedestrians
negatively affect each other even in very low densities.

Numerically, the densities here are skewed towards lower values. The rea-
son is that the measurement area is static and does not consider the local
distribution of the pedestrians. This can be seen from the temporal plot of
density and velocity in the individual runs () The density increases as
new pedestrians enter the room until it reaches a maximum value. After that,
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Figure 3.3: The empirical p—v FD obtained from simulations.

as pedestrians leave the room, the density decreases. On the other hand, the
average velocity steadily decreases over the entire course of the evacuation.
This means that when the (immediate) average velocity is plotted as a_func-
tion of density, a single value of p can correspond to two values of v (),
one for the “front” of the crowd and one for the “back”. While the former is
expected behavior, the latter is a “false positive”, meaning that despite the
perceived local density being high, the global density is relatively low, causing
a bias towards lower densities.
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(a) The temporal evolution of p and v. (b) Individual FDs with different k.

Figure 3.4: Empirical FD of simulated data.

The mean k-NN distance proposed in section does not have this prob-
lem, as it does not depend on the measurement area. The following section
will discuss its computation as well as the choice of the appropriate k value.
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3.4 k-NN Distance Computation and Choice of £

Computation The computation of the mean k-NN distance was done using
the module spatial of the Python library SciPyE]. This module supports
fast computations of nearest-neighbor queries using the class KDTree, which
implements a kd-tree (stands for k-dimensional tree) data structure for nearest-
neighbor lookup. Details of the algorithm are provided in [20].

The output of a kd-tree query is the coordinates of the k nearest neighbors.
Since the main measurement area is rectangular and therefore convex, all
of the nearest neighbors found will be valid. In more complex geometries,
where a nearest neighbor may be behind a wall, this may pose a problem.
An upper bound for k was chosen as k = 10, in accordance with [2]. Since
k—1,k—2,...,1 nearest neighbors are a subset of k£ nearest neighbors, it is
computationally cheap to also calculate all of the lesser mean distances. In
addition to the distances themselves, the relative positions of nearest neighbors
were also stored, as they will be used in section to improve the predictions
of the model. In the situations where less than k pedestrians remain (e.g., at
the end of the simulation), the mean distance to the remaining ones was stored
and the extra relative coordinates were set to infinity.

Choice of £ The choice of k can be regarded as a hyperparameter of the
model. In the case of this simulation, where only a single large crowd forms,
the concrete choice does not have a significant impact on the overall perfor-
mance of the model. As can be seen in figure , the individual distances
correlate heavily. Figure shows the relationship between different k-
NN distances and the velocity. In this figure, the distances were discretized
into intervals of even length and the mean velocity was computed for each
interval. The different choices of k show similar behavior. With larger k, the
distances become larger and more numerically stable.

A disadvantage of large values of k is that they result in the necessity to
discard more data, as it would contain invalid values in the form of missing
or infinite relative coordinates. For this reason, a value of k = 5 was chosen
for further prediction. The empirical fundamental diagram of 5-NN-dst.—v
is given in . Almost a linear relationship is shown. However, the true
underlying relationship is clearly not linear, seeing as the average velocity will
not grow indefinitely, but will instead stabilize at a free flow speed vpax. This
problem will be solved in the next chapter.

"https://scipy.org/
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Figure 3.5: Comparison of k-NN distances by k.
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CHAPTER 4

Estimating the
Fundamental Diagram

This chapter will start with a description of the analytical approach to esti-
mating the fundamental diagram, and a baseline exponential fit will be pro-
vided. After that, the relevant concepts regarding neural networks will be
introduced, along with a discussion of their use in the field of pedestrian dy-
namics. Finally, after further preprocessing of the data, practical fitting of a
neural network will take place.

4.1 Analytical Forms

As was mentioned in section @, there is no general consensus on the precise

shape of the pedestrian FD. This can be illustrated using figure

various shapes of the p—J from different experiments are shown.
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Figure 4.1: Different empirical FDs of pedestrian movement [3].



4. ESTIMATING THE FUNDAMENTAL DIAGRAM

Schadschneider in [3] gives a comprehensive list of mutually disagreeing
studies regarding the shape of the fundamental diagram. He concludes with
the following words:

This brief discussion clearly shows that up until now there is no
consensus on the precise form of the fundamental diagram and
even on the origin of the observed discrepancies. This is not only
unsatisfactory with regard to applications especially in safety plan-
ning, but also makes the validation and calibration of models rather

difficult.

These discrepancies may be caused different measurement methods, different
types of flow, and even cultural differences.

An often cited analytical form of the FD was given by Weidmann in [21].
It models the p—v relationship as an exponential function with the parameters
v0, o, and Pmax-

v(p) = vo [1 — exp (W)] . (4.1)

He fitted this model with the values vy = 1.34 m/s, po = 1.913 P/m?, and
Pmax = 5.4 P/m?.

It was argued in section B that the mean k-NN distance dj, is a reasonable
approximation of 1/p. Substituting this into equation Y.1| gives us an analytical
approximation of the dj—v relation.

v(dg) = vo [1 — exp (W)] . (4.2)

This equation, although in a different but equivalent form, was used as
a benchmark for the prediction in [2] and it will serve the same purpose in
this thesis. It should be noted that the p in equation is a macroscopic
quantity, whereas the dj, is a microscopic quantity that describes the local
density. Since_the total density is the harmonic mean of the subdensities
(from section [L.3), the velocity obtained as the arithmetic mean of v;(dy,) will
be an overestimation of the v(p) from equation @

Fitting the benchmark model The values provided by Weidmann are not
universal and should be adapted to fit our data. The module scipy.optimize
provides a curve_fit ()8 function for this purpose. It uses a non-linear least
squares solver to fit a given function to the data. Since our parameters are
naturally non-negative, bounds can be provided for the solver. The fitted
parameters are shown in table @.1].

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_
fit.html
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4.2. Artifical Neural Networks

Table 4.1: Fitted parameters of the Weidmann model.

Parameter Value

Vo 1.67169 m/s
00 1.44555 P /m?
Prmax 1.59436 P/m?

The least-squares estimates of the parameters do not perfectly match their
physical interpretation, e.g., an average speed of 1.67 m/s is too high. Never-
theless, the curve itself provides a decent fit for the data, as shown in figure 4.2,
The per-run averages from figure are also included. It generally holds true
that the curve obtained via the local densities slightly overestimates the values
obtained via per-run averages.

1.75 A

1.50 4

1.25 4

1.00 4

0.75 A

0.50 1

0.25 A

0.00 A1

5-NN distance

Figure 4.2: Simulated data fit by a Weidmann curve. The black points indicate
the per-run averages from figure

4.2 Artifical Neural Networks

This section assumes a knowledge of machine learning and artificial neural
networks (ANNs) at the level of the BI-VZD course taught at FIT CTU in
the winter semester of 20198, After a discussion of the use of neural networks
in the field of pedestrian dynamics, the relevant concepts used in this thesis
will be introduced. The notation in this section will mirror the notation used in
the aforementioned course., i.e., vectors will be denoted by a bold font instead

Shttps://courses.fit.cvut.cz/BI-VZD/@B191/
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of an arrow superscript. The theory of neural networks themselves will not
be explored, as it is not the primary focus of this thesis. A comprehensive
introduction to ANNs can be found in [22].

4.2.1 ANNSs in Pedestrian Dynamics

With the rising popularity of ANNs in the recent years, authors have begun to
test their usability in problems related to pedestrian motion. The advantage
of this data-driven approach is that ANNs automatically adapt to the given
geometry without the need to specifically calibrate a FD-based model. The
downside is that the trained parameters of a neural network are generally
uninterpretable and the entire system works as a semi-black box.

Examples of the use of ANNs in pedestrian dynamics include predicting
pedestrian speed using multilayer perceptrons (MLPs) in [2], whose work is
expanded upon in this thesis. MLPs were also used in [23] to estimate different
characteristics of pedestrian flow, and in [24] to predict entire trajectories,
albeit only at a straight crossing. More complex neural networks were also
used, for example Long short-term memory (LSTM) networks for trajectory
prediction in [25]. ANNs were also successful in simulating fluid physics [26],
and given the analogies of fluid dynamics and pedestrian dynamics, this could
be expanded upon in the future.

4.2.2 Technologies and Concepts Used

This thesis uses a standard feedforward neural network (multilayer percep-
tron), as defined in the BI-VZD course [27]. For practical applications, the
TensorFlow B implementation of the Keras API 2 is used. The computations
are done in the Jupyter Notebook F environment, using standard Python
libraries_for numerical computing, including NumPy ¥, Pandas B, and Mat-
pliotlib .

The layers themselves are dense — every neuron in layer [; is connected
to every neuron in layer ;1. The entire model is sequential — a linear stack
of layers. The weights in individual layers are initialized using the Glorot
uniform initialization method — chosen uniformly from the interval

6 6
- ) ) (4.3)
Nin + Nout Nin + Nout

where ni, and ngyt is the number of input units and output units respectively.
The biases are initialized with zeros.

‘https://www.tensorflow.org/
Shttps://keras.io/
Shttps://jupyter.org/
"https://numpy.org/
8https://pandas.pydata.org/
“https://matplotlib.org/
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4.2. Artifical Neural Networks

Loss functions As this is a regression task, both the mean absolute er-
ror (MAE) and mean squared error (MSE) were tested. Given N samples
with Y; being the true value of i-th sample and Y; the predicted value, the
MAE and MSE are given by

N
MAB(Y, V) = 3" [V - ¥, (4.4)
i=1
N 1 X N2
MSE(Y,Y) = 3~ (Yi - ¥) (45)

s
Il
—_

Activation functions Activation functions directly influence the shape of
the resulting curve. Three activation functions were considered, namely the
rectified linear unit (ReLU), exponential linear unit (ELU), and hyperbolic
tangent (tanh), given by the following equations:

ReLU(z) = max(0, x), (4.6)
f >0
ELU(z) = { " orr=s (4.7)
e’ —1, forx <0,
et —e”
tanh(z) = ——. 4.8
anh(a) = S (4.9

The output layer consists of a single layer and uses no activation function.

Optimizers TensorFlow implements a number of gradient descent optimiza-
tion algorithms. In [22], Goodfellow suggests using algorithms with adaptive
learning rates, e.g., AdaDelta, RMSProp, or Adam. This is in agreement
with Ruder in [2§], who considers Adam a reasonable choice. A process of
trial-and-error has shown Adam [29] to give the most consistent results.

Regularization As will be shown later, the tested ANN models showed
significant resistance to overfitting, with relatively fast convergence times and
high stability. Therefore, no explicit weight regularization was employed.

It can be seen from the histogram (figure ) that the distribution of the
velocities is heavily biased towards the lower values and the high speeds are
rather sparse. In order to make the network pay more attention to higher
velocities, sample weights were developed. Every sample’s contribution to-
wards the total loss gets scaled with its corresponding weAight, i.g., the total

loss J, given true values Yi,Ys,..., Yy, predictions Yl,Yg, ..., Yy, weights
w1y, ws, ..., wy, and a loss function L is equal to
1 .

J=—  L(Y,Y). 4.9

N L) (19)
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4. ESTIMATING THE FUNDAMENTAL DIAGRAM

As can be seen in figure , an exponential distribution with the parameter
A = 1/v, where v is the arithmetic mean of velocities, provides a reasonable
fit. Simple weights can be obtained by finding a mapping of this distribution
to a standard uniform distribution.

1 . _
P b ()

Weights obtained via equation cause a shift in the (weighted) histogram
towards higher velocities as intended (figure ) Whether or not to use
these weights will be considered a hyperparameter.

254

204

0.5

0.0

0.00 025  0.50 0.75 1.00 1.25 1.50 175  2.00
v

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

(a) Normalized histogram of velocities, fit (b) The weighted histogram of velocities.
by an exponential curve.

Figure 4.3: The effect of weights.

4.3 Model Implementation

The model implemented in this section will predict the velocity based on
only a single feature — the k-NN distance. The output will be a function
ﬁ(d_k) : R — R, the approximation of the fundamental diagram represented by
the trained neural network. Before training, further preprocessing of the data

will take place.

4.3.1 Preprocessing and Dataset Splitting

Data Cleanup The dataset contains points with falsely high velocity. This
happens in situations directly in front of the exit as the individual pedestri-
ans leave the room. When the way for them becomes clear, they drastically
accelerate because their perceived density rapidly drops. This leads to points
with low k-NN distance (high density) and high speed.

To make the learning more robust, attempts were made to discard these
points. The most effective one proved to be simply discarding all the rows
with k-NN distance smaller than the 0.001-quantile. This does not solve the
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4.3. Model Implementation

problem on a fundamental level, but it results in discarding the obvious out-
liers, thus making learning more stable. The discarded points are shown in
figure @.4.

1.75 4

1.50 4

1.25 4

1.00 A

0.75 A

0.50 A1

0.25 A

0.00 A1

5-NN distance

Figure 4.4: The data discarded via the 0.001-quantile (in orange) and a 10%
sample of the total data (blue).

Train-Test Split The next step is to divide the dataset into a training
set, a wvalidation set, and a test set. An obvious way used even in some of
the cited work is to randomly split the data into three disjunct subsets of
given size. However, this approach is not fit for the task in this thesis. The
individual data points from the same simulation run are heavily correlated, as
they contain entire trajectories. A simple nearest-neighbors regressor reaches
almost a perfect accuracy on the test set, while being clearly overfit(figure @)

To keep the individual sets independent, the data was randomly split on
a per-run basis, with the fraction being

train : val : test = 0.64 : 0.16 : 0.20

of the total runs, meaning that, for example, the test set contains 20% of
the total runs, rounded to the nearest integer. Since the runs with more
pedestrians contribute with more data points, in order to keep the fraction
of the actual data points in each set roughly the same as the fraction of
runs in said set (e.g., a 20% per-run split contains roughly 20% of the total
data points), the runs were divided into three groups based on the number of
pedestrians present, similarly to the classification in table @ The intervals
were slightly altered in order to keep the fractions more even. The split was
then done in each group separately and the resulting datasets were obtained
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1.50

1.25

1.00 4
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0.50

0.25 +

0.00

5-NN distance

Figure 4.5: The predictions of a KNN regressor (blue) the true values (black).

via the union of the sub-splits. With the dataset properly split, we can proceed
to training.

4.3.2 Training and Hyperparameter Tuning

The training is done in epochs. An epoch is a single pass over the entire dataset
(i.e., when the network sees each sample once). After every epoch, the dataset
is shuffled. TensorFlow divides the data into minibatches of size 32 (or less
in case of the last minibatch), computes the gradient of the loss function
over each minibatch and updates the parameters accordingly. The number
of epochs is determined by early stopping, with a patience of 5 epochs. This
means that the network monitors the validation loss and when this quantity
has not improved for more than 5 consecutive epochs, the training is halted
and the parameters corresponding to the lowest validation loss are recovered.
This is to prevent overfitting. The upper limit of the number of epochs is set
to 50, however, the training almost always finishes early.

With a reasonable learning rate, the training and validation errors almost
do not improve in time. An acceptable solution is often found after the first
epoch, and further training only causes slight improvements. This is not
surprising, as the task being solved is essentially simple curve fitting of a
continuous function of one variable.

Seeing that the training process is relatively fast, it is computationally ac-
ceptable to train the same network multiple times with different dataset splits
in order to judge the robustness of the model with respect to the randomness
introduced by random dataset splitting or the initial values of the weights.

Three different architectures were tested:
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4.3. Model Implementation

e “tiny” network — 1 hidden layer with 16 neurons
e “small” network — 2 hidden layers with 16x16 neurons

e “medium” network — 3 hidden layer with 32x32x32 neurons

Any further increase to the size of the network does not bring further improve-
ment. Since one one explanatory variable is present, it is possible to plot the
resulting curve.

The process of hyperparameter tuning was done using grid search — ex-
haustive testing of combinations from the cross product of given options. Both
the MAE and MSE were tracked as a metric for every model. To sum up, the
following hyperparameters were tested:

o activation € {ReLU, ELU, tanh}

e architecture € {tiny, small, medium }
o learning rate € {0.005,0.001,0.0005}
o loss € {MAE, MSE}

o weights € {true, false}

Since this amounts to more than 100 different models, the effect of the
learning rate and weights was tested separately on a baseline model. Learning
rates higher than 0.005 tend to underfit and finish with a linear model.

Other than the test loss, there are certain qualitative factors of the result-
ing curve that should be paid attention to:

e the behavior at low densities
e the behavior at high densities

e the variance of the curve with respect to dataset splitting

From our knowledge of the underlying model, we know that the pedes-
trians are modelled with v(%) ~ A(1.3,0.22). Therefore, it is desirable that
the resulting function converges to the value 1.3 at high k-NN distances, as
opposed to increasing indefinitely. At critically high densities, the predicted
velocity should be very close to zero. This means that the model should not be
influenced be the “falsely high velocity” points described in paragraph .
Finally, since the resulting test errors generally only differ slightly, the models
that show less variance with respect to data splits are preferred.

A complete set of plots containing the fitted functions can be found on
the attached USB. Samples of typical behavior are shown in figure @ The
following observations can be made:
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4. ESTIMATING THE FUNDAMENTAL DIAGRAM

e« The MAE and MSE achieved by the baseline Weidmann model are ap-
proximately 0.135 and 0.033 respectively.

e In the regions where most of the data points are situated, all the net-
works perform almost identically and in accordance with the Weidmann
model.

e The output of the “tiny” networks shows significant variance as the k-NN
distance grows.

e The shape of the resulting curves provided by the “small” and “medium”
does not qualitatively change, suggesting that the small network is com-
plex enough to capture the underlying relationship.

e The ELU and tanh activations perform similarly, while the “sharp edge”
of the ReLLU is clearly visible.

o Additionally, the ReLLU-curves tend to not reach zero and instead stay
parallel to the x-axis at a small value of v, suggesting that the ReLU
activation is not suited for this particular task.

« MSE models consistently reaches the desired value of (%) = 1.3 m/s in
high k-NN distances, while MAE models tend to slightly underestimate
this values, especially with tanh activation.

e The lowest overall MSE is achieved with a medium network, MSE loss,
and tanh activation, however, the differences are not significant enough
to declare one model superior.

The effect of the learning rate and the use of weights was investigated on a
small network, using the ELU activation, with both the MSE and MAE loss:

e The different learning rates do not have a major influence over the re-
sulting curve, neither in terms of shape nor convergence speed.

e The use of weights universally worsens the performance of the network,
causing them to overestimate the free flow velocity.

The next section concentrates on improving the prediction by introducing
extra features.

4.3.3 Improving the Prediction

There is substantial variance in the distribution of (v | d), as it is a micro-
scopic variable. The models in the previous section were trained to extract
the average macroscopic behavior, which is a function of the geometry and the
pedestrian composition. But when more explanatory variables are available,
better predictions are possible. For example, when processing a live camera

36



4.3. Model Implementation

feed, the immediate coordinates of each pedestrian can be extracted and used
in the prediction.

This section will work at reducing the prediction error by introducing
new features. Only the hyperparameters that proved effective in the previous
section will be considered. Additionally, a “large” architecture consisting of 4
layers with 128 x 128 x 128 x 128 neurons will be tested. In summary, the full
list of hyperparameters for this section is

o activation € {ELU, tanh},

o architecture € {small, medium, large},
o learning rate € {0.001},

e loss € {MSE},

o weights € {false}.

The training itself will not be modified, i.e., the effective number of epochs
will be decided via early stopping.

Relative positions The first added explanatory variable is the relative co-
ordinates of nearest neighbors, similarly to [2]. This could potentially give
the neural network the ability differentiate the pedestrians leading the crowd.
They travel at a high velocity despite their neighbors being relatively close-by.
The outliers that were dropped in paragraph are purposefully left in the
dataset — they are in_front of the crowd and their relative positions should
indicate that. Figure shows a sample of the predicted values and the true
values for each hyperparameter. The complete set is on the attached USB.
Both the test MAE and test MSE drop significantly with the introduction
of relative positions. The small architecture fails to detect the pedestrians
that sharply accelerate near the bottleneck. The medium and large network,
however, detects these situations and makes the prediction accordingly. The
lowest average MAE of 0.070 and MSE of 0.009 is achieved with the large
network using the ELU activation, with the standard deviations an order of
magnitude smaller. For comparison, the MAE and MSE achieved with the
standard Weidmann model is 0.131 and 0.031 respectively (the shift from the
values in the previous section is caused by the slightly larger dataset).

Relative distance to exit The second added variable is the relative dis-
tance to the exit. This enables the network to detect areas where the average
velocity tends to drop. The major disadvantage of this is that outside infor-
mation about the geometry is introduced into the system. Until this point, no
explicit properties of the measurement area were used. This is not necessarily
a bad thing. For practical purposes, specific calibration for a given geometry
is desirable, as long as it improves the overall performance of the model. It
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may even be necessary if the room is non-convex or contains obstacles the net-
work should know about. Figure @ illustrates the predicted values similarly
to previous paragraph.

Both the MAE and MSE have further dropped, suggesting that the extra
information about the geometry brought new information to the model. The
ELU activation outperforms tanh in every architecture.

In order to see how much of the geometry information has “leaked” into
the model, one can test the prediction on a dataset that has been horizontally
flipped, that is, for every point (z,y), the augmented dataset will contain the
the point (—z,y), with the d, and v staying the same. A network that has
been trained to recognize the relationship between density and speed should
be invariant to this transformation. Figure shows the predictions of both
the extended networks. The model that only uses the relative positions of
other pedestrians, while achieving worse scores, retains the general shape of
the relationship. On the other hand, the second model’s predictions com-
pletely break down and the output values are nonsensical. It is clear that the
introduction of extra geometry information played a major role in shaping the
predictions.

This could be combated by rotating each point (z,y) before training by a
random angle 6 using the rotation matrix

cosf —sind
R_<sin9 cosﬁ)’

thus forcing the network to only work with the distances, however, further
experiments are needed.

4.4 Experimental Data Validation

As was mentioned earlier, the trajectory data from [l] could not be obtained
in time for practical use. This section will discuss the extra steps required to
validate the trained models with experimental data.

Assuming trajectory files containing only the x and y coordinates of each
pedestrian in every point in time, the true velocities would have to be ap-
proximated. This can be done using the methods described in section ,
namely by equation @ An appropriate time window At would have to be
selected in order to minimize excessive fluctuations in time. The speed would
then be calibrated to match the selected units m/s.

With the speeds computed, the learning can proceed as with artificial data.
The video recording of the experiment & shows that the students involved in
the experiment formed a crowd denser than the one in simulations. This
would likely lead to a different slope of the resulting fundamental diagram.

Yhttps://wuw.youtube.com/watch?v=v1jtmqjZOMO
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4.5. Results and Discussion

Attempts to recreate highly dense crowds in JuPedSim proved difficult to
calibrate properly and led to excessive overlapping of pedestrians.

Further study of the experiment in [18] identified different “types” of pedes-
trians based on their strategies of navigating the crowd. This could potentially
be identified by the extended neural networks from the previous section, and
lead to further improvements over the FD models.

4.5 Results and Discussion

Using artificial data, several approximations of the fundamental diagram were
obtained. Purely in terms of the prediction error, the improvement over the
classical methods is not substantial, however, the qualitative shape of the
resulting curves provides a more accurate description of the true underlying
model. This can be illustrated by the fact that the Weidmann model fitted
by least squares visibly overestimates the value of the free flow speed.

An immediate disadvantage of the ANN-based models is that the param-
eters of the fitted model are not interpretable. Classical models given by
analytical equations have parameters with clear meanings and using the fun-
damental equation J = pv, it is easy to convert between different represen-
tations of the FD. With the neural network approach, this can only be done
numerically and the results may get very inaccurate as division by small num-
bers takes place. It remains to be seen how this approach adapts to more
complex geometries or different pedestrian compositions.

The introduction of additional features causes a drastic improvement in
the prediction accuracy. Since the input trajectories can be considered time
series data, specialized neural network architectures such as LSTMs may be
employed to further improve the precision of the model.
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Figure 4.6: Typical resulting curves based on hyperparameters. Each plot
contains five subsequent models trained on differently split datasets. The
dashed red curve is the Weidmann model and the horizontal dashed red line
#0the desired free-flow velocity 1.3 m/s.
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Figure 4.7: Samples of predictions by networks using relative positions of
nearest neighbors in addition to k-NN distance. The dashed red curve is the
Weidmann model and the horizontal dashed red line is the desired free-flow
velocity 1.3 m/s.
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Figure 4.8: Samples of predictions by networks using relative positions of
nearest neighbors as well as relative distance to exit. The dashed red curve is
the Weidmann model and the horizontal dashed red line is the desired free-flow
velocity 1.3 m/s.
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Figure 4.9: The predictions on a horizontally flipped dataset.
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Conclusion

The aim of this thesis was to present a data-driven approach to estimating
the relationship between the macroscopic variables of pedestrian flow. This
included

o getting acquainted with the basics of the vast field of pedestrian dynam-
ics and its parent field of traffic engineering,

e configuring a pedestrian simulation model and implementing a data
pipeline that automates the simulation process,

e using a state-of-the-art machine learning framework to create functional
neural network models,

o making practical predictions and interpreting the results, and
¢ identifying the weaknesses of this approach.

The practical part validated and expanded upon the work of researchers in
[2] and proposed questions for further research. The assignment also included
verifying the resulting models using real-world data. However, due to un-
foreseen circumstances, we were unable to obtain the experimental data. For
this reason, the methodology was described on a theoretical level, with the
practical validation being left an open topic for further work.

The classical methods of estimating the fundamental diagram have the
clear disadvantage that they are confined to a predetermined set of curves and
fail to consider the specific properties of each situations. The fundamental
diagram approximations obtained via the use of neural networks adapt to
the given geometry and the composition of the pedestrians automatically.
However, various questions remain unanswered, laying the ground for further
work. These include the generalization to different geometries, adding further
complexity to the explanatory variables, or validating the models using real
experimental data.
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APPENDIX A

Acronyms

ANN artificial neural network

BI-VZD “Vytézovani znalosti z dat” — FIT CTU data mining course
CA cellular automaton

CFM Centrifugal-force model

CTU Czech Technical University

ELU exponential linear unit

FD fundamental diagram

FIT Faculty of Information Technology
GCFM Generalized centrifugal-force model
k-NN k-nearest neighbors

LSTM Long short-term memory

MAE mean absolute error

MSE mean squared error

ReLU rectified linear unit

o1






APPENDIX B

|  JuPedSim

Contents of Enclosed USB

readme.BXb «vvvvviiiniiiniinnnannn the file with USB contents description

| Pythom......oooviiiiiiienniennn. the directory containing Python code
NOTEDOOKS « vttt IPython notebooks
Scripts....oovviiiinnnn Scripts that automate the simulation process

................................... simulation configuration files

| LaTeX.ovoeiiiennnnnnnn. the directory of IXTEX source codes of the thesis
Lthesis.pdf ................................. the thesis in PDF format
L DAtASEES t ettt e the artificial datasets used
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