
P-N Learning: Bootstrapping Binary Classifiers by Structural Constraints

Zdenek Kalal
University of Surrey

Guildford, UK
z.kalal@surrey.ac.uk

Jiri Matas
Czech Technical University

Prague, Czech Republic
matas@cmp.felk.cvut.cz

Krystian Mikolajczyk
University of Surrey

Guildford, UK
k.mikolajczyk@surrey.ac.uk

Abstract

This paper shows that the performance of a binary clas-
sifier can be significantly improved by the processing of
structured unlabeled data, i.e. data are structured if know-
ing the label of one example restricts the labeling of the
others. We propose a novel paradigm for training a binary
classifier from labeled and unlabeled examples that we call
P-N learning. The learning process is guided by positive
(P) and negative (N) constraints which restrict the label-
ing of the unlabeled set. P-N learning evaluates the clas-
sifier on the unlabeled data, identifies examples that have
been classified in contradiction with structural constraints
and augments the training set with the corrected samples
in an iterative process. We propose a theory that formu-
lates the conditions under which P-N learning guarantees
improvement of the initial classifier and validate it on syn-
thetic and real data. P-N learning is applied to the problem
of on-line learning of object detector during tracking. We
show that an accurate object detector can be learned from a
single example and an unlabeled video sequence where the
object may occur. The algorithm is compared with related
approaches and state-of-the-art is achieved on a variety of
objects (faces, pedestrians, cars, motorbikes and animals).

1. Introduction
Recently, there has been a significant interest in semi-

supervised learning, i.e. exploiting both labeled and unla-
beled data in classifier training [6, 24]. It has been shown
that for certain classes of problems, the unlabeled data can
dramatically improve the classifier. Most general learning
algorithms [17, 4] assume that the unlabeled examples are
independent. Therefore, such algorithms do not enable to
exploit dependencies between unlabeled examples which
might represent a substantial amount of information.

In computer vision, the data are rarely independent since
their labeling is related due to spatio-temporal dependen-
cies. The data with dependent labels will be called struc-

Figure 1. Using a single example (YELLOW), P-N learning builds
an object detector from video. The detector localizes the object in
significantly different poses (RED).

tured. For instance, in object detection, the task is to label
all possible image patches of an input image either as pos-
itive (object) or as negative (background). A unique object
can occupy at most one location in the input image. In a
video, the object location defines a trajectory, which is il-
lustrated in Fig. 2. The trajectory represents a structure of
the labeling of the video sequence. All patches close to the
trajectory share the same positive label, patches far from
the trajectory are negative. Another examples of structured
data are in the detection of object parts or in the multi-class
recognition of objects in a scene. In these cases, the label-
ing of the whole image can be constrained by predefined or
learned spatial configuration of parts/objects.

This paper proposes a new paradigm for learning from
structured unlabeled data. The structure in the data is ex-
ploited by so called positive and negative structural con-
straints, which enforce certain labeling of the unlabeled set.
Positive constraints specify the acceptable patterns of pos-
itive labels, i.e. patches close to the object trajectory are
positive. Negative constraints specify acceptable patterns
of negative labels, i.e. surrounding of the trajectory is nega-
tive. These constrains are used in parallel and we show that
their combination enables mutual compensation of their er-

49978-1-4244-6985-7/10/$26.00 ©2010 IEEE

T
ra

ck
er

co
n

fi
d

en
ce

0

1

validated trajectory drift

Time

Figure 2. A trajectory of an object represents a structure in video.
Patches close to the trajectory are positive (YELLOW), patches far
from the trajectory are negative, only the difficult negative exam-
ples are shown (RED). In training, the real trajectory is unknown,
but parts of it are discovered by a validated adaptive tracker.

rors. These constraints operate on the whole unlabeled set
and therefore exploit different source of information than
the classifier which operates on single examples only.

The availability of a small number of labeled examples
and a large number of structured unlabeled examples sug-
gest the following learning strategy: (i) Using the labeled
samples, train an initial classifier and adjust the predefined
constraints with the labeled data. (ii) Label the unlabeled
data by the classifier and identify examples which have been
labeled in contradiction with the structural constraints. (iii)
Correct their labels, add to the training set and retrain the
classifier. We call this bootstrapping process P-N learning.

The contribution of this paper is a formalization of the P-
N learning paradigm for off-line and on-line learning prob-
lems. We provide a theoretical analysis of the process and
specify conditions under which the learning guarantees im-
provement of the initial classifier. In the experimental sec-
tion, we apply the P-N learning to training an object detec-
tor during tracking. We propose simple yet powerful con-
straints that restrict the labeling of patches extracted from
video. Our learning method is processing the video se-
quence in real-time and the resulting detector achieves state-
of-the-art performance.

The rest of the paper is organized as follows. Sec. 2 re-
views the approaches for exploiting unlabeled data. Sec. 3
then formulates the P-N learning and discusses its conver-
gence. The theory is then applied to learning an object de-
tector from video in Sec. 4 and validated on synthetic data
in Sec. 5. The system will be compared with state-of-the-
art approaches and analyzed in detail in Sec. 6. The paper
finishes with conclusions and future work.

2. Exploiting unlabeled data
In semi-supervised learning, the processing of unlabeled

data is guided by some supervisory information [6]. This
information often takes a form of labels associated with

some of the examples. Another setting is to provide con-
straints [1] such as “these unlabeled points have the same
label”. This form of supervision is more general and en-
ables to express more complex relationships of the data.

Expectation-Maximization (EM) is an algorithm for find-
ing parameters of probabilistic models. In classification,
these parameters may correspond to class labels. EM maxi-
mizes the data likelihood and therefore works well for clas-
sification problems if the distribution of unlabeled examples
is low on boundary between classes. This is often called low
density separation assumption [6]. EM was successfully ap-
plied to document classification [17] and learning of object
categories [8]. EM is sometimes interpreted as a “soft” ver-
sion of self-learning [24].

Self-learning is probably the oldest approach for semi-
supervised learning [6]. It starts by training an initial clas-
sifier from a labeled training set, the classifier is then evalu-
ated on the unlabeled data. The most confident examples are
added along with the estimated labels to the training set and
the classifier is retrained, this is an iterative process. The
self-learning has been applied to human eye detection [20].
It was observed that the detector improved more if the unla-
beled data were selected by an independent measure rather
than the classifier confidence. This suggests that the low
density separation assumption is not satisfied for object de-
tection and other approaches may work better.

In co-training [4], the feature vector describing the ex-
amples is split into two parts, also called views. The train-
ing is initialized by training a separate classifier on each
view. Both classifiers are then evaluated on unlabeled data.
The confidently labeled samples from the first classifier are
used to augment the training set of the second classifier
and vice versa in an iterative process. The underlying as-
sumption of co-training is that the two views are statisti-
cally independent. This assumption is satisfied in problems
with two modalities, e.g. text classification [4] (text and
hyperlinks) or biometric recognition systems [19] (appear-
ance and voice). In visual object detection, co-training has
been applied to car detection in surveillance [14] or mov-
ing object recognition [10]. We argue that co-training is
not a good choice for object detections, since the examples
(image patches) are sampled from a single modality. Fea-
tures extracted from a single modality may be dependent
and therefore violate the assumptions of co-training. An-
other disadvantage of co-training is that it can not exploit
the data structure as each example is considered to be inde-
pendent.

Learning that exploits the structure of the data is related
to adaptive object tracking, i.e. estimating object location in
frame-by-frame fashion and adaptation of the object model.
The object to be tracked can be viewed as a single labeled
example and the video as unlabeled data. Many authors per-
form self-learning [9, 2, 7, 15]. This approach predicts the

50

Training

Structural
Constraints

Classifier

Xu

Training
Set

(X ,Y)l l

+

Yu

q(X ,Y)t t

(X ,Y)c c

(iii)

(i)

(vi)

(ii)

Figure 3. P-N learning first trains a classifier from labeled data
and then iterates over: (i) labeling of the unlabeled data by the
classifier, (ii) identification and relabeling of examples which la-
bels violate the structural constraints, (iii) extension of the training
set, (iv) retraining of the classifier.

position of the object with a tracker and updates the model
with positive examples that are close and negative exam-
ples that are far from the current position. The strategy
is able to adapt the tracker to new appearances and back-
ground, but breaks down as soon as the tracker makes a
mistake. This problem is addressed in [22] by co-training
a generative and discriminative classifiers in the context of
tracking. The tracking algorithm demonstrated re-detection
capability and scored well in comparison with self-learned
trackers on challenging video sequences. Another example
is MIL learning [3], where the training examples are de-
livered by spatially related units, rather than independent
training examples. In [12], a tracking algorithm was pro-
posed that combines adaptive tracking with object detec-
tions. The learning is based on so called growing and prun-
ing events. The approach demonstrated robust tracking per-
formance in challenging conditions and partially motivated
our research.

3. P-N Learning
This section formalizes the off-line version of P-N learn-

ing and later generalizes it to on-line learning problem. Let
x be an example from a feature-space X and y be a label
from a label-space Y = {−1, 1}. A set of examples X and
corresponding set of labels Y will be denoted as (X,Y) and
called a labeled set. The task of P-N learning is to learn a
classifier f : X → Y from a priori labeled set (Xl, Yl)
and bootstrap its performance by unlabeled data Xu. The
illustration of the P-N learning approach discussed in this
section is given in Fig. 3.

3.1. Classifier bootstrapping

The classifier f is a function from a family F
parametrized by θ. Similarly to supervised setting, P-N

learning of the classifier corresponds to estimation θ from
training set (Xt, Yt) with one exception: the training set
is iteratively augmented by examples extracted by the con-
straints from the unlabeled data. The training process is
initialized by inserting the a priori labeled examples to the
training set, and by estimation of the initial classifier param-
eters θ0. The process then proceeds iteratively. In iteration
k, the classifier trained in k − 1 assigns labels to the unla-
beled examples, yku = f(xu|θk−1) for all xu ∈ Xu. Notice
that the classifier operates on one example at a time only.
The constraints are then used to verify if the labels assigned
by the classifier are in line with the assumptions made about
the data. The example labels that violate the constraints are
corrected and added to the training set. The iteration is fin-
ished by retraining the classifier with the updated training
set. This procedure iterates until convergence or other stop-
ping criterion. Throughout the training, any example can
be selected by the constraints multiple times and therefore
can be represented in the training set repeatedly even with a
different label.

3.2. Constraints

A constraint can be any function that accepts a set of
examples with labels given by the classifier (Xu, Y

k
u) and

outputs a subset of examples with changed labels (Xk
c , Y

k
c).

P-N learning enables to use an arbitrary number of such
constraints. Two categories of constraints are distinguished
that we term P and N. P-constraints are used to identify ex-
amples that have been labeled negative by the classifier but
the constraints require a positive label. In iteration k, P-
constraints add n+(k) examples to the training set with la-
bels changed to positive. These constraints extend the pool
of positive training examples and thus improve the general-
ization properties of the classifier. N-constraints are used to
identify examples that have been classified as positive but
the constraints require negative label. In iteration k, the N-
constraints insert n−(k) negative examples to the training
set. These constraints extend the pool of negative training
examples and thus improve its discriminative properties of
the classifier.

The impact of the constraints on the classifier quality will
be now analyzed analytically. Suppose a classifier that as-
signs random labels to the unlabeled set and then corrects its
assignment according to the output of the constraints. The
constraints correct the classifier, but in practice also intro-
duce errors by incorrectly relabeling some examples. In it-
eration k, the error of a classifier is characterized by a num-
ber of false positives α(k) and a number of false negatives
β(k). Let n+

c (k) be the number of examples for which the
label was correctly changed to positive in iteration k by P-
constraint. n+

f (k) is then the number of examples for which
the label was incorrectly changed to positive in iteration k.
Thus, P-constraints change n+(k) = n+

c (k) + n+
f (k) ex-

51

amples to positive. In a similar way N-constraints change
n−(k) = n−

c (k) + n−
f (k) examples to negative, where

n−
c (k) are correct and n−

f (k) false assignments. The errors
of the classifier thus become:

α(k + 1) = α(k)− n−
c (k) + n+

f (k) (1a)

β(k + 1) = β(k)− n+
c (k) + n−

f (k). (1b)

Equation 1a shows that false positives α(k) decrease if
n−
c (k) > n+

f (k), i.e. number of examples that were cor-
rectly relabeled to negative is higher than the number of
examples that were incorrectly relabeled to positive. Simi-
larly, the false negatives β(k) decrease if n+

c (k) > n−
f (k).

In order to analyze the convergence, a model needs to
be defined that relates the quality of P-N constraints to
n+
c (k), n

+
f (k), n

−
c (k) and n−

f (k).
The quality of the constraints is characterized by four

measures. P-precision is the number of correct positive ex-
amples divided by total number of samples output by P-
constraints, P+ = n+

c /(n
+
c + n+

f). P-recall is the number
of correct positive examples divided by number of false neg-
atives, R+ = n+

c / β. N-precision is the number of correct
negative examples divided by number of all examples out-
put by N-constraints, P− = n−

c /(n
−
c +n−

f). N-recall is the
number of correct negative examples divided by total num-
ber of false positives, R− = n−

c /α. We assume here that
the constraints are characterized by fixed measures through-
out the training, and therefore the time index was dropped
from the notation.

The number of correct and incorrect examples at itera-
tion k are then expressed as follows:

n+
c (k) = R+ β(k), n+

f (k) =
(1− P+)

P+
R+ β(k) (2a)

n−
c (k) = R− α(k), n−

f (k) =
(1− P−)

P− R− α(k). (2b)

By combining the equation 1a, 1b, 2a and 2b we obtain
α(k + 1) = (1 − R−)α(k) + (1−P+)

P+ R+ β(k) and β(k +

1) = (1−P−)
P− R− α(k) + (1 − R+)β(k). After defining

the state vector x⃗(k) =
[
α(k) β(k)

]T
and the transition

matrix as

M =

[
1−R− (1−P+)

P+ R+

(1−P−)
P− R− (1−R+)

]
, (3)

it is possible to rewrite the equations as x⃗(k+1) = Mx⃗(k).
These are recursive equations that correspond to a discrete
dynamical system [23].

Based on the well founded theory of dynamical systems,
the state vector x⃗ converges to zero if eigenvalues λ1, λ2 of
the transition matrix M are smaller than one. Constraints
that satisfy this conditions will be called error-canceling.
Fig. 4 illustrates the evolution of error of the classifier when
λ1 = 0 and (i) λ2 < 1, (ii) λ2 = 1, (iii) λ2 > 1.

l1
=0, l2< 1

a

b b b

a a

l1
=0, l2=1 l1

=0, l2> 1

Figure 4. The evolution of errors of the classifier depends on the
quality of the structural constraints, which is defined in terms of
eigenvalues of matrix M. The errors converge to zero (LEFT), are
at the edge of stability (MIDDLE) or are growing (RIGHT).

The matrix M represents a linear transformation of the
2D space of classifier errors, the eigenvalues can be inter-
preted as scaling along the dimensions defined by eigenvec-
tors. If the scaling is smaller than one, the errors are reduced
in every iteration. In practice, it may be not possible to iden-
tify all the errors of the classifier. Therefore, the training
does not converge to error-less classifier, but may stabilize
at a certain level. Based on the analysis, we further conclude
that it is possible to combine imperfect constraints such that
their errors are canceling. P-N learning does not put any
requirement on the quality of individual constraints, even
constraints with very low precision (close to zero) might be
used as long as the matrix M has eigenvalues smaller than
one.

On-line P-N Learning. In many problems, the unlabeled
data Xu are not known before training, but rather come se-
quentially. Let X̂k

u be a set of unlabeled samples that is
revealed in time k. All unlabeled data seen so far are then
defined as Xk

u = {X̂i
u}i=1:k. On-line P-N learning works

in a similar way to off-line version with one exception that
there is an increasingly larger unlabeled set at disposal. The
convergence analysis holds for both off-line and on-line ver-
sions.

4. Learning an Object Detector from Video
This section describes an application of P-N learning to

the following problem: given a single example of an ob-
ject, learn an object detector on-line from unlabeled video
sequence. This problem will be formalized as on-line P-
N learning, where an iteration of the learning process cor-
responds to discretized time and a frame in time k corre-
sponds to the unlabeled data X̂k

u .

Classifier. Object detectors are algorithms, that decide
about presence of an object in an input image and determine
its location. We consider type of real-time detectors that are
based on a scanning window strategy [21]: the input image
is scanned across positions and scales, at each sub-window
a binary classifier decides about presence of the object.

52

Mean > 50%

Background

ObjectPosteriorsScanning window Features

Figure 5. A detector based on scanning window and randomized
fern forrest classifier. The training and testing is on-line. We use
the following setting of the detector: 10,000 windows are scanned,
10 ferns per window, 10 features ≡ 410 posteriors per fern.

The randomized forest classifier [5] was adapted because
of its speed, accuracy and possibility of incremental update.
Our classifier consists of a number a ferns [18] (simplified
trees) that are evaluated in parallel on each patch. Each fern
i takes a number of measurements on the input patch re-
sulting in feature vector xi which points to the leaf-node
with posterior probability Pr(y = 1|xi). The posteriors
from all ferns are averaged and the classifier outputs posi-
tive response if the average is bigger than 50%. The mea-
surements taken by each fern are randomly generated a pri-
ori and stay unchanged [13] throughout the learning. We
adopted 2bit Binary Patterns [12] because of their invari-
ance to illumination and efficient multi-scale implementa-
tion using integral images. The posteriors Pr(y = 1|xi)
represent the internal parameters θ of the classifier and
are estimated incrementally throughout the learning pro-
cess. Each leaf-node records the number of positive p and
negative n examples that fell into it during training. The
posterior is computed by maximum likelihood estimator,
Pr(y = 1|xi) = p/(p + n), or is set zero if the leaf is
empty.

Training of the initial classifier is performed in the first
frame. The posteriors are initialized to zero and are updated
by 300 positive examples generated by affine warping of the
selected patch [13, 18]. The classifier is then evaluated on
all patches. The detections far from the target represent the
negative examples and update the posteriors. This approach
to extraction of negative training examples is closely related
to bootstrapping [11] and stems from the fact that the class
priors are highly asymmetric, Pr(y = −1) ≫ Pr(y = 1).

Constraints. To explain P-N constraints for on-line de-
tector learning, the application scenario is illustrated in
Fig. 2. Every patch extracted from the video represents an
unlabeled example. Patches within one image are related
spatially, i.e. have spatial structure. The patches are also
related from one frame to another, i.e. have temporal struc-
ture. Therefore knowing a label of a single patch, for ex-
ample the one selected in the first frame, allows to draw a
hypothesis about the labels of other patches. The constraints
that will be introduced are based on fact that a single object
appears in one location only and therefore its trajectory de-

fines a curve in the video volume. This curve is not continu-
ous due to frame-cuts or low-frame-rate, or even not defined
if the object is not present. Parts of the curve are given by
an adaptive Lucas-Kanade [16] tracker which follows the
selected object from frame to frame. Since the tracker may
drift away it is essential to estimate, when the tracker was
following the object correctly. For this purpose a confidence
of the tracker is defined as NCC between the tracked patch
and the patch selected in the first frame. The continuous
trajectory is considered correct if the last frame of the tra-
jectory has higher confidence than 80%. If the trajectory is
validated it triggers the application of the P-N constraints
that exploit the structure of the data. P-constraints require
that all patches that are close to validated trajectory have
positive label. N-constraints require all patches in surround-
ing of a validated trajectory have negative label. Notice, that
the appearance of the positive patches is not restricted but
they are added to the training set as a consequence of dis-
covered trajectory in the unlabeled data. Negative examples
found in the surrounding naturally discriminate against dif-
ficult clutter or objects from the same class.

Processing of a video sequence. The P-N learning is ini-
tialized in the first frame by learning the Initial Detector
and setting the initial position of the LK tracker. For each
frame, the detector and the tracker find the location(s) of
the object. The patches close to the trajectory given by the
tracker and detections far away from this trajectory are used
as positive and negative examples, respectively. If the tra-
jectory is validated these examples are used to update the
detector. However, if there is a strong detection far away
from the track, the tracker is re-initialized and the collected
examples discarded. The trajectory of the tracker is denoted
as P-N Tracker, since it is re-initialized by a detector trained
by online P-N learning. The detector that is obtained after
processing all frames of the sequence is called Final Detec-
tor.

Evaluation. The performance of the detectors and the
tracker is evaluated using standard precision P , recall R and
f-measure F statistics. P is the number of correct detections
divided by number of all detections, R is the number of cor-
rect detections divided by the number of object occurrences
that should have been detected. F combines these two mea-
sures as F = 2PR/(P + R). A detection was considered
to be correct if its overlap with ground truth bounding box
was larger than 50%.

Setting the classifier parameters. The classifier has two
parameters that determine its accuracy and speed: number
of ferns in the forest and number of features measured in
each fern (depth). Performance of randomized forest in-
creases with more trees [5], but the speed drops linearly. In

53

our experiments we use 10 ferns, which is found as a sat-
isfying compromise for most of the objects tested in this
paper. The number of features in each fern determines the
classifier discriminability. A single 2bit Binary Pattern out-
puts 4 possible values, if d features are used, the number of
leaf-nodes in each fern is 4d. We were using depths in the
range from d = 6 : 10 in our experiments, and observed
very similar behavior for all of them. For the sake of con-
sistency, the depth is fixed d = 10 throughout the paper, but
this choice is not critical.

5. Analysis of P-N Learning on Synthetic Data
In this experiment, an object detector will be trained on

a real sequence with simulated P-N constraints. The sim-
ulation allows to analyze the learning performance for an
arbitrary error of the constraints. The purpose of the exper-
iment is to demonstrate that the initial classifier is improved
if the P-N constraints are error-canceling.

As discussed in section 3.2, the constraints are error-
canceling if the eigenvalues of matrix M are smaller
than one. Matrix M depends on four parameters,
P+, R+, P−, R−. To reduce this 4D space of parameters,
we analyze the system performance at equal error rate. The
parameters are set to P+ = R+ = P− = R− = 1 − ϵ,
where ϵ represents error of the constraints. The matrix
then becomes M = ϵI, where I is a 2x2 matrix with all
elements equal to 1. The eigenvalues of this matrix are
λ1 = 0, λ2 = 2ϵ. Therefore the P-N learning will be im-
proving the performance if ϵ < 0.5. In this experiment, the
error is varied in the range ϵ = 0 : 0.9.

For evaluation we used sequence 6 from Fig. 8. The con-
straints were generated as follows. Suppose in frame k, the
classifier generates β(k) false negatives. P-constraints rela-
bel n+

c (k) = (1 − ϵ)β(k) of them to positive which guar-
antees R+ = 1 − ϵ. In order to satisfy the requirement
precision P+ = 1− ϵ, the P-constraints relabels additional
n+
f (k) = ϵ β(k) background samples to positive. Therefore

the total number of examples relabeled to positive in itera-
tion k is n+ = n+

c (k) + n+
f (k) = β(k). The N-constraints

were generated analogically.
The performance of the detector as a function of num-

ber of processed frames is depicted in Fig. 6. Notice that
if ϵ ≤ 0.5 the performance of the detector increases with
more training data. In general, ϵ = 0.5 will give unstable
results although in this sequence it leads to improvements.
Increasing the noise-level further leads to sudden degrada-
tion of the classifier. This simulation results are in line with
the theory.

The error-less P-N learning (ϵ = 0) is analyzed in more
detail. In this case all classifier errors are identified and no
miss-labeled examples are added to the training set. Three
different classifiers were trained using: (i) P-constraints, (ii)
N-constraints, (iii) P-N constraints. The classifier perfor-

0 1000

0

1

Number of Frames Processed

F
-M

e
a
s
u

r
e

0.0

0.5

0.6

0.9

Figure 6. Performance of a detector as a function of the number
of processed frames. The detectors were trained by synthetic P-N
constraints with certain level of error. The classifier is improved
up to error 50% (BLACK), higher error degrades it (RED).

0 1000
0

1

P
r
e
c
is

io
n

Frames 0 1000
0

1

R
e
c
a

ll

Frames 0 1000
0

1

F
-M

e
a

s
u

r
e

Frames

P

N

P-N

Figure 7. Performance of detectors trained by error-less P-
constraints, N-constraints and P-N constraints measured by pre-
cision (LEFT), recall (MIDDLE) and f-measure (RIGHT). Even
perfect P or N constraints, on their own, generate classifier errors.

mance was measured using precision, recall and f-measure
and the results are shown in Fig. 7. Precision (LEFT) is de-
creased by P-constraints since only positive examples are
added to the training set, these cause the classifier to be too
generative. Recall (MIDDLE) is decreased by N-constraints
since these add only negative examples and cause the clas-
sifier to be too discriminative. F-Measure (RIGHT) shows
that using P-N filters together works the best. Notice, that
even error-less constraints cause classification errors if used
individually, which leads to low precision or low recall of
the classifier. Both precision and recall are high if the P-N
constraints are used together since the errors are mutually
compensating.

6. Experiments on Real Data
Learning of an object detector is tested on 10 video se-

quences illustrated in Fig. 8. The sequences contain various
objects in challenging conditions that include abrupt cam-
era motion, motion blur, appearance change and partial or
full occlusions. All sequences have been processed with the
same parameter setting as discussed in Sec. 4. The output
of each experiment is the initial and final detector and the
trajectory given by the P-N tracker.

Evaluation of P-N Tracker. Sequences 1-6 were used
in [22] for comparison of recent tracking systems [15, 7,

54

Sequence Frames [15] [7] [2] [3] [22] P-N Tracker
1. David 761 17 n/a 94 135 759 761
2. Jumping 313 75 313 44 313 313 313
3. Pedestrian 1 140 11 6 22 101 140 27
4. Pedestrian 2 338 33 8 118 37 240 338
5. Pedestrian 3 184 50 5 53 49 154 184
6. Car 945 163 n/a 10 45 802 945

Table 1. Comparison with recent tracking methods in terms of the
frame number after which the tracker doesn’t recover from failure.

2, 22], this experiment adds [3] and our P-N tracker. The
performance measure is the frame number after which the
system does not recover from failure. Table 1 shows the re-
sulting performance. In 5 out of 6 videos the P-N tracker
is able to track the object up to the end of the sequence. In
sequence 3, the P-N tracker fails after frame 27, while [3] is
able to track up to frame 101 and [22] up to 140. This video
shows abrupt camera motions and the Lucas-Kanade tracker
fails quickly, therefore the P-constraints did not identify suf-
ficient number of training examples to improve the initial
detector and it was not able to recover the tracker from its
failure.

Detailed performance analysis of the P-N learning is
performed on all 10 sequences from Fig. 8. The perfor-
mance of the initial detector, final detector and the P-N
tracker is measured using precision, recall and f-measure.
Next, the P-N constraints are measured by P+, R+, P− and
R− averaged over time.

Table 2 (3rd column) shows the resulting scores of the
initial detector. This detector has high precision for most
of the sequences with exception of sequence 9 and 10. Se-
quence 9 is very long (9928 frames) there is a significant
background clutter and objects similar to the target (cars).
Recall of the initial detector is low for the majority of se-
quences except for sequence 5 where the recall is 73%. This
indicates that the appearance of the object does not vary sig-
nificantly. The scores of the final detector are displayed in
the 4th column of the Table 2. The recall of the detector
was significantly increased with little drop of precision. In
sequence 9, even the precision was increased from 36% to
90%, which shows that the false positives of the initial clas-
sifier were identified by N-constraints and corrected. Most
significant increase of the performance is for sequences 7-
10 which are the most challenging of the whole set. The ini-
tial detector fails here but for the final detector the f-measure
in the range of 25-83%! This demonstrates the benefit of P-
N learning. The 5th column evaluates the P-N tracker. Its
precision is typically lower than precision of the final de-
tector, since the entire trajectory of the tracker was consid-
ered for evaluation, including drifts. In sequences 1 and 4
the tracker significantly outperforms the final detector. This
shows that the tracker was following the object correctly
but its trajectory was not validated by the constraints. In-

teresting observation is from sequences 2,3,7 and 8 where
the tracker gives lower scores than the final detector. This
demonstrates that even less reliable tracker is able to train
an accurate detector in P-N learning.

Sequences 7 and 8 have been used in [12] and the fol-
lowing results were reported. Performance of tracker in se-
quence 7: 0.88/0.82/0.85, sequence 8: 0.96/0.54/0.69. The
results are comparable to ours (Table 2, row 7-8, column 5).

The last three columns of Table 2 report the performance
of P-N constraints. Both constraints have precision higher
than 60% except for sequence 10 which has P-precision
just 31%. Recall of the constraints is in the range of 2-
78%. The last column shows the corresponding eigenval-
ues of matrix M. Notice that all eigenvalues are smaller
than one. This demonstrates that the proposed constraints
work across different scenarios and lead to improvement of
the initial detector. The larger these eigenvalues are, the
less the P-N learning improves the performance. For ex-
ample in sequence 10 one eigenvalue is 0.99 which reflects
poor performance of the P-N constraints. The target of this
sequence is a panda, which changes its pose throughout the
sequence. Lucas-Kanade and NCC are not very reliable in
this scenario, but still P-N learning exploits the information
provided by the tracker and improves the detector.

Conclusions
P-N learning, a novel approach for processing of labeled

and unlabeled examples, has been proposed. The under-
lying assumption of the learning process is that the unla-
beled data are structured. The structure of the data is ex-
ploited by positive and negative constraints that restrict the
labeling of the unlabeled data. These constraints provide a
feedback about the performance of the classifier which is
iteratively improved in a bootstrapping fashion. We have
formulated conditions under which the P-N learning guar-
antees improvement of the classifier. The conditions have
been validated on synthetic and real data.

The P-N learning has been applied to the problem of on-
line learning of an object detector from a single example and
an unlabeled video sequence. We have proposed novel con-
straints that exploit the spatio-temporal properties of a video
and demonstrated that they lead to significant improvement
of the detector for variety of objects and conditions. Since
the learning runs on-line (at 20 fps), the system has been
compared with relevant tracking algorithms and state-of-
the-art results have been achieved.

The formalized P-N learning theory enables to guide the
design of structural constraints that satisfy the requirements
on the learning stability. We believe that designing of more
sophisticated structural constraints is a promising direction
for future research.

55

1. David 2. Jumping 3. Pedestrian 1 4. Pedestrian 2 5. Pedestrian 3

6. Car 8. Volkswagen 9. Car Chase 10. Panda7. Motocross

Figure 8. Sample images from evaluation sequences with objects marked. Full videos with ground truth are available online.

Sequence Frames Initial Detector Final Detector P-N Tracker P-constraints N-constraints Eigenvalues
Precision / Recall / F-measure Precision / Recall / F-measure Precision / Recall / F-measure P+, R+ P−, R− λ1, λ2

1. David 761 1.00 / 0.01 / 0.02 1.00 / 0.32 / 0.49 0.94 / 0.94 / 0.94 1.00 / 0.08 0.99 / 0.17 0.92 / 0.83
2. Jumping 313 1.00 / 0.01 / 0.02 0.99 / 0.88 / 0.93 0.86 / 0.77 / 0.81 0.86 / 0.24 0.98 / 0.30 0.70 / 0.77
3. Pedestrian 1 140 1.00 / 0.06 / 0.12 1.00 / 0.12 / 0.22 0.22 / 0.16 / 0.18 0.81 / 0.04 1.00 / 0.04 0.96 / 0.96
4. Pedestrian 2 338 1.00 / 0.02 / 0.03 1.00 / 0.34 / 0.51 1.00 / 0.95 / 0.97 1.00 / 0.25 1.00 / 0.24 0.76 / 0.75
5. Pedestrian 3 184 1.00 / 0.73 / 0.84 0.97 / 0.93 / 0.95 1.00 / 0.94 / 0.97 0.98 / 0.78 0.98 / 0.68 0.32 / 0.22
6. Car 945 1.00 / 0.04 / 0.08 0.99 / 0.82 / 0.90 0.93 / 0.83 / 0.88 1.00 / 0.52 1.00 / 0.46 0.48 / 0.54
7. Motocross 2665 1.00 / 0.00 / 0.00 0.92 / 0.32 / 0.47 0.86 / 0.50 / 0.63 0.96 / 0.19 0.84 / 0.08 0.92 / 0.81
8. Volkswagen 8576 1.00 / 0.00 / 0.00 0.92 / 0.75 / 0.83 0.67 / 0.79 / 0.72 0.70 / 0.23 0.99 / 0.09 0.91 / 0.77
9. Car Chase 9928 0.36 / 0.00 / 0.00 0.90 / 0.42 / 0.57 0.81 / 0.43 / 0.56 0.64 / 0.19 0.95 / 0.22 0.76 / 0.83
10. Panda 3000 0.79 / 0.01 / 0.01 0.51 / 0.16 / 0.25 0.25 / 0.24 / 0.25 0.31 / 0.02 0.96 / 0.19 0.81 / 0.99

Table 2. Performance analysis of P-N learning. The Initial Detector is trained on the first frame only. The Final Detector is obtained by P-N
learning after one pass through the sequence. The P-N Tracker is the adaptive Lucas-Kanade tracker re-initialized by the on-line trained
detector. The last three columns display internal statistics of the training process, for explanation of the variables see Section 3.

Acknowledgment. This research was supported by UK EPSRC
EP/F0034 20/1 and the BBC R&D grants (ZK, KM) and by Czech
Science Foundation project 102/07/1317 (JM).

References
[1] Y. Abu-Mostafa. Machines that learn from hints. Scientific American,

272(4):64–71, 1995. 2
[2] S. Avidan. Ensemble tracking. PAMI, 29(2):261–271, 2007. 2, 7
[3] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with on-

line multiple instance learning. CVPR, 2009. 3, 7
[4] A. Blum and T. Mitchell. Combining labeled and unlabeled data with

co-training. COLT, 1998. 1, 2
[5] L. Breiman. Random forests. ML, 45(1):5–32, 2001. 5
[6] O. Chapelle, B. Schölkopf, and A. Zien, editors. Semi-Supervised

Learning. MIT Press, Cambridge, MA, 2006. 1, 2
[7] R. Collins, Y. Liu, and M. Leordeanu. Online selection of discrimi-

native tracking features. PAMI, 27(10):1631–1643, 2005. 2, 7
[8] R. Fergus, P. Perona, and A. Zisserman. Object class recognition by

unsupervised scale-invariant learning. CVPR, 2, 2003. 2
[9] H. Grabner and H. Bischof. On-line boosting and vision. CVPR,

2006. 2
[10] O. Javed, S. Ali, and M. Shah. Online detection and classification

of moving objects using progressively improving detectors. CVPR,
2005. 2

[11] Z. Kalal, J. Matas, and K. Mikolajczyk. Weighted sampling for large-
scale boosting. BMVC, 2008. 5

[12] Z. Kalal, J. Matas, and K. Mikolajczyk. Online learning of robust
object detectors during unstable tracking. OLCV, 2009. 3, 5, 7

[13] V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time
keypoint recognition. CVPR, 2005. 5

[14] A. Levin, P. Viola, and Y. Freund. Unsupervised improvement of
visual detectors using co-training. ICCV, 2003. 2

[15] J. Lim, D. Ross, R. Lin, and M. Yang. Incremental learning for visual
tracking. NIPS, 2005. 2, 7

[16] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. IJCAI, 81:674–679, 1981. 5

[17] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classifi-
cation from labeled and unlabeled documents using EM. Machine
learning, 39(2):103–134, 2000. 1, 2

[18] M. Ozuysal, P. Fua, and V. Lepetit. Fast keypoint recognition in ten
lines of code. CVPR, 2007. 5

[19] N. Poh, R. Wong, J. Kittler, and F. Roli. Challenges and research
directions for adaptive biometric recognition systems. ICAB, 2009.
2

[20] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised
self-training of object detection models. WACV, 2005. 2

[21] P. Viola and M. Jones. Rapid object detection using a boosted cas-
cade of simple features. CVPR, 2001. 4

[22] Q. Yu, T. Dinh, and G. Medioni. Online tracking and reacquisition
using co-trained generative and discriminative trackers. ECCV, 2008.
3, 6, 7

[23] K. Zhou, J. Doyle, and K. Glover. Robust and optimal control. Pren-
tice Hall Englewood Cliffs, NJ, 1996. 4

[24] X. Zhu and A. Goldberg. Introduction to semi-supervised learning.
Morgan & Claypool Publishers, 2009. 1, 2

56

