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Abstract—In many retrieval, object recognition, and wide-baseline stereo methods, correspondences of interest points (distinguished

regions) are commonly established by matching compact descriptors such as SIFTs. We show that a subsequent cosegmentation

process coupled with a quasi-optimal sequential decision process leads to a correspondence verification procedure that 1) has high

precision (is highly discriminative), 2) has good recall, and 3) is fast. The sequential decision on the correctness of a correspondence is

based on simple statistics of a modified dense stereo matching algorithm. The statistics are projected on a prominent discriminative

direction by SVM. Wald’s sequential probability ratio test is performed on the SVM projection computed on progressively larger

cosegmented regions. We show experimentally that the proposed sequential correspondence verification (SCV) algorithm significantly

outperforms the standard correspondence selection method based on SIFT distance ratios on challenging matching problems.

Index Terms—Correspondence, matching, verification, sequential decision, growing, cosegmentation, stereo, image retrieval,

learning.

Ç

1 INTRODUCTION

MANY successful image retrieval, object recognition, and
wide-baseline stereo methods exploit correspon-

dences of distinguished regions.1 Most real-world visual
recognition problems are large scale, where correspon-
dences between regions from a query (test) image and many
database (training) images of objects or scenes are sought.
To achieve acceptable response times, large problems
require the time complexity of the region matching process
to be sublinear in the size of the database; the memory
footprint of the database representation becomes a concern
too. The standard solution is to describe regions with a
compact descriptor such as SIFT [1] or some discretization
of it (e.g., “visual words” [2]), and to store database image
representations in a search tree (k-d [1], metric [3], and k-
means [4], [5], [6]).

The matching process typically proceeds as follows [7], [8],
[1]: Distinguished regions are detected in the image and local
affine or similarity covariant coordinate frames are con-
structed for each region. Measurement regions, i.e., image
patches of typically rectangular or elliptical shape, are
specified in terms of the local coordinate frames. For each
region, a descriptor (such as SIFT) is computed from the
signal in the measurement region, after both photometric and

geometric normalization. Additionally, the descriptor may
be compressed by quantization.

This process, schematically visualized in Fig. 2, has the
following main characteristics: 1) All steps are performed in
individual images independently, 2) the shape and size of
the measurement region are a fixed function of the shape
and size of the distinguished region, and 3) the descriptor
has the same form for all regions, e.g., it is a vector in Rd.
These properties facilitate fast sublinear region matching,
e.g., via search tree or hashing.

However, the fixed size and shape of the measurement
region necessarily involve a compromise. In general, the
larger the measurement region, the more discriminative the
information inside is. On the other hand, large measure-
ment regions may violate the local planarity assumption of
wide-baseline matching methods, and are more likely to
straddle object boundary or to be affected by occlusion.
Moreover, they are more sensitive to localization errors of
local frames. For “noncompact” objects, such as elongated
and wiry ones, the compact fixed shape is problematic.

Consider, for instance, the two images depicted in Fig. 3a.
Only a very small circular or rectangular region around the
distinguished region on the branch will not include signal
from the background, which is different for the two views.
On the other hand, consider the images shown in Fig. 3b.
The measurement region inside the circle is too small since
any descriptor computed from the region will be close to
identical for both images on the right—the correct match
cannot be reliably established.

A better estimate of correspondence quality (a prediction
of it being correct) can be obtained by looking at both test
and training images simultaneously, e.g., by attempting to
expand the correspondence domains, which is illustrated in
Fig. 1. The value of correspondence growing methods has
been demonstrated in [9] and [10], sometimes with
impressive results, e.g., those achieved by the dual-boot-
strap method [11], [12]. Most approaches to simultaneous
cosegmentation and registration focus on the problem of
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1. Terms “transformation-covariant regions,” “viewpoint invariant
features,” “interest points,” “salient points,” and “patches” also appear in
the literature. We adopt the term “distinguished region” as a concise
shortcut for the self-explanatory, but unwieldy “repeatably detectable
transformation-covariant regions.”
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finding the largest corresponding domain and codomain
[11], [10], [13], [14].

Our objective is almost the opposite: Given acceptable
false positive and false negative rates, design the fastest
possible test for correctness of a correspondence, based on
cosegmentation of regions of progressively growing size.
We formulate the problem as sequential decision making,
which is solved by performing Wald’s sequential prob-
ability ratio test. The test is based on simple statistics of a
modified dense stereo matching algorithm, which is
projected on a single prominent discriminative direction
by a linear support vector machine (SVM).

Of course, we do not want to lose the excellent large-
scale matching properties of descriptors based on measure-
ment regions of fixed size and scale. The cosegmentation
process is therefore only applied to tentative correspondences
obtained by a sublinear process, such as kD-tree search. In
fact, if followed by correspondence verification, any such
process for generating tentative correspondences can be set
to be much more permissive, outputting a higher number of
correspondences with lower inlier ratios, but containing a
larger number of inliers. After filtering by simultaneous
cosegmentation, inlier ratios are (more than) recovered and
the larger number of inliers leads to higher recognition

rates. We show on challenging problems that the selection
of correspondences based on sequential cosegmentation is
very efficient, runs near to real time, and significantly
outperforms the standard correspondence process based on
SIFT distance ratios, thus producing a higher number as
well as higher percentage of correct correspondences.

Consequently, combinatorial procedures for estimation
of a geometrically consistent subset of correspondences
with time complexity sensitive to inlier ratios (polynomial
dependence), e.g., RANSAC, should always adopt sequen-
tially terminated cosegmentation as a preprocessing step.

The method scales well: The number of potential
correspondences for a query image region can be con-
trolled. If it is constant, the total time complexity of the
region expansion process is independent of the size of the
database and linear in the size of the input (number of
regions in the query image). On a large-scale retrieval
experiment [4], we observed that the time needed to carry
out the sequential procedure is not significant in compar-
ison with the time needed for the initial indexing process
for establishing tentative correspondences.

The rest of the paper is organized as follows: The method
is described in Section 2, and the training data and learning
procedure for the sequential classifier in Section 3. Experi-
mental validation is presented in Section 4. Conclusions are
summarized in Section 5.

This paper is a significantly extended and modified
version of [15].

2 THE SEQUENTIAL CORRESPONDENCE

VERIFICATION ALGORITHM

The motivation of the approach is to distinguish, as fast as
possible, correct and incorrect correspondences via dense
matching, i.e., by a pixel-to-pixel correspondence growing
algorithm. The requirements of high speed and quality of
the decision process are contradictory. We therefore
propose a quasi-optimal sequential decision algorithm that
minimizes time to decision, given user-specified probabil-
ities of false positive and false negative rates.

The two error rates control in an intuitive way the trade-off
between the number of correspondences (high when false
negative rate is low), inlier ratio (high when false positive rate
is low), and the speed of the method (low for low error rates).
The importance of these three factors differs in applications.

The proposed sequential correspondence verification
algorithm, i.e., Algorithm 1 (SCV) is overviewed in Fig. 4.
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Fig. 1. The basic idea of the SCV algorithm. (a) First, a decision is
attempted on the basis of local descriptors (LDs) computed from fixed
shape measurement region (in blue). (b)-(d) If the correctness of the
correspondence cannot be decided reliably, the correspondence is
successively grown by cosegmentation (in red), collecting additional
evidence for the decision.

Fig. 2. Describing a distinguished region by a compact descriptor
invariant to local geometric and photometric changes. “LAFs” stands for
“local affine frames.”

Fig. 3. Problems with a fixed shape and size of the measurement
region. (a) Measurement region too large and/or with unsuitable shape.
(b) Measurement region too small.



The basic idea (see Fig. 1) is to perform Wald’s sequential
probability ratio test (SPRT), having learned the distributions
of elementary statistics generated by the growing process.

The algorithm proceeds in decision stages indexed by i.
In the first stage, a fast dense stereo matching algorithm, as
given in Section 2.1, is initialized by a tentative correspon-
dence of a pair of local affine frames. The verification
proceeds by attempting to match discriminative, i.e., high
variance, neighboring pixels. After a certain number of
growing steps �i, the cosegmentation process returns three
simple statistics ð�gi; �ci; �uiÞ characterizing the quality of the
correspondence: the growth rate �gi—the size of the grown
region divided by the maximum number of attempted
growing steps �i, the average correlation �ci of the region,
and the average number of pixels violating the uniqueness
�ui, i.e., nonbijectivity matching.

Algorithm 1. Sequential Correspondence Verification (scv)

Require: images I, I0,

correspondence with affine frame ðx; y;AÞ,
SIFT ratio sr,

false positive and false negatives rates ð�; �Þ,
model: learned SVM parameters �i,

likelihoods piðqj þ1Þ; piðqj �1Þ.

1.1: init_growðx; y;AÞ.
1.2: for i ¼ 1 to max. number of decision stages do

1.3: �i ¼
�0; i¼1;

�i�2; i>1:

1.4: ð�gi; �ci; �uiÞ :¼ growðI; I0; �iÞ.
1.5: qi :¼ SVMðsr; �gi; �ci; �ui; �iÞ.
1.6: Li :¼ piðqijþ1Þ

piðqij�1Þ .
1.7: if Wald SPRTðL; �; �Þ is conclusive then break.

1.8: end for

1.9: return likelihood ratio Li (of the last iteration).

The vector of statistics is projected by a linear SVM to a
scalar quantity qi, which avoids estimation of high-
dimensional class-conditional probabilities (likelihoods).
Instead, only the likelihoods of the projections piðqj þ 1Þ
and piðqj �1Þ of correct and incorrect correspondence
classes are computed.

The region statistics are augmented with the first to the
second nearest SIFT descriptor distance ratio sr, a standard
measure for selection of tentative correspondences [1]. We
call sr the SIFT ratio. The Wald’s SPRT is performed on the
likelihood ratio Li ¼ piðqij þ1Þ=piðqij �1Þ. If the SPRT test is
conclusive, the algorithm terminates and the correspondence
is assigned the likelihood ratio Li of the decision. Otherwise,

another decision stage i is performed, i.e., the cosegmentation
is resumed with a new limit of attempted growing steps �i,
Algorithm 1, Step 1.3, potentially producing more discrimi-
native statistics since it is based on more measurements. Note
that �1 ¼ 0, which means the decision in the first stage is
based solely on the SIFT ratio without growing. The process
continues until the maximum number of decision stages i
is reached.

In our experiments, we set the maximum number of
decision stages to 100 and the largest pixel growth is �100 ¼
1;000 steps. We observed that the error does not decrease after
a larger growth, see Fig. 10b. In principle, it is possible to
perform Wald’s SPRT test after each growing step, which
would be the fastest strategy if the test execution time was
zero. However, the statistics are average values; therefore, in
order to have a constant influence of new measurements, we
propose growing in steps of a geometric sequence instead, see
Step 1.3. The number of decision stages was set empirically to
minimize the decision time based on our implementation.
These considerations determine � in Step 1.3.

The choice of the three statistics of the growing process
was driven mainly by computational requirements. The
statistics were selected from a larger pool of easily
computable characteristics. We experimented, e.g., with
geometric deviation from the transformation implied by the
local affine frame correspondence, mean intensity differ-
ence of the regions, and difference of Harris-like cornerness
values. None of them discriminated well.

Besides benefiting computational speed, we attribute the
good generalization of the sequential classifier to the
simplicity of the characterization of the growing process.
For instance, the sequential classifier performed almost
equally well on correspondences established on distin-
guished regions other than those it was trained on, despite
the fact that it is unlikely that image statistics in general are
the same for different detection processes. Moreover, even
after a very modest number of training examples, the
classifier performed well on a very large test set. With
satisfactory performance, we did not further investigate the
feature selection problem (including feature number).

The linear SVM was our first choice of a projection
method as it possessed the desirable properties of fast
learning, fast execution, and trivial implementation. Since it
leads to a good classification rate, following the structural
risk minimization principle, we did not test more complex
classifiers.

2.1 Growing Algorithm

The following algorithm explores regions around the input
tentative correspondence. The growing mechanism is
inspired by [16], [17], [13], [18].

Each correspondence defines a local affine mapping
from the reference image I to the target image I0. The
mapping generates several pixel-to-pixel correspondences
s ¼ ðx; y;AÞ, where ðx; yÞ is a point in I with associated
affine transformation A, which maps the local neighbor-
hood to the other image I0

x0 ¼ a1xþ a2yþ a3;

y0 ¼ a4xþ a5yþ a6;
ð1Þ

or simply ðx0; y0Þ ¼ Aðx; yÞ.
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Fig. 4. The sequential correspondence verification algorithm.



The procedure is presented in pseudocode as Algorithm 3.
The inputs are the images I; I0, the set of initial correspon-
dences, the seeds S, and the maximum number of growing
steps �. The outputs consists of three statistics �g, �c, and �u,
which characterize the (in)correctness of the input corre-
spondence. The growing algorithm keeps its state: the set of
correspondence seeds S, matching maps T;T0, and the
counters K;G;C; U that are initialized in Algorithm 1,
Step 1.1. In the initialization (Algorithm 2), the image
correlation corrðsÞ of all initial seeds2 s 2 S is computed,
Step 2.2, as Moravec’s normalized cross-correlation [22] of a
5� 5 pixel window w centered at pixel ðx; yÞ in the reference
image and window w0 centered at Aðx; yÞ in the target image,
deformed according to the affinity3A

corrðsÞ ¼ 2covðw;w0Þ
varðwÞ þ varðw0Þ ; ð2Þ

where covðw;w0Þ is a covariance and varðwÞ a variance.

Algorithm 2. Initialize growth state (init_grow)

Require: affine correspondence ðx,y,AÞ.
2.1: Initialize

seeds: S :¼ ðx; y;AÞ,
matching maps: Tð:; :Þ :¼ 0;T0ð:; :Þ :¼ 0,

counters: K :¼ G :¼ C :¼ U :¼ 0.
2.2: Compute the image correlation for all seeds s 2 S.

Algorithm 3. The Growing Algorithm (grow)

Require: images I, I0, maximum number of growing steps

�, growth state.

3.1: while K � � and S not empty do

3.2: K :¼ K þ 1.
3.3: Draw the seed s 2 S of the best similarity corrðsÞ.
3.4: for each of the best neighbors t�k in N kðsÞ:

t�k ¼ ðx; y;AÞ ¼ argmaxt2N kðsÞ corrðtÞ,
k 2 f1; 2; 3; 4g

do

3.5: c :¼ corrðt�kÞ,
3.6: if c � � and Tðx; yÞ ¼ 0 then

3.7: G :¼ Gþ 1; C :¼ C þ c.
3.8: if T0ðAðx; yÞÞ ¼ 1 then

3.9: U :¼ U þ 1.

3.10: end if

3.11 Update the matching maps

Tðx; yÞ :¼ T0ðAðx; yÞÞ :¼ 1 and

3.12: the seed queue S :¼ S [ ft�kg.
3.13: end if

3.14: end for

3.15: end while

3.16: return statistics: growth rate �g :¼ G
� , average

correlation �c :¼ C
G , average uniqueness violation

�u :¼ U
G .

Set S is organized as a priority queue according to the
correlation. A seed is removed from the top of the queue,

and for all its four neighbors (left, right, up, and down) in
the reference image, the best correlating candidate in N kðsÞ
is found (out of nine possible positions in the target image),
Algorithm 3, Step 3.4, such that

N 1ðsÞ ¼
�
ðx� 1; y;Ac�1;rÞ j c; r 2 f�1; 0; 1g

�
;

N 2ðsÞ ¼
�
ðxþ 1; y;Acþ1;rÞ j c; r 2 f�1; 0; 1g

�
;

N 3ðsÞ ¼
�
ðx; y� 1;Ac;r�1Þ j c; r 2 f�1; 0; 1g

�
;

N 4ðsÞ ¼
�
ðx; yþ 1;Ac;rþ1Þ j c; r 2 f�1; 0; 1g

�
;

ð3Þ

where

Ac;r ¼
a1 a2 a3 þ a1cþ a2r
a4 a5 a6 þ a4cþ a5r

� �
: ð4Þ

If the highest correlation exceeds threshold � and the point is
unmatched so far in the reference image, then a new match
is found, Step 3.6. Next, the counter for the region size G is
incremented and correlation value c is added to sumC. If the
pixel in the target image I0 is already matched, the counter
for uniqueness violation U is incremented, Step 3.9. The
binary matching maps T and T0 are updated and the found
match becomes a new seed. Up to four seeds are created in
each growing step.

The process continues until there are no seeds in the
queue or the algorithm is stopped when reaching the
maximum number of growing steps �, Step 3.1.

We set correlation threshold � ¼ 0:5, which was found
experimentally, Fig. 9b. On our training set, we observed
the classification error rate for several growing steps � as a
function of � . The error is constant up to � ¼ 0:5, then it
rises. Lower thresholds make the decision process slower,
due to worthless growth of incorrect correspondences.

Examples of region growth in the cosegmentation
process are depicted in Fig. 5. Local affine frames are
shown in blue as a pair of line segments. The three
endpoints of the segments are the seeds of the growing
process. Blue parallelograms delineate measurement re-
gions, i.e., parts of the image where SIFT descriptors are
computed. Yellow marks pixels inside the region at the time
of the decision on the correctness of the correspondence
made by the SCV algorithm. Red marks pixels that would
be chosen if the process was left to grow the maximum
number of � ¼ 1;000 steps. Note that: 1) The SCV decision is
often reached after growing over a very small number of
pixels and 2) the shape of the region is data dependent,
preferring areas with edges and high variance of the signal
where correlation response is high. Unsurprisingly, pixel
correspondences follow correctly the 3D surfaces (branches
of the shrub, parts of the fence); in fact, a small local
disparity map is computed.

The measurement regions include large parts of the
background that is different in the two images. It might be
surprising that the regions shown in Fig. 5 are correctly
matched, given that the first test in the sequential classifier
is based on the SIFT ratio. We believe there are (at least)
three reasons for the favorable outcome. First, our test on
the SIFT ratio is very permissive. Second, the centers of the
regions are on corresponding 3D structures, and SIFT
applies a Gaussian weighting function that reduces influ-
ence of the outer parts of the parallelogram, which are not
corresponding. Finally, SIFT is an array of histograms of
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2. In our experiments, this is realized by local affine frames (LAF)
constructed on maximally stable extremal region [19], [20] (MSER), and
Hessian-affine points [21]. We take the three point-to-point correspon-
dences of a pair of LAFs as the initial seeds of the growing process.

3. The simplest and fastest interpolation, the nearest neighbor, was used
to compute w0. More advanced interpolation did not bring a significant
improvement.



gradients. The strong gradients are in correspondence in
both pairs of images, and areas without strong edges are
irrelevant for the SIFT representation.

2.2 Discussion

Unlike Vedaldi and Soatto’s region growing algorithm [9],
Algorithm 3 includes no explicit regularization either of the
mapping or the shape of the cosegmented regions. The
reason is that the algorithm grows only in informative areas
with distinguishing signal (texture), so regularization is not
needed. Areas without texture are ambiguous and do not
help to distinguish correct and incorrect correspondences.
Growth is restricted to unambiguous areas by requiring
correlation statistic4 to stay above threshold � , Step 3.6.
Implicit surface smoothness is enforced. The disparity
gradient change is constrained by (3), and similar constraint
is applied in [13].

In wide-baseline dense stereo [17], [18], [23], local affine
parameters ða1; a2; a4; a5Þ representing a window deforma-
tion due to surface slant are optimized after each growing
step in order to facilitate maximum growth on curved or
projectively distorted surfaces. However, our goal is
different: For correspondence verification, the surface need
not be grown too far. Therefore, in our algorithm, the
parameters inherited from the initial seed are kept
constant, which is significantly faster than the iterative
optimization. Experiments show that a small imprecision
of the local affine parameters is not critical, possibly due to

the fact that effects of transformation errors are subsumed
in disparity (gradients).

2.3 Statistical Correspondence Quality

Ideally, correspondence quality would be a function of the
probability that a pair of grown patches is a projection of
the same 3D surface, as calculated, e.g., via MRF on the
image grid by global methods in dense stereo [24].
However, finding the MAP solution is computationally
intensive even for simple fields. Therefore, we use the
efficient growing algorithm as a suboptimal solution and
model the correspondence quality on the basis of elemen-
tary statistics that were empirically shown to discriminate
correct and incorrect correspondences.

The class-conditional probability densities of the adopted
statistics are shown in Fig. 6. We observed that the growth
rate �g is typically larger for correct correspondences than for
incorrect, as reported by Vedaldi and Soatto [9]; exceptions
include, e.g., situations when a correct correspondence lies
on a narrow surface or in cases of partial occlusion. The
average correlation in the region �c is also typically higher
for correct correspondences, but incorrect correspondences
may accidentally have high correlation on repetitive or
locally similar structures, especially on small regions. The
average uniqueness violation �u (deviation from bijective
matching) when growing the region is also quite discrimi-
native, see Fig. 6 (right column). The statistics returned by
the growing algorithm are combined with the ratio of the
first to second closest distance of SIFT descriptors sr [1], a
standard method.

The problem of estimating a high-dimensional likelihood
ratio is avoided by projecting the 4D feature vector onto
a 1D scalar quantity qi ¼ fðsr; �gi; �ci; �uiÞ, which expresses a
confidence on correctness of the correspondence. This is
done using an SVM trained on a set of positive and
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Fig. 6. Estimated class-conditional probability density functions of
cosegmentation statistics. From left to right: growth rate �g, average
correlation �c, and average uniqueness violation �u; from to top to bottom:
for 10, 100, 1,000 growth cycles �. Correct correspondences (in red)
and incorrect correspondences (in blue). Note the gradual reduction in
the overlap of the densities, especially in the two leftmost columns.

Fig. 5. Examples of region growth in the cosegmentation process.
Selected pixels at the time of decision on correctness (in yellow) and
after 1,000 growing steps (in red). The red pixels are shown for
visualization purposes only, and their correspondence is not evaluated
by the SCV algorithm. Corresponding local affine frames and measure-
ment regions of SIFT descriptors are in blue.

4. Note that Moravec’s statistic is a zero-mean normalized correlation,
see (2). For areas without texture, after subtracting the mean values of
signals in windows, the rest is an uncorrelated noise, which results in a low
value of the statistic.



negative correspondences, see Section 3. The SVM finds a
discriminative direction maximizing a margin in combina-
tion with a hinge loss (the training data are not separable).
Projecting on this direction is an effective feature extraction
procedure, suggested already by Vapnik [25] and popular-
ized by, e.g., Platt [26].

In consecutive decision stages i, the statistics are more
discriminative, with the increase in the maximum number
of growing steps �i, Step 1.3. Thus, a different SVM �i is
trained for each decision stage i. The classification error due
to the overlap of probability distributions is progressively
decreasing, see plot shown in Fig. 10b.

The likelihoods piðqj þ1Þ and piðqj �1Þ of positive and
negative classes, respectively, were estimated by the Parzen
window method with a moving average kernel. The
likelihoods estimated from our training set are shown for
four decision stages i in Fig. 7. In the first stage, there is no
growth and the statistic is solely the SIFT ratio. Interest-
ingly, the SIFT ratio threshold of 0.8 suggested for accepting
a correspondence by Lowe [1] is confirmed, being close to
the equal-error operating point. Note that in the sequential
process, a significantly stricter test is applied in the first
stage: Only correspondences having SIFT ratio smaller than
about 0.4 are immediately accepted as correct, while the
others are grown and decided in a later stage of a cascade,
see Fig. 7 (top left).

The likelihood ratio Li, given the SVM output qi, is
computed using linearly interpolated estimates of class-
conditional probability.

2.4 Wald’s Sequential Decision

Let x be an object belonging to one of two classes f�1;þ1g.
In our case, the classified objects are correspondences and
the classes are “correct” (1) and “incorrect” ð�1Þ. Next, let
an ordering on the set of measurements fx1; . . . ; xng on x be

given. Here, measurements xið¼ qiÞ are scalar values,
oriented distances from SVM decision boundaries after
growing step i.

A sequential decision strategy is a set of decision functions
S ¼ fS1; . . . ; Sng, where Si : fx1; . . . ; xig ! f�1;þ1; ]g. The
strategy S makes one measurement at a time. The sign “]”
stands for “continue” (do not decide yet). If a decision is “]”,
xiþ1 is obtained and Siþ1 is evaluated. Otherwise, the output
of S is the class returned by Si.

In two-class classification problems, errors of two kinds
can be made by strategy S. Let us denote by �S the
probability of rejecting a correct correspondence (x belongs
to þ1, but is classified as �1) and �S the probability of
accepting an incorrect correspondence (x belongs to �1, but
is classified as þ1). A sequential strategy S is characterized
by its error rates �S and �S and its average evaluation time
�TS ¼ EðTSðxÞÞ, where the expectation is over pðxÞ and �TS is
the expected evaluation time (or time to decision) for
strategy. An optimal strategy for the sequential decision-
making problem is then defined as

S� ¼ arg min
S

�TS; ð5Þ

s:t: �S � �;

�S � �;

for specified � and �.
Wald [27] proved that the solution of the optimization

problem (5) is the sequential probability ratio test.

2.5 Sequential Probability Ratio Test

Let x be an object characterized by its hidden state (class)
y 2 f�1;þ1g. The decision about the hidden state is based
on successive measurements x1; x2; . . . . Let the joint condi-
tional density pðx1; . . . ; xmjy ¼ cÞ of the measurements
x1; . . . ; xm be known for c 2 f�1;þ1g.

SPRT is a sequential strategy S�, which is defined as

S�m ¼
þ1; Lm � A;
�1; Lm � B;
]; B < Lm < A;

8<
: ð6Þ

where Lm is the likelihood ratio

Lm ¼
pðx1; . . . ; xmjy ¼ þ1Þ
pðx1; . . . ; xmjy ¼ �1Þ : ð7Þ

The constants A and B are set according to the required
error of the first kind � and error of the second kind �.
Optimals A and B are difficult to compute in practice, but
tight bounds are easily derived. It can be shown that setting
the thresholds A and B to

A ¼ 1� �
�

; B ¼ �

1� � ð8Þ

is close to optimal [27].
In the SCV algorithm, we assume that all information

about a correspondence is contained in the statistics from
the last growth step: pðqijyÞ ¼ pðq1; . . . ; qijyÞ. Therefore,
only 1D PDFs are needed to carry out the SPRT test.
Estimation of scalar PDFs poses no technical problems, as
discussed in Section 2.
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Fig. 7. Estimated class-conditional probability densities for the oriented
distance to the SVM hyperplane, i.e., for projections on a normal to the
maximum margin hyperplane, for correct (red) and incorrect (blue)
correspondences, for four stages of the sequential decision process.
Note the decrease in the overlap of the distributions with increasing �.



3 THE TRAINING PROCEDURE

The set of 24 image pairs used in a training set of
correspondences is shown in Fig. 8. For all image pairs,
MSERs were detected, LAFs constructed [20], [19], and
SIFT descriptors computed on normalized patches. Stan-
dard wide-baseline matching was performed using SIFTs
and a set of tentative correspondences was obtained.
Finally, RANSAC was run on each pair of the set to
estimate the epipolar geometry. We have manually
relabeled correspondences which were accidentally con-
sistent with the epipolar geometry, but were, in fact,
incorrect.5 The remaining inlier correspondences formed
the positive subset of the training set; all other correspon-
dences were inserted as negative examples.

Approximately 6,200 positive and 9,800 negative corre-
spondences were obtained, which means that tentative
correspondences on the training set had, on average,
approximately 40 percent of inliers.

The ground truth set was split randomly into two equal
parts, half for training and half for testing. The learning
stage included linear SVM training and probability density
estimation via Parzen windowing. For SVM learning, we
used a recently published efficient algorithm [28]. Regular-
ization constant C of SVM with the hinge-loss criterion was
estimated by cross-validation (which set C ¼ 1).

A priori, we had no idea about the necessary size of a
training set for the correspondence classification problem.
We therefore carried out the following test: A progressively
larger portion of the training set was used to estimate the
SVMs and likelihoods. The resulting sequential classifier
(SCV) was applied to the test set. The observed classification
error is plotted as a function of the training set size shown in
Fig. 9a. For reference, the classification error of the SIFT ratio
is also plotted. The error does not improve significantly after

about 300 samples, a surprisingly small number. We
concluded that the size of our training set is sufficient.

Note that the Wald SPRT is a non-Bayesian technique
based on conditional probabilities, and its performance
guarantees in terms of false positive and false negative rates
hold for arbitrary prior probabilities. The insensitivity to the
prior probability of (in)correct correspondence is an im-
portant property of the method since a wide range of inlier
ratios is encountered in practical matching problems. In
fact, the SCV procedure is extremely useful for matching
problems where tentative correspondences have a very low
inlier ratio and direct RANSAC application would require
an astronomical number of samples. Such problems differ
significantly in inlier percentage of tentative correspon-
dences from our training set, but in a non-Bayesian setting,
it does not matter. The training set must only be
representative of the conditional probabilities of observa-
tions. Also note that all of the parameters and learned
models (SVM weights and likelihoods) were kept fixed
throughout all of the experiments.

4 EXPERIMENTS

4.1 Basic Properties of the Sequential
Correspondence Verification Algorithm

We start the performance evaluation of the SCV algorithm
by several experiments demonstrating some elementary
properties of the algorithm. First, we measured discrimin-
ability of the SCV algorithm, i.e., its ability to distinguish
correct and incorrect correspondences. The discriminability
is characterized by a precision-recall curve, which is
computed as follows: The SCV algorithm assigns likelihood
ratio L to all N correspondences in the test set. The
correspondences are sorted according to their likelihood
ratio, Lð1Þ � Lð2Þ � � � � � LðNÞ. Precision is defined as Qþn =n,
where Qþn is the number of correct correspondences among
Lð1Þ; . . . ; LðnÞ. Recall is defined as Qþn =Q

þ
N . The SCV

algorithm is more discriminative than a standard ratio of
SIFT descriptors, and the difference becomes more promi-
nent with the number of growing steps �, see Fig. 10a.

When a hard decision on the correctness of a correspon-
dence is required, the likelihood ratio L is thresholded. The
classification error rate for the threshold L ¼ 1 is plotted in
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Fig. 9. (a) Test error as a function of a training set size. Note that only a
very small training set with about 300 examples is required. (b) Cross-
validated classification error as a function of the correlation threshold �
of the growing process plotted after several growing steps �. The higher
the value of � , the faster the decision process. The selected value of
� ¼ 0:5 (highlighted) is the highest value with error close to minimal for
all stages.

Fig. 8. The set of training images.

5. A mismatch in tentative correspondence lying on a corresponding pair
of epipolar lines is not detected by RANSAC.



Fig. 10b. In the case of the SIFT ratio, the threshold is 0.8, as
discussed before.

Fig. 10c shows the evolution of the weights of the SVM
classifier as a function of growing steps. The weights are the
unit normal vector of the discriminative hyperplane, trained
on the zero mean, unit variance normalized data. We show
the absolute value of the weights, which can be interpreted
as an importance of a particular statistic. A large value
means the statistic is important, while value near zero refers
about a small influence. At the beginning, the SIFT ratio sr
has a large impact, together with the average correlation �c.
With more growing steps, the weight of the growth rate �g
quickly rises and becomes the most import statistic. The
weight of the average uniqueness �u violation is quite low
and decreases with more growing steps. The weight of the
average correlation �c also decreases, which is probably due
to an imprecise estimate of the LAFs which manifests itself
by a lower correlation of correct correspondences far away
from their seeds.

The next figure, Fig. 10d, focuses on decision thresholds
for Wald’s SPRT; the upper and lower bounds of the
indecision intervals for Wald’s SPRT are plotted for � ¼
0:05 and � ¼ 0:001 in log-likelihood ratio scale. The
undecided interval is shrinking with increasing growing
steps � due to lower error.

Fig. 10e shows the percentage of correspondences which
are still growing after maximum number of growing steps �
is performed. Note that almost all correct correspondences
grow; 95 percent of correct correspondences can grow
above the largest executed growth � ¼ 1;000. Incorrect
correspondences stop growing much earlier since there are
no high correlating neighbors, and typically, the algorithm

finishes by exhausting the seed queue S before the
maximum number of growing steps is reached, see
Algorithm 3, Step 3.1.

Finally, Fig. 10f shows the average number of computed
window correlations per correspondence. This quantity is
closely related to the computational complexity of the
algorithm. For correct correspondences, the number of
correlations Cþ grows almost linearly with growing steps �,
while for incorrect correspondences, the number of correla-
tions C� saturates at 4,000. It means that for the largest
growth � ¼ 1;000, negative correspondences are about four
times faster to decide. This behavior is expected since the
algorithm stops growing the incorrect correspondences
earlier, see Fig. 10e.

4.2 The SCV Efficiently Increases Discriminability

We show that the SCV algorithm is more discriminative
than the SIFT ratio and that the sequential decision-making
process speeds the algorithm significantly at the expense of
a very small discriminability loss. The comparison of the
SCV algorithm was carried out with various settings of
Wald’s SPRT parameters (�, �), see Fig. 11. The SCV
algorithm outperforms the SIFT ratio for all three settings.
The SCV-1 ð� ¼ 0:001; � ¼ 0:001Þ is the most strict setting
which has the highest discriminability. The SCV-2 ð� ¼
0:05; � ¼ 0:001Þ allows more false negatives, while the
SCV-3 ð� ¼ 0:001; � ¼ 0:05Þ allows more false positives,
but they both are more efficient in terms of the number of
window correlations they had to compute.

In Fig. 12, three ð�; �Þ settings of SCV algorithm are
compared with the nonsequential version (CV), which does
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Fig. 10. Properties of the SCV algorithm as a function of the number of growing steps �. (a) Precision-recall curves. (b) Classification error rate.
(c) Weights of the SVM classifier. (d) Upper and lower bounds of decision intervals in log-likelihood scale. (e) Percentage of correspondences that
continue growing. (f) The average number of computed correlations per correspondence.



not decide until the last stage performing maximally � ¼
1;000 growing steps. We measured the average number of
window correlations per correspondence C which had to be
computed, and the percentage of correspondences decided
(or stopped growing) in the ith stage of the algorithm after
� steps.

These values differ for correct and incorrect correspon-
dences, so besides the mean values C (which depends on
the percentage of correct correspondences in the test set),
we show the values for correct correspondences Cþ and
wrong correspondences C� which differ as discussed in
Section 4.1. The decision plots are shown for correct and
incorrect correspondences as well.

The sequential decision speeds up the process by factor
of more than 2 (SCV-1), more than 5 (SCV-3), or more
than 9 in comparison to the nonsequential algorithm
without losing much discriminability. The recall-precision
curve shown in Fig. 11 of the nonsequential algorithm
(CV) is almost identical to the SCV-1. Fig. 12 also shows
that the SCV-2 with higher allowed false negative rate
tends to decide negative correspondences in lower stages

of the sequence speeding up the decision process by a
factor of more than 18, while the SCV-3 is speeding up the
decision process for positive correspondences by a factor
of more than 100.

4.3 Computational Complexity

The dominant operation in the SCV algorithm is correlation
computation, and other steps (SVM classification, Wald’s
SPRT) are negligible. The running time depends on the
number of correspondences. Considering an example of
1,000 tentative correspondences, each requiring, on average,
C ¼ 900 correlations (see Fig. 12), we end up with approxi-
mately 106 correlations per image pair, which is computed on
recent CPU in about 0.25 s and about 20-100 times faster on a
modern GPU. It usually takes about 0.5 s on a standard C2
2.4 GHz with our implementation, also depending on the
ratio of correct correspondences and on the setting of
Wald’s SPRT parameters.

4.4 SCV Performance on Hessian-Affine Points

Until now, all experiments have been carried out on
correspondences of local affine frames on MSERs. We
now show that the SCV algorithm performs equally well for
verification of correspondences obtained from Hessian-
affine points [21].

For all training image pairs shown in Fig. 8, a set of
tentative correspondences was generated from Hessian-
affine points and classified according to the ground-truth
epipolar geometry, and split into a training and test set. This is
the same procedure as described before for MSERs.

Fig. 13 shows that for Hessian-affine points, the SCV
algorithm (SCV-1) improves the recall-precision curve
obtained by SIFT ratio matching. Moreover, the perfor-
mance is virtually equal for the two cases when the
algorithm is trained specifically on Hessian-affine points
or when the SCV algorithm trained on MSERs is used. This
was not expected a priori as the image patches around the
respective correspondences are quite different. But, the
(simple) statistics of the growth process initialized from
pixel correspondences are preserved.

Interestingly, the ratio of the SIFT descriptors has slightly
better discriminability on Hessian-affine points than on
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Fig. 12. Efficiency of the SCV algorithm. Plots show the percentage of
correspondences decided after growing � steps. The table shows an
average number of window correlations per correspondence. (a) Correct
correspondences. (b) Incorrect correspondences.

Fig. 13. Discriminability of the SCV algorithm for Hessian-affine
correspondences. The SCV algorithm performs equally well when
trained on MSER correspondences or specifically on correspondences
of Hessian-affine points.

Fig. 11. Discriminability of the SCV algorithm. The precision-recall
curves for SCV with various setting of false positive and false negative
rates and for the SIFT ratio alone.



MSERs. The fact that MSERs are often detected on occlusion

boundaries might play a role.

4.5 Challenging Wide-Baseline Stereo Scenes

Results of correspondence selection on difficult wide-

baseline stereo scenes are shown in Fig. 14. These scenes

are challenging due to small overlap, high degree of noise

in the images (Raglan), and complex 3D structure with

many occlusions (Forsythia, Fence). In the Orange pair,
matching is difficult since the background is locally
similar (same grain of wood), but not the same (different
location on the same table). To find the epipolar geometry
at all, the matching process generating the tentative
correspondences had to be very permissive so that a
sufficient number of correct correspondences was present
among tentative correspondences. We allowed more than
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Fig. 14. Results on challenging wide-baseline scenes. For Forsythia, we show the color-coded depth map of a common part (inside the blue
frame) to demonstrate the 3D structure of the image pair. Note that the Orange (c) is at a different place on the table and no correct
correspondence exists on the background. Although not obvious, almost the same part of the fence appears in both images of the Fence scene.
(a) Raglan. (b) Forsythia. (c) Orange. (d) Fence.



one-to-one mapping in tentative correspondences which
led to a high number of outliers (about 90 percent).

Plots shown in the last column of Fig. 14 show the
precision among the best n-retrieved correspondences. This
is important for progressive RANSAC procedure [29],
which samples tentative correspondences according to
preferences defined by the matching processes (approxi-
mately speaking, in the order as sorted by the matcher of
tentative correspondences). For correspondences sorted by
the SCV algorithm, in all four scenes, the PROSAC
procedure would terminate successfully after a single
iteration since a sufficient number of top correspondences
is correct. This is neither the case when the ordering of
tentative correspondences is given by the negative ratio of
SIFT distances nor the SIFT distances alone.

On the same images, we compared the sequential
algorithm (SCV-2) and its nonsequential version (CV). For
all the scenes, the results of SCV-2 are slightly worse than
that of nonsequential CV, but much faster. The two
algorithms evaluated the following numbers of window
correlations (SCV-2 versus nonsequential CV): 0:5� 103

versus 2:5� 103 (Raglan), 0:6� 103 versus 5:7� 103 (For-
sythia), 1:2� 103 versus 6:3� 103 (Orange), and 0:4� 103

versus 4:3� 103 (Fence). The reason why the decision is
even faster here than on the test set in the previous
experiment is the high number of wrong correspondences
which are faster to decide.

4.6 Omnidirectional Images

The method was successfully tested on challenging image
pairs like Fig. 15, obtained by a fish-eye camera. Besides a
significant wide spatial baseline setup, the pair has a wide
temporal baseline: The first image was captured in the
winter when there were no leaves on trees, while the other
was captured in the summer at a different time of day and in

very different lighting conditions and shadows. Despite the
difficult conditions, the SCV algorithm was able to find
several correct correspondences, as can be checked visually;
the ground truth does not exist in this case. The algorithm
selected four LAF correspondences (three correct, one
incorrect) out of more than 2,000 tentative correspondences.
Note that the correspondences shown are selected solely by
the SCV algorithm, i.e., before robust model fitting.

The method works because the initial affine transforma-
tion obtained from LAF correspondence locally approx-
imates the nonlinear neighborhood deformation in
omnidirectional images. This is true for the central part of
the images, while the problems occur at the boundary of
spheres, where the distortion is not negligible. This is
probably the reason for the incorrect correspondence which
occurred close to boundary of the sphere.

4.7 Test on the Oxford Data Set

We used a subset of the Oxford data sets6 which has been
used for performance evaluation of affine region detectors
[30] and local descriptors [31]. The data sets consist of
images which are distorted by various degradation: projec-
tive distortion (due to change of the camera position), image
blur (from defocusing), JPEG compression artifacts, and
illumination changes. The ground truth correspondences
are known since the database contains a homography
mapping between the reference and distorted target images.

The input is a set of several hundred tentative
correspondences per each pair. The results for correspon-
dence selection based on standard SIFT ratio and on the
SCV algorithm are shown in Fig. 16 as precision-recall
curves. We can see that the SCV algorithm is better in all
cases. The most difficult distortion seems to be the blur, but
it is destroying for SIFT as well. The projective distortion is
well captured by local affine transformation, and the
illumination change also does not create serious problems
since Moravec’s correlation used in the growing algorithm
is insensitive (however, not fully invariant like the NCC
statistic) to affine illumination changes. Surprisingly, the
SCV does not deteriorate that much with the JPEG
compression. Although the images look seriously (unnatu-
rally) corrupted, the frequencies preserved by the JPEG
compression resulted in enough correlation.

4.8 Image Retrieval

The benefits of the SCV algorithm are demonstrated on a
large-scale image retrieval setup, using the data set from
Nister and Stewenius benchmark [4]. It consists of 10,200
images in groups of four that show the same object. In the
benchmark experiment, each image becomes a query. For
each query, the top N images are returned, and a score is
computed that counts how many of the correct answers are
in top K images. In the benchmark, K is set to 4, giving
the highest score 4 if the algorithm manages to retrieve as
the top four images the four instances of the object in the
data set. Since the query image is also present in the data
set, the worst score of the algorithm returning only the
query in the top K is 1. The overall performance of the
algorithm is computed as the average score of all 10,200
queries from the data set.
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Fig. 15. Correspondences found by the SCV algorithm in challenging
omnidirectional image pair with a “wide temporal baseline.”

6. http://www.robots.ox.ac.uk/~vgg/research/affine/.



We reimplemented a part of Nister’s approach. MSERs
[20] and LAFs [19] were computed on each of the images.
Each of approximately 7.4 millions LAFs was described
using SIFT [1] computed on an affine normalized patch.
Then, similarly to the visual words approach proposed by
Sivic and Zisserman [2], we built a visual word vocabulary
consisting of 1 million k-means in the SIFT descriptor space

and assigned all of the descriptors in the images to the

nearest visual word. Each visual word in a given document

is weighted using term frequency-inverse document fre-

quency (TFIDF) measure from text retrieval. The similarity

of two documents is then the L1 distance between their

vectors of the visual words’ weights. The top K most
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Fig. 16. Results on the Oxford data sets. Precision-recall curves of the SCV algorithm (green) and the SIFT ratio (black dashed), for images with an
increasing degree of distortion. Reference images in the first row, target images are shown in graphs. See the electronic version of the article to
better view of the distorted images.



similar documents are retrieved and an average score of

3.41 images retrieved per query is achieved.
To evaluate the performance of the SCV algorithm, we

reranked retrieved images according to the number of

SCV-validated correspondences. Since, for efficiency rea-

sons, the reranking could include only a small number of

images (e.g., 20), we only considered queries that had at

least one image of the retrieved object with rank 5-20.

There are 1,972 such query images. The overall score is

2.29 for these queries (note that these are difficult ones; the

average on the full data sets is 3.41). The top 20 score, i.e.,

the average number of correct images among the top 20, is

3.51 on this subset. This is the upper bound of the

performance for a retrieval algorithm that resorts the top

20 retrieved images. The correspondences were verified by

the SCV ð� ¼ 0:01; � ¼ 0:001Þ algorithm. Finally, new

ranking was established according to the number of SCV

correspondences found.
The performance of the SCV algorithm is compared in a

histogram of ranks of the four correct images in answer to

each query (see Fig. 17). Clearly, SCV significantly im-

proves the ranking of the correct images bringing most of

them to top 4. Its overall top 4 score on the selected query

images is 5,865, resulting in average 2.97, and the average

top 5 score is 3.12.
We also compared our method to the ranking based on

SIFT correspondences (rank is based on the number of

correspondences with SIFT distance ratio < 0:8). The overall

top 4 score for SIFT correspondences is 5,004, resulting in

average 2.60, and the average top 5 score is 2.82.
Finally, we compared the achieved top 4 scores of both

methods to the visual words method in Table 1. It shows that

the ranking is improved or unchanged with SCV in 95 percent

of cases. Wrong ranking typically occurs for images of

different objects with little texture (usually slightly blurred)

on the same structured background. In this case, in fact, most

of the correct correspondences are found in the background,

which does not help in retrieving a correct image.

5 CONCLUSIONS

We have presented the SCV algorithm, which is able to
efficiently distinguish correct and incorrect correspon-
dences, via collecting statistics while cosegmenting gradu-
ally larger regions. We have shown that this significantly
benefits the matching process in challenging wide-baseline
scenes and improves results in a large-scale image
retrieval. The process is computationally efficient and very
fast in practice, e.g., the method was successfully applied
in a paper by Chum et al. [32] on large-scale image retrieval
algorithm with impressive results.

The SCV software is available for download at http://
cmp.felk.cvut.cz/software/SCV.
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