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Abstrakt: Cilem prace je odvozeni efektivniho modelu pro laplacidn s nehomogenni metrikou v tenkych
oblastech s neumannovskymi hrani¢nimi podminkami. Nejprve rigor6zné¢ zavedeme Neumanniv La-
placetiv operator s nehomogenni poruchou jako samosdruzeny operator na Hilbertové prostoru pomoci
pfidruZené kvadratické formy. Déle zkoumédme konvergenci tohoto operitoru k efektivnimu modelu, a to
ve spektralnim, jakoz i v silném, a dokonce i norm-rezolventnim smyslu. Nakonec si odvodime rychlost
této konvergence a vSe ilustrujeme konkrétnim prikladem.
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in thin domains with Neumann boundary conditions. Firstly, the Neumann Laplace operator with a non-
homogeneous failure will be defined as a self-adjoint operator on the Hilbert space by an associated
quadratic form. Furthermore, this work shows the convergence of this operator to the effective model
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Introduction

The primary motivation of the present study of the effective quantum dynamics in thin domains with
a non-homogeneous metric is the article of Yachimura (see [17]) published in 2018, in which the spectral
problem with piecewise constant coefficients in thin domains with Neumann boundary conditions is
analysed. Let D ¢ R” be a bounded domain with a connected C? boundary dD. Define

Q_(e) = {x e D|dist(x,0D) < &},
Q.(e) = {x e R" \ D| dist(x,dD) < &,
Qe) =Q_(e) UQ,(e) UaD,

for & > 0, dist(-, -) denotes the Euclidean distance. It can be seen in the following figures.

Tﬁ

0D

Figure 1: Domain D

Figure 2: Domain Q(¢)

The mentioned spectral problem is

{ -V-aVy = Ay in Q(e),

¥ -0 on 9Qe),

6]

where n is the outward unit normal vector to the boundary 9€)(¢) and the function a satifies
a- in Q_(g) UaD,
a(x) = . (&)
a, in Q.(e),
a;, a_ are positive constants and a; # a_.

Theorem 0.0.1 (see [17], Thm. 1.2). Let —A%? be the Laplace-Beltrami operator on the boundary dD.

Then
a_ +ay

e 2

A
( s)k;))

where (1,,); is the kth eigenvalue satisfying the problem (1), Ay is the kth eingenvalue of —A%P.
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In this study is considered the following problem

{ -V -aVi, = A0, in Q, 3)

0be _
7 =0 on 0€,,

for £ > 0, where 7 is the outward unit normal vector to the boundary 0€Q),, a is a positive bounded
function and Q, is an e-sorrounding of a connected orientable compact C hypersurface ¥ in R¢, for
d > 2, with the Riemannian metric g induced by the embedding.

Firstly, the problem (3) has to be formulated rigorously by the introducing the corresponding self-
adjoint operator. Based on the Representation theorem, the self-adjoint operator can be defined via the
associated quadratic form. Furthermore, the convergence of this operator to the (d — 1)-dimensional
effective model will be shown in the spectral, the strong resolvent, even in the norm-resolvent sense.
Moreover, the rate of the norm-resolvent convergence will be derived.

12



Chapter 1

The Spectral Convergence

Firstly, the spectral problem with Neumann boundary conditions (3) has to be rigorously formulated.
Define the self-adjoint operator H, on L*(Q,) corresponding with the problem (3) in the following sense

. -V -aVi, = A0, in Q,
A € o (M) — { e _ on 6Q;,

where Q, is an e-surrounding of a connected orientable compact C* hypersurface ¥ in RY, for d > 2, with
the Riemannian metric g induced by the embedding, 7 is the outward unit normal vector to the boundary
0€Q and a is a positive function satisfying

1
(AC > 0) (Ve € (0, 1)) (almost every x € Q) (E <a(x) < C). (1.1
The self-adjoint operator A, can be introduced by the associated quadratic form Q,, which is defined by
0.[0] = f a |V d,,
Q,

D(Qe) = WH(Q,).

Remark. The parameter € is considered to be always small and positive because the limit behaviour is
studied.

Now focus on the geometry of the problem. The orientation can be determined by a unit normal
vector field n : £ — S9! along the hypersurface X. Without loss of generality, the same orientation
as the orientation of the ambient Euclidean space R can be considered. Let the Weingarten map be
introduced as

L: T2 — T.Z: (¢ —dn@) = - (dn'@),...,dn" @) = = (£(n").....£(n"))}

for any s € X. Denote the local coordinate system of £ by s', ..., s¢"!. The map L can be interpreted as
a (1, 1) mixed tensor with the matrix representation with respect to the basis (0%’ el %). Henceforth,
the range of Greek indices is 1, ...,d—1, the range of Latin indices is 1, .. . ., d and the Einstein summation
convention is used. Define the second fundamental form A(&, n7) = (L(£),n) forany &, p € T,Z and s € Z,
where (-,-) is metric g, then the formula L = g"*hy, is valid with the notation (g*”) = (gﬂv)_l. It is
discussed in more detail, e.g. in ([7] , Chap. 3).

The eigenvalues of L are known as the principal curvatures ki, ..., ks—1 of X. Now set the constant

13



p= (maxﬂ {”Kﬂ” o (Z)}) , with the convention, p = oo if all ,, are equal to zero on X and p = 0 if at least
one of «, is not bounded. The mean curvatures

-1
d-1
K,uE( u ) Z Kay - - - Ka,

) <-<ay

are invariants of L (see [9]). Furthermore, mean curvatures K, are globally defined C ! functions.
Consider the domain Q = X X (-1, 1) and the mapping L. satisfying

L.:Q—RY:{(s,0) > s +etn}, (1.2)
then define Q. = £(€)). Additionally, the non-self-overlapping of Q, is required, i.e.
E<p and L, is injective. (1.3)

The parameter € is small and positive. Hence, the former is satisfied if the principal curvatures are
bounded. Now discuss the latter. Based on the inverse function theorem, the self-overlapping is ex-
cluded locally because L, is a local diffeomorphism. Since the injectivity is requiered, L. is a global
diffeomorphism.

The mapping L, induces the metric G, which can be written in a block form

G =go(Id - &tL) + €*dr,

the map /d is the identity on 7;X. Consequently,
2

B

d-1 ¢l
Gl = det(G) = & Ig| [det(1 — &tL)]* = &% Ig| | (1 - &1,)” = &% Ig] [1 ’ Z(_St)ﬂ(d; I)K”

/1:1 ‘u:l

where |g| = det(g). From the following remark, it can be seen that G is regular if the first condition in
(1.3) is satisfied. Therefore, ), can be understood as the Riemannian manifold (Q2, G).

Remark. For any s € ¥ and ¢ € (-1, 1), the assumption £ < p implies

d-1 . d—1 d-1 & H d—1 e d—1 .
1+;(_8f) ( u )Ku(s)Zl—;(/—)) ( p ):2—(1+/—)) =c, >0 (1.4)
d-1 d-1 .
d—l H d_l .
1+,,Z::‘(_8t)ﬂ( p )K”(S) = +;(2) ( u )=(1 +Z) =g < 4o (1.5)

Remark. L? (Q,dX A df) ~ L2 (Q, f+(s, 1) dZ A df) or Wh2 (Q, dZ A df) ~ W2 (Q, fi(s, t) dZ A df) follow
from the remark mentioned above, i.e. any function f in L% (Q,dX A df)is also in L2 (Q, fe(s, 1) dX A dp).
Denote the norm in L2 (Q,dX A dr) as IIllo» the norm in L? (Q, f.(s, 1) dZ A d¢) as |||, and the norm in

L*((=1,1)) as [Illp-
=4

With the writing x? =  and % = 4 fort € (-1, 1), the metric G can be represented by the matrix

(Gij) = ((Gg /) 32] G = gup (86 — &1Ly (87 — &1LY).
14



Then the following relations are valid
-2
C: (@)= (G™)<Ci(g), Ci=(1Fe") ", (1.6)

-1
where the notation (G*) = (GW) is used. Now introduce the volume element

d-1
d-1
Q.= GI'" g P dz Adt = |1 + Z(—gz)“( )K#]dZ Adt=egf. dX A dL,
u=l1 H
where dZ = |g|'/2ds' A - A ds?!
Define the transformation
U:L>(Q,) — L? Q, fe(s, ) dX A dp) : {5 —v= Vebo Lg}. (1.7)

The operator H, on L*(Q, fe(s,1) dX A dr) is obtained by H, = UH.U"'. Furthermore, v, = Up, are
eigenfunctions of H, and the function a, = a o L, satisfies

(AC > 0) (Ve € (0, 1)) (almost every (s,7) € Z X (-1, 1)) (é < ag(s, 1) < C). (1.8)

The operator H, is introduced via the associated quadratic form Q. defined as

0vel = [ alv(uto) ae

Ov ov|?
- fgaozg [([N‘Gﬂ asv) 5 [o| [T A de
ov ov 81)
_ fgag [(Wcﬂ asv)+ ]fs dS A df = Q,[v], (1.9)

D(Q.) = UW' (Q,) = W (Q, fu(s, HdZ A db).

The following equation is obtained
Hou, = Agv,. (1.10)

The quadratic form Q. or the sesquilinear form 4, are uniquely associated with the operator H.. Conse-
quently, the equation (1.10) can be written in the form sense, i.e. (1.10) is equivalent to

(vs € D (Hg)) (Yo € D (he)) (hs (v,05) = Ae(v, 05)e) ,

where h; (v, v:) = A:(v, ve), 18 explicitly

oo ov 1 dvov
- G —= lfodzAadr=2 e f. dT A dt. 1.11
f“ [asﬂ s 2 or ar ]f fg’”’f (11D

Then put v = v,

808

0vg v
&€ 8Gyv_8
La [(%ﬂ s T &2 g

]fgdZ/\dt— flvgl £ dT Adr. (1.12)
15



1.1 Estimations and the Convergence of Eigenfunctions

Remark. Henceforth, C denotes the generic positive constant and |Vg f 'g = gSJ;g gsfv.

Lemma 1.1.1. Eigenvalues A, are bounded.

Proof. The minimax principle has the following form

ov 1 lovl?
O¢[v] fg“a B GHr 1 6_l;| ]fg d A de

(Ag)r = min max = min max , (1.13)
¢ L velp o2 Li veL i, o f dZ A dt

where subspace L C w2 (Q, fe(s, 1) dX A dr) satisﬁes dim/L; = k. The upper estimate for (1.13) is
obtained by the selecting of the subspace L C {go ® —= | o e Wh(Z, dZ)}

Jna:|(556" 5%) ® 3] fo d= A dt

(Ag)r < min max
L gely j;)|90®\+§| fedZ Adr

Jp luy [
. fZ DsH Ez as” dz

< Cminmax-—=——————

Ly pely fZ ||~ dX

Ly cW2@E,dY)isa subspace such that dimZy = k.
The quadratic form Q defined as
2
Olel = [ [Vl ax.
p

D(Q) = W*(Z,dx)
is associated with the Laplce-Beltrami operator with the Neumann boundary conditions. It follows that
(Ao < Cw,
v is the kth eigenvalue of the operator mentioned above. O

Remark. Norms ||-||, and |||y are not distinguished in the following lemmas because they are valid for
IIlls and [|-||p equally.

Lemma 1.1.2. The eigenfunctions v, of the operator H, comply with

[Voeel | < € (1.14)
‘% <Ce (1.15)

Proof. Begin with (1.12) and consider |[v¢||, = 1. Based on (1.4), the following estimation is valid.

fg 2% #V% > al}g }fsdE/\dt<C,1 f|vs| fds Ade
It means 2
|“V9U8|g . i % . <C.
It implies (1.14), (1.15) directly. .

16



The identical transformation
V:L? (Q, fo(s,t) dE A dr) — L2 (Q,dX Adp) : {v v} (1.16)

can be defined and any function in w2 (Q, fe(s,t) dX A dr) can be also understood as the function in
W12 (Q, dS A df). Take an arbitrary eigenfunction v, of the operator H, and consider v, as the function
in W2 (Q,dZ A df). Let ke o be the orthonormal base in L*((-1,1)) given by

1 _
v for n=0,
xn(®) = cos(%t) for n>1 even, (1.17)

sin(%t) for n odd.

Then the function v, can be expanded into the Fourier series

(o)

0e(5,2) = " (s 068, )2 Xn(0).

n=0

Denote @,(s) = (xn, Us(s, ), for any n € Ny, also @.(s, 1) = @o(s)xo(t) = @s(s) and ¢e(s,1) = 277 | @u($)xn(?),
then the function v, can be written as

Ve = Qe + . (1.18)

Due to the orthonormality of the base {x,},, the function ¢, satisfies for any u

1 1
f ¢:dt=0 and 9= 4¢ = 0. (1.19)
-1 —1 osH

Lemma 1.1.3. The function ¢, complies with the following estimates.

Ha¢€ (1.20)

| ¢ Il < Ce (1.21)

and associate the operator with the quadratic form

1
Q[so]=f1

D(Q) = W (=1, 1)).

Proof. The decomposition (1.18) implies

avg

[51.-

< Cg,
0

also Lemma 1.1.2 is used.
Take the Neumann Laplacian —A;l’l)

de 2
dr

dr,

nmw

- 2
Eigenvalues of —AE\, LD are Un = (—) and corresponding eigenfunctions y, are defined by (1.17) for all

2

n € Ny. Prove, the minimax principle for n = 1 can be equivalently written as
= min 29 (1.22)
eeW 210 gl

¥-Lxo
17



Since any function ¢ € Wb2((-1,1)) can be expanded into the orthonormal base {x,},, using the Fourier
series ¢ = 31 ) (¥n,» ©)p Xn- the relations mentioned below are obtained

0 2
min % = min % — min Zn:l Hn |(Xn’ §0)2| S

peW!2((~1,1)) ||¢||% =5 Kt ||¢||§ peWi2((-1,1) >, |(Xn9‘10)2|2 B
#LX0 EW!2(-1.1)) "~

Set ¢ = x1, then
el _ pullills

min < = M1
gewi2-10) [lgll? ~ Il
pLlxo

is valid. It means, the relation (1.22) is proved. Consequently, (1.22) implies for any ¢ € WL2((-1, 1))
satisfying ¢ L yo in L*((=1, 1))

2
MEE
ST L, (1.23)
I, lel* dr
Finally, it can be seen that the following relations are valid.
0. | 3¢, |12
otz = [P asar<c [ 2] asar= c| %] <
Q Q ot ot 0
o

Lemma 1.1.4. Families of functions {¢,}..q, {#c}.-o are uniformly bounded in the parameter € in
W2(Q,d= A df) or Wh2(Q, fo(s, 1) dZ A di).

Proof. Due to (1.18) and (1.19), it can be written

1
oo = f oo dzdr + f (6o dZdr + 2Re f 7 f GoddE = [lpl2 + 0612
Q Q ) -1

Consider |jvg]l, = 1, then |[vgllo —())1 can be seen from (1.4) and (1.5). It is known from (1.20) that
&

lléello —60, therefore |||l —61. The following equalities are obtained using (1.18) and (1.19).
EP EF

2 0ps 1 0 f a‘l’_s 0. f 0ps fl 0.
\Y% = v dxdr + — g dxdr + 2R v drdZ
|I| gv‘g'g |0 o Bsﬂgy Js¥ Q Bsﬂgy Js” ¢ s as“g# _1 O0s¥
2 2
=[1%agel [ + 7l
In addition, Lemma 1.1.3 is proven. It means, the boundedness is shown. O

Remark. Let W be a continuously embedded subspace of a Hilbert space V. Let {y.},. be a sequence
satisfying i(; Y in W. Then ¢, ié Yin V.
e E>

Proof. From assumptions, it is known, (f, ¥ — ¥)w —()) 0 for any f € W. Fix the element f in W and
e
define functionals F € V*, F € W*
F:V—C:{or— F) = (f,u)v},

F=Fly:W—C:{w— Fw)).
18



According to the Riesz representation theorem, there is # € W such that F(w) = (u, w)y for any w € W.
Therefore, the following equalities are valid

(foe =)y = Fe —¢) = (e = P)w — 0.
O

Remark. It follows from Lemma 1.1.4, there is a weakly convergent subsequence, i.e. ¢, k'_)i;o ¢ in
w2 (Q, fe(s, ) dX A dr). Lemma 1.1.3 implies ¢, kH—; 0in L2 (Q, J=(s, 1) dZ A d?). It means, ¢, ]a_)io)o 0
in L2 (Q, fe(s, 1) dX A df). According to the remark mentioned above, it can be obtained, ¢, k'_%; 0in
Wh2(Q, fu(s, 1) dZ A dr).

Lemma 1.1.5. Let {v.},.¢ be a sequence of eigenfunctions of the operator H,. Then there is a subse-
quence {vg, };., satisfying v, %0 in L? (Q, f.(s, 1) dZ A dr)

Proof. Since any function in L% (Q,dX A df) can be understood as the function in L2 (Q, Sfe(s, 1) dX A dp)
and vice versa, the convergence can be shown only in L*(Q,dX A df). Based on Lemma 1.1.4, there is

a weakly convergent subsequence ¢, ié @o in WH2 (Q, dX A dr). The Hilbert space W2 (Q,dX A dr)
E—

is compactly embedded in L?(Q,dZ A df) (see [10], Thm. 9.16), therefore the weakly convergent subse-

quence g, in W2 (Q,dZ A df) can be mapped on the strongly convergent sequence in L? (Q, dZ A df),

Le. @g _()) o in L*(Q,dZ Adr). Additionally, (1.21) implies ¢, —6 0 in L?(Q,dZ A df), then
E— EH

b — o in L2 (Q,dZ A dr). O

1.2 The Convergence to the Effective Model

Consider the equations (1.11), (1.18). Denote D = C*(X). Then (1.11) is simplified into

0P iy 00e . 09 409 ~ f_
fg [asﬂGﬂ 55 " 355C Bs ]fsdEAdt |, Poefe dZ A dr (1.24)

for all ¢ € D.

Lemma 1.2.1. Let a, be a positive function satisfying (1.8) and
(AD > 0) (Ve € (0, 1)) (almost every (s,7) € Z X (—1,1)) (|Vga8|g < D). (1.25)

Then the following convergence

f % G”Va¢8f€ d= A dr — 0 (1.26)

is valid for all ¢ € D.

Proof. Fix u and v. For any u and v, it is obtained using the integration by parts

0% . 00, f e faa da,
Y & ZA == & ad eJe ZA - a . Y ele ZA
f Gy G = fo AZ A dE “avauG bofs AT A dt QasuGﬂ 2o fs dZ A d1

19



Jp OGH ofs
- ofo dTAdE— | aee G2 g, dX A
f Gy i bl dr faaHG ° ¢ AT A dt

€95t as” gl

0 0
—f ‘pcﬂvﬁ‘ﬁ—gfg d= A dr.
Based on the Cauchy—Schwarz inequality, the estimate (1.21), the assumptions and properties of the

metric G, the following relations are valid.

PP y Py
I fg QoG e fy A A A1) < el |62 oy || 55700 €||¢g||€ —0 (1.27)
(9618 aas
sadz/\dt = dX A df -
[ g0 e \/f L msl | 16,
(1.28)

< \/ fg Voglg IVaalg fo dZ A dt ligell, < [|Voaela|| o, IVa¢ls]], gells

V56l || 161l — 0

=C |“ng8|9 |L°°(Q)

dp O0GH SGHY P

‘f 6;2 EX —— b fe A A di| < lagll =) rra L) 65‘ l|@ell, s 0 (1.29)

890 vafs y 8f£ a<p
aSﬂG“ = be XA d) < laglloy (|G| o (157 e |7 I¢clly — 0 (1.30)
019l e ‘ llagllz=(c) Ayl

e dZAdl < s [[G g || 5 & 0 1.31

asﬂ os” |g|f |||g|”L°°(Q) H ”L @ | gsv L@ as# |1 || ( )
O

Remark. Furthermore, it can be seen from (1.27), (1.28), (1.29), (1.30) and (1.31)

o\ 0% 00
Ld ptc ¢ S fo AT A d] < Cligl. (1.32)
(9s/1
Define functions {a.), a
1
(ag) = f asfe dt, (1.33)
-1
(1.34)

a=li )
a=lim (ag)

Lemma 1.2.2. Let functions {a.), a be defined by (1.33), (1.34) and a, is a positive function complying
with (1.8) and (1.25). Let the following conditions (denoted as (CA))

. (Yse3) (<a£> — a),

2. esssup [{as) —a| —> 0
SEX —0
20



be satisfied. Then the equation (1.24) converges to

f 752 gﬂya""o dz = 24, f B dT (1.35)
ast”  0s” 5

ase — 0, forany ¢ € D.

Proof. Let {vg )., be the subsequence from Lemma 1.1.5. Take the equation (1.11). Based on the
Cauchy-Schwarz inequality and the convergence of {vg, };=, in L* (Q, dX A dt), the following equality is
valid.

d-1
d-1
lim | o fs dSAde=lim | Gug |1+ Z(—skt)”( )Kﬂ
koo Jo ko0 Q = M

Moreover, it is obtained,

dZ/\dtszEgoo dx  (1.36)
z

. a‘p ya‘p&‘A a(p va(pé‘k
kl'l_)l’l(’)lo sy #G” —Je, dX A df = hm f(a€k> —G" e dx
_ 1 - va%k 0Py O¢ey P 0y 0%,
= lim [ f (ag,) — ) Gﬂ ds + f a2 G~z = lim f G dE

. _dp ~ o O, _ f Bsogk
=1 ——(G*™ - Cg™) =2 dx + C v
Fratd [fzaﬁs/‘( -9 gy (=T Bsﬂgp asv

. 6906 &P 8‘P0
=1 SaC)) W —— dX
k|1—>r§of asﬂgﬂ asY f st asn? s’

The third equality follows from the Cauchy-Schwarz inequality, the assumptions and the properties
of the metric G. The fifth equality can be shown similarly, however the estimate |G”" -C_g"| <
(Cf —C2)|g"| for any p, v has to be used. This estimate can be seen from (1.6). The subsequence
{¢e]re; 1s weakly convergent in W2 (Z,dx), therefore the last equality is satisfied.

Generally, the sequence of eigenvalues {4, },- , does not converge. Therefore, denote Ag = limsupy, ., Ag,
and Ay = liminf},e Ag,. The limit superior and the limit inferior as k — oo of the equation (1.24) for
the subsequence {0, }rey leads to equations

atp 8900 f_
ald dx =24; dz,
f a-g" = o

where i € {6, Q}. Limit values 15 and Ag satisfy the same equation. Hence, A5 and 4y are equal also

limgse0 Ag, = . Consequently,
9 . 0po f
dX =24 dx.
f ao g o | Beo

The equation in the same form can be derived for any convergent subsequence {vg, },-; of {vz} ¢, i.€. there
is @g such that v, l—> $o in L% (Q,dX A df). Denote limjseo Ag = Ao. Hence, v, —6 ©o in L% (Q,dX A df)
00 >

&l
and A, — A follow. It directly implies the proposition of this lemma O

e—0
Remark. The function g is nonzero because ||vg|l, = 1, i.e. ||[vgllo —6 1, is considered and also v, —0> ©o
Liad &

m . A ar). € solving of the spectral problem makes sense.
in L2 (Q, dZ A df). The solving of the spectral probl k
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Remark. The latter condition of (CA) can be strengthened by the considering of the uniform convergence,
then conditions (CA) are reduced to

)y
1. {a;) 3 a

&0

Using the integration by parts, the following equality can be obtained from the equation (1.35).

_ _1p O — w90
_ 1/2 1/2 v _
fzw[ ™" (Igl ag" —asv) 2/10900] dz

Therefore, the operator /g on L? (2, dZ) such that satisfies the correspondence

_ 0 a . 0y .
-2 9 2@ 9%
Ay € o(hy) — lg1 py (Igl 29” 6s") =gy in X

is introduced by the associated quadratic form gy, which is defined by

adp ,, 0p fﬁ 2
= | -—¢"—dx=| = |V dz
wlel = [ S5EsE = [ Slvdan

D(qo) = W (2,dy),

where the function @ complies with (1.34). The respective sesquilinear form is %g. It is also known, the
subspace D is dense in W' (T, dX), i.e. EH'HWI’Z(E"E) = Wh2((Z,dX)) (see in [10], Thm. 9.2). It implies

- a dp 0y f_
ho(p,00) = | ==—¢g""==dX = A dZ = A (o, , 1.37
0(, ¢o) fz 25! By o rarel) 0 (@, 00)12z.da5) (1.37)

for any ¢ € W2 (Z,dX) and ©wo € D(hg). It is the equation hgpg = Agpo Wwritten in the weak sense.

Now the extension of the operator /g on L% (Q,dX A df) is the aim. Let {,yn}f[’:o be the orthonormal
base in L*((—1, 1)) defined by (1.17), then any ¢ € L% (Q,dX A df) can be expanded into the Fourier
series

W(s,0) = D Un(a() = Yoo + D Un(Ma(0),
n=0 n=1
where ¥,,(s) = (xu, ¥(s, .)), for any n € Ny. Introduce the subspace H, C L*(Q,d= A dr)
Ho = {e®x0 | ¢ € L* (Z,d5)}. (1.38)
Lemma 1.2.3. The Hilbert space L? (Q, dZ A dr) satisfies the orthogonal decomposition
L*(Q) = Hy® Hy.
where Hy complies with (1.38).

Proof. Define the operator Py

1
PQ:LZ(Q,dZ/\dl‘)—>7‘{0 : {l//l—)l,l/o@)(():(f l,bdl‘)@%}, (1.39)
-1

where Yo(s) = (yo,¥(s,.)), for any s € X. It is sufficient to show, the operator Py is an orthogonal
projection. Since the following relation

([l o (Lol



is valid, Pg is the projection. The operator Py is bounded and also (¥, Podp)o = (Poy, ¢)o for all i,
¢ € L?(Q,dX A df), which can be seen from

_ 1 — — 1
W, Pod)o = f l!/(¢o® )dmdr - f GobodE = f (w()@—)asdmdr — (Po. #)o.
Q T Q V2

V2

Therefore, the projection Py is orthogonal.

O

Lemma 1.2.4. Let the map 7 be defined by

7 Hy — L*(Z,d2) : {9 ® o — ¢} . (1.40)
Then r is an isometric isomorfism.
Proof. 1t follows from the definition (1.40), 7 is an isomorfism. Furthermore, 7 satisfies

2 [ 2 2
llp ® xoll3 = fg p@ 5| dZdr= fz 62 dS = g2 5. 45, = 17 (@ ® X0l 25.03)

for any ¢ € L? (X, dZ). It means, the map 7 is isometric. O

The operator Hy on H is introduced via Hy = 7 Vhor. The associated quadratic form Qg complies
with

QO[‘P®X0]:fg|’Vg90|g®)(0|2d2/\df:%[90],
Q

D@y = {w oo |y € W2, d)}.

The operator Hy = Hy® 0~ is the extension of A on the whole Hilbert space L? (Q, dX A dr), 0* denotes
the zero operator on . Therefore, the associated quadratic form Qy satisfies

) 2 N
ol = fg 2% o], @ xof a5 A e = Oy [Powr @ xo] = a0 [Pow], (1.41)

D(Qp) = WH(Q, dX A d).

Theorem 1.2.5. Let the operator Hy be defined by (1.41). The same assumptions as in Lemma 1.2.2 are
required. Let ve be an eigenfunction and A, the respective eigenvalue of H,, which is defined by (1.9).
Then relations

L2(Q,dZAdy)
Vg — ¢ and Ae — Ay
-0 &0

are satisfied for the eigenfunction ¢g of Hy and the respective eigenvalue Ag.
Remark. Define the function a, by

(a te©1),
“s(s’t)‘{a_ te(~1,0).

Using the Lebesgue theorem, the equality
a =da4 +a-

is obtained and it is the same result as (2) (see [17]).
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Chapter 2

The Resolvent Convergence

Definiton 2.0.1. Let A and Ay be self-adjoint operators on a Hilbert space H for any k € N. Then {A};2
is said to converge to A in the norm-resolvent sense if

Jim [IRe(2) = R@)llgg0 = 0
for all z € C with Imz # 0. {A};2, is said to converge to A in the strong resolvent sense if
kl.l_{go I[Rx(z) — R()]F Iy = O

for all F € H and z € C with Imz # 0. Ry and R are resolvent operators of Ay and A.

Remark. Henceforth, the norm of operators |||;2(q dzrdn—12(Q.dsndr 18 denoted by |[|-[loo

2.1 The Strong Resolvent Convergence

R and Ry are resolvent operators of H. and Hy. Ry complies with Ry = Ry @ 0, where Ry is the
resolvent operator of Hy, p(Hy) = p(Hy) follows from the definition of Hy. Hence, the decomposition of
Rp makes sense on the whole p(Hp). Since the resolvent operators R, and Ry are on different spaces, the
unitary transformation

Us : L (Q, fo dZ A dr) — L2 (Q.dZ A dt) < {o > vf. %)

has to be introduced and the notation RY = U.R.U;! will be used.

Lemma 2.1.1. Let A be a self-adjoint operator on a Hilbert space 7, then its resolvent operator R is
self-adjoint for all z € p(A) N R.

Proof. There are unique F, G € Dom(A) for any ¢, € H such that equations mentioned below are
valid for any z € p(A) N R
¢ =(A-2F, 2.1)

¥ =(A-2)G. (2.2)

Then equalities
(6. R = (A = DF, Gy = (F,(A = )G = (R(2)$, )

are satisfied for all ¢, € H and for all z € p(A) N R. O
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Theorem 2.1.2. Let the same assumptions as in Lemma 1.2.2 be considered. Then H. converges to Hy
in the strong resolvent sense.

Proof. Define {{/.},.( in L? (Q, f; dZ A dt) and g in L*(Q, dZ A df) by
Ve = Re(U;'F,

Y = Ro(2)PoF,

forall z € C with Imz # 0 or Rez < 0 and all F € L*(Q,dZ A do). It leads to |RY (2)F — Ro(2)PoF||, =
[[Ug¥e — Yol - Due to properties of Ry, the equality Ro(z)Po = Ro(z) ® 0+ = Ry(2) is valid. It can be
seen, the same estimates as in Chapter 1 are satisfied for y.. Then there is a subsequence {, },-, with
the same properties as in Lemma 1.1.5 and the limit behaviour of the equation (H,, —2) ¥, = U, le in
the form sense is studied for an arbitrary z < 0,

0
lim (fag"aﬂGw lﬁakfgk dZ/\dt—zf&,//gkfgk dZ/\dl‘):kl'i_)n;fgoFfl/Q dX A dt,

k>0

where ¢ € D. Now the left side is adjusted in the same way as in Lemma 1.2.2.

op . Oy _\1/2) _ . N2 (o
asﬂg’“’avdZ 2zfgozpd2—hmf = (ca) )goFdZAdelgg(cgk) LgoFdZ/\dt

Based on the Cauchy-Schwarz inequality and relations (1.5), (1.4), the following equation is obtained.

a0 g“v dz % | Guds=2 | GPoFdx
5s/‘ >

Analogously as in Chapter 1, it can be shown that it is the equation (Hy — z) ¥ = PoF in the form sense.
The convergence /¢ _6 ¥ in L*(Q, dZ A df) can be proven as in Lemma 1.2.2. Using (1.5) and (1.4), the
E—

convergence Uz, " ¥ in L2(Q, dX A dr) is gained, therefore
E—
[[RV@ - Ro@)] ||, — 0 23)
&0

for any F € L>(Q,dZ A dr) and any z < 0
The aim is to derive the convergence (2.3) for all z with Imz # 0. Following equations are obtained
by the first resolvent identity (see [5], Thm. 5.13.)

RY@)[I -+ DRY(-D)] = RY(-1), (2.4)

Ro(2) [1 = (z+ DRo(=D)] = Ro(=1), 2.5
where z € C with Imz # 0. The operator A, = [I —(z+ HRY (—1)] is injective if and only if the equality

(z+ l)Rg(—l):,b = is valid only for ¢ = 0. It means, the equation

1
Ue_ —

is studied. It is known from Lemma 2.1.1 that RY(~1) is self-adjoint and its spectrum is real. It implies
. +1 €Ep (RU( 1)) therefore there is the bounded inverse operator A;!. The existence and the bounded-

ness of A~ = [I = (z + DRy(-=1D)]~! would be proven analogously.
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Then it can be written
RY(2) = Ro(x) = A;'RY(=1) = A" Ro(-1) = (A;" = AT )RY(=1) = A" (Ro(-1) - RY (- 1)).
According to the triangle inequality, the following estimate is gained.
IRY@) = Rl < (45" = A7) REDF] + 47" [[(Ro=1) = RE-D) F|,
Additionally, the equality mentioned below is satisfied.

1
z+1

-1 -1 _ 1 U - U 1 -
A —AT = Tk (—1)] (R (—1)—Ro(—1))[z+—1—Ro(—1)}

-1 -1
Operators B, = [HLl - Rg(—l)] and B = [erLl - Ro(—l)] are bounded, therefore G = BRg(—l)F is

function in L?(Q, dZ A dr). Consequently,

(R @) = Rota)] 7|, < €@ |[[(Rot=1) = RE-D) G|, + [[(Ro(=1) = RE-D) F]] | = 0

e—0

for any F € L*(Q,dZ A dr) and z with Imz # 0. O

2.2 The Norm-Resolvent Convergence

Lemma 2.2.1 (see [11], Lemma A.1). Let {R},r be a family of bounded operators on a Hilbert space
H and let R be a compact operator in . Suppose that

ﬁ(kr_)—;f in H =>Rskfk]a_)—o>oRf in H, (2.6)

Yk e N, |l fllgr =1
for all {s¢};2, € Rand {fi};2, € H. Then {R,} g converges to R uniformly, i.e.,
im IR, — Rllp—p¢ = 0. 2.7)

Proof. Lemma will be proven by contradiction. Assume that (2.6) is violated and (2.7) holds. It means,

[ [

there is K > 0, a sequence {s¢},—; C R such that s, k—) oo, a sequence {fi},, C H satisfying || fillyy = 1
and
(Vk € N) (||Ry, fic — Rfi]|, = K > 0) (2.8)

o0

for all n € N. Since the sequence {fi};=, is bounded, there is a { i, },_, complying with fi, N finH.
n— 00

The compactness of R implies
lim [[Rfe, ~Rf],; = 0. (2.9)

Furthermore, (2.8), (2.9) yield

0 <K < lim ||Ry,, fi, — Rf,
m—oo

H T ”1”1_1;20 “Rskmfkm - Rf H 0.

It is a contradiction with the positivity of K. O
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Theorem 2.2.2. Let the same assumptions as in Lemma 1.2.2 be supposed. Then H, converges to Hy in
the norm-resolvent sense.

Proof. Consider the sequence of the resolvent operators {R.},.. It means, the required boundedness is
satisfied. The inequality in the sense of the associated quadratic forms

ho > —CAE,

where A denotes the Laplace-Beltrami operator on X, follows from the definition of 4 and properties
of @. Since the spectrum of —A¥ is purely discrete and its eingenvalues tend to infinity (see [8], Thm.
3.2.1), also the spectrum of Aq is purely discrete. The definition of Hy yields, the essential spectrum of
Hy is empty, then Ry(z) is compact for all z € p(Hp) (see [2], Corol. 4.2.3).

Let {&};~, be an arbitrary sequence satysfying & e 0 and g > O for all k¥ € N. From Theorem

212, itis known [[RY() - Ro(2)] FHO — 0 forany F € [X(Q,dZ A df and 2 € C with Imz # 0. It
EF
implies
[Rev@Fe, = Ro@Fly < [Res @l 17 = Flly + [ReiF = Ro@)F Y]y = 0.

If R, = Ri = R, forall s > 0 and Ry, =R1 = Rsk for all £ € N, the assumptions of Lemma 2.2.1 are
s Sk

satisfied and
lim [|R; — Rollp—o = 0.
e—0

2.2.1 The Rate of the Norm-Resolvent Convergence

Even the rate of the norm-resolvent convergence can be derived. Firstly, the alternative definition of
an arbitrary norm is proven
(e, 1)
1Al = sup ——.

(2.10)
oz0 el

Proof. The equality is proven by an upper estimate and a lower estimate. The upper estimate is shown
by the Cauchy-Schwarz inequality

.l _ el

g0 llell g0 il

= ||All,

the lower estimate is carried out by taking ¢ = h

Jh h,h
B (C20/ ey (G0 1Al
o0 llell lIAll
O
According to (2.10), the following relation is obtained.
|(F, (R = Ro) Gl
IR: = Rollo~o = sup Lo
Feerr@azadn  IElo Gl
The sequence {¢/,}..o in L? (Q, f.(s, 1) dZ A df) and ¢ in L? (Q, dZ A dr) are introduced by
e = R(U;'G, @2.11)
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¥ = Ro(2)PoF 2.12)

for any F, G € L%2(Q,dZ A df) and z € C with Imz # 0 or Rez < 0, where Py is defined by (1.39).
Additionally, the equality (2.12) implies ¥ € Hy. Equations (2.11), (2.12) are equivalent to

(H, - 2)ys = U;'G, (2.13)

(Ho —2)y = PyF. (2.14)

Remark. In the following lemma, estimates are satisfied in the norm ||-||, even in the norm ||-||y, therefore
the notation ||-|| is used.

Lemma 2.2.3. Let {},.( be defined by (2.11) forany G € L*(Q,d= A df)and z < 0. Then the following
estimates are valid.

el < Clzl™ IGII (2.15)
IVouel, | < 2 1l (2.16)
e .
Hi <ClZ |G (2.17)
ot
|P§we|| < Cl™ 2 elIGIl (2.18)

If y is defined by (2.12) for any F € L*(Q,d= A df) and z < 0, then
il < C Lz~ I (2.19)
[Iv,01,|| < e, (2.20)

Proof. Let Q. be the associated quadratic form of the operator H,, h, is the respective sesquilinear form.
The equality (2.13) can be written in the form sense

e € D(H.) (V9 € D (ho)) (he (8, 00) = (6, 20), = (6, U; ' Ge ).

for any G € L? (Q,dX A df) and z < 0. Take ¢ = ., then the equation is explicitly

Jye
Q

Based on (1.6), the following estimate is gained

l,

Using the Cauchy-Schwarz inequality, (1.5) and (1.4), it can be seen,

o
ot

e, 00e 1
asﬂGﬂ s’ * g2

2
]fgdzAdr—szgﬁfgdZAdz:f@Gfg‘/z d=Adr.  (2.21)
Q Q

e

We e 1
—_— + —_—
ot

8sﬂg os¥ &2

2
}fst/\dt—zfltﬁglzfgdZ/\dt=f@Gfs]/de/\dt.
Q Q

Clalgelly < C I Igellz < Clellg Gl

is valid. It implies (2.15). The estimate

2
C|wouel | <l
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is obtained in the same way. The relation (2.16) is proven using (2.15). In addition, (2.17) can be shown
analogously. It is known from Lemma 1.1.3,

A
ot

Punlf <c|

Then only use (2.17).
Since ¥ € Hy, the weak formulation of the equation (2.14) can be written as

f T W i g f W ds A di = f GPoF dS A dr. (2.22)
2087 0s”

The estimate (2.19) is proven by the Cauchy-Schwarz inequality. The following relation is shown simi-
larly.

CIvgul,|| < mtipory
If (2.19) is applied, the proof is finished. ]

Remark. The mentioned below relations can be gained in the same way as in Lemma 1.1.4.

Pl < ClIGH (19 ool | <claPian e (i) | < cl PG

Theorem 2.2.4. Let the same assumptions as in Lemma 1.2.2 be supposed. R, and Ry denote resolvent
operators of H. and Hy. Then the rate of the norm-resolvent convergence is

|IRY @) = Ro@)|,_,, < C(z) max {&, d(2)) (2.23)

for any z € C with Imz # 0. The function d is defined by

f: (g —agfg)dt .

Proof. Firstly, put z = —1. Based on the properties of Ry and relations (2.13), (2.14), it can be shown

d(e) = esssup

sEX

(2.24)

(F.(UeR(=1)U;" = Ro(=1) G), = (F, UsRe(=DU; ' G) | = (F, Ro(=1)G)g

= ((Po+ P§) F, Ustre), = (Ro(=1) (Po + P ) F.G),
= (Ho + D, Uy + (PG F, Ugte ) = (0, U (He + Do)y
= (How, U)o + (P§ F, Uste), — (U ', Hote)
= ho W, Uetre) = he (U " ) + (PG FL Ustle)

where fiy and h,, are sesquilinear forms of Hy and H,. It is explicitly equal to

- 1/2 —-1/2
a oy VaPO (fs ‘/’8) a(f5 l//) e
I e R T LT

L ol )awg

-= | a
g2 Q ¢ ot

e dE A dr+ f PLFy £ dE A dt
Q
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dX A dt

_ fla W JOPo(f:%we)  0(f:%0)  opgy, .

2 OsH Js” ost Js”

of'"9) 0P L o) iz
_Laa oy G* 5 fst/\dt—;angl// ” fgdZ/\dt

+fP(-)LF¢/Sf€1/2 d= A dr.
Q

Based on the properties of the orthogonal projection Py, properties of f,, . and the exchange of
derivatives and the integral, the following relation can be shown.

aPy(fi%ws) o 11 [,

_— = | = /2_ 1

as” s [2 f:1 (e 1)(P0+P0)Wsdf+1’olﬂs]
_ OPove + LoPobe fl (fl/2 - 1) dr + lP v f 5f1/2dt
SOy 20 S 27 L s

af* | 1 (Y an OPy e
+§Il as¥ Powedi+ II(S _1) 0s’ ds

Consequently, the mentioned above equality, the Cauchy-Schwarz inequality, Lemma 2.2.3 and proper-
ties of f; lead to

a0l
Lg% #v[ Py (asv lﬁ) c’ilggt//e)dZAdt < C”|Vg¢| “ [ 1/2‘g o (||p0¢€||0+ ||P(W€Ho)
[ 1] gy 15w+ 5 (), )] < & IFlo Gl

For the integral

a 8—1/2_ 1/2
faguG’”gfffg dZ/\dt:fa ( 0 v+ [ I/Z(M)G‘”’a%fsdif\dt
Q Q

OsH
estimates
afg_l/z— 3% 1/2
J ot e ez na scw | 9ol W < sClPIGH
N 1 5P0¢’s &Z 12 ,OPoYre
f a#(f G — g ) fdE Adl < f b (12 =1)c oo Je dZ A dl
+ f aga—‘”(cﬁv C;g") =2 0'”8 £ dZ A de| + aga—’”(c; 1) g —2= O‘ﬁa £ dZ Ade
st ost

<sC ||1vgw|g||g IV, ool || < 2C P10 1Go

are proved using the Cauchy-Schwarz inequality, Lemma 2.2.3, (1.6) and properties of f.. Furthermore,
the inequalities

f(_ gfa) g 0e vOPWe 45 p ar] =
Q Ot

P
(9 v ( asfg) dta—w pva U dZ‘

(9/‘ Os”




< d@ C||[vyul, |, [V Poval |, < d@cliFls G
= ama
Qag%/;G“ 30v

are satisfied, where the latter can be shown analogously as in Lemma 1.2.1. From the estimates men-
tioned above, it can be seen

”@ WP ) o)

fA2dE A dil < £C|IFllo Gl

dX A dt

e
o 5957 EYs e ER e < max{d(e), &} CIFlly[IGllo -

Now rewrite the equation (2.13) in the form sense for the function ¢ K. It is explicitly

f agtKl aw Gﬂva‘”g fodZ A df+ f gn,//%Gwa‘/’S fodZ Adr+ 1 f agKIJ% fo dZ Adt
Q s+ Os” £ Jo ot

—zerlwgfadzAdz:fzKIJGf;/Z d= A dr.
Q Q

It means |

82

v
f acKil 2l dzAdr‘ < CIIFllo [Glo -
Q

then the observation "
of~ d-1
fat = — kK +0(EYH  as e 0

gives the following estimate for the sufficiently small &.

1 (£ oy,
ngawT fgdZ/\df

< eC||Flly lIGllo

The last part can be estimated using properties of projections and f;, the Cauchy-Schwarz inequality and
Lemma 2.2.3.

’fg PEFy £ d A dt‘ = ‘((PO) F, lpgf”z)

= |(Pa . P (i), | < 1o P (vt )]

< “FIIO (| ‘ﬁsfl/z - (//8 HPO (ﬁafl/Z - ll/s) 0 + ||P6_‘/’s|‘0)
< ClIFl (|77 - 1Hmm Wello + [Pgwelly) < 2C NI G

Hence, the total estimate is
|(F.(RY(=1) = Ro(~1)) G) | < max {e, d(&)} CIFll lIGily

and the norm satisfies
|RY (1) = Ro(=D)|,_,, < C max {s,d(e)}

Now the aim is to get this estimation for all z with Imz # 0. The first resolvent identity (see [5],
Thm. 5.13.) has to be applied as in Theorem 2.1.2, then the estimate

IRY @ = Ro@y_g < [l + 117 1Belloo I1Bllo0 [IRY (= Dl + 47 oo |(Ro=D = RE=D)]
< CQ) ||(R0(—1) _RV (—1))“(HO < C(z) max (¢, d(s)}
is gained for all z with Imz # 0. The notation is the same as in Theorem 2.1.2. O
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Remark. In conclusion, the same choice of the function a as in [17]

_Jay te(0,1)
a(s:1) ‘{ a te(-1,0)
gives d(e) = 0. It means, the rate of the norm-resolvent convergence ||Rg(z) - Ro(z)Ho_>0 < eC(g) is
satisfied for all z with Imz # 0.
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Conclusion

At the beginning of the study, the Neumann boundary spectral problem (3) is rigorously interpreted
by the definition of the self-adjoint operator corresponding to this spectral problem. The self-adjoint
operator is the Neumann Laplace operator with a non-homogeneous metric in thin domains defined
by the associated quadratic form. The operator can be physically interpreted as the Hamiltonian of a
(quasi)particle in a non-homogeneous nanostructure and the problem (3) as the respective stationary
Schrodinger equation.

Furthermore, the behaviour of this operator is studied, while the width of the thin domain tends to
zero. Then it is found out that the operator converges to the effective model in the spectral sense and
in the resolvent sense. Both the strong resolvent convergence and the norm-resolvent convergence are
proven. Finally, the rate of the norm-resolvent convergence is obtained. Conditions of the convergence
are formulated and discussed.

It is worth mentioning, this study is the significant generalization of the T. Yachimura’s article pub-
lished in the journal Differential and Integral Equations in 2018, where only the piecewise constant metric
was considered.
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