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Abstract

The master thesis deals with the design
of the receiving link layer according to
the JESD204B standard. It introduces
the history of the standard from its first
version to the current revision C. It delves
deeper into the theoretical foundations
of the revision B, from the perspective
of the link layer. Further, the designed
modules themselves are described. First
the main one and then the ones of which it
consists. Finally, the verification process
is also shown, most notably the simulation
of the designed block. The possibility of
implementing the device in FPGA for a
proper verification is also outlined.
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Abstrakt

Diplomova préace se vénuje navrhu linkové
vrstvy prijimace dle standardu JESD204B.
Seznamuje s historii standardu od své
prvni verze az po soucasnou revizi C. Hlou-
béji se vénuje predstaveni teoretickych za-
kladt revize B, a to z pohledu linkové
vrstvy. Déale jsou popsany samotné navr-
zené moduly. Nejprve ten hlavni a pak
také ty, z kterych se sklada. Na zaver
je rovnéz ukazan proces verifikace, nej-
vice pak simulace navrzeného bloku. Nasti-
néna je i moznost implementace zafrizeni
v FPGA pro plnohodnotnou verifikaci.

Klicova slova: Verilog, Xilinx, FPGA,
JESD204, JESD204B

Preklad nazvu: Navrh Rx radice ve
standardu JESD 204B
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Chapter 1

Introduction

The master thesis deals with the design of the link layer of the receiver
in the JESD204 standard, specifically in revision B. Four main goals were
set for the work. The first one was an introduction to the JESD204 protocol
in versions B and C, as well as to multigigabit transceivers within the Xilinx
FPGA. The second task was to compare the individual versions A, B and C
of the protocol with each other and to explain the advantages and disad-
vantages of their use in practice. The third and main goal was to design
the link layer of the receiver itself in the specified standard with the 8B/10B
coding using the Verilog2001 language. The fourth and last task was to verify
the designed device by means of a RTL simulation using the reference Xilinx
JESD204 TX IP core and possibly verify the system on a board with a FPGA.
One side goal could be mentioned and it was designing in the Verilog language,
which was a new experience.

The work itself is divided into five chapters including this introduction
and the final conclusion. The first part after the introduction presents the the-
oretical basis of the JESD204 protocol. It deals with the reason for its im-
plementation, the motivation why to use it, the comparison of individual
versions with each other, which are also juxtaposed with the LVDS technology
for a parallel signalling. Additionally, it focuses on the revision B itself, listing
its main benefits and improvements over previous versions. The section
focused on the link layer follows, its implementation was the main goal of this
thesis. At the end of the chapter, there are also two sections focusing on Ver-
ilog and multigigabit transceivers within the Xilinx FPGA. The third chapter
outlines the design of the receiver itself. At the beginning, the tools that were
used for the development are listed. It is followed by presenting the designed
block. The attention is focused on the design of the developed block from
the outside. Then it forms a description of its internal connection with the
designed submodules and their internal arrangement is described. The next
section is dedicated to the verification of the developed device. It deals mainly
with simulations in various simulation tools, the simulation procedure and
lists other circuits that had to be designed with regard to the fact, that the
resulting receiver was supposed to be validated on the board with a FPGA.
The final information within this chapter is about the synthesized design of

1



1. Introduction

the developed receiving link layer of the JESD204B protocol. The last but
one chapter then outlines the direction in which the proven work could be
followed up in the future and finally there is a conclusion at the end of this
thesis.



Chapter 2

Theoretical Background

B 2.1 JESD204 in General

Analog to digital converters (ADC) and digital to analog converters (DAC)
are becoming steadily more and more accurate and faster. It means that their
interface is getting larger in the count of pins needed to transport the data
and the output or input frequency has also grown. This is the reason, why
the interface JESD204 was developed several years ago and has undergone
revisions to make it even more suitable for this case of use. The JESD204
interface comes out with some crucial advantages over the conventional CMOS
(Complementary Metal-Oxide—Semiconductor) and LVDS (Low-Voltage Dif-
ferential Signaling) interfaces. The implementation of the JESD204 on the
FPGA (Field Programmable Gate Array) or ASIC (Application Specific
Integrated Circuit) yields to the ability to keep up with faster sample rates
of converters. It reduces the pin count, so the resulting device has a smaller
package size. The reduction of the pin count also leads to a decrease of trace
routes, which makes the board design much easier and offers a lower overall
system cost. The scalability is another benefit. The JESD204 standard was
introduced in 2006 and since then it has been updated in three revisions,
which have improved its efficiency. The latest one is the JESD204C revision.

4

B 2.2 Motivation to Use JESD204

As requirements of converters were by time incessantly increasing, the de-
velopment of their interface was performed too. For converters with a high
data rate, wide resolution and demand for a low power consumption is cur-
rently JESD204, which uses the current mode logic (CML), concerned as the
best way, how to transport the data for the further processing in a FPGA
or ASIC. The CMOS technology lacks in the power consumption in higher
speeds. The LVDS allows higher data rates, but it is also limited, due to
the driver architecture and the necessity of the synchronization of all lanes,
where the number of lanes could be significantly great. These statements are
summarized in the figure for the use with a dual 14-bit ADC. [4]

3



2. Theoretical Background

CMOS

*¥Dual 14-Bit Analog-to-Digital Converter

150 MSPS
to 200 MSPS

Power Consumption

ADC Sample Rate

Figure 2.1: CMOS, LVDS and CML power consumption dependency on sample
rate [6]

As stated above, the CML technology requires a fewer portion of pins at the
same speed and resolution, as it is a serialized communication, when not
talking about low data rates. Differences between technologies in this aspect
are illustrated in the table There is a comparison for a 200 MSPS ADC
with a various number of channels and resolution. From the number of pins
for each interface it is evident the advantage of using the JESD204B. It can
be stated that the use of the JESD204 is not appropriate in cases of lower
sample rates, approximately 150 MSPS, and if a minimal latency across the
communication chain is needed. [3] [4]

. 2.3 Development of Revisions

Bl 2.3.1 Original JESD204

The original version of the JESD204 was launched in 2006. The standard was
designed for a multigigabit serial data link between a converter, or multiple
converters, and a receiver or transceiver, most often a device such as a
FPGA or ASIC. This original version was limited for only one link connecting
converter, or converters, and a receiver. The link could only consist of one
lane. The illustration of this version is shown in the figure 2.2 The lane
in the figure is a physical medium transporting a serialized data between
M converters and a receiver. It is achieved by means of a differential pair
working with the CML technology. As could be seen, the exactly same frame
clock is provided for both sides, for converters and for a receiver. The source

4



2.3. Development of Revisions

Number of Resolution CMOS LVDS JESD204B
Channels Pin Count | Pin Count | Pin Count
1 12 13 14 2
2 12 26 28 4
4 12 52 56 8
8 12 104 112 16
1 14 15 16 2
2 14 30 32 4
4 14 60 64 8
8 14 120 128 16
1 16 17 18 2
2 16 34 36 4
4 16 68 72 8
8 16 136 144 16

Table 2.1: Comparison between the CMOS, LVDS and JESD204B in the pin
count for a 200 MSPS ADC [4]

and load impedances were defined as 100 Q + 20 % and the differential voltage
at the nominal value of 800 mV. The original version also supported the
8B/10B encoding. All above aspects led to the defined lane data rate within
limits 312.5 Mb/s and 3.125 Gb/s. The standard became very popular and
the first revision was needed. The goals were mainly about dealing with the
increasing speed and resolution of converters. [I] [4]

M 1Link, 1 Lane
Converters > JESD204B Rx
A
A
Frame
Clock 312.5 Mbps - 3.125 Gbps

Figure 2.2: JESD204 original standard illustration

B 2.3.2 JESD204A

In 2008 the new revision of the standard called JESD204A came into the
market. The main improvement was a support of multiple aligned serial
lanes with multiple converters, as could be seen in the figure [2.3] Other
specifications as the lane data rate, electrical specifications and the frame
clock distribution remained unchanged. Now, it was possible to meet the
maximum data rate 3.125 Gb/s for converters with a high sample rate and
high resolution due to multiple aligned serial lanes. However, in the revised
standard one important feature was missing. It was a deterministic latency,
which is crucial for a correct interpretation of the received digital data in

5



2. Theoretical Background

some applications. This was the reason for developing a new revision of the
standard. [4]

1 Link, L Lanes
M
Converters .
: ' JESD204B Rx
' 1 Link, L Lanes
M
Converters
A A
Frame
Clock 312.5 Mbps - 3.125 Gbps

Figure 2.3: JESD204A standard illustration

B 23.3 JESD204B

The improved revision JESD204B was released in 2011. The key element
missing in previous ones, deterministic latency, was since then included.
Furthermore, several other features were introduced. Firstly, the supported
data rate was raised up to 12.5 Gb/s. Three grades of devices differing in the
data rate were distinguished. Speed grade 1 supports up to 3.125 Gb/s, the
second one supports up to 6.375 Gb/s and the last one supports up to 12.5
Gb/s. They have also different electric specifications. Secondly, the common
source of the frame clock was omitted and the main clock source specific
for each device became a device clock. The figure [2.4 shows the illustration
of the JESD204B revision. The JESD204B will be described in more detail
further in the thesis. [1]

M 1 Link, L Lanes
Converters :
: ' JESD204B Rx
' 1 Link, L Lanes
M
Converters
Device Device
Clock 1 T ( 312.5 Mbps - 12.5 Gbps T Clock 2

Deterministic Latency

Figure 2.4: JESD204B standard illustration



2.4. LVDS compared to JESD204

B 23.4 JESD204C

The latest revision, JESD204C, was launched in 2017. It brings some further
improvements of the revision B to achieve a greater data rate and more
efficient transport of the payload data. The revision’s C definition of the
physical layer allows to greatly increase the data rate up to 32 Gb/s, while
also providing a backward compatibility to the revision B. The efficiency
improvement is mainly caused by changing the encoding scheme. Newly, it
supports the 64B/66B and 64B/80B encoding beyond the 8B/10B encoding.
They have a shorter coding overhead, so there is more place for data bits.
Devices are similarly divided into device classes as in the previous revision in
order to provide driver/receiver pairs that have varying amounts of a signal
integrity processing to reduce the power in shorter channels. The downside
of this revision can be a not full backward compatibility with the JESD204A
revision. [2]

B 24 LvDs compared to JESD204

The parallel low voltage differential signalling (LVDS) is an older method to
interface converters on a FPGA or ASIC. It was revised lastly in 2001 and it
was a replacement of the RS-422 and RS-485 protocols, which had a higher
power consumption and lower bandwidth. The LVDS uses differential signals
with low voltage swings for a high speed data transmission.

The first problem of this technology lies in the low bandwidth for a use
case with modern converters. The bandwidth of a differential LVDS wire is
theoretically limited to 1.9 Gb/s, but in the real world it is maximally about
1.0 Gb/s. The second problem is a need of a great number of interconnects,
as converters have a wider resolution. Therefore the JESD204 interface was
developed. [5]

Figures 2.5| and 2.6| are illustrating differences in a system design using the
LVDS for a parallel data transportation, respectively the JESD204 interface.
It could be clearly seen that the JESD204 reduces the number of traces and
the complexity of routing, simplifies the synchronization and the design is
easily scalable. [5]

The table 2.2 summarises differences between the LVDS and all current
revisions of the JESD204 standard. [1] [2] [5]
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Input 1 44 ADC 1

0 FPGA / ASIC

Input N |4 ADC N

125
MHz @ I

Figure 2.5: System design using LVDS

Input1 4 ADC 1

Diff Lane
i He FPGA
- JESD204 p
' SERDES SYNC~ |JESD204 el
. 4 SERDES
Input N 44 ADC N g
125 |
MHz @

Figure 2.6: System design using JESD204

B 25 Layer Architecture in JESD204B

Similarly like the TCP/IP protocol, the JESD204 is divided into four indivi-
dual layers, each with its own function. The layers are named as application
layer, transport layer, data link layer and physical layer. The illustration
of the layer composition is in the figure 2.7, [I]

B Application Layer

The application layer is used for a special configuration and data mapping.
Thanks to the specific framing of bits and other options, it is possible to achieve
a reduction in the power consumption or to ensure a better data transfer
from a converter with an atypical bit width. In that case, it is crucial to have
configured the transceiver and receiver in the exactly same way. [§]

B Transport Layer

The main task of the transport layer is to map samples from converter or con-
verters to non-scrambled octets. There are several possibilities, how the map-
ping is done [I]:



2.5. Layer Architecture in JESD204B

Function LVDS | JESD204 | rev.A rev.B rev.C
Specification 2001 2006 2008 2011 2017
Realease
Max Lane
Rate [Gbjs] | 0 | 1| SIS 0
Multiple No No Yes Yes Yes
Lanes
Lane No No Yes Yes Yes
Sync
Multidevice No Yes Yes Yes Yes
Sync
Deterministic No No No Yes Yes
Latency
Harm(?mc No No No Yes Yes
Clocking
Codin 8B/10B
Schemi No 8B/10B 8B/10B | 8B/10B | 64B/66B
64B/80B

Table 2.2: Comparison between LVDS and JESD204 revisions

® Single converter - single-lane link
® Multiple converters within the same device - single-lane link
B Single converter - multi-lane link

® Multiple converters within the same device - multi-lane link

The frame is then formed by a concatenation of F' octets. There is also
an option of sending more then one sample from a single converter in a single
frame. This must be defined by the number S. [I]

B Data Link Layer

Implementing the data link layer is the main purpose of this thesis and will
be discussed in more detail later.

B Physical Layer

The data serialization is realized in the physical layer. The physical layer
contains serializer/deserializer (SerDes) blocks, drivers, receivers, and CDR.
Also, the physical layer indicates the data rate speeds. As mentioned above,
the JESD204B is divided into three grades. The maximum supported speed
in JESD204B is 12.5 Gbps. The table [2.3| summarizes the electrical specifica-
tions for each grade. [§]
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Applicati T rt Data Link Layer Physical

era er La ;r Layer
Device v Y Y
Clock 1 Tranceiver
e
—> Frame/Lane
Application Data Alignment 8B/10B L . | |
Layer Framing SN Character Encoder Seralzey D
Generation
Serial
Receiver Lanes
SYSREF
- Application Data Frame/Lane 8B/10B - .
SYNC R Layer Deframing Descrambler Alignment DEeter Deserializer Driver €
Device
Clock 2

Figure 2.7: Layer architecture of JESD204B

Parameter Grade 1 | Grade 2 | Grade 3
Line Rate [Gbps] 3.125 6.375 12.5
Out Differential
Voltage [mVppd]

Out Rise/Fall

Time [ps]
Out Total
Jitter (p-p UI)

p-p Ul = peak-to-peak Unit Interval

500 - 1000 | 400 - 750 | 360 - 770

50 30 24

0.35 0.30 0.30

Table 2.3: Electrical specifications for JESD204B [5] [2]

B 2.6 JESD204B in Detail

This section will cover a closer look to the JESD204B interface, its fea-
tures and standardizations. Some basic information were already provided
in the section [2.3.3] According to the assignment, the main focus will be de-
voted to the link layer.

B 2.6.1 Deterministic Latency

In the engineering, a latency is a designation for the time elapsed between
an action and reaction, or also the time required for the signal to pass between
a point A and point B. For a JESD204 link is the point A the parallel input
to the JESD204B transmitter and the point B corresponds to the parallel
output of the JESD204B receiver’s buffer. If so, it can be talked about
the deterministic latency. It is important to not get confused with the term
link delay. The link delay has an endpoint as an input to the receiver’s buffer.
The figure illustrates the meaning of the deterministic latency. [I] [4]

10



2.6. JESD204B in Detail

¢ Deterministic Latency N

samples In $ JESD204B Tx| Chamel {JESD204B Rx| ) g ralel

Figure 2.8: Illustration of deterministic latency

The JESD204B standard is divided into three subclasses according to how
they achieve the deterministic latency:

® Subclass 0 - deterministic latency is not supported
® Subclass 1 - deterministic latency by means of signal SYSREF

® Subclass 2 - deterministic latency by means of signal SYNC~

Il Subclass 0

Due to a backward compatibility to the JESD204A revision is the JESD204B
containing the subclass 0. The deterministic latency is not supported in this
case. This could be useful for implementing the revision B with some older
devices designed for the revision A. The subclass 0 has also different require-
ments for the SYNC~ signal from the subclass 1, as listed below. [4]

SYNC-~ signal requirements (corresponding with the subclass 2) [1] [4]:

® The SYNC~ signal and receiver’s and transmitter’s frame clock must be
synchronous.

® The SYNC~ can not be AC coupled.

® The device clock to the SYNC~ delay (tps r) at the receiver device
pins must be specified.

® The setup and hold time for the SYNC~ to the device clock at the
transmitter must be specified.

The lane alignment in subclass 0 is achieved by means of an elastic buffer.
The buffer is applied on each lane in the link. All incoming characters are
stored in these buffers during the initial lane alignment sequence (ILAS) and
after the arrival of the last lane’s first start of multiframe control character
(/R/ = K28.0), all buffers are released at the exactly same time. The same
mechanism is applied also for the subclass 1 and 2, however the release time
differs. [4]
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2. Theoretical Background

SYSREF —I
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— crossing after SYNC~ is.
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Figure 2.9: Timing diagram illustration for deterministic latency by SYSREF [I]
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B Subclass 1

In a technical practice, there are many applications where we need not only
the synchronization across one link or multiple devices, but also we need to
know the exact latency of the information transfer from the converter to the
logical device.It means the deterministic latency in this case. For instance,
some ADCs realize their calibration by means of a feedback loop and for
this is a knowledge of the latency a crucial requirement. In other words, the
arriving of the data must be stable after every power cycle. [4]

In the subclass 0, the receiver was monitoring all lanes until the first /R/
control character on latest lane arrived. Then the sample data were released.
This solution is not counting with the time variation between each power cycle.
The subclass 1 is synchronizing the release to the external SYSREF signal.
This is done by the phase aligning of the local multiframe clock (LMFC) to
the SYSREF signal. The illustration of the timing in the subclass 1 could be
seen in the figure The application of the subclass 1 is suitable for the
data rate above 500 MSPS. [4]
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2.6. JESD204B in Detail

Requirements for subclass 1 [1] [4]:

® The delay between the leading edge of the SYSREF signal and the
frame and multiframe boundary must be specified for all devices in the
JESD204B system.

® The buffer depth is defined by the receive buffer delay (RBD) and is
ranging from 1 to K frame cycles. Mostly is the RBD set to 32.

® [f the system needs a multichip synchronization between JESD204 devices,
the use of the exactly same model of the converters is required. Otherwise,
there could be problems with the deterministic latency.

® The inter-device lane skewness must be minimized.

® The device clock and SYSREF generation from the same clock source is
required. The inter-device skewness must be also minimized.

B Subclass 2

If a particular application requires a reduction of the pin and net count, it is
appropriate to use the realization of the deterministic latency by means of
SYNC-~ signal. This is called subclass 2. The subclass 2 is suitable for the
data rate below approximately 500 MSPS. The provision of the deterministic
latency this way is possible because the SYNC~ is derived from the receiver’s
LMFC. Using this knowledge, the synchronization between the receiver and
transmitter can be ensured. [I] [4]

B 2.6.2 Device clock

One improvement, which the JESD204B revision came up with, was the
absence of the clock interconnection between the transmitter and receiver.
Each device has its own device clock. The device clock is a timing reference
specific for each device, but it must be derived from the common source, the
source clock. The frequency of the device clock and frame or multiframe
clock may vary. This means that each device has to generate its own local
frame and multiframce clock with exactly the same frequency in a receiver
and transmitter. [I]

Relationships between device clocks, frame or multiframe clocks differs across
particular subclasses as follows:
® Subclass 0: Specified by the device implementer [I]

® Subclass 1: The multiframe period shall be a whole number of device
clock periods [I]

® Subclass 2: The multiframe period shall be a whole number of device
clock periods. Additionally, the TX device clock period shall be a whole
number of RX device clock periods, or the RX device clock period shall
be a whole number of TX device clocks periods. [I]
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2. Theoretical Background

B 2.6.3 Frame and Multiframe Clock

The importance of the frame clock is in the establishing of the interface from
the link layer to the application layer and conversely. The data are composed
into multiframes, which are aligned with the local multiframe clock (LMFC).
The clock reference is called local, if it is derived from the device clock. In
other words, when the clock is not directly supplied on the input to the device.
The phase alignment of the LMFC is intended by the SYSREF signal for the
subclass 1 or by the SYNC~ signal for the subclass 2, not supported in the
subclass 0. [1]

Requirements for frame and multiframe clocks are as follows:

® Identical frame frequency across all devices [I]

® Identical multiframe frequency across all devices [I]

® Both derived from the device clock [I]

® Phase aligning of the frame clock and LMFC within each device [I]

® The SYSREF for the subclass 1 and the SYNC~ for the subclass 2
intends the phase of the frame clock and LMFC [I]

® For multiple links, each above requirement is applied separately on each
link [1]

B 2.6.4 Scrambling

The scrambling is an optional function in the JESD204, however, all devices
shall support this technique. If the octets transmitting in the JESD204
system are repetitive frame to frame, there is a possibility of an occurrence
of the spectral peaks. This can lead to problems with the electromagnetic
compatibility (EMC), DC offsets or interferences. The application of the
scrambling also makes the spectrum data-independent. On the other hand,
this operation can have some negative effects. One disadvantage could be
a switching noise, whose amount may be so great, that the disabling of the
scrambling would be advantageous. [1]

The scrambling operation is located between the transport and link layer.
There is one scrambler per a particular lane. The enabling of the scrambling
means that all scramblers and descramblers on all links and all lanes are
enabled. There is no support for a mixed mode. [I]

The scrambler shall be of the self-synchronous type with the polynomial
1 + z'* + 2. [I] The serial implementation is illustrated in the figure [2.10

One important thing is the initial state of the scrambler. In order to not
send repetitive octets, the scrambler must have initiated internal registers.
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2.6. JESD204B in Detail
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Figure 2.10: Serial implementation of scrambler

It is recommended to preset the upper eight registers to logical 1 and lower
seven registers to logical 0. For descrambler, there is no need for presetting
registers as the descrambler is self-synchronized. [I]

B 2.6.5 8B/10B Coding

Before transmitting to the receiver, the data are encoded by the 8B/10B
coding. An 8-bit octet is encoded to a 10-bit character, which is then trans-
mitted. This coding scheme is used to achieve a DC balance on lanes and a
bounded disparity. The coding ensures, that the count of ones and zeros in
the 20-bit long sequence does not differ more than by two and it is impossible
to have more than five ones or zeros in a row. Such changes in states are
useful for the clock recovery. [7]

The 8B/10B coding is separated in two processes. An input octet is divided in
two groups, the lower 5 bits portion and upper 3 bits portion. The first group
is encoded to a 6-bit sequence and second group to a 4-bit sequence. These
sequences are concatenated together and this is how the 10-bit character is
made. The code group (CG) characters are called as D.x.y, where x ranges
from 0 to 31 and y ranges from 0 to 7. In addition, 12 special characters
(control characters) are defined. They are called as K.x.y and indicates some
special events. [7]

The rules for the 5B/6B encoding are summarized in the table |2.4| and the

rules for the 3B/4B encoding are summarized in the table 2.5, Control
characters, which are used in the JESD204, are summarized in the table [2.6.
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2. Theoretical Background

B Running Disparity

As mentioned above, 8B/10B coding is DC balanced. It means, that in long
period the counts of ones and zeros are equal. In other words, the ratio
between ones and zeros is exactly 50 %. This is achieved by the fact, that
the difference between ones and zeros in each coding group (5B/6B and
3B/4B) is in range from -2 to +2. At the end of the 8B/10B coding is the
difference either +1 or -1. This is called as the running disparity (RD). [7]
The rules for calculating the running disparity for each sub-block are as follows.

The running disparity at the end of any sub-block is positive, if

® the count of ones is greater than count of zeros in a sub-block [7],
® the six-bit sub-block is 000111 [7],

® the four-bit sub-block is 0011. [7]
The running disparity at the end of any sub-block is negative, if

® the count of ones is lower than count of zeros in a sub-block [7],
® the six-bit sub-block is 111000 [7],

® the four-bit sub-block is 1100. [7]

If none of the condition above occurred, the running disparity at the end of
the sub-block is the same as the running disparity at the beginning of the
sub-block. [7]

The rules for the running disparity are summarized in the table 2.7
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2.6. JESD204B in Detail

Input RD- | RD+ Input RD- ‘ RD+
Octet Encoded Octet Encoded
CG Bits Bits CG Bits Bits
EDCBA abcdei EDCBA abcdei
D.00 00000 100111 | 011000 J D.16 10000 011011 | 100100
D.01 00001 011101 | 100010 | D.17 10001 100011
D.02 00010 101101 | 010010 § D.18 10010 010011
D.03 00011 110001 D.19 10011 110010
D.04 00100 110101 1010 D.20 10100 001011
D.05 00101 101001 D.21 10101 101010
D.06 00110 011001 D.22 10110 011010
D.07 00111 111000 | 000111 § D.23 10111 111010 | 000101
D.08 01000 111001 | 000110 J D.24 11000 110011 | 001100
D.09 01001 100101 D.25 11001 100110
D.10 01010 010101 D.26 11010 010110
D.11 01011 110100 D.27 11011 110110 | 001001
D.12 01100 001101 D.28 11100 001110
D.13 01101 101100 D.29 11101 101110 | 010001
D.14 01110 011100 D.30 11110 011110 | 100001
D.15 01111 010111 | 101000 | D.31 11111 101011 | 010100
not used 111100 | 000011 | K.28 11100 001111 | 110000
Table 2.4: Rules for 5B/6B encoding
Input RD- | RD-+ Input RD- ‘ RD-}
Octet Encoded Octet Encoded
CG Bits Bits CG Bits Bits
HGF fghj HGF fghj
D.x.0 000 1011 | 0100 | K.x.0 000 1011 | 0100
D.x.1 001 1001 K.x.1 001 0110
D.x.2 010 0101 K.x.2 010 1010
D.x.3 011 1100 K.x.3 011 1100
Dx4 100 1101 | 0010 | K.x.4 100 1101
D.x.5 101 1010 K.x.5 101 0101
D.x.6 110 0110 K.x.6 110 1001
D.x.P7 111 1110 | 0001 | K.x.7 111 0111 | 1000
Dx A7 11 0111 | 1000 P7'or A7 selec‘Fed to avoid
5 times 0 or 1 in a row

Table 2.5: Rules for 3B/4B encoding
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2. Theoretical Background

/R/

K.280 | 00011100 0011110100 | 1100001011 Start of
multiframe
Lane
K.28.3 01111100 0011110011 | 1100001100 .
alignment
Start of link
K.28.4 10011100 0011110010 | 1100001101 | configuration
data
K285 | 10111100 | 0011111010 | 1100000101 | C°de 8roup
synchronization
K.28.7 11111100 0011111000 | 1100000111 Frame
alignment

Table 2.6: Control characters used in JESD204

-1 0 0 -1
-1 +2 +2 +1
+1 0 0 +1
+1 +2 -2 -1

Table 2.7: Rules for running disparity
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2.7. Link Layer Operation of Receiver

B 2.7 Link Layer Operation of Receiver

The main goal of this thesis was the implementation of the link layer
of the JESD204B interface on the receiver’s side. Link layer processes will
be described in following subsections.

Bl 2.7.1 Code Group Synchronization

The code group synchronization is a process used to detect the start and the
end of the character transmitted via the serial interface after the deserial-
ization. This is provided by the receiving of /K/ control characters. When
the receiver issues the synchronization request via the SYNC~ interface, the
transmitter begins to emit the K symbols. The receiver detects the K symbols
and wait until the reception of four K symbols in a row. After this, the
receiver is synchronized and deasserts the SYNC~ interface. [I]

At this point, the subsequent procedures of the JESD204B are divided ac-
cording to the subclasses.

For the subclass 0 transmitters are the rules as follows:

® After the detection of the deactivation of the synchronization request by
all receivers, the K symbols continue to being transmitted by transceivers
until the start of the next frame. [I]

® With the start of the next frame, transmitters transmit the initial lane
alignment sequence (ILAS). [1]

For subclasses 1 and 2 transmitters are the rules as follows:

® After the detection of the deactivation of the synchronization request by
all receivers, the K symbols continue to being transmitted by transceivers
until the next local multiframe clock boundary. (There is an option to
use also some later LMFC boundary by programming it so) [1]

8 With the start of the next frame following the chosen LMFC boundary,
transmitters begin to transmit the ILAS. [I]

B Code Group Synchronization Check

After the achievement of the synchronicity, characters are further transmitted
to the following design. Although, there is a possibility, that invalid octet
is received. The invalidity can be caused by the running disparity error or
code error. These errors are detected by the 8B/10B decoder. Whenever the
invalid character is received, the code group synchronization enters to the
check phase. During this phase, the design starts counting valid and invalid
characters. There are two options, which may occur. The first option is, that
three invalid characters are detected and the synchronization request is issued.
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2. Theoretical Background

The second variant is the detection of four consecutive valid characters and
entering to the normal, synchronized, phase. It must be stated, that during
the checking phase characters are still proceeding to the further logic, even if
the character is invalid. [I]

The code group synchronization process is illustrated in the figure [2.11] for
the subclass 0 and in the figure [2.12| for subclasses 1 and 2 supporting the

deterministic latency. [I]

Receiver Receiver

SYNC ="1"
IKI symbols |<
K/,
>| Synchronized
SYNC ='0'

Sync request [¢

Frame clock | .—
rising edge
v
ILAS or data
DATA -
~~| Data decoding

sync check

Figure 2.11: Code group synchronization for subclass 0

Receiver Receiver
A Sync request [«
SYNC ="1"
IK/ symbols
/Kl
>| Synchronized
SYNC ='0'
LMFC o
rising edge
v
ILAS
DATA -
~~| Data decoding

sync check

Figure 2.12: Code group synchronization for subclasses 1 and 2
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2.7. Link Layer Operation of Receiver

Bl 2.7.2 SYNC- Signal Combining

Synchronization requests from single links can be combined into one signal
when using multipoint links. Using this technique can one single receiver
affect all other receivers combined by the SYNC~ interface. If one of the
receivers issues a synchronization request, all transmitters begin to emit /K/
symbols. This is mandatory for subclass 0 devices, because of aligning the
ILAS generation across all links. [I] The combination can be done in two
possible ways:

® inside the receiver device, [1]

® inside the transceiver device. [1]

The illustration of both implementations is in the figure [2.13.

Rx Device
TxO0 — ") Rx 0
. <_|‘ SYNC~ I
' J‘ Comb '
<
Tx L-1 A Rx L-1
Data
Tx Device Dat
Tx 0 24y Rx 0
j SYNC~| ;
' Comb J '
Tx L1 4 Rx L-1
Data

Figure 2.13: Illustration of SYNC~ signal combining

B 2.7.3 Frame Synchronization
B Initial Frame Synchronization

At the beginning of the link establishment, the first non /K/ symbol (also
called comma) is the indication of the start of the frame. The length of the
frame is defined by the number F', number of octets per frame. This means
that the next rising edge of the frame clock is associated with the resetting
of the octet counter. [I]
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2. Theoretical Background

B Alignment Characters

There are two types of alignment characters in the JESD204B. They are
represented as special characters /F/ = K28.7 and /A/ = K28.3. The use of
the /A/ character is possible only if both, transceiver and receiver, supports
lane synchronization. [I]

B Character Replacement without Scrambling

In this part, the thesis will focus on that cases, when both sides support the
lane synchronization.

Rules for character replacement are as follows:

® If the octet on the last position of the frame, which is about to be
transmitted, is the same octet as in the previous frame, the octet shall be
replaced by the /F/ character. However, this position must not be the
last octet of the multiframe. Another situation, when the /F/ character
is not inserted, is, if the /F/ character was replaced in the previous frame.

]

® Analogously, if the same octet is at the end of the multiframe, the octet
is replaced by the /A/ character. This is also the case, if the /F/ was
sent in the previous frame. [I]

® Receiver shall store the data from the previous frame and if the /F/ or

/A/ is received, the receiver shall replace the control character with the
octet stored on the same position as in the previous frame. [I]

B Character Replacement with Scrambling

Similarly like the previous subsection, this part of the thesis will focus on
that cases, when both sides support the lane synchronization.

Rules for character replacement are as follows

® If the scrambled octet on the last position of the frame, which is about
to be transmitted, is equal to 0xF'C, the octet shall be replaced by the
/F/ character. However, this position must not be the last octet of the
multiframe. [I]

® Analogously, if the scrambled octet of the value 0x7C is at the end of
the multiframe, the octet is replaced by the /A/ character. [1]

® Receiver shall replace /F/ or /A/ characters with 0xFC, respectively
0x7C, on the input of the descrambler. [I]
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2.7. Link Layer Operation of Receiver

B Frame Alignment Correction

The frame realignment is realized as follows:

® [f two alignment characters are received at the same position, which is
not as expected for the current frame align, without an interruption of
the alignment character at the correct position, the realignment is done
in the accordance to detected two alignment characters. [I]

® [f the lane alignment is issued, it indicates a "cross coupling" and there
is no need for waiting for two alignment characters as in the previous
point. The frame realignment is realized after detecting one alignment
character. [I]

® There shall be an option to disable the process described in the previous
points on the receiver’s side. Realignment could be problematic, if not
enough alignment characters are emitted or if the realignment could
cause the lane alignment and latency error. [I]

B 2.7.4 Lane Synchronization

B Initial Lane Synchronization

Before the reception of the user data, the initial lane alignment must be
achieved. The initial lane alignment sequence (ILAS) usually consists of 4
multiframes (in some cases it can be up to 256 multiframes, this must me
programmable). Each of the multiframe is started with the /R/ character
and ended with the /A/ control character. Because of the possible difference
in the lane delays, this character can be received at a different time. After the
reception of the first /R/ character, each receiver start to store the incoming
data in the buffer and they raise the "ready" flag. When all receivers have
detected the first /R/ character and raised their flags, they start to propagate
the stored data from the buffer for a further logic processing. In addition,
the multiframe consists of K frames. The K is ranging form 1 to 32 frames
and this value shall be also programmable. [I]

During the ILAS, each multiframe is introduced by the /R/ control character
and ended with the /A/ control character. The second multiframe is specific.
It transmits configuration information about the JESD204B link. These
information are introduced with the /Q/ control character. The figure [2.14 is
showing the ILAS with four multiframes.

Meanings of parameters transmitted during the ILAS are summarized in the
table 2.8l
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Code User
group L K frames , K frames K frames \ K frames data
I K28.3 lane alignment symbol I K28.5 SYNC comma

JESD204 link configuration data H K28.0 start of subsequence

@ Dx.y data symbol @ K28.4 start of link configuration data

Figure 2.14: Initial lane alignment sequence with four multiframes [I]

B Lane Alignment Monitoring and Correction

After ILAS, the payload of user data begins to transmit over the JESD204B
link. At this time, the lane alignment is monitored and eventually corrected.
It is made by means of monitoring the arrivals of /A/ characters. [I]

The rules for the dynamic realignment are analogous to those ones presented
for the frame realignment:

m If two /A/ characters are received at the same position, which is not
as expected for the current lane align, without an interruption of the
/A/ character at the correct position, the realignment is done in the
accordance to detected /A/ characters. [1]

® If the frame alignment is issued and it indicates a "cross coupling', there
is no need for waiting for two /A/ characters as in te previous point.
The lane realignment is realized after detecting one /A/ character. [I]

B 2s Implementation of JESD204 protocol in ASIC

The main goal of this thesis was to develop a receiving link layer of the
JESD204B protocol suitable for use in an ASIC. The implementation in an
ASIC of the whole data path from the JESD204 transmitter to the receiver
is shown in the figure [2.15. The configuration with one lane and 100 MHz
frequency is presented. Input data are mapped into octets in the transport
layer of the JESD204 protocol. Octets are proceeded to the link layer, where
data are coded by 8B/10B coding scheme and optionally scrambled. Data
are subsequentially written to the asynchronous FIFO from where are read
by a serializer, which is an analog circuit used for serializing the data. An
asynchronous FIFO is a device used to cross clock domains. Serial bits are then
differentially transmitted from the transmitting ASIC to the receiving ASIC.
Data are there deserialized and via another asynchronous FIFO provided to
the receiving JESD204 link layer. Data are there descrambled and decoded
and in the transport layer demapped from octets. The clocking source is
common for both ASICs and each ASIC is provided with its own device clock
for JESD204 devices.
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2.9. Xilinx Multigigabit Transceiver

ASIC 1 ASIC 2
ﬂ Input Data Output Data ﬂ <
TXTL Layer RX TL
U 8-bit ﬂ
| JESD204 Link JESD204 |
TXLL Layer RX LL
U 10-bit ﬂ
Async Async
) 100 100
FIFO Miiz Miiz FIFO
. Serializer  Diff 1-bit | o .
10-bit Deserializer [H10-bit
[:(10] PLL]{ | 1Gbps |

100 MHz Clock Generator 100 MHz

Source Clock é

Figure 2.15: Illustration of example implementation of JESD204 in ASIC

B 2.9 Xilinx Multigigabit Transceiver

The pressure at increasing transfer speeds over long distances using fewer
wires has led to the use of multi-gigabit transceivers (MGT). Multi-gigabit
transceiver is a digital SerDes device, which can operate at serial rates higher
than 1 Gb/s. In the case of vision of a deployment of the JESD204B receiver
developed in this thesis in the Nexys Video FPGA with built in Artia®-7
XC7A200T chip made by Xilinx, we talk about the 7 series FPGAs GTP
transceiver. [I1] There is no possibility of implementing an analog SerDes in
FPGA.

As Xilinx declare, the 7 series FPGAs GTP transceiver is a power-efficient
transceiver, supporting line rates between 500 Mb/s and 6.6 Gb/s. The
maximum rate is limited by a particular device. [I1]
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2. Theoretical Background

The key elements within the GTP RX transceiver are: [I1]

® Analog Front End

® QOut-of-Band Signalling

® Equalizer

® Clock Data Recovery

® Fabric Clock Output Control
® Margin Analysis

® Polarity Control

® Pattern Checker

®m Byte and Word Alignment
= 8B/10B Decoder

® Elastic Buffer

® Gearbox

Many of them are irrelevant for the use with the designed JESD204B receiver
and are bypassed. The block diagram of the GTP transceiver is displayed in
the figure The blue line illustrates the use case for this thesis.

From TX Parallel To TX Parallel To TX Parallel
Clock from Data (Near-End Data (Far-End Data (Far-End PCS
PLLO or PLL1 PCS Loopback) PMA Loopback) Loopback)

l

RX

Clock RX PIPE
Dividers Control

Comma RX Status
Control
RXEQ Polarity |4+ Detect | _| FPGA RX
and 8B/10B Interface

SIPO Align Decoder 1 BX

v Elastic |-

Buffer
PRBS
Checker

Figure 2.16: GTP RX Transceiver Block Diagram [I1]

RX OOB
RX

-
Gearbox
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2.10. Receiving Side of JESD204 Protocol on FPGA

B 210 Receiving Side of JESD204 Protocol on
FPGA

In the figure [2.17| there is a visualisation of the receiving side of the JESD204
system on a FPGA. Bit widths displayed are corresponding to the configu-
ration with one lane per link. The first block in the chain is a multigigabit
transceiver, because on a FPGA there can not be any analog SerDes imple-
mented. It is supplied with a reference clock of the declared frequency. In
case of this thesis, it just deserializes the data stream into 20-bit wide words.
These words with a corresponding clock signal are then transmitted to the
gearbox. This block is used for a conversion of the 20-bit data into 10-bit
words synchronized to the second clock domain provided, because the receiver
in this thesis was designed for a 10-bit input. The gearbox block is described
further in the subsection [3.3.3. The 10-bit wide data with the corresponding
clock domain are then transmitted to the designed block, the receiving link
layer of the JESD204B protocol. Operations presented in sections above are
performed there. The module is outputting the data octets. In the JESD204
protocol, the transport layer is responsible for demapping the data from
octets and the data are then provided for a particular application.

Input Serial Data Stream

Reference Clock

GTP

Deserialized 20-bit Data L 20-bit Data Clock

10-bit Data Clock

Gearbox

] l 10-bit Data

JESD204 | ..

Link —

Layer

L 8-bit Mapped Data

JESD204
Transport
Layer

M Demapped Data

System
Application

Figure 2.17: Illustration of receiving side of JESD204 protocol implemented on
FPGA
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B 211 Verilog

A few words about Verilog language will follow. Verilog belongs to a group
of HDL (Hardware Description Language) languages used to design PLD
(Programmable Logic Device), FPGA applications and also ASICs (Appli-
cation Specific Integrated Clircuits). Another language of this kind is VHDL
or SystemVerilog. Both Verilog and VHDL were originally developed for
simulation and documentation purposes, not for synthesis. Many of their
constructs have signs of it and are not synthesizable, while are dedicated for
modelling. [10]

The basic characteristics of the Verilog language are listed below [10]:

® Open standard - There is no requirement for a license from the owner to
build a design, unlike some other HDL languages.

® Device independent design - They allow the designer to work without
selecting the target circuit first.

® Portability - It is possible to simulate the designed circuit based on
the same source text, which will then be used for the synthesis and
implementation in the target circuit. The source code can be processed
in various simulators and in synthesizers from various manufacturers.
The simulated text can then be used in various target circuits in the
future, which is made possible by the fact that Verilog supports the
hierarchical structure of projects, where the created system consists of
subblocks.

# ASIC compatibility - In case of successful launch on the market, the
description of the design in HDL languages can be used as a basis for its
implementation in the ASIC circuit suitable for large series.

The basic version of Verilog was adopted as IEEE (Institute of Electrical
and Electronics Engineers) Standard No. 1364 in 1995. Constructs conforming
to this standard are referred to as Verilog-95 constructs. Based on the
experience with this version, a new version was adopted in 2001, Verilog-2001.
A number of modifications and improvements have been made to this version
and are supported by most current design systems. And in this version is
also written this diploma thesis. [10]
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2.11. Verilog

Parameter Description Range Value
Number of adjustment resolution

ADJCNT steps to adjust DAC LMFC 0-15 Binary
Subclass 2 only
Direction to adjust DAC LMFC
0 — Advance .

ADJDIR 1 - Delay 0-1 Binary
Subclass 2 only

BID Bank ID - Extension to DID 0-15 Binary
Number of control words .

CF per frame clock per link 0-32 Binary

cs Number of control bits per sample | 0-3 Binary

DID Device (= link) ID number 0-255 | Binary

F Number of octets per frame 1-256 Binary — 1

HD High Density format 0-1 Binary
JESD204 version

JESDV 000 — JESD204A 0-7 Binary
001 — JESD204B

K Number of frames per multiframe | 1-32 Binary - 1
Number of lanes per .

L converter device (link) 132 Binary =1

LID Lane ID number (within link) 0-31 Binary

M Number of converters per device 1-256 Binary — 1

N Converter resolution 1-32 Binary - 1

N’ Total number of bits per sample 1-32 Binary — 1

PHADJ Phase adjustment request to DAC 01 Binary
Subclass 2 only

g Number of samples per 1-39 Binary — 1
converter per frame cycle

SCR Scrambling enabled 0-1 Binary
Device Subclass Version
000 — Subclass 0 .

SUBCLASSV 001 — Subclass 1 0-7 Binary
010 — Subclass 2

RES1 Reserved field 1 0-255 Binary

RES2 Reserved field 2 0-255 Binary

CHKSUM Checksum )" (all above fields) 0-255 | Binary

mod 256

Table 2.8: Link configuration parameters [I]
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Chapter 3

Development of Receiving Link Layer of
JESD204B Protocol

At the beginning of the chapter, there will be presented tools, which were
used for the development of the design, for the behavioral simulation and
also for the verification.

This chapter will further cover information about designed receiver itself.
Then subblocks resulting in the desired receiver will be described. To make
the explanation easier, the use with only one serial lane will be covered (unless
otherwise stated), but the design is supporting the cases with more serial
lanes between the transmitter and receiver.

A section about the verification process will follow. There will be presented
simulations, which were done during the development. Subsections will gradu-
ally guide through particular steps of the simulation process. Several modules,
which were designed for the simulation purposes, will be described.

The fourth section is dealing with the physical representation of the designed
block representing the link layer of the JESD204B receiver. The utilization
inside the Xilinx FPGA zc7a200tsbv484-1 and for ASIC realized in the TSMC
28HPC+ technology will be outlined.

The last section is in short describing the validation in the chosen FPGA.
Mainly the idea of this operation is discussed.

It must be stated that after a discussion with the supervisor of the thesis it
was decided to implement only the subclass 0 of the JESD204B receiver and
it was done due to the time pressure before the submitting of the thesis. For
this reason, only subclass 0 will continue to be discussed in the work, and all
blocks are fully compatible only with this subclass.
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B 31 Development Tools

During the design flow of the JESD204B several tools were used. The first
one was Vivado Design Suite 2020.1, see subsection [3.1.1), the second on was
ModelSim PE Student Edition 10.4a, see subsection |3.1.2| and the last one
was Cadence Xcelium, see subsection [3.1.3|

B 3.1.1 Vivado Design Suite 2020.1

The first development tool was XIlinx Vivado Design Suite in version 2020.1.
Vivado Design Suite is a development environment from the Xilinx company
for a synthesis and analysis that supports both VHDL and Verilog languages.
It includes many tools that allow developers to properly debug Xilinx’s FPGA
or CPLD circuitry. This software is free to download in its HL. WebPACK™
Edition. [9] At first, the premise was to utilize this tool for everything,
because it is suitable for the code development, for the simulations and also
for the verification with Xilinx IP intellectual property cores. However, it
was found that simulations are too much time consuming even with just the
original design and for simulations with Xilinx IP cores it was only hardly
usable. So it was decided to write the design and do the basic simulations in
another software described below in subsection |3.1.2. The chosen tool was
ModelSim PE in its Student Edition 10.4a.

Another problem related with Vivado and the migration to ModelSim was the
import of Xilinx IP cores to ModelSim. After some research was found, that
the current version of the Vivado, which had to be used in case of generating
the JESD204B Tx IP core, is not compatible with the most recent student
version of ModelSim in order to transfer the IP core to the ModelSim. This
fact led to the simultaneous design and simulation in both programs.

B 3.1.2 ModelSim PE Student Edition 10.4a

ModelSim delivered by Mentor Graphics is an alternative to Vivado in means
of the developing and simulating the digital design, but for the needs of this
thesis its performance was in simulations much more effective. But of course
it has its limitations explained above. So, for the simulations purposes it was
necessary to generate the data stream from the Xilinx IP core, save it to the
text file and and then work with this file within the ModelSim environment.

B 3.1.3 Cadence Xcelium

In the end of the development of the receiver, another tool was used and
it was Cadence Xcelium. Access to this software was provided by Dialog
Semiconductor company. The use of this tool was necessary especially when
simulating the system with all Xilinx IP cores. This means when using
reference Xilinx JESD204 IP core and Xilinx GTP IP core. In that case, it
offers a much better performance than other tools used.
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B 3.2 Design

The section will describe the designed top module and also several submodules,
of which the receiver consists. The beginning will be devoted to the top
module and the rest of the section will be about submodules. Blocks will
be presented both from the outside and their internal arrangement and
behaviour.

B 3.2.1 Top Module of Receiving Link Layer of JESD204B

This subsection is presenting the top module, which is the desired designed
JESD204B receiver, respectively its link layer part. The illustration for one
lane configuration of it is in the figure [3.1. The table 3.2 is summarizing
the meanings of input and output ports of the block. It should be stated,
that it was decided for an implementation of 10-bit wide input data for a
particular lane. This has been done due to the fact, that it is the simplest
variant, however other possibilities are also suitable, for instance parallel
processing of multiple data words. Finally, the figure 3.2] is displaying simpli-
fied internal structure of the design block. Input ports clk i and rst_n_ ¢
are not routed in the picture, but in fact they are delivered to all of the
submodules. Input ports nr_f ostets i and nr_k_frames i are not routed
too, however they are delivered to submodules frame_lane align, clock__gen
and only nr_f ostets i to controller. Also output ports of ILA configuration
data are simplified. They are packed into one port called ILA_ data. For
detailed information about output ports see the table[3.2l For a configuration
with multiple lanes, some of the submodules are shared for all lanes a some
of them are instantiated for separate lanes. The table |3.1|is summarizing the
information about this use.

Submodule Shared / Separate
controller Shared
cgs Separate
83 _8b10b__decoder Separate
cg__check Separate
frame__lane__align Separate
ila__combiner Shared
descrambler Separate
clock__gen Shared
delay Separate

Table 3.1: Description of sharing submodules in multiple lane configuration

The module must be instantiated with parameters to ensure the correct
functioning. Meanings and ranges of the parameters are as in the table 3.3
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Figure 3.1:

NR_OF LANES =1
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Ports I/0 Description
clk_i Input | Clock input
Reset signal, active low,
rst_n_ 1 Input | asynchronously asserted,
synchronously deasserted
en_1 Input | Enable signal
d_i[(L*10)-1:0] Input | Input serialized 10-bit data
init_rd n i Input Rur'ming disparity initialization request,
active low
init_rd_val 1 Input | Initial value of running disparity
force__sync_i Input | Input for issuing force resynchronization
nr_f _octets i Input | No. of octets per frame
nr_k_frames_i Input | No. of frames per multiframe
nr_ila__multiframes_ i Input | No. of ILAS multiframes
d_o[(L*8)-1:0] Output | Output 8-bit data
Start of frame indicator,
start_of frame_ o Output active high
Start of multiframe indicator,
start_of Imf o Output active high
all_alligned o Output Ind'icato.r that all lanes are alligned,
active high
Running disparity error output,
rd__error_o[L-1:0] Output | specific for each lane,
active high
Code error output,
code__error_o[L-1:0] Output | specific for each lane,
active high
Indicator of non-synchronized
cgs__error_o[L-1:0] Output | code group synchronization,
active high
Parameters detected during ILAS
ila__error_o Output | are not equal on all lanes,
active high
) Indicator of overflowed correction
correction__error_o[L-1:0] | Output buffer, active high
SYNC~interface to transceiver,
sync_n_ o Output .
active low
did o - hd o Output Link configuration data from ILAS,
see 2.8
ila,_received_ofL-1:0] Output Ind.icato.r of received ILAS on each lane,
active high
data__ready o Output | Indicator of valid data on output

L = NUMBER_OF _LANES

Table 3.2: Ports description for the JESD204B receiver
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B 3.2.2 Designed Submodules

The aim of this subsection is to introduce the designed modules inside the
whole receiver device. Not all of them are covered, only the most essential
ones.

B Module cgs

The module called cgs is responsible for the synchronization described in the
section [2.7.1], except the check phase, for which is responsible the module
described in the following section [3.2.2]. The cgs module is displayed in the
figure |3.3] Input and output ports are discussed in the table |3.4.

clk_i
d_i[9:0] _1d o[s:0
en_i _| synced_o
rst_n_i

sync_reqguest_i

Figure 3.3: Graphical representation of the module cgs

Ports I/0 Description
clk_i Input | Clock input
d_i[9:0] Input | Input serialized 10-bit data
en_1 Input | Enable signal
rst._m_ 1 Input | Reset signal, active low
sync_request_¢ | Input | Synchronization request input
d_0[9:0] Output | Synchronized 10-bit data
synced__o Output | Indicator of valid data on the output

Table 3.4: Ports description for the cgs module

It is basically a Mealy four-state machine, to which a few other circuits are
connected. Transition conditions are illustrated in the figure 3.4, Initially,
incoming 10-bit data are read into a 20-bit shift register. The processing of
this data then takes place within the state machine itself. The first state
is IDLE, when all values are reset and the state FIRTS K is entered. It
remains in this state until a control character /K/ is detected in the 20-bit
word, with either a positive or negative running disparity. /K/ characters are
detected in 10 parallel comparator pairs. The number 10 is used because of
10 possible positions of /K/ within the 20-bit word. Comparators are in pairs
because there are two options, how the /K/ can be represented, according to
the running disparity. If the /K/ is detected, its position is memorized, its
representation is memorized, the counter is incremented and the OTHER, K
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state is entered. Here, the arrival of other /K/ characters at the same position
in the respective running disparity is assumed. If four /K/ characters come
in a row in this way, ie the counter acquires this value, it moves to the next
state, the SYNCED state. However, if the /K/ arrives at another position
or does not arrive at all, the machine returns to the IDLE state. In the
SYNCED state, a 10-bit portion of data is connected to the detected position
from the 20-bit input register with data to output, and the synced_ o output
is also activated. From all the named states it is also possible to switch to
the IDLE state if the sync_request i input is activated.

reset

sync request Isync request

sync request

sync request I(sync request)
Isync request & !(K received)
sync request
| /(K received)
| I(sync request)
I(sync request) & K received

& (K cnt=4)
&K received

I(sync request)
& (K cnt<4)
& Kreceived

Figure 3.4: State machine implemented in module cgs

B Module s3_8b10b_decoder

The next module connected to the cgs is the s8 8b10b_ decoder, see the figure
3.5, and as the name suggest, it decodes the 10-bit encoded and synchronized
data (characters) from the transmitter to the 8-bit octets. The process is
described in further details in the section 2.6.5. Ports of the module are
listed in the following table [3.5l The module was provided by the Dialog
Semicondutor company.
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cli_i
data i[9:0] code_error_o
en_i data_o[7:0]
intt_rd_n_i k_o B
init_rd_val_i rd_error_o
resel_n_i|

Figure 3.5: Graphical representation of the module s§_8b10b__decoder

Ports I1/0 Description
clk_i Input | Clock input
data_1[9:0] Input | Input 10-bit data
en_i Input | Enable signal
nit_rd_n_i Input | Running disparity init. request, active low
init_rd_wval ¢ | Input | Initial value of running disparity
reset_m,_ 1 Input | Reset signal, active low
code__error_o | Output | Code error detected
data__o Output | Output decoded 8-bit data
k o Output | Control symbol detected
rd__error_o Output | Running disparity error detected

Table 3.5: Ports description for the s8 8b10b_decoder module

B Module cg_check

The module cg_check is superstructure of the above mentioned cgs and uses
error reports from the decoder. This module is constantly checking whether
the transmitting octets are valid or not. The validity is recognized by means
of values of the error signals from the decoder. The whole behaviour is
explained above in the section [2.7.1]. Illustration of the module is in the figure
3.6/ and meanings of the ports are described in the table |3.6l

clk_i
code_error_| sync_request_o
en_i synced o
rd_error_i
rst n i

Figure 3.6: Graphical representation of the module cg_ check

This module is another Mealy state machine, this time it is a five-state concept,
which is supplemented by two more counters for counting valid and invalid
symbols. Transition conditions are illustrated in the figure 3.7, From the de-
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Ports I/0 Description
clk i Input | Clock input
code__error 1 Input | Code error detected
en_1 Input | Enable signal
rd__error_1 Input | Running disparity error detected
rst_m_ 1 Input | Reset signal, active low
sync_request_o | Output | Request from frame synchronizaton
synced__o Output | Indicator of synchronization

Table 3.6: Ports description for the cg check module

fault IDLE state and after resetting the values, the machine switches to the
SYNCING state. Here, based on the inputs code error_i and rd__error i sig-
nalling the validity of the data, the counters are incremented or the counter of
valid symbols is reset. It happens whenever there is an interruption detected
in a stream of valid symbols. If the invalid symbol counter reaches three,
the machine enters the SYNC__REQUEST state. If the valid symbol counter
reaches four, the machine enters the SYNCED state. Otherwise, the machine
remains in the SYNCING state. The SYNC_REQUEST state resets the
counters, activates the sync_request_o output, and then the machine enters
the IDLE state. The SYNCED state also resets the counters, but activates
the synced__o output. If an invalid symbol is detected, it is switched to the
SYNCING2 state. Its behaviour is analogous to the SYNCING state, but
maintains the synced o output in logical one.

reset

V_cnt<4

&Tcnt<3 v_cnt<4

&l cnt<3

V_cnt=4
&l cnt<3

V_cnt=4

Iali
lvalid &Tcnt<3

Figure 3.7: State machine implemented in module cg_ chceck
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B Module clock_gen

The module in the figure |3.8|is responsible for the generation of the frame and
local multiframe clock. The input ports are clk_i as an input clock, en_ 7 as
an enable signal and rst_n_ ¢ as a reset signal. Also inputs indicating number
of octets per frame and frames per multiframe are connected. Outputs are
frame__clk_o and Imf clk o for frame a and local multiframe clock. The
expression "clock" is used in accordance to the standard, but in this design it
is meant as a start of frame or local multiframe.

clk_i
en_i frame_clk_o
nr_f octets_i[8:0] Imf_clk_o
nr_k_frames_i[5:0]
rst_n_i

Figure 3.8: Graphical representation of the module clock gen

The module is further divided into two more submodules. One is responsible
for generating the frame clock and the other one for the local multiframe
clock. Both are clock frequency dividers. The division ratio for the frame
clock is determined by the input nr_f octets i. The input nr_k_frames i
is then added for the local multiframe clock. The outputs of these blocks are
then connected to the respective outputs of the entire module.

B Module frame_lane_align

The largest module in the design is named frame_lane_align and its repre-
sentation is shown in the figure 3.9, This module covers all the functionalities
presented in the sections [2.7.3/and 2.7.4 Tt is also recognizing the link con-
figuration data from the ILAS and checking, if there are four consecutive
/K/ control characters in data passing through the block, which indicates a
lost of the synchronization on other links. If so, the synchronization request is
asserted. The details about each port of the module is containing the table|[3.7.

The main path, which the data passes through this block, is shown in
the figure [3.10L The input data are at first stored in the initial buffer.
Its size is set by means of the INITIAL BUFFER_WIDTH parameter.
The start of buffering occurs when the block receives the first /R/ sym-
bol. At that point, it will also let other lanes know about this situation
via the ready flag o output port. As the data octets are gradually loaded
into the registers, the counter of the current buffer depth is incremented,
whose width is set by means of the INITIAL POINTER_WIDTH parameter.
This process continues until the symbol /R/ is present on all lanes. Each block
is informed about this via the input signal all lanes ready . Here, the count-
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adjent_o[3:0]
adjdir_o
bid_o[3:0]

cf o[4:0]
code_error_o

correction_error_o
cs_o[1:0]
d_o[7:0]
all_lanes_ready_i data_ready o

clk_i did_o[7:0]

code_error_i f_o[7:0]
d_i[7:0] hd_o
en_i ila_received_o
ki jesdv_o[2:0]

nr_f_octets_i[8:0] k_o[4:0]

nr_ila_multiframes_i[8:0] |_of4:0]
nr k_frames i[5:0] lid o[4:0]
rd_error_i m_of7:0]

rst_n_i n_o[4:0]
n1_o[4:0]
phadj_o

rd_error_o

ready_flag_o
s_o[4:0]

scr_o

subclassv_o[2:0]

sync_request o

Figure 3.9: Graphical representation of the module frame_lane_align

ing is stopped, and the data are then released from the appropriate buffer
location. In the same way as data octets, information from the inputs k1,
code__error_i and rd__error_i are also buffered, in other words information
whether the given octet is a control character and whether it is valid according
to the 8B/10B decoder.

cnt_buffer lane_pointer frame_pointer scr q
Lilizel Lane Frame Character
d_if70 =}  Elastic Y Processing [ Buffer - Buffer H> R > d of7:0]
Buffer

|—old frameJ

all_lanes_ready i

Figure 3.10: Illustration of data flow in the frame_lane_align module

This is followed by the main part of the processing of the received data.
Several parallel processes run here simultaneously. First of them is a process
for detecting control characters. A number of functions are implemented
for comparing data with the values of control characters. On the basis of
these functions, indications about the present characters are written to the
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Ports I/0 Description
all_lanes ready i Input ?§7z§$§)§f;§fﬁv T;Irllisthe first
clk_1 Input | Clock input
code__error i Input | Code error detected
d_i[7:0] Input | Input 8-bit data
en_i Input | Enable signal
ki Input | Control symbol detected
rd__error_1i Input | Running disparity error detected
rst . m 1 Input | Reset signal, active low
nr_f octets i Input | No. of octets per frame
nr_k_frames i Input | No. of frames per multiframe

nr_ia_multiframes_¢ | Input | No. of ILAS multiframes

Link configuration data from ILAS,

djent_o - Output
adjent_o0 - s o utput | og
Code error detected aligned
code__error_o Output with data output
d_o[7:0] Output | Output 8-bit data
data_ready o Output | Indicator of valid data output
o received o Output Indicator of valid values
- - p on link configuration data outputs
Running disparity error detected
d tput
ra_error_o Outpu aligned with data output
Indicator that the current link
d Output
ready_flag o P peceived the firt /R/ symbol
sync_request_o Output Synchronization request asserted

after three invalid characters are detected

Table 3.7: Ports description for the frame_ lane_align module

appropriate registers named X__ spotted, where X represents the letter A, F,
@ or R according to the names of the control characters. The values of these
registers then used in further processing.

These are exclusively within ILAS two processes. The first one is the /A/
characters counter, which is incremented up to the value corresponding to the
NR_ILA__MULTIFRAMES parameter. Its value is used to determine the
end of the ILAS. Then there is a process for obtaining ILA configuration data.
This is started by accepting the /Q/ character, which also starts a counter
that identifies the current position within the sequence of configuration data
and is incremented with the reception of a new octet. Configuration data are
stored and outputted outside the block. After the process is completed, the
reading is stopped and by passing the value on the output port ila_ received o
to the logical one, it is confirmed that the configuration data on the output
are valid and the sequence has terminated.
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Other processes take place continuously until a possible resynchronization
between the receiver and the transmitter happens. It means mainly those
that lead to the dynamic data alignment correction. The previous position of
the /A/ and /F/ characters, cross coupling between frame and multiframe
alignment and also incrementing and aligning octet counters and frames with
data are issued there. All these linked processes are described in the sections
2.7.3 and |2.7.4 Then they lead to the setting of values of frame and lane
pointers important for the processes described below in this section.

The last process that runs at this level is the detection of /K/ characters
in the data stream. This is one way for the receiver to recognize that an-
other receiver has requested a resynchronization with the transmitter. If
the block detects, by means of counter, that it has received four consecutive
/K/ characters, then it decides that synchronization has been lost and the
synchronization request is issued using the sync_request o output.

In the next phase, the data are buffered into two buffers. One is used for
the lane synchronization monitoring and correction and the other one for the
frame synchronization monitoring and correction. Their widths are set accord-
ing to the value of the MONITORING _BUFFER_WIDTH parameter. The
width of the respective pointers used for reading the correct data from buffers
is then set based on the value of the MONITORING _POINTER_WIDTH pa-
rameter. Firstly, the data are stored in lane_ buffer, from where are read from
the position specified by the value of the lane_pointer to the frame_buffer.
Secondly, the data are similarly stored in the frame buffer and read from
here according to the value of the frame_pointer for a further processing. If
the maximum or minimum value of one of the pointers is reached, this fact is
reported via the correction__error__o output and the synchronization request
is issued via sync_request__o. In the same way as data octets, information,
whether the given octet is a control character and whether it is valid according
to the 8B/10B decoder, are also buffered here.

Finally, there is another process running and it is responsible for the character
replacement of the outputting data. Data from the frame_ buffer are at this
point sent to the output d_ o of the block. However, if there is a control
character /A/ or /F/ present in the data, it is replaced on the output by
a specific value or an octet value that appeared at the same place in the
last frame. Switching between the replacement with the value or with the
old octet is done on the basis of enabling or disabling the scrambling. The
values from the frame_ buffer at the position given by the frame_pointer are
always read to the outputs code_error_o and rd__error_o. More about this
operation is described in sections [2.7.3 and [2.7.3|
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B Module ila_combiner

The module ila__combiner is a logic device used for comparing the link con-
figuration data received from the previous module described above in the
section 3.2.2| from each link and combining them together. If it detects any
differences in the input data, it asserts the ila__error o output. The clock
input clk_ 1 is used for clocking flip-flops on the output.

It is based on particular smaller combinational circuits dedicated for each
parameter. Each of them can be parametrized by the number of lanes and
the width of the input data. In the combination logic, it compares the input
data with each other to see if they differ from each other. The assumption is
that the configuration parameters came the same from all lanes during ILAS.
If a difference is detected, it is signalled on the output. The outputs of the
individual blocks are combined by the OR function into one output. At the
output of the entire block, the ILA configuration parameters are already in
their basic bit width.

B Module descrambler

Descrambler is an optional module, whose functionality depends on the link
configuration. In further details, the principle of scrambling is presented in
the section |2.6.4. The visualisation of the module is shown in the figure 3.11
and the ports description is in the table |3.8.

The module consists of 16 XOR gates, 24 D flip-flops and 4 multiplexers.
There are two registers for storing data older by one and two time cycles.
The oldest data is then combined (descrambled) with the current data using
XOR gates to create the correct output data. Of course, this only happens
when scrambling is enabled. If scrambling is not enabled in the configuration
data, then the input data passes through the register directly to the output.
Furthermore, the data validity signals also passes through the flip-flop to
ensure its synchronicity with the data.

clk_i
d_i[7:0] d_a7:0]
en_i data_ready o
rst_n_i
sCT_|

Figure 3.11: Graphical representation of the module descrambler
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Ports I/0 Description
clk_i Input | Clock input
d_i[7:0] Input | Input 8-bit data
en_1 Input | Enable signal
rst_m_ 1 Input | Reset signal, active low
ser_i Input | Scrambling enable
d_o[7:0] Output | Output 8-bit data
data__ready o | Output | Indicator of valid data output

Table 3.8: Ports description for the descrambler module

B Module controller

The last important module, displayed in the figure |3.12 used inside the
receiver device is called controller. Mainly the module takes care of the
SYNC~ interface between the JESD204 transmitter and receiver. Other
functions are distributing the synchronization requests and enabling the code
group synchronization. The design uses the SYNC~ signal combining inside
the receiver device, for more information see the section2.7.2. The description
of the ports is shown in the table [3.9.

There are several things going on inside this module, but all are related with
the SYNC~ interface. The synchronization requests are here combined and
distributed further via an output port to the cgs module. The duration of the
synchronization request for the transmitter device is (NR_F_OCTETS*5)
+ 10) octets and the width of the counter used for measuring is defined by
the parameter SYNC _DURATION BUFFER WIDTH. The duration is
also decisive for the enable signal of the cgs module and the enable signal is
distributed via the output port cgs en_o.

cg_check_synced_|

clk_i
en_i cgs_en_o
force_sync_| SYNC_N_o
nr f octets i[8:0] Sync_request o
rst_n_i

start_of frame_i
sync_request_i[1:0]

Figure 3.12: Graphical representation of the module controller
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Ports I/0 Description
cqg__check__synced__i Input | Indication of cg check synchronization
clk_i Input | Clock input
en_1 Input | Enable signal
force_sync_i Input | Input for issuing force resynchronization
rst_ m_1 Input | Reset signal, active low
start_of frame 1 Input | Indicator of start of the frame
sync__request_i[1:0/ | Input | Requests for resynchronization
nr_f _octets_ i Input | No. of octets per frame
cgs_en_ o Output | Enable signal for cgs module
sync_m_o Output | SYNC~ interface, active low
sync__request_o Output | Combined synchronization request signal

Table 3.9: Ports description for the controller module

. 3.3 Verification

An integral part of every digital design is also its verification. It was no
different in the case of this thesis. The verification also takes place during
development, when the individual components are subjected to simulations
and tests. This is followed by a more complex simulation of the whole designed
circuit. Finally, it is a good practise to verify the design in a hardware, in
this case in a FPGA, before it will be fully deployed in a production of an
ASIC. In the case of this thesis, the designed receiver was tested only by
simulations and the validation on the FPGA did not occur due to a time
pressure, although the most of the circuits needed for this were prepared.

Simulations were run in multiple tools. The first tool was Vivado, where
only the reference Xilinx JESD204 IP core was instantiated and was used
to generate a serial data stream, which was captured into a text file. This
file was then used for simulations in the second tool, ModelSim. There the
designed submodules and in the end the whole block were simulated. The
cases that could be simulated in ModelSim were limited and an additional
use of Vivado was necessary for more complex testing, when there were, for
example, repeated synchronizations of the designed receiver. Lastly, Cadence
Xcelium came into an account, because of its performance in simulating larger
designs with Xilinx IP cores. As above, the presented results are for a one
lane configuration in order to make the description clearer.

B 3.3.1 Simulation of Xilinx JESD204 TX IP in Vivado

The first simulation, realized in Vivado, was just about simulating the Xilinx
JESD204 IP core as a reference transmitter device and recording the trans-
mitted data bits into a text file. The simplified idea scheme of the simulation
is in the figure 3.13\ The Xilinx JESD204 IP core is in more detail described
further in this subsection. Most important in that case was to supply the IP
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core with clocks, user data, reset and configure it via the AXI4-Lite interface.
There are several link configuration registers needed to be set to the desired
values. It was done by tasks included in the testbench. Once the link config-
uration was defined, the core needed to be reset via the AXI4-Lite interface.
For each lane there is a 32-bit wide space for user data. After the propagation
of /K/ control characters started, the data stream began to be recorded and
the simulation waited for a while until it released the synchronization request,
so the ILAS and then user data started to transmit. After a moment, the
simulation finished and the text file was closed and saved. In that way, several
scenarios were saved based on the configuration of the IP core and user data.
Also only a stream of /K/ characters was recorded, which was essential for
the first simulations in ModelSim.

refclk_p
refclk_n

glblclkp
glblclkn

Xilinx JESD204

User Data TXIP
tx_tdata [31:0]

AXl interface
tx_sync

Text File

t
XP Task

Device Clock 1§ Ty Clock Tx Bitclock
GTPE2 Clock Gen Gon

Testbench

Figure 3.13: Idea scheme of simulation

B Reference Xilinx JESD204 IP Core

The Xilinx JESD204 IP core implements a JESD204B interface supporting
line rates from 1 Gb/s to 12.5 Gb/s. The maximum data rate can be lim-
ited by a particular FPGA device. Inside the core, there is also included a
multigigabit transceiver of type GTX, GTH, GTP or GTY depending on a
FPGA. The number of lanes per core is ranging between 1 to 8. The number
can be also further limited by the type of the FPGA. The user interface is
guaranteed by the AXI4-Lite bus. The JESD204 core can be configured as a
transmitter or receiver.

For FPGA Artia®-7 XC7A200T the maximum data rate is limited to 3.75
Gb/s. Supported transceiver is GTP and the maximum number of lanes
per core is 4. [12] The figure 3.14 shows an overview block diagram for the
transmitter of the JESD204 core.
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JESD204 Transmitter Core

TX Lane(s) . =
Alignment
Character - E
Generator . o,

AXI4-Stream Scrambler s JESD204
Lane P a Serial Data

Alignment 7 &
Sequence -

[

[

’— RPAT
Sync/SYSREF TX Counters

JSPAT
AXl4-Lite AXI4-Lite/IPIF Generator

Control Registers

Figure 3.14: Transmitter core overview [12]

B 3.3.2 Simulation of DUT

Data streams saved in text files from the previous simulations were used
during this step. Serial bits from files were read by means of a task and
distributed to the first block. It was a model, which was simulating a delay.
This model could delay lanes by a number of bits between each or the delay
could get longer during the simulation. The delay can occur on a lane for
instance because of a heating of the chip during an operation or a different
length of a routing on PCB. The delay amount was defined by means of the
input signal stream__delay. Data were then propagating to the second block,
which was a deserializer. This model represents a shift register with its own
clock reference inside. Every ten clock cycles it outputs a 10-bit deserialized
data and also the clock. The last model before the DUT (Device Under
Test) was another delay, this time a lane delay. This model automatically
delays lanes between each other by a multiple of ten bits. After that, data
finally reached the receiver (DUT). The clock for DUT was supplied by the
deserializer. The whole testbench is illustrated in the figure [3.15. Not all
ports of the receiver and other blocks are listed in case of more readable
picture.

B Test Cases

At the beginning, the whole receiver was not designed, so the blocks inside it
were simulated gradually. Until the code for ILAS was developed, the task was
reading the stream of /K/ control characters and the behaviour of previously
designed submodules was visually observed. After the implementation of
a code for the ILA configuration data detection, some other files could be
included. These files have included a synchronization part consisting of /K/
characters, ILAS and also a user data portion. A big milestone was the
implementation of the frame_lane__align submodule, when the outputting
data were these user data, which were on the input of the Xilinx JESD204 IP
core in the previous subsection [3.3.1], if the data were not scrambled. From
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t del
Read File sheam_deiay o
start_of_frame_o
Task start_of_Imf_o
d_o [7:0]
d_i data_ready_o
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Gen Delay
d_o
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DUT
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T 1b10b 40
[9:_0] sync_n_o
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Delay [9:0]M——>f d_i [9:0]
—»r d_i
Testbench

Figure 3.15: Idea scheme of simulation

that point, the outputting data were controlled automatically by means of a
model of a comparator. After the rest of submodules were added to the design,
some more simple and advanced test cases could be used. The tests were run
in ModelSim during the development process and in the end, when the whole
module was designed, also in Cadence Xcelium, where a code coverage was
examined.

Simple Test Cases. Several simple test cases were issued. Basically they
were all the same, recorded data into text files previously from the Xilinx
JESD204 IP core. Differences were in the user data, number of octets per
frame, number of frames per multiframe, scrambling and number of lanes.
The simulation monitored these most crucial outputs:

® cgs_error_o,
| sync_n_ o,

B qgll_alligned_ o,
® jla_received o,
B data_ready o.

Without their activity, the simulation will end because of a timeout. After a
defined time of the simulation, where the presence of correct user data were
expected, the simulation automatically compared their correctness to the
preset data sequence and decided, whether the test was passed successfully
or not.
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3. Development of Receiving Link Layer of JESD204B Protocol

Advanced Test Cases. After the DUT have passed simple test cases suc-
cessfully, some advanced options were tested. It started with delaying the
data stream by means of stream__delay block while running the simulation. It
led to the fact, that the cgs block started to send the wrong 10-bit word from
this point of time and so the running disparity or code errors were detected by
the 8B/10B decoder. As a consequence, the lost of the synchronization was
detected and the synchronization request to the transmitter was triggered.
In that case, the sync_n_ o interface was monitored. Then, the text files
were manually modified to simulate some non-standard situations. Some
symbols were added or deleted from the data stream and the frame and lane
monitoring and correction features were monitored. Whether the receiver
corrects frame and lane pointers or whether they are not within their ranges
and correction__error_ o is asserted was monitored. Outputting data were
similarly compared like previously at a well defined time. And still, the
configuration of user data, F, K and scrambling was changing.

B Cadence Xcelium Code Coverage

Test cases were also run in Cadence Xcelium and the code coverage of DUT
was measured. The code coverage is a method of assessing how well the
test cases have exercised the design. The results for each submodule are
summarized in the figure |3.16. Meanings of tests are explained further in this
subsection. Reasons of a low coverage in some cases are listed below:

® Only one transition for the reset signal was issued.
B The tests were not run with the reference Xilinx JESD204 IP core.

It indicates one transition for the SYNC~ and ILA parameters.

Alternatively some more edited test vectors would eliminate this.

® Large buffers for initial synchronization and monitoring buffers were
used. (Applies to the frame_lane__align submodule)

Block Coverage. The block coverage identifies the lines of code that are
executed during a simulation run. It helps to determine what areas of the
DUT design are not exercised by the testbenches. A block is a statement or
sequence of statements that executes with no branches or delays. [13]

Branch Coverage. The branch coverage provides more precise details than
the block coverage by obtaining coverage results for various branches individ-
ually. With the branch coverage, a piece of code is considered 100% covered
when each branch of a conditional statement has been executed at least once.
T3]

Expression Coverage. The expression coverage measures how thoroughly
the testbench exercises expressions in assignments and procedural control
constructs (if/case conditions). It identifies each input condition that makes
the expression true or false and whether that condition happened in the
simulation. [I3]
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3.3. Verification

Toggle Coverage. The toggle coverage collects and reports the design signal
toggle activity. Signal toggle is a binary transition (and return after a finite
delay) of a DUT signal. [13]

FSM Coverage. The FSM (Finite State Machine) coverage measures how
well FSMs are exercised. It reports, if all possible transitions are issued. [13]

88.89% (40/45) |BB.B9% |BB.B9% (32/36) controller
[94.37% (67/71) |93.10% |93.10% (54/58) |83.33% cgsl(l]
97.17% |94.87% (111/117) |96.88% | 94.00% (94/100) |n/a 53_Bb10b_decoder(1]
B9.47% |89.47% (51/57) |8B.00% |B88.00% (44/50) | 66.67% cg_check(1]
95.53% | 95.53% (299/313) |93.94% |03.94% (217/231)| 83.61% frame_lane_alignii]
84.17% |B83.90% (99/118) |52.50% |52.50% (21/40) |n/a T ine
n/a descrambler[1]
n/a clock _gen
n/a error_delay[1]
66.67% (4/6) |52.63% |52.63% (10/19/9) n/a n/a controller
B3.33% (10/12) |88.75% | 88.75% (71/80) 91.67% |90.00% (9/10) |cgall)]
n/a 92.59% 92.59.%(25;‘37!1} n/a nfa s3 Bbl10b decoder[1]
[66.67% (20/30) | 96.15% | 96.15% (25/26) 92.66% |91.67% (11/12) | cg_check(l]
B3.61% (51/61) | 60.24% | 60.24% (594/986/24) | n/a n/a frame_lane_alignll] |
nja 15.64% | 18.86% (B6/456) n/a n/a il ine
nfa B89.19% |89.19% (23/37) nfa n/a descrambler[1]
nfa 66.48% |62.86% (22/35/329) n/a n/a clock_gen
n/a 50.00% | 50.00% (3/6) n/a n/a error_delay[1]

Figure 3.16: Code coverage of particular submodules

B 3.3.3 Simulation of DUT with Xilinx IPs

The next step, which opened some new possibilities in testing the receiver,
was a simulation with the usage of Xilinx IP cores. At first, only the Xilinx
JESD204 IP core was used during simulations in Vivado. For simulations
with Xilinx JESD204 IP core and GTP transceiver the tool with a greater
performance was needed, so it was done in Cadence Xcelium. For both cases,
the gearbox described below was used.

B Gearbox

The gearbox in general is a module, which changes a bit width and a frequency
of data words. This particular one consists of 3 submodules. The first one is
a clock generator. It generates a gated clock with half of the input frequency
of the receiver’s device clock with the 25% duty cycle. This clock is important
for reading from the second submodule, which is an asynchronous FIFO. The
FIFO is used because of the crossing between two clock domains. The first
domain is given by the deserializer and received data are written into the
FIFO on its positive edge. The second domain is supplied by the gated clock
described previously. However, on the output of the FIFO, there are still
20-bit wide data, which needs to be splitted into two 10-bit wide words with
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Ports I/O | Description
clear_i Input | FIFO clear signal
d_i[19:0] Input | Input data
write _en i Input | FIFO write enable
serdes_clk_i | Input | Clock signal from deserializer
read en i Input | FIFO read enable
device_clk_i | Input | Clock for output data
rst_n_i Input | Reste signal, active low
empty_o Output | FIFO empty signal
full_o Output | FIFO full signal
d_0[9:0] Output | Output data

Table 3.10: Ports description for the gearbor module

a two times faster frequency. So the last submodule is a multiplexer (MUX),
which is responsible for this operation. It reads data from the FIFO, split
them into two words and outputs them one by one on the positive edge of
receiver’s device clock. The whole system of the gearbox is in the figure 3.17]
The description of input and output ports of the gearboz is in the table 3.10.

lear i
Zei;rgl'O] —‘L Clear_in
= the Data_in[19:0] Data_out[19:0]
write_en_i WriteEn_in Async
serdes_cl.k_l WClk FIFO
read_en_i . empty_o
k ReadEn_in empty_o ful o
RClk full_o —>
b device_clk_i M l d_i[19:0]
— |—>I clk_10_i
L.. clk_i clk_o clk_20_i ) d_o[9:0]
_ Clock e MUX dolodl
—frstni Ggn ENOR—— po; i
rst_;_i
Gearbox

Figure 3.17: Graphical representation of gearbox

B Simulation with Model of Deserializer

The simulation scheme, see the figure |3.18|, was adjusted a little, so it was
closer to a future implementation on a FPGA. This mainly means adding
of the gearbox and updated deserializer. The bit width of the deserializer
was updated in order to match the data width of the GTP transceiver. The
gearbox had to be used, because the use of a multigigabit transceiver on a
FPGA was intended and the transceiver had the 20-bit output data interface,
while the receiver was designed for the 10-bit wide data input. The scheme
is again only a simplified version of the real implementation and there are
just the most crucial ports displayed. This kind of the simulation was run in
Vivado.
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Figure 3.18: Idea scheme of simulation

It all starts with the reference JESD204 IP core delivered by Xilinx via
Vivado IP catalogue. The output data are connected to the block named
stream,__lane__delay, described previously. The next part is a deserializer, in
this case it is making a 20-bit wide output data bus from a continuous input
data stream. Also similarly to the previous one, it is supplying the clock
related with the output data. The subsequent block is a gearbox, whose
purpose is to split the 20-bit wide data in two 10-bit words sent one by one via
the output interface. The gearbox, which is in more details described below,
ensures, that the output data are synchronized with the supplied device clock,
which is also delivered to the last module, the designed JESD204B receiver.
The receiver is there the DUT.

The main goal of this kind of a simulation was to test the functionality of
the SYNC~ interface and issue multiple resynchronizations between devices.
Synchronization requests were triggered either by delay inserted in the serial
stream or by asserting a force synchronization via the force sync_ i input
port. Like previously, the behaviour of output ports and the correctness of
data were monitored at well defined moments.
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B Simulation with GTP Transceiver

The simulation taking place in Cadence Xcelium was supposed to be the last
one before the implementation on the FPGA. The deserializer was replaced by
the Xilinx GTP IP core. Because of it, the further simulations in Vivado were
ineffective due to time demands. The transceiver, besides other connections,
had to be supplied with a reference differential clock. Like it was said in the
section [2.9, the transceiver had just the deserializing function. All of the
others were bypassed. The output data and clock were then connected to the
designed gearbox. The whole simplified simulation scheme is in the figure
3.19.

stream_delay | froce_sync
refclk_p l |—>L froce_sync_i
refelk_n L]
glblclkp a2ty
Iblclkn
g txp——>m d_j Stream
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do start_of Imf_ o F—
n d_o[7:0] =¥—>

data_ready_o —

User Data
———»p tx_tdata [31:0] i
— refclk_p 9
. A refclk_n )
Xilinx JESD204 GTP s3_jesd204b_rx_lI
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clk20 d_o[9:0] d_i [9:0]
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Figure 3.19: Idea scheme of simulation

The proper functionality of the GTP block was verified by means of the same
tests as in the previous simulation. However for a physical implementation
on a FPGA was no time left. So, this kind of simulation was the last step of
the verification process done during the elaboration of this master thesis.

B Example of Simulation

In the endof this subsection, there will be one test case of the simulation in
Cadence Xcelium presented. In this case, the parameters of the simulation
were as follows in the table [3.11L
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Parameter Value
No. of lanes L 1
No. of octets per frame F 4
No. of frames per multiframe K 16
Scrambling enabled SCR 0
No. of ILAS multiframes 4
Delay stream after 1st sync 1

Table 3.11: Parameters of the example simulation

In the figure 3.21] there is a screenshot of the waveform from the simulation. On
the first row, there are user data on the input of the reference Xilinx JESD204
IP core. It can be seen that there are static data for the whole time of the
simulation. Next two rows are differential serial outputs from the transmitter.
Following three rows are inputs of the DUT and it can be seen that there are
the same values as stated in the table Parameters from the table can be
compared with outputs of the block [_o, f o, ko and scr_o. The signal from
the testbench en_ rz is enabling the designed module to start working. Then
it can be seen, when the code group synchronization was achieved, when the
synchronization request to the transmitter was deasserted, when data were
aligned in the initial buffer and when ILA configuration data were received.
Coloured waves are indicating the reception of control characters. Finally,
in the bottom it can be seen, when data are proceeded on the output of the
block with corresponding indication of the start of frame and local multiframe.

After 1.067 ms of the simulation, the stream__ delay signal raised up from 0 to
1. It led to a shift in the data, detection of running disparity or code errors
and lost of the synchronization. Because of it, the synchronization request
was asserted and the DUT was synchronized again and worked correctly until
the simulation ended. Messages reported in the console are shown in the

figure [3.20.

xoelivm: fun

** Timing checks are not walid (GTE) *+

** Resetbing the TH core. .. **

**% Timing checlks are walid (OTF) *+
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*+ B¥T Configquration and Reset complete. ... (TH) +*+
** LT THE HReset Dong **

*d Frnabled RX **

*+ 005 Synced *+

** All Lanes Alligned **

** TLA Configuration Data Recelwved *+

*+ Start Sending User Data *+*

** Data present on Dutput **

**+ Test bhefore resync completed successfully *++

*#+ Test after resync completed successfully *+

*#+ Test completed successfully *++

Simulation stopped wia Sstop(l) at time 107Z084800 PS5 + 1

wroE L1 s I

Figure 3.20: Screenshot of messages in simulation console
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Figure 3.21: Screenshot of waveform
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B 34 Synthesis

The designed module was synthesized for FPGA and ASIC use cases. Reports
from these cases are presented in two subsections below. Parameters for both
synthesis were as in the table |3.12l

Parameter Value
Clock frequency [MHz] 156.25
NR_OF _LANES 1
SYNC _DURATION_BUFFER_WIDTH 5
INITIAL BUFFER_WIDTH 192
INITIAL POINTER WIDTH 8
MONITORING_BUFFER_WIDTH 20
MONITORING _POINTER_WIDTH 3

Table 3.12: Parameters for synthesis

B 3.4.1 FPGA

Whether the designed receiver block is without any syntax mistakes and is
synthesizable was verified by the synthesis tool in Vivado. The synthesis did
not report any warnings and the post-synthesis utilization for the module
supplied with the device clock equal to 156.25 MHz on the xc7a200tsbv484-1
FPGA is shown in the table 3.13.

Resource | Utilization | Available | Utilization [%]

LUT 876 133800 0.65
FF 684 267600 0.25
10 138 285 48.42
BUFG 1 32 3.13

LUT...Lookup Table

FF.. Flifp-Flop

10...Input / Output Pins, only if whole FPGA is designed receiver
BUFG...Global Buffer

Table 3.13: Post-Synthesis utilization of designed JESD204B receiver for FPGA
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B 3.42 ASIC

The design with one lane configuration was also synthesized by the Synopsys
Design Compiler. This software was provided by the Dialog Semiconductor
company. The synthesis was made for TSMC 28HPC+ technology. It means
it uses 28 nm CMOS logic for high performance compact mobile computing.
The tcbn28hpeplusbwp 7t35p140ssg0p81vi25¢ library was used. Because of
using this library it uses the global operating voltage equal to 0.81 V instead
of typical 0.9 V.

The synthesis tool reported that it was used 2777 registers and found no
timing violators. Information about the area of the module on a chip are
summarized in the table [3.14l Results about the power consumption are
summarized in the table 3.15. The dynamic consumption reported by the
synthesis is for a default signal activity. In reality, it can be different.

Area Parameter Result
Number of ports 1315
Number of nets 9774
Number of cells 8689
Number of combinational cells 5818
Number of sequential cells 2803
Number of macros/black boxes 0
Number of buf/inv 719
Number of references 12
Combinational area [pym?] 2515.855975
Buf/Inv area [pm?] 162.875997
Noncombinational area [um?] | 6732.698074
Total cell area [pm?] 9248.554049

Table 3.14: Post-Synthesis area report for ASIC

Power Parameter Result
Cell Internal Power [mW] 1.4011
Net Switching Power [pW] 35.9431
Total Dynamic Power [mW] 1.4370
Cell Leakage Power [uW] 190.3822
Total Power [mW] 1.6274

Table 3.15: Post-Synthesis power report for ASIC
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. 3.5 \Validation on FPGA

As it was said above, the verification on a FPGA itself did not happen during
the elaboration of this thesis. The most significant modules were prepared.
This means the receiver, GTP transceiver and gearbox. It remained, to
modify the Xilinx JESD204 IP core, so it met requirements of the desired
FPGA board. Also several circuits for timing references were needed to
be developed. But the most crucial was to implement a controller for the
communication with Xilinx JESD204 IP cores via the AXI4 interface, so it
could be configured. Most likely it should have been the MicroBlaze processor
implemented on the FPGA.

The data path for a validation process on a FPGA is displayed in the figure
3.22. It starts with the MicroBlaze processor implemented on a FPGA. It is
used as a control device for AXI4 interface. By means of this interface, the
transmitter, RAM and FIFO are configured. The RAM is supplying data for
the transmission. Data from the TX core are then connected to the GTP
transceiver outside the FPGA, because of the requirements of the FPGA.
Data are then transmitted via the gearbox to the designed receiver. The
processed data are saved in the FIFO memory and compared with those ones,
which were transmitted at the beginning of the chain.

MicroBlaze AX4 Bus J o Xilinx v
AX14 JESD204

AXIl4 IX ol
RAM User Data 32-bit

.| JESD204 | " |

?|)|(:Ig 8-bit TX 10-bit Gearbox 20-bit GTP ‘

DUT
FPGA

Figure 3.22: Data path illustration for validation on FPGA
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Chapter 4
Future Updates

The future work subsequent to this thesis would probably be a replenishment
of two other subclasses of JESD204B standard. In the current state, it is
actually a part of JESD204B and it does not support all features, especially
the deterministic latency. For further development it will be suitable to use
some more advanced simulation tool, for example Xcelium by Cadence, in
the case of more efficient work. The reason for this is that the work with
ModelSim in student version and then the verification in Vivado was quite
much time consuming and demanding. ModelSim is not compatible with
Xilinx IP cores and the simulation in Vivado took too long. The use of current
paid version of ModelSim would bring the benefit of the ability of simulations
with Xilinx IP cores too. Reserves are also likely to occur in the efficiency
and readability of the code, not to say the size of the resulting design and
its power consumption, where it would certainly be possible to make further
adjustments to improve the properties of the device. In addition, there are
some functionalities missing in the resulting device, such as reporting of an
unexpected control character, which means that a control character received is
not expected at the given character position, or reporting of the realignments
in the frame and lane synchronization. Furthermore, the device does not
support test sequences of continuous stream of /K28.5/ characters for code
group synchronization (it just synchronizes and will be waiting for ILAS) and
it does not have the capability to suppress error reports due to missing ILA
configuration data for bit error measurements.
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Chapter 5

Conclusion

Theoretical part of the thesis deals mainly with the specifications of the
JESD204 protocol and also with the description of Verilog and Xilinx multi-
gigabit transceivers. The practical part was about designing the receiving
link layer of JESD204B and also about its verification in multiple tools in
several situations.

The result of the thesis is the receiving link layer of JESD204B receiver for
the subclass 0. Only some minor functionalities listed in the standard are
missing. The main goal of the thesis was to develop the link layer of the
JESD204 receiver and it can be stated, that it has been done with exceptions
of subclasses 1 and 2. Also, the simulation scheme with the reference Xilinx
JESD204 IP core, GTP transceiver and gearbox was prepared for a further
verification and it can be used as the basis for a validation on a FPGA. For
the implementation of it, more time would be needed. The rest of the goals
were met during the elaboration of the thesis. In addition, there has been a
great development in skills within the Verilog language.

During this work, several difficulties were faced. The first one, right at the
beginning, was simulating of the Xilinx IP cores and the rest of the design.
The official tool within Xilinx environment, Vivado, was found not suitable
for it due to its time consuming processes. So another tool, ModelSim, was
chosen with the limitation of no possibility of including Xilinx IP cores. As the
designed module was getting more complex and the presence of IP cores in the
simulation was needed, another tool had to be found for issuing simulations
and it was Cadence Xcelium. Other difficulties lied in an unfamiliarity with
the Verilog language, which also took some time during the work.
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