
MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457838Personal ID number:Mokoš DavidStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Online Planner for Food Deliveries

Master’s thesis title in Czech:

Online plánovač pro rozvoz zásilek v gastronomii

Guidelines:
1) Study the literature in the field of vehicle routing problems, specifically vehicle routing problem with time windows
(VRPTW)
2) Implement a baseline online food delivery planner based on insertion heuristic
3) Based on your research, choose a method for the online food delivery planner
4) Implement the online food delivery planner, and compare its efficiency with the baseline planner

Bibliography / sources:
[1] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and Applications, Second Edition. SIAM, 2014.
[2] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte, “Static pickup and delivery problems: a classification
scheme and survey,” TOP, vol. 15, no. 1, pp. 1–31, Jul. 2007, doi: 10.1007/s11750-007-0009-0.
[3] J. Jung, R. Jayakrishnan, and J. Young Park, “Dynamic Shared-Taxi Dispatch Algorithmwith Hybrid Simulated Annealing,”
Computer-Aided Civil and Infrastructure Engineering, vol. 31, Jun. 2015, doi: 10.1111/mice.12157.
[4] A. A. Syed, B. Kaltenhaeuser, I. Gaponova, and K. Bogenberger, “Asynchronous Adaptive Large Neighborhood Search
Algorithm for Dynamic Matching Problem in Ride Hailing Services,” in 2019 IEEE Intelligent Transportation Systems
Conference (ITSC), Oct. 2019, p. 3006–3012, doi: 10.1109/ITSC.2019.8916943.
[5] J. Alonso-Mora, S. Samaranayake, A. Wallar, E. Frazzoli, and D. Rus, “On-demand high-capacity ride-sharing via
dynamic trip-vehicle assignment,” PNAS, vol. 114, no. 3, pp. 462–467, Jan. 2017, doi: 10.1073/pnas.1611675114.
[6] S. Muelas, A. LaTorre, and J.-M. Peña, “A distributed VNS algorithm for optimizing dial-a-ride problems in large-scale
scenarios,” Transportation Research Part C: Emerging Technologies, vol. 54, pp. 110–130, May 2015, doi:
10.1016/j.trc.2015.02.024.
[7] Y. Luo and P. Schonfeld, “A rejected-reinsertion heuristic for the static Dial-A-Ride Problem,” Transportation Research
Part B: Methodological, vol. 41, no. 7, pp. 736–755, Aug. 2007, doi: 10.1016/j.trb.2007.02.003.

Name and workplace of master’s thesis supervisor:

Ing. David Fiedler, Artificial Intelligence Center, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 21.02.2021

Assignment valid until: 19.02.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. David Fiedler

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1



III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1



Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Science

Master’s thesis

Online Planner for Food Deliveries

Bc. David Mokoš

Supervisor: Ing. David Fiedler

May 20, 2021





Acknowledgements

First and foremost, I would like to thank my thesis supervisor Ing. David
Fiedler, for his patient guidance, advice, and encouragement he has provided
while I was writing this thesis. His expertise hugely contributed to both the
direction and the result of this work.

I take this opportunity to express gratitude to all department faculty mem-
bers for their help and support throughout my studies. I also thank my partner
Ing. Tereza Branyšová for endless encouragement, support, and attention.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 20, 2021 . . . . . . . . . . . . . . . . . . . . .



Czech Technical University in Prague
Faculty of Electrical Engineering
© 2021 David Mokoš. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Mokoš, David. Online Planner for Food Deliveries. Master’s thesis. Czech
Technical University in Prague, Faculty of Electrical Engineering, 2021.



Abstract

The delivery services are rapidly gaining in popularity, which was further ac-
celerated by the COVID-19 pandemic. Food delivery, especially, is a difficult
problem, where it is necessary to minimize the delivery time to ensure cus-
tomer satisfaction. Therefore, efficient route planning and order dispatching
are essential. This problem of navigating a fleet of vehicles to serve a set
of customers is referred to as the Vehicle Routing Problem (VRP), that has
been tackled in the literature for several decades. However, real-life instances
of VRP generally cannot be optimally solved in a reasonable time and thus,
heuristic approaches need to be employed. In this thesis, we adopted a hybrid
adaptive large neighborhood search algorithm originally proposed for peo-
ple transportation and adapted it to the case of food delivery by introducing
specific constraints and objectives. The experimental results show that our al-
gorithm produces better solutions compared to several baselines. In addition,
the experiments demonstrate the increased intensification and diversification
power of our newly added components.

Keywords Food Delivery, Vehicle Routing Problem, Pickup and Delivery
Problem, Operations Research

vii





Abstrakt

Využ́ıváńı rozvozových služeb neustále nabývá na oblibě, čemuž v posledńım
roce napomohla i celosvětová pandemie COVID-19. Problematické jsou hlavně
rozvážky v oblasti gastronomie, kdy je nezbytné minimalizovat dobu rozvozu,
aby byla zajǐstěna spokojenost zákazńık̊u. Za t́ımto účelem je nutné zaměřit
se předevš́ım na efektivńı plánováńı tras pro kurýry. Tato problematika spadá
pod Vehicle Routing Problem (VRP). V reálném světě však pro VRP nelze
ve většině př́ıpad̊u naj́ıt optimálńı řešeńı v přijatelném čase, a proto je třeba
aplikovat heuristické metody. V této práci byl převzat hybridńı adaptivńı
algoritmus, p̊uvodně navržený pro přepravu osob, a přizp̊usoben pro př́ıpad
rozvozu j́ıdla zavedeńım konkrétńıch omezeńı a ćıl̊u. Experimentálńı výsledky
ukazuj́ı, že navržený algoritmus vytvář́ı lepš́ı řešeńı ve srovnáńı s jinými al-
goritmy. Výsledky nav́ıc ukazuj́ı zvýšenou śılu intenzifikace a diverzifikace
našich nově přidaných komponent.

Kĺıčová slova Doručováńı j́ıdla, Problém vyzvednut́ı a doručeńı, Problém
navigace vozidel, Operačńı výzkum

ix





Contents

Introduction 1

1 Literature Review 3
1.1 Vehicle Routing Problem . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Capacitated Vehicle Routing Problem (CVRP) . . . . . 5
1.1.2 Vehicle Routing Problem with Time Windows (VRPTW) 5
1.1.3 Heterogenous Fleet Vehicle Routing Problem (HFVRP) 6
1.1.4 Pickup and Delivery Problem (PDP) . . . . . . . . . . . 7
1.1.5 Dial-a-Ride Problem (DARP) . . . . . . . . . . . . . . . 7
1.1.6 Evolution and Quality of Information . . . . . . . . . . 8

1.2 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . 12

Constructive Heuristics . . . . . . . . . . . . . 13
Metaheuristics . . . . . . . . . . . . . . . . . . 13
Hybrid Algorithms . . . . . . . . . . . . . . . . 17
Leveraging Machine Learning . . . . . . . . . . 17

1.2.3 Methods for Solving Dynamic Problems . . . . . . . . . 18
1.2.4 Available Solvers . . . . . . . . . . . . . . . . . . . . . . 19

2 Problem Definition 21
2.1 Formal Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1 Dynamicity . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Broader Context within GoDeliver . . . . . . . . . . . . . . . . 25

2.2.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Architecture . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Methodology 29
3.1 The Algorithm for the PDPTW . . . . . . . . . . . . . . . . . . 29

3.1.1 Cost Function . . . . . . . . . . . . . . . . . . . . . . . . 32

xi



3.1.2 Removal and Insertion Operators . . . . . . . . . . . . . 33
3.1.3 Local Search Procedure . . . . . . . . . . . . . . . . . . 35
3.1.4 Adaptive Weight Adjustment . . . . . . . . . . . . . . . 36
3.1.5 Initial Solution . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.6 Diversification Mechanism . . . . . . . . . . . . . . . . . 37
3.1.7 Parameter Selection . . . . . . . . . . . . . . . . . . . . 39

3.2 Methods for Evaluation . . . . . . . . . . . . . . . . . . . . . . 39
3.2.1 Evaluation Datasets . . . . . . . . . . . . . . . . . . . . 39
3.2.2 Baseline Algorithms . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Planning Algorithm . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Integration into GoDeliver Pipeline . . . . . . . . . . . . 46

4 Results 49
4.1 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Experiments on Adaptive Weight Adjustment . . . . . . . . . . 54

Conclusion 57

Bibliography 59

A Acronyms 71

B Contents of an enclosed CD 73

C Tables 75

xii



List of Figures

1.1 An intuitive view of the VRP instance and an example solution. . 4
1.2 The taxonomy of VRP and PDP within transportation-related op-

erations research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Taxonomy of the VRP. . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Taxonomy of vehicle routing problems by information evolution

and quality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 An example of a single request. . . . . . . . . . . . . . . . . . . . . 23
2.2 GoDeliver driver application and real-time tracking dashboard . . 26
2.3 Current state of GoDeliver architecture . . . . . . . . . . . . . . . 28

3.1 An example of a single plan traversal for computing the cost function. 33
3.2 A visualisation of the three crossover operators. . . . . . . . . . . . 38
3.3 A distribution of drop-off locations in the full request dataset of

7 100 requests. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 A distribution of the earliest times of drop-off set by the customers

throughout the day in the full request dataset of 7 100 requests. . . 42
3.5 Three baseline algorithms for evaluating the performance of our

HALNS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6 A simplified entity relationship diagram of the data model used in

Go implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Four operator interfaces used in the Go implementation of the

HALNS algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 The Abstract Planner class, and three specific planner implemen-

tations in GoDeliver Planner. . . . . . . . . . . . . . . . . . . . . . 46
3.9 The new architecture of GoDeliver Planner. . . . . . . . . . . . . . 47

4.1 The evolution of the objective value through running time on 50
and 100 request datasets. . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Results of metrics M1 - M5 evaluated on our 5 datasets, averaged
from 10 runs of each instance in each dataset. . . . . . . . . . . . . 52

xiii



4.3 The tradeoff between the total delay and the total distance for each
solution produced by the individual algorithms. . . . . . . . . . . . 53

4.4 Update of the weights of our four insertion operators during the
first 3 000 iterations on a single instance. . . . . . . . . . . . . . . . 55

4.5 Update of the weights of our five removal operators during the first
3 000 iterations on a single instance. . . . . . . . . . . . . . . . . . 55

xiv



List of Tables

3.1 The parameters used in our HALNS algorithm . . . . . . . . . . . 40
3.2 5 evaluation datasets, each containing 10 different instances . . . . 42

4.1 Results of metric M1 - Average (and maximum) delay in minutes
at drop-off locations, evaluated on our 5 datasets, averaged from
10 runs on each instance. . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Results of metric M2 - Average (and maximum) total distance in
kilometers travelled by all drivers, evaluated on our 5 datasets,
averaged from 10 runs on each instance. . . . . . . . . . . . . . . . 51

4.3 Quality of produced solutions on instances of 50 requests with dif-
ferent combinations of parameters π1, π2 and π3. Values in bold
represent the minima. . . . . . . . . . . . . . . . . . . . . . . . . . 56

C.1 Percentage of use within 5 minutes of runtime of all insertion op-
erators of HALNS algorithm. . . . . . . . . . . . . . . . . . . . . . 75

C.2 Percentage of use within 5 minutes of runtime of all removal oper-
ators of HALNS algorithm. . . . . . . . . . . . . . . . . . . . . . . 76

C.3 Percentage of CPU used by each operator of HALNS algorithm
within 5 minutes of runtime. . . . . . . . . . . . . . . . . . . . . . 76

xv





Introduction

Consumer habits have been increasingly shifting towards online and this pro-
cess has been accelerated by the global 2020 COVID-19 outbreak. Online sales
grows by 44 % year by year in the US alone [1]. In addition, these changes in
customer behavior are likely to have lasting effects [2].

The category of logistics that has recently increased in popularity is food
delivery [3]. The advantages of food delivery services are immense, especially
during the COVID-19 pandemic, as they facilitate customer access to ready-
to-eat meals and enable restaurants and other food providers to keep operating
in times of government restrictions [4].

However, the planning of food delivery is a complex problem due to the
dynamic setting that is subject to constant change, and only a few global food
delivery platforms are able to dispatch orders and plan routes efficiently to
lower the delivery cost while meeting the customer expectations. In contrast,
local restaurants struggle to provide customers with a good logistics experience
because they lack the necessary tools. As a result, they must turn to these
global food delivery platforms, which often come with higher cost and lower
quality of service.

GoDeliver1 is a software solution that aims to solve this issue. It provides
local businesses with a tool for managing their delivery fleets, which includes
automatic order dispatching, and route planning. However, larger businesses
with more than one restaurant, such as fast food chains, require more sophisti-
cated planning algorithms that are able to plan near-optimal routes for tens of
drivers consisting of hundreds of customers in a reasonable time, given the dy-
namic environment. As of today, the planning algorithms used by GoDeliver
are not ready for such big instances in a dynamic setting.

The problem of finding optimal routes for a fleet of vehicles is a so-called
vehicle routing problem which has been extensively studied in the literature
over the past 60 years. Several promising algorithms have been proposed for

1https://www.godeliver.co/

1

https://www.godeliver.co/


Introduction

a wide range of variants of this problem, including people transportation, and
delivery of goods. While most studies focus on basic variants of the vehicle
routing problem, this thesis explores the online pickup and delivery problem
with time windows with the emphasis on food delivery in which the customer
experience is the most important aspect. Therefore, the primary objective
is to deliver the food fresh and with the lowest delay possible. Furthermore,
because food delivery is a low-margin business, it is also important to keep in
mind the cost of delivery to make profit.

The main goal of this thesis is to propose and implement a planning al-
gorithm based on the state-of-the-art research to solve the online pickup and
delivery problem with time windows that enables to tackle the real-world use
cases of food delivery. The secondary goal is to integrate this algorithm with
GoDeliver such that it can be used in production settings. The results of this
study will greatly contribute to improving the GoDeliver system by equipping
it with faster and stronger planning power, which will be able to serve larger
businesses and contribute to the revolution of last-mile logistics.

The experimental results suggest that our algorithm finds overall better
solutions on larger instances compared to several baselines. In addition, it
seems to find a good tradeoff between minimizing the delays and the cost
of delivery. On the other hand, the proposed algorithm needs considerably
longer running time.

This thesis is organized as follows: Chapter 1 provides an overview of
the vehicle routing problem and presents existing solution methods from the
literature. Chapter 2 defines the problem of planning of food delivery and
discusses its specifics. It also explains the need for an advanced planning
algorithm in the GoDeliver system pipeline and defines the requirements for
this algorithm. Chapter 3 presents the methodology and chapter 4 shows
the computational experiments of the proposed algorithm on our evaluation
dataset.

2



Chapter 1
Literature Review

This chapter provides an overview of the research related to the problem of
route planning in food delivery. First, we describe the vehicle routing prob-
lem and related pickup and delivery problem along with their classification.
Second, we focus on common solution methods from literature. Finally, we re-
veal some new methods that leverage machine learning and we mention some
already available open-source solvers.

1.1 Vehicle Routing Problem

As adopted from Toth and Paolo (2015) [5], the family of vehicle routing
problems (VRP) can be defined as the following task:

Given a set of transportation requests and a fleet of vehicles,
determine a set of vehicle routes to perform all (or some) trans-
portation requests with the given vehicle fleet at minimum cost;
in particular, decide which vehicle handles which requests and in
which sequence so that all vehicle routes can be feasibly executed.

In other words, the problem is concerned with finding the optimal routes
to be followed by a fleet of vehicles to serve a set of customers [6]. To better
illustrate the problem, figure 1.1 shows an intuitive view of a VRP instance
along with its example solution for four vehicles.

The vehicle routing problem is one of the most studied problems in com-
binatorial optimization due to its relevance in industry [6]. It belongs to the
field of operations research applied to transportation problems. Figure 1.2
shows the classification of VRP within operations research and puts in con-
text the family of pickup and delivery problems that will be introduced later,
and which is eminently important for this work.

Numerous real-world applications have demonstrated the significance of
computer-generated solutions of VRP in terms of global transportation costs

3



1. Literature Review

Depot DepotVRP

Figure 1.1: An intuitive view of the VRP instance (left) and an example
solution for four vehicles (right).

Operat ion research
problems in t ransportat ion

Vehicle rout ing
problems

Pickup and 
delivery
problems

Figure 1.2: VRP is one of many problems studied within transportation-
related operations research. Pickup and delivery problems are a subclass of
vehicle routing problems. The class of operations research contains many other
problems apart from VRP, adopted from Ropke (2005) [7, p. 4 (modified)].

[5]. The success of optimization techniques can be attributed not only to
the increasing computer power but also to recent research breakthroughs, the
development of new mathematical models and to newly adopted approaches
that leverage machine learning [5, 8].

The VRP was first introduced in 1959 by Dantzig and Ramser [9] who
came with the first mathematical model and an algorithmic approach using a
simple matching-based heuristic. Since then, more than 80 years have passed
and hundreds of models and algorithms have been proposed for different fam-

4



1.1. Vehicle Routing Problem

ilies of VRP as a result of a large variety of practical applications [5]. This
tendency has been enlarged by the burst of consumer delivery in the begin-
ning of the century [8]. To show an example, the American logistics company
UPS delivered around 11.5 million packages in 1993, compared to around 6.3
billion in 20202 which counts for 24.7 million per single day.

Many variants of VRP have emerged over the years and the literature
shows a clear trend towards the study of more complex variants to lower the
gap between academic research and real-world applications. These problems
imply constraints on various features the route must satisfy, such as vehicle
capacity, pickup and drop-off times, or delivery sequence of operations. These
classes of routing problems are often called rich VRPs [10]. These include
capacitated VRP (CVRP), in which each vehicle has predefined finite capac-
ity that cannot be exceeded; the VRP with time windows (VRPTW), where
customers have to be served in predefined time intervals; the pickup and de-
livery problem (PDP), where the goods (or people) to be transported have to
be picked up at certain vertices as opposed to the depot; or the heterogenous
fleet VRP (HFVRP), in which vehicles may have different features, such as
different capacities or can deliver only certain type of goods. Routing prob-
lems that involve transportation of people are referred to as dial-a-ride problem
(DARP) (or dial-a-flight problem (DAFP) for air transportation) [6,11]. These
prevailing variants are detailed in the following sections and their taxonomy
is clearly shown in figure 1.3. It is important to mention that these variants
make just a fraction of the variants studied in the literature. Moreover, the
distinction between the following variants of VRP is not always sharp and
many combinations have been derived to more precisely represent real-world
problems [5, 6, 12,13].

1.1.1 Capacitated Vehicle Routing Problem (CVRP)

This variant of routing problems is the most studied in the literature, although
it is mostly of academic relevance [5]. In CVRP the requests correspond to
the transportation of goods from a single depot to a set of customers. Each
customer has a demand, which is the amount to be delivered. The vehicle
fleet is typically homogenous, meaning that all vehicles have the same finite
capacity and the same operational cost. Each vehicle starts at the depot,
serves a disjunct set of customers, and returns to the depot [5, 15].

1.1.2 Vehicle Routing Problem with Time Windows
(VRPTW)

VRPTW is an extension of CVRP where the service at each customer location
must occur within predefined time intervals, referred to as time windows.

2https://stories.ups.com/upsstories/us/en/about-us/global-presence/
corporate-facts.html

5

https://stories.ups.com/upsstories/us/en/about-us/global-presence/corporate-facts.html
https://stories.ups.com/upsstories/us/en/about-us/global-presence/corporate-facts.html


1. Literature Review

Information evolution Information quality

V R PTSP

PDPCVRP VRPTW HFVRP DARP
Capacitated 

Vehicles
with Time 
Windows

Heterogenous 
Fleet

Dial-a-Ride
Problem

Pickup and 
Delivery Problem

Stat ic vs.
Dynamic

Deterministc vs. 
Stochast ic

Vehicle 
Routing 
Problem

Traveling Salesman 
Problem

t ravel t imes
demands
customers

t ravel t imes
customers

Figure 1.3: Taxonomy of the VRP - the figure shows the prevailing variants
of the VRP and common examples of static and dynamic elements, adopted
from Bono (2020) [14, p. 26 (modified)].

There are two types of time windows commonly distinguished: soft and hard.
Soft time windows can be violated carrying a penalty cost. In case of hard
time windows, a driver must not arrive outside of the interval. The driver
may arrive to the customer before the time window, however, the customer
cannot be serviced until the time window starts. Arriving after the end of the
time window is prohibited. Time windows can also be one-sided, i.e., defined
as the earliest or the latest time of delivery [5, 12,16].

1.1.3 Heterogenous Fleet Vehicle Routing Problem
(HFVRP)

In this variant, vehicles are characterized by different features, such as different
capacities, operational costs, or can only deliver a certain type of goods [17–
19]. There are two main branches of HFVRP regarding the obtainable fleet.
In the unlimited HFVRP, known as fleet size and mix VRP (FSMVRP), the
problem is to find the best fleet composition and routes, assuming that there
is an unlimited number of vehicles of each type. In opposition, in the limited
HFVRP, known as heterogeneous VRP (HVRP), the task is to find the optimal
routes for the available fixed vehicle fleet [19]. The cost of the solution usually
depends on either the total distance traveled by all vehicles or the total enroute
time. This problem is sometimes augmented by introducing time window
constraints, making the HFVRP with time windows (HFVRPTW) [18].

In recent years, a relatively new variant related to HFVRP has emerged,

6



1.1. Vehicle Routing Problem

called the green vehicle routing problem (Green-VRP). The aim of Green-VRP
is to minimize fuel consumption and to maximize the use of alternative fuel
vehicles, such as electric vehicles, to reduce the impact on the environment.
Usually, a heterogenous fleet of both classic and alternative fuel vehicles is
considered during the planning process [20].

1.1.4 Pickup and Delivery Problem (PDP)

Three known types of pickup and delivery problems are generally distinguished
in the literature [5,13]. First, the single-commodity PDP, where a single type
of good is either picked up or dropped-off at each of the customer location.
An example of this problem might be transporting money from bank branch
offices via an armored vehicle. Second, the two-commodity PDP, in which
two types of goods are being transported and each customer location may be
used for both pickup and drop-off. This problem might occur, for example, in
distribution of beverages, where the driver simultaneously delivers full bottles
to the customer and collects the empty ones. A variant of the two-commodity
PDP is a VRP with backhauls, where a pickup is only allowed when the vehicle
is completely empty [16]. Finally, the n-commodity PDP is where each type of
good is associated with a single pickup location and a single drop-off location.
A typical example of this problem can be a food delivery service [13, 21, 22].
In the literature, this problem is often referred to as vehicle routing problem
with pickup and delivery (VRPPD) [13].

From the implementation perspective, PDP setting introduces a new set
of constraints. First, the constraints for the routes, such that the pickup and
drop-off must be taken care of by the same vehicle. Second, the precedence
constraint, i.e., the pickup happens before the drop-off [14].

A typical extension of PDP emanating from real-life usecases is the PDP
with time windows (PDPTW). In this case, each pickup (drop-off) node is
associated with a time interval, in which the driver can perform the pickup
(drop-off) [16].

1.1.5 Dial-a-Ride Problem (DARP)

The PDP also covers problems associated with people transportation. The
major difference between transporting goods and people is the incorporation
of customer satisfaction requirements. One of those problems is the so-called
dial-a-ride problem (DARP). This demand-responsive service is usually pro-
vided by a public authority to serve physically impaired people and elderly
who may have difficulty using regular transport options [5]. Unlike taxi and
public transport services, passengers may share the ride with other passengers
and, as a result, may deviate from the direct path from the pickup point to
their destination [23]. Some DARPs operate on a heterogenous fleet of vehi-
cles, where different vehicles satisfy the different needs of physically impaired

7



1. Literature Review

persons, for example, by being wheelchair accessible, some allow transfers
from one vehicle to another [23, 24]. The DARP implies that a set of cus-
tomers make a request, which consists of origin and destination locations and
imposes time window constraints for both pickup and drop-off. Additionally,
customer inconvenience constraints are typically inflicted, such as maximum
enroute time or maximum vehicle capacity [5,24]. There are three objectives of
DARP that are often conflicting: maximizing the number of requests the fleet
can serve, minimizing the overall operational cost, and minimizing customer
inconvenience. A ratio between these objectives is sometimes achieved by first
maximizing the number of requests that can be served by the available fleet
of vehicles, and then minimizing the operational cost while acknowledging the
inconvenience constraints [13].

Other people transportation problems related to DARP include dial-a-
flight Problem (DAFP) that concerns with air transportation [11], car pooling
problem, which consists of finding groups of employees to share a car to work
[5], Uber Pool service of an American company Uber 3 that combines taxi
service with car pooling [25], or the school bus routing problem (SBRP), where
children in rural areas are picked up from the bus stop close to their homes
and transported to their schools.

1.1.6 Evolution and Quality of Information

In contrast to the classical definition of VRP, real-world use cases often involve
two important dimensions. The first one is evolution, i.e., whether decisions
are made a priori (referred to as static) or the information changes in response
to new information during the planning process, for instance, when new re-
quests arrive or number of drivers changes (referred to as dynamic). Second
aspect is the quality of information, i.e., whether the information is known
with certainty before the start of planning (referred to as deterministic) or
there exists some amount of uncertainty when decisions are made (referred to
as stochastic). This categorization applies to VRP as well as DARP. [11,23]

Based on these dimensions, four categories of routing problems are iden-
tified and are shown in figure 1.4. In static and deterministic problem, all
information is known before the decisions are made and does not change dur-
ing the execution of planning. It is sometimes referred to as clasical prob-
lem [11]. Static and stochastic problems are the ones where some information
is unknown or uncertain at the time of decision, but information about the
uncertainty may be known, i.e., in the form of an available range or proba-
bility distribution. In addition, routes are planned a priori and only slight
changes are allowed during the execution, for example, adding a new node at
the end of the plan or skipping a customer. These types of problems do not
require any additional technological support. Most of the research in this field

3https://www.uber.com/

8

https://www.uber.com/


1.2. Solution Methods

Determinist ic input

Stat ic and determinist ic Stat ic and stochast ic

Dynamic and determinist ic Dynamic and stochast ic

Stochast ic input

Input  known
in advance

Input  changes
during execut ion

In
fo

rm
at

io
n

 e
vo

lu
ti

on
I nfor mat ion qual i t y

Figure 1.4: Taxonomy of vehicle routing problems by information evolution
and quality, adopted from Pillac et al. (2013) [11, p. 2 (modified)].

is focused on stochastic customers, stochastic time windows, and stochastic
demands [12,26,27].

Dynamic and deterministic problems work with some part of the input
that is unknown and revealed dynamically during the execution of planning.
Thus, the routes for the drivers need to be constantly updated, which requires
additional technological support for providing additional information to the
planner, such as the location of the drivers using their mobile phones with
GPS [12, 28]. Some authors also call these problems real-time or online [28].
Dynamic and stochastic problems are similar to the previous type, but addi-
tionally, stochastic knowledge about the dynamically revealed information is
available.

1.2 Solution Methods

The approaches to solve vehicle routing problems are generally divided into
two categories: exact and heuristic. The exact methods guarantee to find the
optimal solution when sufficient resources are provided. However, until now,
only small instances of VRP problems involving only up to tens of customers
can be solved optimally due to high computational complexity [5,29]. Indeed,
VRP belongs to the class of NP-hard problems [30]. Moreover, according to
Savelsbergh (1985) [31], even finding a feasible solution for the VRPTW is it-
self an NP-complete problem. Nonetheless, some amply constrained problems
with reasonable-sized instances can be solved to optimality via mathematical
programming techniques [12], which are covered in section 1.2.1.

In real-life problems, exact methods are oftentimes insufficient as large
instances need to be solved in a relatively short time. Therefore, heuristic
approaches are required to tackle real-world problems. With the trade-off
between the computation time and optimality, heuristic algorithms are able to

9



1. Literature Review

find solutions of relatively good quality within acceptable computational time
even for large instances [29]. In addition, heuristic algorithms offer a decent
amount of flexibility which allows to target different problem settings that
vary in constraints and objectives [5]. However, heuristic algorithms lack the
theoretical guarantee regarding the quality of produced solution. Observations
about solution quality can only be made empirically based on experiments
[7, 29].

A class of heuristic algorithms that has gained attraction over the last
years is metaheuristics. They provide a general framework for heuristics ap-
plicable to many problem variants and they often generate solutions of very
high quality [7]. In fact, metaheuristics are capable of yielding solutions within
seconds whose values lie within one percent from the best known values [5].
Heuristic algorithms are further described in section 1.2.2.

Another special class of heuristics that should be mentioned are approx-
imation algorithms. These methods provide both a solution and an error
guarantee. For instance, they could guarantee that the obtained solution is at
most k times worse than the best obtainable solution [32].

The following sections provide an overview of both exact and heuristic
methods for solving the VRP. More emphasis is being put on metaheuristic
approaches as they are currently the state-of-the-art solution for most real-
world VRP problems [5].

1.2.1 Exact Methods

For many real-world problems, the solution space is so large that even if we had
a computer that could evaluate the cost of a trillion solutions per second, and
we had started it right after the big bang, around 14 billion years ago, it would
not have evaluated all feasible solutions by today. Therefore, exact algorithms
need to use other methods rather than simple enumeration [7]. This section
lists a few most popular exact methods. For a detailed description and an
extensive survey, we refer the readers to Toth and Paolo (2015) [5] and Ho at
al. (2018) [23].

The CVRP is the oldest and the most basic variant of the VRP, hence the
first exact methods were developed mostly for the CVRP and later extended
to be used with other VRP variants. The CVRP is an extension of the known
travelling salesman problem (TSP), where the task is to find a Hamiltonian
circuit with minimum cost while visiting each node exactly once [5]. The TSP
was first formulated in 1930, around 30 years earlier than the VRP [9, 33].
Therefore, the foundation of many exact algorithms for the CVRP builds on
the thorough work done for the exact solution of the TSP [5]. However, as
it turns out, the CVRP is significantly harder to solve in practice compared
to the TSP. The best exact methods for the CVRP are rarely able to solve
instances with over a hundred customers, whereas the TSP instances with
thousands of nodes are now routinely solved to optimality [12].

10



1.2. Solution Methods

Exact methods directly address the problem using integer linear program-
ming. The objective is to find a binary assignment for decision variables,
modelling connections between vehicles and nodes, while minimizing the ob-
jective value [14]. The early methods to solve the CVRP were mainly direct
tree search algorithms based on branch-and-bound (B&B) [5]. Algorithm 1
shows a main loop of branch-and-bound.

The computational complexity of the B&B can be exponential in the worst
case [23], thus some relaxations need to be employed to speedup the search.
The combinatorial relaxations used in the branch-and-bound algorithms were
adopted from what was earlier proposed for the TSP [34] and later extended
by better relaxation techniques based on Lagrangian relaxations and the ad-
ditive approach. These methods were able to solve instances with lower tens
of customers to optimality [5]. Later, branch-and-cut algorithms exploited
cutting planes to tighten the linear programming relaxations, which led to a
higher chance of finding integer solutions, and provided stronger bounds for
optimality verification. In contrast, branch-and-price algorithms focused on
column generation rather than generating cuts, which allowed to solve larger
mixed-integer programs while still guaranteeing the convergence to global op-
timum [5, 23]. Current best algorithms for the CVRP belong to the branch-
and-price-and-cut family, which combines cuts and column generation, and
are much more effective than each of those techniques alone [35].

1 currentBest, upperBound ← FindInitialSolution(problem);
2 add problem to queue;
3 while queue is not empty do
4 problem ← pop item from queue;
5 for subProblem in branch do
6 if CanSolve(subProblem) then
7 candidate, cost ← Solve(subProblem);
8 if cost ≤ upperBound then
9 currentBest, upperBound ← candidate, cost;

10 end
11 end
12 else if LowerBound(subProblem) ≤ upperBound then
13 add subProblem to queue;
14 end
15 end
16 end
Algorithm 1: Branch-and-Bound, adopted from Bono (2020) [14,
p. 34 (modified)].

Branch-and-price is largely used for solving a variety of routing problems
and is not constrained to only the CVRP. For the VRPTW, this approach was

11



1. Literature Review

first used by Desrochers, Desrosiers, and Solomon (1992) [36]. The branch-
and-price-and-cut algorithm was also later applied to VRPTW by Kohl et al.
(1999) [37].

Similarly, for the pickup and delivery problems, Lu and Dessouky (2004)
[38] and later Ropke et al. (2007) [39] have used the branch-and-cut algorithms
for the PDPTW. Their approach was able to solve instances of up to 75
customers to optimality. The branch-and-cut-and-price algorithm by Ropke et
al. (2009) [40] was able to solve some highly constrained instances of PDPTW
of up to 500 customers. In the DARP setting, most of the exact methods are
also built upon the concept of branch-and-bound [23]. For multiple vehicles,
methods based on branch-and-price seem to be the most promising in the
current state of the art. Still, most PDP instances remain much harder to
solve than the same-size instances of classical VRP. This is predominantly
caused by the precedence constraints, which generally lead to poor linear
programming relaxations [5].

The main advantage of using the exact methods is that the optimality
of the solution is guaranteed. This is particularly important for static prob-
lems. Therefore, the majority of the research in exact algorithms focuses on
static and deterministic problems. Computational times of several hours are
acceptable for problems, where the information is provided in advance and no
changes are expected. Even if the optimal solution cannot be retrieved by the
exact algorithm, the planner is able to measure the optimality gap, aka how
far the solution can be from the optimum [23].

1.2.2 Heuristic Methods

When problems are not manageable by exact methods, for instance, due to
unacceptable computational time or memory issues, heuristics are essential
to provide high-quality solutions [23]. The field of VRP heuristics is so rich
nowadays that it would be an unimaginable task to describe or even list all of
them in this section. Instead, we summarize the most prevailing methods that
are still being actively used and present some new and promising techniques.

The progression of heuristic approaches for VRP in the last decade has
been primarily in the context of metaheuristics. What best describes this
progression is the hybridization of both concepts and scope. First, there has
been an emergence of new heuristics that combine several concepts in terms
of search principles that have been initially developed individually, such as
genetic algorithms, tabu search, large neighborhood search, or simulated an-
nealing. In addition, other strategies and techniques have found their place in
the most popular methods. These include exotic large neighborhoods, exact
mathematical techniques, decomposition, and cooperation schemes, to name
a few. Second, the hybridization of scope in heuristics means that they offer
a decent amount of flexibility which allows to target different problem vari-

12



1.2. Solution Methods

ants with various constraints and objectives without any extensive structural
changes [5].

The following two sections summarize some relevant results regarding con-
structive heuristics and metaheuristics. We also take a brief look at the latest
advancements in machine learning methods for VRP.

Constructive Heuristics

Constructive heuristics are frequently utilized to quickly create an initial feasi-
ble solution. Although metaheuristics are more effective, constructive heuris-
tics are employed in various dynamic problems that require a feasible solution
within milliseconds [41, 42], or to evaluate various operational policies [42].
In many cases, solutions obtained via constructive heuristics are used to pro-
vide an initial solution for more complex methods [43, 44]. However, many
metaheuristics are so robust that they can be initialized with any random so-
lution, which does not even need to be feasible, and still produce high-quality
results [5].

Most constructive heuristics are inspired from the greedy insertion heuris-
tic introduced by Jaw et al. (1986) [45], who was the first to adapt the tradi-
tional insertion algorithm to DARP with time windows and multiple vehicles.
The algorithm selects the requests sorted by the earliest pickup time and in-
serts the request into the cheapest feasible position in the existing routes.
Alternatively, it adds a new vehicle if no feasible position is found.

Lu and Dessouky (2006) [46] proposed an insertion-based heuristic for the
PDPTW, which regarded the deviations from time windows and an increase
in travel time. The results show that the heuristic outperforms several decent
methods on standard benchmarking problems. A similar approach was taken
by Fielder et al. (2018) [47] in a dial-a-ride setting.

Metaheuristics

Metaheuristics for the VRP can be loosely classified into two categories: lo-
cal search methods and population-based methods. However, the frontiers
between these methods have become increasingly fuzzy in recent years and
many hybrid methods have emerged. They will also be discussed in this sec-
tion.

Local search algorithms start from an initial solution x0 and at each it-
eration t, they move from the current solution xt to another solution xt+1
in its neighborhood N(xt). The neighbors are retrieved by applying opera-
tors, which make minor modifications of the original solution. If any neighbor
yields a better performance, i.e., the cost c(xt+1) is lower than c(xt), it be-
comes the new candidate solution. However, local search algorithms usually
allow worsening of the solutions, such that the cost c(xt+1) does not always
have to be lower than c(xt), to better explore the solution space and escape

13



1. Literature Review

the local optimum. As a result, certain mechanisms must be put in place to
avoid cycling [5, 14]. Algorithm 2 shows a common main loop of local search
algorithms.

1 candidate ← FindInitialSolution();
2 best ← candidate;
3 while stopping criterion is not met do
4 if IsValid(candidate) and Cost(candidate) < Cost(best) then
5 best ← candidate;
6 end
7 neighbor ← FindBestNeighbor(candidate);
8 if Cost(neighbor) < Cost(candidate) or AllowWorse(neighbor)

then
9 candidate ← neighbor;

10 end
11 end
Algorithm 2: Local Search, adopted from Bono (2020) [14, p. 36 (modi-
fied)].

Tabu Search One of the local search algorithms is tabu search. It moves
from a solution xt to the best non-tabu solution xt+1 in its neighborhood
N(xt). To avoid cycling, it keeps a list of previous candidate solutions that
are declared tabu, or forbidden, to the completion of the algorithm, or for a
certain number of iterations [5].

Tens of different implementations of tabu search have been proposed over
the years. One of the first metaheuristics for PDPTW was an algorithm
proposed by Nanry and Barnes (2000) [48]. They developed the tabu search
with three operators: moving a pickup-drop pair into another plan, switching
two pickup-drop pairs between plans and moving individual nodes within the
plan. Cordeau and Laporte (2003) [49] were among the first to use the tabu
search for the DARP with satisfactory results. Moreover, Zachariadis and
Kiranoudis (2010) [50] showed that tabu search can perform very well even on
large-scale instances.

Simulated Annealing Simulated annealing, another well-known local search
operator uses a technique inspired by the physical annealing process. The so-
lution xt+1 is usually randomly selected from the neighborhood N(xt). To
avoid being stuck in a local optimum, worse or nonimproving solutions are
accepted with a given probability [14]. One known implementation of this
algorithm for the VRP is that of Osman (1993) [51].

One of the recent studies conducted by Braekers et al. (2014) [44] pro-
posed a highly effective deterministic variant of simulated annealing, named

14



1.2. Solution Methods

deterministic annealing. In this study, nonimproving solutions are accepted
while the deterioration of the objective value is lower than a deterministic
threshold. Braekers et al. used more complex operators and, in addition, a
restart strategy to escape unattractive regions of the search space.

Variable Neighborhood Search Both the tabu search and simulated an-
nealing work well as standalone algorithms, but are widely used in combination
with local search heuristics, such as variable neighborhood search [52,53]. This
algorithm was first proposed by Mladenović and Hansen (1997) [54]. It works
with several neighborhoods (N1, . . . , Np) that are systematically changed in
the descent and preturbation phases of the local search. The algorithm starts
from an initial solution x0 and iteratively applies these neighborhoods until
no improvement is achievable. After the last applied neighborhood, the cy-
cle restarts. The algorithm usually finishes after a defined number of cycles
or, as introduced by Li and Lim (2003) [55], when the solution is no longer
improving.

Kytöjoki et al. (2007) [56] were among the first who successfully applied
variable neighborhood search to solve the VRP. Two years later, Parragh et al.
(2009) [57] proposed a variable neighborhood search for the DARP. Thanks
to the great results, more researchers have adapted the algorithm to other
DARP usecases in recent years [58–62]. Variable neighborhood search proved
to be able to obtain high-quality solutions even for large-scale VRP instances
of up to 20,000 customers [5].

(Adaptive) Large Neighborhood Search One of the most successful
metaheuristics for a wide variety of routing problems is large neighborhood
search [63], first introduced by Shaw (1997) [64]. At each iteration, part of
the current solution is destroyed (e.g., k requests are removed) by applying
one or more removal operators and rebuilt again into a new complete solution
using one or more insertion operators [23]. The modifications of solutions are
commonly bigger than those of previously described heuristics. In an adaptive
extension of this algorithm, called adaptive large neighborhood search, the
removal and insertion operators are selected based on their past performance
during the search, usually by employing a roulette wheel selection process with
an adaptive weight adjusting mechanism [63,65,66].

Ropke and Pisinger (2006) [67] used the adaptive large neighborhood
search heuristic to solve the PDP with time windows. Their algorithm used
removal and insertion operators already existing in the literature, including
the removal operator by Shaw (1997) [64], and an acceptance criterion for
new solutions known from simulated annealing. The algorithm by Ropke and
Pisinger has proven to be powerful and has served as a building block for
many further studies in complicated routing problems, particularly PDP and
DARP [43, 63, 66, 68–74]. Gschwind and Drexl (2016) [63] adopted the al-

15



1. Literature Review

gorithm from Ropke and Pisinger and added three more removal operators.
They also demonstrated how to test a new solution for feasibility in an amor-
tized constant time. Their version of the adaptive large neighborhood search
produced better solutions on standard DARP instances compared to the vast
majority of other algorithms, except for the hybrid genetic algorithm by Mas-
moudi et al. (2017) [75].

The other well-known category of metaheuristics are population-based
methods, which are inspired by natural processes, such as the evolution of
species or the behavior of insects. All successful population-based heuristics
rely on local search methods to drive the search towards promising areas and
to avoid local optima. As a result, the majority of population-based algorithms
are naturally hybrid [5].

Ant Colony Optimization This metaheuristic has also proven practical
for many routing problems. It is inspired by the pheromone mechanism used
by ants for coordination. Each ant simulates a solution by traversing the graph
along its edges and accumulates pheromons along the edges it traversed. In
each iteration, the ants select the edges with a probability proportional to the
pheromon value. The pheromon evaporates after a given number of iterations,
so the most promising edges remain at the end [14, 76]. The algorithm by
Reimann et al. (2004) [77] was one of the most successful.

Ant colony optimization algorithm is particularly interesting in dynamic
and stochastic settings. When new information is received, such as a new
request arrives, or some delays occur, the algorithm uses the pheromone trails
from previous iterations. This relies on the assumption that the new informa-
tion does not disrupt the current solution too much and that some patterns
can still be exploited [14,78].

Genetic Algorithms Genetic algorithms are population-based methods
that are inspired by the evolution of species. These algorithms usually work
with not a single solution, but rather a population of solutions, called individ-
uals. At each iteration, the individuals with better fitness are selected with
higher probability to be parents. New individuals are created by applying the
crossover and mutation operators to the parents and added to the population,
while some other individuals are replaced [14,23].

The first successful application of genetic algorithms to solve the VRP
is that of Prins (2004) [79]. Prins combined the genetic operators, selection
and crossover with a local search method to replace the classic random mu-
tation operator. Other researchers successfully applied genetic algorithms for
numerous VRP variants, for example, Masmoudi et al. (2017) [75] proposed
a hybrid genetic algorithm to tackle the DARP with excellent results, even

16



1.2. Solution Methods

outperforming in terms of quality of solution, many large neighborhood search
algorithms that are usually better performing on larger instances [23].

Hybrid Algorithms

Combining metaheuristics with other metaheuristics or exact methods is a
growing trend that has proven successful. Indeed, many state-of-the-art algo-
rithms for combinatorial optimization problems are hybrid algorithms.

In the literature, hybrids of metaheuristics are the most prevalent [23].
They usually come in two forms. First, each metaheuristic is executed se-
quentially, for example, in a study by Parragh et al. (2009) [57], where several
algorithms are applied to the best solutions obtained from the previous al-
gorithms. The other option is that one metaheuristic is executed in another
metaheuristic. A popular approach is to embed local search methods into
population-based heuristics, which takes advantage of combining the explo-
ration ability of population-based heuristics with the exploitation ability of
local search methods. Examples of this approach are the studies by Mas-
moudi et al. (2016 and 2017) [43,75].

Hybrids of metaheuristics with exact methods are also employed. They
are obtained by either embedding a metaheuristic to the mathematical or con-
straint programming approach or vice versa. An example could be a research
conducted by Parragh and Schmid (2013) [80]. They combined a column
generation approach with a variable neighborhood search. To improve the
obtained solutions, a large neighborhood search was employed. Another ex-
ample could be the study by Gschwind and Drexl (2016) [63] in which dynamic
programming is used within a large neighborhood search.

Leveraging Machine Learning

Designing a good heuristic algorithm is difficult as it requires expert knowl-
edge of the problem and often involves the incorporation of custom features
or constraints. Several alternative approaches have been proposed that use
neural networks to learn heuristics directly from data. The performance of
these heuristics has been improving in recent years, however, pure machine
learning approaches are still usually outperformed by classical optimization
methods [29,81].

One of the early research in this field was by Potvin et al. (1996) [82], who
used a competitive neural network model and a genetic algorithm to improve
a parallel insertion heuristic introduced by Potvin and Rousseau (1993) [83]
for the VRPTW.

Since then, machine learning algorithms have been significantly improved
and seem to be the focus of many researchers. Recently, Kool et al. (2019) [84]
has proposed a new attention model for learning heuristics for optimization
problems and presented a learning mechanism based on reinforce. This model

17



1. Literature Review

has been one of the building blocks of a research conducted by Peng et al.
(2020) [29] who presented a dynamic attention model with dynamic encoder-
decoder architecture, which, based on the results, outperforms the attention
model presented by Kool et al.

Still, the prevailing problem with machine learning approaches is that they
lack flexibility in terms of different features, constraints, and objectives. As in
response to this problem, in the last two years, several studies have emerged
that have made a notable leap in this area [8, 81,85,86].

The capacity constraints were introduced in a recent study by Nazari et
al. (2018) [85], who used reinforcement learning to solve the CVRP. Their
approach outperforms Google’s OR-Tools4 on medium-sized instances within
comparable computational time and has the potential to be used on other VRP
variants or even other combinatorial optimization problems. Furthermore,
Hottung and Tierney [81] proposed a large neighborhood search combined
with a deep neural network with an attention mechanism to solve CVRP. They
were able to outperform large neighborhood search methods based on classical
optimization techniques on instances of around 300 customers. Recently, time
windows were successfully tackled by Falkner and Schmidt-Thieme (2020) [8].

Some other features have been successfully incorporated into machine
learning models. Falkner and Schmidt-Thieme (2020) [8] presented an al-
gorithm that successfully solves VRP with time windows. Similarly, Li et al.
(2021) [86] showed how to solve PDP via deep reinforcement learning.

All mentioned works use generated instances in a two-dimensional space
where the distances between nodes are measured by Euclidian distance. To
the best of our knowledge, no study has used real distances and durations
between the nodes, as well as more sophisticated features like different service
times at each location, different depots, or already picked up deliveries in
a dynamic setting. Therefore, more research has to be done to successfully
deploy those techniques into practice.

1.2.3 Methods for Solving Dynamic Problems

This section briefly focuses on the recent research of dynamic problems defined
in section 1.1.6. In this context, heuristic approaches are prevalent for two
reasons. First, the majority of real-world dynamic problems are too complex
for exact algorithms to provide a solution in a reasonable time [14]. Second,
information is revealed over time and the complete instance is only known at
the end of the planning horizon. As a consequence, even though the exact
methods can provide an optimal solution for a current instance, they cannot
guarantee that the solution remains optimal after new information is revealed
[11].

4See section 1.2.4 for details about OR-Tools.

18



1.2. Solution Methods

Approaches for dynamic VRPs are based on either periodic reoptimiza-
tion or continuous reoptimization. Periodic reoptimization approaches start
with the initial set of routes and trigger the replanning procedure in response
to information changes or at given time intervals. In each replanning pro-
cedure, the optimization algorithm works on the static problem. The main
disadvantage of this method is that the optimization must be executed on
each change, which is time-consuming, and sometimes impractical, given the
nature of dynamic problems [11,23].

Approaches based on continuous reoptimization maintain information about
good solutions in an adaptive memory. When the known information is up-
dated, a decision procedure exploits the gathered memory using lookup strate-
gies, such as Monte-Carlo trajectory sampling [14], to produce a new solution.
These approaches usually require more complex implementation, however they
maximize the computational capacity and have a net advantage compared to
the previous category [11,14].

1.2.4 Available Solvers

There is a number of open-source and commercial solvers available for the
most prevailing variants of the VRP. Important questions that arise regarding
solving real-world problems are regarding the quality of the produced solution,
generality, flexibility, or speed. This section lists the most popular solvers and
puts these questions into context.

A popular tool mainly in the industry is OR-Tools5, an open-source project
by Google. It can be used to solve various combinatorial optimization prob-
lems and it provides wrappers for several languages, including Python, Java,
C++, and C#. In the context of VRP, OR-Tools supports many features,
such as pickup and delivery, time windows, multiple depots, different start
and end locations of drivers, capacity, skills, etc. In addition, Google provides
developers with a rich documentation and an active community [87,88].

There are 14 search strategies that can be selected for the VRP, including
simulated annealing, tabu search, or greedy descent. Additionally, 13 different
strategies to find an initial solution are available, such as parallel cheapest
insertion. The automatic initial solution strategy lets the solver select the
strategy automatically based on the problem variant [87].

The limitations of OR-Tools arise when larger instances need to be tackled.
In some cases, changing the search options for the solver or a strategy for
finding an initial solution can help, but generally the instances of rich VRPs,
such as the PDPTW, are intractable for OR-Tools [88].

Another commonly used open-source software for solving the VRP is Vehi-
cle Routing Open-source Optimization Machine (VROOM)6. It can find good

5https://developers.google.com/optimization
6https://github.com/VROOM-Project/vroom

19

https://developers.google.com/optimization
https://github.com/VROOM-Project/vroom


1. Literature Review

solutions in small computing times and can scale for larger instances. Be-
sides the common features like time windows and capacity, it supports some
infrequent features, such as driver breaks and working hours. It is not only a
VRP solver, but it bundles out-of-the-box integration with routing engines to
produce cost matrices based on map data, which makes it easier to use in a
real-world setting [89].

VROOM includes several heuristics for finding an initial solution that
are selected automatically based on the specific use case. These include
Christofides heuristics, clustering heuristics, or Solomon insertion heuristics.
The optimization algorithm behind VROOM is a local search procedure that
uses 14 different exchange and reallocate operators [88,90].

Yet another open-source software that deserves attention is jsprit7, which
is a Java based, open-source toolkit for solving TSP and VRP. Similarly to
OR-Tools and VROOM, jsprit can solve problems with all classic features.
Additionally, it allows to define additional constraints. It is well-documented
and benchmarked on classic VRP instances [91]. The optimization mechanism
behind jsprit is based on the large neighborhood search [88].

7https://github.com/graphhopper/jsprit

20

https://github.com/graphhopper/jsprit


Chapter 2
Problem Definition

The literature review introduced the vehicle routing problem and presented
the available solution methods. In this chapter, we demonstrate a real-world
problem of route planning in food delivery and elaborate the constraints and
objectives in detail.

The objective of this work is to come up with a suitable approach for the
planning of food delivery. Food delivery may involve several categories, such
as recurrent meal box delivery, grocery delivery, or delivery of ingredients. In
this article, the term food delivery will be used to refer to online restaurant
delivery, which is a courier service in which a restaurant or a third party
logistics company delivers food to a customer. This food is typically fresh
(hot or cold) and is intended to be eaten right away. Therefore, the food
is picked up by the driver soon after it is prepared by the restaurant. The
delivery orders are typically on demand, i.e., the customers expect their food
to arrive in a short period of time after placing the order. These orders are
placed via restaurant websites, a phone call, or a mobile application [92].

The prepared food is prone to damage if dropped, tilted, or kept for a
longer duration. Therefore, technology must be involved in the process of
food delivery. Food portions are usually packed in plastic or paper containers
which are stored in thermal bags or boxes while being carried by the courier. In
addition, to reduce the duration from cooking to delivery and, consequently, to
ensure customer satisfaction, software tools and planning need to be engaged
[92].

The costs associated with the delivery service are paid either by the cus-
tomer, the restaurant, or are split between both parties. These costs include
drivers’ salaries, gas costs, vehicle amortization, or other transportation costs.
The aim of the planning procedure is to minimize those costs and consequently,
increase the revenue of the service. However, in the food delivery business,
customer satisfaction is commonly the most important objective, because it
results in customer retention, ultimately leading to a scalable and successful
business.

21



2. Problem Definition

From the VRP perspective, food delivery has its own specifics compared
to other categories of logistics. The four most important ones with respect to
route planning are:

Dynamicity New information is revealed during the day, such as the arrival
of new orders, unexpected delays due to traffic, or changing the number
of drivers. Therefore, high emphasis is placed on the speed of the selected
algorithm, as the drivers need to react to changes as quickly as possible.

Short Time Windows Customers expect their food to arrive shortly after
they order it. In addition, ready-to-eat food has short lastingness and
needs to be delivered as soon as possible to secure its quality.

Soft Time Window Constraints The time windows for food delivery are
generally soft, meaning they can be violated carrying a penalty cost. In
addition, visiting a customer before the specified time window is usually
preferred over being late, so the penalty is lower in that case.

Peak Times Food delivery has peak times around lunchtime and dinnertime.
With this, the number of required drivers need to change dynamically
according to the time of the day.

2.1 Formal Definition

It is clear that in the context of food delivery, each customer request con-
sists of transporting goods (food) from one pickup location to one drop-off
location. As there may be more restaurants preparing food, rather than a
single depot, it is the case of pickup and delivery problem (PDP). Since food
delivery commonly involves multiple drivers and time window constraints, the
ultimate generalization of this problem can be referred to as the pickup and
delivery problem with time windows (PDPTW). This variant also involves ca-
pacity constraints, i.e., how many food portions can each driver carry at any
moment. In addition, one feature that is required for our use case is that the
drivers can start at arbitrary locations rather than a single depot. An example
of a single request is shown in figure 2.1.

Using a similar notation to Cordeau (2006) [93], let us define this problem
formally:

We are given a complete graph G = (V,A), where V is the set of nodes
and A = {(i, j) : i, j ∈ V, i 6= j} is the set of arcs. V is further partitioned into
three subsets V = S∪P ∪D. The set S, |S| = k is the set of start/depot nodes,
i.e., the nodes where the couriers/drivers K = 1, · · · , k are initially located.
The positive integer k is the number of couriers/drivers for which the routes
are computed. The set P is the set of pickup nodes P = {1, · · · , p}, where p is
the number of pickup nodes, and D the set of drop-off nodes D = {1, · · · , d},
where d is the number of drop-off nodes.

22



2.1. Formal Definition

Pickup
- timeWindow:

- fromTime: 10:20
- toTime: 11:00

- packages: 2

Drop-off
- timeWindow:

- fromTime: 11:00
- toTime: 11:20

- packages: 2

Figure 2.1: An example of a single request.

It holds that d ≥ p as there must be at least the same number of drop-off
nodes as pickup nodes. There may be more drop-off nodes then pickup nodes
as the planning phase runs in a dynamic environment, and thus some packages
can be already picked up when the planning process is called. This will be
further explained in section 2.1.1.

There are two types of requests r ∈ R, where each request r is a pair of
nodes from V . It is either a full request rfull

i,j which consists of transporting a
package from the pickup node i ∈ P to the delivery node j ∈ D, or a partial
request rpartial

k,i which consists of delivering an already picked up package by
the driver k ∈ K to the drop-off node i ∈ D.

A nonnegative pickup/drop-off service time tservice
i is associated with every

node i ∈ V , which denotes the required time the driver needs to spend at
node i. It is assumed that tservice

i = 0 ∀i ∈ S. A time window wi = [wsi , wei ] is
associated with each node i ∈ V , where wsi is the start of the time window and
wei is the end of the time window. It is assumed that wi = (− inf, inf) ∀i ∈ S.
Finally, a travel time ttravel

i,j and distance mi,j are associated with each pair
of vertices (i, j) ∈ A. If a driver location is not known in advance, we assign
ttravel
k,i = 15 min and mk,i = 10 km for the driver k, assuming that it takes

approximately 15 minutes and 10 kilometers to travel from a random location
to another random location in the city.

Additionally, the capacity constraints are defined for the vehicles. Each
driver k ∈ K has a capacity ck ∈ N. Also, a demand di ∈ Z is assosiated
with each node i ∈ V , and denotes how much of the capacity is utilized when
completing service at node i. It holds that di > 0∀i ∈ P and di < 0 ∀i ∈ D.

The output of the algorithm is a set of routes E = {e0, · · · , ek}, where k
is the number of drivers and the route el for each driver l ∈ K is sequence of
nodes i ∈ V such that each route starts with a start node l ∈ S, where the

23



2. Problem Definition

driver is initially located. It also holds that for each full request rfull
i,j , pickup

node i and drop-off node j are in the same route e, and node i precedes j in
route e. Similarly, for each partial request rpartial

l,i it holds that the drop-off
node i is in route l, corresponding to driver l. For each node i in route e
an estimated time of arrival teta

i and an estimated time of departure tetd
i are

associated, where tetd
i ≥ teta

i + tservice
i . Additionally, for the solution to be

feasible, at any node, the driver cannot exceed its capacity, i.e., for each route
el it must hold ∑u

i=1 di ≤ cl ∀u ∈ {1, . . . , |el|}
It is not guaranteed that a plan which satisfies all time window constrains

always exists. Therefore, the time window constrains are considered soft,
meaning they can be violated carrying a penalty cost.

There are two objectives to this problem. First, to minimize the deviation
from the specified time windows:

min
∑
i∈V

max(wsi − teta
i , teta

i − wei )

Second, to minimize the total distance travelled by the drivers:

min
∑
e∈E

|e|−1∑
i=0

mi,i+1

The first objective provides for customer satisfaction, the other contributes to
reducing the costs associated with the delivery.

2.1.1 Dynamicity

Online food delivery planning is a dynamic VRP as described in section 1.2.3.
As new information is revealed during the planning horizon, this information
needs to be incorporated into existing plans as soon as possible, so the drivers
are able to react to this information. Most studies in this field consider new
pieces of information as the events that trigger the replanning process [23].
Typically, the planning process should not take more than 2 minutes. There-
fore, a strong emphasis is placed on the time complexity of the planning
algorithm. Some of the events that trigger the replanning procedure are the
following:

A new delivery order is placed When a customer makes an order, the
pickup and drop-off nodes need to be incorporated into one of the exist-
ing plans.

The number of drivers changes When an existing driver goes off duty, we
need to make sure that his assigned deliveries will be taken care of by
someone else. Similarly, when a new driver goes on duty, he gets some
deliveries that have already been assigned to his colleagues.

24



2.2. Broader Context within GoDeliver

A driver is delayed The time estimates are never exact, and it may happen
that a driver encounters a problem that causes his delay. In that case,
some of the deliveries assigned to him should be handed to other drivers
to compensate for the delay. The replanning procedure is triggered if
the accumulated delay d > dlim, where dlim is the threshold.

Because the plans need to be recomputed in real time, it often happens
that by the time the planning occurs, some packages have already been picked
up by some of the couriers. In that case, we need to make sure that only
the drop-off nodes are provided to the planning process and that the correct
drivers will be handling them.

Another issue comes from the asynchronicity of planning. The planning
procedure always takes the current state, i.e., the information it currently
has, and takes some time to produce a solution. By the time the planning
procedure ends, the current state may change, for example, some deliveries
were picked up, another delivery was dropped off, a driver went off-duty,
or a new delivery order arrived. When such a situation occurs, the planning
procedure must react to these changes by either resolving those inconsistencies,
or by rerunning the replanning procedure again.

2.2 Broader Context within GoDeliver

GoDeliver8 is a software solution for governing deliveries developed by Cog-
nitic9 with the aim of making the city logistics simpler and more efficient.
It provides clients with everything they need for managing their own fleet of
drivers, including the driver application, real-time monitoring, automatic dis-
patch, and route planning. Figure 2.2 shows the driver application and the
real-time tracking dashboard.

2.2.1 Features

The most important features that GoDeliver provides are:

Driver Management The mobile application available for iOS and Android
is used to provide information to drivers about their tasks. It shows the
address of the next pickup or drop-off location along with the options
to open the navigation and to call the customer. The application tracks
the driver’s location and sends information about completed tasks to the
GoDeliver backend.

Real-time Visualization The tracking dashboard for dispatchers and lo-
gistics managers allows to visualize deliveries, drivers, and routes, along
with the estimated arrival times and delays.

8https://godeliver.co/
9https://cognitic.ai/

25

https://godeliver.co/
https://cognitic.ai/


2. Problem Definition

Figure 2.2: GoDeliver driver application and real-time tracking dashboard

Route Optimization Probably the most critical feature of GoDeliver is the
automated route planning. This is essentially the VRP solver which
supports different VRP variants, depending on the customer’s needs.

Automatic Dispatch The aim of GoDeliver is to eliminate the need for
human dispatchers assigning tasks to individual drivers. Therefore, au-
tomatic dispatch is a mechanism designed to tackle dynamic scenarios,
where the system needs to react to new information, such as receiving
or cancelling orders, changing the number of drivers, or route accidents
and delays.

Customer Tracking To ensure the best possible experience for the end cus-
tomers, GoDeliver offers order tracking. This web app is sent to users
via SMS message or email and shows the status of their order and the
current location of the driver.

Data Visualisation GoDeliver enables data-driven decisions by gathering
and visualising data about the logistics fleet, such as delays, compound
delivery costs, and other statistics.

External Integrations To integrate GoDeliver within existing systems, the
software provides a well-documented API and plugins to popular point-
of-sale systems.

26



2.2. Broader Context within GoDeliver

2.2.2 Architecture

A simplified architecture of GoDeliver system is shown in figure 2.3. The main
logic behind GoDeliver is implemented in the Backend Service. This service is
a server application that communicates with the tracking dashboard and driver
applications via a REST API. It also provides public endpoints for integrating
with other systems. The data are stored in a Firestore Database10. On certain
events that should trigger the replanning a new Celery11 job is created. The
Replan Runner consumes these jobs, calls the Logistics Planner (highlighted
in yellow color), and writes the produced solution to the database.

The Logistics Planner is a stateless server that provides a single endpoint
for planning. This endpoint consumes the instance of the VRP and produces
a solution. In case that the solution cannot be found, an error is returned. To
obtain the real distance and travel duration between each pair of nodes, the
Planning Engine is used. This server runs our own instance of Open Source
Routing Machine (OSRM)12 which finds the shortest paths between two pairs
of coordinates. This engine works over the Open Street Map13 data that are
regularly updated to include new routes and recent closures.

The Logistics Planner internally uses Google ORTools for solving the VRP
instance. As mentioned in section 1.2.4, ORTools is unable to solve larger
instances and is thus insufficient for real-world use cases. Therefore, this
thesis aims to upgrade the planning algorithm to comply with the real-world
applications.

10https://firebase.google.com/docs/firestore
11https://docs.celeryproject.org/
12http://project-osrm.org/
13https://www.openstreetmap.org/

27

https://firebase.google.com/docs/firestore
https://docs.celeryproject.org/
http://project-osrm.org/
https://www.openstreetmap.org/


2. Problem Definition

Company

Google App Engine

Logistics 
Planner 

(ORTools)
Realtime 

Dashboard

API 
Integrations

Firestore Database

Google App Engine

Google Compute 
Engine

Google App Engine

Replan 
Runner

Drivers

Driver 
Application

Trigger
replan

Get data

Write plans

solution
for the VRP

VRP
instance

distance and
duration matrix

Open Street 
Map Data

GoDeliver 
Logic Service

Planning Engine 
(OSRM)

Figure 2.3: Current state of GoDeliver architecture

28



Chapter 3
Methodology

Here, we propose a hybrid adaptive large neighborhood search algorithm for
solving the problem described in the previous chapter. Next, we describe the
methodology for evaluation of the proposed algorithm. Lastly, we illustrate
the implementation of all mentioned parts.

3.1 The Algorithm for the PDPTW

The adaptive large neighborhood search (ALNS) algorithm has been success-
fully applied to a wide range of VRP problems, including PDPTW and DARP.
In addition, the robustness of ALNS allows to efficiently solve problems with
different features. However, ALNS is prone to get trapped in local optima
when applied to highly constrained problems. Therefore, in this study, we
combine diverse intensification strategies in the promising regions of the so-
lution space as well as several diversification techniques to direct the search
towards new and unexplored regions of the solution space. The algorithm
used in this thesis is a hybrid version of ALNS, named hybrid adaptive large
neighborhood search (HALNS) and is based on the research made on DARP
by primarily Masmoudi et al. (2020) [66], and others, including Ropke and
Pisinger (2006) [67], Gschwind and Drexl (2016) [63], and Masmoudi et al.
(2016) [43].

The majority of the ALNS algorithms in the literature uses the following
approach for restarting the search: when a new solution is not better than the
current solution, and is not accepted using the acceptance criterion known
from the simulated annealing algorithm, the ALNS algorithm restarts the
search from a solution that is generated from the same current solution by
applying the removal and insertion operators. However, our algorithm does
not return to the current solution. Instead, it generates a new solution using
a crossover operator known from genetic algorithms. It combines the current
best solution with the new solution generated by the constructive heuristics
used for obtaining the initial solution. This solution is then used as the current

29



3. Methodology

solution. This approach gives the algorithm more diversification power as this
newly generated solution is placed in a new region of the solution space, thanks
to the crossover.

input : Instance of PDPTW consisting of a set of requests and
required number of drivers.

1 x← InitialSolution(instance) ; /* current solution */
2 xbest ← x ; /* best solution */
3 τ ← τmax ; /* temperature */
4 Initialize the weights of insertion, removal, and local search operators;
5 for i ∈ 1, . . . , imax do
6 x′ ← apply removal to the current solution x;
7 xnew ← apply insertion to x′ ; /* new solution */
8 if xnew is feasible then
9 if cost(xnew) < cost(x) or cost(xnew) satisfies acceptance

criterion then
10 x← xnew;
11 else if cost(xnew) > cost(x) then
12 xinit ← InitialSolution(instance);
13 x← Crossover(xbest, xinit);
14 if cost(xnew) < cost(xbest) then
15 xbest ← xnew;
16 τbest ← τ ;
17 else if cost(xnew) < cost(xbest)(1 + δ) then
18 xnew ← LocalSearch(xnew);
19 if cost(xnew) < cost(xbest) then
20 xbest ← xnew;
21 τbest ← τ ;

22 τ ← ατ ;
23 if τ < 0.01 then
24 τbest ← 2τbest;
25 τ ← min(τbest, τmax);
26 update the weights of insertion, removal and local search

operators;
27 return xbest
Algorithm 3: Hybrid Adaptive Large Neighborhood Search for PDPTW

Additionally, in most ALNS approaches, the best solution is updated only
if the newly generated solution is better than the best solution. On the con-
trary, our algorithm uses an acceptance function for the new solution, which
works as follows: if the newly generated solution is not worse than δ% from

30



3.1. The Algorithm for the PDPTW

the best solution, the new solution is not discarded. Rather, this solution is
intensified using the local search procedure (see section 3.1.3), and then com-
pared with the best solution again. The better of the two solutions becomes
the new best solution. This approach gives more chance for promising solu-
tions to become new best solutions and thus results in more diversification
power. On the other hand, using the local search procedure for promising
solutions results in intensifying the search towards even better solutions.

These strategies form our hybrid adaptive large neighborhood search, which
combines the diversification ability of the crossover procedure and the mod-
ified acceptance function with the intensification ability of the local search
procedure. Although similar approaches have been used to solve the DARP
by Masmoudi et al. (2020) [66], to the best of our knowledge, these novel
techniques have not yet been applied to the food delivery planning problem.

The main loop of our HALNS algorithm is outlined in algorithm 3. Sim-
ilarly to the ALNS known from Ropke and Pisinger (2006) [67], Gschwind
and Drexl (2016) [63], and Masmoudi et al. (2016) [43], the algorithm keeps
track of (1) the best solution found so far xbest, (2) the current solution x
and (3) the newly generated solution xnew. The algorithm is executed for a
specified number of iterations imax to find the best solution xbest based on its
cost cost(xbest) (see section 3.1.1).

In the beginning, the current solution x is initialized to the new solution
obtained by the construction heuristics (see section 3.1.5). Best solution xbest
is set to the value of current solution x. We also initialize the temperature
τ to the value τmax and we initialize the weights of insertion, removal, and
local search operators for the adaptive weight adjustment, further described
in section 3.1.4.

In each iteration of the algorithm, the new solution xnew is generated from
the current solution x by applying the removal and insertion operators, which
are described in section 3.1.2. If the best solution xbest was improved in the
last iteration, one removal and one insertion operator are used to generate
xnew. Elseways, two removal operators and one insertion operator are used
to further diversify the search. Our removal operators destroy the current
solution by removing a number of requests, whereas the insertion operators
repair the solution by embeding all unplanned requests back to the solution.
The specific removal and insertion operators are selected based on their past
performance. The selection mechanism is further described in section 3.1.4.

The new solution xnew is accepted if it is better than the current solution
x or if it satisfies the acceptance criterion, i.e., we accept it with probability
e
(
cost(xnew)−cost(x)

)
/τ . Otherwise, a new solution is obtained by utilizing a

randomly selected crossover operator (see section 3.1.6) that combines the
current best solution xbest with a new solution obtained from the constructive
heuristics xinit (see section 3.1.5). If the cost of the new solution cost(xnew) is
lower than the cost of the current best solution cost(xbest), xnew becomes the

31



3. Methodology

new xbest. Else, if cost(xnew) is worse than xbest by a maximum of δ%, xnew
is improved with the local search and becomes the new best solution xbest if
it has lower cost compared to xbest after the intensification of the local search
procedure.

The temperature τ , used in the acceptance criterion, is decreased in each
iteration by multiplying it with the cooling rate α. If after the cooling pro-
cedure, the temperature value becomes lower than 0.01, τbest, used to record
the temperature when xbest is found, is multiplied by 2 and the value of τ is
set to the value of τbest. To make sure that the search does not start from
scratch from a random solution, the temperature τ is limited to τmax.

3.1.1 Cost Function

The cost function is an essential part of our HALNS algorithm as it determines
the quality of the produced solution. As the costs of the intermediate solu-
tions are measured several times in each iteration of the algorithm, especially
during the application of insertion operators and our constructive heuristics,
the cost function needs to be reasonably fast. Our objective is to minimize
the divergence from the defined time windows and the total distance driven
by the vehicles.

Sometimes, it may be beneficial for the driver to arrive at the customer
location before the start of the time window so that he has a lower delay for
the upcoming customers. However, computing the ideal times of arrival in
the plan when allowing visiting the nodes before the earliest time set by the
customer would increase the complexity of the whole algorithm. To overcome
this issue, we do not allow to start a service on a node before its time window
starts. As a result, when the driver arrives too soon at the location, he must
wait until the time window starts to begin the service14.

A solution x consists of a set of routes E = {e0, · · · , ek}, where k is the
number of drivers. The cost function of a single route e ∈ E is computed as
cost(e) = βtdelay

e + γtdistance
e , where tdelay

e is the total delay of the route e in
seconds, tdistance

e is the total travelled distance of the route e in meters, and β
and γ are the global parameters of the algorithm (see section 3.1.7).

The total delay is computed as:

tdelay
e =

|e|−1∑
i=1

max{teta
i + tservice

i + ttravel
i,i+1 − wei+1, 0}

where teta
i is the expected time of arrival to node i, tservice

i is the service time
at node i, ttravel

i,j is the travel time from node i to node j, and finally wei is the
end of the time window of node i.

14In practice, the driver may serve the customer sooner and use that extra time to com-
pensate later delays, for example due to traffic.

32



3.1. The Algorithm for the PDPTW

The total distance is computed as:

tdistance
e =

|e|−1∑
i=1

mi,i+1

where mi,j is the travel distance between nodes i and j.
The cost of the solution x is calculated as the sum of the costs of all routes,

i.e., cost(x) = ∑
k∈K cost(ek), where K is the set of drivers and ek is the route

of driver k.
Figure 3.1 shows an example of traversing a single route of five nodes to

compute its cost. The driver arrives at nodes 1, 3, and 5 too soon and begins
the service at the start of the time window. At node 4, the driver arrives late
and the difference between the end of the time window and the arrival time is
the delay that is added to the total cost.

1

2

3

4

5

End

Start

Service T ime Wait ing T ime DelayTime Window

Time

R
eq

ue
st

s

Figure 3.1: An example of a single plan traversal for computing the cost
function.

3.1.2 Removal and Insertion Operators

The removal operators are used in each iteration to destroy the current solution
by removing a number of requests from the solution and putting these requests

33



3. Methodology

into a set R. The insertion operators then repair the solution by taking the
requests from the set R and inserting them back into the solution, such that
the solution is feasible.

The removal and insertion operators were adopted from the existing liter-
ature, such as Ropke and Pisinger (2006) [67], Pisinger and Ropke (2007) [94],
and Demir et al. (2012) [95] and adapted to our specific problem definition.
The operators used in our version of HALNS are:

Random Request Removal (R1) This operator randomly selects n requests
from the current solution x and removes the corresponding pickup and
drop-off nodes forming a new solution x′.

Path Removal (R2) Similar to the removal operator presented by Demir et
al. (2012) [95], our path removal operator randomly selects one request
r from the current solution x and removes n nodes in the plan between
the pickup node pr and drop-off node dr of request r. We also remove all
corresponding nodes such that we always remove the whole request. In
other words, when only a pickup node is to be removed, we also remove
the drop-off node of the same request even if it is outside of the pr and
dr path.

Related Removal (R3) This operator, based on Ropke and Pisinger (2006)
[67], randomly selects one request r in the current solution and removes
n most related requests. The function which defines how much two
requests i and j are related is defined as follows: R(i, j) = mpi,pj +
mdi,dj

+ ρ(|teta
pi
− teta

pj
|+ |teta

di
− teta

dj
|), where pi and pj (or di and dj) are

the pickup nodes (or the drop-off nodes) of requests i and j, respectively;
mi,j is the distance between two nodes; teta

i is the expected time of arrival
to the node i in the current plan; and ρ ∈ [0, 1] is a control parameter.
The operator then sorts the unplanned requests based on the function
R and removes n requests in this order forming a new solution x′.

Time-oriented Removal (R4) This operator is a special case of the related
removal operator R3, where the requests that are serviced in similar
times are removed. In this case, the relatedness function is defined only
by the arrival times in the current solution: R(i, j) = |teta

pi
−teta

pj
|+ |teta

di
−

teta
dj
|.

Distance-oriented Removal (R5) This one is another special case of the
related removal operator R3, where the requests in the same area as
the randomly chosen request are removed. The relatedness function is
defined by the distance between the pickup and drop-off nodes of the
requests i and j: R(i, j) = mpi,pj +mdi,dj

.

Best Position Intra-route Insertion (I1) This operator takes the unplanned
requests from the set R in a random order. For each request r ∈ R, the

34



3.1. The Algorithm for the PDPTW

pickup and drop-off nodes are inserted in the first route where the inser-
tion does not violate the feasibility. The pickup and drop-off nodes are
inserted in the best possible location within the route, i.e., the cost of
the insertion is the lowest possible. This is determined by checking all
possible combinations of insert locations while respecting the precedence
constraints. This process is repeated until R is not empty.

Best Position Inter-route Insertion (I2) This operator is similar to the
intra-route operator I1, but in this case, the request r ∈ R is inserted in
the best position across all routes, rather than a single route.

Sorting Time Insertion (I3) This operator is analogous to the intra-route
operator I1, but the requests are first sorted by the start of their drop-off
time window in an ascending order.

Greedy Insertion (I4) This operator was proposed by Ropke and Pisinger
(2006) [67] and is an extension of our inter-route operator (I2). Here, the
requests are selected based on the insertion cost, i.e., the request that is
the cheapest to insert into the solution is inserted first, and in the best
possible location. This operator adds another order of time complexity,
compared to the I2 operator, because to determine the insertion cost
of request r, we need to check all possible combinations of pickup and
drop-off node insertions in the solution. A known problem with this
heuristic is that it postpones the insertion of expensive requests to the
end, where there is not much space available.

In the case of removal operators, the number of requests to remove n is
selected from an uniform random distribution U(umink, umaxk), where k is the
number of all requests in the instance.

3.1.3 Local Search Procedure

To enhance the quality of solutions, three local search operators are used.
These are inspired by the existing literature and adapted to our problem:

Intra-route relocate operator (L1) This operator, adopted from Savels-
bergh (1992) [96], operates on a random route in the solution. For each
request r in the route it removes the pickup rp and drop-off nodes rd
and reinserts them back into the route in the cheapest fashion, similarly
to the insertion intra-route operator I1.

Inter-route relocate operator (L2) This operator is a special case of the
previous operator L1, where the best insertion position is searched for in
all plans in the solution, rather than the same route. Thus, this operator
relocates requests between routes.

35



3. Methodology

2-opt operator (L3) This operator, inspired by Lin (1965) [97], takes a ran-
dom route from the solution and two positions p and q within the plan.
It then reverses the order of the nodes between the points p and q. Be-
cause this operation might break the precedence constraints, a fixing
procedure is then applied. This procedure iterates through the edited
plan and swaps all pairs of pickup and drop-off nodes that are not in the
correct order. All combinations of positions p and q are tested and the
resulting solution with the lowest cost is returned.

The local search operators can only improve the current solution and can-
not generate a new solution with higher cost. During the search, these op-
erators are selected based on the first improvement strategy, which works as
follows: The current operator is applied repeatedly until no further improve-
ments are possible, then the next operator is applied. When all local search
operators were used and the solution is no longer improved, the procedure
ends and the current solution is returned.

In addition, the specific local search operators are selected based on their
past performance using a roulette wheel mechanism, which is further described
in section 3.1.4.

3.1.4 Adaptive Weight Adjustment

In section 3.1.2 we defined five removal operators and four insertion operators.
Additionally, section 3.1.3 defined three local search operators. Similarly to
other ALNS algorithms from the literature, we propose to use all these op-
erators during the search. The reason behind this is that while one specific
operator might be well suited to one type of instance, others might perform
better on different types of instances. As a consequence, alternating between
these operators results in a more robust algorithm. The adaptive weight ad-
justment procedure defined in this section is inspired by Ropke and Pisinger
(2006) [67].

The operators are selected according to their past performance during the
search. Each operator in its respective category is assigned a weight and the
specific operator is selected in each iteration using a roulette wheel mechanism.
The whole search is divided into segments, which is the number of iterations
of the algorithm; here we define the segment as 100 iterations (nseq = 100).

The probability of choosing an operator d in iteration t is given by: P td =
P t−1
d (1 − rp) + rpπd/ωd, where rp is the roulette wheel parameter, πd is the

score of the operator d in the last segment, and ωd is the counter of how many
times the operator d was used in the last segment. The initial probabilities
P 0
d are constants defined in section 3.1.7.

The scores of the operators are set to 0 at the beginning of each segment.
They are increased in each iteration depending on their performance: we
increase the score by π1 if the operator finds a new best solution xbest, by

36



3.1. The Algorithm for the PDPTW

π2 if the operator improves the current solution x, and finally by π3 if the
operator finds a feasible solution that is worse than the current solution x
but is accepted via the acceptance criterion. At the end of the segment, the
weights are adjusted based on the values defined above and the counts ω are
set to 0;

The reasoning behind π1 is clear: when an operator finds a new best
solution xbest, it has done well. Similarly, if the operator finds a solution that
is accepted by the acceptance criterion, it is also successful as it advances
the search. We distinguish between the situations which correspond to the
parameters π2 and π3 as we prefer the operators that improve the solution,
however, we are also interested in diversifying the search.

3.1.5 Initial Solution

The constructive heuristic that provides the initial solution at the beginning
of the algorithm, and later for the crossover operation is an insertion heuristic
adopted from Lu and Dessouky (2006) [46]. The algorithm 4 shows how the
insertion heuristic works in our context. The functionality of this algorithm is
analogous to the inter-route insertion operator I2, defined in section 3.1.2, but
in this case, all requests are to be inserted into an initially empty solution.

input : The set of unplanned requests R and the list of drivers K
1 shuffle the requests in R;
2 for request r ∈ R do
3 for driver k ∈ K do
4 let ek be a current route of driver k;
5 let l be the length of route ek for i ∈ 1, . . . , l + 1 do
6 for j ∈ i+ 1, . . . , l + 2 do
7 e′k ← insert pick-up(r) before position i in plan ek;
8 ei,jk ← insert drop-off(r) before position j in plan e′k;

9 k∗, i∗, j∗ ← argmin
k,i,j

cost(ei,jk )− cost(ek) subj. to ei,jk is feasible;

10 request r is inserted into the route of driver k∗, pickup node
before position i∗ and drop-off node before position j∗.;

Algorithm 4: Insertion heuristics for creating an initial solution for our
HALNS algorithm

3.1.6 Diversification Mechanism

To explore the unknown regions of the solution space and thus provide the
algorithm with more diversification capability, the crossover mechanism de-
scribed above is applied during the search. The operation combines the current

37



3. Methodology

best solution xbest with an initial solution xinit constructed by the construc-
tive heuristic (see section 3.1.5). The intention of this operation is to find
approximately the same quality solution that is placed in a different region
of the solution space. Three different crossover operators that are well-known
from the literature on genetic algorithms are used. The visualisation of the
usage of these operators on an example route is shown in figure 3.2.

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

1p 1d 2p 2d 3p 3d 4p 4d 5p 5d 

xbest

xinit

xbest

xinit

C1

C2

C3

ji

i

Figure 3.2: A visualisation of the three crossover operators.

One-point Crossover (C1) This operator is inspired by Prins (2004) [79],
who applied this operator to instances of classical VRP. In our usecase of
PDP, the operator works as follows: first, a random position i is selected,
such that 0 < i < maxk∈K |ek|, where K is the set of drivers, ek is the
route of driver k, and |ek| is its length. Second, all requests whose node
appears before position i in each route of xbest are copied to the new
solution in their respective order. Finally, the rest of the requests are
copied from xinit in the respective order, skipping the requests that are
already in the new solution.

Two-point Crossover (C2) A similar operator was proposed by Goldberg
and Holland (1988) [98]. In our case, two positions i and j are selected,

38



3.2. Methods for Evaluation

such that 0 < i < j < maxk∈K |ek|. The operator copies all requests,
whose nodes appear between positions i and j in routes from xbest to the
new solution while maintaining their order. Finally, the same operation
is performed on nodes that appear before position i and after position j
in routes from xinit, but in reverse order.

Linear Two-point Crossover (C3) This operator, proposed by Sevaux and
Dauzère-Pérès (2003) [99] is similar to the two-point crossover operator
C2. The only difference is that after copying the nodes from xbest, the
rest of the nodes are copied from xinit in their respective order. After
that, to ensure the precedence constraints are satisfied, a repair proce-
dure which adds the nodes of the incomplete requests is performed.

3.1.7 Parameter Selection

The parameters mentioned throughout the algorithm description are summa-
rized and explained in this section. Generally, the parameters are selected
based on the proposals and experimental results from the literature, such
as Ropke and Pisinger (2006) [67], Demir et al. (2012) [95], Leung et al.
(2013) [100], and Masmoudi et al. (2016, 2020) [43, 66]. Three parameters
were not adopted from the literature and are based on our experiments. These
are the maximum number of iterations imax = 100 000, in which we observed
that the solution is no longer improving on our evaluation dataset; and the
coefficients of total delay β = 1 and total distance γ = 0.5 in the cost function,
which seem to be a good balance between prioritizing the user satisfaction and
minimizing the operational cost. Table 3.1 summarizes the parameters used
in our algorithm.

3.2 Methods for Evaluation

To evaluate the performance of the HALNS algorithm described in the pre-
vious section, three important components were needed. Firstly, we created
datasets with different instances of the problem, i.e., with different number of
requests and drivers. Secondly, we constructed a baseline algorithm for com-
parison with the newly developed HALNS algorithm. Lastly, we defined the
metrics to be used for evaluating both the baseline and the HALNS algorithms.

3.2.1 Evaluation Datasets

Evaluation datasets contain different sizes of the problem instances. To create
these datasets, we used real data from a selected company, which delivers food
from seven restaurants in Prague. The data that could match the order details
to specific customers were removed to keep anonymity.

39



3. Methodology

Not. Description Value Source

imax Maximum number of iterations 100 000

β Coefficient of delay in cost calculation 1

γ Coefficient of distance in cost calculation 0.5

nseq Num. of iterations to update the weights 100 [43]

umin Min. % of requests removed at each iteration 0.175 [94]

umax Max. % of requests removed at each iteration 0.35 [94]

rp Roulette wheel parameter 0.7 [43]

P 0
r Initial probability of removal operators 0.1 [43]

P 0
i Initial probability of insertion operators 0.125 [43]

P 0
ls Initial probability of local search operators 0.125 [43]

π1 Score of a new best solution 15 [66]

π2 Score of a new current solution 10 [66]

π3 Score of a feasible non-improving solution 5 [66]

τmax Initial temperature 25 [100]

α Cooling rate 0.99975 [67,95]

Table 3.1: The parameters used in our HALNS algorithm

For each request, the collected data relevant to our purposes are the fol-
lowing:

1. Pickup Location

2. Drop-off Location

3. Pickup Time Window

4. Drop-off Time Window

5. Order Creation Time

6. Number of Packages

To create the different instances, we took all requests from this company
since the 1st of January 2020 until the 5th of May 2020, totalling 7 100 requests.
Next, all time windows of these requests were shifted to a single day. Figure 3.3

40



3.2. Methods for Evaluation

shows a distribution of the coordinates on the map of Prague. The distribution
of the starts of the time windows at drop-off locations of these requests is
shown in figure 3.4. It is clear that the vast majority of all deliveries should
be delivered between 11 AM and 1 PM.

14.3 14.4 14.5 14.6
Longitude

49.975

50.000

50.025

50.050

50.075

50.100

50.125

50.150

50.175

La
tit

ud
e

Figure 3.3: A distribution of drop-off locations in the full request dataset of
7 100 requests.

The individual instances were created by selecting random subsets of dif-
ferent sizes from this set. We used five different instance sizes and prepared 10
instances of each size. For each of these instance sizes, the number of drivers
was determined. Based on the distribution of time windows in figure 3.4, most
requests arrive in a period of 2.5 hours. Additionally, based on our experi-
ments with our current ORTools planner, a single driver is able to finish 3.5
requests per hour. Thus, the number of drivers is computed as round( |r|

2.5 3.5),
where |r| is the number of requests in the instance.

To sum up, 10 different random instances of each of the following sets were
prepared. They are shown in table 3.2.

41



3. Methodology

10 11 12 13 14 15 16 17 18 19

Hour of the day

0

500

1000

1500

2000

2500

Nu
m

be
r o

f r
eq

ue
st

s

Figure 3.4: A distribution of the earliest times of drop-off set by the customers
throughout the day in the full request dataset of 7 100 requests.

Requests Drivers

1 20 2

2 50 6

3 100 11

4 200 22

5 500 56

Table 3.2: 5 evaluation datasets, each containing 10 different instances

3.2.2 Baseline Algorithms

As a baseline, three methods were used. The first is a simple insertion heuris-
tic, as was used for constructing an initial solution for the HALNS algorithm
and is described in section 3.1.5. The second is the ORTools planner that is al-
ready part of the GoDeliver system and is described in section 2.2.2. The last
one combines the insertion heuristic with the ORTools planner, first creating
the solution using the insertion heuristic, and using that solution as an initial
solution for the ORTools planner for improvement. This approach overcomes
the problem that ORTools is unable to find an acceptable solution on larger

42



3.2. Methods for Evaluation

instances. These three methods are visualised in figure 3.5.

OR Tools 
Planner

Insertion 
Heuristic 
Planner

OR Tools 
Planner

Insertion 
Heuristic 
Planner

Instance

Instance

Instance

Solution

Solution

Solution

Figure 3.5: Three baseline algorithms for evaluating the performance of our
HALNS algorithm.

3.2.3 Metrics

For problem instances of more than a few tens of requests, it is nearly impos-
sible to find the optimal solution. In addition, the cost of the solution alone
does not reveal the full information about the solution quality. For these rea-
sons, we defined the metrics that help us evaluate the solutions produced by
different algorithms. These metrics indicate how good the produced solutions
are with respect to our objectives.

These metrics include:

Delay of Drop-off (M1) This is probably the most important metric that
best describes the customer satisfaction constraint. It indicates the time
difference between the drop-off time window and the estimated time of
arrival of the drivers. We measure the average and the maximum delay
per request.

Total Distance Travelled (M2) This is the second most important metric
which shows the optimality of the routes with respect to the cost of
delivery. It is defined as the sum of the total distance travelled by all
drivers.

43



3. Methodology

Total Time Spent (M3) This metric is an addition to the previous metric
M2. It indicates the total time spent on the route across all couriers.
We assume a high correlation between this metric and the M2 metric,
since the distance is directly proportional to the driving time. However,
this metric also includes the waiting times at the nodes and thus might
produce different results.

Delivery En Route Time (M4) This metric shows the duration of a single
delivery between its pickup and drop-off estimated times. In other words,
it shows how long is the delivery (in our case the food) in the vehicle
before it is delivered. This is especially important for perishables, such
as ready-to-eat meals.

Delivery Load (M5) This metric indicates how well the algorithm is able
to stack the requests within the route, i.e., it is the average number of
orders picked up by the driver at one location.

3.3 Implementation

This section describes the implementation details of the planning algorithm
and its integration into GoDeliver pipeline. It also briefly illustrates the de-
veloped evaluation environment that is also part of this thesis.

3.3.1 Planning Algorithm

The main HALNS algorithm described in section 3.1 as well as the insertion
heuristics baseline mentioned in section 3.2.2 were implemented in Go lan-
guage15 version 1.15.8. We opted for Go primarily for these reasons: it is a
statically typed, compiled language and thus much more performant compared
to, for example, Python; it has great support for concurrency which allows to
speed up the algorithm even more; it is easy to create compiled binaries for
all operating systems which makes the continuous integration pipeline easy;
and finally there is a large community around Go which contributes to our
confidence in its further development and support.

The most critical entity in the whole algorithm is the solution structure
that is constantly being destroyed by removal operators, repaired by insertion
operators, improved by the local search procedure, and combined with a new
solution by applying the crossover mechanism. The solution instance keeps
the list of n plans, where n is always the required number of drivers, and a
set of unplanned requests, i.e., the requests that are not part of the solution,
for example, after the removal operator is applied. Each plan contains a list
of actions. Actions represent the graph nodes of a specific type. An action
can be of three types: start, pickup, and drop-off. Each request contains

15https://golang.org/

44

https://golang.org/


3.3. Implementation

one or two actions, depending on whether the request is already picked up
before the planning procedure starts (see section 2.1.1). In the static variant,
a single request contains exactly two actions: pickup and drop-off. For better
understanding, figure 3.6 reveals the relationships between these entities.

Solution

Plan UnplannedRequests

1..n

1

1

1

Action

0..*

1

Request

0..*

1

1

1..2

Figure 3.6: A simplified entity relationship diagram of the data model used
in Go implementation.

Because Go works with the concept of interfaces rather than inheritance,
so typical for other languages, the architecture of the algorithm is notably
shaped by this concept. We define four interfaces for the operators used: re-
moval, insertion, local search, and crossover. Each of these interfaces defines
a different signature for the Apply method, that applies the operator and
produces a new solution. For example, the removal operators accept two pa-
rameters: the current solution and the number of requests to remove, whereas
the crossover operators need to be provided with two solutions as parameters.
These interfaces are shown in figure 3.7.

<<interface>>
removalOperator

+ Apply(*Solution, int) : *Solution

<<interface>>
insertionOperator

+ Apply(*Solution) : *Solution

<<interface>>
localSearchOperator

+ Apply(*Solution) : *Solution

<<interface>>
crossoverOperator

+ Apply(*Solution, *Solution) : *Solution

Figure 3.7: Four operator interfaces used in the Go implementation of the
HALNS algorithm.

45



3. Methodology

3.3.2 Integration into GoDeliver Pipeline

Extensive work was done on the integration part. The previous state of the
GoDeliver Planner Service is described in section 2.2.2. The service was tightly
coupled with the ORTools solver and was not extendable nor easily testable.
Therefore, we abstracted the individual planning algorithms (baseline and
HALNS) into their respective classes, which extend the AbstractPlanner
class. This class is now responsible for serializing the instance, calling the
respective planner, and deserializing the solution. Since the HALNS and in-
sertion heuristics planners are implemented in Go, the GoDeliver Planner
Service loads an already compiled binary as a C library, which can be called
from Python. The class diagram of AbstractPlanner class and its subclasses
is shown in figure 3.8.

ORToolsPlanner InsertionHeuristicsPlanner

AbstractPlanner

+ solve(VRPInstance):VRPSolution

HALNSPlanner

<<external>>
ORTools

<<external>>
GoLang 

Implementation

<<external>>
GoLang 

Implementation

<<use>> <<use>> <<use>>

Figure 3.8: The Abstract Planner class, and three specific planner implemen-
tations in GoDeliver Planner.

In addition to this abstraction, we introduced a way to easily benchmark
these planning algorithms and visualize the produced solutions and metrics.
For that, we use plotly16 framework for visualizing the plans and streamlit17

framework that displays the metrics of all methods in a simple and under-
standable way. Figure 3.9 displays the improved and extensible architecture
of GoDeliver Planner Service.

16https://plotly.com/
17https://streamlit.io/

46

https://plotly.com/
https://streamlit.io/


3.3. Implementation

Company

Google App Engine

Logistics 
Planner

Realtime 
Dashboard

API 
Integrations

Firestore Database

Google App Engine

Google Compute 
Engine

Google App Engine

Replan 
Runner

Drivers

Driver 
Application

Trigger
replan

Get data

Write plans

solution
for the VRP

VRP
instance

distance and
duration matrix

Open Street 
Map Data

OR Tools 
Planner

Insertion 
Heuristic 
Planner

HALNS
Planner

Development 
and 

Evaluation

GoDeliver 
Logic Service

Planning Engine 
(OSRM)

Figure 3.9: The new architecture of GoDeliver Planner (highlighted by the
yellow rectange).

47





Chapter 4
Results

This chapter shows the experimental results of our proposed HALNS algorithm
in comparison with the defined baseline methods. It also analyzes the adaptive
weight adjustment and details the parameter selection process.

4.1 Experimental results

Here, we compare our proposed HALNS algorithm described in section 3.1
with the three baseline methods detailed in section 3.2.2. The experiments
were conducted on the benchmark datasets, which are illustrated in section
3.2.1. Each dataset consists of 10 instances with the same number of requests
and drivers. Each experiment on each instance was executed 10 times and
the results were averaged. All experiments were conducted on a machine
with a 2,6 GHz 6-Core Intel Core i7 processor and 16 GB of RAM, and the
maximum running time was restricted to 10 minutes. The ORTools baseline
method is unable to reasonably solve instances containing more than 20 re-
quests. Therefore, the ORTools method was evaluated only on the smallest
instance containing 20 requests.

For comparison of the algorithms, we use the metrics M1 to M5 introduced
in section 3.2.3 rather than the objective value. The reason is that these
metrics provide much deeper insight into the quality of the produced solutions.
Table 4.1 contains the experimental results in the context of the M1 metric,
which indicates the average (and maximum) delay per single request at its
drop-off location. Similarly, Table 4.2 highlights the M2 metric results, which
indicates the average (and maximum) distance driven by each driver. In both
tables, the minimum values are in bold to feature the best algorithm per
each dataset. All five metrics M1 to M5 are then visualized in figure 4.2.
For each metric, we show the average value per each dataset and method
along with the standard deviation. In the mentioned tables and figures, IH
stands for insertion heuristics baseline method, and IH & ORTools refers to the

49



4. Results

combination of insertion heuristics and ORTools, which is one of the baseline
methods described in section 3.2.2.

The results in tables 4.1 and 4.2 show that the HALNS algorithm is sig-
nificantly better regarding the delay and distance compared to the baseline
methods on bigger instances. In contrast, on the smallest instance of 20 re-
quests, the HALNS algorithm produces slightly worse results than insertion
heuristics in combination with ORTools in terms of both metrics, however, it
has slightly lower standard deviation.

From the table 4.1 we may observe much worse delays in the smallest
instances, especially the maximum values. The reason behind it is the small
number of drivers (two drivers used in each instance), which results in much
more travelling as each driver needs to service larger areas. As a consequence,
larger travel times produce larger delays.

The ORTools planner alone produces the worst solution in terms of delays
on the 20 request dataset and has the largest deviation. In terms of total
distance, ORTools outperforms HALNS and insertion heuristics.

The maximum values of the delay and distance shown in tables 4.1 and
4.2 suggest that HALNS is able to equally distribute the delays and distance
between the requests and drivers, respectively.

There is a strong correlation between the results of metrics M2 and M3
- the distance driven and the time spent by the drivers. In terms of the M3
metric, HALNS is comparable to the IH & ORTools method. The metric M4,
which denotes the average duration of travel per each request, is comparable
for all methods.

The results of the metric M5, which denotes the delivery load per each
pickup, show a higher ability of the HALNS algorithm to stack the orders to
increase the efficiency compared to the baseline methods on all datasets.

HALNS ORTools IH IH & ORTools

20 r. 12.82 (63.48) 23.49 (98.60) 22.89 (103.31) 9.32 (66.82)

50 r. 0.10 (3.49) 1.84 (23.10) 0.67 (5.98)

100 r. 0.04 (1.68) 1.18 (22.98) 0.17 (8.23)

200 r. 0.02 (1.62) 0.16 (7.50) 0.09 (7.08)

500 r. 0.07 (6.62) 0.14 (11.03) 0.14 (9.76)

Table 4.1: Results of metric M1 - Average (and maximum) delay in minutes
at drop-off locations, evaluated on our 5 datasets, averaged from 10 runs on
each instance.

We have also observed how the objective value changes with the running
time. Figure 4.1 shows the objective value for each instance in the 50 request

50



4.1. Experimental results

HALNS ORTools IH IH & ORTools

20 r. 82.05 (88.57) 77.99 (92.96) 91.34 (97.24) 76.88 (81.83)

50 r. 46.40 (62.30) 56.90 (70.33) 51.14 (65.26)

100 r. 41.30 (58.53) 51.90 (72.16) 44.56 (63.69)

200 r. 35.99 (56.87) 43.38 (65.78) 40.80 (63.08)

500 r. 27.98 (53.57) 32.81 (62.77) 32.58 (62.18)

Table 4.2: Results of metric M2 - Average (and maximum) total distance in
kilometers travelled by all drivers, evaluated on our 5 datasets, averaged from
10 runs on each instance.

and 100 request datasets, which we kept running for 600 and 1 000 seconds
respectively. The blue line shows the average value of the objective function
of all instances. We can see that the objective value had the biggest decline
within the first 10 seconds of the running time. After that, the value was
changing much slower. It is important to note that the objective value at
iteration 0 is the initial solution generated by the constructive heuristic.

0 100 200 300 400 500 600
Time (seconds)

0.2

0.4

0.6

0.8

1.0

Ob
je

ct
iv

e 
Va

lu
e

1e6 50 request dataset
Individual Instances
Average
10 seconds of runtime

0 200 400 600 800 1000
Time (seconds)

0.25

0.50

0.75

1.00

1.25

Ob
je

ct
iv

e 
Va

lu
e

1e6 100 request dataset
Individual Instances
Average
10 seconds of runtime

Figure 4.1: The evolution of the objective value through running time on 50
and 100 request datasets.

The objective is to minimize the total delay and the total distance by using

51



4. Results

20 r. 50 r. 100 r. 200 r. 500 r.
Dataset

0

10

20

30

40

50

60

Av
er

ag
e 

de
la

y 
pe

r r
eq

ue
st

 (m
in

)

12
.8

2

0.
10

0.
04

0.
02

0.
07

22
.8

9

1.
84

1.
18

0.
16

0.
14

9.
32

0.
67

0.
17

0.
09

0.
14

23
.4

9

Delay of Drop-off (M1)
HALNS
Insertion Heuristics
IH & ORTools
ORTools

20 r. 50 r. 100 r. 200 r. 500 r.
Dataset

0

20

40

60

80

100

120

Av
er

ag
e 

dr
iv

en
 d

ist
an

ce
 p

er
 d

riv
er

 (k
m

)

82
.0

5

46
.4

0

41
.3

0

35
.9

9

27
.9

8

91
.3

4

56
.9

0

51
.9

0

43
.3

8

32
.8

1

76
.8

8

51
.1

4

44
.5

6

40
.8

0

32
.5

8

77
.9

9

Total Distance Travelled (M2)
HALNS
Insertion Heuristics
IH & ORTools
ORTools

20 r. 50 r. 100 r. 200 r. 500 r.
Dataset

0

50

100

150

200

250

300

350

Av
er

ag
e 

pl
an

 d
ur

at
io

n 
pe

r d
riv

er
 (m

in
)

23
1.

27

18
0.

14

17
2.

21

15
4.

79

13
7.

32

25
4.

67

19
0.

28

18
4.

91

16
2.

14

14
2.

89

22
6.

26

18
1.

75

17
1.

99

16
0.

04

14
0.

57

24
2.

09

Total Time Spent (M3)
HALNS
Insertion Heuristics
IH & ORTools
ORTools

20 r. 50 r. 100 r. 200 r. 500 r.
Dataset

0

10

20

30

40

50

Av
er

ag
e 

en
 ro

ut
e 

tim
e 

(m
in

)

31
.2

1

27
.4

4

27
.2

7

27
.9

9

28
.7

1

31
.6

1

26
.2

5

26
.7

4

27
.6

0

29
.6

3

24
.9

0

27
.4

6

27
.1

3

28
.0

2

29
.6

7

24
.7

8

Delivery En Route Time (M4)
HALNS
Insertion Heuristics
IH & ORTools
ORTools

20 r. 50 r. 100 r. 200 r. 500 r.
Dataset

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Av
er

ag
e 

de
liv

er
y 

lo
ad

 p
er

 p
ick

up

1.
59 1.

86 2.
08

2.
35

2.
74

1.
44 1.

68 1.
86 2.

12

2.
60

1.
55 1.

85 2.
02 2.

25

2.
64

1.
55

Delivery Load (M5)
HALNS
Insertion Heuristics
IH & ORTools
ORTools

Figure 4.2: Results of metrics M1 - M5 evaluated on our 5 datasets, averaged
from 10 runs of each instance in each dataset.

52



4.1. Experimental results

the formula cost(e) = βtdelay
e + γtdistance

e for each route e with the parameters
β = 1 and γ = 0.5, as detailed in sections 3.1.1 and 3.1.7. Therefore, we
observe the tradeoff between the total delay accumulated on all requests in
the instance and the total distance travelled by all drivers. The figure 4.3
shows this tradeoff for each solution in our datasets. The figure 4.3 confirms
that the HALNS algorithm produces the overall best solutions without any
outliers, compared to the baseline methods.

0 500 1000 1500 2000
Total Delay (min)

140

160

180

200

220

240

To
ta

l D
ist

an
ce

 (k
m

)

20 request dataset

HALNS
ORTools
Insertion Heuristics
IH & ORTools

0 50 100 150 200 250 300 350
Total Delay (min)

250

275

300

325

350

375

400

To
ta

l D
ist

an
ce

 (k
m

)

50 request dataset

HALNS
Insertion Heuristics
IH & ORTools

0 50 100 150 200
Total Delay (min)

400

450

500

550

600

650

To
ta

l D
ist

an
ce

 (k
m

)

100 request dataset
HALNS
Insertion Heuristics
IH & ORTools

0 20 40 60 80 100 120 140
Total Delay (min)

750

800

850

900

950

1000

To
ta

l D
ist

an
ce

 (k
m

)

200 request dataset

HALNS
Insertion Heuristics

0 25 50 75 100 125 150 175 200
Total Delay (min)

1500

1600

1700

1800

1900

2000

To
ta

l D
ist

an
ce

 (k
m

)

500 request dataset
HALNS
Insertion Heuristics
IH & ORTools

Figure 4.3: The tradeoff between the total delay and the total distance for
each solution produced by the individual algorithms.

53



4. Results

4.2 Experiments on Adaptive Weight Adjustment

This section provides some results regarding the adaptive weight adjustment
procedure and details the selection process of parameters π1, π2 and π3 that are
used to update the weights of the operators based on their past performance,
as thoroughly described in section 3.1.4.

To select the parameters π1, π2 and π3 we conducted an experiment with
different combinations of these parameters and compared the results. This
experiment was run on a single dataset of 50 requests. It was executed 10
times and the results were averaged. The possible combinations are based on
the study by Masmoudi et al. (2016) [43]. The produced solutions are in this
case compared only by the objective function as only the HALNS algorithm
is employed in this experiment. The results are shown in table 4.3.

Based on these results, the combination of parameters that works the best
for this dataset is (π1, π2, π3) = (15, 5, 10), which was also used by Masmoudi
et al. (2020) [66] and which follows the proposal of Ropke et al. (2006) [67]
that π1 > π3 > π2 to reinforce the diversification and thus escaping the local
minima. All experiments were conducted with this set of parameters.

The performance of four insertion operators and five removal operators
were studied. Figures 4.4 and 4.5 show how the weights of the operators
are updated in the first 3000 iterations of the search on a single, randomly
selected instance. Similarly, tables C.1 and C.2 in the appendix C show the
percentage of time each insertion and removal operators were used within 5
minutes of runtime on all instances of the 100 request dataset, averaged from
10 runs of each. The results in table C.2 show that the removal operators have
comparable frequencies of usage. The reason behind that may be the fact that
in most cases two removal operators are applied. In contrast, the insertion
operators are much more imbalanced. The operators I2 and I4 are used much
more often than the other two, probably because these two operators are
greedier in terms of finding the best insertion point across all routes rather
than in a single route.

We also studied the complexity of the insertion and removal operators
using the Go profiler. Table C.3 shows the CPU time used by each operator
within 5 minutes of runtime. As expected, the greedy insertion operator I4
takes the most CPU time.

54



4.2. Experiments on Adaptive Weight Adjustment

0 500 1000 1500 2000 2500 3000
Iterations

0

1

2

3

4

Op
er

at
or

 w
ei

gh
t

Best Position Intra-route Insertion (I1)
Best Position Inter-route Insertion (I2)
Sorting Time Insertion (I3)
Greedy Insertion (I4)

Figure 4.4: Update of the weights of our four insertion operators during the
first 3 000 iterations on a single instance.

0 500 1000 1500 2000 2500 3000
Iterations

0

1

2

3

4

Op
er

at
or

 w
ei

gh
t

Random Request Removal (R1)
Path Removal (R2)
Related Removal (R3)
Time-oriented Removal (R4)
Distance-oriented Removal (R5)

Figure 4.5: Update of the weights of our five removal operators during the
first 3 000 iterations on a single instance.

55



Instance Parameters (π1, π2, π3)

(15, 5, 10) (1, 10, 5) (1, 5, 10) (1, 5, 5) (10, 1, 5) (10, 5, 1) (15, 10, 5) (1, 1, 1) (5, 1, 5)

1 195077 197960 195018 197029 194462 195633 195356 198399 195077

2 214410 227528 219882 219768 219882 214410 221973 243910 220435

3 197892 196654 196654 197996 196016 196654 196075 197996 197892

4 157259 158263 157259 157259 158263 160289 158886 157259 157259

5 270077 269402 274330 274741 274127 267039 265941 269740 269870

6 164381 161878 163186 163802 164166 161878 163798 163798 163927

7 278977 278977 287459 293440 280470 293440 293440 277466 287602

8 210639 231503 213496 205610 235613 206667 236569 210842 214837

9 172892 173621 170469 172849 172849 173098 173621 173897 173144

10 170499 173052 169367 169296 169870 171091 170308 170745 169296

Average 203210.3 206883.8 204712.0 205179.0 206571.8 204019.9 207596.7 206405.2 204933.9

Table 4.3: Quality of produced solutions on instances of 50 requests with different combinations of parameters π1, π2 and π3.
Values in bold represent the minima.



Conclusion

With the evergrowing popularity of delivery services, customers do no longer
settle for a mediocre experience. This is especially true in the food delivery
market, where customers demand the fastest possible delivery time for the
lowest possible cost. To be able to compete in this market, companies depend
upon efficient planning and order dispatching, which has to be done in real
time given the dynamic environment of gastronomy.

This study contributes to the area of vehicle routing problems. We have
devised a method to solve the PDPTW in the food delivery settings that uses
several novel approaches adopted from the recent studies. The usefulness of
our work lies in the integration of the planning algorithm to the GoDeliver
system and its successful deployment to the real customers.

The proposed algorithm is adopted mainly from the research of DARP by
Masmoudi et al. (2020) [66] and adapted to the PDPTW by introducing dif-
ferent constraints and objectives, as well as altered operators and custom pa-
rameters. The algorithm was implemented in Go language and benchmarked
against insertion heuristics and Google’s ORTools.

We have obtained encouraging results demonstrating that the proposed al-
gorithm is able to solve large-scale instances emanating from real-life usecases.
The results also emphasize the importance of the combination of intensifica-
tion and diversification mechanisms within the search.

An important issue to address in future is regarding the performance of the
algorithm. Additional performance optimization and parallelization is needed
to achieve faster and more predictable execution times, which would make
it easier to scale the algorithm to even larger instances. Moreover, further
parameter tuning could help to find overall better solutions.

57





Bibliography

[1] Jan 29; 2021. US ecommerce grows 44.0% in 2020. Available from:
https://www.digitalcommerce360.com/article/us-ecommerce-
sales/

[2] UNCTAD. COVID-19 has changed online shopping forever, survey
shows | UNCTAD. Available from: https://unctad.org/news/covid-
19-has-changed-online-shopping-forever-survey-shows

[3] Statista. Revenue in the Online Food Delivery market worldwide
2024. Available from: https://www.statista.com/forecasts/891078/
online-food-delivery-revenue-by-segment-worldwide

[4] Durant, D.; Dipasha, S. Online food delivery portals during COVID-
19 times: an analysis of changing consumer behavior and expectations.
International Journal of Innovation Science, 01 2021.

[5] Toth, P. Vehicle routing: Problems, Methods, and Applications.
Philadelphia, Pennsylvania: Society for Industrial and Applied Math-
ematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104,
2015, ISBN 978-1-611973-58-7.

[6] Golden, B. The vehicle routing problem : latest advances and new chal-
lenges. New York London: Springer, 2008, ISBN 978-0-387-77777-1.

[7] Ropke, S. Heuristic and exact algorithms for vehicle routing problems.
Dissertation thesis, University of Copenhagen, 01 2005.

[8] Falkner, J. K.; Schmidt-Thieme, L. Learning to Solve Vehicle Rout-
ing Problems with Time Windows through Joint Attention. 2020,
2006.09100.

[9] Dantzig, G. B.; Ramser, J. H. The Truck Dispatching Problem. Manage.
Sci., volume 6, no. 1, Oct. 1959: p. 80–91, ISSN 0025-1909, doi:10.1287/
mnsc.6.1.80. Available from: https://doi.org/10.1287/mnsc.6.1.80

59

https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://unctad.org/news/covid-19-has-changed-online-shopping-forever-survey-shows
https://unctad.org/news/covid-19-has-changed-online-shopping-forever-survey-shows
https://www.statista.com/forecasts/891078/online-food-delivery-revenue-by-segment-worldwide
https://www.statista.com/forecasts/891078/online-food-delivery-revenue-by-segment-worldwide
2006.09100
https://doi.org/10.1287/mnsc.6.1.80


Bibliography

[10] Mor, A.; Speranza, M. G. Vehicle routing problems over time: a sur-
vey. 4OR, volume 18, no. 2, Jun 2020: pp. 129–149, ISSN 1614-2411,
doi:10.1007/s10288-020-00433-2. Available from: https://doi.org/
10.1007/s10288-020-00433-2

[11] Pillac, V.; Gendreau, M.; et al. A review of dynamic vehicle rout-
ing problems. European Journal of Operational Research, volume 225,
no. 1, 2013: pp. 1–11, ISSN 0377-2217, doi:https://doi.org/10.1016/
j.ejor.2012.08.015. Available from: https://www.sciencedirect.com/
science/article/pii/S0377221712006388

[12] Cordeau, J.-F.; Laporte, G.; et al. Chapter 6 Vehicle Routing. In
Transportation, Handbooks in Operations Research and Management
Science, volume 14, edited by C. Barnhart; G. Laporte, Elsevier,
2007, pp. 367–428, doi:https://doi.org/10.1016/S0927-0507(06)14006-2.
Available from: https://www.sciencedirect.com/science/article/
pii/S0927050706140062

[13] Cordeau, J.-F.; Laporte, G.; et al. Chapter 7 Transportation on
Demand. In Transportation, Handbooks in Operations Research and
Management Science, volume 14, edited by C. Barnhart; G. La-
porte, Elsevier, 2007, pp. 429–466, doi:https://doi.org/10.1016/S0927-
0507(06)14007-4. Available from: https://www.sciencedirect.com/
science/article/pii/S0927050706140074

[14] Bono, G. Deep multi-agent reinforcement learning for dynamic and
stochastic vehicle routing problems. Theses, Université de Lyon,
Oct. 2020. Available from: https://tel.archives-ouvertes.fr/tel-
03098433

[15] Ibrahim, A.; Abdulaziz, R.; et al. CAPACITATED VEHI-
CLE ROUTING PROBLEM. International Journal of Research -
GRANTHAALAYAH, volume 7, 04 2019: pp. 310 – 327, doi:10.5281/
zenodo.2636820.

[16] El-Sherbeny, N. A. Vehicle routing with time windows: An overview
of exact, heuristic and metaheuristic methods. Journal of King
Saud University - Science, volume 22, no. 3, 2010: pp. 123–131,
ISSN 1018-3647, doi:https://doi.org/10.1016/j.jksus.2010.03.002. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S1018364710000297

[17] Golden, B. The vehicle routing problem : latest advances and new chal-
lenges. New York London: Springer, 2008, ISBN 978-0-387-77777-1.

[18] Çağrı Koç; Bektaş, T.; et al. Thirty years of heterogeneous vehi-
cle routing. European Journal of Operational Research, volume 249,

60

https://doi.org/10.1007/s10288-020-00433-2
https://doi.org/10.1007/s10288-020-00433-2
https://www.sciencedirect.com/science/article/pii/S0377221712006388
https://www.sciencedirect.com/science/article/pii/S0377221712006388
https://www.sciencedirect.com/science/article/pii/S0927050706140062
https://www.sciencedirect.com/science/article/pii/S0927050706140062
https://www.sciencedirect.com/science/article/pii/S0927050706140074
https://www.sciencedirect.com/science/article/pii/S0927050706140074
https://tel.archives-ouvertes.fr/tel-03098433
https://tel.archives-ouvertes.fr/tel-03098433
https://www.sciencedirect.com/science/article/pii/S1018364710000297
https://www.sciencedirect.com/science/article/pii/S1018364710000297


Bibliography

no. 1, 2016: pp. 1–21, ISSN 0377-2217, doi:https://doi.org/10.1016/
j.ejor.2015.07.020. Available from: https://www.sciencedirect.com/
science/article/pii/S0377221715006530

[19] Molina, J. C.; Salmeron, J. L.; et al. The heterogeneous vehicle routing
problem with time windows and a limited number of resources. Engineer-
ing Applications of Artificial Intelligence, volume 94, 2020: p. 103745,
ISSN 0952-1976, doi:https://doi.org/10.1016/j.engappai.2020.103745.
Available from: https://www.sciencedirect.com/science/article/
pii/S095219762030155X

[20] Asghari, M.; Mirzapour Al-e-hashem, S. M. J. Green vehicle routing
problem: A state-of-the-art review. International Journal of Produc-
tion Economics, volume 231, 2021: p. 107899, ISSN 0925-5273, doi:
https://doi.org/10.1016/j.ijpe.2020.107899. Available from: https://
www.sciencedirect.com/science/article/pii/S0925527320302607

[21] Panicker, V. V.; Mohammed, I. O. Solving a Heterogeneous Fleet Vehicle
Routing Model - A practical approach. In 2018 ieee international con-
ference on system, computation, automation and networking (icscan),
2018, pp. 1–5, doi:10.1109/ICSCAN.2018.8541149.

[22] Syauqi, M. H.; Zagloel, T. Y. M. Optimization of Heterogeneous
Vehicle Routing Problem Using Genetic Algorithm in Courier Ser-
vice. In Proceedings of the 3rd Asia Pacific Conference on Research
in Industrial and Systems Engineering 2020, APCORISE 2020, New
York, NY, USA: Association for Computing Machinery, 2020, ISBN
9781450376006, p. 48–52, doi:10.1145/3400934.3400945. Available from:
https://doi.org/10.1145/3400934.3400945

[23] Ho, S. C.; Szeto, W.; et al. A survey of dial-a-ride problems: Litera-
ture review and recent developments. Transportation Research Part B:
Methodological, volume 111, 2018: pp. 395–421, ISSN 0191-2615, doi:
https://doi.org/10.1016/j.trb.2018.02.001. Available from: https://
www.sciencedirect.com/science/article/pii/S0191261517304484

[24] Belhaiza, S. A Hybrid Adaptive Large Neighborhood Heuristic for a
Real-Life Dial-a-Ride Problem. Algorithms, volume 12, no. 2, 2019,
ISSN 1999-4893, doi:10.3390/a12020039. Available from: https://
www.mdpi.com/1999-4893/12/2/39

[25] LO, J.; MORSEMAN, S. The Perfect uberPOOL: A Case Study on
Trade-Offs. Ethnographic Praxis in Industry Conference Proceedings,
volume 2018, 10 2018: pp. 195–223, doi:10.1111/1559-8918.2018.01204.

[26] Gendreau, M.; Laporte, G.; et al. Stochastic vehicle routing. European
Journal of Operational Research, volume 88, no. 1, 1996: pp. 3–12, ISSN

61

https://www.sciencedirect.com/science/article/pii/S0377221715006530
https://www.sciencedirect.com/science/article/pii/S0377221715006530
https://www.sciencedirect.com/science/article/pii/S095219762030155X
https://www.sciencedirect.com/science/article/pii/S095219762030155X
https://www.sciencedirect.com/science/article/pii/S0925527320302607
https://www.sciencedirect.com/science/article/pii/S0925527320302607
https://doi.org/10.1145/3400934.3400945
https://www.sciencedirect.com/science/article/pii/S0191261517304484
https://www.sciencedirect.com/science/article/pii/S0191261517304484
https://www.mdpi.com/1999-4893/12/2/39
https://www.mdpi.com/1999-4893/12/2/39


Bibliography

0377-2217, doi:https://doi.org/10.1016/0377-2217(95)00050-X. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
037722179500050X

[27] Novoa, C.; Storer, R. An approximate dynamic programming approach
for the vehicle routing problem with stochastic demands. European
Journal of Operational Research, volume 196, no. 2, July 2009: pp.
509–515. Available from: https://ideas.repec.org/a/eee/ejores/
v196y2009i2p509-515.html

[28] Jaillet, P.; Wagner, M. R. Generalized Online Routing: New Compet-
itive Ratios, Resource Augmentation, and Asymptotic Analyses. Op-
erations Research, volume 56, no. 3, 2008: pp. 745–757, doi:10.1287/
opre.1070.0450, https://doi.org/10.1287/opre.1070.0450. Available
from: https://doi.org/10.1287/opre.1070.0450

[29] Peng, B.; Wang, J.; et al. A Deep Reinforcement Learning Algorithm
Using Dynamic Attention Model for Vehicle Routing Problems. 2020,
2002.03282.

[30] Lenstra, J. K.; Kan, A. H. G. R. Complexity of vehicle rout-
ing and scheduling problems. Networks, volume 11, no. 2, 1981:
pp. 221–227, doi:https://doi.org/10.1002/net.3230110211, https://
onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211. Avail-
able from: https://onlinelibrary.wiley.com/doi/abs/10.1002/
net.3230110211

[31] Savelsbergh, M. W. P. Local search in routing problems with time
windows. Annals of Operations Research, volume 4, no. 1, Dec 1985:
pp. 285–305, ISSN 1572-9338, doi:10.1007/BF02022044. Available from:
https://doi.org/10.1007/BF02022044

[32] Vazirani, V. Approximation algorithms. Berlin New York: Springer,
2001, ISBN 978-3-540-65367-7.

[33] Goyal, S. A survey on travelling salesman problem. In Midwest Instruc-
tion and Computing Symposium, 2010, pp. 1–9.

[34] Little, J. D. C.; Murty, K. G.; et al. An Algorithm for the Traveling
Salesman Problem. Operations Research, volume 11, no. 6, December
1963: pp. 972–989, doi:10.1287/opre.11.6.972. Available from: https:
//ideas.repec.org/a/inm/oropre/v11y1963i6p972-989.html

[35] Fukasawa, R.; Longo, H.; et al. Robust Branch-and-Cut-and-Price
for the Capacitated Vehicle Routing Problem. Mathematical Pro-
gramming, volume 106, no. 3, May 2006: pp. 491–511, ISSN
1436-4646, doi:10.1007/s10107-005-0644-x. Available from: https://
doi.org/10.1007/s10107-005-0644-x

62

https://www.sciencedirect.com/science/article/pii/037722179500050X
https://www.sciencedirect.com/science/article/pii/037722179500050X
https://ideas.repec.org/a/eee/ejores/v196y2009i2p509-515.html
https://ideas.repec.org/a/eee/ejores/v196y2009i2p509-515.html
https://doi.org/10.1287/opre.1070.0450
https://doi.org/10.1287/opre.1070.0450
2002.03282
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110211
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230110211
https://doi.org/10.1007/BF02022044
https://ideas.repec.org/a/inm/oropre/v11y1963i6p972-989.html
https://ideas.repec.org/a/inm/oropre/v11y1963i6p972-989.html
https://doi.org/10.1007/s10107-005-0644-x
https://doi.org/10.1007/s10107-005-0644-x


Bibliography

[36] Desrochers, M.; Desrosiers, J.; et al. A New Optimization Algorithm
for the Vehicle Routing Problem with Time Windows. Operations Re-
search, volume 40, no. 2, 1992: pp. 342–354, ISSN 0030364X, 15265463.
Available from: http://www.jstor.org/stable/171457

[37] KOHL, N.; DESROSIERS, J.; et al. 2-Path Cuts for the Vehicle Routing
Problem with Time Windows. Transportation Science, volume 33, no. 1,
1999: pp. 101–116, ISSN 00411655, 15265447. Available from: http:
//www.jstor.org/stable/25768848

[38] Lu, Q.; Dessouky, M. An Exact Algorithm for the Multiple Vehicle
Pickup and Delivery Problem. Transportation Science, volume 38, no. 4,
2004: pp. 503–514, ISSN 00411655, 15265447. Available from: http:
//www.jstor.org/stable/25769222

[39] Røpke, S.; Cordeau, J.-F.; et al. Models and a Branch-and-Cut Al-
gorithm for Pickup and Delivery Problems with Time Windows. Net-
works, volume 49, no. 4, 2007: pp. 258 – 272, ISSN 0028-3045, doi:
10.1002/net.20177.

[40] Ropke, S.; Cordeau, J.-F. Branch and Cut and Price for the
Pickup and Delivery Problem with Time Windows. Transporta-
tion Science, volume 43, no. 3, 2009: pp. 267–286. Available
from: https://EconPapers.repec.org/RePEc:inm:ortrsc:v:43:y:
2009:i:3:p:267-286

[41] Marković, N.; Nair, R.; et al. Optimizing dial-a-ride services in Mary-
land: Benefits of computerized routing and scheduling. Transportation
Research Part C: Emerging Technologies, volume 55, 2015: pp. 156–
165, ISSN 0968-090X, doi:https://doi.org/10.1016/j.trc.2015.01.011, en-
gineering and Applied Sciences Optimization (OPT-i) - Professor
Matthew G. Karlaftis Memorial Issue. Available from: https://
www.sciencedirect.com/science/article/pii/S0968090X15000133

[42] Wong, K.; Han, A.; et al. On dynamic demand respon-
sive transport services with degree of dynamism. Transportmet-
rica A: Transport Science, volume 10, no. 1, 2014: pp.
55–73, doi:10.1080/18128602.2012.694491, https://doi.org/10.1080/
18128602.2012.694491. Available from: https://doi.org/10.1080/
18128602.2012.694491

[43] Masmoudi, M. A.; Hosny, M.; et al. Three effective metaheuristics
to solve the multi-depot multi-trip heterogeneous dial-a-ride problem.
Transportation Research Part E: Logistics and Transportation Review,
volume 96, 2016: pp. 60–80, ISSN 1366-5545, doi:[https://doi.org/
10.1016/j.tre.2016.10.002](https://doi.org/10.1016/j.tre.2016.10.002).

63

http://www.jstor.org/stable/171457
http://www.jstor.org/stable/25768848
http://www.jstor.org/stable/25768848
http://www.jstor.org/stable/25769222
http://www.jstor.org/stable/25769222
https://EconPapers.repec.org/RePEc:inm:ortrsc:v:43:y:2009:i:3:p:267-286
https://EconPapers.repec.org/RePEc:inm:ortrsc:v:43:y:2009:i:3:p:267-286
https://www.sciencedirect.com/science/article/pii/S0968090X15000133
https://www.sciencedirect.com/science/article/pii/S0968090X15000133
https://doi.org/10.1080/18128602.2012.694491
https://doi.org/10.1080/18128602.2012.694491
https://doi.org/10.1080/18128602.2012.694491
https://doi.org/10.1080/18128602.2012.694491


Bibliography

Available from: [https://www.sciencedirect.com/science/article/
pii/S1366554516304070](https://www.sciencedirect.com/
science/article/pii/S1366554516304070)

[44] Braekers, K.; Caris, A.; et al. Exact and meta-heuristic approach for a
general heterogeneous dial-a-ride problem with multiple depots. Trans-
portation Research Part B: Methodological, volume 67, 2014: pp. 166–
186, ISSN 0191-2615, doi:https://doi.org/10.1016/j.trb.2014.05.007.
Available from: https://www.sciencedirect.com/science/article/
pii/S0191261514000800

[45] Jaw, J.-J.; Odoni, A. R.; et al. A heuristic algorithm for the
multi-vehicle advance request dial-a-ride problem with time windows.
Transportation Research Part B: Methodological, volume 20, no. 3,
1986: pp. 243–257, ISSN 0191-2615, doi:https://doi.org/10.1016/0191-
2615(86)90020-2. Available from: https://www.sciencedirect.com/
science/article/pii/0191261586900202

[46] Lu, Q.; Dessouky, M. A new insertion-based construction heuristic for
solving the pickup and delivery problem with time windows. European
Journal of Operational Research, volume 175, 12 2006: pp. 672–687,
doi:10.1016/j.ejor.2005.05.012.

[47] Fiedler, D.; Čertický, M.; et al. The Impact of Ridesharing in Mobility-
on-Demand Systems: Simulation Case Study in Prague. In 2018 21st
International Conference on Intelligent Transportation Systems (ITSC),
2018, pp. 1173–1178, doi:10.1109/ITSC.2018.8569451.

[48] Nanry, W. P.; Wesley Barnes, J. Solving the pickup and delivery prob-
lem with time windows using reactive tabu search. Transportation Re-
search Part B: Methodological, volume 34, no. 2, February 2000: pp.
107–121. Available from: https://ideas.repec.org/a/eee/transb/
v34y2000i2p107-121.html

[49] Cordeau, J.-F.; Laporte, G. A tabu search heuristic for the static multi-
vehicle dial-a-ride problem. Transportation Research Part B: Method-
ological, volume 37, no. 6, 2003: pp. 579–594, ISSN 0191-2615, doi:https:
//doi.org/10.1016/S0191-2615(02)00045-0. Available from: https://
www.sciencedirect.com/science/article/pii/S0191261502000450

[50] Zachariadis, E. E.; Kiranoudis, C. T. A Strategy for Reducing the Com-
putational Complexity of Local Search-Based Methods for the Vehicle
Routing Problem. Comput. Oper. Res., volume 37, no. 12, Dec. 2010:
p. 2089–2105, ISSN 0305-0548, doi:10.1016/j.cor.2010.02.009. Available
from: https://doi.org/10.1016/j.cor.2010.02.009

64

[https://www.sciencedirect.com/science/article/pii/S1366554516304070](https://www.sciencedirect.com/science/article/pii/S1366554516304070)
[https://www.sciencedirect.com/science/article/pii/S1366554516304070](https://www.sciencedirect.com/science/article/pii/S1366554516304070)
[https://www.sciencedirect.com/science/article/pii/S1366554516304070](https://www.sciencedirect.com/science/article/pii/S1366554516304070)
https://www.sciencedirect.com/science/article/pii/S0191261514000800
https://www.sciencedirect.com/science/article/pii/S0191261514000800
https://www.sciencedirect.com/science/article/pii/0191261586900202
https://www.sciencedirect.com/science/article/pii/0191261586900202
https://ideas.repec.org/a/eee/transb/v34y2000i2p107-121.html
https://ideas.repec.org/a/eee/transb/v34y2000i2p107-121.html
https://www.sciencedirect.com/science/article/pii/S0191261502000450
https://www.sciencedirect.com/science/article/pii/S0191261502000450
https://doi.org/10.1016/j.cor.2010.02.009


Bibliography

[51] Osman, I. H. Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem. Annals of Operations Research,
volume 41, no. 4, Dec 1993: pp. 421–451, ISSN 1572-9338, doi:10.1007/
BF02023004. Available from: https://doi.org/10.1007/BF02023004

[52] Gendreau, M.; Laporte, G.; et al. Metaheuristics for the Capacitated
VRP. Discrete Mathematics and Applications - The Vehicle Routing
Problem, 01 2001, doi:10.1137/1.9780898718515.ch6.

[53] Schneider, M.; Stenger, A.; et al. The Electric Vehicle-Routing Problem
with Time Windows and Recharging Stations. Transportation Science,
volume 48, 03 2014: pp. 500–520, doi:10.1287/trsc.2013.0490.

[54] Mladenović, N.; Hansen, P. Variable neighborhood search. Computers
& Operations Research, volume 24, no. 11, 1997: pp. 1097–1100, ISSN
0305-0548, doi:https://doi.org/10.1016/S0305-0548(97)00031-2. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0305054897000312

[55] Li, H.; Lim, A. A Metaheuristic for the Pickup and Delivery Prob-
lem with Time Windows. International Journal on Artificial Intel-
ligence Tools, volume 12, no. 02, 2003: pp. 173–186, doi:10.1142/
S0218213003001186, https://doi.org/10.1142/S0218213003001186.
Available from: https://doi.org/10.1142/S0218213003001186

[56] Kytöjoki, J.; Nuortio, T.; et al. An efficient variable neighborhood
search heuristic for very large scale vehicle routing problems. Comput-
ers & Operations Research, volume 34, no. 9, 2007: pp. 2743–2757,
ISSN 0305-0548, doi:https://doi.org/10.1016/j.cor.2005.10.010. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0305054805003394

[57] Parragh, S.; Doerner, K.; et al. A heuristic two-phase solution method
for the multi-objective dial-a-ride problem. Networks, volume 54, 12
2009: pp. 227–242, doi:10.1002/net.20335.

[58] Schilde, M.; Doerner, K.; et al. Metaheuristics for the dynamic stochas-
tic dial-a-ride problem with expected return transports. Computers
& Operations Research, volume 38, no. 12, 2011: pp. 1719–1730,
ISSN 0305-0548, doi:https://doi.org/10.1016/j.cor.2011.02.006. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0305054811000475

[59] Schilde, M.; Doerner, K.; et al. Integrating stochastic time-dependent
travel speed in solution methods for the dynamic dial-a-ride problem.
European Journal of Operational Research, volume 238, no. 1, 2014: pp.
18–30, ISSN 0377-2217, doi:https://doi.org/10.1016/j.ejor.2014.03.005.

65

https://doi.org/10.1007/BF02023004
https://www.sciencedirect.com/science/article/pii/S0305054897000312
https://www.sciencedirect.com/science/article/pii/S0305054897000312
https://doi.org/10.1142/S0218213003001186
https://doi.org/10.1142/S0218213003001186
https://www.sciencedirect.com/science/article/pii/S0305054805003394
https://www.sciencedirect.com/science/article/pii/S0305054805003394
https://www.sciencedirect.com/science/article/pii/S0305054811000475
https://www.sciencedirect.com/science/article/pii/S0305054811000475


Bibliography

Available from: https://www.sciencedirect.com/science/article/
pii/S0377221714002197

[60] Muelas, S.; LaTorre, A.; et al. A variable neighborhood search algo-
rithm for the optimization of a dial-a-ride problem in a large city. Ex-
pert Systems with Applications, volume 40, no. 14, 2013: pp. 5516–
5531, ISSN 0957-4174, doi:https://doi.org/10.1016/j.eswa.2013.04.015.
Available from: https://www.sciencedirect.com/science/article/
pii/S0957417413002522

[61] Muelas, S.; LaTorre, A.; et al. A distributed VNS algorithm for opti-
mizing dial-a-ride problems in large-scale scenarios. Transportation Re-
search Part C: Emerging Technologies, volume 54, 2015: pp. 110–130,
ISSN 0968-090X, doi:https://doi.org/10.1016/j.trc.2015.02.024. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0968090X15000790

[62] Detti, P.; Papalini, F.; et al. A multi-depot dial-a-ride problem
with heterogeneous vehicles and compatibility constraints in health-
care. Omega, volume 70, 2017: pp. 1–14, ISSN 0305-0483, doi:
https://doi.org/10.1016/j.omega.2016.08.008. Available from: https://
www.sciencedirect.com/science/article/pii/S0305048316305266

[63] Gschwind, T.; Drexl, M. Adaptive Large Neighborhood Search with
a Constant-Time Feasibility Test for the Dial-a-Ride Problem. Work-
ing Papers 1624, Gutenberg School of Management and Economics,
Johannes Gutenberg-Universität Mainz, Dec. 2016. Available from:
https://ideas.repec.org/p/jgu/wpaper/1624.html

[64] Shaw, P. A new local search algorithm providing high quality solutions
to vehicle routing problems. APES Group, Dept of Computer Science,
University of Strathclyde, Glasgow, Scotland, UK, 1997.

[65] Azi, N.; Gendreau, M.; et al. An adaptive large neighborhood search
for a vehicle routing problem with multiple routes. Computers & Oper-
ations Research, volume 41, 2014: pp. 167–173, ISSN 0305-0548, doi:
https://doi.org/10.1016/j.cor.2013.08.016. Available from: https://
www.sciencedirect.com/science/article/pii/S0305054813002220

[66] Masmoudi, M. A.; Hosny, M.; et al. Hybrid adaptive large neigh-
borhood search algorithm for the mixed fleet heterogeneous dial-
a-ride problem. Journal of Heuristics, volume 26, no. 1, February
2020: pp. 83–118, doi:10.1007/s10732-019-09424-. Available from:
https://ideas.repec.org/a/spr/joheur/v26y2020i1d10.1007_
s10732-019-09424-x.html

66

https://www.sciencedirect.com/science/article/pii/S0377221714002197
https://www.sciencedirect.com/science/article/pii/S0377221714002197
https://www.sciencedirect.com/science/article/pii/S0957417413002522
https://www.sciencedirect.com/science/article/pii/S0957417413002522
https://www.sciencedirect.com/science/article/pii/S0968090X15000790
https://www.sciencedirect.com/science/article/pii/S0968090X15000790
https://www.sciencedirect.com/science/article/pii/S0305048316305266
https://www.sciencedirect.com/science/article/pii/S0305048316305266
https://ideas.repec.org/p/jgu/wpaper/1624.html
https://www.sciencedirect.com/science/article/pii/S0305054813002220
https://www.sciencedirect.com/science/article/pii/S0305054813002220
https://ideas.repec.org/a/spr/joheur/v26y2020i1d10.1007_s10732-019-09424-x.html
https://ideas.repec.org/a/spr/joheur/v26y2020i1d10.1007_s10732-019-09424-x.html


Bibliography

[67] Ropke, S.; Pisinger, D. An Adaptive Large Neighborhood Search Heuris-
tic for the Pickup and Delivery Problem with Time Windows. Trans-
portation Science, volume 40, 11 2006: pp. 455–472, doi:10.1287/
trsc.1050.0135.

[68] Braekers, K.; Kovacs, A. A. A multi-period dial-a-ride problem with
driver consistency. Transportation Research Part B: Methodological,
volume 94, 2016: pp. 355–377, ISSN 0191-2615, doi:[https://doi.org/
10.1016/j.trb.2016.09.010](https://doi.org/10.1016/j.trb.2016.09.010).
Available from: [https://www.sciencedirect.com/science/article/
pii/S0191261515301570](https://www.sciencedirect.com/
science/article/pii/S0191261515301570)

[69] Belhaiza, S. A data driven hybrid heuristic for the dial-a-ride problem
with time windows. In 2017 IEEE Symposium Series on Computational
Intelligence (SSCI), 2017, pp. 1–8, doi:10.1109/SSCI.2017.8285366.

[70] Drexl, M. On the One-to-One Pickup-and-Delivery Problem with Time
Windows and Trailers. Working Papers 1816, Gutenberg School of
Management and Economics, Johannes Gutenberg-Universität Mainz,
Oct. 2018. Available from: https://ideas.repec.org/p/jgu/wpaper/
1816.html

[71] Belhaiza, S. A Hybrid Adaptive Large Neighborhood Heuristic
for a Real-Life Dial-a-Ride Problem. Algorithms, volume 12,
no. 2, 2019, ISSN 1999-4893, doi:10.3390/a12020039. Avail-
able from: [https://www.mdpi.com/1999-4893/12/2/39](https:
//www.mdpi.com/1999-4893/12/2/39)

[72] Wang, Y.; Lei, L.; et al. Towards delivery-as-a-service: Ef-
fective neighborhood search strategies for integrated deliv-
ery optimization of E-commerce and static O2O parcels.
Transportation Research Part B: Methodological, volume 139,
2020: pp. 38–63, ISSN 0191-2615, doi:[https://doi.org/10.1016/
j.trb.2020.06.003](https://doi.org/10.1016/j.trb.2020.06.003). Available
from: [https://www.sciencedirect.com/science/article/pii/
S0191261520303428](https://www.sciencedirect.com/science/
article/pii/S0191261520303428)

[73] Cauchi, M.; Scerri, K. An Improved Variable Neighbourhood Search Al-
gorithm for Selective Dial-a-Ride Problems. In 2020 IEEE 20th Mediter-
ranean Electrotechnical Conference ( MELECON), 2020, pp. 652–657,
doi:10.1109/MELECON48756.2020.9140695.

[74] Malheiros, I.; Ramalho, R.; et al. A hybrid algorithm for the multi-depot
heterogeneous dial-a-ride problem. Computers & Operations Research,

67

[https://www.sciencedirect.com/science/article/pii/S0191261515301570](https://www.sciencedirect.com/science/article/pii/S0191261515301570)
[https://www.sciencedirect.com/science/article/pii/S0191261515301570](https://www.sciencedirect.com/science/article/pii/S0191261515301570)
[https://www.sciencedirect.com/science/article/pii/S0191261515301570](https://www.sciencedirect.com/science/article/pii/S0191261515301570)
https://ideas.repec.org/p/jgu/wpaper/1816.html
https://ideas.repec.org/p/jgu/wpaper/1816.html
[https://www.mdpi.com/1999-4893/12/2/39](https://www.mdpi.com/1999-4893/12/2/39)
[https://www.mdpi.com/1999-4893/12/2/39](https://www.mdpi.com/1999-4893/12/2/39)
[https://www.sciencedirect.com/science/article/pii/S0191261520303428](https://www.sciencedirect.com/science/article/pii/S0191261520303428)
[https://www.sciencedirect.com/science/article/pii/S0191261520303428](https://www.sciencedirect.com/science/article/pii/S0191261520303428)
[https://www.sciencedirect.com/science/article/pii/S0191261520303428](https://www.sciencedirect.com/science/article/pii/S0191261520303428)


Bibliography

volume 129, 2021: p. 105196, ISSN 0305-0548, doi:[https://doi.org/
10.1016/j.cor.2020.105196](https://doi.org/10.1016/j.cor.2020.105196).
Available from: [https://www.sciencedirect.com/science/article/
pii/S0305054820303130](https://www.sciencedirect.com/
science/article/pii/S0305054820303130)

[75] Masmoudi, M. A.; Braekers, K.; et al. A hybrid Genetic Algorithm for
the Heterogeneous Dial-A-Ride Problem. Computers & Operations Re-
search, volume 81, 2017: pp. 1–13, ISSN 0305-0548, doi:[https://doi.org/
10.1016/j.cor.2016.12.008](https://doi.org/10.1016/j.cor.2016.12.008).
Available from: [https://www.sciencedirect.com/science/article/
pii/S0305054816303070](https://www.sciencedirect.com/
science/article/pii/S0305054816303070)

[76] Solnon, C. Ant colony optimization and constraint programming. London
Hoboken, NJ: ISTE John Wiley, 2010, ISBN 978-1-848-21130-8.

[77] Reimann, M.; Doerner, K.; et al. D-ants: Savings Based Ants Di-
vide and Conquer the Vehicle Routing Problem. Computers & Oper-
ations Research, volume 31, 04 2004: pp. 563–591, doi:10.1016/S0305-
0548(03)00014-5.

[78] Schyns, M. An ant colony system for responsive dynamic vehi-
cle routing. European Journal of Operational Research, volume 245,
no. 3, 2015: pp. 704–718, ISSN 0377-2217, doi:https://doi.org/10.1016/
j.ejor.2015.04.009. Available from: https://www.sciencedirect.com/
science/article/pii/S0377221715002817

[79] Prins, C. Prins, C.: A simple and effective evolutionary algorithm for
the vehicle routing problem. Computer & Operations Research 31(12),
1985-2002. Computers & Operations Research, volume 31, 10 2004: pp.
1985–2002, doi:10.1016/S0305-0548(03)00158-8.

[80] Parragh, S. N.; Schmid, V. Hybrid column generation and large neigh-
borhood search for the dial-a-ride problem. Computers & Operations
Research, volume 40, no. 1, 2013: pp. 490–497, ISSN 0305-0548, doi:
https://doi.org/10.1016/j.cor.2012.08.004. Available from: https://
www.sciencedirect.com/science/article/pii/S0305054812001694

[81] Hottung, A.; Tierney, K. Neural Large Neighborhood Search for the
Capacitated Vehicle Routing Problem. CoRR, volume abs/1911.09539,
2019, 1911.09539. Available from: http://arxiv.org/abs/1911.09539

[82] Potvin, J.-Y.; Dubé, D.; et al. A hybrid approach to vehicle routing using
neural networks and genetic algorithms. Applied Intelligence, volume 6,
no. 3, Jul 1996: pp. 241–252, ISSN 1573-7497, doi:10.1007/BF00126629.
Available from: https://doi.org/10.1007/BF00126629

68

[https://www.sciencedirect.com/science/article/pii/S0305054820303130](https://www.sciencedirect.com/science/article/pii/S0305054820303130)
[https://www.sciencedirect.com/science/article/pii/S0305054820303130](https://www.sciencedirect.com/science/article/pii/S0305054820303130)
[https://www.sciencedirect.com/science/article/pii/S0305054820303130](https://www.sciencedirect.com/science/article/pii/S0305054820303130)
[https://www.sciencedirect.com/science/article/pii/S0305054816303070](https://www.sciencedirect.com/science/article/pii/S0305054816303070)
[https://www.sciencedirect.com/science/article/pii/S0305054816303070](https://www.sciencedirect.com/science/article/pii/S0305054816303070)
[https://www.sciencedirect.com/science/article/pii/S0305054816303070](https://www.sciencedirect.com/science/article/pii/S0305054816303070)
https://www.sciencedirect.com/science/article/pii/S0377221715002817
https://www.sciencedirect.com/science/article/pii/S0377221715002817
https://www.sciencedirect.com/science/article/pii/S0305054812001694
https://www.sciencedirect.com/science/article/pii/S0305054812001694
1911.09539
http://arxiv.org/abs/1911.09539
https://doi.org/10.1007/BF00126629


Bibliography

[83] Potvin, J.-Y.; Rousseau, J.-M. A parallel route building algorithm for
the vehicle routing and scheduling problem with time windows. European
Journal of Operational Research, volume 66, no. 3, 1993: pp. 331 –
340, ISSN 0377-2217, doi:https://doi.org/10.1016/0377-2217(93)90221-
8. Available from: http://www.sciencedirect.com/science/article/
pii/0377221793902218

[84] Kool, W.; van Hoof, H.; et al. Attention, Learn to Solve Routing Prob-
lems! 2019, 1803.08475.

[85] Nazari, M.; Oroojlooy, A.; et al. Deep Reinforcement Learning for Solv-
ing the Vehicle Routing Problem. CoRR, volume abs/1802.04240, 2018,
1802.04240. Available from: http://arxiv.org/abs/1802.04240

[86] Li, J.; Xin, L.; et al. Heterogeneous Attentions for Solving Pickup
and Delivery Problem via Deep Reinforcement Learning. IEEE Trans-
actions on Intelligent Transportation Systems, 2021: pp. 1–10, doi:
10.1109/TITS.2021.3056120.

[87] Google. Vehicle Routing Problem — OR-Tools — Google Develop-
ers. Available from: https://developers.google.com/optimization/
routing/vrp

[88] Karkula, M.; Duda, J.; et al. Comparison of capabilities of recent open-
source tools for solving capacitated vehicle routing problems with time
windows. In Proceedings CLC 2019, 2020, ISBN 978-80-87294-96-3, pp.
72–77.

[89] VROOM-Project. VROOM-Project/vroom. Available from: https://
github.com/VROOM-Project/vroom

[90] Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Win-
dows, Part I: Route Construction and Local Search Algorithms. Trans-
portation Science, volume 39, 02 2005: pp. 104–118, doi:10.1287/
trsc.1030.0056.

[91] Schröder, S. java toolkit for rich VRPs and TSPs. Available from:
https://jsprit.github.io/

[92] Li, C.; Mirosa, M.; et al. Review of Online Food Delivery Platforms
and their Impacts on Sustainability. Sustainability, volume 12, no. 14,
2020, ISSN 2071-1050, doi:10.3390/su12145528. Available from: https:
//www.mdpi.com/2071-1050/12/14/5528

[93] Cordeau, J.-F. A Branch-and-Cut Algorithm for the Dial-a-Ride Prob-
lem. Operations Research, volume 54, no. 3, 2006: pp. 573–586, ISSN
0030364X, 15265463.

69

http://www.sciencedirect.com/science/article/pii/0377221793902218
http://www.sciencedirect.com/science/article/pii/0377221793902218
1803.08475
1802.04240
http://arxiv.org/abs/1802.04240
https://developers.google.com/optimization/routing/vrp
https://developers.google.com/optimization/routing/vrp
https://github.com/VROOM-Project/vroom
https://github.com/VROOM-Project/vroom
https://jsprit.github.io/
https://www.mdpi.com/2071-1050/12/14/5528
https://www.mdpi.com/2071-1050/12/14/5528


Bibliography

[94] Pisinger, D.; Ropke, S. A general heuristic for vehicle routing problems.
Computers & Operations Research, volume 34, no. 8, 2007: pp. 2403–
2435, ISSN 0305-0548, doi:https://doi.org/10.1016/j.cor.2005.09.012.
Available from: https://www.sciencedirect.com/science/article/
pii/S0305054805003023

[95] Demir, E.; Bektaş, T.; et al. An adaptive large neighborhood
search heuristic for the Pollution-Routing Problem. European Jour-
nal of Operational Research, volume 223, no. 2, 2012: pp. 346–359,
ISSN 0377-2217, doi:https://doi.org/10.1016/j.ejor.2012.06.044. Avail-
able from: https://www.sciencedirect.com/science/article/pii/
S0377221712004997

[96] Savelsbergh, M. W. P. The Vehicle Routing Problem with Time Win-
dows: Minimizing Route Duration. ORSA Journal on Computing, vol-
ume 4, no. 2, 1992: pp. 146–154, doi:10.1287/ijoc.4.2.146, https:
//doi.org/10.1287/ijoc.4.2.146. Available from: https://doi.org/
10.1287/ijoc.4.2.146

[97] Lin, S. Computer solutions of the traveling salesman problem. The Bell
System Technical Journal, volume 44, no. 10, 1965: pp. 2245–2269, doi:
10.1002/j.1538-7305.1965.tb04146.x.

[98] Goldberg, D. E.; Holland, J. H. Genetic Algorithms and Machine
Learning. Machine Learning, volume 3, no. 2, Oct 1988: pp. 95–99,
ISSN 1573-0565, doi:10.1023/A:1022602019183. Available from: https:
//doi.org/10.1023/A:1022602019183

[99] Sevaux, M.; Dauzère-Pérès, S. Genetic algorithms to minimize the
weighted number of late jobs on a single machine. European Jour-
nal of Operational Research, volume 151, 12 2003: pp. 296–306, doi:
10.1016/S0377-2217(02)00827-5.

[100] Leung, S. C.; Zhang, Z.; et al. A meta-heuristic algorithm for het-
erogeneous fleet vehicle routing problems with two-dimensional load-
ing constraints. European Journal of Operational Research, volume
225, no. 2, 2013: pp. 199–210, doi:10.1016/j.ejor.2012.09.02. Available
from: https://ideas.repec.org/a/eee/ejores/v225y2013i2p199-
210.html

70

https://www.sciencedirect.com/science/article/pii/S0305054805003023
https://www.sciencedirect.com/science/article/pii/S0305054805003023
https://www.sciencedirect.com/science/article/pii/S0377221712004997
https://www.sciencedirect.com/science/article/pii/S0377221712004997
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1287/ijoc.4.2.146
https://doi.org/10.1023/A:1022602019183
https://doi.org/10.1023/A:1022602019183
https://ideas.repec.org/a/eee/ejores/v225y2013i2p199-210.html
https://ideas.repec.org/a/eee/ejores/v225y2013i2p199-210.html


Appendix A
Acronyms

ALNS Adaptive Large Neighborhood Search

API Application Programming Interface

ARP Arc Routing Problem

B&B Branch-and-Bound

CVRP Capacitated Vehicle Routing Problem

DAFP Dial-a-Flight Problem

DARP Dial-a-Ride Problem

FSMVRP Fleet Size and Mix Vehicle Routing Problem

HALNS Hybrid Adaptive Large Neighborhood Search

HFVRP Heterogenous Fleet Vehicle Routing Problem

HFVRPTW Heterogenous Fleet Vehicle Routing Problem with Time Win-
dows

HVRP Heterogenous Vehicle Routing Problem

PDP Pickup and Delivery Problem

PDPTW Vehicle Routing Problem with Time Windows

TSP Travelling Salesman Problem

VROOM Vehicle Routing Open-source Optimization Machine

VRP Vehicle Routing Problem

VRPPD Vehicle Routing Problem with Pickup and Delivery

VRPTW Vehicle Routing Problem with Time Windows

71





Appendix B
Contents of an enclosed CD

Also available via https://github.com/davidmokos/halns.

README.md.................................the file with the instructions
godeliver-planner.......the folder with the GoDeliver Planner service
halns......................the HALNS implementation in Go language
thesis....................................the directory with the thesis

MT Mokos David 2021.pdf.........the thesis text in the PDF format
sources............................LATEX source codes of the thesis

73

https://github.com/davidmokos/halns




Appendix C
Tables

Instance Insertion Operators

I1 I2 I3 I4

1 2.23 % 46.88 % 4.32 % 46.57 %

2 12.56 % 41.48 % 6.85 % 39.11 %

3 11.68 % 43.46 % 2.24 % 42.61 %

4 1.84 % 48.54 % 2.17 % 47.45 %

5 7.24 % 46.08 % 2.29 % 44.40 %

6 4.58 % 41.37 % 11.84 % 42.21 %

7 3.98 % 46.53 % 1.45 % 48.04 %

8 8.90 % 44.18 % 5.04 % 41.88 %

9 8.13 % 42.97 % 4.54 % 44.36 %

10 4.31 % 45.59 % 6.85 % 43.24 %

Average 6.55 % 44.71 % 4.76 % 43.99 %

Table C.1: Percentage of use within 5 minutes of runtime of all insertion
operators of HALNS algorithm.

75



C. Tables

Instance Removal Operators

R1 R2 R3 R4 R5

1 22.05 % 19.48 % 19.17 % 19.73 % 19.57 %

2 21.37 % 19.58 % 19.46 % 20.22 % 19.37 %

3 20.36 % 19.67 % 20.47 % 20.22 % 19.28 %

4 21.05 % 21.43 % 18.90 % 21.11 % 17.51 %

5 20.43 % 20.80 % 19.45 % 20.86 % 18.47 %

6 20.16 % 20.04 % 20.07 % 21.12 % 18.60 %

7 20.43 % 21.15 % 18.56 % 20.83 % 19.04 %

8 20.17 % 20.35 % 18.88 % 21.20 % 19.40 %

9 22.10 % 20.00 % 19.00 % 19.97 % 18.93 %

10 20.82 % 21.44 % 19.39 % 19.48 % 18.88 %

Average 20.89 % 20.39 % 19.33 % 20.48 % 18.91 %

Table C.2: Percentage of use within 5 minutes of runtime of all removal oper-
ators of HALNS algorithm.

Insertion Operators

Operator I1 I2 I3 I4

Percentage 2.82 % 25.33 % 2.21 % 69.64 %

Removal Operators

Operator R1 R2 R3 R4 R5

Percentage 10.02 % 12.2 % 31.38 % 29.98 % 16.42 %

Table C.3: Percentage of CPU used by each operator of HALNS algorithm
within 5 minutes of runtime.

76


	Introduction
	Literature Review
	Vehicle Routing Problem
	Capacitated Vehicle Routing Problem (CVRP)
	Vehicle Routing Problem with Time Windows (VRPTW)
	Heterogenous Fleet Vehicle Routing Problem (HFVRP)
	Pickup and Delivery Problem (PDP)
	Dial-a-Ride Problem (DARP)
	Evolution and Quality of Information

	Solution Methods
	Exact Methods
	Heuristic Methods
	Constructive Heuristics
	Metaheuristics
	Hybrid Algorithms
	Leveraging Machine Learning

	Methods for Solving Dynamic Problems
	Available Solvers


	Problem Definition
	Formal Definition
	Dynamicity

	Broader Context within GoDeliver
	Features
	Architecture


	Methodology
	The Algorithm for the PDPTW
	Cost Function
	Removal and Insertion Operators
	Local Search Procedure
	Adaptive Weight Adjustment
	Initial Solution
	Diversification Mechanism
	Parameter Selection

	Methods for Evaluation
	Evaluation Datasets
	Baseline Algorithms
	Metrics

	Implementation
	Planning Algorithm
	Integration into GoDeliver Pipeline


	Results
	Experimental results
	Experiments on Adaptive Weight Adjustment

	Conclusion
	Bibliography
	Acronyms
	Contents of an enclosed CD
	Tables

