
1

10.04.2021, 19:28ProjectsFIT

Page 1 of 1https://projects.fit.cvut.cz/theses/72/assignment-print

Instructions

1. Describe the problem of AutoML in the recommendation systems.

2. Choose appropriate state-of-the-art algorithms with a different approach like k-NN, Matrix

Factorization or Autoencoders.

3. Focus on recall, catalogue-coverage, serendipity and diversity metrics.

4. Provide data preprocessing at Movie database.

5. Prepare models and experiments with several AutoML algorithms.

6. Evaluate models and discuss the results of the experiments.

Electronically approved by Ing. Karel Klouda, Ph.D. on 17 February 2021 in Prague.

Assignment of bachelor’s thesis

Title: AutoML approach in recommendation systems

Student: Daniil Pastukhov

Supervisor: Ing. Stanislav Kuznetsov

Study program: Informatics

Branch / specialization: Knowledge Engineering

Department: Department of Applied Mathematics

Validity: until the end of summer semester 2022/2023

Bachelor’s thesis

AutoML approach in recommendation
systems

Daniil Pastukhov

Department of Applied Mathematics
Supervisor: Ing. Stanislav Kuznetsov

May 13, 2021

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on May 13, 2021

Czech Technical University in Prague
Faculty of Information Technology
© 2021 Daniil Pastukhov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Pastukhov, Daniil. AutoML approach in recommendation systems. Bache-
lor’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2021.

Abstrakt

Ve všech oblastech strojového učeńı, stejně jako v doporučovaćıch systémech,
neńı snadné rozhodnout, který model by měl být v daném kontextu použit.
Doporučovaćı systémy jsou softwarové nástroje, které se snaž́ı předpovědět,
o jaké položky by měl uživatel zájem. Ćılem této práce je vyhodnotit r̊uzné
př́ıstupy AutoML s využit́ım nejmoderněǰśıch algoritmů a metrik, jako re-
call, pokryt́ı katalogu a serendipity. AutoML je proces automatizace časově
náročného a iterativńıho procesu trénováńı ML modelu. V AutoML existuj́ı
dva vhodné př́ıstupy, které jsme si vybrali k experimentováńı - hyperpara-
metrická optimalizace a metaučeńı. V této práci jsme testovali nejmoderněǰśı
algoritmy na veřejně dostupných datových sadách MovieLens s využit́ım tech-
nik AutoML. Také jsme navrhli alternativńı definici serendipity.

Kĺıčová slova doporučovaćı systémy, serendipity, strojové učeńı, automati-
zované strojové učeńı, automl

v

Abstract

In all machine learning domains, as well as in recommendation systems, it is
not easy to decide which model should be used in a given context. Recommen-
dation systems are software tools trying to predict what items a user would be
interested in. This thesis aims to evaluate different AutoML approaches us-
ing state-of-the-art algorithms and metrics, such as recall, catalogue coverage,
and serendipity. AutoML is a process of automating the time-consuming and
iterative training process of the ML model. There two relevant approaches in
AutoML that we have chosen to experiment with — Hyperparameter optimiza-
tion and Meta-Learning. In this thesis, we tested state-of-the-art algorithms
on publicly available MovieLens datasets employing AutoML techniques, and
also proposed the alternative definition of serendipity.

Keywords recommendation systems, serendipity, machine learning, auto-
mated machine learning, automl

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement . 2
1.3 Goals of this thesis . 2

2 Background 3
2.1 Theoretical background . 3

2.1.1 RS approaches . 3
2.1.1.1 Collaborative filtering 3
2.1.1.2 Content-based filtering 4
2.1.1.3 Hybrid recommender systems 4

2.1.2 Machine learning . 4
2.1.3 Automated machine learning 6
2.1.4 Hyperparameter optimization 6
2.1.5 Meta-learning . 8
2.1.6 Evaluation of RS . 8
2.1.7 Metrics . 9

2.1.7.1 Similarity measurement 9
2.1.7.2 Precision, recall, and catalogue coverage 10
2.1.7.3 Serendipity and diversity 10

2.1.8 Multi-objective optimization 13
2.2 Related work . 13

3 Methodology 15
3.1 Data Understanding . 15
3.2 Data Preparation . 16
3.3 Modeling . 17

3.3.1 K-Nearest Neighbours 17
3.3.2 Matrix factorization . 17

vii

3.3.2.1 Truncated SVD 18
3.3.3 Neural networks . 18
3.3.4 Ensemble . 19
3.3.5 Meta-learning . 19
3.3.6 Hyperparameter optimization 20

3.4 Evaluation methodology . 21

4 Experiments 23
4.1 Offline Experiments Setup . 23
4.2 Results . 24
4.3 Discussion . 27

5 Conclusion 31
5.1 Summary . 31
5.2 Future work . 31

Bibliography 33

A Acronyms 37

B Contents of enclosed CD 39

viii

List of Figures

2.1 Types of recommendation systems. [2] 5
2.2 Comparison between (a) grid search; and (b) random search for

hyperparameter tuning. The nine points denote the candidates.
The curves on the left and on the top denote model accuracy (e.g.
Normalized Mean Square Error) as a function of each search di-
mension. [8] . 7

2.3 Meta learning concept. 8
2.4 A Venn diagram describing serendipity concept. 12

3.1 AutoRec architecture. [25] . 19
3.2 3-models ensemble diagram. 19

4.1 Models overview evaluated on MovieLens-100k. Each row corre-
sponds to the specific model. 25

4.2 Models overview evaluated on MovieLens-1m. Each row corre-
sponds to the specific model. 26

4.3 Recall versus serendipity graphs evaluated on MovieLens-100k. . . 26
4.4 Recall versus serendipity graphs evaluated on MovieLens-1m. . . . 26
4.5 Catalogue coverage versus serendipity graphs evaluated on MovieLens-

100k. 27
4.6 Catalogue coverage versus serendipity graphs evaluated on MovieLens-

1m. 27

ix

List of Tables

3.1 The datasets’ details. 15
3.2 The sample of users’ ratings from MovieLens-100k dataset. 16
3.3 The sample of movies’ data from the auxiliary dataset. 16
3.4 The sample of user-item interaction matrix for 4 users and n items. 17

4.1 Algorithms overview. 24
4.2 The best individuals of the ensemble method optimized by NSGA2

with 5 iterations and population size 7. Evaluated on MovieLens-1m. 27
4.3 Table (a) contains the results of an approach with an involved

meta-learning and Table (b) contains the results of a common ap-
proach. Evaluated on MovieLens-1m. 28

4.4 Models performance on MovieLens-100k dataset. 29
4.5 Models performance on MovieLens-1m dataset. 30

xi

Chapter 1
Introduction

In this chapter, we will briefly describe our motivation and problem statement
and determine the goals for this work.

1.1 Motivation

Recommendation systems (RS) are software tools trying to predict what items
a user would be interested in. They are widely used in various domains, e.g.,
music and video services (Spotify1, YouTube2), e-commerce (Amazon3), social
media (Facebook4). RS help stores to promote their products, allowing users
to easier discover them. It is vital to suggest relevant items since irrelevant
recommendations may be frustrating and may deteriorate user satisfaction.
However, relevance is not the only major concept, as a user may have already
seen relevant suggestions, and, perhaps, he expects to see something novel and
unusual. To achieve more diverse and unexpected recommendations, we can
focus on serendipity rather than on accuracy. Generally, serendipity means
“unexpected discovery” or “fortunate chance”; hence, serendipitous recom-
mendations can intuitively lead to diversification and catalogue coverage im-
provement.

Moreover, the experts spend much time on data processing, choosing a
proper algorithm, and optimizing it. Automated machine learning (AutoML)
may come in helpful and can be used to address these problems, allowing de-
velopers to spend their time more productive and efficient. Furthermore, since
different domains may benefit from specific algorithms, choosing a suitable al-
gorithm requires additional knowledge about the field, which is not always
present. AutoML reduces the required level of knowledge for obtaining an
accurate model.

1https://www.spotify.com
2https://www.youtube.com
3https://www.amazon.com
4https://www.facebook.com

1

https://www.spotify.com
https://www.youtube.com
https://www.amazon.com
https://www.facebook.com

1. Introduction

1.2 Problem statement

The first problem is the serendipity evaluation of RS. There is no straightfor-
ward and conventional way to measure the serendipity of recommendations
provided by RS; thus, the comparison, in terms of serendipity, of different
recommendation approaches is difficult. In this work, we will propose a new
definition of serendipity based on previous studies.

The second problem is a fine-tuning of a recommendation algorithm. Fine-
tuning allows us to fit the model for the concrete area so that it can perform
better. Hyperparameters may be different for distinct domains; therefore, the
automation of this process is desirable. In terms of this work, we will try to
facilitate a fine-tuning of recommendation algorithms.

The third problem is a time cost for fine-tuning an algorithm. Ideally, we
would like to use previous experience to accelerate the optimization process.
In this thesis, we propose a meta-learning approach for such a purpose.

1.3 Goals of this thesis

We set six goals for this thesis:

1. Describe the problem of AutoML in the recommendation systems.

2. Choose appropriate state-of-the-art algorithms with a different approach
like k-NN, Matrix Factorization or Autoencoders.

3. Evaluate approaches using different metrics, like recall, catalogue cover-
age, serendipity, or diversity.

4. Provide data preprocessing at Movie database.

5. Prepare models and experiments with several AutoML algorithms.

6. Evaluate models and discuss the results of the experiments.

2

Chapter 2
Background

In this chapter, we will give an introduction to the area of Recommendation
Systems (RS) and Machine Learning (ML). We will describe different RS
approaches and introduce Automated Machine Learning (AutoML). Then we
will focus on RS evaluation and different metrics. Finally, we will define multi-
objective optimization and describe the related work.

2.1 Theoretical background

2.1.1 RS approaches

The approaches in RS are commonly divided into three groups: collaborative
filtering, content-based filtering and hybrid recommender systems [1].

2.1.1.1 Collaborative filtering

Collaborative filtering (CF) is a technique that considers user interests and
provides recommendations by comparing them with other users’ interests.
This method usually results in better performance compared to the different
approaches and is frequently used since it does not require any information
about the items themselves; the only thing it needs is a matrix containing
user profiles. Let us show an example of how collaborative filtering works. A
user likes Star Wars and Avengers movies, and he is looking for a new film
to watch. His neighbourhood, i.e., similar users, liked The Dark Knight and
Blade Runner movies, so we can consider recommending them. There are two
types of CF techniques: model-based filtering and memory-based filtering.

Model-based filtering is an approach where the previous experience is
used to develop a model to improve the CF technique’s performance. Different
data mining and machine learning techniques may be employed in a model

3

2. Background

building process, for example, Neural Networks, Bayesian networks, clustering
methods, and association rules.

Memory-based filtering is an approach, which uses user rating data to
compute the similarity between users or items. There are two memory-based
methods: user-based and item-based.

2.1.1.2 Content-based filtering

Content-based filtering (CBF) is a technique that uses item features to rec-
ommend other items similar to what the user likes, based on his previous
actions or explicit feedback. This method tends to emphasize items that are
similar to the ones a user has positively rated. CBF uses different approaches
to measure similarity and make relevant recommendations, such as TF-IDF,
probabilistic models. In contrast to collaborative filtering, this method ana-
lyzes the content of each item. As a result, thorough knowledge of the items
is required. Let us show an example considering the same user described in
section 2.1.1.1, that likes Star Wars and Avengers. Star Wars is a popular
science fiction movie, and Avengers is a popular action superhero movie. So
content-based recommendation engine can propose Avatar and Iron Man since
these two movies are similar to ones the user likes.

2.1.1.3 Hybrid recommender systems

Hybrid recommender systems are a combination of the approaches discussed
before. Such systems combine the advantages of both CF and CBF methods.
It takes into account information about both users and items; thus, such
systems are ”smarter” than CF and CBF ones.

2.1.2 Machine learning

Machine learning (ML) is an application of artificial intelligence that gives
computers the ability to learn and act as humans do, and improve their per-
formance over time, by providing them with more data and information, which
can be presented as observations or real-world interactions. In other words,
machine learning is the science of getting computers to act without being pro-
grammed to do so. In machine learning, algorithms are trained to find patterns
and features in large amounts of data to make decisions and predictions based
on new data. The better the algorithm, the more accurate the decisions and
predictions will become as it processes more data [3]. At present, machine
learning helps to solve problems in various areas and often outperforms hu-
mans. In medicine, doctors use systems that provide preliminary results, e.g.,
a segmented X-Ray image, that may be further used in diagnosis determina-
tion. In banks, ML systems determine whether a person is loan eligible or

4

2.1. Theoretical background

Recommendation system

Content-based
filtering

Collaborative
filtering Hybrid filtering

Model-based filtering Memory-based
filtering

User-based Item-based

Neural networks
Bayesian networks
Clustering methods
Association rules

Figure 2.1: Types of recommendation systems. [2]

not. In email services, unwanted spam e-mails can be automatically filtered
out using classification methods.

Machine learning pipeline usually consists of three stages: Data Prepa-
ration, Model building and training, and Model deployment and monitoring.
Now, we will briefly describe details about them.

Data Preparation stage includes data gathering and data processing op-
erations, such as normalization, transformation, validation, and featurization.
The final step is data splitting, where the cleaned dataset is split into training
and testing parts.

Model building and training stage includes algorithm selection and op-
timization. The type of algorithm depends on the problem (e.g., regression,
classification) and the amount of available data. The training is an iterative
process, where the algorithm parameters are adjusted by the optimization al-
gorithm. The goal of training is to minimize the relative validation error and
yield accurate predictions. The resulting trained algorithm is called a model.
Different techniques like cross-validation and regularization are used to ensure
the quality of a model and avoid overfitting.

Model deployment and monitoring is the final stage of the ML pipeline.
The model is deployed in a production environment; its life cycle does not
end. The world and the environment are constantly changing; thus, we need

5

2. Background

to monitor changes and occasionally modify the existing model to keep the
model up to date.

Every stage of an ML pipeline is vital for an ML project. Machine learning
specialists commonly spend much time going through the above stages and
have to do everything manually. To ease that process, we can try to automate
it using automated machine learning, which will be discussed in the following
subsection.

2.1.3 Automated machine learning

Automated machine learning (AutoML) has progressed dramatically over the
past decade. More and more researchers focus on AutoML. Generally, AutoML
is a process of automating the time-consuming and iterative training process of
the ML model. AutoML allows ML and non-ML experts to build ML models
with high efficiency and productivity, along with sustaining model quality.
Utilizing AutoML allows a more straightforward development process. A few
lines of code can generate the code necessary to begin developing a machine
learning model. At the moment, many companies provide AutoML solutions,
such as Google Cloud AutoML5 or H2O Driverless AI6. They are capable of
feature engineering, model fine-tuning and validation, and model deployment.
For businesses, such systems may be really relevant. They do not need to hire
ML experts, which can potentially save money, and still achieve reasonable
results by using the existing AutoML system. The usual AutoML pipeline
consists of data preparation, feature engineering, model generation, and model
estimation steps [4].

The approaches in AutoML can be divided into three separate groups [5]:
Hyperparameter Optimization, Meta-Learning (e.g., [6]), Neural Architecture
Search (NAS) (e.g., [7]).

2.1.4 Hyperparameter optimization

A model hyperparameters are parameters that are used to control the learning
process. Hyperparameters are usually user-specified, and their values cannot
be estimated from data. We cannot know the best hyperparameters for a
model for a given problem. Thus, we usually use heuristics or empirical rules
to initialize them or find them using the trial and error method.

Now, we will briefly describe three methods that are used for hyperparam-
eter optimization. Additionally, we need to keep in mind that the efficiency
of the optimization method can be represented by the number of iterations
required to find the optimal values. The less it is, the more efficient it is.

5https://cloud.google.com/
6https://www.h2o.ai/products/h2o-driverless-ai/

6

https://cloud.google.com/
https://www.h2o.ai/products/h2o-driverless-ai/

2.1. Theoretical background

Figure 2.2: Comparison between (a) grid search; and (b) random search for
hyperparameter tuning. The nine points denote the candidates. The curves
on the left and on the top denote model accuracy (e.g. Normalized Mean
Square Error) as a function of each search dimension. [8]

Grid search is an exhaustive searching, which tests all hyperparameter
combinations on a user-predefined subset. It is a primitive and inefficient
method.

Random search replaces an exhaustive testing of all combinations by se-
lecting them randomly. It runs a fixed number of iterations or until the desired
condition is not met. The difference between grid search and random search
is shown in Figure 2.2.

Bayesian hyperparameter optimization is a method that is based on
the statistical analysis of the objective function. Unlike random search, this
method is an informed search. It keeps track of past evaluations, but that is
also why we cannot run multiple processes simultaneously. The first step is
building the probabilistic model, also known as the surrogate model, for the
objective function P (metric|hyperparameters). Such function gives the prob-
ability of maximizing/minimizing metric given the hyperparameters. There
are different approaches to build a surrogate model, such as Gaussian process,
Tree-structured Parzen Estimator [9]. The surrogate model is more straight-
forward to optimize than the actual objective function. Then we choose the
hyperparameters that perform best on a surrogate model and test it on the
objective function.

Evolutionary algorithm (EA) is a population-based optimization algo-
rithm inspired by biological evolution. Crossover, selection, and mutation are
basic mechanisms used in EA. The fitness function represents the quality of
the individual and is used to compare them. The algorithm starts with the
initialization of a population, which can be done randomly or heuristically.

7

2. Background

Prior task New task

Model

Learning
process

Meta learning

Model

Learning
process

Figure 2.3: Meta learning concept.

It is followed by the primary cycle of calculating fitness function, performing
mutations, crossover, and selection.

2.1.5 Meta-learning

”The term meta-learning covers any type of learning based on prior experience
with other tasks.” [5]

Meta-learning, or learning to learn, refers to a science of observing how
different ML models perform on various tasks and then learning from this
experience, which is also known meta-data, to speed up the learning process
when facing a new task. We can use knowledge about already trained models
used in the prior tasks in recommendation systems and apply them to the
new tasks. For example, we have trained a model for a video hosting service,
which performs well. We have extracted meta-data from the learning process:
dataset properties and model hyperparameters. The new task is an RS for the
music streaming website. Then meta-learning can be used in the initialization
of hyperparameter optimization algorithm.

2.1.6 Evaluation of RS

Initially, most recommendation systems were evaluated by their ability to
predict users’ preferences accurately. However, accurate recommendations
are now considered crucial but insufficient to deploy a good and valuable RS.
Users often expect to see recommendations that do not precisely match their
tastes. They may be curious and desire to see novel and exciting things. Thus,
it is essential to study the domain and choose appropriate metrics to improve
business indicators [10].

There are three different types of experiments: offline and online experi-
ments; and user studies.

8

2.1. Theoretical background

Offline experiments are performed on the historical precollected dataset
that contains user ratings or interactions. Using such a dataset, we try to
model the user’s behavior that interacts with a recommendation system. This
approach is based on the assumption that the user behavior at the data col-
lection moment will be similar enough to the one after RS deployment.

User studies are conducted by a recruited set of test subjects, which are
asked to perform specific tasks requiring interaction with the recommendation
system. While the subjects perform the tasks, we observe and record their
behavior, collecting quantitative measurements, such as what part of the task
was completed, the accuracy of the task results, or the time taken to perform
the task. Offline testing does not guarantee a reliable simulation of users’
behavior, so the proper evaluation of RS requires real user interactions.

Online experiments are performed by the actual users that perform real
tasks. Online evaluation provides the most substantial evidence as to the
actual value of an RS. As opposed to offline experiments and user studies,
this type of experiment is harder to conduct. It requires a functioning RS
running in the production environment. This fact frequently makes online
testing unaffordable.

2.1.7 Metrics

Accurate metrics are necessary for developing a thriving RS. There are differ-
ent metrics that are significant for RS evaluation. Recall and precision belong
to the information retrieval measure and helps us to determine how relevant
recommendations are. Catalogue coverage, serendipity, and diversity are re-
lated concepts, which lead to a better user experience in RS. Additionally, CF
and hybrid approaches require the computation of user similarities, which can
be done, e.g., using Pearson correlation or cosine similarity.

2.1.7.1 Similarity measurement

In order to compare different users, we need to define a similarity measure. Let
x and y be real-valued vectors, such that x, y ∈ Rn, then a function sim(x, y)
that quantifies the similarity between x and y is called a similarity function.

Pearson correlation similarity of two users x, y is defined as follows:

sim(x, y) =
∑
i∈Ixy

(rx,i − r̄x)(ry,i − r̄y)√∑
i∈Ixy

(rx,i − r̄x)2
√∑

i∈Ixy
(ry,i − r̄y)2

(2.1)

where Ixy is a set of items that were rated by both x and y, rx,i is a rating of
item i given by user x and r̄x is an average rating given by user x to all items.

9

2. Background

Cosine similarity between users x and y is defined as:

sim(x, y) = cos(~x, ~y) = ~x · ~y
‖~x‖ × ‖~y‖

=
∑
i∈Ixy

rx,iry,i√∑
i∈Ix

r2
x,i

√∑
i∈Iy

r2
y,i

(2.2)

2.1.7.2 Precision, recall, and catalogue coverage

Precision is a fraction of relevant items that were recommended to a user.
Precision for N recommendations can be formalized as:

precision@N = |Ru ∩ Iu|
|Ru|

(2.3)

where Iu denotes all user interactions and Ru denotes the recommendation
made by RS.

Recall is a fraction of relevant items that were recommended by RS. For-
mally, we can define recall for N recommended items as follows:

recall@N = |Ru ∩ Iu|
|Iu|

(2.4)

Catalogue coverage represents how many items are possible to be rec-
ommended by the RS. Catalogue coverage is a valuable measure for massive
catalogues, where many items are left unseen. We can define catalogue cover-
age the same way as a recall for N recommended items:

coverage@N = |
⋃
u∈U Ru|
|C|

(2.5)

where the numerator denotes all items that were recommended to all users
and C denotes all items in the catalogue.

2.1.7.3 Serendipity and diversity

Diversity is a concept, which describes how items are different with respect
to each other. Diversity is relevant for systems with a great variety of items.
Diverse recommendations may lead to a better user experience.

Preliminary to the definition of serendipity, we need to define three auxil-
iary concepts: relevance, novelty and unexpectedness.

10

2.1. Theoretical background

Relevance is an essential property of the recommendations since irrelevant
suggestions may lead to low user satisfaction and low recall. Hence, the overall
performance of the recommendation system can become insufficient.

The item is considered relevant when the user may be interested in it. Let
us assume that the user visits the e-shop and looks at the table. Then the
relevant recommendation maybe a chair. In addition, we can keep in mind
that the user’s ”neighbours” can also be considered in the decision process.

We can measure relevance by (2.6) finding the minimal distance between
the new item and user interactions or (2.7) finding the mean distance between
the new item and user interactions. We can also ignore old user interactions
due to their possible obsoleteness.

rel(i, u) = min
j∈S⊆Iu

sim(i, j) (2.6)

rel(i, u) = 1
|Iu|

∑
j∈S⊆Iu

sim(i, j) (2.7)

where i is an item, u is a user profile, Iu is user interactions, S is either a subset
of Iu or Iu itself, sim(i, j) is any similarity metric (e.g., cosine similarity),
normalized to [0, 1].

Novelty is a desirable feature in recommendation systems. Novel recom-
mendations improve the catalogue coverage and let users discover more new
things than they would find themselves.

The item is considered novel when the user has not either seen it or is
familiar with it.

Vargas [11] proposed 2 ways of novelty metric: popularity-based (2.8) and
distance-based (2.9).

nov(i) = 1− p(i) (2.8)

where p(i) denotes the probability that the item i was rated by any user.

nov(i, u) = min
j∈S⊆Iu

dist(i, j) (2.9)

where i is an item, u is a user profile, Iu is user interactions, S is either a
subset of Iu or Iu itself and dist(i, j) can be defined as follows:

dist(i, j) = 1− sim(i, j)

Unexpectedness is one of the most essential concepts, which underlies
serendipity, which grants a user an opportunity to discover more surprising
items and expand the recommended categories. The measurement of unex-
pectedness is quite a challenging task, due to its varying definition. According
to [12], there are four different definitions of unexpectedness.

11

2. Background

In [13], the authors proposed measuring unexpectedness by comparing the
recommendations of RS with the recommendations made by primitive predic-
tion models (2.10). The main idea relies on predicting that the expected item
is a trivial task, whereas predicting something unexpected is more demanding.
Using such a method, we can see how our recommendations differ from the
trivial ones.

unexp(i, u) = PRu
RSu

(2.10)

where PRu is recommendations generated by the primitive model and RSu is
the recommendations generated by the recommendation system.

Serendipity is challenging to define a feature of recommendation systems
and can be interpreted in 8 different ways [12]. The most common definition
considers three properties - relevance, novelty, and unexpectedness - while it is
still possible to ignore either relevance or novelty. Improvement of serendipity
can be crucial for improving catalogue coverage and diversification [14].

Novelty

Unexpectedness Relevance

Serendipity

Figure 2.4: A Venn diagram describing serendipity concept.

Combining the three concepts described before, we can define the serendip-
ity metric as follows:

serendipity(i, u) = α ∗ nov(i, u) + β ∗ unexp(i, u) + γ ∗ rel(i, u) (2.11)

where nov(i, u), unexp(i, u), rel(i, u) are metrics we have defines above and
α, β, γ are coefficients that represent the importance of nov(i, u), unexp(i, u),
rel(i, u) metrics respectively. The equation α+ β + γ = 1 must be satisfied.

Both diversity and serendipity metrics are introduced to overcome the
overfitting problem, i.e. when RS loses the ability to help users to discover
new things.

12

2.2. Related work

2.1.8 Multi-objective optimization

In general, multi-objective optimization has several objective functions with
subject to inequality and equality constraints to optimize [15]. The goal is
to find a set of solutions that do not have any constraint violation (known
as feasible solutions) and are as good as possible regarding all its objectives
values. The problem definition in its general form is given by:

min fm(x) m = 1, ..,M

s.t. gj(x) ≤ 0 j = 1, .., J
hk(x) = 0 k = 1, ..,K

xLi ≤ xi ≤ xUi i = 1, .., N

(2.12)

The formulation above defines a multi-objective optimization problem with N
variables, M objectives, J inequality, and K equality constraints. Moreover,
for each variable xi, lower and upper variable boundaries (xLi and xUi) are
defined. [16]

NSGA2 is a computationally efficient multi-objective evolutionary algo-
rithm proposed by [17]. It uses an elitism principle, i.e., the elites of a
population are given the opportunity to be carried to the next generation.
Furthermore, it uses an explicit diversity preserving mechanism (crowding
distance). The pseudocode can be found in Algorithm 1.

Algorithm 1: NSGA2 [18]
initialize a population of size N ;
while Termination criteria is not met do

Perform elitism selection technique;
Perform genetic operations;
Evaluate objectives;
Perform fast non-dominated sorting;
Calculate and assign crowding distance;

end
return best individuals;

2.2 Related work

In [14], authors studied a trade-off between serendipity and catalogue cover-
age. They concluded that an increase in serendipity leads to higher catalogue
coverage. However, at the same time, an increase increase in catalogue cover-
age does not guarantee an increase in serendipity. They also discovered that

13

2. Background

increasing serendipity may negatively impact recall, but using proper tech-
niques, e.g., arrangement of recommendations, it is possible to avoid negative
consequences.

Wang [19] proposed an AutoML architecture that is capable of handling
data and finding the optimal recommendation model. The architecture con-
sists of 4 blocks: Mapper, Interactor, Optimizer and Tuner. The first block,
Mapper, is responsible for conversion the data into low-dimensional embed-
dings. Interactor is used to simulate different ways of interactions between
entities. Optimizer manages the computation of metric and loss functions.
And the last part of the architecture, Tuner, is used to find the optimal hy-
perparameters.

Anand [20] came up with an extension of existing recommender system
library ”Surprise”. Their algorithm begins with evaluating baseline score with
a random algorithm, and then each algorithm is optimized in parallel. Algo-
rithms, that perform worse than the baseline after some number of iterations,
are not optimized anymore. Hyperparameter optimization is handled by Hy-
peropt library [21], where Tree of Parzens Estimator (TPE), Adaptive TPE
(ATPE) and Random Search optimization methods may be employed.

14

Chapter 3
Methodology

In this chapter, we will discuss the data and its preparation, algorithms and
AutoML approaches we use in our experiments.

3.1 Data Understanding

The MovieLens datasets are the result of users interacting with the MovieLens
online recommender system over the course of years. [22]

We have conducted our experiments on publicly accessible MovieLens datasets.
The MovieLens datasets, first released in 1998, describe people’s expressed
preferences for movies. These preferences take the form of tuples, each re-
sulting from a person expressing a preference (0–5 star rating) for a movie at
a particular time. These preferences were entered by way of the MovieLens
website - a recommender system that asks its users to give movie ratings to
receive personalized movie recommendations. [22]

For our experiments, we have chosen MovieLens-100k and MovieLens-1m
datasets. The specific details are shown in Table 3.1.

MovieLens-100k MovieLens-1m
#ratings 100 000 1 000 209
#users 943 6040

#movies 1682 3706
Average rating 3.53 3.58

Ratings standard deviation 1.13 1.12

Table 3.1: The datasets’ details.

The user rating is represented by a tuple of 4 values — <user, item,
rating, timestamp> (Table 3.2). Moreover, there is an auxiliary dataset

15

3. Methodology

(Table 3.3) containing information about the movies themselves. It can be
further used to make embeddings.

user id movie id rating timestamp
1 1193 5 978300760

454 1036 1 976287910
978 2997 4 975107102
1908 194 3 974873117
2969 2581 4 982860538

Table 3.2: The sample of users’ ratings from MovieLens-100k dataset.

movie id name genres
1 Toy Story (1995) Animation|Children’s|Comedy
2 Jumanji (1995) Adventure|Children’s|Fantasy
3 Grumpier Old Men (1995) Comedy|Romance
4 Waiting to Exhale (1995) Comedy|Drama
5 Father of the Bride Part II (1995) Comedy

Table 3.3: The sample of movies’ data from the auxiliary dataset.

3.2 Data Preparation

• The datasets were used in their original form; no films nor movies were
filtered out.

• We have constructed a user-item interaction matrix, also known as pivot
table, where each row represents a user profile (Figure 3.4). A user
profile is a sparse vector, where each nonzero element is a rating from
1 to 5. Non-zero values mean that a user did not interact with the
corresponding items.

• In order to compare different items, item embeddings were used. The
embedding is a sparse one-hot encoded vector, where each value rep-
resents some feature. The resulting embeddings were represented by
28675-valued vectors and were constructed using the ontology-based ap-
proach. A detailed description of that approach can be found in [23].

16

3.3. Modeling

user id
item id 1 2 ... n

1 0 1 ... 1
2 0 0 ... 0
3 0 1 ... 0
4 1 0 ... 1

Table 3.4: The sample of user-item interaction matrix for 4 users and n items.

3.3 Modeling

In recommendation systems, there are plenty of data mining algorithms that
can be used, such as KNN, Decision trees, SVM (Support Vector Machine),
Neural networks, etc. They can be used in previously discussed RS approaches.

3.3.1 K-Nearest Neighbours

K-Nearest Neighbours (KNN) is an algorithm that considers user similarities
in order to produce recommendations. It works in the following 3 steps: (1)
finding k most similar users to the target user, (2) finding the items these
”nearest neighbours” liked or interacted with, and then (3) recommending it
to the target user. We can employ any similarity metric (l2 norm, cosine, etc.)
to compare the users. KNN algorithm is not time efficient, since it requires
to compute distances to all other users, what is asymptotically equal to O(n).
KNN can be applied in both content-based and user-based recommendation
systems.

We have chosen a popularity-stratified variation of the KNN algorithm with
cosine similarity and voting for our experiments. It considers the popularity
of the items, giving more preference to unpopular ones. Such an approach
intuitively leads to better diversification. The rank function is given as follows:

rank(u, i) =
∑
û∈Nk

u
sim(u, û) · (rû,i − r̄û)

(∑û∈U (rû,i − r̄û))β (3.1)

where Nk
u denotes a set of the k nearest neighbours of user u, U denotes a set

of all users, and β denotes a long-tail biasing parameter proposed by [24].

3.3.2 Matrix factorization

Generally, the user-item interaction matrix is huge and sparse. We can decom-
pose that matrix into the product of lower dimensionality matrices by using
the matrix factorization (MF) technique. It allows us to further work with
smaller matrices and make all computations faster. There are different MF
algorithms, such as Truncated SVD or PCA.

17

3. Methodology

3.3.2.1 Truncated SVD

Singular value decomposition (SVD) is a matrix factorization technique com-
monly used for producing low-rank approximations. Given a matrix X ∈
Rm×n with rank(A) = r.

X = USV T , (3.2)

where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, with their columns
being the eigenvectors ofXXT andXTX, respectively, S ∈ Rm×n is a diagonal
matrix with r nonzero elements, which are singular values of X. The diagonal
r elements (σ1, σ2, ..., σr) of S are sorted in a descending order, i.e., σ1 ≥ σ2 ≥
... ≥ σr > 0.

In recommendation systems, a variant of SVD, Truncated SVD, is usually
used. It essentially computes only k largest singular values, where k is a user-
specified parameter. Truncated SVD applied to the training data X produces
a closest rank-k approximation X. Mathematically, it can be written down as
follows:

X ≈ Xk = UkSkV
T
k , (3.3)

where Uk ∈ Rm×k, Sk ∈ Rk×k, Vk ∈ Rk×n are matrices. Matrix UkS
T
k repre-

sents the transformed training data with k features.

3.3.3 Neural networks

Restricted Boltzmann machine (RBM) is essentially a stochastic neu-
ral network with two layers, called ”visible” and ”hidden,” which form a bi-
partite graph. The visible layer is a known user profile, and the hidden layer is
the latent factors that we want to learn. The learning process is unsupervised
and involves using the Contrastive Divergence technique.

AutoRec is a novel algorithm proposed by [25], that is based on the au-
toencoder paradigm. AutoRec is a fast and memory-efficient algorithm, with
a less number of parameters in comparison with RBM and outperforming it.
The architecture consists of 3 parts: encoder, latent space, and decoder. The
input, represented by a user profile, is mapped to the latent space, and then
the decoder tries to reproduce the input. The hidden layer consists of latent
factors, which size is determined by the hidden layer’s size. Latent factors are
implicit features, which are determined automatically from the input data. In
the case of a movie dataset, the latent factor may represent user preferences,
such as whether a user is a fan of some specific movie genre.

18

3.3. Modeling

Figure 3.1: AutoRec architecture. [25]

3.3.4 Ensemble

In machine learning, the ensemble method is a technique that presumes the
usage of multiple models to obtain better predictive results. Our ensemble
consists of 3 models: KNN, Matrix Factorization and AutoRec. The outputs
of each model are combined into a list. Then, the list is sorted by a desired
metric, like recall, coverage, serendipity. And, finally, the selection of k best
items forms the final output. It is also possible to order items by several
different metrics. For example, suppose we want to optimize two metrics,
recall and serendipity, simultaneously. In that case, we select the first half
items sorted by recall and the second half items sorted by serendipity.

Figure 3.2: 3-models ensemble diagram.

3.3.5 Meta-learning

In our experiments, we calculate the following meta-data for every dataset:

1. Average rating per item.

19

3. Methodology

2. Ratings standard deviation.

3. Number of features.

4. Average features per item.

5. Features standard deviation.

In addition, we save the following meta-knowledge:

1. Dataset name.

2. Model type.

3. Best parameters.

Consequently, we used meta-data to better initialize the optimization al-
gorithms. If meta-data for two different datasets is similar, we can consider
starting the searching process using specific hyperparameters.

3.3.6 Hyperparameter optimization

In our trials, we have employed grid search and NSGA2 methods to fine-tune
our algorithms, which were described in the previous chapter. NSGA2 is an
evolutionary algorithm and thus requires a fitness function to evaluate the
quality of the individuals. The implementation of the fitness function for
NSGA2 algorithm is described in Algorithm 2.

Algorithm 2: Fitness function for NSGA2
R← ∅;
initialize models;
foreach user do

foreach model do
r ← model.recommend(user);
R(user)← R(user) ⋃

r;
end
R(user)← 10 random items from R(user);

end
evaluated objective functions of R;
return calculated scores;

20

3.4. Evaluation methodology

3.4 Evaluation methodology

Given a dataset, the typical way of estimating the quality of the recommenda-
tion system is to use split validation [26]. The validation stage plays a crucial
role in developing a successful model.

Split validation works as follows. Let D denote the whole dataset. Then
a random subset Dtrain ∈ D, called the training set, is selected and used to
train algorithms. The rest D \ Dtrain is usually divided into the test set Dtest
and validation set Dval such that Dtest∪Dval = D\Dtrain and Dtest∩Dval = ∅.
Usually, validation set is used to optimize hyperparameters and test set is
used to evaluate the resulting model. The motivation for introducing Dval is
the fact that the split is done randomly, therefore there is a risk of overfitting
through hyperparameter search towards the particular split [26].

For the trials, we split the data into training and test sets, keeping 90%
of the data for the training set and 10% for the test set. We did not employ
a validation set due to the relatively small dataset size and computational
reasons.

The recall, catalogue coverage, and serendipity were measured as follows.
For each user from the test set, only one control item was left. Let Ru denote
top-N recommendations generated by the algorithm. Then, if Ru contains a
control item, we set the recall of Ru to 1 or 0 otherwise. We calculate the sum
of recall for all Ru and divide it by the number of users in the test set. The
resulting value represents the final recall of the algorithm. Catalogue coverage
and serendipity were measured straightforwardly.

21

Chapter 4
Experiments

In this chapter, we will discuss the experiments that we have conducted. In the
beginning, we will describe the experimental setup, which includes algorithms
and metrics configuration. Then we will describe the obtained results and
discuss the conclusions we made out.

4.1 Offline Experiments Setup

We have conducted experiments employing three algorithms we have discussed
in section 3.3: popularity-stratified KNN, Matrix Factorization (Truncated
SVD), and AutoRec.

The essential points are formulated as a list:

• The random seed for all methods and algorithms was set to 42.

• The first set of experiments was conducted with β set to 0 and 1, whereas
the second and third sets of experiments were conducted using β = 1.

• Serendipity metric, defined as (2.11), requires predefined weights for
every auxiliary metric. Parameters α, β, γ were set to 0.4, 0.3, 0.3,
respectively.

• We selected a simple user-based 3-NN model as a primitive model since
unexpectedness measuring demands it.

• MongoDB Atlas Database7 represents a meta-storage. Meta-knowledge
are stored there.

7https://www.mongodb.com/cloud/atlas

23

https://www.mongodb.com/cloud/atlas

4. Experiments

Algorithm Hyperparameters
Popularity-stratified KNN The number of neighbours

Matrix Factorization (Truncated SVD) The number of components
AutoRec Hidden layer size

Table 4.1: Algorithms overview.

4.2 Results

The first experiments are done using grid search to test different hyperparam-
eters on KNN, MF, and AutoRec algorithms.

• Tables 4.4 and 4.5 show comprehensive grid search results.

• Figures 4.1 and 4.2 give an overview of how models behave with different
hyperparameters. Each row of the graph corresponds to the specific
model and each column corresponds to the specific metric.

• Figures 4.3 and 4.4 show a correlation between recall and serendipity.

• Figures 4.5 and 4.6 show the same results, but between coverage and
serendipity.

The results for KNN model in Figures 4.1 and 4.2 show us how β impacts
the metrics. As expected, serendipity and catalogue coverage are higher for
β = 1 since unwanted items are more likely to be recommended. Nevertheless,
recall drastically decreases. In case β = 1, the situation is inversed - recall is
high, but serendipity and catalogue coverage is low.

There is a slightly negative correlation between serendipity and recall that
can be observed from Figures 4.4 and 4.3.

In Figure 4.6, we can notice that there is a correlation between serendipity
and catalogue coverage. It is arising from the fact that the serendipitous RS
promotes novel and unexpected items. It intuitively leads to better diversifi-
cation and catalogue coverage improvement. In the similar graph 4.5, which
was evaluated on MovieLens-100k, the same dependency can be observed, but
it is less pronounced.

Looking at Tables 4.4 and 4.5 we can note that hyperparameter and β
heavily impact the training and evaluating time for the KNN model. The
number of neighbors may result in five times worse efficiency, and β may result
in more than two times worse efficiency. With a growing k, recall, catalogue
coverage, and serendipity are decreasing due to the possible overfitting. Thus
we would choose five as the optimal value of k.

In contrast, MF and AutoRec models do not suffer from the problem when
hyperparameters affect the overall training and evaluating time. The time is
nearly the same for all hyperparameters that we have tested.

24

4.2. Results

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.385

0.390

0.395

0.400

0.405

M
et

ric
va

lu
e

KNN popular

Serendipity, β = 1
Serendipity, β = 0

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.05

0.10

0.15

0.20

0.25

M
et

ric
va

lu
e

KNN popular

Recall, β = 1
Recall, β = 0

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.025

0.050

0.075

0.100

0.125

0.150

M
et

ric
va

lu
e

KNN popular

Coverage, β = 1
Coverage, β = 0

0 20 40 60 80 100
Number of components

0.3835

0.3840

0.3845

0.3850

M
et

ric
va

lu
e

Matrix factorization

Serendipity

0 20 40 60 80 100
Number of components

0.08

0.10

0.12

0.14

0.16

0.18

0.20

M
et

ric
va

lu
e

Matrix factorization

Recall

0 20 40 60 80 100
Number of components

0.02

0.04

0.06

0.08

0.10

0.12

M
et

ric
va

lu
e

Matrix factorization

Coverage

0 100 200 300 400 500
Hide layer size

0.384

0.386

0.388

0.390

0.392

M
et

ric
va

lu
e

AutoRec

Serendipity

0 100 200 300 400 500
Hide layer size

0.05

0.06

0.07

0.08

0.09

0.10

0.11

M
et

ric
va

lu
e

AutoRec

Recall

0 100 200 300 400 500
Hide layer size

0.04

0.05

0.06

0.07

M
et

ric
va

lu
e

AutoRec

Coverage

Figure 4.1: Models overview evaluated on MovieLens-100k. Each row corre-
sponds to the specific model.

The MF algorithm performs the best with 20-100 components and provides
nearly the same performance.

The AutoRec algorithm benefits the most from 64-256 hidden layer sizes.
For the low number of neurons in the hidden layer, the metrics are decreasing,
while the high number results in low catalogue coverage.

The second set of experiments were performed with the NSGA2 algorithm
optimizing the proposed ensemble method. The serendipity and recall metrics
were chosen as objective functions.

• The resulting individuals after five generations of the NSGA2 algorithm
are shown in Table 4.2. The population size was set to 7. The fitness
function was implemented as in Algorithm 2. The total spent time is
26.5 hours.

The third and the last set of experiments were conducted with the meta-
learning technique. The previous experiment is related to this one. The
NSGA2 algorithm optimized the ensemble method, and meta-learning was
used in the population initialization.

• Table 4.3 shows how meta-learning impacts the metrics. Meta-data of
MovieLens-100k were used in order to better initialize the population

25

4. Experiments

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.410

0.415

0.420

M
et

ric
va

lu
e

KNN popular

Serendipity, β = 1
Serendipity, β = 0

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.02

0.04

0.06

0.08

0.10

0.12

M
et

ric
va

lu
e

KNN popular

Recall, β = 1
Recall, β = 0

5 10 15 20 25 30 40 50 60 70 80 90 100 150
K

0.05

0.10

0.15

0.20

0.25

M
et

ric
va

lu
e

KNN popular

Coverage, β = 1
Coverage, β = 0

0 20 40 60 80 100
Number of components

0.410

0.411

0.412

0.413

0.414

0.415

M
et

ric
va

lu
e

Matrix factorization

Serendipity

0 20 40 60 80 100
Number of components

0.06

0.07

0.08

0.09

0.10

0.11

M
et

ric
va

lu
e

Matrix factorization

Recall

0 20 40 60 80 100
Number of components

0.025

0.050

0.075

0.100

0.125

0.150

M
et

ric
va

lu
e

Matrix factorization

Coverage

0 100 200 300 400 500
Hide layer size

0.4075

0.4100

0.4125

0.4150

0.4175

0.4200

M
et

ric
va

lu
e

AutoRec

Serendipity

0 100 200 300 400 500
Hide layer size

0.040

0.045

0.050

0.055

0.060

0.065

M
et

ric
va

lu
e

AutoRec

Recall

0 100 200 300 400 500
Hide layer size

0.01

0.02

0.03

0.04

0.05

0.06

M
et

ric
va

lu
e

AutoRec

Coverage

Figure 4.2: Models overview evaluated on MovieLens-1m. Each row corre-
sponds to the specific model.

0.05 0.10 0.15 0.20 0.25
Recall

0.385

0.390

0.395

0.400

0.405

Se
re

nd
ip

ity

5

1015
20

2530
40

50
6070

8090100
150

5 1015 20 25 30405060708090 100150

KNN popular

β = 1
β = 0

0.08 0.10 0.12 0.14 0.16 0.18 0.20
Recall

0.38325

0.38350

0.38375

0.38400

0.38425

0.38450

0.38475

0.38500

0.38525

Se
re

nd
ip

ity

1

10

20

50

100

Matrix factorization

0.05 0.06 0.07 0.08 0.09 0.10 0.11
Recall

0.384

0.386

0.388

0.390

0.392

Se
re

nd
ip

ity

4

8

16

64128
256 512

AutoRec

Figure 4.3: Recall versus serendipity graphs evaluated on MovieLens-100k.

0.02 0.04 0.06 0.08 0.10 0.12
Recall

0.4075

0.4100

0.4125

0.4150

0.4175

0.4200

0.4225

Se
re

nd
ip

ity

5

10
15

20
25304050
60

7080

90100

150

5

10 1520
25

30
4050

6070

80

90
100

150

KNN popular

β = 1
β = 0

0.06 0.07 0.08 0.09 0.10 0.11
Recall

0.410

0.411

0.412

0.413

0.414

0.415

Se
re

nd
ip

ity

1

10

20

50

100

Matrix factorization

0.040 0.045 0.050 0.055 0.060 0.065
Recall

0.408

0.410

0.412

0.414

0.416

0.418

0.420

Se
re

nd
ip

ity 4

8

16

64128

256

512

AutoRec

Figure 4.4: Recall versus serendipity graphs evaluated on MovieLens-1m.

26

4.3. Discussion

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Coverage

0.385

0.390

0.395

0.400

0.405

Se
re

nd
ip

ity

5

1015
20

2530
4050

6070
8090100

150

51015202530405060708090100150

KNN popular

β = 1
β = 0

0.02 0.04 0.06 0.08 0.10 0.12
Coverage

0.38325

0.38350

0.38375

0.38400

0.38425

0.38450

0.38475

0.38500

0.38525

Se
re

nd
ip

ity

1

10

20

50

100

Matrix factorization

0.035 0.040 0.045 0.050 0.055 0.060 0.065 0.070 0.075
Coverage

0.384

0.386

0.388

0.390

0.392

Se
re

nd
ip

ity

4

8

16

64 128
256512

AutoRec

Figure 4.5: Catalogue coverage versus serendipity graphs evaluated on
MovieLens-100k.

0.05 0.10 0.15 0.20 0.25
Coverage

0.4075

0.4100

0.4125

0.4150

0.4175

0.4200

0.4225

Se
re

nd
ip

ity

5
10

15
20

25304050
60

7080
90100

150

5

101520
25

30
4050

6070

80

90
100

150

KNN popular

β = 1
β = 0

0.02 0.04 0.06 0.08 0.10 0.12 0.14
Coverage

0.410

0.411

0.412

0.413

0.414

0.415

Se
re

nd
ip

ity

1

10

20

50

100

Matrix factorization

0.01 0.02 0.03 0.04 0.05 0.06
Coverage

0.408

0.410

0.412

0.414

0.416

0.418

0.420

Se
re

nd
ip

ity 4

8

16

64 128

256

512

AutoRec

Figure 4.6: Catalogue coverage versus serendipity graphs evaluated on
MovieLens-1m.

KNN MF AutoRec Serednipity Recall Coverage
61 22 96 0.420 0.063 0.111
59 84 72 0.420 0.052 0.120
56 21 152 0.417 0.065 0.116
59 90 128 0.417 0.067 0.117
61 15 128 0.420 0.050 0.113

Table 4.2: The best individuals of the ensemble method optimized by NSGA2
with 5 iterations and population size 7. Evaluated on MovieLens-1m.

for the NSGA2 algorithm. The recall for the meta-learning approach
reaches 0.068, while the usual approach reaches just 0.058.

4.3 Discussion

One of the conclusions of the first experiment is that the KNN algorithm with
a moderate k and β set to 0 performs better than any other model if we do
not consider training and evaluating time. When β is equal to 1, serendipity
is slightly increasing, but recall becomes extremely low. The fastest algorithm

27

4. Experiments

KNN MF AutoRec Serednipity Recall Coverage
60 10 168 0.421 0.055 0.110
70 10 168 0.420 0.058 0.111
73 16 232 0.419 0.068 0.108
67 19 48 0.421 0.050 0.110

(a) Meta-learning combined with random initialization.

KNN MF AutoRec Serednipity Recall Coverage
35 30 320 0.419 0.055 0.132
67 22 464 0.420 0.050 0.110
66 17 440 0.421 0.040 0.107
31 13 104 0.418 0.058 0.132

(b) Random initialization.

Table 4.3: Table (a) contains the results of an approach with an involved meta-
learning and Table (b) contains the results of a common approach. Evaluated
on MovieLens-1m.

is AutoRec, which is up to 13 times faster than KNN and up to 5 times faster
than MF. However, AutoRec’s performance is quite questionable. MF is an
intermediate option, which offers good performance and adequate time costs.

Based on the second experiment, we came to the conclusion that the pro-
posed ensemble method performs more or less the same as the MF algorithm.
However, the overall training time numbers in dozens, making the ensemble
method more complex to train and evaluate.

From the third experiment, we can conclude that the meta-learning ap-
proach has utility when the time costs are crucial. It improves the results
when the total training time is limited.

28

4.3. Discussion

Model Serendipity Recall Coverage Timea

KNN, β = 1 (k=5) 0.395 0.053 0.148 116
KNN, β = 1 (k=10) 0.400 0.042 0.124 130
KNN, β = 1 (k=15) 0.403 0.032 0.106 141
KNN, β = 1 (k=20) 0.407 0.032 0.093 150
KNN, β = 1 (k=25) 0.408 0.042 0.089 160
KNN, β = 1 (k=30) 0.408 0.042 0.081 169
KNN, β = 1 (k=40) 0.408 0.032 0.069 185
KNN, β = 1 (k=50) 0.409 0.032 0.056 199
KNN, β = 1 (k=60) 0.408 0.032 0.054 212
KNN, β = 1 (k=70) 0.407 0.042 0.049 226
KNN, β = 1 (k=80) 0.405 0.042 0.043 239
KNN, β = 1 (k=90) 0.404 0.042 0.042 251
KNN, β = 1 (k=100) 0.404 0.042 0.038 263
KNN, β = 1 (k=150) 0.405 0.032 0.030 319
KNN, β = 0 (k=5) 0.385 0.168 0.159 117
KNN, β = 0 (k=10) 0.385 0.179 0.124 133
KNN, β = 0 (k=15) 0.384 0.168 0.102 146
KNN, β = 0 (k=20) 0.384 0.179 0.100 156
KNN, β = 0 (k=25) 0.383 0.189 0.093 167
KNN, β = 0 (k=30) 0.383 0.232 0.087 176
KNN, β = 0 (k=40) 0.383 0.232 0.075 191
KNN, β = 0 (k=50) 0.383 0.232 0.076 206
KNN, β = 0 (k=60) 0.383 0.232 0.073 219
KNN, β = 0 (k=70) 0.383 0.221 0.069 234
KNN, β = 0 (k=80) 0.383 0.221 0.062 246
KNN, β = 0 (k=90) 0.383 0.211 0.062 256
KNN, β = 0 (k=100) 0.383 0.242 0.060 269
KNN, β = 0 (k=150) 0.383 0.211 0.057 323

MF (SVD, n comp=1) 0.385 0.084 0.015 176
MF (SVD, n comp=10) 0.383 0.211 0.120 142
MF (SVD, n comp=20) 0.384 0.211 0.118 142
MF (SVD, n comp=50) 0.385 0.200 0.114 143
MF (SVD, n comp=100) 0.384 0.200 0.111 145
AutoRec (hide layer=4) 0.394 0.074 0.052 55
AutoRec (hide layer=8) 0.395 0.105 0.051 53
AutoRec (hide layer=16) 0.388 0.074 0.033 55
AutoRec (hide layer=64) 0.384 0.095 0.058 58
AutoRec (hide layer=128) 0.383 0.053 0.062 61
AutoRec (hide layer=256) 0.384 0.063 0.064 59
AutoRec (hide layer=512) 0.385 0.095 0.038 57

aTraining and evaluating time in seconds.

Table 4.4: Models performance on MovieLens-100k dataset. 29

4. Experiments

Model Serendipity Recall Coverage Timea

KNN, β = 1 (k=5) 0.423 0.020 0.262 1374
KNN, β = 1 (k=10) 0.422 0.017 0.212 2259
KNN, β = 1 (k=15) 0.423 0.013 0.184 2475
KNN, β = 1 (k=20) 0.423 0.018 0.164 2766
KNN, β = 1 (k=25) 0.422 0.012 0.144 3029
KNN, β = 1 (k=30) 0.422 0.013 0.134 3169
KNN, β = 1 (k=40) 0.422 0.012 0.119 3549
KNN, β = 1 (k=50) 0.422 0.012 0.110 3949
KNN, β = 1 (k=60) 0.423 0.013 0.097 4239
KNN, β = 1 (k=70) 0.421 0.013 0.091 4924
KNN, β = 1 (k=80) 0.420 0.013 0.086 5498
KNN, β = 1 (k=90) 0.419 0.013 0.082 5561
KNN, β = 1 (k=100) 0.418 0.013 0.079 5820
KNN, β = 1 (k=150) 0.415 0.012 0.058 7185
KNN, β = 0 (k=5) 0.417 0.079 0.225 615
KNN, β = 0 (k=10) 0.415 0.098 0.168 817
KNN, β = 0 (k=15) 0.414 0.104 0.144 963
KNN, β = 0 (k=20) 0.414 0.101 0.125 1101
KNN, β = 0 (k=25) 0.413 0.099 0.118 1220
KNN, β = 0 (k=30) 0.414 0.103 0.112 1336
KNN, β = 0 (k=40) 0.413 0.113 0.100 1537
KNN, β = 0 (k=50) 0.413 0.111 0.089 1729
KNN, β = 0 (k=60) 0.412 0.116 0.083 1899
KNN, β = 0 (k=70) 0.412 0.111 0.079 2069
KNN, β = 0 (k=80) 0.410 0.114 0.075 2230
KNN, β = 0 (k=90) 0.409 0.106 0.070 2380
KNN, β = 0 (k=100) 0.408 0.109 0.067 2532
KNN, β = 0 (k=150) 0.407 0.103 0.054 3227

MF (SVD, n comp=1) 0.415 0.061 0.011 2556
MF (SVD, n comp=10) 0.410 0.099 0.129 2453
MF (SVD, n comp=20) 0.412 0.109 0.131 2071
MF (SVD, n comp=50) 0.413 0.101 0.146 2248
MF (SVD, n comp=100) 0.410 0.098 0.150 2166
AutoRec (hide layer=4) 0.421 0.036 0.028 529
AutoRec (hide layer=8) 0.406 0.045 0.006 567
AutoRec (hide layer=16) 0.411 0.060 0.009 584
AutoRec (hide layer=64) 0.415 0.061 0.028 628
AutoRec (hide layer=128) 0.418 0.068 0.048 692
AutoRec (hide layer=256) 0.418 0.055 0.062 623
AutoRec (hide layer=512) 0.417 0.063 0.019 650

aTraining and evaluating time in seconds.

Table 4.5: Models performance on MovieLens-1m dataset.30

Chapter 5
Conclusion

In this final chapter, we will conclude the whole thesis, including the oppor-
tunities for future research.

5.1 Summary

In this thesis, we addressed the hyperparameter optimization problem in rec-
ommendation systems employing brute-force and evolutionary multi-objective
approaches. We tested the state-of-the-art algorithms on publicly available
academic MovieLens datasets. We presented the alternative definition of
serendipity based on previous studies. We proposed an ensemble model,
which eventually performed almost as a Matrix Factorization algorithm. We
proposed a meta-learning approach which resulted in better performance for
time-bounded optimization. We studied the relationship between the evalu-
ated metrics and concluded that serendipity negatively correlates with recall,
resulting in a recall-serendipity trade-off.

5.2 Future work

While working on this thesis, the author came up with several ideas to be
explored:

• Evaluating approaches using more extensive datasets, e.g., MovieLens-
20M or Netflix Prize.

• Developing a data processing framework designed for recommendation
systems.

31

Bibliography

[1] Candillier, L.; Jack, K.; et al. State-of-the-art recommender systems. In
Collaborative and Social Information Retrieval and Access: Techniques
for Improved User Modeling, Orange Labs Lannion, France: IGI Global,
2009, ISBN 9781605663067, pp. 1–22.

[2] Isinkaye, F.; Folajimi, Y.; et al. Recommendation systems: Principles,
methods and evaluation. Egyptian Informatics Journal, volume 16, no. 3,
2015: pp. 261–273, ISSN 1110-8665.

[3] IBM. What is Machine Learning? [online]. 15.07.2020 [cit. 20.04.2021].
Available from: https://www.ibm.com/cloud/learn/machine-learning

[4] He, X.; Zhao, K.; et al. AutoML: A survey of the state-of-the-art.
Knowledge-Based Systems, volume 212, Jan 2021: p. 106622, ISSN 0950-
7051.

[5] Hutter, F.; Kotthoff, L.; et al. (editors). Automated Machine Learning:
Methods, Systems, Challenges. Switzerland: Springer Nature, 2019, ISBN
978-3-030-05318-5.

[6] Kord́ık, P.; Koutńık, J.; et al. Meta-learning approach to neural network
optimization. Neural networks : the official journal of the International
Neural Network Society, volume 23, 02 2010: pp. 568–82.

[7] Ying, C.; Klein, A.; et al. Nas-bench-101: Towards reproducible neural
architecture search. In International Conference on Machine Learning,
PMLR, 2019, pp. 7105–7114.

[8] Pilario, K. E. S.; Cao, Y.; et al. A Kernel Design Approach to Improve
Kernel Subspace Identification. IEEE Transactions on Industrial Elec-
tronics, volume 68, no. 7, 2021: pp. 6171–6180.

33

https://www.ibm.com/cloud/learn/machine-learning

Bibliography

[9] Bergstra, J. S.; Bardenet, R.; et al. Algorithms for Hyper-Parameter
Optimization. In Advances in Neural Information Processing Systems 24,
edited by J. Shawe-Taylor; R. S. Zemel; P. L. Bartlett; F. Pereira; K. Q.
Weinberger, Curran Associates, Inc., 2011, pp. 2546–2554.

[10] Shani, G.; Gunawardana, A. Evaluating recommendation systems. In
Recommender systems handbook, Springer, 2011, pp. 257–297.

[11] Vargas, S.; Castells, P. Rank and Relevance in Novelty and Diversity
Metrics for Recommender Systems. In Proceedings of the fifth ACM con-
ference on Recommender systems, New York, NY, USA: Association for
Computing Machinery, 2011, ISBN 9781450306836, p. 109–116.

[12] Kotkov, D.; Konstan, J. A.; et al. Investigating Serendipity in Recom-
mender Systems Based on Real User Feedback. In Proceedings of the
33rd Annual ACM Symposium on Applied Computing, SAC ’18, New
York, NY, USA: Association for Computing Machinery, 2018, ISBN
9781450351911, p. 1341–1350.

[13] Murakami, T.; Mori, K.; et al. Metrics for Evaluating the Serendipity of
Recommendation Lists. In New Frontiers in Artificial Intelligence, edited
by K. Satoh; A. Inokuchi; K. Nagao; T. Kawamura, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, ISBN 978-3-540-78197-4, pp. 40–46.

[14] Ge, M.; Delgado-Battenfeld, C.; et al. Beyond accuracy: evaluating rec-
ommender systems by coverage and serendipity. In Proceedings of the
fourth ACM conference on Recommender systems, 2010, pp. 257–260.

[15] Deb, K. Multi-objective optimisation using evolutionary algorithms: an
introduction. In Multi-objective evolutionary optimisation for product de-
sign and manufacturing, Springer, 2011, pp. 3–34.

[16] Blank, J.; Deb, K. pymoo: Multi-objective optimization in python. IEEE
Access, volume 8, 2020: pp. 89497–89509.

[17] Deb, K.; Pratap, A.; et al. A fast and elitist multiobjective genetic al-
gorithm: NSGA-II. IEEE Transactions on Evolutionary Computation,
volume 6, no. 2, 2002: pp. 182–197.

[18] Kok, J.; Gonzalez, F.; et al. An FPGA-based approach to multi-objective
evolutionary algorithm for multi-disciplinary design optimisation. In Pro-
ceedings of the International Conference on Evolutionary and Determinis-
tic Methods for Design, Optimization and Control with Applications to In-
dustrial and Societal Problems (Eurogen 2011), CIRA-Italian Aerospace
Research Centre, 2011, pp. 1–10.

34

Bibliography

[19] Wang, T.-H.; Hu, X.; et al. AutoRec: An Automated Recommender
System. In Fourteenth ACM Conference on Recommender Systems, 2020,
pp. 582–584.

[20] Anand, R.; Beel, J. Auto-Surprise: An Automated Recommender-System
(AutoRecSys) Library with Tree of Parzens Estimator (TPE) Optimiza-
tion. Fourteenth ACM Conference on Recommender Systems, Sep 2020.

[21] Bergstra, J.; Komer, B.; et al. Hyperopt: A Python library for model se-
lection and hyperparameter optimization. Computational Science & Dis-
covery, volume 8, 07 2015: p. 014008.

[22] Harper, F. M.; Konstan, J. A. The MovieLens Datasets: History and
Context. ACM Trans. Interact. Intell. Syst., volume 5, no. 4, Dec. 2015,
ISSN 2160-6455.

[23] Kuznetsov, S. Ontologies in Recommender Systems. Dissertation thesis,
České vysoké učeńı technické v Praze. Fakulta informačńıch technologíı,
2020.

[24] Steck, H. Item Popularity and Recommendation Accuracy. In Proceedings
of the Fifth ACM Conference on Recommender Systems, New York, NY,
USA: Association for Computing Machinery, 2011, ISBN 9781450306836,
p. 125–132.

[25] Sedhain, S.; Menon, A. K.; et al. Autorec: Autoencoders meet collab-
orative filtering. In Proceedings of the 24th international conference on
World Wide Web, 2015, pp. 111–112.

[26] Tomáš, Ř. Manipulating the Capacity of Recommendation Models in
Recall-Coverage Optimization. Dissertation thesis, České vysoké učeńı
technické v Praze. Vypočetńı a informačńı centrum., 2019.

35

Appendix A
Acronyms

RS Recommendation system

CF Collaborative filtering

CBF Content-based filtering

ML Machine Learning

EA Evolutionary algorithm

37

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
thesis.pdf..............................the thesis text in PDF format
src.......................................the directory of source codes

experiments................................implementation sources
thesis..............the directory of LATEX source codes of the thesis

39

	Introduction
	Motivation
	Problem statement
	Goals of this thesis

	Background
	Theoretical background
	RS approaches
	Collaborative filtering
	Content-based filtering
	Hybrid recommender systems

	Machine learning
	Automated machine learning
	Hyperparameter optimization
	Meta-learning
	Evaluation of RS
	Metrics
	Similarity measurement
	Precision, recall, and catalogue coverage
	Serendipity and diversity

	Multi-objective optimization

	Related work

	Methodology
	Data Understanding
	Data Preparation
	Modeling
	K-Nearest Neighbours
	Matrix factorization
	Truncated SVD

	Neural networks
	Ensemble
	Meta-learning
	Hyperparameter optimization

	Evaluation methodology

	Experiments
	Offline Experiments Setup
	Results
	Discussion

	Conclusion
	Summary
	Future work

	Bibliography
	Acronyms
	Contents of enclosed CD

