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Abstract

The management of search-and-rescue
operations is a difficult task. A proper
assignment of resources for individual seg-
ments of an estimated area where a miss-
ing person has been reported requires lots
of manual work. Automation of this pro-
cess could reduce the time needed for the
planning phase of these operations. The
exact information available about the ter-
rain type in hard-to-reach areas is often
out of date by many years. This master
thesis is concerned with the application of
machine learning to the analysis of satel-
lite imagery. Predicting the terrain type
from a satellite image that is only a few
days old can add valuable information to
an existing system for planning search-
and-rescue operations used by the rescue
services of the Czech Republic. In this
work, several classifiers were implemented
and an accuracy assessment experiment
was conducted.

Keywords: satellite imagery, Sentinel-2,
Land-cover, machine learning, categorical
classification, geo-spatial images,
search-and-rescue operations

Supervisor: DOC. ING. MIROSLAV
BUREŠ, PH.D.

Abstrakt

Management pátracích operací po po-
hřesovaných osobách je složitý úkol. Velké
množství manuální práce je vyžadováno
při rozvržení pátracích prostředů do jed-
nolivých sektorů pátrací oblasti. Automa-
tizace tohoto procesu může výrazně snížit
čas potřebný pro plánování takové ope-
race. Přesná data popisující typy terénu
v odlehlých oblastech jsou často několik
let stará. Tato diplomová práce se zabývá
aplikací metod strojového učení pro ana-
lýzu satelitních snímků. Predikce typu te-
rénu podle pouze několik dní starého sa-
telitního snímku může poskytnout cenné
informace existujícímu systému pro plá-
nování pátracích operací používanému
v České Republice. V této práci je im-
plementováno několik klasifikátorů, u kte-
rých je následně proveden experiment pro
vyhodnocení jejich přesnosti.

Klíčová slova: satelitní snímky,
Sentinel-2, anotace mapového podkladu,
strojové učení, kategorická klasifikace,
geoprostorové snímky, pátrací operace po
pohřešovaných osobách

Překlad názvu: Anotace mapového
podkladu podle satelitních snímků terénu
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Chapter 1

Introduction

Segmenting the surface of the Earth by distinct terrain types and providing
machine-readable labels for such segments - a problem also known by the
name Land-cover - can be used in a variety of geographic information system
applications.

The focus of this work is to classify terrain in hard-to-reach regions, such
as mountains, wast forests, and highlands. Proper labeling of such areas can
then be used by the search-and-rescue services of the Czech Republic as an
input for their rescue-operation planner system called Pátrač. With accurate
enough information about the area of a particular operation, the planner can
provide more relevant recommendations for the organization of the rescue
operation and ultimately help to locate the missing person faster.

For this purpose, the terrain data must be as recent as possible. Therefore,
using precise map structures is not desirable because this data is typically
a few years out of date. Aerial surface imaging provides more up-to-date
data, however, the delay can still be unacceptable for some regions.

Orbital satellite missions like Sentinel-2 photograph every region of the
whole planet every week. This data is also available for any use and free of
charge, which makes it the data-source of choice for this project.

In this thesis, several machine learning methods used for satellite imagery
classification are discussed and validated on several possible rescue operation
locations.
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1. Introduction .....................................
1.1 Task-definition

The task is defined in the following way: given a satellite image of rescue
operation’s area, produce labeled image for the Pátrač planner system. The
goal of this thesis is to:..1. inspect the geo-spatial images available from the Sentinel-2 mission,..2. explore existing methodology to design a method for satellite image

classification,..3. analyze Sentinel-2 data to further understand the data-source and it’s
limitations and possibilities,..4. follow selected classification methods and implement a classifier for
Sentinel-2 imagery,..5. evaluate the classifier on real examples and provide relevant accuracy
assessment.

Chapters of this thesis are structured based on the steps of the mentioned
goal in the following manner:..1. Chapter one describes the current state of search-and-rescue operation

methodology in the Czech Republic and then covers some background
knowledge about geographic information systems and remote-sensing
imagery using orbital Satellites...2. Second chapter explores general methods of obtaining labels from satellite
imagery and existing approaches used for solving this particular task
before...3. Chapter three then states algorithms and structures of selected method-
ology used in our implementation...4. Fourth chapter is the implementation part, where we go over all of the
steps necessary to predict labels for a satellite image...5. Fifth chapter defines an experiment used for evaluating our method and
reports results of conducted experiments...6. And in the last chapter we discuss the prerequisits and accuracy of our
classification method in a brief summary.

2



Chapter 2

Domain introduction

This chapter briefly addresses the essentials regarding the domain of this
classification task. That includes the methodology of the Czech Republic’s
rescue operations, remote sensing systems - such as the Sentinel-2 - and a brief
introduction to geographic information systems.

2.1 Search-and-rescue missions

If a missing person’s assumed location is in the open-terrain (e.g. mountains,
high-lands, fields, etc.), a search-and-rescue operation is initiated by the Czech
Republic’s Police. During this operation, human and material resources from
the Police as well as resources from other structures of the Integrated Rescue
System of the Czech Republic (like medics and firemen) are assigned for the
search-and-rescue operation.

The problem of allocating specific resources for specific regions of the
searched area as efficiently as possible arises. The goal of the Vyhledávání
pohřešovaných osob (The Search of Missing People) methodology [2] is to
use all available resources most efficiently, with respect to search time and
economy. It achieves this by assigning proper resources to regions with their
most search-effective terrain type.

3



2. Domain introduction .................................
The duration of the search-and-rescue operation can also be reduced by

minimizing the time spent during decision processes. [2] This is achieved by:

. expert-training of the commanders of the operation and rescue teams,. using IT systems for efficient task assignment among rescue teams,. having state-of-the-art precise topography maps,. using electronic navigation and communication devices.

The steps of the pipeline for this methodology are as follows:..1. estimating an area where the missing person is probably still located,..2. splitting this area into search regions (sectors),..3. estimate needed resources for an effective search of all sectors,..4. managing provided resources (allocate rescue teams to specific sectors)
and initiate the physical search,..5. analyzing and validate the work of rescue teams,..6. creating documentation of the work that has been done,..7. evaluating search and rescue operation and store all statistics obtained
during the operation.

The main goal of this thesis is to provide relevant information about the
current terrain type within each sector. Given a segmentation into sectors,
this information can be used to allocate search-and-rescue resources to sectors
more efficiently (the third step of the pipeline) based on recent data. The
system could then either automatically allocate resources or mark areas
with inconsistent terrain types for further inspection by a human operator.
Inconsistent terrain type occurs in such sectors where the terrain type defined
by an outdated map data source does not match the recent terrain type
predicted by our method.

2.1.1 Search sectors

The division of the target area into distinct sectors is crucial for the effective-
ness of the search-and-rescue operation.

4



.............................. 2.1. Search-and-rescue missions

Each sector must be assignable to a specific search-and-rescue resource. In
practice, this means that one sector should consist of a single terrain type.
Table 2.1 shows the effectiveness of search and rescue resources for various
terrain types.
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Open field E E E P E E N N
Farming field E P P N P P N N
Forest E E E P P P N N
Thicket E N N N P P N N
Steep slope E P N N E E N N
Rocks E N N N E E N N
Road/Path E E E E E E N N
Trench E E P P E E N N
Water area N N N N P N E E
Bank/Coast E P P N E P E E

Table 2.1: Effectiveness of search and rescue resources (E - effective, P - partially
effective, N - not effective) [2].

In an ideal case, the classifier built in this thesis would be able to distinguish
all terrain types listed in table 2.1. However, that is certainly not possible using
only satellite imagery. To achieve proper separation of all mentioned terrain
types, a combination of satellite imagery, elevation maps and infrastructure
maps needs to be used by the search-and-rescue operation planner.

The list of terrain types in table 2.1 also does not include all possible
terrain types. Additional types such as snow, ground-soil, and man-made
objects need to be considered when classifying a satellite image, even though
it does not correspond to any search sector of the search-and-rescue mission.

The size and shape of a sector are also important. The optimal size of
a sector was set to 20 ha and minimal size to 10 ha (from previous experience
with search-and-rescue operations) [2]. As for the shape, an optimal one
would be a square, but that is usually not feasible because of the landscape.
The shape should be as simple as possible and the edges of the shape should
utilize natural landmarks, such as rivers, forest edges, or man-made objects

5



2. Domain introduction .................................
like roads and paths. Following natural landmarks helps the rescue teams to
successfully search the entire sector even where the GPS is not available [2].

2.2 Remote sensing systems

The following section is based mostly on the Remote Sensing book [3] by
Andrew Skidmore.

Remote sensing can be defined as the acquisition of physical data of an
object with a sensor that has no direct contact with the object. Photography
of the surface of the Earth from above started with balloon flights, then
proceeded with aerial images taken from planes, and then finally in the
1960s, the first meteorological satellite was launched into orbit [4]. The
first repetitive and systematic observations were acquired by the Landsat 1
mission.

In 1980 NASA developed the first high spectral resolution instruments,
which were able to cover not only the visible light waves but also shortwave
infrared portions of the electromagnetic spectrum. At almost the same time,
the first microwave remote sensing instrument was invented. Mounting these
instruments on orbiting satellites provided ready access data of the Earth’s
surface on a global scale.

2.2.1 Low-resolution satellite systems

With a spatial resolution higher than 100 m, these satellites trade reduced
spatial resolution for the high frequency of visits. They are typically placed
in the geostationary orbit, providing a continuous point of view over a certain
area. Frequent revisits are useful for meteorological applications, as changes in
weather can be noticed quickly by these satellites. Examples of low-resolution
satellite systems are Meteosat and NOAA.

Meteosat. Meteosat 1 was the first European meteorological geostationary
satellite. Nowadays, Meteosat satellites have a spectral resolution of 2.5 km,
providing images every 30 minutes.

6



.................................. 2.3. Sentinel-2 mission

NOAA. The NOAA satellite program is designed primarily for meteorological
applications. The system has evolved over several generations of satellite
instruments. NOAA operates in a two-satellite system. Both satellites are in
a sun-synchronous orbit. Every spot on the surface of the Earth is captured
at least twice each day. The spatial resolution of these satellites ranges from
1 km to 6 km, depending on wavelength bands. [5]

2.2.2 Medium-resolution satellite systems

These systems have medium area coverage, medium spatial-resolution, as
well as a moderate revisit capacity. The width of the swath captured by
the satellite is between 50 and 200 km, the spatial resolution is typically
10 - 100 m, and a revisit time of the same area on the surface of the Earth is
more than three days.

The scale of images taken by medium-resolution satellite systems makes
them especially suited for land management and land-use planning areas such
as regions, countries, and possibly continents.

Landsat. Landsat mission, developed by NASA and the US Geological
Survey, is the longest-running operation of this kind (operational since 1972).
The most recent version of Landsat satellite systems is the Landsat 8. The
orbits of Landsat 7 and 8 are set up for a revisit time of 8 days. The spatial
resolution is 30 m.

Sentinel. Sentinel-2 mission, developed by the European Space Agency, is
Europe’s version of the Landsat operation. More details about this mission
can be found in section 2.3.

2.3 Sentinel-2 mission

The Sentinel-2 is a European high-resolution, multi-spectral imaging mission.
The mission is characterized by twin satellites flying in the same orbit but
phased at 180°. This allows for a high revisit frequency of 5 days at the
Equator. [1]
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The objective of the Sentinel-2 mission is to provide frequent data for the

study climate change, land monitoring, emergency management and security.
Particular examples of its usage are land-cover maps, land-change detection
maps and geophysical variables.

This makes the Sentinel-2 mission a useful data source for achieving the goal
of this project. The only downside of the mission is the 10-meter resolution,
which does not provide an ideal amount of details. However, only commercial
or military satellites that are not publicly available offer satellite imagery
with higher resolution, and for this reason, the Sentinel-2 mission was chosen
as the main dataset for this thesis.

2.3.1 Sensing

The two satellites scan the Earth’s surface in a passive way. The Multi-
Spectral Instrument (MSI) uses a push-broom concept. A push-broom sensor
works by collecting rows of image data across the orbital swath and utilizes
the forward motion of the spacecraft along the path of the orbit to provide
new rows for acquisition [1].

The instrument measures the radiance reflected by Earth’s surface in 13
spectral bands according to their wavelengths. Table 2.2 lists all of the
important information about supported MSI bands relevant for this project.

Band
number

Central
wavelength
(nm)

Spatial
resolution
(m)

Description

1 443 60 coastal aerosol
2 492 10 blue visible light
3 560 10 green visible light
4 665 10 red visible light
5 704 20 vegetation red edge
6 740 20 vegetation red edge
7 782 20 vegetation red edge
8 833 10 near infra-red (NIR)
8a 864 20 narrow near infra-red
9 945 60 water vapour
10 1374 60 SWIR - cirrus
11 1614 20 SWIR
12 2202 20 SWIR

Table 2.2: Sentinel-2 satellite bands [1].
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................................... 2.4. Geo-spatial data

2.3.2 Provided data

There are two output products available for the Sentinel-2 mission.

The Level-1C product contains the top-of-atmosphere reflectance mapped
to a cartographic geometry. This product is suitable for detecting clouds in
the atmosphere and even comes with a rough pre-computed cloud mask [1].

The second product is the Level-2A atmospherically corrected surface
reflectance mapped to a cartographic geometry. This product is considered to
be analysis-ready data, as it can be directly used for analysis without further
pre-processing [1].

2.4 Geo-spatial data

In this section, several topics regarding the geo-spatial datasource are explored.

2.4.1 Geographic coordinate systems

GCS is a coordinate system associated with positions on a planet. The position
can be given by various representations. The most common and relevant
for the next chapters are the spherical coordinate system and coordinates
projected onto a plane.

Spherical coordinate system. A 3-tuple: latitude longitude and elevation.
With the origin in the center of a spherical planet, these two angles and
one distance number uniquely define a position (often on the surface) with
respect to the reference ellipsoid of the planet. Omitting the elevation number,
latitude and longitude are enough to determine a point on the surface of the
Earth.

Map projection. A systematic representation of all or part of the surface
of a round body on a plane [6]. A distortion of some kind must always be
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2. Domain introduction .................................
present in the projection because a spherical object can not be mapped onto
a plane without one. Depending on the use case, a map projection that does
not obscure the result too much is chosen.

There are more than 20 map projections described in detail in [6]. In this
thesis, only the Universal Transverse Mercator projection used by Sentinel-2
satellite imagery [1] will be discussed further.

Transverse Mercator projection. This projection method, first presented
by Johann Heinrich Lambert in 1772, is a transverse-cylindrical projection.
The central meridian, the equator and each meridian 90° from the central
meridian are straight lines. This map projection has little error close to the
Equator. The main usage of this projection is for large-scale maps (like an
entire map of the United States of America at a scale of 1:250,000) [6]. The
Universal Transverse Mercator projection was adopted by the US Army for
designing rectangular coordinates on large-scale military maps of the entire
world. It contains additional parameters, such as central meridians. This
creates a world-wide grid that segments the planet into quadrangles. Splitting
the world into zones minimizes the amount of distortion of the Transverse
Mercator projection [7].

2.4.2 Projected coordinate systems

A two-dimensional coordinate reference system is commonly defined by two
axes. At right angles to each other, they form the X and Y plane. Additionally,
an optional Z-axis perpendicular to both X and Y axes can be added for
elevation.

2.4.3 Geo-spatial image

A geo-spatial image is a raster image, where each pixel can be mapped to
a specific location on Earth’s surface. This mapping is possible with additional
metadata (apart from standard image resolution) associated with the image
file:

. dataset bounds,
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................................... 2.4. Geo-spatial data

. transform matrix,. coordinate-reference system (CRS).

Firstly, the data-set bounds determine the bounding box of the image with
respect to the projected coordinate system.

Secondly, the transform matrix is an affine transformation matrix that
maps pixel positions in (row, column) coordinates to (x, y) spatial positions
of the projected coordinate system.

And finally, the CRS contains the map projection associated with the
geo-spatial image. A position of a pixel in the projected coordinate system
can be transformed to a location in the geographic coordinate system, thus
resulting in a specific location on the surface of the Earth.

The geo-spatial image usually contains only one data channel, which is
often a specific wavelength band reading. However, more channels can be
present in the image, for example red, green, and blue channels for a true-color
image composite. In fact, the geo-spatial image formats (like GeoTIFF or
netCDF) support unlimitted number of data bands.
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Chapter 3

Research of existing methodology and
solutions

This chapter firstly states several approaches to the satellite imagery classifi-
cation problem, including methods used directly for the Sentinel-2 images.
Then, a few existing solutions to this problem are discussed in this chapter.

3.1 Existing satellite imagery classification
methods

In this section, the theoretical approaches to the satellite image classification
problem are described in more detail. After that, a few existing solutions to
image classification are discussed further.

3.1.1 Manual labeling

The most straightforward approach to satellite imagery classification is to
use humans to label the images. This approach is very robust and therefore
it is often used for obtaining ground-truth labels. These labels can then be
used to evaluate automatic methods. Manual labeling, however, has a few
problems.
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Firstly, it is very time-consuming. Precise labeling of a megapixel image

can take a significant amount of time. This makes the manual approach not
suitable for labeling high-resolution images of larger areas (like countries and
continents).

Another problem is the requirement of an analyst who is familiar with
the area. The accuracy of the classification does depend on the analyst’s
knowledge and experience.

An example of a data-set of manually collected labels for most European
countries is the CORINE Land cover (see section 3.2.1).

3.1.2 Automatic classification

A supervised classification can automate the process of labeling pixels by
making predictions based on a mathematical model. Methods of supervised
classification require a set of training data which is used to set the parameters
of the classifier.

The simplest approach to this classification problem is to classify each
pixel independently of its surroundings. This method is called per-pixel
classification and it has some advantages over more complex methods. The
advantage is mainly the computation time required to predict pixels of a
satellite image. Working with each pixel separately also opens the door for
many different existing classifier solutions.

The study [8] compares the performance of known classifiers (k-nearest
neighbor, random forest, support vector machine) in a per-pixel land-cover
classification of Sentinel-2 images. Per-pixel classification can also be used
on smaller areas with high resolution, reaching overall accuracy of over 90 %
with the SVM classifier. Another study [9] uses per-pixel classification to
achieve higher than 85 % accuracy on a 0.5 m resolution image of North
Carolina.

A different method uses contextual information from the neighborhood of
a target pixel to predict its label. By utilizing the surroundings, this method
has the potential to distinguish pixels with equal single-pixel features from
one another. The list of classifiers supporting contextual features is limited,
and the prediction phase also requires the surroundings of a pixel, making it
computationally more demanding.
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A convolutional neural network classifier was used by [10] to learn contextual
features from high-resolution satellite imagery. Multiple CNN classifiers are
trained using multiple pixel neighborhood sizes (15, 25, 35, and 45-pixel size).
The prediction is then an ensemble of all of these classifiers, achieving an
overall accuracy of 94 %. A different study [11] uses an iterative decision
forest classifier to predict pixel labels based on their neighborhood to achieve
84 % overall accuracy in a satellite image of the German city Rostok.

3.2 Existing land-cover applications

The following sections describe the use-cases and limitations of existing
land-cover solutions.

3.2.1 CORINE Land Cover

The CORINE Land Cover (CLC) project initiated in 1985 is an inventory
of labeled vector data. Europe is the area of interest of this project. The
labeled data is available for download for free. The dataset as well as the
methods of obtaining it changed throughout the years. For this reason, only
the CLC2018 dataset, which is the latest completed CORINE dataset, is
discussed further.

The CLC2018 is a dataset with 44 distinct category classes. It has a
minimum mapping unit of 25 hectares and the minimum width of linear
elements is 100 meters [12]. This means that the smallest feature polygon of
a single class is always larger than 25 hectares in size.

Earth observation satellite imagery is the basis of CLC mapping, providing
up-to-date information about the surface of the Earth in proper resolution.
Sentinel-2 and Landsat-8 satellite imagery is used in the case of CLC2018.

The following are the examples of the use cases of the CLC2018 data-set:
[13]

. the monitoring of the expansion of urban areas over the years in Germany,
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. the analysis of scale and type of damage to forest areas,. analysis reports for territorial development and cohesion, climate change

mitigation and adaptation, agriculture, and forestry management.

Even though this existing solution seems like the perfect candidate for this
use-case, the CLC2018 data-set aims to help with the classification of huge
areas (global landscape of countries or regions). The minimum mapping unit
of 25 hectares makes it not precise enough for search and rescue operations,
where the optimal size of a single search sector mentioned in section 2.1.1 is
20 hectares. Because of the imprecisions, this dataset can not help us gather
training data for our methods of supervised classification.

3.2.2 Vandersat

Vandersat uses its own set of remote-sensing satellites which use passive and
active microwave radiation to obtain an image describing the quality of the
soil. [14]

The microwaves pass through clouds and can be detected even at night.
This makes the sensing window to be 24 hours a day, which allows much more
frequent imaging.

The data acquired by Vandersat’s satellites include information about soil
moisture, biomass, temperature, and vegetation optical depth. Using this
information, Vandersat’s classifiers are able to predict the quality of soil
for agricultural purposes. Automatically identifying areas of draught helps
farmers to develop smarter crop insurance, in collaboration with the world’s
most innovative (re)insurers and brokers. [14]

The dataset is proprietary and thus can not be used in this thesis.
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Chapter 4

Used algorithms and structures

The following chapter describes the theoretical concepts behind algorithms
and structures used later in the implementation chapter 5. Some background
knowledge of statistics is expected from the reader.

4.1 K-means clustering

The k-means algorithm is a an iterative method for partitioning observations
into k clusters (where k is a required parameter).

The input to this algorithm is a set of n observations: D = {xi | i = 1 .. n}.
Each observation xi ∈ Rd is a d-dimensional vector of features.

In the initial step, the algorithm chooses k observations as intial centroid
locations. There are multiple methods for choosing centroid locations in the
initial step - the simplest one is random sampling.

The algorithm then iterates till convergance with two steps:..1. assignment of each observation to its closest centroid,
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4. Used algorithms and structures ...............................2. each centroid’s location is updated to center (geometric mean) of all
observations assigned to that centroid.

The algorithm converges when the centroid locations do not move by at
least some small threshold value.

A specification of a distance metric is required for this algorithm to compute
the distance between centroid’s location and an observation. The default
distance metric is the Euclidean distance. Using this metric, we can define
the cost function for this algorithm:

n∑
i=1

arg min
j
‖xi − cj‖22 ,

where cj is the location of j-th centroid and ‖·‖2 is L2 norm (the Euclidean
distance metric in space). This cost function is non-negative and decreases
with each new relocation of centroids [15]. Once the algorithm converges,
a minimum is found. It is, however, only a local minimum, because the cost
function is non-convex and the algorithm descends greedily [15].

The main issue of the k-means algorithm is that the assignment of observa-
tions to their nearest centroid limits the cluster shape to a hyper-sphere. If the
input data can not be clustered reasonably into hyper-spherical clusters, then
the local minimum found by the k-means has poor clustering performance.
This problem is encountered for example when the features of observations
are not of the same scale, and can be mitigated by whitening (a process
which transforms the input observations so that each of the random variables
associated to the features has a unit variance) [16].

4.2 EM-algorithm

Clusters in data can often be accurately represented by a mixture of mathe-
matical models. These mixtures can be fitted to the data via the Expectation-
Maximization (EM) algorithm iteratively by the maximum likelihood estima-
tion method.
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In case of the normal mixture model-based approach to clustering, the data
is assumed to be sampled from a mixture of an initially specified number
(g) of multivariate normal densities. The unknown proportions of these
normal densities are denoted by π1, . . . , πg. The combined probability density
function, which each data point is assumed to be taken from, is:

f(y; Ψ) =
g∑

i=1
πi · φ(y;µi,Σi) ,

where φ(y;µi,Σi) denotes the p-variate density probability function with
mean vector µi and covariance matrix Σi. Ψ represents the unknown parame-
ters: mixing proportions π1, . . . , πg, elements of component means µ1, . . . ,µg,
and distinct elements of the component-covariance matrices Σ1, . . . ,Σg. [17]

Once the models are fitted, a probabilistic clustering of the data into
g clusters can be obtained. Each data point is assigned to the component
to which it has the highest estimated posterior probability of belonging.
Posterior probability that an observation yj belongs to the i-th component is
denoted by τi(yj) and can be computed by:

τi(yj ,Ψ) =
πi · φ(yj ;µi,Σ)i∑g

k=1 πk · φ(yj ;µk,Σk) .

4.2.1 Maximum likelihood estimation

The maximum likelihood estimate of Ψ can be obtained as an appropriate
root of the likelihood equation:

∂ logL(Ψ)
∂Ψ = 0 .

Here, L(Ψ) denotes the likelihood function for Ψ formed from the observed
random sample y1, . . . ,yn, and so the log-likelihood is obtained by:
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logL(Ψ) =
n∑

j=1
log f(yj ; Ψ) .

4.2.2 Expectation-Maximization steps

The Expectation-Maximization algorithms is an iterative procedure of two
steps:..1. the E-step computes posterior probabilities of belonging to each mixture

component for each data point,..2. the M-step estimates new parameters Ψ from the assignment of the
E-step.

Formally, the E-step in iteration k computes: [15]

τ
(k)
i,j =

π
(k)
i · φ(yj ;µ(k)

i ,Σ(k)
i )

f(yj ; Ψ(k))
,

and the M-step in the same iteration computes new parameters for each
mixture component. The following are the computations of the M-step in
k-th iteration for i-th component: [15]

π
(k+1)
i =

∑n
j=1 τ

(k)
i,j

n
,

µ
(k+1)
i =

∑n
j=1 τ

(k)
i,j yj∑n

j=1 τ
(k)
i,j

,

Σ(k+1)
i =

∑n
j=1 τ

(k)
i,j (yj − µ

(k+1)
i )(yj − µ

(k+1)
i )T∑n

j=1 τ
(k)
i,j

.
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.............................. 4.3. k-nearest-neighbor classifier

These E- and M-steps alternate until the log-likelihood or the changes in
the estimated parameters are lower than a specified threshold.

4.3 k-nearest-neighbor classifier

The kNN classifier is one of the simplest classifiers out there. It makes
a prediction for a test object using two steps:..1. find k objects in the training set which are closest to the test object

based on a distance metric (create a neighborhood of k objects),..2. assign a label to the test object based on the majority class in this
neighborhood.

Formally, given a test object z = (x′, y′) and a training set D with labeled
training objects (x, y) ∈ D, where x is a vector of features and y is the
object’s assigned label, the algorithm computes a distance (or similarity)
between z and all training objects and thus determines its nearest-neighbour
list Dz. After obtaining this nearest-neighbour list, the predicted label y′ is
chosen by majority voting:

y′ = arg max
v

∑
(xi,yi)∈Dz

I(v = yi) ,

where v is a class label and I is an indicator function that returns 1 if its
argument is true, 0 otherwise. [18]

The training procedure only requires loading training objects into memory,
which is significantly faster than training procedures of other classifiers. The
preparation time of this classifier makes the kNN useful as a baseline for
comparison with other classifiers.

There are, however, some considerations when setting up a kNN classifier.
The first one is the choice of k, which typically needs to be found by an
empirical search. Another one is the choice of the distance metric, which
influences the behavior of the classifier significantly and is domain-specific.
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An example distance metric for spatial data can be the Euclidian distance.
Note that this distance metric becomes less discriminating as the number of
features increases. [15]

Although the training time of kNN is insignificant, the prediction time is
computationally demanding. The classifier needs to compute the distance
metric to all of its training objects. The search for the nearest neighbors
can be done efficiently using the K-d tree algorithm [19] in logarithmic time.
However, if the number of dimensions increases and 2K becomes larger than
the number of objects to search for, the search of the K-d tree algorithm
becomes linear with respect to the number of data points (training objects in
case of kNN) [20].

4.4 Convolutional neural network

The convolutional neural network (CNN) is our main classifier. CNN is used
for classification tasks, where the relative position of features is important
and can significantly influence the decision. The most common use-case for
CNN is the image classification task.

This section describes the individual components of CNN. Typically, this
network consists of alternating convolution and pooling layers, followed by
a block of fully connected layers. Other structures for optimizations are also
described here. The definitions for these components were adopted from [21].

4.4.1 Convolutional layer

The convolution layer consists of a set of learnable kernels (sometimes referred
to as filters). The kernels are small matrices with just a couple of pixels in
width and height and the same depth as the input image. Each kernel has
a set of weights that are learned during the training process of the network.
Convolutional kernel works by dividing the input image into slices of the
same size. This division is called the receptive field.

Each kernel is then applied to each slice of the image, where it multiples
the pixels of the slice with its weights and sums the results into a single value
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output for each slice. This operation for a specific kernel in the convolutional
layer can be expressed like so:

f(p, q) =
∑

c

∑
i,j

Rp,q,c[i, j]K[i, j] ,

where c is the image channel index, i, j are indices of the kernel, K is the
matrix of the kernel, Rp,q,c is the receptive field of the input image for channel
c, corresponding to the position [p, q] in the ouput matrix, and finally, f(p, q)
is a single value in the output matrix at position [p, q].

Parameters for this layer include a stride value and optionally padding
handling. The horizontal and vertical stride values determine by how many
pixels the kernel is moved in each direction. An edge-case scenario can happen
for stride values bigger than one because the kernel would be shifted out of
the input image. This can either be prohibited (values near the edges are not
considered for classification) or permitted by specifying a default value for
the necessary padding that is added beyond the edges.

Figure 4.1 shows an example of a convolutional layer with two kernels of
size 2x2 sliding over a single-channel image. Both horizontal and vertical
strides equal to 1 in this example.

The main advantage of the convolutional layer is the number of weights
that need to be learnt. The weights for a single kernel are shared for the
whole sliding operation. Different sets of features within an image can still
be extracted and the number of weights is significantly lower than in the case
of fully connected layer (discussed later in section 4.4.5). [22]

4.4.2 Pooling layer

The pooling layer (also known as down-sampling) is designed to lower the
resolution of data inside the neural network’s structure. The idea behind the
pooling layer is that the exact location of features becomes less important as
long as its approximate relative position to other features is preserved.

Similarly to the convolutional layer, a receptive field is created based on the
selected pooling neighborhood. Pooling then sums up the neighborhood of the
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Figure 4.1: Example of a convolutional layer with two kernels. a) is a single-
channel input image with pixel values, b) shows the two kernels and their weights,
and c) is the resulting output from this convolutional layer (a three-dimensional
tensor that shrank in width and height due to kernel size and stride parameters
but grew in depth due to the number of kernels for this layer)

1 2 3

4 1 2

3 2 0

4 3

4 2

a) b)

Figure 4.2: Example of a MaxPooling layer. a) is a single-channel input image
with pixel values, and b) is the resulting output from this MaxPooling layer.

receptive field by outputting the dominant response within this region. What
response is dominant depends on the pooling function. The most commonly
used pooling layer is the MaxPooling layer, which selects the maximum as the
dominant feature for each region. However, other functions, such as average
and overlapping, are possible. The simplest way to understand this operation
is visual. Figure 4.2 shows the MaxPooling layer applied to a 3x3 input
matrix.

The use of pooling helps to extract a combination of features which are in-
variant to translational shifts and small distortions. This does not only reduce
the complexity of the network but it also leads to better generalization. [23]

4.4.3 Batch normalization

Batch size. A batch size of a neural network is the amount of training
observations that are passed through the network during the training proccess
before the weights of the network are updated. The training data-set can
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be split into multiple batches (this method is called mini-batch). This is
a meta-parameter and must be decided by the designer of the neural network.

The internal covariance shift is a change in the distribution of values of
hidden units. This shift slows down the convergence by forcing learning
rate to small value. Batch normalization unifies the distribution of feature-
map values by setting them to zero mean and unit variance [24]. This is
achieved by:

yi = xi − µB√
σ2

B + ε
,

where xi is the value of feature-map input for this layer, µB is the mean
of input values for a batch, σB is the standard deviation of input values for
a batch, ε is a small constant added to avoid division by zero, and yi is the
normalized feature-map output.

This operation smoothens the flow of gradient during training, and thus
helps with the generalization.

4.4.4 Dropout

This method temporarily removes randomly selected neurons and their con-
nections from the networks. Dropout can help to avoid overfitting during the
training of neural networks [25].

4.4.5 Fully connected layer

Unlike the convolutional and pooling layer, which operated on a local level,
the fully connected layer applies global operations. This layer consists of
a specified number of output neurons and it connects all of them with all of
the neurons of the previous layer, assigning a learnable weight to each such
connection. Each neuron of the fully connected layer also applies a non-linear
function to the sum of its inputs:
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yj = f(

∑
i

wi,jxi) ,

where xi is the feature of previous layer, wi,j is the weight associated with
the connection from i-th feature of the previous layer to j-th neuron of this
layer, f is an activation function, and yj corresponds to the output of j-th
neuron of this layer.

The fully connected layer is usually placed as the last layer in a CNN
classifier. The number of neurons of the last layer corresponds to the number
of classes to classify.

4.4.6 Activation function

The activation function is essential for any neural network, as it introduces
non-linearity to the algorithm, which makes it possible to learn intricate
patterns.

There is a variety of non-linear functions used for neural network training
(such as sigmoid or tanh). Each such function has a different impact on
the learning process. Variants of the ReLU (Rectified Linear Unit) function
have low computation time and also help to overcome the vanishing gradient
problem, and therefore became the standard activation function for neural
networks [26]. ReLU function is defined as f(x) = max(0, x).

Another useful activation function is the Softmax activation function. Input
of this function is a vector x of n and the function for i-th neuron of a fully
connected layer is defined as:

fi(x) = exi∑n
j=1 e

xj
.

Placing a fully connected layer with Softmax activation function as the
last layer of neural network results in an output of positive values that sum
up to one, which can then be interpreted as prediction probabilities.
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Chapter 5

Implementation

In this chapter, the process of implementing previously defined methods is
described in detail. Also, the benefits and drawbacks of each classifier are
discussed in this chapter.

5.1 Obtaining data

Obtaining satellite imagery can be achieved in multiple ways. The Copernicus
Open Access Hub provides a free and open access to Sentinel-1, Sentinel-2,
Sentinel-3 and Sentinel-5P user products. [27]

There is a user-friendly way to select images and also and application
interface for bulk-downloading large amounts of images at once.

5.2 Area of interest

To be able to test any classification method, some specific data source is
required. For all of the following implementation steps, three areas of interest
were chosen inside the Czech Republic:
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Name center latitude center longitude area

(degrees) (degrees) (km squared)
Krkonoše 50.7171 15.6541 140.13
Vysočina 49.5927 15.9765 176.27
Morava 48.8283 16.7706 168.89

Table 5.1: Geographic properties of chosen areas of interest...1. an area near the city Špyndlerův Mlýn in the Krkonoše mountain com-
plex,..2. an area near the city Nové Město na Moravě in the Vysočina highlands,..3. an area near the city Hustopeče in the Moravian plains.

Even though these areas were chosen arbitrarily, they are representatives
of three very different landscape types.

The first area of interest is in the highest mountain complex in the country.
It is a very likely candidate for a real scenario for the rescue operation. The
goal of this area is to test the terrain classification on most relevant data, as
search-and-rescue operations have high likelihood of occurrence in this area.
The test results for this area are required to be as satisfying as possible.

The second area of interest is from the middle part of the country. The
landscape is highlands, which is quite different from the first mountain area.
The average elevation is therefore lower. This area is also an expected region
for real rescue missions. The classification method should provide good test
results for this area as well.

The last area of interest is from flatlands. Although the likelihood of having
a real rescue mission scenario in this area is significantly lower than in the
previous two, it is still a possibility. Therefore it is representative of an edge
case to further test the terrain classification approaches in an uncommon
environment. The classification results are not required to be perfect for an
area of this type. On the other hand, the results still need to be reasonable.

The figure 5.1 shows the geographic location and an aerial preview of
chosen areas of interest.

Detailed properties of these areas can be seen in table 5.1.
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Figure 5.1: The chosen areas of interest. Krkonoše in the top right, Vysočina in
the bottom left and Morava in the bottom right.

5.3 Bulk-download

The Python package SentinelSat [28] was used to download Sentinel-2 satellite
images.

To download data from Copernicus Open Access Hub, the SentinelSat
package needs to specify the satellite sensing period, the geographical image
tile, and the maximum allowed percentage of clouds in the image.

The goal is to download usable satellite images of chosen areas of interest.
For an image of a specific area to be usable, the image must not contain many
clouds. It is also important to obtain an image for all of the seasons of the
year because the environment in the area changes drastically throughout the
year.

The chosen period was the whole year 2020. The geographical tile depends
on the area of interest. And the maximum cloud percentage was arbitrarily
set to 70 %. The reason behind choosing 70 % as the maximum allowed
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area name sensor tile id number of images data size (GB)
Krkonoše L1C T33UWS 73 66
Krkonoše L2A T33UWS 73 72
Vysočina L1C T33UWQ 33 32
Vysočina L1C T33UWR 29 31
Vysočina L2A T33UWQ 32 33
Vysočina L2A T33UWR 26 31
Morava L1C T33UXQ 78 76
Morava L2A T33UXQ 76 84

Table 5.2: Summary of downloaded Sentinel-2 imagery.

percentage was that from empirical observation of many satellite images it
was clear that the likelihood of obtaining a cloudless area of interest in an
above 70 % cloudy image was so low, that it was not worth downloading such
images.

Table 5.2 contains the summary of the downloaded data.

5.4 Data pre-processing

Following data pre-processing steps were applied to the downloaded data to
reduce its size, correct band units, filter out unusable data, and analyze the
distribution of the data.

5.4.1 Cropping

The Sentinel-2 tiles images are huge. It is not practical to keep the whole
image on the drive when only a small area of interest is needed later.

Using the Rasterio Python package [29], it is simple to crop each channel
of the Sentinel-2 image. To crop a geospatial image properly, it is necessary
to know its projection and the projection of the coordinates of the polygon to
which to crop. Rasterio then does all the necessary projection transformations
under the hood, resulting in a correctly cropped geospatial image.
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Cropping an image right after the download of a Sentinel-2 tile image is
essential for storing a large number of images of a specific area. The difference
in image sizes is captured by figure 5.2.

Figure 5.2: Overview of the cropping of Sentinel-2 tile image.

5.4.2 Correcting units

The data for each band of the geospatial image is stored as an array of type
uint16. In order to get true sensor data, it needs to be converted to float32
and scaled down by a factor of 10 000.

5.4.3 Detecting clouds

A Sentinel-2 product comes with a computed cloud mask. This is useful for
filtering products with limited cloud cover and it gives a rough estimate of
how cloudy the satellite image is. The algorithm used by Sentinel-2 is the
Sen2Cor algorithm [30]. Although this algorithm provides good accuracy for
clear areas (areas without clouds), according the study [31] founded by NASA,
the Sen2Cor algorithm performs poorly in identifying cloudy/shadowed ob-
servations. The provided Sentinel-2 cloud mask was used only to reduce
the number of downloaded images - only images with less than 60 % clouds
detected by the default Sen2Cor cloud mask were downloaded. For further
processing and classification, a better approach for detecting clouds is needed.

One of the better-performing algorithms used for comparison in the previously-
mentioned study [31] is the Fmask algorithm proposed by Z. Zhu and E.
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Woodcock [32]. This algorithm showed better accuracy in identifying thin
clouds and cirrus. The list of output classes from this classifier is clear, cloud,
shadow, snow, and water. Cloud pixels are identified by several spectral-based
methods. Using the detected cloud objects, a cloud-shadow mask can be
computed using view angles, solar angles, and estimated cloud height. The
Fmask algorithm also has a Python interface, which makes it convenient for
accurate computation of cloud masks in the experiments chapter 6 of this
thesis.

The Sentinel Hub offers a list of public scripts [33] for their application
Sentinel EO Browser. This is useful because the scripts are open-source
and can be used to process geospatial data even outside of the Sentinel EO
Browser web application. These EO Browser scripts work on a per-pixel basis.
For each pixel, the script has access to every band of the geospatial image.
The output of a script is a three-channel RGB color value, which can then be
displayed instead of the given pixel. An example of an EO Browser script
is the True Color script, which, for each pixel, returns the values of bands
B04, B03, and B02 as red, green, and blue channels. The main advantage of
these scripts is their single-pixel computation nature. The computation can
be easily parallelized and does not depend on additional information, unlike
the Fmask algorithm.

Braaten-Cohen-Yang cloud detector is one of the Sentinel-2 EO browser
scripts. The result of the research paper [34], based on which this script is
implemented, is that a very accurate cloud classification can be obtained
just by simple band indexing and thresholding. The main problem with
the Braaten-Cohen-Yang cloud detector turned out to be the winter season.
This detector performs poorly in snowy areas because it can not reliably
distinguish a cloud from the snow. The nature of our problem, however,
requires proper snow detection because the snow is very likely to appear in
previously chosen areas of interest.

Another could detector from the list of Sentinel Hub scripts is Hollstein’s
cloud classification script, which is also based on a research paper. [35] This
script can differentiate between clouds and now and thus is more suitable for
this work. Figure 5.3 shows the difference between Hollstein’s and Braaten-
Cohen-Yang detectors.
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(a) : True color image. (b) : Fmask cloud image.

(c) : Braaten-Cohen-Yang cloud image. (d) : Hollstein’s cloud image.

Figure 5.3: Comparison of different cloud filter scripts.

5.4.4 Cloud analysis

To get an overview of the distribution of clear and cloudy satellite images
throughout the year, the following analysis was conducted.

Firstly, the default Sentinel-2 cloud mask (Sen2Cor) was used to download
only Sentinel-2 products with less than 70 % pixels labeled as clouds. From
empirical observation of satellite images, it became apparent that products
with higher cloud percentages can not be used for meaningful land-cover
classification.

After obtaining all Sentinel-2 L1C products satisfying the previously men-
tioned condition throughout the year 2020 for all three areas of interest, the
discussed Hollstein’s cloud filter EO script was applied to each image.
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All of the output classes of Hollstein’s cloud filter script (cirrus, cloud, and

snow) completely remove the ability to classify land for such pixels. Therefore,
only the percentage of clean pixels is a valuable output of this analysis. The
appendix A visualizes the distribution of clean and not-as-clean satellite
images produced by the Sentinel-2 mission in the year 2020.

In conclusion, the number of clean images depends heavily on the terrain
type and the time of the year. The area in the mountain complex Krkonoše
contains often only a single clean satellite image each month during spring,
summer, and fall. During the winter season, the expected number of usable
satellite images for land-cover classification should be minimal. In highlands
and flatlands (Vysočina and Morava), the likelihood of obtaining a clean
image for each month throughout the year is higher. During the summer
season in these areas, a clean Sentinel-2 image can be obtained every week.

5.4.5 Obtaining features

Following unsupervised and supervised classification methods require a set of
observations and their features.

In case of Sentinel-2 imagery, the input observations are the pixels of the
satellite image and the features are the wavelength channels of each pixel.

All of the methods used for both unsupervised and supervised classification
are able to work with an arbitrary number of features. This means that all
of the 12 channels of Sentinel-2 images can be used.

Some channels, however, have different image resolution than others. The
sharpest resolution of Sentinel-2 imagery is one pixel per 10 meters squared,
the lowest resolution is one pixel per 60 meters squared. This means that all
of the channels with lower resolution must be up-scaled without interpolation
so that all of the channels have the same amount of pixels in order to create
observations with the same number of features each.

The problematic question is, which features are relevant for the classification
purpose. The problem of different resolutions can have a negative impact on
classification near the edges between two classes in the image.
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5.5 Unsupervised classification

In this section, the implementation of three unsupervised classification meth-
ods are described in detail.

. The k-means clustering method,. the Expectation Maximization algorithm,. and the Simple Linear Iterative Clustering method.

The reason behind doing the unsupervised classification is to obtain a seg-
mentation of the image, which can later be used to either acquire more
labeled data for the supervised classification or to post-process the results of
a supervised classification in ways like:

. sharpening the edges between two segments of different classes,. reducing the per-pixel classification noise by labeling whole segments
with one class.

5.5.1 K-means clustering

For the implementation of this method, the Scikit-Learn library for Python
was used. [36] This library creates an abstraction over the used algorithms
and provides an easy to use interface for using the k-means clustering method
with many optional parameters.

In this task, an observation is a pixel of the satellite image which consists
of 12 floating-point numbers associated with the 12 wavelength bands.

K-means clustering method depends heavily on its initialization method.
The method of selecting initial cluster centroids. The k-means ++ initializa-
tion method was used in this case. This initialization tries to set the cluster
centroids far apart at the beginning, which helps to avoid finding a local
minimum.
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Once the k-means clustering algorithm converges, it returns K centroids

and also labels for each observation.

The centroids can be used as representatives of their corresponding clusters.
In case of a satellite image, the centroid is the pixel with channels with an
average value in its cluster.

The labels are used to assign an unspecified class to every pixel. Image pixels
of the same class have similar channel values and therefore are considered to
be pixels of similar meaning in the satellite image.

Figure 5.4 shows the k-means method for five clusters and only some
selected channels.

(a) : True color image (b) : Labeled image

Figure 5.4: Unsupervised k-means clustering for 6 clusters. The colors of the
labeled image are arbitrary.

5.5.2 Expectation maximization

Scikit-learn library contains the implementation of Gaussian-Mixture-Models.
One of the methods working with such models is the Expectation-Maximization
algorithm.

This method requires one parameter K, the number of clusters (components
or classes), for which it tries to fit the Gaussian mixture. K-means clustering
method was used as the initialization method for components.

Selecting the number K and the subset of features has again a big impact
on the classification result.
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The Expectation-Maximization algorithm requires more computation and
therefore is slower than the k-means clustering method, however, the EM
algorithm models can fit the underlying random distributions of classes and
appears to give a better classification results.

Figure 5.5 shows the results of the EM algorithm for 10 clusters.

(a) : True color image (b) : Labeled image

Figure 5.5: Unsupervised EM algorithm clustering for 6 clusters. The colors of
the labeled image are arbitrary.

5.5.3 Simple linear iterative clustering

For this method, no existing Python library was available. The Skimage
library does contain the implementation of this method, however, it uses only
the three RGB image channels and a specific measure function to measure
correct distances between two LAB color-scheme RGB colors, which makes it
perfect for standard image clustering, but not for geo-spatial-image clustering.
For this reason, a custom implementation of SLIC needed to be programmed
manually. This implementation uses the L2-norm to compute distances
between two pixels based on their channel values and thus works with an
arbitrary number of channels.

The implementation is written in Python and is used as a proof of concept.
There are two ways how to speed up the process:

. write the algorithm in a faster language (like C),. use multi-threading with the map-reduce paradigm to compute most of
the algorithm in parallel.
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For this proof of concept, however, the slow implementation is sufficient.

SLIC method requires two parameters. The number of segments is the
number of super-pixels, in which the image is segmented. The compactness
is the balance between preferring the distance of pixel channel values instead
of the spatial distance of pixels in the image for the cluster assignment.
Selecting these two parameters depends on the specific image. For purpose of
segmentation of Sentinel-2 satellite imagery, the number of segments needs to
be very high to obtain very frequent segmentation and the compactness needs
to be low, in order to obtain segments that divide areas of similar-looking
terrain.

Results of the SLIC method are shown in the figure 5.6. The edges represent
a border between two different image segments. These local segments can be
used in post-processing to minimize the pixel noise of supervised classification
methods.

(a) : True color image (b) : Segment boundaries

Figure 5.6: Segmentation of a satellite image using the Simple Linear Iterative
Clustering method with 650 segments and compactness of 0.05.

5.6 Supervised classification

In this chapter, the individual steps of a supervised classification pipeline
used in the implementation are described.

The pipeline can be summarized into the following parts:..1. gather labels for data,
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................................5.6. Supervised classification..2. pre-process data so that the specific classifier is able to label it,..3. split data into training and testing set,..4. train the classifier using the training set and predict labels for the testing
set,..5. validate results by measuring the accuracy of predictions.

Each individual part is discussed in the following sections.

5.6.1 Gathering labels for data

Because of the lack of resolution of existing Land cover data sets and lack
of recently updated regional data sets of selected areas of interest, it was
necessary to collect labels for data manually.

Vector method

Using existing tools like QGIS [37] or SNAP [38], it is possible to create
polygons over certain areas of a geospatial image. This way, it is straight
forward to label some areas with a corresponding class name. Unfortunately,
it would, however, take a huge amount of manual work to label the whole
area. For this reason, just a little part of the image was labeled to provide
labels for at least a few thousand pixels in each of the three selected areas of
interest.

Once there are polygons with class labels assigned to them, it is possible
to obtain pixels of a geospatial image which are inside these polygons using
Rasterio [29] and Fiona [39] libraries. These libraries compute all of the
necessary projection calculations to align polygons to image pixels. This
process is called rasterization and can also be computed inside the QGIS
application.
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Raster method and the Labeling application

Manually creating polygonal shapes in any software proved to be too time-
consuming for obtaining a large amount of data. For this reason, a different
approach was needed. The idea is to use the results of unsupervised classi-
fication to help with the creation of a training data-set for the supervised
classification.

A GUI application written in Python was created for this purpose. This
application can load Sentinel-2 product and apply unsupervised classification
using the k-means or the EM algorithm to its red, green, blue, and NIR
bands. The result of the unsupervised classification is a labeled image, where
each pixel has a label number assigned to it.

Then, the true-color image composite is shown to the user of the application.
A new layer representing a class of labels for supervised classification can be
created by the user. The user has a circular raster brush tool with variable
radius size in pixels. Whenever the user clicks on the true-color image, the
pixels inside the brush’s circle are selected. Those pixels, which have the
same unsupervised label as the clicked pixel are labeled to the active class.
Visual feedback of what pixels belong to which class is provided for the user
in real-time.

This way, the user simply clicks somewhere in the area designated to
the active class and does not have to worry about complex shapes of the
terrain, because the shapes are already created by the labeled image of the
unsupervised classification.

The output of this application is a set of raster mask files. These are
geospatial images with a single band with just one-byte values, 0 - this
pixel does not belong to this class, 255 - this pixel does belong to this class.
Applying these mask files to the Sentinel-2 band raster files, it is possible to
obtain all pixels associated with each labeled class.

Appendix B contains a few selected screenshots of our labeling application.
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class name number of pixels labeled
using vector method

number of pixels labeled
using raster method

Respondent 1
Water 9230 10472
ManMade 1104 1260
GroundSoil 423 2085
Grass 847 6607
YellowGrass 1013 1487
DenseForest 6087 36639
ThinForest 1128 9596
GreenField 0 0
YellowField 0 0

Respondent 2
Water 8144 17362
ManMade 5603 7082
GroundSoil 0 7645
Grass 1448 22719
YellowGrass 0 0
DenseForest 10630 487189
ThinForest 1223 15421
GreenField 3121 8216
YellowField 0 0

Table 5.3: Results of the labeling experiment

Comparison of mentioned methods

To compare both of these methods for obtaining pixel labels, the following
experiment was conducted.

Two respondents with a GIS background were given an area of interest.
The area is a 100 squared kilometers region in the Jizera mountains. This area
was chosen as a validation area for the mountain terrain classifier. For each of
the respondents, a satellite image from a different season was provided. The
respondents had a time limit to label as many pixels as they could using both
the vector method (via the QGIS application) and the raster method (via our
labeling application). The time limit was 10 minutes for each method. The
respondents were also given a set of possible classes they might use during
the labeling. Not every class had to be used.

Table 5.3 shows the number of pixels labeled by each respondent. Note that
the result of the vector method is a set of polygons that had to be rasterized
in order to obtain pixel counts for this method.
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To summarize this experiment, it is clear that the raster method utilized the

unsupervised classification labels to speed up the labeling process. Responders
reported that the biggest advantage of the raster method was in places where
the shape of the terrain was very complex. Defining a proper vector polygon
in these places turned out to be too time-consuming.

The disadvantage of the raster method was unsurprisingly our labeling
application itself, as it can not compete with the user-friendliness and quick
responsiveness of the state-of-the-art QGIS application. However, for this
single purpose of obtaining labels, our application turned out to be sufficient.
Implementing the logic of the raster method as a plugin to the QGIS applica-
tion could be a possible solution to the software limitations of our labeling
application. That is, however, out of the scope of this thesis and perhaps
a project for future work.

5.6.2 k-nearest neighbours classifier

The simplest possible approach of supervised classification used in this project
is the k-nearest neighbors algorithm. This method is used as a baseline for
other classifiers.

Python’s library Scikit-Learn [36] was used as the implementation of this
algorithm. The Euclidean metric was chosen as the metric used for computing
distances between pixels. The algorithm for an efficient search for nearest
points in n-dimensions was chosen to be KD-tree. The parameter, that needs
to be found, is the number of neighbors to consider during prediction. This
parameter was chosen based on multiple runs of k-nearest neighbors classifier
with different K. k = 3 performed the best during cross-validation.

This algorithm requires no training computation. This is particularly useful
for a baseline classifier, as it can be set up very easily and quickly.

One disadvantage of the k-nearest-neighbors is the required computation for
making predictions. Because the classifier needs to find the closest neighbors
in all of the training observations, the number of observations and also the
number of features of these training observations has a big impact on the
prediction computation performance.
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5.6.3 Convolutional neural network classifier

For the implementation of convolutional neural network classifier, the Tensor-
flow Python library was used [40]. This library provides optimized C++ imple-
mentations of neural network-related operations available through a Python
programming interface. Especially the Keras Python interface makes it very
convenient to build a neural network from individual layers.

Input data

In the most common use case of convolutional neural network classifier,
the input is the whole image. That is, however, not the case in terrain
classification.

The input images are small chunks of pixels in the close neighborhood
of the target pixel. The size of the neighborhood determines what possible
patterns is the convolutional neural network able to learn.

To obtain the labeled observations, for each pixel with a label, the chunk
with a center at this pixel is considered to be an observation. There are two
approaches for deciding if the chunk is a valid observation for a label. The
first approach requires all pixels inside the chunk to have the same label
as the center pixel. The second approach does not take other pixels of the
chunk into account and only depends on the center pixel of the chunk. Both
approaches were implemented and tested. The second approach turned out
to have better results.

The chunk size of 5x5 pixels was chosen for this classifier. The reason
behind this choice is that the size of objects and texture patterns in the
satellite image at a 10 m resolution is mostly smaller than a chunk of this
size. Therefore, the 5x5 pixels chunk provides enough contextual information
for the classifier to make a proper decision.

Data augmentation

Because of the simple-pattern nature of the pixel chunk images, it is possible
to add artificially created chunk images to the set of labeled observations.
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The images contain Earth’s terrain viewed from above. This means that

they are not prone to rotation and mirroring. For each pixel chunk, its three
more rotation symmetries, as well as a horizontal and vertical flip can be
added as an observation for the same label. This approach multiplies the
number of provided observations by a factor of six.

Layers of the neural network

Similarly to [10] our network topology consists of multiple parallel groups of
layers.

Based on the idea proposed in [10], the classifier makes a decision based on
the output of several neural networks, where each neural network classifies
a chunk image of different size. Using the Keras library, it is possible to
combine all of these networks into a single neural network topology by
connecting the layers of individual neural networks as parallel groups.

Each layer-group can be viewed as an independant neural network, which
can be trained and validated individually.

The first layer-group takes the whole 5x5 chunk as the input and applies
a convolution layer followed by a MaxPooling layer. BatchNormalization layer
is present in this neural network to reduce the number of training epochs.
Full topology of the classifier which contains this layer-group is displayed in
figure 5.7.

The second layer-group crops the input chunk by 1 pixel and applies a single
convolutional layer to the resulting 3x3 chunk. The convolutional layer has
16 filters followed by the ReLU activation function and BatchNormalization
layer. The topology of a neural network classifier that is based on the 3x3
pixels neighborhood is shown in figure 5.8.

Last layer-group consists of a 2 pixel cropping and a basic fully connected
dense layer applied to the single remaining multi-channel input pixel. The
dense layer has 13 output units and the ReLU activation function. Figure 5.9
presents the topology of this layer.
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Figure 5.7: Layer topology of the 5x5 pixel chunk neural network classifier.

And finally, the one-dimensional outputs of layer-groups are concatenated
into the last fully connected dense layer with the softmax activation function.
The final topology of the neural network is shown in figure 5.10.

Training. Training of a neural network requires two additional parameters.
It is the batch size - the number of training observations for each forward
and backward pass of the network - and the number of epochs - how many
times the network needs to see all of the training observations. Each of the
previously discussed neural networks was trained for 250 epochs and the
batch size was set to 20,000.

The metric used for performance evaluation is the categorical cross-entropy
loss. The training set was split into 5 folds, where four of these folds were
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Figure 5.8: Layer topology of the 3x3 pixel chunk neural network classifier.

used to train the parameters of the neural network and the remaining fold was
used to monitor its validation loss. A model checkpoint method was used to
constantly create snapshots of the parameters throughout the training process
after each epoch. Whenever a new lowest validation loss is encountered, a new
model of the neural network is saved as the resulting model.

In order to compare previously discussed neural network topologies, a train-
ing experiment was conducted. Each neural network was trained for 250
epochs and a batch size of 20000. The learning rate was set empirically
to achieve a similar curve of training loss for each classifier. Appendix C
visualizes all training histories obtained from this comparison experiment.
The training data-set consists of labeled pixels from the first area of interest
collected from 7 clear satellite images distributed over spring, summer and
fall seasons of the year 2020.

To summarize this experiment, the single-pixel classifier reached the lowest
validation accuracy of 93.6 %. The 3x3 chunk classifier scored a better
performance of 96.4 %, however, from the plots of appendix C, it is also
clear that this classifier started overfitting the training data after the 100th
epoch. The 5x5 chunk classifier was the best-performing individual classifier
with an overall accuracy of 97.3 %. This classifier showed large differences in
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Figure 5.9: Layer topology of the single-pixel neural network classifier.

validation loss throughout the training process. And finally, the combined
classifier reported the best overall accuracy of 97.5 %, slightly improving
the accuracy of the 5x5 chunk classifier, but also significantly improving
the inconsistent validation loss throughout the training process. Also, note
that the combined classifier has much more parameters that need to be set
during the training process and thus can benefit from longer training. With
a smaller training rate of 1 ∗ 10−4, the combined neural network reached
overall validation accuracy of 98.2 % after 1000 training epochs.

Interpreting prediction results. The softmax layer used at the end of the
neural network returns, for each class, the probability of assigning that
specific class to the input observation. Computing the arg-max of these
probabilities gives the final classification label. Computing the maximum of
these probabilities gives the confidence, with which the network predicted
such a label.

5.6.4 Post processing

Using some methods of the previously described unsupervised classification
in section 5.5, it is possible to post-process the labeled image to get rid of
eg. per-pixel classification noise. The noise is most noticeable close to the
borders between two different classes.

47



5. Implementation....................................

Figure 5.10: Full network topology of the convolutional neural network classifier.

A smoother image can be obtained using the SLIC method mentioned in
section 5.5.3. Each segment of the SLIC image is labeled with the most used
label of the supervised classification labeled image inside that segment. This
removes the single-pixel label noise.

Results of this post-processing method are shown in the figure 5.11.

(a) : Standard result of k-nearest neigh-
bor classifier (no post-processing).

(b) : SLIC post-processing applied to the
result of k-nearest neighbor classifier.

Figure 5.11: Visualization of post-processing using the SLIC method.

48



Chapter 6

Evaluation experiment

The evaluation experiment described in this chapter consists of an accuracy
assessment for all of our implemented classifiers from the previous chapter.
These classifiers were evaluated in multiple validation areas.

6.1 Experiment setup

This section defines the data-set used for evaluation of implemented classifiers
and also the metrics used for the accuracy assessment.

6.1.1 Validation data

Similarly to efficient software testing, the validation dataset must contain
a representative set of input data expected from real scenario. [41]

For each of the three selected areas of interest (Krkonoše, Vysočina, and
Morava), another area with a similar terrain type and scale was selected as
an evaluation area. Table 6.1 lists the areas used for validation.
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Type area distance from

(km squared) training area (km)
mountains 102.77 30.25
highlands 100.94 17.79
flatlands 106.24 13.51

Table 6.1: Geographic properties of chosen validation areas.

Two satellite images from each season of the year 2020 were downloaded
from the Copernicus hub. The first image is the cleanest image of the season
(with cloud coverage below 1 %), and the second image is a partially clouded
image with the Fmask algorithm applied to it for precise cloud detection.

Validation labels were manually created for each image. A total amount of
100 - 300 pixels for each present class.

Experiment classes. The following list of classes was chosen empirically for
their easy distinction from Sentinel-2 satellite imagery.

.Grass - plains and grasslands with green-colored grass,.Water - lakes, ponds, water reservoirs and large rivers,.DenseForest - deciduous, coniferous or mixed forest areas with green
leaves/needles,.ThinForest - bushes and thickets of young trees,.BrownForest - a deciduous forest with dry brown leaves that are either
still attached to the trees or laying on the ground,.Rock - rocks and boulders,.GroundSoil - dirt, soil or muddy areas,.YellowGrass - plains and grasslands with dry grass that appears yellow
in a satellite image,.YellowField - agricultural fields with yellow-looking plants such as the
rape plant,.GreenField - agricultural fields with green-looking plants such as potato
fields,.PurpleField - agricultural fields with purple-looking plants such as
some specific stages of the red vine field.
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Man-made structures. During this experiment, the class of the man-made
structures was not considered and a man-made mask was constructed for
each image using the data of Open Street Map [42]. The data of man-made
structures from the OSM are not perfectly accurate. However, there is low
importance of the man-made class for the purpose of our classification task
aimed specifically at search-and-rescue operations. For this reason, the OSM
mask turned out to be sufficient. Note that in areas, where the OSM mask
is inaccurate, the classifier is expected to make mistakes because it is not
trained for this type of data. Typically, man-made structures such as parking
lots and roads do not reflect any infrared radiation, and therefore have similar
properties to rocks and water. The validation pixels selected in areas of
interest for this experiment are not located near these man-made structures.

6.1.2 Training data

Training labels for each training area of interest (Krkonoše, Vysočina, and
Morava) were created manually using the raster method (5.6.1). An average
of 7 cloud-free images for each area were chosen for labeling. These satellite
images were taken during seasons spring, summer, and fall of the year 2020.

6.1.3 Classifiers

Two classifiers are compared in this experiment. A per-pixel classifier used as
a baseline classifier and a contextual classifier.

The baseline classifier is the k-nearest neighbors classifier discussed in
section 5.6.2. Note that similarly to [8], several per-pixel classifiers were tried
during the preparation phase of the experiment. Both the support vector
machine and the random forest classifiers scored very high overall accuracy on
the validation split during training. However, the results from the validation
image were, unlike reported in [8], similar or - in some cases - worse than
the results of the simple k-nearest neighbors classifier. For this reason, the
kNN classifier has been chosen as the representative of the baseline per-pixel
classifier for this experiment. During the training process of the k-nearest
neighbors classifier, there was an upper bound for the number of training
observations set to 5000 observations for each class. These observations were
sampled randomly from the training data-set.
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The relevant classifier is the convolutional neural network classifier which

utilizes contextual information from the 5x5 pixel neighborhood of each
pixel. This classifier, discussed in detail in section 5.6.3, is expected to
achieve better results in this experiment. The upper bound for the number
of training observations for each class was set to 100000. If a class had more
training observations in the training data-set (e.g. the DenseForest class),
then the observations were sampled randomly. In the other case, the data
augmentation step was applied to produce up to eight times more training
observations.

Classifiers were either trained using the whole training data-set - in this
case, we refer to these classifiers as annual classifiers - or, only a subset of
training data from a specific season of the year was selected for training -
then we refer to them as seasonal classifiers.

6.1.4 Accuracy assessment

Accuracy assessment is a way of evaluating the performance of a classifier
for a given task. In this experiment, we are interested in several assessment
metrics for each classified task, as well as overall metrics, which can be used
to compare two classifiers.

After a classifier predicts labels for the satellite image, the predictions
are compared with the true validation labels constructed for the image.
A confusion matrix can then be computed. Using the confusion matrix, the
following assessment metrics can be acquired:

Support. Not a metric by itself, support has a great influence on upcoming
metrics and is therefore included in the accuracy assessment for each class.
Support states the number of validation pixels labeled as a specific class.

Precision. [43] defines precision as:

P = #(relevant items retrieved)
#(retreived items) .

In our case, there is a number of labeled validation pixels. Precision can then
be interpreted in the following way: from all of the validation pixels that the
classifier predicted as a specific class, what percentage of them was correctly
predicted as such class?
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Recall. Formally defined in [43] as

R = #(relevant items retrieved)
#(relevant items)

states what percentage of validation pixels truthfully labeled as a specific
class was correctly predicted as that class by the classifier.

F -measure. A single measure that trades off precision versus recall is the
F -measure, which is the weighted harmonic mean of precision and recall.
In this experiment, precision and recall are weighted equally, giving us an
F1-measure with a following simplified formula:

F1 = 2 · P ·R
P +R

.

Overall accuracy. The simplest metric for evaluation of a whole classifier is
the overall accuracy. In our experiment, it denotes the number of correctly
predicted validation pixels by the classifier divided by the number of all
validation pixels. This metric is useful for a quick assessment of the situation,
however, it does not take various factors (such as imbalanced support of
individual classes) into consideration and thus may lead to misleading results.

Kappa statistic. As a common measure for agreement between judges in the
social sciences, the kappa statistic measure is used in categorical classification
tasks to compare the observed accuracy of a classifier with an expected
accuracy of a random-chance classifier. The formula for computing the kappa
statistic stated in [43] is:

P (A)− P (E)
1− P (E) ,

where P (A) is the overall accuracy of a classifier and P (E) is the expected
accuracy that a random classifier would achieve based on the confusion matrix.
The value obtained by kappa statistic is equal to one, if the classifier predicts
everything perfectly, zero if the classifier is no better than a random-chance
classifier would be, and negative if the classifier is even worse than random
predictions. [43] also mentions, that values above 0.8 are considered as
a good agreement (meaning that the classifier shows good performance in this
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6. Evaluation experiment.................................
classification task), values between 0.67 and 0.8 are a fair agreement, and
values below 0.67 suggest that the classifier may not be the correct solution
for this task. These thresholds should, however, only be considered as a rule
of thumb because precise interpretations depend on each classification task.

6.2 Experiment results - clean images

This section briefly concludes the results of the evaluation experiment. A more
in-depth description of results obtained from individual areas can be found in
appendix D. The complete list of evaluation statistics is listed in appendix E.

In general, our implemented classifiers achieved decent overall accuracy
during the spring and summer seasons. The kappa statistic during these
seasons was near the edge between good agreement and fair agreement defined
in the previous section. A noticeable deterioration of accuracy was reported by
the results from the fall season - still, however, in the range of fair agreement
of the kappa statistic. Meaningful classification of snowy images during the
winter season turned out to be impossible using our classifiers.

The differences in overall accuracy scored in the accuracy assessment
between our implemented classification methods were negligible. However,
upon further investigation of confusion matrices, the CNN classifier reported
less confusion among classes that require good separation for the purpose of
search-and-rescue operations. The output of the contextual CNN classifier
produces a smoother labeled image as shown in figure 6.1. This image also
shows how the accuracy assessment may end up with very similar results
even when the images differ. The CNN classifier is also able to produce a
confidence image - how certain its prediction is for each pixel - that can be
further used in rescue planning systems. These mentioned reasons make the
CNN classifier a better solution for this task.

6.3 Experiment results - cloudy images

For this experiment, partially clouded images were downloaded and used for
classification. The Fmask algorithm was used to create a no-data value masks
in places, where a cloud or a cloud’s shadow is detected. It became clear, that
the classifier works in the exactly the same way as for the cloud-free images
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........................... 6.3. Experiment results - cloudy images

in places not affected by clouds, and that the classifier predicts wrong labels
in places where the clouds interfeared with the satellite images. Therefore,
creating the accuracy assessment using a subset of validation pixels which
were not covered by clouds would not so much validated the accuracy of the
classifier, as it would asses the accuracy of the Fmask algorithm. Validating
the accuracy of the Fmask algorithm is not in scope of this thesis. However,
a conclusion can be made from observing labeled images produced by the
classifiers for partially clouded satellite imagery.

Figure 6.2 shows an example, where the output of the Fmask algorithm
did not successfully label all cloud shadow areas. As a result of the misclas-
sification of the Fmask, our classifier confused an area of DenseForest in
the shadow of a cloud for a body of water. In places, labeled by the Fmask
algorithm as clear, the predicted labels seem to be relevant and an accuracy
assessment - using validation pixels in places where the output of the cloud
mask was verified by a human - achieved similar results to a cloud-free image.
The problem is, that we do not have the information about cloud mask failures
in advance.

Figure 6.1: The labeled image of the kNN classifier (left) compared to the
labeled image of the CNN classifier (right). Red dots mark points selected for
accuracy assessment.

From empirical observations, the Fmask algorithm successfully identified
cloud objects in the majority of cases. The predicted shadows cause most of
the classification problems. This suggests that a for example a 50% clouded
image, with most of the clouds located on one side of the image, does not
necessarily need to be discarded. The pixels far enough from the clouds can
be classified correctly.
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Figure 6.2: The output of the Fmask algorithm overlayed on top of a true-color
image (left) compared to the labeled image predicted by a CNN classifier (right).
The red circle marks an undetected shadow area.
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Chapter 7

Conclusion

In this thesis, we described our land-cover classification task and provided
a report of available data source which can be used to implement a solu-
tion. We focused our thesis on Sentinel-2 satellite imagery classification
and described the properties of geospatial images. We provided an anal-
ysis of existing methodology and datasets for satellite imagery land-cover
classification.

Several algorithms for supervised classification were introduced and then
implemented using Python’s libraries.

An experiment was conducted to provide an accuracy assessment of imple-
mented classifiers in several areas of interest including mountains, highlands,
and flatlands. We achieved satisfactory accuracy results using a manageable
amount of manually created training data.

Classifying images from the fall season turned out to be less accurate than
in the spring or the summer seasons. During the winter season we were unable
to provide meaningful classification results.

Our methods need to have man-made structures, clouds, and snow filtered
out. Possible improvement of detecting man-made structures can certainly
be made using more precise datasets than the convenient Open Street Map
dataset used in our experiment. Classifying areas near detected clouds turned
out to be unreliable. The snow also caused lots of problems as it was often
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7. Conclusion......................................
confused with clouds. Further research of snow detection methods needs to
be conducted in this regard.

Based on the results of the experiment, a field test may be executed in the
future by the search-and-rescue services of the Czech Republic. To achieve
high accuracy of a classifier, the classifier needs to be trained using as close
to the target image as possible. This suggests creating specific classifiers for
specific areas with a high frequency of search-and-rescue operations. Also,
seasonal classifiers - classifiers trained using images from a specific season of
the year - yield better results than annual ones. For this reason, a significant
amount of manual labeling must be done by the search-and-rescue services
beforehand.

With seasonal models trained for specific areas, our method can provide
reliable and recent information about the terrain to the Pátrač rescue planner
system and thus lower the time of the planning phase of these operations.
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Appendix A

Cloud analysis results

The following plots show the results of cloud analysis of Sentinel-2 satellite
images throughout the year 2020 in three areas of interest. For further details
about the analysis, see section 5.4.4.
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Figure A.1: Distribution of clean satellite images of the area of Krkonoše.
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Figure A.2: Distribution of clean satellite images of the area of Vysočina.
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Figure A.3: Distribution of clean satellite images of the area of Morava.
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Appendix B

Labeling application screenshots

Figure B.1: Class overlay on top of a true-color image.

61



B. Labeling application screenshots ............................

Figure B.2: Labels of the unsupervised classification. Color of each label has no
particular meaning.

Figure B.3: Binary mask marking all pixels that belong to the ManMade class.
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Appendix C

CNN training insight

The following plots show the history of the training process of neural network
classifiers used for this task. See section 5.6.3 for more information regarding
the training process.

0 50 100 150 200 250
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

Lo
ss

Training
Validation

Figure C.1: History of the training and validation loss metric of the 5x5 pixel
chunk neural network classifier throughout the training process.
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Figure C.2: History of the training and validation loss metric of the 3x3 pixel
chunk neural network classifier throughout the training process.
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Figure C.3: History of the training and validation loss metric of the single-pixel
chunk neural network classifier throughout the training process.
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Figure C.4: History of the training and validation loss metric of the combined
neural network classifier throughout the training process.
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Appendix D

Discussion of experiment results

D.1 Experiment results - mountains

In this section, the results of the most significant area of the experiment - the
mountains - are discussed in detail. The complete list of all results obtained
from this experiment can be found in appendix E.

D.1.1 The spring season

As an introduction for this season, let us present the side-by-side comparison
of the labeled image produced by the annual CNN classifier with the true-color
image of the same area. Figure D.1 shows promising results of this classifier.

Firstly, the annual k-nearest neighbor classifier was validated using the
manually labeled validation pixels. From the confusion matrix displayed in
figure D.2 and the corresponding statistics table from appendix E a conclusion
can be derived. The k-nearest neighbor classifier scored an overall accuracy
of 85 %, which is a satisfying result. Some problematic misclassification was,
however, revealed by the confusion matrix. The class ThinForest was often
classified as Grass, which would have a negative impact on derived terrain
accessibility for a search-and-rescue operation. The results also reveal a com-
plete misclassification of the BrownForest class for the GroundSoil. On
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D. Discussion of experiment results ............................
the other hand, classes Water and DenseForest show impressive precision
and recall, achieving above 0.99 score of F1-measure.

The annual CNN classifier appears to achieve almost no improvement over
the kNN classifier as the overall accuracy improved by only 1 %. The confusion
matrix, visualized in figure D.3, reveals several benefits of this CNN classifier
over the annual kNN one. The confusion between classes BrownForest and
YellowGrass is problematic, however, the vast majority of mistakes were
made by confusing classes GroundSoil, Grass, and YellowGrass. All of
these classes have similar accessibility from the rescue-operation’s point of
view. The confusion of these different types of grass is probably caused by
the various states of grass over the year. This makes it difficult to completely
distinguish these classes when creating the training data-set.

An honorable mention goes to the seasonal CNN classifier trained using
satellite images taken during the spring season. Even though the overall
accuracy drops to 84 % with this classifier, the confusion matrix in figure D.4
reveals interesting results. The confusion of various grass types is mitigated
by this classifier. Classes Grass and YellowGrass are distinguished well.
On the other hand, class GroundSoil was not recognized by the classifier
at all. The reason behind this is that the area of the training data-set may
have different properties of the soil located there, especially during the spring
season. For this reason, the training data provided for the seasonal CNN
classifier did not represent the validation area well enough.

Figure D.1: True color composite of a satellite image of the mountains area
taken in April (left) compared to the labeled image output of the annual CNN
classifier (right).
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Figure D.2: Confusion matrix. Model: kNN, type: annual, season: spring, area:
mountains.
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Figure D.3: Confusion matrix. Model: CNN, type: annual, season: spring, area:
mountains.

69
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D.1.2 The summer season

The summer season has the highest number of available cloud-free images
for classification. The vegetation has high levels of chlorophyll, which means
that the infrared light has a more significant impact on the distinction of
individual classes. Also, classes such as YellowGrass and BrownForest
are much less frequent during this season and are in fact completely missing
from the list of classes used for the set of validation pixels, because no such
areas were found in the validation image. For this reason, seasonal classifiers
are expected to outperform annual ones.

The annual kNN classifier reached an overall accuracy of 84 %. Similarly
to the spring season, this is a satisfying outcome.

In this season, the annual CNN classifier outperformed the kNN classifier
substantially with an overall accuracy of 88 %. Figure D.5 reveals the reason
behind the performance of the CNN classifier. Apart from a little confusion
between Grass and GroundSoil, the relevant classes are separated very well.
The YellowGrass class, on the other hand, achieves zero precision, because
no YellowGrass pixels were found in the validation image. A side-by-side
comparison of the true-color satellite image and a label image produced by
an annual CNN classifier is shown in figure D.6.

The seasonal classifiers kNN and CNN were not trained with any Yellow-
Grass or BrownForest data and thus achieve higher overall accuracies of
91 %, and 93 % respectively.

D.1.3 The fall season

The results from the fall season are not as convincing as the results from the
summer season. Because of the weather conditions during the fall season,
only two clear satellite images were obtained for the training dataset. This
could have affected the results of this experiment in a negative way.

Both the kNN annual classifier and the CNN annual classifier showed
significant misclassification of the ThinForest class, confusing it mostly with
the Grass class. Also the problem with several types of grass - discussed in
the spring season section - returns in the fall season as well. This is also the
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Figure D.4: Confusion matrix. Model: CNN, type: seasonal, season: spring,
area: mountains.
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Figure D.5: Confusion matrix. Model: CNN, type: annual, season: summer,
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only moment when the kNN classifier outperformed the CNN classifier in the
mountains area (kNN’s overall accuracy was 79 % and CNN’s was 76 %).

Again, the seasonal models showed better performance. The confusion
between Grass and ThinForest was mitigated by both of the kNN and
CNN classifiers. Grass, YellowGrass, and GroundSoil were the most
misclassified classes, which makes the performance of these classifiers even
better for our classification task. Kappa statistic values above 0.83 suggest that
these classifiers output relevant predictions. Both classifiers achieved a decent
overall accuracy of 8̃8 %. Figures D.7 and D.8 visualize the comparison
between seasonal CNN classifier and an annual CNN classifier.

D.1.4 The winter season

Satellite images taken during the winter season in the mountains contain
the element of snow. This and the very small number of cloud-free images
from this season lead to a very unpleasant conclusion that a meaningful
classification of terrain types is impossible during the winter season.

Decently accurate detection of snow and water using the Fmask cloud-
detection algorithm or the Hollstein’s filter is possible. Cloud-free areas that
are not labeled as snow or water are usually forests. However, this depends
on the amount of snow and the amount of time since the last snowstorm, as
even forest areas can be completely covered by the snow.

D.2 Experiment results - highlands

Experiment results from highlands are discussed in this section. This area
contains numerous forests and - unlike the previous mountains area - it also
consists of many agricultural fields.

D.2.1 The spring season

In the spring season, both annual classifiers managed to separate almost all of
the classes very well. The exception being the distinction between Grass and
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Figure D.6: True color composite of a satellite image of the mountains area
taken in August (left) compared to the labeled image output of the annual CNN
classifier (right).
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Figure D.7: Confusion matrix. Model: CNN, type: annual, season: fall, area:
mountains.

73



D. Discussion of experiment results ............................
GreenField classes, where there was a lot of confusion in both classifiers.
Slightly better overall accuracy was achieved by the annual kNN classifier.
The confusion matrices of both classifiers were extremely similar. Figure D.9
shows the one associated with the kNN classifier.

Again, the seasonal classifiers achieved better classification results. In this
case, the CNN classifier scored a higher overall accuracy of 93 %, which is
a remarkable performance. Figure D.10 shows that the GreenField areas
were no longer as misclassified for the Grass class.

D.2.2 The summer season

The annual kNN classifier achieved surprisingly bad precision for the class
of ThinForest as it confused it a lot with GreenField (as shown in figure
D.11). Despite having better overall accuracy than the annual CNN classifier,
the results of the CNN classifier turned out to be more convincing.

Surprisingly, in the summer season, the seasonal classifiers achieved slightly
worse overall accuracy. The better performing classifier was the seasonal
CNN. This classifier confused mostly classes GreenField and Grass and
also classes YellowField and GroundSoil. The complete confusion matrix
of the seasonal CNN is visualized in figure D.12.

The fall season

The overall accuracy of annual classifiers for the fall season was very similar
to the summer season (around 85 %). However, a new confusion was brought
by this season. Both CNN and kNN classifiers achieved poor precision for
the ThinForest class, making wrong predictions mostly for areas labeled as
Grass or GreenField. This can be seen in figure D.13 which contains the
confusion matrix of the annual CNN classifier.

Both seasonal classifiers achieved poor performance for this season. The
most likely explanation is that the training images associated with the fall
season contained slightly different growing stages for classes like Grass,
YellowField, GreenField and ThinForest. The problem in this season is
that the vegetation changes rapidly. Deciduous forests with green leaves turn
brown, the grass loses its saturation and the fields turn from YellowField to
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Figure D.10: Confusion matrix. Model: CNN, type: seasonal, season: spring,
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Figure D.11: Confusion matrix. Model: KNN, type: annual, season: summer,
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GroundSoil in a matter of days. With values of kappa statistic below 0.65,
these classifiers are not well suited for this task.

D.2.3 The winter season

Similar to the mountains area, the highlands area was also completely covered
in snow during the winter season. For this reason, the classification was
omitted as well.

D.3 Experiment results - flatlands

The area of the South of Moravia in the Czech Republic is unique in several
ways. Firstly there is no coniferous forest in this region. Only the deciduous
forest, that changes its color depending on the season of the year. Secondly,
this area consists almost entirely of agricultural fields, making it a very
important aspect of the accuracy assessment. And lastly, a new type of
PurpleField class is introduced to differentiate among various field types.

D.3.1 The spring season

In general, all four classifiers reported very similar classification results (the
distribution inside the confusion matrices was almost identical for all four
classifiers). The seasonal classifiers achieved very slightly higher overall
accuracy. The best-performing classifier was the seasonal CNN with an
overall accuracy of 83 %. Its confusion matrix is visualized in figure D.14.

The common problems in this season was the differentiation among classes
GroundSoil, YellowField, and YellowGrass but also between the classes
Water and GreenField. The misclassification of water did not occur in
previous areas of interest. In flatlands, however, the training images of water
bodies often consist of ponds with still water where the algae thrive and
create a green cover over the water body. The algae-covered ponds may get
confused for green vegetation growing on the land.
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Figure D.12: Confusion matrix. Model: CNN, type: seasonal, season: summer,
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Figure D.13: Confusion matrix. Model: CNN, type: annual, season: fall, area:
highlands.
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D.3.2 The summer season

Very good overall accuracy was achieved by the CNN classifiers in the summer
season. Especially the seasonal CNN classifier scored 84 % in overall accuracy.
The annual kNN classifier achieved significantly lower accuracy in this season.

Confusing Grass with GreenField and YellowField with GroundSoil
were again the biggest problems for the classifiers. The misclassification of
water was, however, much less significant in summer than it was in spring.
The confusion matrix of the best-performing seasonal CNN classifier is shown
in figure D.15.

D.3.3 The fall season

The accuracy assessment for the fall season returned great performance for all
four classifiers. The seasonal classifiers even exceeded the overall accuracy of
90 %. Good separation of classes can be seen in figure D.16 that visualizes the
confusion matrix of the seasonal CNN classifier. However, a slight confusion
between classes BrownForest and PurpleField shown by the matrix is
problematic because these classes have very different meanings in the context
of search-and-rescue operations.

D.3.4 The winter season

Unlike in previous areas of interest, the flatlands area was not completely
covered in snow most of the time during the winter season. Classifying images
from this season is therefore possible. On the other hand, obtaining enough
training data for this specific season can be an issue as most of the images
are cloudy. Because of this, only one satellite image from the year 2020 was
available for the purpose of training the seasonal winter classifiers. For this
reason, the results may suffer from the lack of training images.

The confusion matrix of the annual CNN classifier (shown in figure D.17)
contains very similar values to the confusion matrix of the same classifier
evaluated for the spring season. The overall accuracy, however, dropped to
only 73 %. Seasonal classifiers improved it by a small amount (75 % in the
case of the seasonal CNN).
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Figure D.14: Confusion matrix. Model: CNN, type: seasonal, season: spring,
area: flatlands.
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Figure D.15: Confusion matrix. Model: CNN, type: seasonal, season: summer,
area: flatlands.
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Figure D.16: Confusion matrix. Model: CNN, type: seasonal, season: fall, area:
flatlands.
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Figure D.17: Confusion matrix. Model: CNN, type: annual, season: winter,
area: flatlands.
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Appendix E

Experiment results

In this appendix, statistics from all classifications are stated. See chapter 6
for further information regarding used metrics.
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kNN annual
Support 141 166 166 89 86 131 62
Support (%) 16.77 19.74 19.74 10.58 10.23 15.58 7.37
Precision 0.81 1.00 0.98 0.87 0.52 0.84 0.00
Recall 0.95 1.00 1.00 0.67 0.72 0.94 0.00
F1-measure 0.87 1.00 0.99 0.76 0.60 0.89 0.00

Overall accuracy 0.85
Kappa statistic 0.82

kNN seasonal
Support 141 166 166 89 86 131 62
Support (%) 16.77 19.74 19.74 10.58 10.23 15.58 7.37
Precision 0.91 1.00 1.00 0.93 0.48 0.68 1.00
Recall 0.98 1.00 1.00 0.92 0.27 0.99 0.47
F1-measure 0.94 1.00 1.00 0.93 0.34 0.80 0.64

Overall accuracy 0.87
Kappa statistic 0.85

CNN annual
Support 141 166 166 89 86 131 62
Support (%) 16.77 19.74 19.74 10.58 10.23 15.58 7.37
Precision 1.00 1.00 0.99 1.00 0.54 0.64 1.00
Recall 0.70 1.00 1.00 0.93 0.52 1.00 0.53
F1-measure 0.82 1.00 1.00 0.97 0.53 0.78 0.69

Overall accuracy 0.86
Kappa statistic 0.83

CNN seasonal
Support 141 166 166 89 86 131 62
Support (%) 16.77 19.74 19.74 10.58 10.23 15.58 7.37
Precision 0.97 1.00 0.99 0.90 0.00 0.52 1.00
Recall 1.00 1.00 1.00 0.94 0.00 1.00 0.29
F1-measure 0.99 1.00 1.00 0.92 0.00 0.68 0.45

Overall accuracy 0.84
Kappa statistic 0.81

Table E.1: Results: mountains (spring).
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kNN annual
Support 150 166 166 81 113
Support (%) 22.19 24.56 24.56 11.98 16.72
Precision 0.76 1.00 0.98 0.96 0.75
Recall 0.86 1.00 1.00 0.57 0.56
F1-measure 0.81 1.00 0.99 0.71 0.64

Overall accuracy 0.84
Kappa statistic 0.80

kNN seasonal
Support 150 166 166 81 113
Support (%) 22.19 24.56 24.56 11.98 16.72
Precision 0.89 1.00 0.99 0.94 0.78
Recall 0.80 1.00 0.99 0.80 0.90
F1-measure 0.84 1.00 0.99 0.87 0.84

Overall accuracy 0.91
Kappa statistic 0.89

CNN annual
Support 150 166 166 81 113
Support (%) 22.19 24.56 24.56 11.98 16.72
Precision 0.90 1.00 0.98 0.89 0.71
Recall 0.81 1.00 1.00 0.93 0.59
F1-measure 0.86 1.00 0.99 0.91 0.64

Overall accuracy 0.88
Kappa statistic 0.85

CNN seasonal
Support 150 166 166 81 113
Support (%) 22.19 24.56 24.56 11.98 16.72
Precision 0.92 0.99 1.00 1.00 0.84
Recall 0.88 1.00 0.99 0.85 0.87
F1-measure 0.90 0.99 0.99 0.92 0.86

Overall accuracy 0.93
Kappa statistic 0.91

Table E.2: Results: mountains (summer).
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kNN annual
Support 150 166 166 89 91 32
Support (%) 21.61 23.92 23.92 12.82 13.11 4.61
Precision 0.72 1.00 1.00 0.78 0.51 0.00
Recall 0.92 1.00 0.95 0.44 0.48 0.00
F1-measure 0.81 1.00 0.98 0.56 0.49 0.00

Overall accuracy 0.79
Kappa statistic 0.73

kNN seasonal
Support 150 166 166 89 91 32
Support (%) 21.61 23.92 23.92 12.82 13.11 4.61
Precision 0.79 1.00 0.99 0.83 0.90 0.00
Recall 1.00 0.99 0.90 0.85 0.70 0.00
F1-measure 0.88 1.00 0.94 0.84 0.79 0.00

Overall accuracy 0.87
Kappa statistic 0.84

CNN annual
Support 150 166 166 89 91 32
Support (%) 21.61 23.92 23.92 12.82 13.11 4.61
Precision 0.62 1.00 0.98 0.76 0.48 0.00
Recall 0.85 1.00 1.00 0.21 0.54 0.00
F1-measure 0.72 1.00 0.99 0.33 0.51 0.00

Overall accuracy 0.76
Kappa statistic 0.70

CNN seasonal
Support 150 166 166 89 91 32
Support (%) 21.61 23.92 23.92 12.82 13.11 4.61
Precision 0.82 1.00 0.99 0.93 1.00 0.48
Recall 0.89 1.00 0.98 0.88 0.47 0.97
F1-measure 0.86 1.00 0.98 0.90 0.64 0.64

Overall accuracy 0.88
Kappa statistic 0.86

Table E.3: Results: mountains (fall).
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kNN annual
Support 211 270 192 146 274 270 244
Support (%) 13.13 16.80 11.95 9.09 17.05 16.80 15.18
Precision 0.64 1.00 1.00 1.00 0.84 0.72 1.00
Recall 0.65 1.00 0.99 0.65 1.00 0.71 1.00
F1-measure 0.64 1.00 1.00 0.79 0.91 0.72 1.00

Overall accuracy 0.87
Kappa statistic 0.85

kNN seasonal
Support 211 270 192 146 274 270 244
Support (%) 13.13 16.80 11.95 9.09 17.05 16.80 15.18
Precision 0.78 1.00 1.00 1.00 0.85 0.82 1.00
Recall 0.77 1.00 0.99 0.66 1.00 0.83 1.00
F1-measure 0.77 1.00 1.00 0.80 0.92 0.83 1.00

Overall accuracy 0.91
Kappa statistic 0.89

CNN annual
Support 211 270 192 146 274 270 244
Support (%) 13.13 16.80 11.95 9.09 17.05 16.80 15.18
Precision 0.42 1.00 1.00 0.99 0.90 0.51 1.00
Recall 0.74 1.00 1.00 0.78 1.00 0.21 1.00
F1-measure 0.54 1.00 1.00 0.87 0.94 0.30 1.00

Overall accuracy 0.81
Kappa statistic 0.78

CNN seasonal
Support 211 270 192 146 274 270 244
Support (%) 13.13 16.80 11.95 9.09 17.05 16.80 15.18
Precision 0.85 1.00 1.00 0.99 0.89 0.82 1.00
Recall 0.75 1.00 1.00 0.77 1.00 0.90 1.00
F1-measure 0.80 1.00 1.00 0.87 0.94 0.86 1.00

Overall accuracy 0.93
Kappa statistic 0.92

Table E.4: Results: highlands (spring).
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kNN annual
Support 164 218 239 192 160 225 240
Support (%) 11.40 15.16 16.62 13.35 11.13 15.65 16.69
Precision 0.95 1.00 1.00 0.66 0.79 0.81 0.75
Recall 0.76 1.00 0.91 0.93 0.70 0.87 0.68
F1-measure 0.84 1.00 0.95 0.77 0.74 0.84 0.71

Overall accuracy 0.84
Kappa statistic 0.81

kNN seasonal
Support 164 218 239 192 160 225 240
Support (%) 11.40 15.16 16.62 13.35 11.13 15.65 16.69
Precision 0.66 1.00 0.99 0.54 0.64 0.85 0.79
Recall 0.86 0.94 0.64 0.87 0.83 0.68 0.55
F1-measure 0.74 0.97 0.78 0.67 0.72 0.75 0.65

Overall accuracy 0.75
Kappa statistic 0.71

CNN annual
Support 164 218 239 192 160 225 240
Support (%) 11.40 15.16 16.62 13.35 11.13 15.65 16.69
Precision 0.58 1.00 1.00 0.86 0.81 0.84 0.97
Recall 0.99 1.00 0.87 0.99 0.73 0.88 0.52
F1-measure 0.73 1.00 0.93 0.92 0.77 0.86 0.67

Overall accuracy 0.85
Kappa statistic 0.82

CNN seasonal
Support 164 218 239 192 160 225 240
Support (%) 11.40 15.16 16.62 13.35 11.13 15.65 16.69
Precision 0.58 1.00 1.00 0.71 0.69 0.81 0.92
Recall 0.98 1.00 0.84 0.84 0.76 0.76 0.50
F1-measure 0.73 1.00 0.91 0.77 0.72 0.79 0.64

Overall accuracy 0.80
Kappa statistic 0.77

Table E.5: Results: highlands (summer).
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kNN annual
Support 163 216 196 92 171 239 236
Support (%) 12.41 16.45 14.93 7.01 13.02 18.20 17.97
Precision 0.62 1.00 0.99 0.65 0.75 1.00 0.86
Recall 0.58 1.00 1.00 0.92 0.95 0.78 0.77
F1-measure 0.60 1.00 1.00 0.76 0.84 0.88 0.81

Overall accuracy 0.85
Kappa statistic 0.83

kNN seasonal
Support 163 216 246 92 175 239 294
Support (%) 11.44 15.16 17.26 6.46 12.28 16.77 20.63
Precision 0.27 1.00 0.99 0.00 0.00 0.53 0.56
Recall 0.45 1.00 1.00 0.00 0.00 0.56 0.83
F1-measure 0.34 1.00 0.99 0.00 0.00 0.55 0.67

Overall accuracy 0.64
Kappa statistic 0.57

CNN annual
Support 163 216 246 92 175 239 294
Support (%) 11.44 15.16 17.26 6.46 12.28 16.77 20.63
Precision 0.79 1.00 1.00 0.50 0.67 1.00 1.00
Recall 0.64 1.00 0.97 1.00 0.82 0.71 0.84
F1-measure 0.71 1.00 0.99 0.67 0.74 0.83 0.91

Overall accuracy 0.85
Kappa statistic 0.83

CNN seasonal
Support 163 216 246 92 175 239 294
Support (%) 11.44 15.16 17.26 6.46 12.28 16.77 20.63
Precision 0.41 1.00 1.00 0.00 0.00 0.49 0.77
Recall 0.88 1.00 1.00 0.00 0.00 0.57 0.81
F1-measure 0.56 1.00 1.00 0.00 0.00 0.53 0.79

Overall accuracy 0.69
Kappa statistic 0.63

Table E.6: Results: highlands (fall).
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kNN annual
Support 123 242 120 96 223 203 207 235
Support (%) 8.49 16.70 8.28 6.63 15.39 14.01 14.29 16.22
Precision 0.71 0.90 0.38 0.84 0.57 0.96 0.99 0.96
Recall 0.93 0.98 0.50 0.54 0.57 0.48 0.96 1.00
F1-measure 0.81 0.94 0.43 0.66 0.57 0.64 0.97 0.98

Overall accuracy 0.78
Kappa statistic 0.74

kNN seasonal
Support 123 242 120 96 223 203 207 235
Support (%) 8.49 16.70 8.28 6.63 15.39 14.01 14.29 16.22
Precision 0.89 0.89 0.42 0.74 0.66 0.85 0.99 0.98
Recall 0.85 0.89 0.62 0.53 0.61 0.74 0.97 1.00
F1-measure 0.87 0.89 0.50 0.62 0.63 0.79 0.98 0.99

Overall accuracy 0.81
Kappa statistic 0.78

CNN annual
Support 123 242 120 96 223 203 207 235
Support (%) 8.49 16.70 8.28 6.63 15.39 14.01 14.29 16.22
Precision 0.90 0.88 0.56 0.61 0.72 0.73 0.98 1.00
Recall 0.98 0.80 0.56 0.54 0.75 0.65 1.00 1.00
F1-measure 0.94 0.84 0.56 0.57 0.74 0.68 0.99 1.00

Overall accuracy 0.81
Kappa statistic 0.78

CNN seasonal
Support 123 242 120 96 223 203 207 235
Support (%) 8.49 16.70 8.28 6.63 15.39 14.01 14.29 16.22
Precision 0.88 0.88 0.56 0.74 0.71 0.75 0.99 1.00
Recall 1.00 0.78 0.68 0.54 0.70 0.79 1.00 1.00
F1-measure 0.94 0.83 0.62 0.63 0.71 0.77 1.00 1.00

Overall accuracy 0.83
Kappa statistic 0.81

Table E.7: Results: flatlands (spring).
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kNN annual
Support 268 229 105 263 268 213
Support (%) 19.91 17.01 7.80 19.54 19.91 15.82
Precision 1.00 0.91 0.73 0.90 0.93 0.74
Recall 1.00 0.93 0.08 0.91 0.84 0.43
F1-measure 1.00 0.92 0.14 0.90 0.88 0.54

Overall accuracy 0.77
Kappa statistic 0.73

kNN seasonal
Support 268 229 105 263 268 213
Support (%) 19.91 17.01 7.80 19.54 19.91 15.82
Precision 1.00 0.90 0.64 0.77 0.78 0.94
Recall 0.97 0.86 0.07 1.00 0.72 0.95
F1-measure 0.98 0.88 0.12 0.87 0.75 0.95

Overall accuracy 0.83
Kappa statistic 0.80

CNN annual
Support 268 229 105 263 268 213
Support (%) 19.91 17.01 7.80 19.54 19.91 15.82
Precision 1.00 1.00 1.00 0.76 0.98 0.92
Recall 0.99 1.00 0.09 0.98 0.91 0.56
F1-measure 0.99 1.00 0.16 0.86 0.94 0.70

Overall accuracy 0.83
Kappa statistic 0.80

CNN seasonal
Support 268 229 105 263 268 213
Support (%) 19.91 17.01 7.80 19.54 19.91 15.82
Precision 1.00 1.00 1.00 0.79 0.94 0.84
Recall 0.89 1.00 0.31 1.00 0.63 0.92
F1-measure 0.94 1.00 0.48 0.88 0.76 0.87

Overall accuracy 0.84
Kappa statistic 0.81

Table E.8: Results: flatlands (summer).
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kNN annual
Support 140 263 147 225 246 225 194
Support (%) 9.72 18.26 10.21 15.62 17.08 15.62 13.47
Precision 0.87 0.89 1.00 0.79 1.00 0.76 0.83
Recall 0.79 1.00 0.60 0.99 0.77 0.84 0.91
F1-measure 0.83 0.94 0.75 0.88 0.87 0.79 0.86

Overall accuracy 0.86
Kappa statistic 0.83

kNN seasonal
Support 140 263 147 225 246 225 194
Support (%) 9.72 18.26 10.21 15.62 17.08 15.62 13.47
Precision 0.95 0.90 0.99 0.92 0.96 0.87 0.82
Recall 1.00 0.97 0.82 0.95 0.88 0.83 0.92
F1-measure 0.98 0.93 0.90 0.93 0.92 0.85 0.87

Overall accuracy 0.91
Kappa statistic 0.89

CNN annual
Support 140 263 147 225 246 225 194
Support (%) 9.72 18.26 10.21 15.62 17.08 15.62 13.47
Precision 0.95 0.91 1.00 0.73 1.00 0.78 0.78
Recall 0.68 1.00 0.39 1.00 0.89 0.76 1.00
F1-measure 0.79 0.95 0.56 0.85 0.94 0.77 0.88

Overall accuracy 0.85
Kappa statistic 0.82

CNN seasonal
Support 140 263 147 225 246 225 194
Support (%) 9.72 18.26 10.21 15.62 17.08 15.62 13.47
Precision 0.95 0.90 1.00 0.87 1.00 0.87 0.78
Recall 1.00 1.00 0.72 0.92 0.89 0.78 0.95
F1-measure 0.98 0.95 0.84 0.90 0.94 0.82 0.85

Overall accuracy 0.90
Kappa statistic 0.88

Table E.9: Results: flatlands (fall).
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kNN annual
Support 90 199 143 117 267 219 149
Support (%) 7.60 16.81 12.08 9.88 22.55 18.50 12.58
Precision 0.29 1.00 0.58 0.52 0.85 0.83 0.81
Recall 0.92 0.95 0.55 0.53 0.13 0.88 0.93
F1-measure 0.44 0.97 0.57 0.52 0.22 0.86 0.87

Overall accuracy 0.66
Kappa statistic 0.61

kNN seasonal
Support 90 199 143 117 267 219 149
Support (%) 7.60 16.81 12.08 9.88 22.55 18.50 12.58
Precision 0.36 1.00 1.00 0.46 0.80 0.93 0.96
Recall 0.58 0.93 0.03 1.00 0.66 1.00 0.91
F1-measure 0.45 0.97 0.07 0.63 0.72 0.96 0.93

Overall accuracy 0.75
Kappa statistic 0.71

CNN annual
Support 90 199 143 117 267 219 149
Support (%) 7.60 16.81 12.08 9.88 22.55 18.50 12.58
Precision 0.51 1.00 0.68 0.90 1.00 0.89 0.77
Recall 0.96 0.95 0.60 0.65 0.34 0.88 1.00
F1-measure 0.67 0.97 0.64 0.76 0.51 0.88 0.87

Overall accuracy 0.73
Kappa statistic 0.70

CNN seasonal
Support 90 199 143 117 267 219 149
Support (%) 7.60 16.81 12.08 9.88 22.55 18.50 12.58
Precision 0.36 0.87 0.00 0.43 0.87 0.88 0.98
Recall 0.34 0.91 0.00 1.00 0.80 1.00 0.82
F1-measure 0.35 0.89 0.00 0.60 0.83 0.94 0.89

Overall accuracy 0.75
Kappa statistic 0.70

Table E.10: Results: flatlands (winter).
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Appendix F

Digital attachment

The digital attachment contains the source code of all implemented methods.
The complete user guide with more information can be found in the file
README.md. The code is split into three main modules.

The first module can be used to bulk-download Sentinel-2 imagery from
a publicly available datasource.

The second module is the classifier. All mathematical methods discussed in
this thesis are supported by this module. The abstract classifier implements
all parts of the supervised classification task:..1. training the classifier with labeled training data,..2. classifying selected image using the trained classifier.

The last module is the labeling application that was used for manual
labeling of training and validation images for this thesis.
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