
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

A Heuristic Algorithm for Kriegspiel

Bc. Vojtěch Foret

Supervisor: Ing. Michal Šustr
May 2021

ctuthesis t1606152353 ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

456991Personal ID number:Foret VojtěchStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

A heuristic algorithm for Kriegspiel

Master’s thesis title in Czech:

Heuristický algoritmus pro Kriegspiel

Guidelines:
1. Make a literature overview of algorithms for solving large games of imperfect
information, with the emphasis on Kriegspiel [1].
2. Implement the game and reimplement a state-of-the art algorithm [2] as a
baseline in OpenSpiel [3].
3. Implement a new algorithm, based on sampling compatible boards [4] and
evaluating them with a traditional chess engine [5] as a heuristic for the value
function.
4. Evaluate the algorithms in pair-wise matches to compute a statistically significant
result.

Bibliography / sources:
[1] Li, David Hsiang-fu. Kriegspiel: Chess Under Uncertainty. Premier Publishing
Company, 1994.
[2] Paolo Ciancarini, Gian Piero Favini, Monte Carlo tree search in Kriegspiel,
Artificial Intelligence, Volume 174, Issue 11, Pages 670-684, 2010.
[3] Lanctot M, Lockhart E, Lespiau JB, Zambaldi V, Upadhyay S, Pérolat J, Srinivasan
S, Timbers F, Tuyls K, Omidshafiei S, Hennes D. OpenSpiel: A framework for
reinforcement learning in games. arXiv preprint arXiv:1908.09453. 2019 Aug 26.
[4] Ciancarini P, Favini GP. Representing Kriegspiel States with Metapositions.
InIJCAI 2007 Jan 6 (pp. 2450-2455).
[5] Acher, Mathieu, and François Esnault. "Large-scale analysis of chess games with
chess engines: A preliminary report. arXiv preprint arXiv:1607.04186 (2016).

Name and workplace of master’s thesis supervisor:

Ing. Michal Šustr, Department of Computer Science, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 21.02.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Michal Šustr

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

First, I would like to thank my supervi-
sor Michal Šustr for his guidance. During
our regular consultations and discussions
he provided me with many useful com-
ments and valuable insights.

I would also like to thank my family
for their support and help. Especially, I
thank my wife for her never-ending pa-
tience and supply of encouragement, and
my little son for finally learning to sleep
the whole night.

Declaration

I declare that the presented work was
developed independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
thesis.

In Prague, 21. May 2021

v ctuthesis t1606152353

Abstract

Games are a simple model of real-world
problems. Games with imperfect informa-
tion extend this model by adding hidden
information and thus being closer to real
problems. However, these games are much
more difficult for computer programs to
play, especially if there is a significant
amount of hidden information. Kriegspiel
is an imperfect information variant of a
well-known game of Chess, in which the
player does not know the positions of the
opponent’s pieces. Helpful information is
scarce in Kriegspiel, which makes it dif-
ficult for computer programs. Moreover,
very little research has been done on com-
puter programs playing the game. This
thesis tests general algorithms for play-
ing imperfect information games and the
strongest known Kriegspiel playing pro-
gram. It improves them by integrating
advanced and well-tested algorithms for
playing perfect information Chess. The
final algorithm is indeed stronger than the
original version. This shows that deter-
minization evaluation is a powerful tool
that might also be useful other imperfect
information games with well-researched
perfect information versions.

Keywords: Kriegspiel, Game Theory,
Imperfect Information, Monte Carlo,
Monte Carlo Tree Search

Supervisor: Ing. Michal Šustr

Abstrakt

Hry představují jednoduchý model pro-
blémů reálného světa. Hry s neúplnou in-
formací vylepšují tento model přidáním
skryté informace, čímž se přibližují sku-
tečným problémům. Tyto hry jsou však
pro počítačové programy náročnější na
hraní, obzvlášť pokud mají velmi silnou
skrytou informaci. Kriegspiel je varianta
známé hry Šachy, ve které hráč nezná po-
zice nepřátelských figurek. Užitečné in-
formace jsou v Kriegspielu vzácné, což
z něj dělá velmi složitou hru pro počíta-
čové programy. Navíc bylo provedeno jen
velmi málo výzkumu na poli hraní celé hry
Kriegspielu. Tato práce testuje obecné al-
goritmy pro hry s neúplnou informací a
také dosud nejsilnější známý algoritmus
hrající Kriegspiel. Tyto algoritmy vylep-
šuje využitím pokročilých a dobře vyzkou-
šených algoritmů pro hraní šachů s úplnou
informací. Výsledný algoritmus skutečně
předvedl lepší výkony než původní verze.
Toto ukazuje, že evaluace determinizací je
důležitý a mocný nástroj, který by mohl
mít budoucnost i v dalších hrách s ne-
úplnou informací, u kterých jsou dobře
prozkoumané verze s úplnou informací.

Klíčová slova: Kriegspiel, teorie her,
neúplná informace, Monte Carlo, Monte
Carlo Tree Search

Překlad názvu: Heuristický algoritmus
pro Kriegspiel

ctuthesis t1606152353 vi

Contents

1 Introduction 1

1.1 Motivation . 1

2 Background 3

2.1 Imperfect Information Games . . . 3

3 Imperfect information chess
variants 5

3.1 Kriegspiel . 5

3.2 Imperfect Information Chess
Variants . 7

4 Algorithms 11

4.1 Information Set Representation . 11

4.1.1 Statistical Sampling 11

4.1.2 Metapositions 13

4.2 Darkboard 14

4.3 Perfect Information Monte Carlo 17

4.4 Monte Carlo Tree Search
Algorithms . 18

4.4.1 Monte Carlo Tree Search 18

4.4.2 Information Set Monte Carlo
Tree Search 21

4.4.3 DarkBoard 2.0 23

5 Implementation 27

5.1 OpenSpiel: A Framework for
Reinforcement Learning in Games 27

5.2 Stockfish . 28

5.3 Kriegspiel . 28

5.4 Information Set Representation . 29

5.4.1 Last Observation Sampling . . 29

5.4.2 All Observation Sampling with
Pool . 29

5.4.3 Hybrid Sampling 29

5.5 DarkBoard 30

5.6 Random Player 30

5.7 PIMC with Stockfish 31

5.8 ISMCTS . 31

6 Experiments 33

6.1 Metacentrum 33

vii ctuthesis t1606152353

6.2 Statistics . 33

6.3 Results . 34

6.4 Discussion 39

6.4.1 Darkboard 2.0 39

6.4.2 Information Set Monte Carlo
Tree Search 39

6.4.3 Perfect Information Monte
Carlo . 40

7 Conclusion 43

A Bibliography 45

ctuthesis t1606152353 viii

Figures

3.1 Comparison between a chessboard
in the game of Chess (left) and in
Kriegspiel (right) from the
perspective of white player 6

3.2 Dark Chess chessboard from the
perspective of the white player 8

4.1 Metaposition for a KRK endgame
scenario . 14

4.2 The four steps of Monte Carlo Tree
Search. 19

Tables

6.1 Finding UCT exploration constant
for the ISMCTS algorithm. The best
expected outcome is written in bold. 34

6.2 Finding UCT exploration constant
for the MO-ISMCTS algorithm. The
best expected outcome is written in
bold. 35

6.3 Finding evaluation time for each
determinization in PIMC. The best
expected outcome is written in bold. 35

6.4 Finding UCT exploration constant
and evaluation time for each state in
ISMCTS with Stockfish. The best
expected outcome is written in bold. 36

6.5 Finding UCT exploration constant
and evaluation time for each state in
MO-ISMCTS with Stockfish. The
best expected outcome is written in
bold. 37

6.6 Finding UCT exploration constant
for Darkboard 2.0. The best
expected outcome is written in bold. 37

6.7 Round-robin Tournament of all
implemented algorithms 38

ix ctuthesis t1606152353

ctuthesis t1606152353

Chapter 1

Introduction

1.1 Motivation

Games are a great model of real-world problems. They provide an environ-
ment much simpler than the real world with much fewer possible actions
to take. It is used for developing and testing new algorithms and tech-
niques that can be later generalized and used in artificial intelligence for
agents operating in the real world. Games with imperfect information are
especially interesting because they generalize the environment by adding hid-
den information, coming closer to the real world, as agents in the real world
do not have all the information about the environment they find themselves in.

Among games with imperfect information, Kriegspiel stands out as it is
an imperfect information version of a popular and, from a game-theoretical
standpoint, very well researched game of Chess. Kriegspiel offers strong
imperfect information - the information gained by players is scarce and loses
most of its relevance after only a few moves. This makes it extremely difficult
to play well not only for humans, but especially for computer programs.
This has been proved several times throughout the decades of research of
Kriegspiel. It is so difficult for programs to play that decades of research have
been done only on solving specific problems within Kriegspiel, e.g., endgames.
Only recently serious attempts to play the whole game have been made, with
only one known algorithm being able to play against average human players
decently.

This thesis aims to improve and test existing algorithms for playing games

1 ctuthesis t1606152353

1. Introduction
with imperfect information, especially those tested on Kriegspiel, by adding
Chess domain knowledge. Chess has been the most popular game for com-
puter programs to play for a long time. This resulted in Chess having many
advanced computer programs that play on a super-human level. As the
game of Kriegspiel builds on the rules of Chess, we can use these advanced
algorithms to provide a heuristic for algorithms playing Kriegspiel.

ctuthesis t1606152353 2

Chapter 2

Background

This chapter provides a brief introduction to the background needed to
understand the concepts described later in this thesis. I introduce notations
for imperfect information extensive-form games and define used expressions.

2.1 Imperfect Information Games

Definition 2.1. An extensive form game (EFG) with imperfect information
as defined in [Moravčík et al., 2017] consists of:..1. N is the set of players including the nature player (c) that represents

the dynamics of the game,..2. for each i ∈ N ,Ai is the set of actions available to player i,..3. H is a set of possible states of the game, where each state corresponds
to a history of actions performed by all players,..4. Z ⊆ H is a set of terminal game states,..5. P : H Z → N is a function assigning each non-terminal state a player
that selects an action in the state,..6. A : H Z → Ai is a function assigning each non-terminal game state the
actions applicatble by the acting player,

3 ctuthesis t1606152353

2. Background7. T : H×Ai → H∪Z is the transition function realizing one move of the
game,..8. ui : Z → R gives the utility of player 1,..9. Ii for player i represents player’s imperfect, information about the game.
It is a partion of Hi = {h ∈ H : P(h) = i} called information sets.
Each information set I ∈ Ii represents the set of histories that are
indistinguishable for player i,...10. 4c(h) ∈ 4(A(h)) is the commonly known probability distribution of
nature player’s actions.

These games can be represented by a tree, where nodes represent the game
states (histories), leaves the terminal states and the root node the empty
history.The edges represent actions and the transitions from one state to
another after applying the actions.

The expression determinization is in literature used for two different things.
One meaning of determinization is a particular history of the imperfect in-
formation game compatible with a player’s information set. Therefore, the
information set can be represented as a set of determinizations compatible
with all the player’s observations in the game so far. Another meaning
of determinization is is Perfect Information Monte Carlo - an algorithm
based on sampling histories compatible with the current information set
[Cowling et al., 2012]. In this thesis, I am going to use the expression in the
first mentioned meaning.

ctuthesis t1606152353 4

Chapter 3

Imperfect information chess variants

Chess has a legendary status among board games and games in general. For
a long time, the state of artificial intelligence research was measured by how
well computers could play Chess. A significant step forward took place in
1997 when IBM’s Deep Blue [Campbell et al., 2002] defeated the, at the time,
chess world champion Kasparov. Since Chess is such a popular game, there
are many widely spread chess variants. The most popular chess variant is
probably Chess960 proposed by Fisher, but many other variants differ much
more from the original game of Chess. For example, Four Player Chess, King
of the Hill, and imperfect information variants. This section will take a closer
look at the imperfect information variants of Chess and especially Kriegspiel.

3.1 Kriegspiel

Kriegspiel is a chess variant where the player cannot see the enemy pieces.
When playing this game in person, three chessboards and three sets of pieces
are needed. The game needs a referee (called umpire) who is the only one
having complete information about the state of the game. He has a chessboard
with all the pieces. Players have chessboards with only their own pieces on
the chessboard. They can also have a set of enemy pieces, but their purpose
is only to visualize certain possibilities to the player and have no impact on
the game. Players move their pieces on their chessboards, the umpire updates
his chessboard accordingly and tells messages to the players.

5 ctuthesis t1606152353

3. Imperfect information chess variants...........................

Figure 3.1: Comparison between a chessboard in the game of Chess (left) and
in Kriegspiel (right) from the perspective of white player

Generally, all the messages can be heard by both players, but each player
infers different information from them. These messages can be:

. Illegal - Since the player cannot see enemy pieces, this is not an uncom-
mon scenario. The player can attempt to move through enemy pieces or
move into check. In this case, the player is notified that his chosen move
was illegal and can try again..Nonsense - Since both players can hear all the messages, one could try
to confuse the opponent by trying obviously illegal moves like moving a
horse as a bishopmoves, or moving through allied pieces. This is avoided
by using a message different from Illegal..White to move - The move was successful, and it is white’s turn.Black to move - The move was successful, and it is black’s turn.Piece captured - The move was successful, and a piece was captured.
Both players are notified at which square the capture happened. Option-
ally, some information about the captured piece can be given, but never
about the capturing piece..Check - Players are notified when check occurs. Additionally, the type
of check is given:. file,. rank,. long diagonal,. short diagonal,

ctuthesis t1606152353 6

.......................... 3.2. Imperfect Information Chess Variants

. knight.

As Kriegspiel has a long history, there exist many different variations. The
first notable one is the English Kriegspiel. The most significant rule in this
ruleset is called "Are there any?". The player can pose this question to the
umpire to determine whether there are any possible pawn captures. The
umpire answers yes or no. If the answer is no, the player knows that there are
no available pawn captures. If the answer is yes, the player knows that there
is at least one possibility for capturing a piece with a pawn. The only price
he has to pay for this information is that he has to try playing at least one
pawn capture. This rule is widely spread because it saves plenty of time that
would be wasted trying all kinds of pawn captures at each turn. Attempting
all possible pawn captures is a popular strategy because:..1. Capturing a piece is not easy in Kriegspiel...2. Trying to capture with a pawn can result in either capture or illegal

move, which results in playing again...3. Capturing with a pawn carries little to no risk.

The ruleset we are interested in is the one used in Internet Chess Club
(ICC). Kriegspiel is played in ICC under the name Wild 16 (Chess variants
in ICC are called Wild Chess and Kriegspiel happens to be 16th on their
list). This ruleset is widely spread and right now is the closest one to being
standardized. It was also adapted in the 11th and 14th Computer Olympiad.
Under these rules, players do not receive messages about the opponent’s
illegal moves. It also goes further with the "Are there any?" rule than the
English variant. At the beginning of each turn, the player receives a message
about the number of pawn tries (possible pawn captures), if there are any.
Additionally, when a piece is captured, besides the location of the capture,
players receive information whether the captured piece was a pawn or another
piece.

3.2 Imperfect Information Chess Variants

Besides different variants of Kriegspiel, there are imperfect information chess
variants with rules sufficiently different to Kriegspiel that they have a different

7 ctuthesis t1606152353

3. Imperfect information chess variants...........................

Figure 3.2: Dark Chess chessboard from the perspective of the white player

name. The two most spread variants are Dark Chess and Reconnaissance
Blind Chess.

Dark Chess gained popularity thanks to being available on a famous free
server chess.com under the name Fog of War Chess. Dark Chess offers more
information about the state of the game to the player and is easier to win
than Kriegspiel. Each player can see their own pieces and all the squares they
can legally move to. This offers much more information about the chessboard
and the opponent’s pieces, especially with a queen or a rook on an open file.
In Fog of War Chess, even at the beginning of the opponent’s move, one
can see squares where he could potentially move if it were their turn. This
allows for sending self-sacrificial scouts to the opponent’s territory. However,
the most critical change to the rules of Chess is the complete removal of the
concept of a check. The player is not notified about a check, and the king
can move in and out of check. Checkmate is no longer the objective, and the
game ends when the king is captured.

Another imperfect information chess variant gaining popularity is Reconnais-
sance Blind Chess (RBC) [Newman et al., 2016]. Similarly to Dark Chess,
check is also removed from the game, and the objective is to capture the
opponent’s king. The player can only see his own pieces and nothing more,
just like in Kriegspiel. It would seem that this game is just a crossing of these
two games, but Reconnaissance Blind Chess adds an entirely new feature to
the game. At the beginning of each turn (except for the first), the player can
select an area of 3x3 squares on the board. The player learns the positions and
types of all pieces in this area. This adds a new layer of strategy complexity
to this game.

ctuthesis t1606152353 8

.......................... 3.2. Imperfect Information Chess Variants

Darkchess and RBC are interesting for us because they are present a simpler
version of Kriegspiel. Since the player does not have to check-mate a king
and the games offer much more information about the state of the game, they
are much easier to win. With more information about the game state, one
can also more easily represent the information set. This makes them easier
to play for humans and computers. However, Kriegspiel being a challenging
game is why it is very interesting from a game-theoretical point of view. This
thesis will focus on algorithms playing Kriegspiel, using Darkchess and RBC
as examples where similar algorithms were used and how successfully.

9 ctuthesis t1606152353

ctuthesis t1606152353 10

Chapter 4

Algorithms

4.1 Information Set Representation

Uncertainty is a big part of what Kriegspiel is about and representation of
the information set is very important. Non-trivial ways to represent the belief
state in Kriegspiel are needed because it gets too large to store in memory
explicitely in a matter of a few moves. In this chapter I describe existing
ways to represent the information set and what algorithms have been applied
to Kriegspiel in the past.

4.1.1 Statistical Sampling

Since the information set tends to be too large, statistical sampling can be
used to sample random states consistent with the current information set.
It was proven successful in games like Bridge [Ginsberg, 2001] and Scrabble
[Sheppard, 2002]. Four different statistical sampling algorithms were defined
and tested on Kriegspiel in [A. Parker, 2005].

All Observation Sampling (AOS) generates random states consistent with
all the observations the player received since the beginning of the game. This
algorithm can sample all states within the information set when given enough

11 ctuthesis t1606152353

4. Algorithms......................................
time. However, the required time grows exponentially with the branching
factor of the underlying perfect information game. The branching factor in
Chess is relatively high, on average around 30. The game of Chess is already
long, but Kriegspiel games, challenging to win as they are, tend to be even
longer. This makes All Observation Sampling time-consuming and infeasible
in practice.

All Observation Sampling with Pool (AOSP) keeps a pool of states con-
sistent with all previous observations. When a new observation is received,
the pool is updated. When the pool grows too large, random samples are
removed, so the pool remains acceptable in size. When the information set
grows large enough, it becomes highly likely that none of the states in the
pool is the current actual state of the game. Observations may reveal this
fact, and the pool ends up empty. It is then necessary to make new samples
and fill the pool again. This approach was succesfully used in StrangeFish [?],
a computer program playing RBC. However, StrangeFish was able to find a
strategy for using RBC’s sensing so effectively, that the information set never
grew too large to store in memory. This is not possible in Kriegspiel, so in
our case, the pool size has to be limited.

Last Observation Sampling (LOS) generates random states consistent with
the last observation available to the player. Ignoring all previous observations
can lead to a loss of information. However, information obtained from obser-
vations quickly loses its significance in Kriegspiel and all previous observations
may not be needed. On the other hand, the Kriegspiel observations rarely give
much information to guide the sampling. The information set is so large that,
later in the game, Last Observation Sampling becomes more useful because
the samples are more likely to be consistent with the current information set.

Hybrid sampling (HS) is a combination of AOSP and LOS. It keeps a
pool of states consistent with all observations at the beginning of the game.
When an observation proves some of these states wrong and the pool thins
under the desired size, it is filled with samples retrieved by Last Observation
Sampling. This combines the early game accuracy of AOSP and the fact that
LOS provides fast samples that are mostly consistent with the information
set in the late game. LOS also provides diversification to the pool, enhancing
the AOSP approach.

ctuthesis t1606152353 12

.............................4.1. Information Set Representation

4.1.2 Metapositions

Metapositions were introduced in [Sakuta, 2001] to solve endgame positions
for an imperfect information game based on Shogi. As described, metaposition
merges different moves into one state. A metaposition represents a set of
states with the same actions available to the player.

Another definition of metapositions that better suits the needs of Kriegspiel
was formulated in [P. Ciancarini, 2007]:

Definition 4.1. If S is the set of all possible game states and I ⊆ S is the
information set comprising all game states compatible with a given sequence
of observations (referee’s messages), a metaposition M is any opportunely
coded subset of S such that I ⊆ M ⊆ S.

As such, metapositions provide a compact way to represent a superset of an
information set. Having a state representing a set of states instead of sampling
them presents an opportunity to treat games with imperfect information as
games with perfect information and apply well-known algorithms to such
games.

Metapositions applied to the game of Kriegspiel were introduced in
[Bolognesi and Ciancarini, 2004] for solving simple endgame problems and in
[Ciancarini and Favini, 2010b] they were used to find strategies with guaran-
teed victory in KRK (King and Rook vs. King), KQK (King and Queen vs.
King), KBBK (King and two Bishops vs. King), and KBNK (King, Bishop
and Knight vs. King) endgames. A great accomplishment was finding a
deterministic strategy for winning the KBNK endgame, which was previously
thought impossible [Ferguson, 1992]. Later, metapositions were also used in a
computer program playing the whole game of Kriegspiel [P. Ciancarini, 2007].

A metaposition is represented as a chessboard with standard pieces and new
entities called pseudopieces. The standard pieces represent the player’s pieces,
so if there is a piece at a given square, we know that there is nothing else at
the square. However, a pseudopiece represents the possibility of an opponent’s
piece being at a given square. As such, there can be multiple pseudopieces on
one square. Figure 4.1 shows a metaposition, where the opponent is left with
only the king. Two types of moves can be applied to these metapositions:
pseudomoves and metamoves. A pseudomove updates a metaposition based
on the player’s attempted move and the umpire’s response to it. A metamove
updates a metaposition after the opponent makes a move and the player
receives the umpire’s message. A metamove puts a clone of every pseudopiece
to all his possible move destinations consistent with the umpire’s message
(e.g., putting the player’s king in check or capturing a piece). Pseudopieces

13 ctuthesis t1606152353

4. Algorithms......................................

Figure 4.1: Metaposition for a KRK endgame scenario

cannot move through pieces, but they can move through other pseudopieces,
because there is a possibility that the square is empty. This is the reason
why metaposition is a superset of the information set.

Let us say that a pseudopiece moves from a square A to a square B, but there
is another pseudopiece at square B. The metaposition does not know whether
the square B can be empty under the condition that A i occupied by the
piece represented by the pseudopiece. This leads to metapositions containing
also states that are not in the current information set.

4.2 Darkboard

Darkboard algorithm was introduced in [P. Ciancarini, 2007]. It uses meta-
positions described in the previous section to represent a superset of the
information set. The algorithm is similar to a min-max algorithm and uses a
custom evaluation function for Kriegspiel represented by metapositions.

Darkboard uses some optimizations in building the game tree as the ac-
tual game tree would be too large. After the opponent’s unknown move and
after each of the player’s possible moves, several possible umpire messages
are compatible with the current metaposition. If the game tree contained
all these possibilities, the branching factor would be too large. Instead, only
one reasonable umpire message is generated in each node, according to a
prediction heuristic.

ctuthesis t1606152353 14

......................................4.2. Darkboard
The umpire prediction heuristic has two sets of rules. The first set of rules
determines the umpire messages generated after the player’s pseudomove:

. Every move is legal.. The move does not capture anything unless it is a pawn try, a move to a
square that is certainly not empty or retry of an illegal move but one
square shorter.. The captured entity is always a pawn if there is a possibility that there
is a pawn on the square. Otherwise, a piece is captured..Opponent pawn tries are generated always when there is a possibility
that the moved piece is a target of a pawn try.

The second set of rules determines the umpire messages generated after
the opponent’s metamove:

. The opponent never captures anything.. The opponent never threatens the player’s king.. Pawn tries are never generated.

The reason for the messages surprisingly never considering the opponent
capturing a piece or threatening player’s king is that the evaluation function
considers these risks already. The game tree does not need to simulate this
because the risks tied with exposing pieces are heavily punished in the evalu-
ation function.

These heuristics generate reasonable umpire messages. They will also never
generate messages that imply a lucky move, like revealing the opponent’s king
or capturing a piece. However, with the growing tree depth, the accuracy of
these heuristics drops very quickly. It is also less accurate during the middle
game when silent umpire messages are less likely.

The goal of using metapositions in Kriegspiel is to allow use of traditional
perfect information techniques like Min-Max in Kriegspiel. However, as men-
tioned above, only one possible umpire message commenting opponent move
is generated at each state when it is the opponent’s turn. This makes the MIN
layer redundant, and therefore each node in the search tree represents two
plies (one complete turn), and the algorithm resembles a weighed maximax.

15 ctuthesis t1606152353

4. Algorithms......................................
It is weighed by a prediction coefficient, reflecting the level of confidence in
the heuristic generating umpire messages.

The evaluation function uses three main components that the algorithm
aims to maximize throughout the game: material safety, position, and infor-
mation.

Material safety evaluates how well protected each piece is. It prefers pieces
being protected by other pieces. It also takes into consideration that some
squares are more dangerous than others and that a recently moved piece is
more likely to be captured.

The position component evaluates the material rating with dynamic val-
ues for pieces as the game advances. It uses factors like pawn advancement
bonus, having pawns on files without opponent pawns, and the number of
controlled squares. When Darkboard is considering checkmating the oppo-
nent, it also aims to push the opponent’s king pseudopieces to the board’s
edges.

Evaluating the amount of known information is a great advantage of using
metapositions in contrast to statistical sampling information set representa-
tion. When sampling states compatible with the information set, we cannot
properly evaluate the size of the information set. When using metapositions,
the algorithm aims to reduce the size of the metaposition’s position set by
reducing the number of pseudopieces on the board. This component of the
evaluation function also encourages the algorithm to explore squares that
have not been visited for a longer time.

Using metapositions with techniques for playing perfect information games in
Kriegspiel had a great success. The algorithm consistently ranked among the
top 20 players on ICC and won the Gold medal at the Eleventh Computer
Olympiad in Turin. However, this approach has several disadvantages. The
heuristic for generating umpire messages quickly becomes very inaccurate as
we search deeper in the game tree, which leads to the algorithm not improv-
ing its play after 2 seconds of computing. Another issue with this approach
is that the author has to invent a representation of metaposition and an
evaluation function for using it, both domain-specific. A good evaluation
function requires a great deal of domain knowledge about the underlying
perfect information game and the imperfect information game itself. It should
also consider that the metaposition represents a superset of the information
set, so a lot of information might get lost.

ctuthesis t1606152353 16

............................ 4.3. Perfect Information Monte Carlo

4.3 Perfect Information Monte Carlo

Perfect Information Monte Carlo (PIMC), sometimes also called determiniza-
tion, is a simple approach to deal with uncertainty in games with imperfect
information. It was first used in the game of Bridge together with other
approaches to improve the gameplay and managed to become the strongest
Bridge computer program, even being on the same level as top humans
[Ginsberg, 2001].

Rather than dealing with the uncertainty, it could be said that the algorithm
avoids it. The approach is simple. We sample a random determinization
compatible with the information set and evaluate it with techniques for games
with perfect information. We can repeat this until we run out of determiniza-
tions or until time runs out. Results of these evaluations are then combined,
and the best action is chosen. Some of the advantages of this approach are
that it can be easily parallelized and that we can use techniques for games
with perfect information, which have been known and tuned for some time.

The disadvantages of Perfect Information Monte Carlo are less obvious
than the advantages. One of the problems with PIMC is strategy fusion
[Long et al., 2010]. When evaluating a specific determinization, the algorithm
does not realize that it plays a game with imperfect information. It believes
that it can use a different strategy in different states within one information
set. For example, it can choose an action that leads to a state with an
excellent response to any of the opponent’s moves available in every state
from the information set. However, it does not know in which state it is, so
it might as well be impossible to choose the desired response, as it could be
different in each state of the information set.

Another problem with PIMC is non-locality [Long et al., 2010]. In games
with perfect information, the value of a node depends on the subtree starting
with this node. However, in games with imperfect information, it can also
depend on other regions of the game tree, outside of the node’s subtree. This
is caused by the opponent’s ability to choose actions that lead to regions of
the tree that he believes are more advantageous for him, based on his private
information.

Another problem is that the algorithm does not work with uncertainty and
hidden information. Since the evaluation has no concept of hidden informa-
tion, it will never consider hiding information or revealing information as a
factor in decision making. This can potentially have a significant impact in
games like Kriegspiel, where our actions directly influence how much informa-
tion the opponent gets or can get after his move.

17 ctuthesis t1606152353

4. Algorithms......................................
Despite these flaws, Perfect Information Monte Carlo shows great results in
games like Bridge. Results presented in [Long et al., 2010] show that PIMC
has a serious disadvantage in games with low leaf correlation (probability that
each sibling pair of terminal nodes will have the same payoff value) and with
low disambiguation (how much a player’s information set shrinks each time
the player is to move). As mentioned, the disambiguation factor is extremely
low in Kriegspiel because the player gets very little information about the
state of the game.

Perfect Information Monte Carlo was tried in [A. Parker, 2005] and together
with Hybrid Sampling and GNU Chess engine. It showed promising results,
beating a random player in 65% of games. This algorithm was later im-
proved, and it competed at the Eleventh Computer Olympiad in 2006, where
it lost to DarkBoard with the result of 6-2. However, chess engines have
made tremendous progress since then, and now there are much stronger
engines with optimized search and better evaluation function using neural
networks. This can leverage the apparent advantages of this approach and
significantly improve its performance. Notably, PIMC with Stockfish was used
in a computer program Strangefish [?], that won NeurIPS 2019 Tournament
in Reconnaissance Blind Chess [Escalante and Hadsell, 2019].

4.4 Monte Carlo Tree Search Algorithms

4.4.1 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) was first introduced in [Coulom, 2006].
Former approaches used Monte Carlo techniques for the evaluation of leaves
in a Min-Max tree. MCTS combines tree search with Monte Carlo evaluation
and does not separate between a Min-Max phase and a Monte Carlo phase.
This idea lends MCTS several key attributes that give it an edge over tradi-
tional Min-Max algorithms in several games.

Monte Carlo Tree Search is an aheuristic algorithm. Since Monte Carlo Tree
Search requires little to no domain-specific knowledge, it can be beneficial
in games where it is challenging to formulate reliable and useful heuristics
(e.g., Go). However, using some domain-specific knowledge can significantly
improve performance of Monte Carlo Tree Search [S. Gelly, 2011].

It is an anytime algorithm. This means that it can return an action at
any moment during strategy computation. In general, it is expected to give
better results the longer it is running. This is an advantage over Min-Max

ctuthesis t1606152353 18

.......................... 4.4. Monte Carlo Tree Search Algorithms

algorithm, although iterative deepening can also make Min-Max into an
anytime algorithm.

Finally, MCTS builds an asymmetric game tree, where each node rep-
resents a state of the game. With the current state being the root of the
tree, MCTS iteratively adds more nodes, building a bigger and bigger tree.
Although Min-Max can use alpha-beta pruning to prune branches that are
sure not to yield the best result, Monte Carlo Tree Search takes this a step
further, exploiting better branches and exploring these parts of the tree more
than the less preferable ones.

Figure 4.2: The four steps of Monte Carlo Tree Search.

Each iteration of building the tree can be split into four steps:

. Selection
In this step, the algorithm decides which node in the existing tree to
expand. Starting in the root, we descend in the built game tree, selecting
an appropriate child in every node until we enter a leaf node.

19 ctuthesis t1606152353

4. Algorithms......................................
. Expansion

After selection, the algorithm adds one or more sub-tree to the built tree.
The most common approach is to add one random child node that is not
yet in the tree. However, there are more possibilities, including adding
all the missing child nodes or searching a random child node to a certain
depth and adding a whole sub-tree at once.

. Simulation
Once a new node is added to the tree, we need to evaluate it. The most
common approach is to run a random rollout from the expanded node.
This ensures that MCTS is an aheuristic algorithm, and we do not need
any domain-specific knowledge whatsoever. However, the rollout can be
guided - we can add domain-specific knowledge to it, preventing it from
making obvious blunders. This can help to make the simulation result
more relevant.

.Backpropagation
We backpropagate the result of the simulation up the tree to the root,
updating all the nodes on the path. The result will be added to the
information stored in the nodes so it can be used in the next iteration’s
selection step.

Selection is a task similar to the multi-armed bandit problem. The program
has to find a balance between exploration and exploitation - exploring new
parts of the game tree versus exploring the parts that look promising so far. A
standard way to address this problem is Upper Confidence Bound applied to
Trees (UCT) first used in [Kocsis and Szepesvári, 2006]. UCT chooses child
nodes maximizing the following expression:

Ui = vi + c

√
lnN

ni
,

where vi is the value of the node i, N is the number of times the parent node
has been visited, ni is the number of times the considered node has been
visited, and c is a constant that has to be found experimentally. Low values
of c favor exploitation, while higher values favor exploration.

Although Monte Carlo Tree Search is an aheuristic algorithm, a simple
heuristic to guide the simulation step can significantly improve this step’s
precision - for example, not walking into a mate in one in chess or recapturing
in Kriegspiel.

ctuthesis t1606152353 20

.......................... 4.4. Monte Carlo Tree Search Algorithms

4.4.2 Information Set Monte Carlo Tree Search

Information Set Monte Carlo Tree Search (ISMCTS) is a variant of Monte
Carlo Tree Search for games with imperfect information. Instead of a tree
where nodes represent states, here nodes represent information sets. The
reason behind it is that since the player cannot distinguish between the states,
we should group evaluations of these indistinguishable states into one node.

At the beginning of each iteration, we choose a determinization, just like in
Perfect Iteration Monte Carlo. This sample from the information set will
guide the iteration.

. Selection
Selection is the same as in MCTS, except the nodes represent whole
information sets instead of specific states. Determinizations from one
information set can have different sets of actions available. This is caused
by positions of opponent pieces influencing the actions that the player
can take in Chess. This means that we now have to deal with a subset-
armed bandit problem. This can be solved by replacing the number
of times the parent was visited with the number of times the parent
was visited and the considered node was available in the UCT formula
[Cowling et al., 2012].

. Expansion
There is a slight difference in the expansion step too. When we come
across a state whose one or more child states do not have a corresponding
information set in the tree, we add the node representing the whole
information set.

. Simulation
Simulation runs from the added state as in MCTS.

.Backpropagation
During backpropagation, we need to do a few extra things compared to
simple MCTS. We propagate the result of the simulation up the tree
back to the root, updating the nodes. However, in this case, it is not
enough to know the number of times the parent node was visited, but
we need to know how many times an action to a state in the node’s
corresponding information set was available. This means we also need
to update information for sibling nodes of the visited nodes, if there is
an action available in the current determinization, that would lead to
the information set represented by the sibling node.

21 ctuthesis t1606152353

4. Algorithms......................................
The fact that the nodes represent information sets rather than states means

that the evaluations of the indistinguishable states are grouped together. This
way, the algorithm realizes that there is some information hidden from the
player. With this approach, the algorithm can choose actions that reveal
information because then we will find ourselves in an information set that
allows for more informed decisions.

In the selection step, we discussed only the part when we are selecting
the successor of the node where it is the deciding player’s move. What about
the nodes when the opponent plays? We cannot use the information stored
in the nodes of the built tree because this information is not available to the
opponent. The simple solution is to use a random action and see to which
information set it takes us. This means that the model for the opponent
is a random player. It also means that our algorithm will never choose an
action to hide information because it has no way of knowing that there is
some information hidden to the opponent.

The solution to the problem mentioned above is an algorithm called Multiple
Observer Monte Carlo Tree Search (MO-ISMCTS) [Cowling et al., 2012]. In
this algorithm, we build two game trees - one from the perspective of our
player and one from the opponent’s. We move through both trees simultane-
ously. When it is the deciding player’s turn, the action of the determinization
is decided according to the information in the node of the deciding player.
When it is the opponent’s turn, it decides according to its information. Note
that the information sets in these trees will be different. Each action chosen
by a player will lead to a different node in this player’s tree. This does not
apply to the other player’s tree - the moves will be grouped depending on
the information they get from this move.

Information Set Monte Carlo Tree Search supplied with Last Observation
Sampling was tested in [Ciancarini and Favini, 2010a] under the name "Ap-
proach A". Authors tried to improve the sampling with statistics about pieces
locations gathered from more than 12 000 games played on Internet Chess
Club. However, these statistics considered piece locations as independent
events, thus wholly ignoring relationships such as piece protecting. This
resulted in generating improbable boards. To ensure a more realistic simula-
tion, both players did not play entirely random moves in the simulation step.
They always tried to recapture and use paws tries when possible since this is
a standard strategy used by human players. However, this approach failed
to deliver satisfactory results, and it was indistinguishable from a random
player.

ctuthesis t1606152353 22

.......................... 4.4. Monte Carlo Tree Search Algorithms

4.4.3 DarkBoard 2.0

After the poor results of Approach A mentioned in the previous section,
authors of [Ciancarini and Favini, 2010a] introduced two more MCTS ap-
proaches playing Kriegspiel. Approach B also uses the same statistics collected
from ICC games as Approach A. However, this approach never samples spe-
cific determinizations from them. Instead, it works with probabilistic umpire
messages to guide the selection and simulation. This adds abstraction similar
to how human players think about the game. This approach is similar to an
abstraction used in real-time strategy games [M. Chung, 2005], where only
high-level decisions and high-level responses are simulated because detailed
simulation over continuous time would be impossible.

Nodes in the game tree are represented by a triplet of matrices, similar
to the probability matrices collected from ICC games. These matrices give
us probabilities of a king, pawn, or a piece being on a certain square for a
given player at given time in the game. These probabilities and the statistics
collected from ICC games drive the prediction of umpire messages.

Simulation is not run untill the end of the game. Instead, it ends after
k moves, and the board is evaluated as the number of player’s pieces minus
the number of the opponent’s pieces.

Although the selection is still driven by UCT, the generation of probabilistic
umpire messages decides outcomes of player’s and opponent’s moves. When
generating umpire messages, authors make two sets of assumptions.

The first set models the probabilities of outcomes of the player’s moves:

. The probability that the opponent controls a square equals the sum of
probabilities that the square is controlled by king, pawn, or another
piece. However, the presented model does not use a probability, that the
square is controlled by the opponent, but rather an expected number
of opponent’s pieces controlling the square. The expected number of
kings and pawns controlling the square is simply calculated as a sum of
probabilities that the king or pawn is on squares from which they control
the desired square. The expected number of pieces controlling the square
is a sum of probabilities that a piece is at a square attacking the desired
square, but the probability is multiplied by a coeficient decreasing with
distance from desired square. The result is multiplied by a coefficient
saying what portion of the opponent’s current pieces can actually control
a square at once.

23 ctuthesis t1606152353

4. Algorithms......................................
. The probability of a move to be legal is a sum of probabilities of the

squares on the piece’s path to be empty (for a pawn’s advance move, this
includes the destination square) minus a pin probability (a probability
that the move would cause the player’s king to be in check). If the
king moves, the pin probability is the probability that the opponent
controls the destination square. If the piece to move is another piece and
it is possible that the piece is protecting the king, the pin probability
is approximated as the probability that the piece’s starting square is
controlled by opponent.. The probability of capturing a pawn is equal to the probability that the
move is legal multiplied by the probability that the destination square is
occupied by a pawn.. The probability of capturing a piece is equal to the probability that the
move is legal multiplied by the probability that the destination square is
occupied by a piece.. The probability of the move causing a check is equal to the sum of
probabilities that a king is on a square over squares threatened by
the moving piece. This probability is again multiplied by a coefficient
decreasing with the distance from the moving piece..When a square is moved through by a player’s piece, all probabilities of
enemy pieces on that square are set to 0. When a square is found to
be occupied (opponent’s capture or player’s illegal move), the sum of
probabilities of enemy pieces on that square is brought to 1.

The second set of assumptions represents the opponent model. It up-
dates the probabilities of enemy pieces based on umpire messages after the
opponent’s move:

.When the player captures something, there is a high chance of the moved
piece being captured back. The probability that the destination square
is controlled is used to determine the chance of retaliation..When the player puts the opponent king in check, there is a chance that
the moved piece is going to be captured. This probability is assumed to
be a constant..When the opponent moves, there is a probability that he will capture
something. This probability is considered a constant. The victim is
chosen depending on the probability of the square being controlled by
the opponent. So there is a higher probability that more exposed pieces
will be captured than less exposed ones.

ctuthesis t1606152353 24

.......................... 4.4. Monte Carlo Tree Search Algorithms

. All opponent’s pieces are equally likely to be moved. Since the player
knows the number of the opponent’s pawns and other pieces, the proba-
bility of the moved piece being of a certain type can be easily calculated..King’s movement is modeled as a random walk over squares that are
possible destinations for a given square.. Pawns are modeled as one-way Markov chains.. The generic piece movement is a random walk over a group of neighboring
squares in a certain direction. The probability that a piece ends up on
a certain square is lower with a larger number of squares in the square
group. There is also a coefficient simulating that not all pieces can move
in the analyzed direction.

Approach C is very similar to Approach B, and it capitalizes on the notion
already noticed in [A. Parker, 2005] that short-sighted algorithms tend to
outperform long-sighted algorithms in Kriegspiel. Approach C assumes that
the simulation immediately converges through a weighted average after one
move - it simulates all possible umpire messages and their probabilities and
computes a weighted average of values of the results. The same evaluation
function as in Approach B is used. The assumption of instant convergence is
underlined by ditching the average value as a backup operator, replacing it
with the maximum node value.

Experiments showed that Approach C is the strongest of the MCTS ap-
proaches and even defeats the metaposition player three times more often
than it loses to it. This approach won the gold medal with a perfect score at
the 14th Computer Olympiad in Pamplona in 2009. It also reached an average
of 1750 Elo points after playing more than 7000 games on ICC, being cca 200
points below top human players. The authors praise the algorithm’s abstract
model of the game and ability to simulate short-term tactical opportunities
accurately.

Even with all this success, the authors point out that Approach C can
be significantly further improved. MCTS is often improved with game-specific
heuristics guiding the selection and simulation steps, while the presented
MCTS uses very little domain knowledge. There is also a possibility to use a
hybrid simulation between approaches B and C - to simulate the first move
like the Approach C does and then continue with a longer B-like simulation
for the next moves. Genetic algorithms or other adaptive methods could also
improve the assumptions about referee messages.

Unfortunately, the paper [Ciancarini and Favini, 2010a] does not mention
any implementation details of Darkboard 2.0. Moreover, many aspects of the
algorithm are not described in sufficient depth and some important details

25 ctuthesis t1606152353

4. Algorithms......................................
seem to be missing. Here, I list the aspects of the described algorithm, that I
find ambiguous:

. The probabilistic model uses many coeficients, that are not described.. Probabilistic model of the opponent models opponent’s pieces’ movement
along the file, rank and diagonals but does not mention how it models
knight movement.. The probabilistic model of an umpire does not mention the "Pawn tries"
message, although the authors use the ICC set of rules.. The evaluation function takes into account the number of pieces. However,
the authors sometimes use the word piece in the standard meaning of
any Chess piece and sometimes in the meaning of a Kriegspiel piece,
meaning any piece except for king and pawn.. The probabilistic umpire and the evaluation function take into account
check-mating the opponent’s king. This would suggest that the algorithm
has no notion of the actual goal of the game.

ctuthesis t1606152353 26

Chapter 5

Implementation

5.1 OpenSpiel: A Framework for Reinforcement
Learning in Games

OpenSpiel [Lanctot et al., 2019] is an open-source framework for implement-
ing games and algorithms in reinforcement learning and search and planning
in games. It supports n-player games, zero-sum and general-sum games,
one-shot and sequential games, perfect and imperfect information games,
turn-taking, and simultaneous-move games.

OpenSpiel contains implementations of more than 40 different games of
all mentioned types, many different algorithms for playing games, and tools
for common evaluation metrics. It provides convenient documentation for
installation and contributing to the code base - either implementing new
games or new algorithms. The community developing OpenSpiel is alive, and
new contributions are added every week.

The framework uses a combination of C++ and Python. Games are im-
plemented in C++ and wrapped in Python. Algorithms can be implemented
in C++ and Python, with the APIs in both languages being almost identical.

27 ctuthesis t1606152353

5. Implementation....................................
5.2 Stockfish

Stockfish [Sto, 2004] is a strong chess engine. According to Computer Chess
Rating List (CCRL) [CCR, 2015], Stockfish is currently the strongest com-
puter Chess player in the world. Stockfish uses Min-Max algorithm with
alpha-beta pruning and transposition tables. It also has advanced heuristics
for recognizing uninteresting branches. For board evaluation, it can use either
a classic evaluation function handcrafted by chess experts or an Efficiently
Updatable Neural Network (NNUE).

Computer Chess rating List measures chess engine strength in several time
control settings. All the games are played with pondering turned off (the
engine cannot think while it is the opponent’s turn). They can use up to
12-move opening books and up to 6 piece endgame tablebases. With the
repeating time control 40/15 (15 minutes for the first 40 moves, then 15
minutes for the next 40 moves and so on) Stockfish ranks first in the list with
elo of 3554, followed by Fat Fritz with an elo of 3528.

Stockfish uses UCI (Universal Chess Interface), which is a stateless pro-
tocol for chess engines. It allows all sorts of GUIs and web servers to use
Stockfish to play against humans or other computers. UCI supports things
like time control with increment or time per move, pondering on a selected
move, and setting engine-specific options. I implemented this protocol in
OpenSpiel to support any UCI compliant engine. I decided to use Stockfish
for being an open-source project and for its strength.

5.3 Kriegspiel

Although OpenSpiel contained the implementation of dozens of different
games, unfortunately it did not contain the implementation of Kriegspiel. As
a part of the master thesis, I had to provide a Kriegspiel implementation of
the game and a non-trivial implementation of observations in C++. I did the
same for another mentioned imperfect information chess variant - Dark Chess.

Both implemented games passed through vigorous code reviews to comply
with the OpenSpiel repository’s rules and practices. Both implemented games
were merged in the repository and can be used by the research community.
I believe this will help in future research concerning imperfect information
chess variants and draw the attention of other researchers to them.

ctuthesis t1606152353 28

.............................5.4. Information Set Representation

5.4 Information Set Representation

5.4.1 Last Observation Sampling

Implementation of this information set representation is similar to the one
mentioned in [Ciancarini and Favini, 2010a]. Exact locations of the sampling
player’s pieces’ locations are known. The opponent pieces are randomly
placed on the board so that they follow the distribution for the player’s color
and the turn number. These statistics are collected from more than 8000
games of Kriegspiel played on ICC. The sample tries to comply with the last
umpire message received after the opponent’s move. It also remembers how
many pieced and pawns the player has captured, so that the generated states
have the correct amount of them.

5.4.2 All Observation Sampling with Pool

This implementation keeps a pool of possible states, and at the beginning
of the player’s turn, it updates the pool with the received umpire messages.
The pool is given maximum size. When the pool has more elements after the
update than the maximum size, it will get rid of random samples until the
size is again in the limit.

If the algorithm finds out that none of the samples in the pool was complying
with the current information set, it will use the LOS algorithm from the
previous section to sample new states and fill the pool. This new pool is
compatible with the last observation only. Initial testing showed, that this
pool has a low quality and it very often does not last more than a few moves.

5.4.3 Hybrid Sampling

Hybrid sampling uses the implementation of AOSP from the previous section
to store a pool of compatible states. Additionally, it uses the implementation
of LOS to refill the pool when its size drops below half of the pool’s maximum
size, as recommended in [A. Parker, 2005].

I added two additional checks that have to be satisfied to refill the pool

29 ctuthesis t1606152353

5. Implementation....................................
so that the states provided by LOS do not unnecessarily lower the quality of
the pool:..1. The AOSP already removed some of the compatible states from the

pool because of the pool getting too large. This way, it is certain that
no new states that are compatible only with the last observation are
unnecessarily added to a pool that contains the whole information set...2. LOS is not used when the opponent has only a few pieces left. With
fewer opponent pieces on the board, the maximum size of the information
set gets lower. When it is low enough, it does not make sense to generate
samples compatible with only the last observation because there is a
good chance that the pool contains the whole information set.

This approach wa evaluated to perform the best of the three approaches
in [A. Parker, 2005]. Therefore, all tested implementations using statistical
sampling use Hybrid Sampling.

5.5 DarkBoard

This thesis contains an implementation of the second, stronger version of Dark-
Board using Information Set Monte Carlo Tree Search. All the information
about implementation was taken from the paper [Ciancarini and Favini, 2010a].
Unfortunately, the paper does not contain all the information needed for the
exact implementation that reached the results presented in the paper.

For extraction of the ICC Kriegspiel games statistics, I used the games
that are in the PGN format in the attachment. There are more than 8000
games of Kriegspiel (Wild 16) played by players of different strength.

5.6 Random Player

As a baseline algorithm, I use uniformly random action sampling algorithm.
It chooses a random move from the moves that seem legal to the player.

ctuthesis t1606152353 30

................................. 5.7. PIMC with Stockfish

Another implementation uses a simple heuristic already mentioned in this the-
sis and in [Ciancarini and Favini, 2010a] and [Bolognesi and Ciancarini, 2004].
The simple heuristic uses a very common strategy in Kriegspiel, and that is
recapturing whenever possible. Thanks to umpire messages, the algorithm
knows when its piece was captured, and it will always recapture if a recapture
move is possible.

5.7 PIMC with Stockfish

Perfect Information Monte Carlo was implemented as described in Section 4.3.
It needs an information set representation that allows sampling random states
from the set. Therefore, the implementation supports any of the statistical
sampling information set representations.

The algorithm evaluates each sampled state with Stockfish using the UCI
protocol. Unfortunately, the protocol has limitations concerning evaluating
particular legal moves in the state. We can either fully evaluate each available
move or we can evaluate the sampled state receiving only the best move and
not an evaluation for every move. Evaluating each move would eliminate
Stockfish’s advanced branch pruning, which would significantly slow down
the evaluation. Therefore, this implementation only evaluates a particular
move based on the number of sampled states in which the move was selected
as the best move. This is also how it was done in [A. Parker, 2005].

The algorithm is given a parameter determining the minimal state eval-
uation time. The algorithm first checks whether the information set is small
enough to evaluate all the states. Then it allocates equal time for each state
so that all of them can be evaluated. A second approach has to be used when
there are too many states Then it samples random states until time runs out
and evaluates each of them for the minimal evaluation time. In LOS, we do
not have a pool of states to sample from, so we always have to use the second
approach.

5.8 ISMCTS

Although OpenSpiel already contains an implementation of ISMCTS, the
implementation’s representation of information sets and choosing an opponent

31 ctuthesis t1606152353

5. Implementation....................................
model is not general enough to allow non-trivial custom implementations.
Therefore, I implemented the algorithm basically from scratch, only reusing
a method selecting child nodes with the UCT formula.

The basic ISCMTS implementation uses the heuristic random player for
simulation and for the opponent model. I also implemented the more sophis-
ticated version of ISMCTS - Multiple Observer Information Set Monte Carlo
Tree Search. Although the opponent model in MO-ISMCTS is more sophis-
ticated, the simulation still uses a random rollout guided by the mentioned
simple heuristic.

ctuthesis t1606152353 32

Chapter 6

Experiments

6.1 Metacentrum

To play large amounts of games to evaluate the algorithms, I used computa-
tional cluster Metacentrum for my experiments. Each algorithm is given 1
machine with 1 CPU and 4GB RAM for its computations. Using Metacen-
trum allowed me to run many games at once on its large clusters, therefore
simulating in total tens of thousands of games to ensure statistical significance
of the results.

6.2 Statistics

To show statistical significance of the results of following experiments, I
compute confidence intervals. I use 95% confidence intervals, meaning that
the true result lies in the interval with 95% probability.

The formula for confidence interval is:

X ± Z
s√
n

,

where X is the mean of the measured results, s is the standard deviation, n
is the number of measured results and Z is the Z-value (for 95% confidence

33 ctuthesis t1606152353

6. Experiments
intervals it is 1.96). The formula for computing standard deviation is as
follows:

s =

√√√√ 1
N − 1

N∑
i=1

(xi −X)2
,

where N is the number of measured results and X is the mean of measured
results.

In order to apply this formula, I assume the measured outcomes of the
games can be approximated by the normal distribution.

6.3 Results

In this section, I present the results of the experiments I ran on Metacentrum.
First, I try to find hyperparameters for all the implemented algorithms, that
yield the best results against the random player. All the algorithms are
then tested with the best found settings against each other. Each pair of
algorithms, in the round-robin tournament and in finding hypermarameters,
plays with the time settings of 2 seconds per move.The expected outcome is
presented with a 95% confidence interval.

In Tables 6.1, 6.2, 6.4, 6.5, 6.3, 6.6 I look for optimal parameters by letting
the algorithms play against a random player. The parameter with the highest
expected outcome has its expected outcome written in bold. The parameter
is then used in the final round-robin tournament 6.7.

UCT c 0.25 0.5 1.0 2.0 5.0

Wins 823 844 803 815 810
Draws 1083 1064 1101 1082 1096
Losses 94 92 96 93 94

Expected outcome 0.6822 0.6880 0.6768 0.6805 0.6790
Confidence Interval ±0.0125 ±0.0125 ±0.0125 ±0.0125 ±0.0125

Table 6.1: Finding UCT exploration constant for the ISMCTS algorithm. The
best expected outcome is written in bold.

ctuthesis t1606152353 34

....................................... 6.3. Results

UCT c 0.25 0.5 1.0 2.0 5.0

Wins 785 752 734 724 711
Draws 1148 1146 1171 1168 1184
Losses 67 102 95 104 105

Expected outcome 0.6795 0.6625 0.6598 0.6528 0.6515
Confidence Interval ±0.0119 ±0.0124 ±0.0123 ±0.0123 ±0.0123

Table 6.2: Finding UCT exploration constant for the MO-ISMCTS algorithm.
The best expected outcome is written in bold.

In Table 6.1 and 6.2 I look for the UCT exploration constant to guide the
selection step in ISMCTS algorithms.

Board Eval Time [ms] 1 5 10 20 50

Wins 933 946 966 968 949
Draws 67 54 33 32 51
Losses 0 0 1 0 0

Expected outcome 0.9655 0.9730 0.9825 0.9840 0.9745
Confidence interval ±0.0077 ±0.0070 ±0.0059 ±0.0055 ±0.0068

Table 6.3: Finding evaluation time for each determinization in PIMC. The best
expected outcome is written in bold.

In Table 6.3 I try to find the optimal time for evaluation of each sampled
state in Perfect Information Monte Carlo algorithm.

35 ctuthesis t1606152353

6. Experiments
Eval Time [ms] | UCT c 0.25 0.5 1.0 2.0 5.0

1

Wins 508 397 469 488 473
Draws 1468 1576 1525 1502 1518
Losses 24 27 6 10 9
Expected outcome 0.6210 0,5925 0.6158 0.6195 0,6160
Confidence Iterval ±0.0098 ±0.0092 ±0.0094 ±0.0096 ±0.0095

5

Wins 550 668 619 635 625
Draws 1423 1318 1367 1305 1311
Losses 27 14 14 60 64
Expected outcome 0.6308 0.6630 0.6513 0.6438 0,6402
Confidence Iterval ±0.0103 ±0.0106 ±0.00104 ±0.0113 ±0,0113

10

Wins 633 673 655 642 617
Draws 1338 1310 1311 1351 1326
Losses 29 17 34 54 57
Expected outcome 0.6510 0.6640 0.6553 0.6443 0,6400
Confidence Iterval ±0.0107 ±0.0107 ±0,0106 ±0.0111 ±0,0111

20

Wins 828 803 744 732 720
Draws 1150 1178 1234 1242 1250
Losses 22 19 22 26 30
Expected outcome 0.7015 0.696 0.6825 0,6765 0.6725
Confidence Iterval ±0.0112 ±0.0111 0,0110 ±0.0111 ±0.0111

50

Wins 678 628 616 605 593
Draws 1240 1321 1317 1327 1342
Losses 82 51 67 69 75
Expected outcome 0.6490 0.6442 0.6373 0.6338 0.6293
Confidence Iterval ±0.0118 ±0.0111 ±0.0113 ±0.0113 ±0.0113

Table 6.4: Finding UCT exploration constant and evaluation time for each state
in ISMCTS with Stockfish. The best expected outcome is written in bold.

In Tables 6.4 and 6.5 I perform a grid search on two hyperparameters of
ISMCTS algorithms improved by using Stockfish in simulation step. Each
cell of the table contains the number of wins, draws, losses and the expected
outcome. Rows contain results for a parameter saying how much time is spent
on a single board evaluation in simulation step. Columns contain results for
a given value of UCT exploration constant.

ctuthesis t1606152353 36

....................................... 6.3. Results

Eval Time [ms] | UCT c 0.25 0.5 1.0 2.0 5.0

1

Wins 1106 1092 1141 1086 1074
Draws 853 860 811 858 863
Losses 41 48 48 56 63
Expected outcome 0.7663 0.7610 0.7733 0.7575 0.7528
Confidence Interval 0.0118 0.012 0.0119 0.0121 0.0123

5

Wins 1204 1240 1228 1190 1110
Draws 780 734 728 768 845
Losses 16 26 44 42 45
Expected outcome 0.7970 0.8035 0.7960 0.7870 0.7657
Confidence Interval ±0.0111 ±0.0113 ±0.0117 ±0.0114 ±0.0117

10

Wins 1087 1163 964 988 762
Draws 871 755 982 967 995
Losses 42 82 54 45 52
Expected outcome 0.7613 0.7703 0.7275 0.7358 0.6965
Confidence Interval ±0.0118 ±0.0126 ±0.0120 ±0.0119 ±0.0119

20

Wins 880 833 986 886 896
Draws 1089 1047 930 1021 982
Losses 93 120 84 93 93
Expected outcome 0.6813 0.6783 0.7255 0.6983 0.7040
Confidence Interval ±0.0125 ±0.0130 ±0.0126 ±0.0126 ±0.0127

50

Wins 568 576 514 615 765
Draws 1324 1222 1306 1228 1090
Losses 108 202 180 157 145
Expected outcome 0.6150 0.5935 0.5835 0.6145 0.655
Confidence Interval ±0.0123 ±0.0130 ±0.0124 ±0.0127 ±0.0131

Table 6.5: Finding UCT exploration constant and evaluation time for each state
in MO-ISMCTS with Stockfish. The best expected outcome is written in bold.

UCT c 0.5 1.0 2.0 5.0 10.0

Wins 470 522 411 387 365
Draws 1484 1438 1523 1545 1562
Losses 46 40 66 68 73

Expected outcome 0.6055 0.6205 0.58625 0.5798 0.5730
Confidence Interval ±0.0102 ±0.0103 ±0.0100 ±0.0099 ±0.0097

Table 6.6: Finding UCT exploration constant for Darkboard 2.0. The best
expected outcome is written in bold.

The final Table 6.7 contains expected outcomes of games between each pair
of implemented algorithms using the best found parameters. The value is the
expected outcome for the row player with a 95% confidence interval.

37 ctuthesis t1606152353

6. Experiments

Uniform Random

Random with Heuristic

ISMCTS

ISMCTS with SF

MO-ISMCTS

MO-ISMCTS with SF

PIMC with SF

Darkboard 2.0

U
niform

R
andom

X
0.4650

0.3178
0.2985

0.3205
0.1965

0.0160
0.3795

±
0.0069

±
0.0125

±
0.0118

±
0.0119

±
0.0113

±
0.0055

±
0.0103

R
andom

w
ith

H
euristic

0.5350
X

0.4530
0.4312

0.4490
0.4270

0.0457
0.3566

±
0.0069

±
0.0097

±
0.0092

±
0.0098

±
0.0092

±
0.0064

±
0.0096

ISM
C
T
S

0.6822
0.5470

X
0.4107

0.5038
0.3987

0.0335
0.5019

±
0.0125

±
0.0097

±
0.0102

±
0.0149

±
0.0128

±
0.0059

±
0.0112

ISM
C
T
S
w
ith

SF
0.7015

0.5688
0.5893

X
0.5945

0.4125
0.0769

0.5224
±
0.0118

±
0.0092

±
0.0102

±
0.0121

±
0.0111

±
0.0081

±
0.0063

M
O
-ISM

C
T
S

0.6795
0.5510

0.4962
0.4055

X
0.4068

0.0380
0.5416

±
0.0119

±
0.0098

±
0.0149

±
0.0121

±
0.0121

±
0.0061

±
0.0102

M
O
-ISM

C
T
S
w
ith

SF
0.8035

0.5730
0.6013

0.5875
0.5932

X
0.1080

0.5374
±
0.0113

±
0.0092

±
0.0128

±
0.0111

±
0.0121

±
0.0099

±
0.0113

PIM
C

w
ith

SF
0.9840

0.9543
0.9665

0.9231
0.9620

0.8920
X

0.9468
±
0.0055

±
0.0064

±
0.0059

±
0.0081

±
0.0061

±
0.0099

±
0.0062

D
arkboard

2.0
0.6205

0.5434
0.4981

0.4776
0.4584

0.4426
0.0532

X
±
0.0103

±
0.0096

±
0.0112

±
0.0063

±
0.0102

±
0.0113

±
0.0062

Table
6.7:

R
ound-robin

Tournam
ent

ofallim
plem

ented
algorithm

s

ctuthesis t1606152353 38

......................................6.4. Discussion
6.4 Discussion

6.4.1 Darkboard 2.0

The performance of Darkboard using ISMCTS against the random player,
although better than all the previous ISMCTS algorithms, is still lower than
expected. The only information about the performance of the original im-
plementation described in [Ciancarini and Favini, 2010a] is that it ranks 100
elo higher than the first version of Darkboard (meaning an expected win rate
of 66%), which had a 95% win rate against a random player.

The reasons for the worse performance of my implementation might be
some of the following:..1. The original implementation used a kind of root parallelization and was

tested running on 4 CPUs...2. I used a different database of games from ICC. This means a slightly
different opponent model...3. The description of the algorithm in the paper does not mention any
implementation details, and in many places, the description of the
algorithm is vague or misinterpretable. This left room for some changes
that might have widened the gap between these implementations.

The algorithm performed onlyslightly better than heuristic random player.
One of the reasons could be the already mentioned missing concept of a
check-mate in the probabilistic umpire model and in the evaluation func-
tion. The algorithm does a good job capturing opponent pieces, but fails in
actually check-mating the opponent’s king. The higher performance than
random players is probably caused by a higher probability of check-mating
the opponent’s king when one has a material advantage, even when one plays
randomly.

6.4.2 Information Set Monte Carlo Tree Search

All Information Set Monte Carlo Tree Search algorithms perform best with
low values of the UCT exploration constant, meaning they favor exploitation

39 ctuthesis t1606152353

6. Experiments
over exploration.

Although [Ciancarini and Favini, 2010a] stated that ISMCTS’s performance
was indistinguishable from the random player, the results in 6.1 show that
it plays better than the random player. The reason might be that I used a
more sophisticated information set representation - a combination of hybrid
sampling from [A. Parker, 2005] and the sophisticated LOS using statistics
from ICC.

With the ISMCTS algorithms performing only slightly better than a random
player, the performance is not satisfactory even on its best settings. The
reason why random rollout performs this poorly is that Kriegspiel is a chal-
lenging game to win. The random player (although guided by a heuristic)
has a minimal chance to win a game, even if it has a significant material and
positional advantage. Therefore, most of the simulations end with a draw,
not offering any information for the ISMCTS to work with.

When comparing the results of MO-ISMCTS and ISMCTS with random
rollout simulation, we can notice that ISMCTS performs better. This seems
counter-intuitive, since MO-ISMCTS uses a more sofisticated opponent model.
When playing against a random player, ISMCTS has a more accurate oppo-
nent model, because the opponent model is a random player. One explanation
for MO-ISMCTS’s poor performance might be that it solely relies on the
simulation step to evaluate moves. As I mentioned, these simulations are
not accurate. Meanwhile, ISMCTS uses heuristic random player as opponent
model in selection phase. This means that ISMCTS expects the opponent
to make somewhat reasonable actions already in selection phase, while MO-
ISMCTS must converge to it through many simulations.

ISMCTS algorithms using Stockfish instead of a classical random rollout
simulation improved the performance of a simple ISMCTS and MO-ISMCTS.
In the case of ISMCTS, a relatively high value of board evaluation time
performed the best, meaning that realies more on the board evaluation that
on the search. MO-ISMCTS performed best with a lower value, since the
search is more sophisticated.

MO-ISMCTS with Stockfish evaluation performed better than ISMCTS
with Stockfish. This shows that a more accurate state evaluation in the
simulation step causes the algorithm to converge more quickly to a reasonable
solution. Since the opponent model in MO-ISMCTS also relies on the results
of simulations, this makes it stronger, resulting in much better overall results.

ctuthesis t1606152353 40

......................................6.4. Discussion
6.4.3 Perfect Information Monte Carlo

In Perfect Information Monte Carlo (PIMC) using Stockfish for state evalua-
tion, we need to decide how much time we want the chess engine to spend
on each state. The search for this hyperparameter is shown in the table 6.3.
Higher times have better results than lower times. This means that it is
preferable to have a more precise evaluation of the sampled states at the cost
of only evaluating a handful of them. This makes sense when we consider the
actual size that the information set can grow to in the game of Kriegspiel.
No matter how short the evaluation time for each state would be, we would
never be able to evaluate a significant portion of the states in the information
set.

When choosing the best move from the statistics gathered, the used ver-
sion chooses the one evaluated by Stockfish as the best move the most times.
Although the implementation allows for more sophisticated statistics to be
gathered, I discarded them after not performing well during some initial
testing. Evaluation of all moves in a state is computationally very difficult
due to limitations of the used UCI protocol. To gather the score of every move,
we need to generate all legal moves, apply each of them and evaluate the
resulting board. This way we need to give Stockfish fixed time for evaluating
each move, limiting Stockfish’s ability to quickly prune obviously bad moves.

The results against the random player are surprisingly good since Kriegspiel
is known for being a challenging game to win. In [A. Parker, 2005] a very
similar version of PIMC player had a win rate of only 65%. This player used
GNU-chess engine, which was one of the strongest open-source chess engines
at the time. My PIMC player has significantly better results against the
random player even though it plays under much harsher time management
- I used 2 seconds per move. In comparison, the authors of the mentioned
paper used 30 seconds per move. Although both algorithms use Hybrid
Sampling, my implementation improves the LOS part with statistics from
more than 8000 ICC games. The authors of the paper do not mention any
heuristic for Last Observation Sampling, which might be one of the reasons
why my algorithm performs better. Another, and probably more significant,
improvement my algorithm has, is a stronger chess engine backing the PIMC
algorithm. Chess engines came a long way since the original paper came out.
This again shows that a solid and precise evaluation of particular states does
wonders for the algorithm’s strength.

However, the weaknesses of ignoring the problem of hidden information
are apparent when playing against stronger opponents. PIMC plays too ag-
gressively, does not cover its pieces, and tries to go for the checkmate. When
analyzing the games closer, I saw that PIMC often attacks the opponent
half of the board early in the game with the queen. This reckless behavior

41 ctuthesis t1606152353

6. Experiments
works against weak players who are not able to use it to their advantage.
This strategy is probably caused by the fact that since only a small fraction
states are sampled. The algorithm often does not anticipate all the dangers
of opponent’s pieces being protected and looses the queen.

ctuthesis t1606152353 42

Chapter 7

Conclusion

This thesis examined using strong chess engine for evaluation as a heuristic
for algorithms playing Kriegspiel, an imperfect information Chess variant,
where information given to players is sparse and quickly vanishes.

First, I introduced and analyzed the game of Kriegspiel and implemented it
in the OpenSpiel framework. I also mentioned other imperfect information
Chess variants and implemented Darkchess, a game very similar to Kriegspiel,
but it offers more information to players.

I reviewed information set representations introduced and used in differ-
ent papers. I proposed a new way to represent information sets in Kriegspiel
by combining two of the representations discussed and implemented a total
of three information set representations.

I reviewed algorithms for playing imperfect information games that have
been used to play Kriegspiel. I implemented them in the OpenSpiel frame-
work and suggested a way to improve them by using Stockfish, a strong chess
engine, for evaluation of determinizations. This resulted in having imple-
mented five algorithms from the Monte Carlo family of algorithms. Moreover,
I implemented three baseline algorithms. Two of them are random players -
one playing uniformly random moves and one guided by a simple heuristic. As
the last algorithm, I implemented the strongest known algorithm for playing
Kriegspiel.

Experiments showed that the proposed information set representation per-
forms better than the ones found in the literature so far. Adding the eval-
uation of determinizations by a strong chess engine shows promise since
the algorithms performed better than their versions with traditional domain-

43 ctuthesis t1606152353

7. Conclusion......................................
independent techniques. Moreover, Perfect Information Monte Carlo performs
much better with modern Stockfish than with a weaker chess engine years
ago. This shows that precise evaluation of determinizations plays a significant
role in the performance of algorithms playing imperfect information games,
even in games with very little information like Kriegspiel.

ctuthesis t1606152353 44

Appendix A

Bibliography

[Sto, 2004] (2004). Stockfish. https://stockfishchess.org. [Online; ac-
cessed 18-May-2021].

[CCR, 2015] (2015). Computer chess rating list. http://ccrl.chessdom.
com/ccrl/4040/. [Online; accessed 18-May-2021].

[A. Parker, 2005] A. Parker, D. Nau, V. S. (2005). Game-tree search with
combinatorially large belief states. roc. 19th Int. Joint Conf. on Artificial
Intelligence(IJCAI05), pages 254–259.

[Bolognesi and Ciancarini, 2004] Bolognesi, A. and Ciancarini, P. (2004).
Searching over metapositions in kriegspiel. Computer and Games 04,
Lecture Notes in Artificial Intelligence.

[Campbell et al., 2002] Campbell, M., Hoane, A., and hsiung Hsu, F. (2002).
Deep blue. Artificial Intelligence, 134(1):57–83.

[Ciancarini and Favini, 2010a] Ciancarini, P. and Favini, G. P. (2010a).
Monte carlo tree search in kriegspiel. Artificial Intelligence, 174(11):670–
684.

[Ciancarini and Favini, 2010b] Ciancarini, P. and Favini, G. P. (2010b).
Playing the perfect kriegspiel endgame. Theoretical Computer Science,
411(40):3563–3577.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and backup operators
in monte-carlo tree search. 5th International Conference on Computer and
Games.

45 ctuthesis t1606152353

https://stockfishchess.org
http://ccrl.chessdom.com/ccrl/4040/
http://ccrl.chessdom.com/ccrl/4040/

A. Bibliography.....................................
[Cowling et al., 2012] Cowling, P., Powley, E., and Whitehouse, D. (2012).

Information set monte carlo tree search. IEEE Transactions on Computa-
tional Intelligence and Ai in Games, 4:120–143.

[Escalante and Hadsell, 2019] Escalante, H. J. and Hadsell, R. (2019). Pro-
ceedings of the neurips 2019 competition and demonstration track. 123.

[Ferguson, 1992] Ferguson, T. S. (1992). Mate with bishop and knight in
kriegspiel. Theoretical Computer Science, 96(2):389–403.

[Ginsberg, 2001] Ginsberg, M. L. (2001). Gib: Imperfect information in
a computationally challenging game. Journal of Artificial Intelligence
Research, 14:303–358.

[Kocsis and Szepesvári, 2006] Kocsis, L. and Szepesvári, C. (2006). Bandit
based monte-carlo planning. Machine Learning: ECML, 2006:282–293.

[Lanctot et al., 2019] Lanctot, M., Lockhart, E., Lespiau, J.-B., Zambaldi,
V., Upadhyay, S., Pérolat, J., Srinivasan, S., Timbers, F., Tuyls, K.,
Omidshafiei, S., Hennes, D., Morrill, D., Muller, P., Ewalds, T., Faulkner,
R., Kramár, J., Vylder, B. D., Saeta, B., Bradbury, J., Ding, D., Borgeaud,
S., Lai, M., Schrittwieser, J., Anthony, T., Hughes, E., Danihelka, I., and
Ryan-Davis, J. (2019). OpenSpiel: A framework for reinforcement learning
in games. CoRR, abs/1908.09453.

[Long et al., 2010] Long, J., Sturtevant, N. R., Buro, M., and Furtak, T.
(2010). Understanding the success of perfect information monte carlo
sampling in game tree search.

[M. Chung, 2005] M. Chung, M. Buro, J. S. (2005). Monte carlo planning
in rts games. Kendall, G., Lucas, S. (eds.) Proc. IEEE Symposium on
Computational Intelligence and Games, Colchester, Essex, (2):117–124.

[Moravčík et al., 2017] Moravčík, M., Schmid, M., Burch, N., Lisý, V., Mor-
rill, D., Bard, N., Davis, T., Waugh, K., Johanson, M., and Bowling, M.
(2017). Deepstack: Expert-level artificial intelligence in heads-up nolimit
poker. Science, 14356(6337):508–513.

[Newman et al., 2016] Newman, A. J., Richardson, C. L., Kain, S. M.,
Stankiewicz, P. G., Guseman, P. R., Schreurs, B. A., and Dunne, J. A.
(2016). Reconnaissance blind multi-chess: an experimentation platform for
ISR sensor fusion and resource management. 9842:62 – 81.

[P. Ciancarini, 2007] P. Ciancarini, G. F. (2007). Representing kriegspiel
states with metapositions. roc. 20th Int. Joint Conf. on Artificial
Intelligence(IJCAI-07), pages 2450–2455.

[S. Gelly, 2011] S. Gelly, D. S. (2011). Monte-carlo tree search and rapid
action value estimation in computer go. Artificial Intelligence, 175:1856–
1875.

ctuthesis t1606152353 46

..................................... A. Bibliography

[Sakuta, 2001] Sakuta, M. (2001). Deterministic solving of problems with
uncertainty. PhD thesis.

[Sheppard, 2002] Sheppard, B. (2002). World-championship-caliber scrabble.
Artificial Intelligence, 134(1):241–275.

47 ctuthesis t1606152353

	Introduction
	Motivation

	Background
	Imperfect Information Games

	Imperfect information chess variants
	Kriegspiel
	Imperfect Information Chess Variants

	Algorithms
	Information Set Representation
	Statistical Sampling
	Metapositions

	Darkboard
	Perfect Information Monte Carlo
	Monte Carlo Tree Search Algorithms
	Monte Carlo Tree Search
	Information Set Monte Carlo Tree Search
	DarkBoard 2.0

	Implementation
	OpenSpiel: A Framework for Reinforcement Learning in Games
	Stockfish
	Kriegspiel
	Information Set Representation
	Last Observation Sampling
	All Observation Sampling with Pool
	Hybrid Sampling

	DarkBoard
	Random Player
	PIMC with Stockfish
	ISMCTS

	Experiments
	Metacentrum
	Statistics
	Results
	Discussion
	Darkboard 2.0
	Information Set Monte Carlo Tree Search
	Perfect Information Monte Carlo

	Conclusion
	Bibliography

