
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Kateřina Brejchová

Hybrid Neuroevolution

Department of Computer Science

Thesis supervisor: Ing. Jǐŕı Kubaĺık, Ph.D.
Czech Institute of Informatics, Robotics, and Cybernetics

May 2021

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

465816Personal ID number:Brejchová KateřinaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Hybrid neuroevolution

Master’s thesis title in Czech:

Hybridní neuroevoluce

Guidelines:
The goal of this thesis is to design and experimentally evaluate a hybrid neuroevolutionary method.
1) Review up-to-date neuroevolutionary methods, focusing on methods using an indirect encoding of neural networks
[1,2,3].
2) Choose one neuroevolutionary method and propose its extension using the local search.
3) Implement the proposed method.
4) Choose suitable problems on which the proposed method will be demonstrated (take inspiration from [4]).
5) Experimentally evaluate and analyze the proposed hybrid neuroevolutionary method and compare it with the base
neuroevolutionary approach not using the local search.

Bibliography / sources:
[1] Stanley, K. O. et al.: A Hypercube-Based Encoding for Evolving Large-Scale Neural Networks. Artificial Life. 15 (2):
185–212. 2009.
[2] Jaderberg, M. et al.: Population Based Training of Neural Networks, arXiv preprint arXiv:1711.09846, 2017
[3] Lan, G. et al.: Learning Directed Locomotion in Modular Robots with Evolvable Morphologies, arXiv:2001.07804, 2020
[4] OpenAI Gym: https://gym.openai.com/

Name and workplace of master’s thesis supervisor:

Ing. Jiří Kubalík, Ph.D., Machine Learning, CIIRC

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 21.02.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Jiří Kubalík, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Author statement for graduate thesis

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, 21st May 2021 Signature ..

Acknowledgements

I would like to thank Ing. Jǐŕı Kubaĺık, Ph.D., for all the provided consultations and his
insights on the topic. I would also like to thank my partner Ota for proofreading the text and
my family for their never-ending support during my studies.

Abstract
Neuroevolution is an approach for learning artificial neural networks by
an evolutionary algorithm. The evolutionary algorithm can evolve both
the topology of the network as well as weights and biases. While evolu-
tionary algorithms perform well in exploration, local fine-tuning can be
problematic. This thesis proposes a hybrid approach that combines the
neuroevolutionary algorithm HyperNEAT with gradient-based algorithm
DQN. Firstly, we propose three different options for initialising DQN by
a solution found by HyperNEAT. Secondly, we propose a method for fine-
tuning HyperNEAT’s population by a solution found by DQN. Finally, we
combine the two proposed steps into a training loop that iteratively runs
the sequence of HyperNEAT and DQN. We test the approach in a reinforce-
ment learning control domain with discrete action space, namely Cart pole,
Acrobot and Mountain car environments from OpenAI gym. We conclude
that the main challenge in combining the two algorithms is the different
interpretability of their outputs. We describe the initialisation strategies
that did not work and discuss the possible reasoning behind it. We show
promising results for both the DQN and the HyperNEAT initialisation.

Abstrakt
Neuroevoluce je metoda trénováńı neuronových śıt́ı pomoćı evolučńıch al-
goritmů. Evolučńı algoritmus může vyv́ıjet jak topologii śıtě, tak i váhy
a práhy. Zat́ımco evolučńı metody zvládaj́ı dobře exploraci prostoru, dělá
jim problém lokálńı dolazeńı řešeńı. Tato práce navrhuje hybridizovaný
př́ıstup kombinuj́ıćı neuroevolučńı algoritmus HyperNEAT s gradientńım
algoritmem DQN. Nejprve navrhujeme tři r̊uzné zp̊usoby inicializace DQN
pomoćı řešeńı z HyperNEATu. Poté navrhujeme metodu na dolazeńı
populace HyperNEATu pomoćı řešeńı z DQN. Nakonec kombinujeme oba
navržené kroky v trénovaćı smyčku, která iterativně spoušt́ı sekvenci Hy-
perNEAT a DQN. Daný př́ıstup testujeme v doméně posilovaného učeńı
s diskrétńım prostorem akćı, jmenovitě na problémech z ř́ızeńı Cart pole,
Acrobot a Mountain car, které jsou definované v OpenAI gym. Docháźıme
k závěru, že hlavńı výzvou pro kombinováńı obou př́ıstup̊u je odlǐsná in-
terpretovatelnost jejich výstup̊u. Uvád́ıme i inicializačńı strategie, které
nezafungovaly a diskutujeme možné př́ıčiny. Prezentujeme slibné výsledky
navrženého postupu.

CONTENTS

Contents

List of Figures iii

List of Tables iv

1 Introduction 1

2 Neuroevolution 3

2.1 Neural networks . 3

2.2 Evolutionary algorithms . 6

2.2.1 Genetic programming . 7

2.3 Neuroevolution background . 8

2.3.1 NEAT . 9

2.3.2 Population Based Training . 11

2.4 HyperNEAT . 11

2.4.1 Available HyperNEAT implementations 13

2.5 Use cases of NEAT based methods . 14

2.5.1 Vision . 14

2.5.2 Games . 14

2.5.3 Robot control . 15

2.5.4 Other . 15

3 Reinforcement learning 16

3.1 Background . 16

3.2 Deep Q-learning Networks . 17

3.3 Testing platforms . 19

4 Proposed Approach 20

4.1 HyperNEAT realisation . 21

4.2 Initialising DQN by HyperNEAT . 23

4.3 Initialising HyperNEAT by DQN . 26

5 Implementation 27

6 Experiments 28

6.1 Test problems and tested scenarios . 28

6.1.1 Cart pole . 28

6.1.2 Acrobot . 28

6.1.3 Mountain car . 29

6.2 Performance evaluation . 29

6.3 Configurations . 32

6.4 Results . 33

6.4.1 HyperNEAT: Different genome types 34

6.4.2 HyperNEAT→DQN: Initialisation of Q-networks (option 1) 35

6.4.3 HyperNEAT→DQN: Initialisation of the replay buffer (option 2) . . . 36

6.4.4 HyperNEAT→DQN: Initialisation of the external policy (option 3) . . 37

i

CONTENTS

6.4.5 HyperNEAT→DQN: Initialisation of the replay buffer and the external
policy . 38

6.4.6 HyperNEAT→DQN loop: Fine-tuning of CPPNs by a DQN policy net-
work . 39

6.4.7 Comparison of all approaches . 41
6.5 Discussion . 44

7 Conclusion 46

References 47

A Genome types experiment – Figures 53

B DQN policy initialisation – Figures 54

C External policy initialisation – Figures 56

D HyperNEAT→DQN loop – Tables, Figures 58

E NEAT configuration file 61

ii

LIST OF FIGURES

List of Figures

1 Neural networks: Artificial neuron . 3
2 Neural networks: Feed-forward fully connected neural network architecture . 4
3 Genetic programming: Subtree crossover . 8
4 NEAT: Competing conventions problem . 10
5 NEAT: crossover of two genomes . 10
6 HyperNEAT: genotype to phenotype mapping 12
7 Reinforcement learning: Markov decission process diagram 16
8 Workflow of the proposed approach . 20
9 Policy network architecture . 22
10 CPPN example . 23
11 Example of an evolved genome . 35
12 Final comparison with baseline approaches 43
13 Normalised output values of HyperNEAT and DQN 45
14 Experiment of a more complex evolved genome 53
15 HyperNEAT→DQN with DQN policy initialisation, DQN part 54
16 HyperNEAT→DQN with DQN policy initialisation, HyperNEAT part 55
17 HyperNEAT→DQN with external policy initialisation, TH = 500000 56
18 HyperNEAT→DQN with external policy initialisation, TH = 2000000 57
19 HyperNEAT→DQN loop, unified statistics . 59
20 HyperNEAT→DQN loop, sequential statistics 60

iii

LIST OF TABLES

List of Tables

1 Conceptual differences between HyperNEAT and DQN 30
2 HyperNEAT hyperparameters . 32
3 DQN hyperparameters . 33
4 Comparing different genome types . 34
5 DQN policy network initialisation . 36
6 DQN replay buffer initialisation . 37
7 DQN external policy initialisation . 38
8 DQN replay buffer and external policy initialisation 39
9 HyperNEAT→DQN loop for Tmax = 16000000 40
10 HyperNEAT→DQN loop for Tmax = 8000000 40
11 Final comparison with baseline approaches 42
12 HyperNEAT→DQN loop, Tmax = 16000000 58
13 HyperNEAT→DQN loop, Tmax = 8000000 . 59

iv

LIST OF ALGORITHMS

List of Algorithms

1 SGD pseudocode . 5
2 Evolutionary algorithm pseudocode . 7
3 HyperNEAT pseudocode . 12
4 DQN pseudocode . 18
5 DQN pseudocode with the proposed modifications 24
6 Backpropagation of DQN policy to HyperNEAT genome pseudocode 26

v

1 INTRODUCTION

1 Introduction

Neuroevolution is a subfield of artificial intelligence that combines evolutionary algorithms
and neural networks. The traditional approach with neural networks is to train them using
gradient-based methods such as stochastic gradient descent. This approach has experienced
many successes over the recent years in domains such as image classification [1], natural
language processing [2] or recommender systems [3]. However, an often mentioned problem
is that it takes time and a lot of experience to design the neural network architecture to be
efficient, accurate, and learn quickly. Evolutionary algorithms are inspired by natural evolution
and work with a population of highly randomised solutions that are gradually recombined
and mutated to be pushed towards the optimum. They show success, especially for black-
box problems where exploring a suboptimal solution is very valuable and hard to obtain
by conventional algorithms. An example of such domains are combinatorial [4] or control
problems [5].

One of the efficient algorithms combining neural networks and evolutionary algorithms is
NEAT [6]. This method represents the networks directly as graphs and evolves them similarly
as in genetic programming. The algorithm starts with minimal graph structures and gradually
complexifies them as the algorithm progresses. While this method worked for smaller networks,
with the growth of the typical network and the emergence of deep learning, it was clear that
direct encoding of the networks would not be sufficient due to memory and speed requirements.

Hence, indirect encoding is used to represent the neural networks. This idea is used in
a method called HyperNEAT [7]. The encoding is a function called compositional pattern-
producing network (CPPN) that, given coordinates of two neurons in the network constrained
by a specified substrate (network size and connectivity), generates the weight between them.
Then, rather than recombining large neural networks, we recombine more compact functions
that generate them.

We aim to combine HyperNEAT with a gradient-based Deep Q-learning Networks (DQN)
algorithm [8]. The motivation is that the hybridised solution leverages the exploration capa-
bilities of evolutionary algorithms as well as the fine-tuning capabilities of the gradient-based
methods. To accomplish this, we investigate the following possibilities of hybridisation:

1. We take the solution found by HyperNEAT and fine-tune it by local search.

2. We take the fine-tuned model and backpropagate its parameters to the population of
generating functions from HyperNEAT.

3. We iterate these two approaches to obtain a well-performing solution.

We test the baseline HyperNEAT, DQN and the proposed approaches on three classic
control problems in the reinforcement learning domain. We use the state-of-the-art DQN
algorithm both for our local search extension as well as for the baseline solution. The goal
of the experiments is to show the effect of DQN policy initialisation by HyperNEAT and the
effect of fine-tuning CPPN(s) based on the weights and biases of the policy network trained
by DQN.

1/61

1 INTRODUCTION

The main contributions of this thesis are:

• the proposed strategies for initialisation of DQN by HyperNEAT policy and vice-versa,

• an experimental evaluation of the hybrid neuroevolution approaches,

• a PyTorch-based implementation of the proposed methods.

The thesis is divided into the following chapters: Chapter 2 describes the basics of neural
networks, evolutionary algorithms and neuroevolution, where we review the relevant state-of-
the-art literature. Chapter 3 describes the tested reinforcement learning domain and relevant
algorithms. Chapter 4 presents the proposed solution, more specifically the combination of
HyperNEAT and DQN. Chapter 5 briefly describes the implementation and the used software.
Chapter 6 provides results from the experimental evaluation of the proposed approaches and
discusses the results. Chapter 7 summarises the outcomes of the thesis.

2/61

2 NEUROEVOLUTION

2 Neuroevolution

This chapter gives a background on neuroevolution. Neuroevolution is a class of methods
that evolve neural networks by evolutionary algorithms. First, we describe the basics of neural
networks and evolutionary algorithms. Then, we continue with the neuroevolution, and its
different variants. We focus on two neuroevolutionary methods, NEAT and HyperNEAT,
which are the foundation of this thesis.

2.1 Neural networks

This chapter gives a brief overview of neural networks that have been a widely used AI
tool over the past decades [1], [2] and [9]. The information from this chapter was obtained
in [10] and [11]. Neural networks are inspired biologically by neurons in the human brain.
Each neuron gets input signals from its neighbouring neurons connected by synapses, processes
them and sends a signal to its neighbours. The neurons are interconnected into huge networks
and together are able to represent a complex behaviour. The human brain has approximately
86 million neurons [12].

The artificial neurons are traditionally formed into layered architectures where each layer
contains several neurons that are connected with the neurons in the preceding and succes-
sive layers. In feed-forward architectures, the neuron gets input from its preceding neurons
weighted by the connecting edges, sums the weighted inputs together, adds a neuron-specific
threshold (bias) and performs a non-linear activation function (see Figure 1). In this way, the
signal gradually travels from the first input layer to the last output layer (see Figure 2).

bjw1j

w2j

wnj

x1

x2

xn
input
signal

Σ
output
signal

weights bias

activation
function

inputs

φ

Figure 1: Artificial neuron [13] with input x = (x1, x2, . . . , xn) and output ϕ(bj +
∑

iwi,j ·xi).

The goal is to correctly design the architecture with the parameters being mainly the
number and types of layers and the way they are interconnected, the number of neurons
in each layer, and the type of activation functions. The learning objective is to find the
(sub)optimal parameters (connection weights and neuron biases) such that the performance
of the network is high and generalises well to previously unseen data.

A neural network is an approximator of a function that has a feature vector on the input.
Such function is either used for classification or regression. In the former, the output vector of
the network usually represents probabilities with which the feature vector belongs to a given
class. An example of such task is a neural network that gets an image of a single written

3/61

2 NEUROEVOLUTION

Input layer Output layer
Hidden layers

Figure 2: Feed-forward fully connected neural network architecture with four hidden layers.

digit on the input and outputs a probability vector of size 10, saying for each possible digit,
what is the probability that it was on the input. In the latter, the output represents a vector
of problem-specific values. An example of such task could have a feature vector describing a
movie on the input (with features such as the main actors, release year or genre) and a vector
describing the percentual success of the movie (values such as revenue or user rating) on the
output.

We measure the performance of the trained neural network using a loss function that
compares the expected and the approximated outputs and shows how ’different’ the outputs
are. There are many different loss functions that are suitable for different types of problems,
such as absolute error, mean square error or cross entropy. Absolute error calculates the sum
of the absolute differences in the output and is suitable for regression problems where having a
sparse network is beneficial as it pushes the parameters to zero. Mean square error calculates
the sum of the squared differences of the outputs and is suitable for regression problems where
being approximately correct in all cases is better than being correct in some cases but very
incorrect in a few cases. Cross entropy is used for classification problems and measures the
difference in distributions of the real and approximated classes.

When we consider the neural network in terms of linear algebra, the neurons accept a linear
combination of the weighted preceding signals, and the activation functions are differentiable
(or have predefined behaviour in their non-differentiable parts). Hence, we can optimise the
network parameters (weights and biases) by gradient backpropagation that aims to modify
the parameters so that the loss is minimised. To do that, we create a computational graph
representing the compound derivatives of each parameter in the network, calculate the loss
over the input samples, and modify each parameter by the calculated gradient.

There are three main practical issues connected to that. Firstly, the search can get stuck in
the local optimum. Secondly, due to high memory and time requirements, we cannot possibly
input all possible samples to the network and make the gradient update in one step. Lastly,
we probably do not have all the possible input samples that exist, or we might not have
the perfect architecture design. Ignoring these issues could result in technical infeasibility to
perform the optimisation or optimising different criteria than is required. To partially resolve
that, stochastic gradient descent is used (see Algorithm 1). This method iteratively samples
a small part (batch) from the dataset and performs an update over this small sample only.
The relative size of the updates is controlled by a learning rate that says how much we want

4/61

2 NEUROEVOLUTION

to change the parameters in the given iteration. It has been proved [14] that the learning
converges if certain conditions such as properly selected dataset, learning parameters, and
loss function are met. The optimisation is sensitive to getting stuck in the local optima.
To mitigate this, more complex optimisation methods than SGD such as momentum [15] or
ADAM [16] are used. These methods are taking into account not only the current gradients
but the combination of the previous ones as well and adaptively change the learning rate.

Algorithm 1 Stochastic gradient descent pseudocode for dataset D with samples xi, targets
yi, the number of episodes E, learning rate α and a function h parametrised by θ

1: θ ← random init
2: for epoch ∈ [1, . . . , E] do
3: shuffle D
4: for minibatch of size M containing xi, yi ∈ D do
5: get prediction ŷi ← h(xi)

6: get loss L← 1
M

∑
i=1,...M

loss(ŷi, yi)

7: get gradients ∆θ ← −∇Lθ
8: make gradient step θ ← θ + α ·∆θ

Many problems can arise while training the network where most of them are connected to
deep learning [17], [9]. One of them being overfitting to the given dataset, which results in poor
performance on unseen data. We can use a separate validation dataset to stop the training
when the loss would still decrease on the training data, but it would increase on the validation
data. Moreover, we can use dropout layers [18] that randomly turn off some of the connections,
making the network more stable. Another problems are related to the size of the gradient.
With the growing size of the network, it can happen that the gradient vanishes [19], which
results in updating only the parameters towards the end of the network. For example, this can
easily happen with ReLU activation functions [20] that have zero gradient for negative input,
so they are not propagating gradient any further. We can carefully design the architecture or
introduce skip connections [21] that interconnect nodes in non-neighbouring layers to mitigate
this. On the other hand, too large gradients cause a gradient explosion [22] resulting in the
parameters being updated from one extreme to another and not learning anything useful.
Techniques such as regularisation or data normalisation [17] help to avoid this. The first one
pushes the parameters to stay in a reasonable range of values. The second one helps the
network so that it does not have to learn how to normalise the data itself.

In the scope of the thesis, we use neural networks as simple function approximators and
avoid using advanced techniques. We work with shallow networks with a moderate number
of neurons only (typically 4 hidden layers, 32 neurons each). The neural networks we use
are feed-forward and fully connected, meaning that there are no cycles in the computational
graph, and each neuron in layer i is connected to each neuron in layer i + 1. We solve a
regression task using SGD optimisation in a reinforcement learning domain. We focus mainly
on combining the two algorithms (HyperNEAT and DQN) rather than finding the perfect
hyperparameters for the neural networks themselves.

5/61

2 NEUROEVOLUTION

2.2 Evolutionary algorithms

Evolutionary algorithms are based on Darwin’s principle of natural selection. The prin-
ciple says that in a population of varied individuals, the strongest ones are preferred for
reproduction. This helps the whole population to conserve the most substantial features and
survive. The information from this chapter was obtained in [23] and [24]. Evolutionary algo-
rithms mimic this behaviour by evolving a population of individuals. Each individual in the
population represents a possible solution in a predefined domain (e.g. one individual can be
one neural network with fixed parameters). The individual is represented by a genotype which
is encoded information defining the individual, and phenotype which is an interpretation of
the genotype. For example, if our individual was a real value, the phenotype would be the
specific value, and the genotype could be its binary encoding. The individuals are evaluated
by a fitness function that is to be maximised. Fitness says how good the individual is in the
given environment.

Each individual can be modified by a mutation operator. The operator slightly changes
the genotype so that part of the genotype is kept while the other part is randomly modified.
Mutation pushes towards diversity in the population and helps to explore the search space
by performing a local search around the current genotype. The advantage against random
initialisation of a new genotype is that some of the beneficial genes are kept in the individual.
An example of mutation is a bit-flip for binary representation or adding Gaussian noise for
real representation.

The individuals reproduce using a crossover operator where the typical arity of the op-
erator is two. The idea behind the operator is that by mixing two well-performing solutions,
we can get a new solution (called child or offspring) that takes the best out of its parents.
One-point crossover finds a crossing point in both of the parents and combines the first part of
one of the parents with the second part of the other parent to create a new offspring. Similar
is a two-point crossover with the difference that there are two crossing points, and we create
the offspring by combining three parts selected from the parents. Uniform crossover selects
each gene of the offspring randomly from the parents.

The population of individuals evolve in generations. During each generation, a new popu-
lation is created from the current population by selecting parents and applying crossover and
mutation operators to create new individuals (see Algorithm 2). The new population is then
evaluated by the fitness function and replaces the old population.

There are different replacement and selection strategies. We can either replace the whole
population (generational replacement) or replace just some individuals in the population
with the new offsprings (steady-state replacement). These two represent the tradeoff between
exploration (we search for as many candidate solutions as possible) and elitism (we keep the
well-performing candidate solutions in the population). Selection determines which individuals
enter the crossover as parents. The goal of selection is to prefer the well-performing parents
to push towards optimality but also to select some of the weaker individuals to push towards
diversity. Roulette wheel selection chooses parents randomly proportionate to their fitness.
Tournament selection gradually randomly samples a small batch of individuals and adds the
best of them to the pool of parents until it’s full.

6/61

2 NEUROEVOLUTION

Algorithm 2 Evolutionary algorithm pseudocode

1: initialise(population)
2: evaluate(population)
3: while not termination condition do
4: parents ← select(population)
5: offsprings ← crossover(parents)
6: mutate(offsprings)
7: evaluate(offsprings)
8: population ← offsprings

9: return bestof(population)

Different problems can arise that primarily result in a stagnating population. The popula-
tion stagnates if the best or mean fitness does not change and there is no diversity among the
individuals causing the crossover happening between two same parents outputting the iden-
tical offspring. This can be partially solved by using a sufficiently explorative mutation that
would introduce new individuals to the population. However, this might not help when the
fitness of the stagnating population is much higher than the fitness of the newly introduced
individual. As the selection procedures are fitness proportionate, it could easily happen that
the new offspring would stay in the population just for one generation and would not help it
to escape from the local optimum. Methods such as fitness sharing or speciation [25] help to
mitigate that by modifying the fitness of each individual so that it competes mainly with the
individuals similar to it.

2.2.1 Genetic programming

Genetic programming is a subfield of evolutionary algorithms concentrating on genotypes
that are trees representing a hierarchical program or function [26]. The tree accepts input
using its leaves and gradually propagates the signal to its root while applying a function or
operator in each of the nodes that it is passing through. See Figure 3 for examples of functions
represented using a tree data structure. A typical application of GP is symbolic regression,
where the task is to find an analytic expression that fits the training data the best [27].

Genetic programming follows the same evolution scheme as a classical evolutionary algo-
rithm (see Algorithm 2) but differs in the mutation and crossover operators. Subtree crossover
selects a node (crossover point) in each of the parents and replaces the selected subtree from
the first parent with a subtree from the second parent (see Figure 3). Subtree mutation selects
a node (mutation point) in the individual and replaces the subtree with a randomly generated
tree. Point mutation selects a mutation node and changes its operator to a different operator
of the same arity.

The main challenge of genetic programming is handling code bloat. Code bloat refers
to the excessive growth of the tree containing inviable code (a never reached branch) or
unoptimised code (branch representing a formula reducible to a shorter expression). Bloat
happens by gradually replacing subtrees with deeper subtrees using crossover or mutation,
emerging from the fact that there are more deeper-level nodes than shallow-level nodes chosen

7/61

2 NEUROEVOLUTION

Figure 3: Subtree crossover by [26], CC BY-NC-ND 2.0 UK

for mutation/crossover. Growing the size of the tree makes it harder to create well-performing
offsprings. To resolve that, we can introduce a reduction function that would compress the
tree’s redundant parts or limit the maximal depth of the tree.

2.3 Neuroevolution background

This chapter describes the basics of neuroevolution, which is the core part of the thesis
and reviews the relevant literature. We also review relevant tasks that are commonly solved
by neuroevolution and available HyperNEAT software. This section is composed mainly of
the information contained in survey/review articles on neuroevolution [28], [29], [30] and [31].

Neuroevolution is a subfield of artificial intelligence that interconnects the main concepts
of evolutionary algorithms and deep learning. A typical goal of neuroevolution is to train
a neural network using evolutionary optimisation algorithms. The optimisation focus ranges
from the network architecture [32], network parameters [33] or network hyperparameters such
as learning scheme [34].

The basic unit over which the evolutionary algorithm operates is a population of indi-
viduals. Each individual is a genotype representing a neural network. There are two ways of
encoding being used. Direct encoding, where the neural network is specified explicitly by one
to one mapping, and Indirect encoding, where we specify how the network should be gener-
ated. The advantage of the direct encoding is its completeness and that we do not have to
work with another level of abstraction. On the other hand, the indirect encoding allows more
variability and a compact representation, which is crucial, especially in the case of neural
networks. The neural network is referred to as phenotype, while its encoded form is called
a genotype.

The population of individuals (genotypes) is evolved by a classical evolutionary algorithm
scheme. The mutation and crossover strategies directly depend on the chosen encoding strat-
egy. As the crossover of neural networks is rather complicated [6], some of the authors [33]
work with the mutation operator only.

8/61

2 NEUROEVOLUTION

A recent survey has shown that there is a big potential in neuroevolution [31] and pointed
out possible directions where the biologically inspired algorithms could go.

In 2018, Uber researchers released experiments [33] showing that even a simple genetic
algorithm is able to outperform gradient-based (Q-learning), and gradient approximation
based (Evolution strategies) methods in the reinforcement learning domain. Namely, they
tested their implementation on Atari games, humanoid locomotion, and image maze domains.
The same authors propose an indirect encoding method that recreates the neural network by
applying mutations, specified by a vector of random mutation seeds, to the original network.
The implementation of A. Ecoffet [35] shows the reproducibility of the results and points out
problems related to the robustness of the solution that could be improved if better datasets
were used for training.

In 2020, Google researchers released a study [36] on indirect encoding of vision-based
reinforcement learning tasks. This was achieved by introducing the concept of self-attention
that could be intuitively interpreted as intentional blindness, which leads to simplification of
the visual space. They used neuroevolution, more specifically CMA-ES algorithm, to train
their network. The experimental results showed the potential to generalise with a compact
encoding.

In the following text, we will describe the core neuroevolution approaches with a main
focus on NEAT based methods, that are often referred to in the community.

2.3.1 NEAT

Neuroevolution of Augmenting Topologies (NEAT) addresses how to evolve both net-
work topology and the parameters simultaneously. The authors [6] introduce the following
innovations:

• crossover of different topologies

• specification for protecting different topology types

• initialisation with minimal structures

Specification protects the fitness diversity in the population which prevents stagnation.
Minimal initialisation ensures that the solution complexity grows from the smallest structures
to the most complex. This increases the probability that the best-performing individual is as
simple as possible. If the individual gets too complex, it gets harder to recombine or mutate
it into a meaningful solution.

The crossover innovation addresses the issue of competing conventions (permutation prob-
lem). Traditionally, crossover is problematic in subgraph swapping methods (see Figure 3) as
it is challenging to recognise homology between different networks. If the permutation prob-
lem is not handled, crossovers of two homological individuals, as shown in Figure 4, degrades
the performance of the network.

9/61

2 NEUROEVOLUTION

1

3 42

5 6

1

3 24

5 6

x[2,3,4]
x[4,3,2]

Crossovers: [2,3,2] [4,3,4]

Figure 4: Competing conventions problem. Crossover is performed over two same networks,
and the resulting solution loses a key feature as it was not identified that the networks are in
fact the same. Both of the networks contain features 2,3,4; but when we recombine the two
homological networks, the resulting network is either missing information from feature 2 or
feature 4, while no new feature is added. Image adapted from [6].

In NEAT, this problem is solved by a special kind of direct encoding (see Figure 5) that
tracks the history of modifications applied to the network and, therefore, can recognise when
two networks were created in the same way. Two networks with the same history have the
same topology, but not necessarily the same weights. To perform such tracking and to keep
the networks minimal, the algorithm starts by evolving simple neural networks with no hidden
nodes, rather than starting with a population of randomly generated networks.

GENOME in format {innovation number : connection : enabled}

0: 1->2 : true
1: 1->3 : false
2: 2->4 : true

0: 1->2 : true
1: 1->3 : true

3: 1->5 : true

0: 1->2 : true
1: 1->3 : false
2: 2->4 : true
3: 1->5 : true

genome 1

+
genome 2

crossover

genome 3

1

32

4

1

3 52

1

3 52

4

NETWORK (phenotype) created from the genome (genotype)

Figure 5: NEAT crossover of two genomes and their network representation. Each genome
consists of list of connections, their unique innovation number and whether they are enabled
or not.

During the crossover phase, the genomes are compared gene-vice, and matching genes are
selected randomly from any parent, while disjoint genes are selected from the better parent.
The concept of disjoint/compatible genes is also used in the fitness sharing function, ensuring
that the diversity in the population is kept.

Even though NEAT experiences scalability problems induced by direct encoding, it is key
research on which the more recent research builds. One of the recent papers, that still feature
NEAT (though only partially) is [37]. The authors solve a RL task by strictly separating policy

10/61

2 NEUROEVOLUTION

and feature learning (algorithm NEAT+PGS). While the policy evolves by Policy Gradient
Search, the features are evolved by NEAT algorithm.

2.3.2 Population Based Training

Another direction of neuroevolution in recent years is Population Based Training (PBT) by
Jaderberg, et al. [34]. PBT jointly optimises weights and hyperparameters (learning rate, and
entropy cost) of the network to reduce the cost of ML model deployment. An asynchronous
optimisation model is used to utilise computational resources effectively. The final output of
the algorithm is a network with fixed architecture, and a schedule of hyperparameters (i.e., if
we want to retrain the network later, the hyperparameters dynamically change during the
training).

Firstly, for each individual in the initial population, the parameter vector (network weights)
is updated using a gradient descent method. Then, there is an exploit phase, where given the
fitness of the individual and the rest of the population, the algorithm either keeps the current
solution or accepts the weights of the best performing model. The individual then continues
to an explore phase, where the hyperparameters are changed to suit the new parameter vector
better. These three steps (SGD update, exploit, explore) are repeated until the training ends.
The best performing network is selected.

In Li, et al. [38], PBT is further extended to perform black-box optimisation, which means
that no assumptions on model architecture, loss function, and optimisation scheme have to
be made. The algorithm is based on Vizier, a hyperparameter optimisation service [39] and
the PBT optimisation algorithm, the difference is that the mutation is not performed inside
the worker, but in the supervising controller which allows more variability.

2.4 HyperNEAT

HyperNEAT addresses the scalability problems of approaches with direct representation
by introducing a concept of Compositional Pattern Producing Networks (CPPN) to manage
indirect encoding of the neural networks. In HyperNEAT, one individual is not the network
itself but a CPPN that generates it. These CPPNs are then optimised using the original
NEAT algorithm (see Algorithm 3).

CPPN works over a predefined grid called a substrate. Such substrate could be a cube with
regularly spaced nodes where each node is connected with its direct neighbours; or a cube
divided into layers where the connections are directed from layer i to layer i + 1. CPPN is
a function that accepts coordinates of two nodes in the substrate and returns the weight of
their connection. The whole network is built by querying all the allowed connections. While
the network structure is limited by the structure of the underlying substrate, it can still learn
to produce many different architectures if we consider that the connections with low weights
are not created in the network. See the process of converting CPPN phenotype into the neural
network with initialised weights in Figure 6.

11/61

2 NEUROEVOLUTION

Substrate

(x1,y1)

(x2,y2) x1 y1 y2x2

w12

CPPN

For each pair
of nodes (xi, yi), (xj, yj)

query the connection weight wij

Initialised
neural network

Input layer

Output layer

Hidden layers

Figure 6: Genotype (CPPN) to phenotype (neural network) mapping. Firstly, every possible
connection of a pair of nodes in the substrate is queried. Secondly, the coordinates of the
pair of nodes are the input of the CPPN network. Lastly, CPPN outputs the weight of the
connection between the pair of nodes.

Algorithm 3 HyperNEAT pseudocode adapted from [7]

1: choose substrate configuration (node layout)
2: initialise population with randomised minimal CPPNs
3: while not termination condition do
4: for each individual in the population do
5: query its CPPN for connection weight of each possible connection in the substrate
6: run the created neural network to obtain fitness
7: reproduce CPPNs according to NEAT method to get updated population

8: return bestof(population)

There are two main advantages of the indirect representation. Firstly, it is able to generalise
to different substrate sizes, which can be especially useful if the size of the input (data sample)
or output is variable. Secondly, the representation is compact, allowing to represent thousands
of neural network parameters only by dozens of CPPN nodes.

While HyperNEAT has been criticised by van den Berg and Whiteson [40] for not perform-
ing well on irregular tasks, the authors of HyperNEAT have shown [41] counterexamples to
disprove it. Several years later, a survey [28] on the progress of HyperNEAT and its extensions
and applications was published. The findings are presented in the next paragraphs.

Adaptive HyperNEAT (Risi & Stanley [42]) has focused on the plasticity of the networks,
i.e. the ability to evolve weights. This improvement helps to circumvent the weight limitations
imposed by the nature of the CPPN.

HybrID (Clune, et al. [43]) starts with indirect encoding and then continues with direct
encoding to allow individual weight fine-tuning.

12/61

2 NEUROEVOLUTION

HyperNEAT-LEO (Verbancsics & Stanley [44]) addresses the issue of disappearing con-
nections by adding an output to CPPN that determines whether the connection should be
present or not. This improvement helps to distinguish which connections are in the network,
and which connections are below a threshold.

ES-HyperNEAT (Risi & Stanley [45]) adds the possibility to evolve position and number
of hidden layers in the substrate. This improvement allows the substrate to evolve with the
CPPN, and not to remain prefixed by the user.

HyperGP (Buk [46]) uses genetic programming instead of NEAT to evolve the CPPN.

Deep HyperNEAT (Sosa & Stanley [32]) is an extension of NEAT where one node in
a genotype does not represent a neural network node but a neural network layer and its
specifications. Fitness is based on how well the network can be trained in a few generations.

CoDeepNEAT (Miikkulainen, et al. [47], and Bohrer, et al. [48]) is similar to Deep Hy-
perNEAT, but instead of having neural network architecture as a population, we evolve two
different populations – blueprints and modules. Modules are small parts of an architecture,
and blueprints are the recipes that assemble them.

2.4.1 Available HyperNEAT implementations

As the goal of this thesis is to combine NEAT-based algorithms with SGD, we implement
the code in Python as it is currently the most used open-source machine learning language with
major deep learning libraries (Keras, PyTorch), data handling libraries (Pandas, Seaborn) and
RL experimental platforms (OpenAI gym). Therefore, I focus on the libraries implemented in
Python. However, there are also other (Hyper)NEAT libraries, especially for C# and C++.
These implementations can be found in the software list maintained by the EPLEX group at
UCF (http://eplex.cs.ucf.edu/software-list).

While there is plenty of available implementations of NEAT-based algorithms, it is chal-
lenging to distinguish between them, and choose the right one to use it ’as a tool’ since most of
the published implementations are paper-/project- related, and not maintained or not general
enough.

NEAT is implemented by McIntyre, et all. in [49] and indexed in PyPI as neat-python.
This implementation looks stable, tested and quite well documented. It is not further devel-
oped, but it is still maintained. This is also the NEAT implementation that is often built
upon in the research papers.

PyTorch based implementation is provided by Uber research [50]. This implementation
covers NEAT, HyperNEAT, and Adaptive HyperNEAT. The interface looks general enough.
However, it seems that it is not further maintained as the reported issues are not resolved.

Tensorflow based implementation is made by Bodnar [51]. However, this implementation
is based on Tensorflow 1.x, while the current standard is Tensorflow 2.x, and as the author
states in his technical report, the implementation is significantly slower than the PyTorch
version.

13/61

http://eplex.cs.ucf.edu/software-list

2 NEUROEVOLUTION

Another Tensorflow based implementation is done by Uber research [52]. This implementa-
tion supports GPU evaluation and parallelisation. However, only a simple genetic algorithm
and algorithm for evolution strategies is implemented. The project is labelled as work in
progress, but the last update was done one and a half years ago. Even though the code
might not be applicable as is at the moment, it could be worth it to improve it as GPU
supported operations, and a good parallelisation could significantly speed up the runtime of
the experiments.

2.5 Use cases of NEAT based methods

Generally, HyperNEAT-based methods are used mainly for tasks with significant geo-
metrical features (e.g. symmetry, repetition) or for tasks where varying input/output size
handling is required (i.e. image resolution). Such features are often found in robot control,
image recognition, and reinforcement learning tasks.

2.5.1 Vision

The power of CPPNs to create geometrical objects is shown in Clune & Lipson [53] where
3D objects are designed and evolved. The paper is accompanied by a popularisation website
http://endlessforms.com/.

Calimeri, et al. [54] show the application of HyperNEAT in the biomedical domain for
blood vessel segmentation and compare the method with other state-of-the-art methods for
image segmentation. Verbancsics & Harguess [55] use HyperNEAT to classify maritime vessels
from satellite images. The main presented advantage of using HyperNeat is the ability to work
with varying scales of images. CoDeepNEAT is used in Miikkulainen, et al. [47] to create image
captioning of a major online magazine. The authors use image and text representation of the
items to produce captions for blind people.

Neurogram is an online tool (https://otoro.net/neurogram/) by Ha [56] that imple-
ments the NEAT algorithm to allow the user to experiment with NEAT operators on random
images. Picbreeder is an online community-based tool (http://www.picbreeder.org/) by
Secretan, et al., [57] which evolves art using the NEAT algorithm based on user experience.
The users can create new art pieces by evolving existing pictures or combining them with
their own art.

2.5.2 Games

There has been a lot of research applying neuroevolutionary algorithms in Atari gaming.
This domain is of particular interest as it is defined in a very convenient open-source simulator
OpenAI Gym [58], and provides several complex environments corresponding to different Atari
games. To play Atari, one has to be able to map a quickly changing screen capture to actions.
As the different environments are similar but still different enough, the domain is often used
to test the ability to generalise.

14/61

http://endlessforms.com/
https://otoro.net/neurogram/
http://www.picbreeder.org/

2 NEUROEVOLUTION

Hausknecht, et al. [59] use HyperNEAT; Such, et al. [33] use a simple version of a genetic
algorithm without mutation; and Peng, et al. [37] use NEAT+PGS to create a potentially
general Atari player. This list is not exhaustive as this domain is very popular in Reinforcement
learning research as well. Recently, Atari ZOO [60] was published to allow easier comparison
between the implemented algorithms.

Schrum [61] presents a HyperNEAT-based algorithm specialised to generate CNN-like
architectures. The author shows the results using the Tetris game puzzle.

2.5.3 Robot control

Cheney, et al. [62] evolve soft robots to create new morphologies. They utilise HyperNEAT
to create morphologies of varying density. Lee, et al. evolve robot gait [63] using HyperNEAT
for a 4-legged robot. Drchal, et al. [64] use HyperNEAT for a line following robot reacting to
variable size sensor inputs.

Buk [46] uses HyperGP to control robots using their sensoric inputs. The author employs
the indirect encoding concept of CPPN while disregarding the complexities of the NEAT
algorithm, and using genetic programming instead. Dvorský [65] then uses HyperGP in his
master thesis to control multi-legged robots.

Haasdijk, et al. [66] control a multi-robot organism by HyperNEAT. The authors leverage
the geometric aspects of HyperNEAT to create an algorithm that allows each of the robots
to operate autonomously.

2.5.4 Other

Bahçeci & Miikkulainen [67] explore the possibilities to transfer heuristics created for
simple board games and use them as a hot start for more complex games. Didi [68] extends
HyperNEAT for a policy transfer task with experiments completed in keep-away RoboCup
soccer domain.

Boyles [69] evolves scouts for military simulations using the NEAT algorithm in his master
thesis. Kroos & Plumbley [70] extends NEAT to use it for sound event detection where the
main goal is to develop a competent network that is as minimal as possible.

15/61

3 REINFORCEMENT LEARNING

3 Reinforcement learning

Reinforcement learning aims to design an agent that maps states to actions to max-
imise the agent’s reward in the environment. The information from this chapter was obtained
in [71] and [72].

3.1 Background

Reinforcement learning model is defined as

• S – set of states, can be discrete or continuous

• A – set of actions the agent can perform, can be discrete or continuous

• R : S × A → R – reward function determining reward r ∈ R that the agent gets after
performing action a ∈ A in state s ∈ S

• t – discrete time steps, t ∈ [0, . . . , T]

• P : S × A × S → [0, 1] – probability function P (s′|s, a) defining the probability that
agent applying action a in state s gets to state s′

The model of the agent and the environment is shown in Figure 7. The agent has a policy
π : S → A that, given a state s, outputs action a that the agent should take. The goal of the
reinforcement learning methods is to design π∗ that maximises the reward of the agent in the
environment.

Environment
Rt+1

St+1

RtSt
state reward

Agent
action

At

Figure 7: Reinforcement learning as Markov decission process

A value function Vπ : S → R assigns each state s the expected mean reward obtained by
following policy π from state s. A action-value function Qπ : S×A→ R assigns each pair s, a
the expected mean reward obtained by following policy π from state s.

The V - and Q-values are tied by the Bellman optimality equation. The equation states
for Q∗ that

Q∗(s, a) =
∑
s′,r

P (s′|s, a)[r + γmax
a′

Q∗(s′, a′)] (1)

where γ ∈ (0, 1] is a discount factor.

16/61

3 REINFORCEMENT LEARNING

To find the optimal policy, we would need to evaluate all possible states and actions in
iterations to find a converging solution. This would require knowledge of reward function R
and probability distribution P . Apart from that, the action and state-space would need to
be finite and reasonably small as keeping the Q-value table would require |S| × |A| entries. If
these conditions were met, we could find the optimal solution using Value- and Policy-iteration
algorithms that iteratively update the Q-table and policy to obtain the optimal solution in
the Bellman sense.

There are different algorithms used for unknown MDPs that learn Q-values by sampling
the search space.

These methods are based on the temporal difference, which stands for a difference in
estimated Q-values in consequent time steps. The methods are either on-policy, meaning that
the current policy is used to select an action for the next state s′, or off-policy, meaning that
action maximising the value of the next state is selected, ignoring the current policy.

Q-learning is an example of an off-policy algorithm with the one-step update

Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)] (2)

SARSA is an example of an on-policy algorithm with the one-step update

Q(s, a)← Q(s, a) + α[r + γQ(s′, a′)−Q(s, a)] (3)

where a′ is an action chosen by policy π.

To learn the Q-values properly, it is necessary to follow an exploration policy that satisfies
GLIE properties [73]. GLIE stands for greedy in the limit (in the limit, the policy should
choose the maximising action) and infinite exploration (state-action pairs are visited an infi-
nite number of times). In practice, this is ensured by using ε-greedy policy that chooses the
maximising action with probability 1 − ε and random action with probability ε where ε de-
creases with the number of iterations.

In this thesis, we work with a deterministic environment with continuous state space,
discrete action space and we use a method based on Q-value estimation. The presented ap-
proach should work for stochastic environments and discrete state space as well, whereas using
continuous action space would require a modification of the local search part of the algorithm.

3.2 Deep Q-learning Networks

Deep Q-learning Networks is an algorithm [8] designed to be able to leverage Q-learning
capabilities in huge state space. To do so, the authors approximate the Q-table by a Q-function
that is represented by a neural network.

The algorithm (see Algorithm 4) utilises experience replay where one experience is a tuple
(st, at, rt, st+1). Each experience is stored in a replay buffer D, which serves as a dataset to
be fed to the neural network by random sampling in mini-batches. The real value y is set to
the Q-value estimated by the neural network. The target value y′ corresponds to the one-step

17/61

3 REINFORCEMENT LEARNING

lookahead taking into account the next state Q-value and the obtained reward. The gradient
step is performed based on the mean square error of y and y′. To make the algorithm more
stable, two different networks Q-network Q and Q-target-network Q̂ are used. To simplify
the notation, in the sequel, we use Q-target for Q-network-target. Q represents the current
solution, is used to generate y and is being updated by the gradient step. Q̂ is an older version
of Q that is used to generate y′. Q̂ is updated every C steps by the current version of Q.

Algorithm 4 DQN pseudocode adapted from [74]

1: Initialize replay buffer D to capacity N
2: Initialize action-value function Q with random weights θ
3: Initialize target action-value function Q̂ with random weights θ− = θ
4: for episode = 1,M do
5: Initialize sequence s1
6: for t = 1, T do
7: With probability ε select a random action at
8: otherwise select at = arg maxaQ(st, a; θ)
9: Execute action at in emulator and observe reward rt and state st+1

10: Store transition (st, at, rt, st+1) in D
11: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D
12: Set yj = rj if episode terminates at step j + 1
13: Set yj = rj + γmaxa′ Q̂(sj+1, a

′; θ−) otherwise
14: Perform a gradient descent step on (yj −Q(sj , aj ; θ))

2 with respect to θ
15: Every C steps reset Q̂ = Q

The method leverages the following:

• Data efficiency: The classical Q-learning generates a data sample from the environment
for each Q-value update (as 1:1 mapping of sample to update). On the contrary, DQN
uses a replay buffer D that is gradually being filled by data samples. When performing
an update, a random batch of data is sampled from the replay buffer. This allows to use
each data sample more times (as 1:N mapping of sample to update) and is especially
beneficial for cases when the environment evaluation is costly.

• Sample randomisation: Learning from consecutive samples is inefficient because the
samples are correlated. By sampling from the replay buffer D, we can get data from
several different episodes, making the training faster as the sample distribution is more
representative.

• Training stability: DQN uses Q as a policy, and Q̂ as a target policy. Q̂ is a fixed target
that is updated every C time steps by the current parameters from Q. In the meantime,
only Q is being modified by the calculated gradients, which improves convergence as Q̂
is a fixed, stable target. If Q was used for target calculation instead of Q̂, the target
value would change for each update, and the algorithm could start oscillating.

The authors have tested the algorithm on various Atari 2600 games and achieved a human-
level performance. The agent was receiving high-dimensional preprocessed frame pixels and
game scores on the input. Moreover, the hyperparameters and architecture were fixed for all

18/61

3 REINFORCEMENT LEARNING

the different game types. A disadvantage of DQN is that it produces a finite-length vector
where each feature in the vector corresponds to one action in the action space. This limits
the action space to be a discrete finite set.

3.3 Testing platforms

The algorithm is to be evaluated in the OpenAI gym environments or its alternatives.
OpenAI gym [58] is an open-source catalogue of RL environments. The advantage of this
library is that it has a very clean API, is well-tested and used by many researchers, which is
convenient for performance benchmarking. There are five main categories of environments in
OpenAI gym (some of them are dependent on the MuJoCo simulator described below):

• Atari – 59 different Atari environments for Atari 2600 video game console

• Box2D – continuous control tasks in the Box2d simulator

• Classic control – control theory problems from the classic RL literature like the cart
pole or inverted pendulum

• MuJoCo – continuous control tasks such as humanoid or 4-legged robot

• Robotics – goal-based tasks for the Fetch and ShadowHand robots in MuJoCo simulator

MuJoCo [75] is a physics engine for fast and accurate simulation, mainly used in robotics
and biomechanics domain. The simulator allows defining custom environments. The humanoid
environment (also defined in OpenAI gym) is often used to test RL tasks; see, for example, this
video https://youtu.be/iJlEbHsgM7Q. However, the usability of the simulator is limited as
it is licensed, with a 30-day free trial or a free license for students.

Robogym [76] is an open-source library that provides a wrapper Python API that is the
same as in OpenAI gym to run several different environments in MuJoCo. There are two
types of environments. Firstly, Dactyl environments where the goal is a robotic hand that
has 20 actuated degrees of freedom to manipulate a Rubik’s cube. Different complexity levels
are utilised by restricting the degrees of freedom of the Rubik’s cube. Secondly, Rearrange
environments where the goal is to use a robotic arm with a gripper to set up items on a table
in a requested way.

An interesting alternative to OpenAI gym that heavily depends on the licensed MuJoCo
simulator is PyBullet Gymperium [77]. It is an open-source reimplementation of the OpenAI
Gym MuJoCo environments, and Roboschool environments [78] based on the Bullet Physics
simulator. An advantage of this package is that the environments are defined using the Ope-
nAI gym API. There are also plenty of other RL environments one could use for experiments.
I found the list at https://github.com/clvrai/awesome-rl-envs to be the most compre-
hensive.

In this thesis, we use the classic control environments with discrete action space from
OpenAI gym package for experiments to keep the thesis open-source while considering the
fact that the usage of the DQN algorithm implies the action space to be discrete.

19/61

https://youtu.be/iJlEbHsgM7Q
https://github.com/clvrai/awesome-rl-envs

4 PROPOSED APPROACH

4 Proposed Approach

This section describes the proposed approach that combines the evolutionary algorithm
HyperNEAT with the gradient-based algorithm DQN. The objective is to develop an algo-
rithm that is able to train an agent that performs well in a given reinforcement learning
environment. Firstly, we describe the modifications we made in the baseline HyperNEAT al-
gorithm [7]. Secondly, we describe the specifics of the used DQN implementation. Lastly, we
demonstrate how we combine the two algorithms by showing how to initialise DQN by Hyper-
NEAT and vice-versa. We discuss the effects of each modification in Chapter 6. The high-level
overview of the algorithm workflow is shown in Figure 8.

HyperNEAT
population of individuals

DQN
train DQN policy network

best individual
genome
(CPPNs)

best individual
phenotype

(policy network)

fine-tuned
genome
(CPPNs)

best solution
from DQN

(policy network)

evolve
population

in generations

select

convert

initialise DQN by the policy
network from HyperNEAT

initialise population
by the fine-tuned genome

fit CPPNs to DQN
policy using SGD

select

train
for number

of time steps

INPUT LAYER
node coordinates

OUTPUT LAYER
weight / bias

bool switchcoord
node1

node id

weight
or

bias

bool
switch

coord
node1
layer id

coord
node2

node id

coord
node2
layer id

Cube

Sin

Square

Tanh ReLU

Tanh

INPUT LAYER
node coordinates

OUTPUT LAYER
weight / bias

bool switchcoord
node1

node id

weight
or

bias

bool
switch

coord
node1
layer id

coord
node2

node id

coord
node2
layer id

Cube

Sin

Square

Tanh ReLU

Tanh

Input
layer

Output
layer

Hidden layer

state[0]

state[1]

state[2]

state[3]

action[0]

action[1]

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Input
layer

Output
layer

Hidden layer

state[0]

state[1]

state[2]

state[3]

action[0]

action[1]

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

1

2

3b

3a

Figure 8: Structure of the algorithm in 3 steps. Firstly, CPPNs generating HyperNEAT pol-
icy network are produced by the HyperNEAT algorithm. Secondly, the HyperNEAT policy
network initialises the DQN algorithm. Lastly, the DQN policy network is used to fine-tune
the original HyperNEAT CPPNs by sampling training data from the DQN policy and fitting
it to the CPPNs using SGD. The fine-tuned CPPNs are converted to a genome that is then
recombined with genomes of the original HyperNEAT population. The algorithm iterates un-
til the terminal condition holds.

20/61

4 PROPOSED APPROACH

In the sequel, we use the following terminology:

• Genome stands for one individual of the HyperNEAT population.

• CPPN is a neural network that produces weights and/or biases of the final neural
network.

• HyperNEAT policy network is the final neural network that is generated by possibly
multiple CPPNs for a given fixed-size substrate (coordinate grid); the policy network
accepts a state and outputs a vector of values for each action.

• DQN policy network is a neural network that is trained by DQN; the network accepts
a state and outputs a vector of values for each action.

• Fine-tuned CPPN is a CPPN trained on a data set extracted from the DQN policy
network.

• Fine-tuned genome is a genome that encodes the fine-tuned CPPN(s).

4.1 HyperNEAT realisation

HyperNEAT is an evolutionary algorithm that trains a population of individuals where
each of the individuals is a genome representing CPPN(s) that generates neural network
parameters. The neural network accepts the current state of the environment and outputs a
value for each available action. The agent selects the action with the highest value, performs
it in the simulator and receives a reward and its next state. The individuals in the population
are evaluated based on how well on average the agent performs in the simulation.

We use the original version of the algorithm [7] with the following assumptions – the
size of the substrate is fixed to 4 hidden layers and 32 neurons in each. The size was set
experimentally so that the number of neurons in one layer is a factor of two, and both
HyperNEAT and DQN can train the policy network. The size of the substrate could be
further optimised, but that is out of the scope of this thesis. Another assumption is made
on the connectivity of the underlying substrate – we work with feed-forward fully connected
networks. This is motivated by speeding up the implementation as we can group the nodes
into layers and leverage matrix multiplication to evaluate the network. We use Leaky ReLU
[79] as the activation function in the hidden nodes and linear activation (i.e., no activation)
in the output nodes. See the used policy network architecture in Figure 9.

We diverge from the original implementation by testing different genome types. In the
original implementation, each individual is represented by one CPPN that generates weights
for the network. Each weight is accepted if it lies above a specified threshold and set to zero
otherwise. No bias is used in the policy network. Our genome types differ in the following:

1. We disregard the weight threshold to use fewer hyperparameters.

2. We modify the genome structure to be able to generate both weights and biases.

21/61

4 PROPOSED APPROACH

Input layer

Output layer

Hidden layer

state[0]

state[1]

state[2]

state[3]

action[0]

action[1]

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Leaky
ReLU

Figure 9: Policy network architecture used for HyperNEAT as well as for DQN. The parame-
ters of the network (weights and biases) are generated by evolvable CPPN in HyperNEAT or
trained by stochastic gradient descent in DQN. This example of the policy network accepts
a state with four features and outputs a value for a discrete action space of size two. The
input/output size can vary for different environments.

The first modification adds one more output to the CPPN network. This additional out-
put is a boolean value that says whether we should use the weight or set it to zero and is
implemented as 1

1+e(−x) > 0.5 where x is the input signal of the newly created node. This

modification is inspired by [44]. An example of the CPPN network is shown in Figure 10.

The second modification changes the genome so that it generates bias as well and comes
in two versions:

• The genome structure stays the same, but we use the represented CPPN to generate
biases. To do so, we use the same CPPN as for weights and input the queried node twice.
Considering the original usage of CPPN to be wi,j = CPPN(nodei, nodej), we use the
same CPPN as bi = CPPN(nodei, nodei), where wi,j stands for the weight between the
i-th and j-th node, and bi stands for the bias of the i-th node.

• We change the genome to represent two CPPNs instead of one. The first CPPN corre-
sponds to the original CPPN and generates weights only. The second CPPN generates
biases only. This modification is inspired by [46]. The genetic operators working over
the new genome are equivalent to a nested version of the original operators, i.e. when
performing crossover of genomes g1 = [s11, s

2
1] and g2 = [s12, s

2
2], we perform the crossover

on the corresponding subgenomes (a subgenome sji represents the j-th CPPN of genome
i) to get:

cross(g1, g2) = [cross(s11, s
2
1), cross(s

1
2, s

2
2)] = [s13, s

2
3] = g3 (4)

Other operations over the genome, such as mutation or initialisation, are performed
analogously.

22/61

4 PROPOSED APPROACH

INPUT LAYER
node coordinates

OUTPUT LAYER
weight / bias
bool switch

node1
node id

weight
/bias

bool
switch

node1
layer id

node2
node id

node2
layer id

Cube

Sin

Square

Tanh ReLU

Tanh

Figure 10: An example of a CPPN. The inputs of the CPPN are coordinates of two nodes in
the underlying substrate. The output of the CPPN is the weight (or bias) and the boolean
switch saying whether we should use the weight/bias or not. The hidden nodes of the CPPN
network use an activation function selected from a predefined set of functions. The structure
of the CPPN is evolved by the NEAT algorithm.

4.2 Initialising DQN by HyperNEAT

We have used a DQN implementation from Stable Baselines 3 [80] that differs from the
original pseudocode (Algorithm 4) in the following:

• The two nested for-cycles are reduced into one while loop that runs over the total
number of time steps performed in the algorithm, instead of running for M episodes,
each with T time steps.

• Instead of collecting one sample (time step) each iteration, we can collect up to R
samples, where R stands for rollout size. Each collected sample is added to the replay
buffer and updates the total counter of the performed steps.

The pseudocode containing these changes is provided together with the other described mod-
ifications in Algorithm 5.

Combining HyperNEAT and DQN is a challenging task as the workflow of the algorithms is
very different, and more importantly, the outputs of the policy networks of the two algorithms
have a different interpretation:

• HyperNEAT outputs a vector of values, the action with the maximal value is selected.

• DQN outputs a vector of Q-values, the action maximising the Q-value is selected.

23/61

4 PROPOSED APPROACH

Additionally, the Q-values are interpretable as ”expected reward if we select given action in
the state we are currently in”. HyperNEATs output values do not have such an interpretation
and they cannot be considered Q-values that satisfy the Bellman equation 1. We examine three
options on how to initialise DQN using a (suboptimal) policy network from HyperNEAT.

Algorithm 5 Deep Q-learning pseudocode with all of the proposed modifications. The ini-
tialisation options are not necessarily used at the same time. If initialisation option 1) or 2)
is not used, the initialisation is random instead.

1: Initialize action-value function Q with policy H from HyperNEAT . Init 1)
2: Initialize target action-value function Q̂ with policy H from HyperNEAT . Init 1)
3: Initialize replay buffer D to capacity N by the ε1-policy H from HyperNEAT . Init 2)
4: Initialize sequence s1
5: while timestep < T do
6: for rollout = 1, R do
7: With probability ε2 select a random action at
8: otherwise select at = arg maxaQ(st, a; θ)
9: Execute action at in emulator and observe reward rt and state st+1

10: Store transition (st, at, rt, st+1) in D

11: timestep ← timestep + R
12: Sample random minibatch of transitions (sj , aj , rj , sj+1) from D
13: if timestep < TH then
14: Set yj = rj if episode terminates at step j + 1
15: Set yj = rj + γQ(sj+1, arg maxa′ H(st+1, a

′); θ) otherwise . Init 3)
16: else
17: Set yj = rj if episode terminates at step j + 1
18: Set yj = rj + γmaxa′ Q̂(sj+1, a

′; θ−) otherwise

19: Perform a gradient descent step on (yj −Q(sj , aj ; θ))
2 with respect to θ

20: Every C steps reset Q̂ = Q

Option 1: Use policy network from HyperNEAT as the initial policy network for DQN

We run the HyperNEAT algorithm (step 1 in Figure 8) and take the best performing
individual (genome). We use the CPPNs encoded by the genome to generate a HyperNEAT
policy network. We copy the weights and biases from the HyperNEAT policy network and
set them as initial parameters to DQN policy network (step 2 in Figure 8). We can do that
because the DQN policy network has the same architecture as the HyperNEAT policy network
(shown in Figure 9).

Firstly, we set both Q-network (Q in Algorithm 4) and Q-target (Q̂ in Algorithm 4) to the
initial solution. Q-network is the DQN policy network. The hypothesis is that the HyperNEAT
policy network already performs well, and DQN would help to fine-tune it by evolving it so
that it produces the true Q-values.

Secondly, we relax the initialisation and set Q-target only, while Q-network stays initialised
by the standard PyTorch random initialisation U(−

√
k,
√
k) : k = 1/in feat. Starting with

the random initialisation has already proven to work well. By initialising the target network,

24/61

4 PROPOSED APPROACH

during the first C iterations, the DQN policy network (Q-network Q) is pushed towards the
HyperNEAT policy network. The advantage against the previously mentioned full initialisa-
tion is that if the HyperNEAT policy network is very off with the produced values that are not
the true Q-values, the Q-network (DQN policy network) would not be skewed correspondingly.

Option 2: Use HyperNEAT policy network to prefill replay buffer of DQN

Replay buffer is the database of samples (D in Algorithm 4). We use the suboptimal
policy network found by HyperNEAT (step 1 in Figure 8) to prefill the replay buffer (step 2
in Figure 8). This aims to speed up the training by providing more educative samples as the
suboptimal HyperNEAT policy network explored more advanced states than the randomly
initialised DQN policy network. A disadvantage of this approach is that by after learning only
from the ”nice” samples (i.e. samples on the path taken by the suboptimal HyperNEAT policy
network), the DQN policy network would not know how to react in the border cases. Hence,
when filling the buffer, we use an ε-policy that with probability ε uses random action and
with probability (1− ε) uses action selected by HyperNEAT policy network. This is a typical
problem of balancing between exploration and exploitation.

Option 3: Use HyperNEAT policy network as an external policy for DQN training

DQN algorithm is an off-policy algorithm. This means that when we calculate the loss, the
target Q-value is not calculated using the current DQN policy represented by Q-network Q,
instead it is determined by the maximising action using the Q-target network Q̂, see (6).
Based on Algorithm 4, the Q-values given sample (st, at, rt, st+1) are as follows:

y = Q(st, at) (5)

y′ =

{
rt + γmaxa′ Q̂(st+1, a

′), if st+1 non-terminal

rt, otherwise
(6)

where y is the curent Q-value (left side of the Bellman equation (1)) and y′ is the target
Q-value (right side of the Bellman equation (1)). We use the suboptimal policy network from
HyperNEAT (step 1 in Figure 8) as external policy H (step 2 in Figure 8) to select next
action at+1 for the y′ calculation as follows:

y = Q(st, at) (7)

y′ =

{
rt + γQ(st+1, arg maxa′ H(st+1, a

′)), if st+1 non-terminal

rt, otherwise
(8)

To sum it up, for the first TH timesteps, which is a user-defined parameter of this strategy,
we disregard Q-target Q̂ and use Q-network only. We do that because we would not use the
Q̂ to select the maximising action, which was its intended usage in the first place (see 3.2 for
more details). Instead of selecting the action maximising the Q-value, we select the action
maximising the HyperNEAT policy network output. After TH iterations, we stop using the
external policy H and return to the original y and y′ calculation to allow the DQN policy
network to evolve beyond the capabilities of the original HyperNEAT policy network.

All of the options are summarised in Algorithm 5. The initialisation options are not
necessarily used simultaneously; in that case, the default random initialisation is used instead
of the skipped modification.

25/61

4 PROPOSED APPROACH

4.3 Initialising HyperNEAT by DQN

We use the pre-trained HyperNEAT genome G with the final HyperNEAT population P ,
the trained DQN policy network Q and propagate parameters of Q into G. This corresponds
to steps 3a and 3b in Figure 8.

Firstly, we describe step 3a (Figure 8). To recapitulate, G is a genome representing two
CPPNs. The CPPNs are two neural networks, gw parametrised by θw and gb parametrised
by θb that generate weights, and biases for the HyperNEAT policy network H. DQN policy
network Q has the same architecture as the HyperNEAT policy network H. Hence, we can
use the DQN policy network Q as a training set Tw = {(xi, yi)} where xi are coordinates
of two connected neural network nodes, and yi is the weight of the connection. The size of
|Tw| corresponds to the number of connections in the network. Similarly, we create the bias
training set Tb.

We use the training sets Tw and Tb to train parameters θw and θb by stochastic gradi-
ent descent (see Algorithm 6). After each epoch, a new genome G′ is created based on the
updated parameters θw and θb. During the training, we monitor the fitness of G′ and we
stop the training if the fitness fG′ decreases below a threshold defined as q · fG, where the
backpropagation quality q ∈ [0, 1] and fG is the fitness of G.

Algorithm 6 SGD pseudocode for backpropagation of DQN solution Q into HyperNEAT
genome G. IN: genome G, DQN policy network Q. OUT: fine-tuned genome G′

1: set θw, θb to parameters of weight and bias CPPN of genome G
2: generate datasets Tw, Tb from the DQN policy network Q
3: calculate fitness fG of genome G
4: for epoch ∈ [1, . . . , E] do
5: for T , θ, g ∈ {(Tw, θw, gw), (Tb, θb, gb)} do
6: shuffle T
7: for minibatch of size M containing xi, yi ∈ T do
8: get predictions ŷi ← g(xi)
9: get loss L← loss(Ŷ m, Y m)

10: get gradients ∆θ ← −∇Lθ
11: make gradient step θ ← θ + α ·∆θ
12: calculate fitness fG′ of genome G′ recreated from θw and θb
13: if fG′/fG < q then
14: break

return fine-tuned genome G′

Secondly, we describe step 3b (Figure 8). We take the newly created genome G′ and
recombine it with each member of the original HyperNEAT population P . We chose to use
the original population P instead of a randomly initialised population to preserve the historical
markings that guide the reproduction in the NEAT algorithm. We continue the training by
iterating HyperNEAT and DQN as shown in Figure 8.

26/61

5 IMPLEMENTATION

5 Implementation

The proposed approach is implemented in Python 3.8 and PyTorch 1.7. The project
dependencies are managed by the Conda environment management system. The Conda en-
vironment specifications can be found in configs/environment.yml. To install the environ-
ment run conda env create --name env-name --file=environment.yml and then conda

activate env-name.

We have used an external library for NEAT algorithm [49] which we extended by new
classes MultiGenome and MultiReproduction that allow one genome to represent more than
one CPPN and we implemented the corresponding operators such as crossover. We built
our custom implementation of HyperNEAT on top of the NEAT library. Our HyperNEAT
implementation has been partially inspired by [50]. However, the HyperNEAT library men-
tioned above did not contain all features that we wanted to use (e.g. CPPN backpropaga-
tion), so we decided for a custom implementation instead. See the implementation in module
algorithms/hyperneat classes and hyperneat.py. Our implementation of both the Hy-
perNEAT policy network and CPPN network is PyTorch-based.

Regarding the DQN algorithm, we used the implementation from Stable Baselines 3 [80].
We have extended the implementation to be able to use external policy as described in Sec-
tion 4.2. The implemented extensions can be found in module dqn extensions.

All of the tested approaches are implemented with a unified interface in files dqn.py,
hyperneat.py, hyperneat dqn joined.py and hyperneat dqn loop.py respectively. The
code contributions of the thesis are the following: We have designed and implemented the
genome representation of CPPN, we implemented converter from the genome to CPPN where
CPPN is a fully working PyTorch module. We implemented a converter that creates a feed-
forward policy network from the given CPPN and substrate; this policy network is also im-
plemented as a PyTorch module. Implementation of the policy network as a PyTorch module
allows easy transfer of the HyperNEAT policy parameters to the DQN policy network. We
have implemented buffer initialisation for DQN and subclassed DQN class from Stable Base-
lines 3 to implement the training loop that uses external policy to guide the search. We have
implemented the backpropagation of weights and biases from DQN policy to CPPN network,
conversion of the CPPN network back to genome representation and initialisation procedure
reproducing the fine-tuned genome into the new population.

The algorithm hyperparameters are passed via a command line or a yaml configuration file.
The hyperparameters are handled by a dataclass defined in utils/experiment config.py.
An example interface to run experiments is provided in experiment.py. All of the four algo-
rithm scripts also have a main method for local testing, which is a good starting point to test
the project.

The implementation can be found at https://gitlab.com/katerinab/diploma-thesis.

27/61

https://gitlab.com/katerinab/diploma-thesis

6 EXPERIMENTS

6 Experiments

This chapter describes the tested reinforcement learning problems and scenarios, the per-
formance measures and hyperparameters of the algorithms. We present the experimental
evaluation and discuss the results. We test the performance of the following algorithms:

1. HyperNEAT – custom PyTorch implementation build upon NEAT [49]

2. DQN – Stable Baselines 3 implementation [80]

3. HyperNEAT→DQN – evolving policy by HyperNEAT and fine-tuning it by DQN (steps
1 to 2 in Figure 8)

4. HyperNEAT→DQN loop – evolving policy by HyperNEAT, fine-tuning it by DQN,
backpropagating the DQN policy to CPPNs and initialising a new HyperNEAT popu-
lation (iterated steps 1, 2, 3 in Figure 8)

6.1 Test problems and tested scenarios

We used three classic control problems defined in OpenAI gym [58]. Cart pole and Ac-
robot have been used for testing the initialisation options of HyperNEAT and DQN (see
Sections 4.2 and 4.3). Mountain car has only been used for the final evaluation.

6.1.1 Cart pole

Cart pole problem was defined in [81], and it has been used in the reinforcement learning
literature ever since as a simple problem to test the algorithm [72], [82]. The system consists
of a cart with an attached vertically placed pole. The agent’s goal in the environment is to
balance a moving cart so that the pole does not fall.

The state is defined as x-position of the cart, velocity of the cart, pole angle relative to
the upright position and pole angular velocity. Available actions are: push the cart to the
left and push the cart to the right. The agent gets a positive reward 1 for each step that the
pole stays upright. The episode terminates if the pole angle is more than 12 degrees, the cart
reaches the edge of the display or the episode length is larger than 200. The environment
is considered to be solved if the average return reward over 100 independent runs is 195 or
above. The return reward of the j-th independent run Rj is defined as a sum of rewards rt
collected in one episode (i.e., during at most 200 time steps t).

6.1.2 Acrobot

Acrobot is a two-link inverted pendulum with an actuator at the elbow, but no actuator

at the shoulder. The state corresponds to [cos(θ1), sin(θ1), cos(θ2), sin(θ2),
−→
θ1 ,
−→
θ2] where θi are

28/61

6 EXPERIMENTS

the angles of the Acrobot joint and
−→
θi are the corresponding angular velocities. Available

actions are to apply torque -1, 0 or 1 to the second joint (the joint between the two links).

The agent gets a negative reward of -1 for each time step it stays in the simulation
until reaching the goal state. The goal is to swing the lower link to a specified height. The
environment does not have a defined reward threshold where it is considered to be solved.
Based on the OpenAI gym leaderboard [83], we set the threshold to be -60, while considering
the reward of -80 to be a good performance. The problem is defined in [84].

6.1.3 Mountain car

Mountain car problem [85] is another standard testing domain where a car starts on a
one-dimensional track placed in a valley between two hills. The goal is to drive the car up
to the right hill. The problem is that the engine of the car is not strong enough to push the
car up the hill in a single pass. Instead, the car has to drive back up the left hill and use its
potential energy to help it driving up the right hill.

The state is defined as the car’s x-position and velocity. The available actions are: acceler-
ate to the left, accelerate to the right or do not accelerate. The agent gets a negative reward
-1 if the car has not reached the goal state and reward 0 otherwise. The episode terminates
when the car has reached the goal state (position on the top of the right hill), or the length
of the episode is more than 200. The environment is considered solved if the average return
reward over 100 independent runs is above -110 (i.e. the car reaches the goal state in at most
110 time steps).

6.2 Performance evaluation

When evaluating the performance of the HyperNEAT- and DQN-based approaches, we
can track:

• the number of data samples used until convergence,

• the number of performed episodes until convergence,

• the quality of the solution when the algorithm converges,

• the runtime until convergence,

• the number of different solutions that the algorithm explores before convergence,

• the probability the algorithm converges to a given performance level in a given time,

What makes the evaluation difficult is the fundamental difference between the two algo-
rithms; see Table 1. We do not compare the algorithms based on the runtime because it is
implementation-dependent. Though, the general observation is that HyperNEAT is faster as

29/61

6 EXPERIMENTS

it is easily parallelisable. In HyperNEAT we can evaluate the individuals (i.e. different candi-
date solutions) in parallel while in DQN the candidate solution is updated sequentially. Due
to this, we can observe that when given the same limit of time steps, the runtime of Hyper-
NEAT is lower than the runtime of DQN. We also do not compare the algorithms based on
the number of episodes as the DQN implementation that we are using does not utilise it as a
relevant time unit.

Feature HyperNEAT DQN

Training loop Evolves a population in generations Trains the solution in time steps

Evaluation Evaluates each individual by fitness
function averaging the return reward
over a given number of episodes

Tracks the solution progress based
on the loss calculated from actual
and desired Q-value

Data samples Uses a lot of data samples Uses only a few data samples (from
the replay buffer)

Solution
changes

Makes less updates (one solution for
each individual in each generation)

Makes more updates (one solution
for each gradient step)

Exploration Larger difference between two con-
secutive populations as the algo-
rithm recombines different solutions

Smaller difference between the two
consecutive solutions, based on the
gradient

Table 1: Main differences in the workflow of DQN and HyperNEAT that make the algorithms
difficult to compare

When comparing the algorithms we use time steps as a time unit. One time step corre-
sponds to one data sample queried from the environment. For HyperNEAT, time steps are
’consumed’ each time a fitness function of an individual is evaluated, where fitness function is:

fitness(indi) =
1

V

∑
j={1,...,V }

Rj (9)

where V is the number of different episodes andRj is the return reward of the j-th independent
episode that is limited to TE timesteps. The HyperNEAT algorithm evolves population of P
individuals in G generations. In total, it consumes THN timesteps, where

THN ≤ G · P · TE · V (10)

The inequality covers the cases where the episode terminates before reaching its maximal TE
timesteps. This happens in the Cart pole environment when the pole falls and in the Acrobot
and Mountain car environments when the goal position is reached.

For DQN, the time steps are consumed each time new samples are generated into the
replay buffer. This happens in two situations. Firstly, when randomly generating TI initial
samples into the replay buffer. Secondly, in each of the I iterations, when the algorithm
performs a rollout to collect TR new samples to the replay buffer and samples a batch of B
samples from the replay buffer to perform the gradient step. In total, DQN consumes TDQN
timesteps, where

TDQN = TI + I · TR (11)

We can notice that if we set the total number of time steps to TDQN and fix the initial
replay buffer size TI , the number of iterations I depends on the rollout size TR. This is an

30/61

6 EXPERIMENTS

important observation as a gradient update is performed based on B samples in each of the
training iterations. Therefore, by modifying TR, we are indirectly influencing the total number
of effective (repetitive) samples used for the training I · B. Since DQN does not internally
track the current fitness (episodal return reward), we evaluate it externally by evaluating the
solution for every V · TE time steps. This kind of evaluation corresponds to the frequency of
HyperNEAT individual evaluation. However, since DQN is guided by the training loss and
not by the fitness, we do not include the DQN evaluation time steps to calculate TDQN .

We measure the performance of the algorithms by fixing the total number of samples
Tmax that can be used for the training. We evaluate the solutions found after Tmax time
steps and measure their final return reward over V episodes. We stop the training if the
logged average (over V episodes) return reward exceeds the threshold where the environment
is considered to be solved (195 for Cart pole, -110 for Mountain car, undefined for Acrobot).
In case the algorithm solves the environment, we also measure the number of time steps
it consumed. Note, that we relax the ’solve’ condition to be defined as the average over V
independent evaluations, not the original 100 independent evaluations as that would to be
too time consuming. Finally, we analyse the average return reward throughout the training
and compare the speed of convergence.

Even though we tried to design the evaluation to be as fair as possible, it is not perfect.
For example, while keeping the same Tmax for DQN, we could modify the rollout size TR, and
the algorithm would effectively perform more gradient updates which would probably result
in a better solution. Similarly, for HyperNEAT, while fixing the same Tmax, we could say that
we do not mind inaccurate fitness evaluation and decrease V , the number of different episodes
for fitness evaluation. This would effectively increase the number of training generations and
probably result in a better solution.

Hence, we do not spend too much time optimising the hyperparameters for our specific
reinforcement learning problems, and when comparing the approaches, we focus on com-
paring the relative performance instead of the absolute performance. For example, we run
HyperNEAT→DQN with one of the proposed initialisation options, see Section 4.2. Both the
DQN and the HyperNEAT parts of the HyperNEAT→DQN approach get a budget of Tmax
time steps. We evaluate the final solution. For absolute comparison, we compare the results
with the baseline DQN that runs for Tmax time steps. For relative comparison, we compare
the results with the baseline DQN that runs for Tmax/2 time steps, as then we can observe
whether the initialisation had a positive effect on the performance of DQN.

When considering the absolute comparison, limiting the number of total time steps seems
to be more beneficial for the DQN algorithm as it is designed to be sample-efficient and is
able to use the whole budget of Tmax. On the contrary, HyperNEAT is not sample-efficient
and is often not able to use the whole budget of Tmax as the episodes can terminate earlier
when it fails. Though, using time steps as a time unit makes sense as querying the update
from the environment is often the most expensive operation, especially if considering more
complex environments than we are using in this thesis.

We have to consider that while the environments are deterministic, the starting state of
the environment is randomised. Hence, if our agent is not stable enough, it may obtain a
high return reward when evaluated in an episode with starting state s1 and a low return

31/61

6 EXPERIMENTS

reward when evaluated in an episode with starting state s2. Additionally, both of the algo-
rithms are randomised in the initial initialisation. To compensate for that, we always evaluate
the algorithms over several independent runs with the same hyperparameters, just a differ-
ent random seed of the algorithms. More specifically for one algorithm run, we consider two
different types of random generators: random generator gA is used by the algorithm and is
initialised by a given seed seedA (that is passed as an argument), random generator gE is
used by the RL environment, and is initialised at the beginning of each fitness evaluation by
setting seed seedB ← next(gA). By making gE dependent on gA, we ensure both the environ-
ment is different in each fitness evaluation and that the experimental algorithm evaluation is
reproducible.

6.3 Configurations

Both DQN and HyperNEAT have several hyperparameters that need to be set. Moreover,
a few additional hyperparameters arise from the usage of the combined methods with different
initialisation techniques. We summarise the hyperparameters in Table 2 for HyperNEAT and
in Table 3 for DQN. In these tables, we name each hyperparameter, briefly describe it, and
we either state its value or present its default value and refer to the experiments where this
value is modified.

In the following text, we use the following notation for different genome types: prefix
CPPN(w+b) for genome using only one CPPN generating both weights and biases; prefix
CPPN(w,b) for genome using two different CPPNs for weights and biases; prefix CPPN(w)
for genome with one CPPN generating only weights; suffix 1 says that the CPPN has only
one output, 2 says that the CPPN has two outputs as described in Section 4.1.

Parameter Value Description

Total generations G 200 The total number of training iterations for
evolving the population of individuals

Population size P 20 The number of individuals in a population

Validation episods V 10 The number of independent episodes to aver-
age in the fitness evaluation

Max. episode steps TE 200 The max. number of time steps in one episode

Layers in substrate 5 The number of layers in the substrate

Nodes in one layer 32 The number of neurons in a substrate layer

Output activation Linear (identity) Activation on the output layer

Hidden activation Leaky ReLU Activation on the hidden layers

Genome types CPPN(w,b) 2
changes in 6.4.1

Genome type corresponding to one of the
6 options presented in Section 4.1

Table 2: The most important hyperparameters of HyperNEAT, NEAT-specific hyperparam-
eters such as mutation probability or weight restrictions, can be found in Appendix E with
the description at https://neat-python.readthedocs.io/en/latest/config_file.html.

32/61

https://neat-python.readthedocs.io/en/latest/config_file.html

6 EXPERIMENTS

Parameter Value Description

Train iterations Tmax 8000000 The total number of data samples the algo-
rithm can use

Rollout size TR 20 The number of data samples collected in
one iteration

Batch size B 64 The number of data samples used for the
gradient update in one iteration

Discount factor γ 0.9 Discount factor from Bellman equation 1

Target update freq. C 10000 Every C steps policy network Q is copied
to the target policy network Q̂

Initial buffer size TI 50000,
changes in 6.4.3

The size of the replay buffer that is ini-
tialised before the training starts

Replay buffer epsilon ε 0.2,
changes in 6.4.3

If buffer initialisation is used, ε is the ratio
of random samples

Ext. policy threshold TH 500000,
changes in 6.4.4

If external policy is used, TH is how many
initial time steps it should be used

CPPN backprop quality q 0.9,
changes in 6.4.6

If the loop version is used, q is how much
the solution quality can decrease until the
backpropagation is terminated

CPPN backprop epochs E 20 If the loop version is used, E is how many
epochs the backpropagation runs

Loop repetitions 2,5,10 or 20,
changes in 6.4.6

If the loop version is used, it says how many
iterations is performed

Table 3: The most important hyperparameters of DQN (the first 6 parameters for the baseline
DQN) and the proposed approaches. Hyperparameters such as max. replay buffer size can be
found at https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html.

6.4 Results

All of the experiments were run on the CIIRC computational cluster. All of the experi-
ments were run with the maximal number of time steps Tmax limited to 8000000, see details
for HyperNEAT and DQN algorithms in Tables 2 and 3. In the case of the combined methods,
we split the timestep budget between all algorithm parts uniformly so that the total number
of timesteps summed over all algorithm parts is at most Tmax. Each experimental settings is
run several times, and we measure the mean or median performance.

Generally, the higher the number of independent runs is, the more accurate performance
metrics we get. As the experiments are computationally heavy, we set the number of runs to
10 only for the initial experiments. For the final experiment, we select the best-performing
methods, baseline DQN and HyperNEAT, and we evaluate the performance of these methods
over 30 independent runs. As mentioned in the previous chapter, we use Cart pole and Acrobot
environments for the initial experiments and for the final experiments, we additionally use
Mountain Car environment.

33/61

https://stable-baselines3.readthedocs.io/en/master/modules/dqn.html

6 EXPERIMENTS

6.4.1 HyperNEAT: Different genome types

In this experiment, we test six different genome types described in Section 4.1. We run
the HyperNEAT algorithm with the default parameters as described in Table 2, i.e. 200
generations and population size of 20. The results are presented in Table 4.

genome type succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
CPPN(w) 1 10 174114 2.18 287980 34257 198 2 200 200 195
CPPN(w) 2 10 149652 1.87 353926 25278 199 1 200 200 195

CPPN(w+b) 1 10 413005 5.16 562120 221642 198 1 200 200 195
CPPN(w+b) 2 7 294081 3.68 189482 283067 156 74 197 200 9
CPPN(w,b) 1 8 490926 6.14 678514 75540 186 25 200 200 131
CPPN(w,b) 2 10 239543 2.99 273194 34598 199 1 200 200 195

Acrobot
CPPN(w) 1 0 6892270 86.15 825378 7012095 -114 43 -99 -72 -200
CPPN(w) 2 0 6409798 80.12 398216 6412031 -79 4 -77 -74 -87

CPPN(w+b) 1 0 7673258 95.92 450079 7939093 -155 44 -159 -101 -200
CPPN(w+b) 2 0 7944667 99.31 182159 7999626 -178 40 -200 -90 -200
CPPN(w,b) 1 0 6851390 85.64 645649 6685811 -115 29 -106 -95 -200
CPPN(w,b) 2 0 6500385 81.25 1036491 6106833 -113 56 -77 -74 -200

Table 4: Comparing different genome types based on 10 independent runs on Cart pole and
Acrobot environments

We can see that the Cart pole environment is not hard to solve as most of the genome
types solved the environment in all 10 runs (the number of solved runs is in column succ).
Hence, instead of reward, we compare Tavg, which is the average number of time steps that
the algorithm used before solving the environment. We can see that the genomes without bias
CPPN(w) 1 and CPPN(w) 2 converge the fastest as they used only 1-2 % of the provided
budget of Tmax. When comparing the genomes that generate bias, CPPN(w,b) 2 shows the
best results as it used only 3 % of Tmax.

Acrobot environment is more challenging to solve, and as it does not have a predefined
reward threshold, we cannot say if the environment was solved. Therefore, we focus on the
obtained return reward when comparing the algorithms. CPPN(w) 2 has the highest average
return reward, and we can also see that the standard deviation of the rewards is low, suggesting
that the learning algorithm is more stable than the other presented options. On the other
hand, we can compare the median reward and see that CPPN(w,b) 2 has the same median
performance as CPPN(w) 2, but did not manage to find a working solution in some of the
runs as Rmin is -200.

Although the genome type CPPN(w) 2 shows the best performance, we choose genome
type CPPN(w,b) 2 for further experiments as it generates biases. This is an important feature
of the genome type as later we combine HyperNEAT with DQN, and as DQN uses policy
network with biases, we need to be able to generate them for compatibility reasons. While it
would be possible not to use bias in the DQN policy networks, we choose not to do it as bias
makes the network more general.

34/61

6 EXPERIMENTS

CPPN for weight

n1.l

weight
leakyrelu
b=-0.12

-0.53

enabled
log

b=-0.02

-0.78

n1.n

0.15

n2.ln2.n

0.88

CPPN for bias

n1.l

bias
relu

b=-0.06

-0.44

n1.n

-0.67

enabled
identity
b=-0.02

0.06

n2.l

0.30

n2.n

0.11

Figure 11: Example of an evolved genome with a simple topology that is converted to the
corresponding CPPNs. The red connections have a negative weight, the green ones have
a positive weight.

We can see an example of the best-performing genome of type CPPN(w,b) 2 on Acrobot
in Figure 11. The grey nodes correspond to input keys where n1 is the first node, l is its layer
index, and n is its node index. The blue nodes are output nodes, one for weight/bias and the
other one for the boolean switch. The presented CPPNs are compact and do not have any
hidden nodes. One of the more complex evolved genomes can be found in Appendix A. Each
hidden node of the CPPN performs the specified activation function over the sum of its input
signals and the node bias.

6.4.2 HyperNEAT→DQN: Initialisation of Q-networks (option 1)

In this experiment, we evaluate the effect of the DQN policy network and the target
policy network initialisation by the policy network found by HyperNEAT. The initialisation
is described in Section 4.2, Option 1. Firstly, we run HyperNEAT for Tmax/2 time steps.
Then, we copy the weights and biases of the found HyperNEAT policy network to the initial
DQN (target) policy network. Finally, we train DQN for Tmax/2 time steps and report the
found DQN policy network performance.

Table 5 shows the performance of DQN for different initialisation of policy network Q
and the target policy network Q̂. If Q init is True, both the DQN policy network Q and the
DQN target policy network Q̂ are initialised by the HyperNEAT policy. Otherwise, only Q̂
is initialised by the HyperNEAT policy network parameters and Q is initialised randomly as
described in Section 4.2, Option 2. C is the target update frequency and determines the time
step frequency for synchronising Q̂ and Q.

For the Cart pole problem, we get the best results (both reward and used time steps) for
C = 10000, which corresponds to the default settings (see Table 3) and no Q initialisation.
For the Acrobot problem, we get the best average reward for the same settings. However, the
best median reward is obtained for C = 100000 and no Q initialisation. In Appendix B, we

35/61

6 EXPERIMENTS

Q init C succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
False 10000 10 205000 5.12 40469 215000 198 1 200 200 195
False 25000 10 1494400 37.36 824018 1704000 198 1 198 200 195
False 50000 3 3161000 79.03 1532577 4000000 92 86 52 200 10
False 100000 3 3218000 80.45 1507740 4000000 66 86 10 200 10
True 10000 7 1663000 41.58 1761162 1149000 178 56 199 200 10
True 25000 7 1213800 30.34 1824178 21000 143 85 198 200 10
True 50000 8 1118200 27.96 1681031 16000 161 75 200 200 10
True 100000 8 1032000 25.8 1599962 16000 161 75 200 200 10

baseline 10000 10 198200 4.96 14817 197000 198 1 199 200 195
Acrobot

False 10000 0 4000000 100.0 0 4000000 -90 17 -87 -75 -137
False 25000 0 4000000 100.0 0 4000000 -92 18 -94 -72 -132
False 50000 0 4000000 100.0 0 4000000 -102 34 -88 -79 -200
False 100000 0 4000000 100.0 0 4000000 -105 38 -84 -69 -200
True 10000 0 4000000 100.0 0 4000000 -131 45 -105 -83 -200
True 25000 0 4000000 100.0 0 4000000 -125 48 -94 -79 -200
True 50000 0 4000000 100.0 0 4000000 -141 50 -128 -79 -200
True 100000 0 4000000 100.0 0 4000000 -142 45 -155 -79 -200

baseline 10000 0 4000000 100.0 0 4000000 -81 6 -81 -72 -93

Table 5: Testing Q (target) policy initialisation with different values of target update frequency
C on 10 independent runs on Cart pole and Acrobot environments. Comparison with randomly
initialised DQN.

can see the training performance of the first algorithms part (HyperNEAT) and the second
algorithms part (DQN, Q̂ init, C=10000).

Additionally, we compare the results with the baseline DQN that run for Tmax/2 time
steps, see rows baseline in Table 5. Especially in the case of Acrobot, we can see that it is
better not to initialise the DQN (target) policy network when considering both the mean and
the median performance.

6.4.3 HyperNEAT→DQN: Initialisation of the replay buffer (option 2)

In this experiment, we test the effect of buffer initialisation on the performance of DQN.
The initialisation strategy is described in 4.2, Option 2. Firstly, we run HyperNEAT for
Tmax/2 time steps. Then, we take the final HyperNEAT policy network H and use it to
initialise the replay buffer D up to the size TI . Finally, we train DQN for Tmax/2 − TI time
steps and report the found DQN policy network performance. Additionally, we test the Hε

policy, that in 20% cases (ε = 0.2) chooses random action and in the rest of the cases chooses
the action based on H.

Table 6 shows the performance of DQN for varying initial replay buffer sizes TI . Note that
for larger TI , we decrease the rollout size TR. The rollout size TR says how many samples we
collect in each iteration. By decreasing it, we keep the total number of iterations I = Tmax−TI

TR
similar among different settings of TI . That means that the total number of effectively used
samples I ·B stays similar among the different settings.

We can see that performance on the Cart pole problem of baseline DQN and initialised
DQN is comparable with respect to the mean number of performed iterations before the

36/61

6 EXPERIMENTS

TI TR ε succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
50000 20 0.0 10 214400 5.36 38312 218000 199 1 200 200 196

100000 20 0.0 10 321400 8.04 83066 293000 197 2 196 200 195
500000 18 0.0 10 783400 19.58 53874 766000 198 1 198 200 195

1000000 15 0.0 10 1284000 32.1 59524 1288000 198 1 199 200 195
50000 20 0.2 10 209200 5.23 18765 203000 198 1 197 200 195

100000 20 0.2 10 275400 6.88 22163 272000 198 1 198 200 195
500000 18 0.2 10 735200 18.38 34850 737000 198 1 199 200 195

1000000 15 0.2 10 1199000 29.98 81688 1222000 199 0 200 200 197
baseline 10 198200 4.96 14817 197000 198 1 199 200 195

Acrobot
50000 20 0.0 0 4000000 100.0 0 4000000 -92 13 -88 -76 -119

100000 20 0.0 0 4000000 100.0 0 4000000 -102 27 -96 -78 -176
500000 18 0.0 0 4000000 100.0 0 4000000 -124 35 -121 -82 -200

1000000 15 0.0 0 4000000 100.0 0 4000000 -131 41 -126 -76 -200
50000 20 0.2 0 4000000 100.0 0 4000000 -89 13 -85 -75 -125

100000 20 0.2 0 4000000 100.0 0 4000000 -88 12 -84 -79 -119
500000 18 0.2 0 4000000 100.0 0 4000000 -90 16 -84 -73 -127

1000000 15 0.2 0 4000000 100.0 0 4000000 -94 19 -87 -73 -136
baseline 0 4000000 100.0 0 4000000 -81 6 -81 -72 -93

Table 6: Results obtained for replay buffer initialisation on 10 independent runs on Cart pole
and Acrobot environments. Comparison with randomly initialised DQN.

environment is found. Note that for the first TI time steps, the DQN does not perform any
training but uses these time steps to prefill the replay buffer D. For example, for TI = 1000000,
ε = 0.2 we have

Tavg
Tmax

% is 29.98%. However, when we subtract the initial number of time steps

and calculate
Tavg−TI
Tmax

%, we get 4.98%.

The performance on the Acrobot problem shows more interesting results. We can see
that it is always better to use the ε-policy that acts randomly in 20% of cases. The median
performance is slightly better for TI = 50000, while the mean performance is slightly better
for TI = 100000. None of the initialised settings is substantially better than the baseline DQN
with random initialisation.

6.4.4 HyperNEAT→DQN: Initialisation of the external policy (option 3)

In this experiment, we evaluate the effect of using an external HyperNEAT policy for the
target predictions during the first TH steps of the training. The initialisation is described
in Section 4.2, Option 3. Firstly, we run HyperNEAT for Tmax/2 time steps. Then, we pass
the found HyperNEAT policy network to the DQN training loop. Finally, we train DQN for
Tmax/2 time steps, where for the first TH time steps, we use the external HyperNEAT policy
H to guide the target predictions. We report the trained DQN policy network performance.
Table 7 shows the performance of DQN when the training is guided by H for varying initial
time steps TH .

Results on the Cart pole environment are comparable for small TH . We can notice that
the median number of time steps Tmed is similar for different values of TH and it happens that
Tmed < TH , which means that environment was solved even though the selection of the target
Q-value for the Bellman update was guided strictly by the policy found by HyperNEAT.

37/61

6 EXPERIMENTS

TH succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
100000 10 218400 5.46 33260 213000 198 2 200 200 195
250000 10 268200 6.7 125950 214000 198 2 199 200 195
500000 10 423600 10.59 351233 214000 198 1 200 200 195

1000000 10 687600 17.19 903360 214000 198 1 199 200 195
2000000 10 498200 12.46 459373 214000 199 1 200 200 195

baseline 10 198200 4.96 14817 197000 198 1 199 200 195

Acrobot
100000 0 4000000 100.0 0 4000000 -82 6 -80 -73 -95
250000 0 4000000 100.0 0 4000000 -83 10 -79 -73 -109
500000 0 4000000 100.0 0 4000000 -79 5 -79 -72 -92

1000000 0 4000000 100.0 0 4000000 -86 8 -88 -73 -101
2000000 0 4000000 100.0 0 4000000 -82 8 -77 -73 -102

baseline 0 4000000 100.0 0 4000000 -81 6 -81 -72 -93

Table 7: Results obtained for external policy initialisation on 10 independent runs on Cart
pole and Acrobot environments. Comparison with randomly initialised DQN.

Though, we have to note that the initialising policy H was optimal (in the sense that it was
able to solve the environment) in all of the 10 independent runs.

The Acrobot environment results show the best average performance for TH = 500000
and the best median performance for TH = 2000000. Moreover, the initialised DQN performs
slightly better than the baseline DQN with random initialisation in both the mean and the
median reward. We can see the training performance for both TH = 500000 and TH = 2000000
in Appendix C.

6.4.5 HyperNEAT→DQN: Initialisation of the replay buffer and the external
policy

In this experiment, we combine the two previous experiments and test the combined
initialisation of the replay buffer and external policy. We test a subset of combinations of
different TH and different TI used in the previous experiments. We test only the cases where
TI < TH because the external policy H is effectively used for the first TH−TI time steps from
the point when the training starts. We also do not test the non-randomised buffer initialisation
as the experiment described in Section 6.4.3 showed better performance for ε = 0.2 in all of
the tested cases. The results are presented in Table 8.

We can see that some of the Cart pole runs did not converge. Additionally, the training
is not very stable as for fixed TI , the average performance varies a lot. However, the median
performance stays similar to what we have seen in the previous experiments.

The Acrobot results are the best for TI = 100000 and TH = 500000, where we get an
average reward of -85 and a median reward of -74. In comparison, we take the results from
buffer initialisation (Table 6), where the average reward for TI = 100000 was -88, and the
median reward was -84. For the external policy initialisation (Table 7) with TH = 500000 the
average reward was -79 and the median reward was -79.

38/61

6 EXPERIMENTS

TI TH succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
50000 100000 10 217400 5.44 24739 213000 197 1 197 200 195
50000 250000 9 622400 15.56 1127072 241000 198 2 199 200 193
50000 500000 10 627000 15.68 832398 220000 198 1 199 200 195
50000 1000000 10 371800 9.3 319408 219000 198 1 199 200 195
50000 2000000 10 637600 15.94 710155 228000 199 1 200 200 195

100000 250000 10 309400 7.74 96718 276000 197 1 198 200 195
100000 500000 9 731600 18.29 1116940 270000 198 1 199 200 194
100000 1000000 10 493000 12.32 452196 275000 198 1 199 200 195
100000 2000000 10 527200 13.18 501481 278000 199 1 200 200 196
500000 1000000 10 753200 18.83 47127 761000 198 1 198 200 195
500000 2000000 10 739200 18.48 49389 750000 197 1 197 200 195
baseline 10 198200 4.96 14817 197000 198 1 199 200 195

Acrobot
50000 100000 0 4000000 100.0 0 4000000 -90 14 -88 -74 -123
50000 250000 0 4000000 100.0 0 4000000 -86 8 -85 -76 -107
50000 500000 0 4000000 100.0 0 4000000 -88 13 -82 -74 -120
50000 1000000 0 4000000 100.0 0 4000000 -86 10 -82 -76 -109
50000 2000000 0 4000000 100.0 0 4000000 -97 14 -95 -82 -119

100000 250000 0 4000000 100.0 0 4000000 -89 11 -86 -74 -110
100000 500000 0 4000000 100.0 0 4000000 -85 11 -81 -74 -112
100000 1000000 0 4000000 100.0 0 4000000 -93 19 -85 -73 -148
100000 2000000 0 4000000 100.0 0 4000000 -95 15 -92 -75 -124
500000 1000000 0 4000000 100.0 0 4000000 -96 15 -90 -75 -124
500000 2000000 0 4000000 100.0 0 4000000 -89 14 -87 -73 -126
baseline 0 4000000 100.0 0 4000000 -81 6 -81 -72 -93

Table 8: Different hyperparameters for simultaneous replay buffer and external policy initial-
isation on 10 independent runs on Cart pole and Acrobot environments. Comparison with
randomly initialised DQN.

6.4.6 HyperNEAT→DQN loop: Fine-tuning of CPPNs by a DQN policy network

In this experiment, we tested the whole loop as shown in Figure 8 and the SGD fine-
tuning of CPPNs with recombination into the previous HyperNEAT population to initialise
HyperNEAT. We used the DQN initialisation option 3 to initialise DQN.

All of the experiments have 16000000 allowed time steps, i.e. two times more than in the
previous experiments. We tested a different number of iterations in the loop with different
ratios of the time steps in each of the iterations. An example is that for the current Tmax =
16000000, we take 20 iterations of both of the algorithms, which is 40 iterations in total. Each
of them is allowed T imax = 16000000/40 = 400000 time steps. We first run HyperNEAT with
the limit of T 1

max = 400000 time steps, then we use its policy network to initialise DQN, then
we run DQN with the limit of T 2

max = 400000 time steps, then we use DQN policy network
to initialise HyperNEAT, then we again run HyperNEAT and repeat this loop until both
HyperNEAT and DQN run 20 times.

The reported results were created in the following way: For each of the independent runs,
we took all logs for HyperNEAT/DQN, sorted them based on iteration id and merged those
logs together into one. We did this separately for DQN and HyperNEAT. One selected run of
HyperNEAT→DQN loop can be seen in Appendix D, Figure 20 and its corresponding merged
version can be seen in Appendix D, Figure 19.

39/61

6 EXPERIMENTS

Since the local number of allowed time steps T imax varies among different settings, we set
the external policy threshold as TH = T imax/2. Additionally, we test various backpropagation
qualities q ∈ {0.01, 0.5, 0.75, 0.9}. The backpropagation quality q says how much can the
fitness of the HyperNEAT decrease in the fine-tuning step, see Section 4.3.

The full results can be found in Appendix D, Table 12. We found out that the parameter
q does not significantly affect the results. Hence, we present results with fixed q = 0.01 in
Table 9. We run the experiment on the Acrobot environment only as we could see in the
previous experiments that the Cart pole environment is too easy to run several iterations on
it.

T i
max TH succ Tavg

Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

DQN
400000 200000 0 8000000 100.0 0 8000000 -78 4 -77 -73 -86
800000 400000 0 8000000 100.0 0 8000000 -84 7 -85 -71 -99

1600000 800000 0 8000000 100.0 0 8000000 -81 3 -81 -75 -89
4000000 2000000 0 8000000 100.0 0 8000000 -82 8 -79 -73 -101

HyperNEAT
400000 200000 0 6474555 80.93 696695 6395349 -78 10 -70 -69 -100
800000 400000 0 6444218 80.55 697855 6451861 -77 9 -70 -69 -95

1600000 800000 0 6215327 77.69 518156 6057495 -72 6 -70 -68 -85
4000000 2000000 0 6556365 81.95 861981 6433503 -91 38 -73 -69 -200

Table 9: HyperNEAT→DQN loop with different number of iterations and T imax ratios with
fixed Tmax = 16000000, q = 0.01, and Acrobot environment.

To provide results comparable with the previous experiments, we also show results for
Tmax = 8000000 in Table 10 (resp. Appendix D, Table 13). These results were obtained from
the same experiment by considering only the first half of the logged results.

T i
max TH succ Tavg

Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

DQN
400000 200000 0 4000000 100.0 0 4000000 -89 11 -86 -76 -112
800000 400000 0 4000000 100.0 0 4000000 -90 12 -85 -78 -118

1600000 800000 0 4000000 100.0 0 4000000 -87 7 -84 -77 -100
4000000 2000000 0 4000000 100.0 0 4000000 -97 32 -86 -73 -173

HyperNEAT
400000 200000 0 3388710 84.72 346031 3459711 -78 10 -70 -69 -100
800000 400000 0 3432460 85.81 441206 3363858 -104 48 -84 -69 -200

1600000 800000 0 3386959 84.67 363561 3317717 -99 50 -71 -68 -200
4000000 2000000 0 3446845 86.17 420841 3387507 -108 47 -88 -70 -200

Table 10: HyperNEAT→DQN loop with different number of iterations and T imax ratios with
fixed Tmax = 8000000, q = 0.01, and Acrobot environment.

We can see that the DQN part of the algorithm produces more stable results (standard
deviation is lower), while the HyperNEAT part of the algorithm produces a higher median
reward. Since we will later compare the algorithms with Tmax = 8000000, we focus on the
results presented in Table 10. We can see that the HyperNEAT part of the algorithm performs
the best for more iterations with a lower number of allowed time steps T imax = 400000 where
both the average and median reward are the lowest. DQN part of the algorithm performs
similarly for different values of T imax.

40/61

6 EXPERIMENTS

6.4.7 Comparison of all approaches

To summarise the previous experiments, we select three hybrid neuroevolution approaches
that performed the best. We compare the selected approaches with baseline DQN and Hyper-
NEAT. We run 30 independent runs for each of the algorithms with fixed hyperparameters.
Each of the algorithms as allowed Tmax = 8000000 time steps. The tested methods are sum-
marised below:

1. Baseline HyperNEAT
HyperNEAT with genome type CPPN(w,b) 2 as tested in 6.4.1.

2. Baseline DQN
DQN with hyperparameters described in Table 3.

3. HyperNEAT→DQN (Option 3)
DQN initialised by external policy from HyperNEAT with TH = 500000 as tested in
Section 6.4.4.

4. HyperNEAT→DQN (Options 2, 3)
DQN initialised by external policy and preloaded replay buffer from HyperNEAT with
TH = 500000 and TI = 100000 as tested in Section 6.4.5.

5. HyperNEAT→DQN loop
The full HyperNEAT→DQN loop as proposed in Figure 8 and tested in Section 6.4.6.
We use the version with 10 iterations, TH = 100000 and T imax = 400000.

The results are summarised in Table 11. Each of the proposed approaches is composed
of two (or more for the HyperNEAT→DQN loop) algorithm parts. Contrary to the previous
experiments, in this section, we do not report the results of DQN and HyperNEAT parts
separately but join them together.

Note that both DQN and HyperNEAT terminate when the environment is solved (reward
threshold 195 for Cart pole, -110 for Mountain car, -60 for Acrobot). However, we still run
the full round of the algorithm. For example, when we run HyperNEAT→DQN loop, and
HyperNEAT solves the environment in iteration i and time step Tc < T imax, we stop Hyper-
NEAT, initialise DQN and run it for another at most T imax time steps. Then the loop does
not continue with the next iteration i+ 1 because the solution was found. Additionally, Hy-
perNEAT effectively never uses the full budget of Tmax. Hence, the algorithms are not fairly
comparable based on the number of timesteps, and we should rather compare them based
on reward progress, the final solution’s quality and the stability of the training over a set of
independent runs.

We performed Mann–Whitney U test to compare the median rewards Rmed of the proposed
approaches with the median reward of the baseline DQN. The null hypothesis H0 is that the
distributions of rewards Rj for the proposed approach and the baseline DQN do not differ
significantly with the two-sided confidence interval α = 0.05. The corresponding median
rewards can be found in Table 11.

41/61

6 EXPERIMENTS

algorithm succ Tavg
Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Cart pole
HN 30 182773 2.28 296084 19899 199 0 200 200 195
DQN 30 181133 2.26 26273 182000 198 1 200 200 195
HN→DQN (3) 30 844610 10.56 625691 775976 199 0 200 200 198
HN→DQN (2, 3) 30 870144 10.88 863978 663719 199 0 200 200 197

Acrobot
HN 0 6656073 83.2 899777 6376284 -110 50 -79 -72 -200
DQN 0 8000000 100.0 0 8000000 -80 6 -79 -72 -97
HN→DQN (3) 0 7430118 92.88 460858 7352425 -81 10 -77 -70 -110
HN→DQN (2, 3) 0 7430118 92.88 460858 7352425 -81 9 -78 -70 -119
HN→DQN loop 0 7407774 92.6 362820 7372038 -74 6 -71 -69 -97

Mountain car
HN 22 1771840 22.15 1518094 1150113 -131 41 -108 -97 -200
DQN 0 8000000 100.0 0 8000000 -183 24 -198 -121 -200
HN→DQN (3) 21 5784260 72.3 1583286 5075801 -131 39 -109 -100 -200
HN→DQN (2, 3) 21 5733727 71.67 1649619 5075801 -129 36 -109 -100 -200
HN→DQN loop 25 5977865 74.72 1560565 6088169 -107 16 -103 -94 -168

Table 11: Comparison of baseline HyperNEAT and DQN with 3 selected proposed approaches.
Results for Tmax = 8000000, HN stands for HyperNEAT.

For Acrobot and the pairs of DQN and HN→DQN (3), DQN and HN→DQN (2, 3), DQN
and HN→DQN loop, the null hypothesis is rejected at the default 5% significance level. For
Mountain car and the pairs of DQN and HN→DQN (3), DQN and HN→DQN (2, 3), DQN
and HN→DQN loop, the null hypothesis is rejected at the default 5% significance level.

We show that the median return reward of all of the proposed hybrid approaches on both
Acrobot and Mountain car is better than for the baseline DQN and that the differences in
the median return rewards are statistically significant.

We show the reward progress on all three tested environments in Figure 12. In the left
column, we can see the reward progress for the median run selected from the 30 independent
runs of each approach. The median run is considered w.r.t. the number of used time steps for
Cart pole environment and w.r.t the final reward for Acrobot and Mountain car environments.
In the right column, we analyse the runtime behaviour of the approaches. The graph is
a horizontal cross-section of runtime distribution function (rtd) [23] for 0.75-quantile where
rtd : R× R→ [0, 1] is defined as:

rtd(t, q) = P (t, q) = P [T ≤ t, Q ≤ q] ≈ n(t, q)

N
(12)

which is a probability P that a solution of quality Q ≤ q is found in time T ≤ t. We
approximate this probability by counting n(t, q) which is the number of time that the tested
approach had quality Q ≤ q in timestep T ≤ t and calculating the average over the N
independent runs. The resulting plot in Figure 12 is a cross-section of rtd(t, q) = 0.75, which
we interpret as 75% of the runs will have a better performance (faster convergence, higher
fitness) than is shown in the graph.

42/61

6 EXPERIMENTS

0 2 4 6
Time step 1e5

0

50

100

150

200

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)

CartPole - median run

x
0 1 2 3 4

Time step 1e6

0

50

100

150

200

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)

CartPole, rtd(t,q)=0.75

x

0 2 4 6 8
Time step 1e6

200

180

160

140

120

100

80

60

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)
HN-> DQN loop

Acrobot - median run

x
0 2 4 6 8

Time step 1e6

200

180

160

140

120

100

80

60

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)
HN-> DQN loop

Acrobot, rtd(t,q)=0.75

x

0 2 4 6 8
Time step 1e6

200

180

160

140

120

100

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)
HN-> DQN loop

MountainCar - median run

x
0 2 4 6 8

Time step 1e6

200

180

160

140

120

100

Fi
tn

es
s

HN
DQN
HN-> DQN (3)
HN-> DQN (2, 3)
HN-> DQN loop

MountainCar, rtd(t,q)=0.75

x

Figure 12: Performance of 3 selected approaches and 2 baselines on all environments. The
left column shows the median run (for CartPole w.r.t. used time steps, for MountainCar and
Acrobot w.r.t. final reward). The right column shows that with probability 75%, in time step
t, the reward is R (calculated over 30 independent runs). HN is a shortcut for HyperNEAT.

43/61

6 EXPERIMENTS

6.5 Discussion

In this chapter, we interpret the experimental results and discuss both the proposed hybrid
methods that worked and those that did not work. We also outline the open questions that
were raised in the thesis.

In the experiment described in Section 6.4.1, we saw that for the selected problems, the
policies represented by neural networks without biases perform the best. This suggests that the
tested environments might be too simple. Thus, it would be interesting to test the approaches
on more complex environments, where the problem of exploration vs. exploitation would have
a higher significance. However, we did not do so for computational reasons. Moreover, we
showed that it is better to design the genome with two different CPPNs, one generating
weights and the other one generating bias, rather than having one CPPN generating both
weights and bias. We saw that some of the resulting CPPNs are very compact, with only a
few hidden nodes.

The experiment described in Section 6.4.2 points out the main problem in combining DQN
and HyperNEAT that arises from the fact that the outputs of the two algorithms have a dif-
ferent interpretation. DQN produces Q-values that should follow the Bellman equation (1),
while HyperNEAT does not have such interpretation. It just produces values for a given state
such that the highest one corresponds to the winning action to be applied in the state. By
setting the policy network found by HyperNEAT as the initial DQN policy network, we dis-
rupted the coherence of the Q-values and made it harder for DQN to converge to a reasonably
good policy. In Figure 13, we ran one episode of a well-performing policy from DQN in the
Cart pole environment and reported the maximising Q-value for each of the observations that
the agent encountered. Then, we took a well-performing HyperNEAT policy and reported the
maximising output value for each of the observations collected by the previously run DQN.
Since the scale of the outputs of DQN and HyperNEAT differs, we normalised the output
values methodwise. We can observe the relative differences in consecutive output values for
both of the algorithms. We can see that while the Q-values of DQN grow with the number
of time steps as the pole on the cart stabilises, the HyperNEAT output values do not follow
this trend.

The experiment described in Section 6.4.3 shows that while the buffer initialisation did
not show better performance than the baseline, it was not much worse in the median reward.
Moreover, when observing the runtime performance of HyperNEAT, we could notice that
even when HyperNEAT does not learn a reasonably good policy, it does not spoil the sequent
run of DQN much. The experiment clearly showed that it is crucial to use the ε-policy for
filling the replay buffer.

Setting the external policy (see the experiment in Section 6.4.4) showed the best perfor-
mance out of the three proposed initialisation methods. It is the most subtle initialisation
method as we are not modifying the initial parameters of the DQN policy network, nor we
are feeding it samples that were not generated by the DQN policy. The external policy helps
to make more educated predictions during the loss calculation where it selects the ’best’
action, which is something that the initial random DQN policy cannot do properly. The ex-

44/61

6 EXPERIMENTS

0 25 50 75 100 125 150 175
Time steps

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ise
d

ou
tp

ut
 v

al
ue

HyperNEAT - output value
DQN - Q-value

Normalised output values
over one episode of Cart pole

Figure 13: Normalised Q-values of DQN vs. output values of HyperNEAT during one episode
of Cart pole

periment described in Section 6.4.5 shows that the combination of external policy and buffer
initialisation provides the best median return rewards.

The full loop with both DQN and HyperNEAT showed promising results with a good
resulting median reward, see Section 6.4.6. Moreover, the experiments that performed more
iterations of shorter total time step length showed better performance than those that per-
formed fewer iterations of longer length. This suggests that iterating the HyperNEAT and
DQN helps to obtain a good solution faster. The general observation is that it is much eas-
ier to initialise HyperNEAT by DQN than vice-versa, as, in this initialisation direction, we
loosen the requirements on the algorithm output interpretation as Q-values. It would be nice
to test other alternatives of the loop algorithm. We could, for example, copy the DQN policy
between each iteration of the loop algorithm, which would ensure continuity of the DQN
policy between the sequent iterations helping to train it faster. On the other hand, it could
cause stagnation of the DQN policy if the transferred solution was stuck in a local optimum.
We could also change the initialisation strategy of HyperNEAT by initialising the population
completely from the fine-tuned genome by mutating it into several different individuals and
adding some random individuals to the initial population.

Finally, the runtime analysis of the two baselines and three selected proposed approaches
shows that the HyperNEAT-based approaches perform well on a previously unseen problem.
Though, here we need to stress out that the DQN hyperparameters were not optimised. It
would be interesting to test the approaches on more unseen problems to get a better idea
of whether the good performance on the unseen Mountain car problem was coincidental or
not. We do not compare the algorithms based on the runtime because it is implementation-
dependent. Though, the general observation is that HyperNEAT is faster as it is easily par-
allelisable.

45/61

7 CONCLUSION

7 Conclusion

This thesis proposes hybrid neuroevolution approaches for the reinforcement learning do-
main that builds upon the DQN and HyperNEAT algorithms. We designed DQN initialisa-
tion strategies using a policy evolved by HyperNEAT as well as a strategy for using a trained
DQN policy to enhance the HyperNEAT population. We combined the aforementioned into a
training loop that iteratively runs HyperNEAT and DQN. We experimentally evaluated the
proposed approaches. The best results have been obtained for the hybrid approach that runs
multiple iterations of the two steps – HyperNEAT and DQN.

We have shown that combining the HyperNEAT and DQN algorithms is challenging as
they have different interpretability of their outputs. Additionally, reporting the performance
of the algorithms is not straightforward either as both of the algorithms have a different
workflow and random initialisations that change the performance each time the algorithms
run.

While we have shown that the proposed initialisation strategies help improve the training
by either converging faster or reaching a better median return reward, we would need to
provide more extensive testing to draw any conclusions. The experimental results suggest that
the proposed methods perform better than DQN, the more complicated the environment is to
solve. We tested the approaches only on three classical reinforcement learning environments
because the experiments would be extremely computationaly demanding otherwise. Hence,
we used rather simple environments as proof-of-concept problems to demonstrate various
possibilities of hybrid neuroevolution. To perform a fair comparison, we would also have to
optimise both baseline algorithms’ hyperparameters. It could also be beneficial to normalise
the rewards, which could improve the stability of the training.

The diploma thesis raises many questions that had not been anticipated in advance.
We selected only one specific representative of the evolutionary algorithm and one specific
representative of a gradient-based algorithm, but the general idea to leverage an evolutionary-
based method for exploration and gradient-based method for local-search could be employed
for other algorithms as well. For example, instead of NEAT, we could use genetic programming
to create a population of individuals representing functions generating the policy network
parameters. The hybridisation of neuroevolution with other deep RL methods such as policy
gradient methods could be another interesting direction of research. Note that the hybrid
neuroevolution is not limited to applications in deep RL. Thus, its use for other problem
domains such as regression can be investigated as well.

46/61

REFERENCES

References

[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with
deep convolutional neural networks. Commun. ACM, 60(6):84–90, 2017.

[2] Ronan Collobert, Jason Weston, Leon Bottou, Michael Karlen, Koray Kavukcuoglu, and
Pavel Kuksa. Natural Language Processing (Almost) from Scratch. Natural language
processing, pages 2493–2537, August 2011.

[3] J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-Based Systems, 46:109–132, July 2013.

[4] Daniel Kobler. Evolutionary Algorithms in Combinatorial Optimization. In Christodou-
los A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages
950–959. Springer US, Boston, MA, 2009.

[5] P.J Fleming and R.C Purshouse. Evolutionary algorithms in control systems engineering:
a survey. Control Engineering Practice, pages 1223–1241, 2002.

[6] Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks through Aug-
menting Topologies. Evolutionary Computation, pages 99–127, 2002.

[7] Kenneth O Stanley, David D’Ambrosio, and Jason Gauci. A Hypercube-Based Indirect
Encoding for Evolving Large-Scale Neural Networks. Art. Life, pages 185–212, 2009.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou,
Daan Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning.
arXiv, 2013.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, pages 436–
444, 2015.

[10] Boris Flach, Vojtěch Franc, and Jan Drchal. Lecture notes in Statistical Machine Learn-
ing. Czech Technical University, April 2021.

[11] Robert Legenstein. Lecture notes in Deep Learning. TU Graz, April 2021.

[12] Frederico Azevedo, Ludmila Carvalho, Lea Grinberg, Jose Farfel, Renata Ferretti-
Rebustini, Renata Leite, Wilson Filho, Roberto Lent, and Suzana Herculano-Houzel.
Equal Numbers of Neuronal and Nonneuronal Cells Make the Human Brain an Isomet-
rically Scaled-Up Primate Brain. The Journal of comparative neurology, April 2009.

[13] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics, pages 115–133, 1943. Springer.

[14] Herbert Robbins and Sutton Monro. A Stochastic Approximation Method. The Annals
of Mathematical Statistics, pages 400–407, 1951.

[15] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of
initialization and momentum in deep learning. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on ML, volume 28 of Proceed-
ings of ML Research, pages 1139–1147, Atlanta, Georgia, USA, 2013. PMLR.

47/61

REFERENCES

[16] Diederik Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. Inter-
national Conference on Learning Representations, 2014.

[17] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks,
pages 85–117, 2015.

[18] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting.
Journal of Machine Learning Research, pages 1929–1958, 2014.

[19] S. Hochreiter. The Vanishing Gradient Problem During Learning Recurrent Neural Nets
and Problem Solutions. Int. J. Uncert. Fuzziness Knowl. B. Syst., pages 107–116, 1998.

[20] Vinod Nair and Geoffrey E. Hinton. Rectified Linear Units Improve Restricted Boltz-
mann Machines. In Proceedings of the 27th International Conference on International
Conference on ML, ICML’10, pages 807–814, Madison, WI, USA, 2010. Omnipress.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. arXiv, 2015.

[22] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training
Recurrent Neural Networks. arXiv, 2013.

[23] Petr Poš́ık and Jǐŕı Kubaĺık. Lecture notes in Evolutionary Optimization Algorithms.
Czech Technical University, April 2021.

[24] Sean Luke. Essentials of Metaheuristics. 2009.

[25] B. Sareni and L. Krahenbuhl. Fitness sharing and niching methods revisited. IEEE
Trans. Evol. Computat., pages 97–106, 1998.

[26] Riccardo Poli, William Langdon, and Nicholas Mcphee. A Field Guide to Genetic Pro-
gramming. 2008. (With contributions by J. R. Koza).

[27] Jiri Kubalik, Eduard Alibekov, Jan Žegklitz, and Robert Babuska. Hybrid Single Node
Genetic Programming for Symbolic Regression. In Transactions on Computational Col-
lective Intelligence XXIV, pages 61–82. Springer, Berlin, Heidelberg, 2016.

[28] David B D’Ambrosio, Jason Gauci, and Kenneth O Stanley. HyperNEAT: The First
Five Years. Springer, Studies in Computational Intelligence, vol 557., 2014.

[29] Kenneth O. Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural
networks through neuroevolution. Nat Mach Intell, pages 24–35, 2019.

[30] Risto Miikkulainen. Neuroevolution. In Claude Sammut and Geoffrey I. Webb, editors,
Encyclopedia of Machine Learning, pages 716–720. Springer US, Boston, MA, 2020.

[31] Javier Del Ser, Eneko Osaba, Daniel Molina, Xin-She Yang, Sancho Salcedo-Sanz, David
Camacho, Swagatam Das, Ponnuthurai N. Suganthan, Carlos A. Coello Coello, and Fran-
cisco Herrera. Bio-inspired computation: Where we stand and what’s next. Swarm and
Evolutionary Computation, 48:220–250, 2019.

48/61

REFERENCES

[32] Felix A Sosa and Kenneth O Stanley. Deep HyperNEAT: Evolving the Size and Depth
of the Substrate. Evolutionary Complexity Research Group Undergraduate Research
Report, University of Central Florida, Department of Computer Science, 2018.

[33] Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O.
Stanley, and Jeff Clune. Deep Neuroevolution: Genetic Algorithms Are a Competitive
Alternative for Training Deep Neural Networks for Reinforcement Learning. arXiv, 2018.

[34] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Don-
ahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha
Fernando, and Koray Kavukcuoglu. Population Based Training of Neural Networks.
arXiv, 2017.

[35] Adrien Lucas Ecoffet. Paper Repro: Deep Neuroevolution, April 2018. URL:
towardsdatascience.com/paper-repro-deep-neuroevolution-756871e00a66.

[36] Yujin Tang, Duong Nguyen, and David Ha. Neuroevolution of Self-Interpretable Agents.
Proceedings of the 2020 GECCO, pages 414–424, 2020.

[37] Yiming Peng, Gang Chen, Harman Singh, and Mengjie Zhang. NEAT for large-scale
reinforcement learning through evolutionary feature learning and policy gradient search.
In Proceedings of the GECCO, pages 490–497, Kyoto Japan, 2018. ACM.

[38] Ang Li, Ola Spyra, Sagi Perel, Valentin Dalibard, Max Jaderberg, Chenjie Gu, David
Budden, Tim Harley, and Pramod Gupta. A Generalized Framework for Population
Based Training. arXiv, 2019.

[39] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D. Sculley. Google Vizier: A Service for Black-Box Optimization. In Proceedings of the
23rd ACM SIGKDD, pages 1487–1495, Halifax NS Canada, 2017. ACM.

[40] Thomas G. van den Berg and Shimon Whiteson. Critical factors in the performance of
HyperNEAT. In Proceeding of GECCO ’13, Amsterdam, Netherlands, 2013. ACM.

[41] Kenneth O Stanley, Jeff Clune, David B D’Ambrosio, Colin D Green, Joel Lehman,
Gregory Morse, Justin K Pugh, Sebastian Risi, and Paul Szerlip. CPPNs Effectively
Encode Fracture: A Response to Critical Factors in the Performance of HyperNEAT.
Technical Report CS-TR-13-05, University of Central Florida Dept. of EECS, 2013.

[42] Sebastian Risi and Kenneth O. Stanley. Indirectly Encoding Neural Plasticity as a Pat-
tern of Local Rules. In Stéphane Doncieux, Benôıt Girard, Agnès Guillot, John Hallam,
Jean-Arcady Meyer, and Jean-Baptiste Mouret, editors, From Animals to Animats 11,
Lecture Notes in Computer Science, pages 533–543, Berlin, Heidelberg, 2010. Springer.

[43] J. Clune, K. O. Stanley, R. T. Pennock, and C. Ofria. On the Performance of Indirect
Encoding Across the Continuum of Regularity. IEEE Transactions on Evolutionary
Computation, pages 346–367, 2011.

[44] Phillip Verbancsics and Kenneth O. Stanley. Constraining connectivity to encourage
modularity in HyperNEAT. In Proceedings of GECCO ’11, Dublin, Ireland, 2011. ACM.

49/61

towardsdatascience.com/paper-repro-deep-neuroevolution-756871e00a66

REFERENCES

[45] Sebastian Risi and Kenneth O. Stanley. An Enhanced Hypercube-Based Encoding for
Evolving the Placement, Density, and Connectivity of Neurons. Art. Life, pages 331–363,
2012.

[46] Zdeněk Buk. NEAT in HyperNEAT Substituted with Genetic Programming. In Adaptive
and Natural Computing Algorithms, Berlin, Heidelberg, 2009. Springer.

[47] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Dan Fink, Olivier Fran-
con, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, and Babak Hodjat.
Evolving Deep Neural Networks. arXiv, 2017.

[48] Jonas da Silveira Bohrer, Bruno Iochins Grisci, and Marcio Dorn. Neuroevolution of
Neural Network Architectures Using CoDeepNEAT and Keras. arXiv, 2020.

[49] Alan McIntyre, Matt Kallada, Cesar G. Miguel, and Carolina Feher da Silva. neat-
python, 2019. URL: github.com/CodeReclaimers/neat-python.

[50] Uber Research and Joel Lehman. PyTorch-NEAT, 2018. URL: github.com/

uber-research/PyTorch-NEAT.

[51] Cristian Bodnar. TensorFlow-NEAT, 2018. URL: github.com/crisbodnar/

TensorFlow-NEAT.

[52] Uber Research. Deep-Neuroevolution, 2019. URL: github.com/uber-research/

deep-neuroevolution.

[53] Jeff Clune and Hod Lipson. Evolving 3D objects with a generative encoding inspired by
developmental biology. SIGEVOlution, pages 2–12, 2011.

[54] Francesco Calimeri, Aldo Marzullo, Claudio Stamile, and Giorgio Terracina. Blood Vessel
Segmentation in Retinal Fundus Images Using Hypercube NeuroEvolution of Augment-
ing Topologies (HyperNEAT). pages 173–183. Smart Innovation, Systems and Technolo-
gies, 2019.

[55] Phillip Verbancsics and Josh Harguess. Feature Learning HyperNEAT: Evolving Neu-
ral Networks to Extract Features for Classification of Maritime Satellite Imagery. In
Information Processing in Cells and Tissues, pages 208–220. Springer, Cham, 2015.

[56] David Ha. Neurogram, July 2015. URL: blog.otoro.net/2015/07/31/neurogram/.

[57] Jimmy Secretan, Nicholas Beato, David B. D’Ambrosio, Adelein Rodriguez, Adam Camp-
bell, Jeremiah T. Folsom-Kovarik, and Kenneth O. Stanley. Picbreeder: A Case Study
in Collaborative Evolutionary Exploration of Design Space. Evolutionary Computation,
pages 373–403, 2011.

[58] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. OpenAI Gym. arXiv, 2016.

[59] Matthew Hausknecht, Piyush Khandelwal, Risto Miikkulainen, and Peter Stone.
HyperNEAT-GGP: a HyperNEAT-based atari general game player. In Proceedings of
GECCO ’12, Philadelphia, Pennsylvania, USA, 2012. ACM.

50/61

github.com/CodeReclaimers/neat-python
github.com/uber-research/PyTorch-NEAT
github.com/uber-research/PyTorch-NEAT
github.com/crisbodnar/TensorFlow-NEAT
github.com/crisbodnar/TensorFlow-NEAT
github.com/uber-research/deep-neuroevolution
github.com/uber-research/deep-neuroevolution
blog.otoro.net/2015/07/31/neurogram/

REFERENCES

[60] Felipe Petroski Such, Vashisht Madhavan, Rosanne Liu, Rui Wang, Pablo Samuel Castro,
Yulun Li, Jiale Zhi, Ludwig Schubert, Marc G. Bellemare, Jeff Clune, and Joel Lehman.
An Atari Model Zoo for Analyzing, Visualizing, and Comparing Deep Reinforcement
Learning Agents. Proceedings of IJCAI 2019, 2019.

[61] Jacob Schrum. Evolving indirectly encoded convolutional neural networks to play tetris
with low-level features. In Proceedings of GECCO ’18, pages 205–212, Kyoto Japan,
2018. ACM.

[62] Nick Cheney, Robert MacCurdy, Jeff Clune, and Hod Lipson. Unshackling evolution:
evolving soft robots with multiple materials and a powerful generative encoding. In
Proceeding of GECCO ’13, page 167, Amsterdam, The Netherlands, 2013. ACM Press.

[63] Suchan Lee, Jason Yosinski, Kyrre Glette, Hod Lipson, and Jeff Clune. Evolving Gaits for
Physical Robots with the HyperNEAT Generative Encoding: The Benefits of Simulation.
In Anna I. Esparcia-Alcázar, editor, Applications of Evolutionary Computation, Lecture
Notes in Computer Science, pages 540–549, Berlin, Heidelberg, 2013. Springer.

[64] Jan Drchal, Jan Koutnik, and Miroslav Snorek. HyperNEAT controlled robots learn how
to drive on roads in simulated environment. In 2009 IEEE Congress on Evolutionary
Computation, pages 1087–1092, Trondheim, Norway, 2009. IEEE.

[65] Jan Dvorský. Neuroevolutionary design of control strategy of a multi-legged robot. Bach-
elor thesis, Czech Technical University in Prague, 2013.

[66] Evert Haasdijk, Andrei A Rusu, and A E Eiben. HyperNEAT for Locomotion Control
in Modular Robots. Evolvable Systems: From Biology to Hardware, pages 169–180, 2010.

[67] E. Bahçeci and R. Miikkulainen. Transfer of evolved pattern-based heuristics in games.
2008 IEEE Symposium On Computational Intelligence and Games, 2008.

[68] Sabre Didi. Multi-Agent Behavior-Based Policy Transfer. 2016.

[69] Brian D. Boyles. Evolving Scout Agents for Military Simulations. Master’s thesis, De-
partment of Computer Sciences, The University of Texas at Austin, Austin, TX, 2015.

[70] Christian Kroos and Mark Plumbley. Neuroevolution for Sound Event Detection in Real
Life Audio: A Pilot Study. In Proceedings of the Detection and Classification of Acoustic
Scenes, 2017.

[71] Michal Pěchouček, Branislav Bošanský, and Jǐŕı Kléma. Lecture notes in Introduction to
AI. Czech Technical University, April 2021.

[72] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall Press, USA, 3rd edition, 2009.

[73] Satinder Singh, Tommi Jaakkola, Michael L. Littman, and Csaba Szepesvári. Conver-
gence Results for Single-Step On-Policy Reinforcement-Learning Algorithms. Machine
Learning, pages 287–308, 2000.

51/61

REFERENCES

[74] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Os-
trovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King,
Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level
control through deep reinforcement learning. Nature, 518:529–533, 2015.

[75] E. Todorov, T. Erez, and Y. Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
5026–5033, 2012.

[76] OpenAI. Robogym, 2020. URL: github.com/openai/robogym.

[77] Benjamin Ellenberger. PyBullet Gymperium, 2019. URL: github.com/benelot/

pybullet-gym.

[78] OpenAI. Roboschool, 2017. URL: github.com/openai/roboschool.

[79] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen Marshall. Ac-
tivation Functions: Comparison of trends in Practice and Research for Deep Learning.
arXiv, 2018.

[80] Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto,
and Noah Dormann. Stable Baselines 3, 2019. URL: github.com/DLR-RM/

stable-baselines3.

[81] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson. Neuronlike adaptive el-
ements that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, pages 834–846, 1983.

[82] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable Reinforcement Learn-
ing via Policy Extraction. CoRR, 2018.

[83] OpenAI. openai/gym, 2021. URL: github.com/openai/gym.

[84] Richard S. Sutton. Generalization in Reinforcement Learning: Successful Examples Using
Sparse Coarse Coding. In NIPS, 1995.

[85] Andrew William Moore. Efficient Memory-Based Learning for Robot Control. 1990.

52/61

github.com/openai/robogym
github.com/benelot/pybullet-gym
github.com/benelot/pybullet-gym
github.com/openai/roboschool
github.com/DLR-RM/stable-baselines3
github.com/DLR-RM/stable-baselines3
github.com/openai/gym

APPENDIX A GENOME TYPES EXPERIMENT – FIGURES

Appendices

Appendix A Genome types experiment – Figures

CPPN for weight

n1.l

weight
sigmoid
b=-0.09

-0.75
enabled

log
b=0.20

0.66

n1.n

1.00

tanh
b = -0.14

-0.22

n2.ln2.n

0.95

0.53

tanh
b = 0.08

0.53

-0.06

sigmoid
b = 0.12

0.34

-0.70

0.22

-0.66

CPPN for bias

n1.l

bias
abs

b=0.07

-0.27 sin
b = -0.05

0.60

n1.n

1.00

1.00

leakyrelu
b = -0.09

0.70

n2.l

0.81

enabled
identity
b=0.08

-0.06

n2.n

0.13 -0.75

Figure 14: Example of an evolved genome with a more complex topology that is converted to
the corresponding CPPNs. This genome was evolved in experiment described in Section 6.4.1
and tested on Acrobot environment. The dashed connections are not activated. The green
connections have a positive weights, the red connections have a negative weight.

53/61

APPENDIX B DQN POLICY INITIALISATION – FIGURES

Appendix B DQN policy initialisation – Figures

Figure 15: Experiment described in Section 6.4.2: HyperNEAT→DQN with DQN policy net-
work initialisation, HyperNEAT part.

54/61

APPENDIX B DQN POLICY INITIALISATION – FIGURES

Figure 16: Experiment described in Section 6.4.2: HyperNEAT→DQN with DQN policy net-
work initialisation, DQN part.

55/61

APPENDIX C EXTERNAL POLICY INITIALISATION – FIGURES

Appendix C External policy initialisation – Figures

Figure 17: Experiment described in Section 6.4.4: HyperNEAT→DQN with external policy H.
The external policy was used for the first TH = 500000 time steps which corresponds to the
first 250 logging steps.

56/61

APPENDIX C EXTERNAL POLICY INITIALISATION – FIGURES

Figure 18: Experiment described in Section 6.4.4: HyperNEAT→DQN with external policy H.
The external policy was used for the first TH = 2000000 time steps which corresponds to the
first 1000 logging steps.

57/61

APPENDIX D HYPERNEAT→DQN LOOP – TABLES, FIGURES

Appendix D HyperNEAT→DQN loop – Tables, Figures

T i
max q TH done Tavg

Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Acrobot, DQN
4e5 0.01 2e5 0 8000000 100.0 0 8000000 -78 4 -77 -73 -86
4e5 0.5 2e5 0 8000000 100.0 0 8000000 -78 4 -77 -73 -87
4e5 0.75 2e5 0 8000000 100.0 0 8000000 -77 4 -76 -73 -87
4e5 0.9 2e5 0 8000000 100.0 0 8000000 -79 4 -78 -73 -87
8e5 0.01 4e5 0 8000000 100.0 0 8000000 -84 7 -85 -71 -99
8e5 0.5 4e5 0 8000000 100.0 0 8000000 -84 7 -84 -71 -99
8e5 0.75 4e5 0 8000000 100.0 0 8000000 -84 7 -84 -71 -99
8e5 0.9 4e5 0 8000000 100.0 0 8000000 -83 6 -82 -71 -94

16e5 0.01 8e5 0 8000000 100.0 0 8000000 -81 3 -81 -75 -89
16e5 0.5 8e5 0 8000000 100.0 0 8000000 -81 3 -82 -75 -84
16e5 0.75 8e5 0 8000000 100.0 0 8000000 -81 3 -82 -75 -84
16e5 0.9 8e5 0 8000000 100.0 0 8000000 -80 3 -81 -73 -84
4e6 0.01 2e6 0 8000000 100.0 0 8000000 -82 8 -79 -73 -101
4e6 0.5 2e6 0 8000000 100.0 0 8000000 -84 8 -84 -73 -101
4e6 0.75 2e6 0 8000000 100.0 0 8000000 -84 9 -84 -73 -101
4e6 0.9 2e6 0 8000000 100.0 0 8000000 -84 9 -84 -73 -101

Acrobot, HyperNEAT
4e5 0.01 2e5 0 6474555 80.93 696695 6395349 -78 10 -70 -69 -100
4e5 0.5 2e5 0 6474454 80.93 696823 6395349 -78 10 -70 -69 -100
4e5 0.75 2e5 0 6473793 80.92 696819 6392046 -78 10 -70 -69 -100
4e5 0.9 2e5 0 6469811 80.87 694830 6389987 -78 10 -70 -69 -100
8e5 0.01 4e5 0 6444218 80.55 697855 6451861 -77 9 -70 -69 -95
8e5 0.5 4e5 0 6444218 80.55 697855 6451861 -77 9 -70 -69 -95
8e5 0.75 4e5 0 6444147 80.55 697860 6451604 -77 9 -70 -69 -95
8e5 0.9 4e5 0 6440439 80.51 697386 6441371 -77 9 -70 -69 -95

16e5 0.01 8e5 0 6215327 77.69 518156 6057495 -72 6 -70 -68 -85
16e5 0.5 8e5 0 6215394 77.69 518162 6057800 -72 6 -70 -68 -85
16e5 0.75 8e5 0 6215298 77.69 518004 6057800 -72 6 -70 -68 -85
16e5 0.9 8e5 0 6214654 77.68 517083 6056054 -72 6 -70 -68 -85
4e6 0.01 2e6 0 6556365 81.95 861981 6433503 -91 38 -73 -69 -200
4e6 0.5 2e6 0 6486373 81.08 881009 6248684 -93 39 -74 -69 -200
4e6 0.75 2e6 0 6556484 81.96 861849 6433503 -91 38 -73 -69 -200
4e6 0.9 2e6 0 6556493 81.96 861829 6433503 -91 38 -73 -69 -200

Table 12: Experiment described in Section 6.4.6, results for Tmax = 16000000, both of the
algorithms were given half of the Tmax budget.

58/61

APPENDIX D HYPERNEAT→DQN LOOP – TABLES, FIGURES

T i
max q TH done Tavg

Tavg

Tmax
% Tstd Tmed Ravg Rstd Rmed Rmax Rmin

Acrobot, DQN
4e5 0.01 2e5 0 4000000 100.0 0 4000000 -89 11 -86 -76 -112
4e5 0.5 2e5 0 4000000 100.0 0 4000000 -92 11 -86 -78 -112
4e5 0.75 2e5 0 4000000 100.0 0 4000000 -92 11 -86 -78 -112
4e5 0.9 2e5 0 4000000 100.0 0 4000000 -92 11 -86 -78 -108
8e5 0.01 4e5 0 4000000 100.0 0 4000000 -90 12 -85 -78 -118
8e5 0.5 4e5 0 4000000 100.0 0 4000000 -92 15 -84 -78 -122
8e5 0.75 4e5 0 4000000 100.0 0 4000000 -92 15 -84 -78 -122
8e5 0.9 4e5 0 4000000 100.0 0 4000000 -89 13 -82 -78 -122

16e5 0.01 8e5 0 4000000 100.0 0 4000000 -87 7 -84 -77 -100
16e5 0.5 8e5 0 4000000 100.0 0 4000000 -86 9 -84 -75 -103
16e5 0.75 8e5 0 4000000 100.0 0 4000000 -86 9 -84 -75 -103
16e5 0.9 8e5 0 4000000 100.0 0 4000000 -85 7 -83 -75 -102
4e6 0.01 2e6 0 4000000 100.0 0 4000000 -97 32 -86 -73 -173
4e6 0.5 2e6 0 4000000 100.0 0 4000000 -101 32 -89 -73 -173
4e6 0.75 2e6 0 4000000 100.0 0 4000000 -98 31 -89 -73 -173
4e6 0.9 2e6 0 4000000 100.0 0 4000000 -98 31 -89 -73 -173

Acrobot, HyperNEAT
4e5 0.01 2e5 0 3388710 84.72 346031 3459711 -78 10 -70 -69 -100
4e5 0.5 2e5 0 3388710 84.72 346031 3459711 -78 10 -70 -69 -100
4e5 0.75 2e5 0 3388049 84.7 345914 3456408 -78 10 -70 -69 -100
4e5 0.9 2e5 0 3387082 84.68 344335 3456885 -78 10 -70 -69 -100
8e5 0.01 4e5 0 3432460 85.81 441206 3363858 -104 48 -84 -69 -200
8e5 0.5 4e5 0 3432460 85.81 441206 3363858 -104 48 -84 -69 -200
8e5 0.75 4e5 0 3432408 85.81 441231 3363858 -104 48 -84 -69 -200
8e5 0.9 4e5 0 3431385 85.78 441274 3363858 -104 48 -84 -69 -200

16e5 0.01 8e5 0 3386959 84.67 363561 3317717 -99 50 -71 -68 -200
16e5 0.5 8e5 0 3386955 84.67 363566 3317717 -99 50 -71 -68 -200
16e5 0.75 8e5 0 3386955 84.67 363566 3317717 -99 50 -71 -68 -200
16e5 0.9 8e5 0 3386549 84.66 363591 3315707 -99 50 -71 -68 -200
4e6 0.01 2e6 0 3446845 86.17 420841 3387507 -108 47 -88 -70 -200
4e6 0.5 2e6 0 3382717 84.57 394540 3376009 -98 38 -84 -70 -200
4e6 0.75 2e6 0 3446845 86.17 420841 3387507 -108 47 -88 -70 -200
4e6 0.9 2e6 0 3446845 86.17 420841 3387507 -108 47 -88 -70 -200

Table 13: Experiment described in Section 6.4.6, results for Tmax = 8000000, both of the
algorithms were given half of the Tmax budget.

Figure 19: Experiment described in Section 6.4.6, example of one run of HyperNEAT→DQN
loop with the merged statitistics, 5 iterations were performed

59/61

APPENDIX D HYPERNEAT→DQN LOOP – TABLES, FIGURES

Figure 20: Experiment described in Section 6.4.6, example of one run of HyperNEAT→DQN
loop with the original statitistics, 5 iterations were performed

60/61

APPENDIX E NEAT CONFIGURATION FILE

Appendix E NEAT configuration file

[MultiGenome]

num_inputs = 4

num_hidden = 0

initial_connection = partial_nodirect 0.5

feed_forward = True

compatibility_disjoint_coefficient = 1.0

compatibility_weight_coefficient = 3.0

conn_add_prob = 0.03

conn_delete_prob = 0.005

node_add_prob = 0.02

node_delete_prob = 0.005

activation_options = relu sigmoid tanh sin log abs square

identity cube gauss clip leakyrelu selu

activation_mutate_rate = 0.1

aggregation_default = sum

aggregation_options = sum

aggregation_mutate_rate = 0.0

bias_init_mean = 0.0

bias_init_stdev = 0.1

bias_replace_rate = 0.005

bias_mutate_rate = 0.4

bias_mutate_power = 0.01

bias_max_value = 30.0

bias_min_value = -30.0

response_init_mean = 1.0

response_init_stdev = 0.0

response_replace_rate = 0.0

response_mutate_rate = 0.1

response_mutate_power = 0.01

response_max_value = 1.0

response_min_value = -1.0

weight_max_value = 1

weight_min_value = -1

weight_init_mean = 0.0

weight_init_stdev = 1.0

weight_mutate_rate = 0.94

weight_replace_rate = 0.005

weight_mutate_power = 0.1

enabled_default = True

enabled_mutate_rate = 0.01

single_structural_mutation = True

[DefaultSpeciesSet]

compatibility_threshold = 4.0

[DefaultStagnation]

species_fitness_func = max

max_stagnation = 15

species_elitism = 1

[MultiReproduction]

elitism = 1

survival_threshold = 0.2

61/61

	List of Figures
	List of Tables
	Introduction
	Neuroevolution
	Neural networks
	Evolutionary algorithms
	Genetic programming

	Neuroevolution background
	NEAT
	Population Based Training

	HyperNEAT
	Available HyperNEAT implementations

	Use cases of NEAT based methods
	Vision
	Games
	Robot control
	Other

	Reinforcement learning
	Background
	Deep Q-learning Networks
	Testing platforms

	Proposed Approach
	HyperNEAT realisation
	Initialising DQN by HyperNEAT
	Initialising HyperNEAT by DQN

	Implementation
	Experiments
	Test problems and tested scenarios
	Cart pole
	Acrobot
	Mountain car

	Performance evaluation
	Configurations
	Results
	HyperNEAT: Different genome types
	HyperNEAT->DQN: Initialisation of Q-networks (option 1)
	HyperNEAT->DQN: Initialisation of the replay buffer (option 2)
	HyperNEAT->DQN: Initialisation of the external policy (option 3)
	HyperNEAT->DQN: Initialisation of the replay buffer and the external policy
	HyperNEAT->DQN loop: Fine-tuning of CPPNs by a DQN policy network
	Comparison of all approaches

	Discussion

	Conclusion
	References
	Genome types experiment – Figures
	DQN policy initialisation – Figures
	External policy initialisation – Figures
	HyperNEAT->DQN loop – Tables, Figures
	NEAT configuration file

