
Pokyny pro vypracování

Vstupem pro problém Target Set Selection (TSS) je graf G s vrcholy ohodnocenými přirozenými čísly 

pomocí funkce f(v) pro vrchol v. Řešením je množina vrcholů S taková, že pro dynamický proces {\cal S}, 
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S |). Rádi bychom i na základě různých motivací z literatury definovali další aspekty férovosti pro 

problém TSS a zkoumali jejich vliv na (parametrizovanou) složitost tohoto problému.
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May 13, 2021





Acknowledgements

I would like to express my deepest appreciation and thanks to RNDr. Dušan
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Abstract

Target Set Selection is an NP-hard problem fundamental in the area of
viral marketing. Given a social network, the Target Set Selection prob-
lem asks for the minimum size set of agents, whose influence ultimately affects
everyone in the network. We propose the Fair Target Set Selection prob-
lem, whose solution satisfies a fair cost measure rather than a certain solution
size. The fair cost enforces a fair distribution of a target set by bounding the
maximum number of friends of some agent in a solution. In this work, we
study the parameterized complexity of Fair Target Set Selection and
show W[1]-hardness with respect to parameters treewidth, feedback vertex set
number, and treedepth and W[2]-hardness for its natural parameter fair cost.
On the more positive side, we show an FPT algorithm with respect to the
combined parameter vertex cover number and fair cost. Our further results
arrive when we consider special cases of the threshold functions since we prove
NP-hardness when all thresholds are equal to a constant c ≥ 3. Moreover, in
the last chapter we give arguments why we believe that might be a polynomial
time algorithm for Fair Target Set Selection with majority thresholds
on trees.

Keywords fair objective, target set selection, fair target set selection, viral
marketing, social networks, parameterized computational complexity
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Abstrakt

Target Set Selection je NP-těžký problém kĺıčový v oblasti virálńıho
marketingu. Pro danou sociálńı śıt’ se problém Target Set Selection
zabývá minimálńı velikost́ı množiny agent̊u, jejichž p̊usobeńı nakonec ovlivńı
každého v dané sociálńı śıti. V této práci představujeme Fair Target
Set Selection problém, jehož řešeńı uspokojuje férovou cenu. Férová cena
vynucuje férové rozděloveńı target setu omezeńım maximalńıho počtu agent̊u
v okoĺı nějakého agenta v řešeńı. V této práci studujeme parametrizovanou
složitost Fair Target Set Selection a ukazujeme jeho W[1]-těžkost v̊uči
parametr̊um treewidth, feedback vertex set number a treedepth, W[2]-těžkost
pro jeho přirozený parametr férovou cenu. Jako pozitivńı výsledek ukazu-
jeme FPT algoritmus při parametrizeci kombinovaným paremetrem vertex
cover number a férová cena. Naše daľśı výsledky se dostavuj́ı při zohledněńı
speciálńıch př́ıpad̊u thresholdové funkce. Dokazujeme NP-těžkost pro Fair
Target Set Selection a to i tehdy, když jsou všechny thresholdy rovny
konstantě c ≥ 3. Na závěr předkládáme argumenty, proč se domńıváme, že
Fair Target Set Selection s majoritńımi tresholdy lze řešit na stromech
v polynomiálńım čase.

Kĺıčová slova férový úkol, výběr ćılové množiny, férový výběr ćılové množiny,
virálńı marketing, sociálńı śıtě, parametrizovaná výpočetńı složitost
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Introduction

Suppose you work in a company with a brand new innovative product and
you want the public to adopt it. You are given a graph representing the social
network. The vertices in the graph represent people in the social network and
the edges between them represent interactions or friendships. Each person is
assigned a threshold value representing the number of its friends, that will
influence him into buying the product. Now, your task is to select the min-
imal set of people, who will be offered the free product, so that the cascade
of influence and recommendations that they start, ultimately results in the
product being adopted by everyone in the network.

The problem described above is informally introduced the NP-Hard Tar-
get Set Selection problem. This problem was firstly introduced in the
context of viral marketing by Domingos and Richardson [1]. The threshold
model we use in our work was proposed by Kempe, Kleinberg, and Tardos [2,
3] and it models the spread of influence, information, or disease in a social
network. From the previous studies of the Target Set Selection problem,
e.g., [4, 5, 6, 7], it is apparent that this problem is computationally very hard.

Now, let us go back to the company preparing the so-called viral marketing
campaign. Suppose it was important for the company that the free samples
your company is going to give away must be distributed fairly. Consider
a distribution in which many friends of one person receive free samples. It
could look as if that person made sure its friends got free samples and other
people could feel as if the campaign was not fair. Moreover, you might consider
the situation when many of your friends have received the free item but you
have not. It might feel unfair to you that you have to pay for the product,
which many of your friends received for free.

In our work, we shift from finding the optimal solutions in the sense
of the target set size to solutions satisfying some fair aspects. We propose
the Fair Target Set Selection problem whose solution satisfies the fair
cost measure, inspired by Lin and Sahni [8], rather than a certain solution
size. The fair cost bounds the maximum number of friends of each person
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Introduction

that can get a free sample. This way, we can prevent the unfair situation
described above and thus spread the free samples in the social network more
fairly. The related work, where the objective function is changed to a fair
measure can be found in, e.g, [8, 9].

We study the Fair Target Set Selection problem from the parame-
terized complexity point of view, and the results of our work show unexpected
computational hardness similar to the hardness of the classical Target Set
Selection. In Chapter 2, we show that Fair Target Set Selection is
W[2]-hard with respect to its natural parameter fair cost. As we show in Chap-
ter 3, our problem generalizes Fair Vertex Cover, proposed by Knop et.
al [9], which implies W[1]-hardness for structural parameters treewidth, feed-
back vertex cover, and treedepth. In Chapter 4, we show the tractability when
Fair Target Set Selection is parameterized with the combined parameter
vertex cover number and fair cost. In Chapter 5, we show that the problem is
NP-Hard even when all thresholds are equal to a constant c ≥ 3. In the last
chapter, we give arguments, why we think there might be a polynomial time
algorithm on trees.

Since the Target Set Selection (TSS) is a heavily studied problem,
let us point out some previous results regarding its study. Nichterlein et al.
showed that TSS is W[2]-hard with respect to its natural parameter target
set size on graphs with diameter 2. Dreyer and Roberts [10] showed that TSS
is NP-hard even when all thresholds are constant and equal to c ≥ 3. Chen [4]
later proved NP-hardness of TSS even when all thresholds are constant and
equal to two. Chen also showed showed that TSS can be solved on trees in
linear time. Ben-Zwi et al. [5] showed that TSS is W[1]-hard with respect
to the parameter treewidth and that TSS with input restricted to graphs of
bounded treewidth ω can be solved in O(nω). Peleg [11] showed that TSS is
NP-hard even with majority thresholds. The study of the TSS problem from
the parameterized complexity perspective can be found in, e.g., [6, 7, 12].
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Chapter 1
Problem statement and

preliminaries

In this chapter, we introduce formal graph notations that are used throughout
this work, define the Fair Target Set Selection problem, and lastly we
introduce the parameterized complexity framework that our work builds on.

1.1 Basic graph notations

An undirected graph G is an ordered pair (V,E), where V is a nonempty finite
set of elements called vertices and E ⊆

(V
2
)

is a set of edges. An edge in
an undirected graph G is a two-element subset of V .

A directed graph, on the contrary, would have an edge defined as an ordered
pair of vertices from V . Unless we explicitly state otherwise, throughout this
work we consider graphs to be undirected. It is worth pointing out that our
graph definition omits loops and multiple edges.

Let G = (V,E) be a graph. Two vertices u, v ∈ V are adjacent, if
there is an edge {u, v} ∈ E. The neighbourhood of a vertex v ∈ V is
the set of all vertices adjacent to it and we denote it as NG(v). Formally,
NG(v) := {u ∈ V | {u, v} ∈ E}. The degree of a vertex v inG, denoted degG(v),
is defined as degG(v) := |NG(v)|. When the graph G is clear from the context,
we omit the subscript. By n we denote the size of the vertex set V and by m
we denote the number of edges in E.

A tree is a connected acyclic graph. It holds that there is exactly one path
between every two vertices. A rooted tree T = (V,E, r) is a tree with vertex
set V , edge set E, and with a vertex r ∈ V specified as the root. Let u, v ∈ V.
If the vertex u is on a path from v to the root, then v is a descendant of u
and u is an ancestor of v. Moreover, if {u, v} ∈ E(V ), then v is the child of u
and u is the parent of v. A vertex v is called leaf when deg(v) = 1. The level
of the vertex v ∈ V is the length of the path between v and a root.

3



1. Problem statement and preliminaries

1.2 The model

Let us now define our model formally. We are given an undirected graph
G = (V,E) and a threshold function thr : V → N.

The default state of every v ∈ V is inactive and a vertex v becomes
active once it has at least thr(v) active neighbours. The activation process
occurs in subsequent activation rounds. Let AiS denote the active vertices
after the ith activation round and let S ⊆ V . The activation process is defined
as follows:

A0
S = S,

Ai+1
S = AiS ∪

{
u ∈ V \AiS |

∣∣∣{N(u) ∩AiS}
∣∣∣ ≥ thr(v)

}
, and

the process terminates when AτS = Aτ+1
S for some τ ∈ N. A set S ⊆ V is

called the target set, denoted TS, when AτS = V . We say that S ⊆ V activates
G, when S is a TS. The fair cost of W ⊆ V is defined as maxv∈V |N(v)∩W |.

We now formulate the decision version of the Fair Target Set Selec-
tion problem.

Fair Target Set Selection (Fair TSS)
Input: An undirected graph G = (V,E), a threshold function

thr : V → N, and a positive integer k.
Question: Is there a target set W ⊆ V of fair cost at most k?

Optimization version OPT of Fair TSS would ask for a target set with
minimal fair cost k. Since k is a positive integer and we can upper bound it
by n, solving OPT Fair TSS would introduce only a logarithmic slowdown
as we can apply a binary search for the minimal fair cost k, where (G, thr, k)
is an yes-instance.

Special cases of thresholds

Besides unrestricted threshold functions, we consider a few special cases of
thresholds. Degree dependant threshold functions we work with are majority
thresholds and unanimous thresholds. The majority threshold function assigns
each vertex half of its degree and the unanimous threshold function assigns
each vertex a threshold value equal to its degree. Another special case of
thresholds is when each vertex in a graph has the same threshold value, e.g.,
2 or 3. In this work, we call such threshold functions constant. Let us define
these special cases formally.

• Unanimous threshold function: thr(v) = deg(v) for all v ∈ V .

• Majority threshold function: thr(v) = ddeg(v)/2e for all v ∈ V .

4



1.3. Parameterized complexity

• Constant threshold function: thr(v) = c for all v ∈ V , where c is a posi-
tive integer.

1.3 Parameterized complexity

Parameterized complexity[13, 14, 15] is a framework in which we study the
running times of algorithms not only based on the input size n, but also on
the parameters describing various aspects of the input (e.g., size of the solu-
tion, treewidth). By studying problems in this manner, we can get a better
insight into their computational complexity.

Definition 1. Parameterized problem is a language L ⊆ Σ∗ × N, where Σ is
a finite alphabet. For an instance (x, k) ∈ L, k is called the parameter.

Definition 2. A parameterized problem L is fixed parameter tractable, if it is
possible to correctly decide whether (x, k) ∈ L in f(k) · |(x, k)|O(1) time, where
f : N→ N is a computable function.

Definition 3. Instances I and I ′ of a parameterized problem L are equivalent
when I ∈ L ⇐⇒ I ′ ∈ L.

Definition 4 (Parameterized reduction, Cygan et al. [13]). Let A,B ⊆ Σ∗×N
be two parameterized problems. A parameterized reduction from A to B is
an algorithm that, given an instance (x, k) of A, outputs an instance (x′, k′)
of B such that

1. (x, k) is a yes-instance of A if and only if (x′, k′) is a yes-instance of B,

2. k′ ≤ g(k) for some computable function g, and

3. the running time is f(k) · |x|O(1) for some computable function f .

Definition 5. FPT is the complexity class containing all fixed parameter
tractable problems.

In addition to FPT, the complexity classes W[1] and W[2], for which it
holds W[1] ⊆W[2], contain all problems in FPT and problems not believed to
be in FPT.

For the following definitions, let i ∈ N be a number greater than zero.

Definition 6. A parameterized problem L is W[i]-hard, if we can create a
parameterized reduction to L from every problem in W[i].

Definition 7. A parameterized problem L is W[i]-complete, when it is W[i]-
hard and L ∈W[i].

The Clique problem, which asks whether there is a clique of size k
in a graph, is W[1]-complete with respect to k. An example of a W[2]-complete
problem with respect to the solution size is Dominating Set.

5



1. Problem statement and preliminaries

1.4 Parameters

In this section, we formally define the parameters used in our work.

Vertex cover. Let G = (V,E) be a graph and S ⊆ V . We say that S is
a vertex cover of G if for every edge e ∈ E at least one of its endpoints is in
S. Equivalently, it holds that the graph G− S is an edgeless graph.

Definition 8. Vertex cover number vc(G) is the size of a minimum cardinality
vertex cover in graph G.

Treewidth

To define the parameter treewidth, we need to define the tree decomposition
first.

Definition 9 (Tree decomposition, [16]). A tree decomposition of a graph
G = (V,E) is a pair (T, β). Here T is a rooted tree whose vertices we call
bags and β is a function assigning each bag a subset of vertices of G such that
the following holds:

1. ⋃t∈V (T ) β(t) = V (G),

2. for each edge e ∈ E(G) there exists a bag t in T , such that e ⊆ β(t), and

3. for each v ∈ V (G) the set of bags {t ∈ T | v ∈ β(t)} induces a connected
subtree in T.

The width of a tree decomposition (T, β) is max({|β(t)| − 1 | t ∈ T}).
The treewidth of a graph G, denoted tw(G), is the minimal possible width of
a tree decomposition of G.

Feedback vertex set

Definition 10. Feedback vertex set of a graph G is the minimum cardinality
subset of vertices in G, whose removal leaves G without cycles.

Treedepth

Definition 11. Transitive closure of a rooted forest F = (V,E, r) is a graph
G = (V,E′), where E′ contains an edge between two vertices u, v ∈ V if u is
an ancestor of v in F .

Definition 12 (Nešetřil and de Mendez [17]). Treedepth of a graph G is
a minimum height of a rooted forest whose transitive closure contains G.

6



Chapter 2
First Observations

2.1 First lemmas

In the following lemma, we show that certain vertices do not increase the fair
cost of a target set over k.

Lemma 13. Let G = (V,E) be a graph and suppose S is a target set of G with
fair cost k. If there is a vertex v ∈ V \ S with deg(u) ≤ k for all u ∈ N(v),
then S ∪ {u} is a target set for G with fair cost k.

Proof. Let us assume for a contradiction that adding the vertex v into S
increases the fair cost over k. In such case, the vertex v has to have a neighbour
with degree at least k + 1, which is a contradiction to the assumption that
∀u ∈ N(v) : deg(u) ≤ k.

Now, we present a reduction rule that removes the vertices satisfying
the precondition of Lemma 13, which do not increase a fair cost over k.

Definition 14. We say that a reduction rule is correct, when the original in-
stance (G, thr, k) and the new instance (G′, thr′, k) created by applying the re-
duction rule are equivalent.

Reduction Rule 1. Let (G, thr, k) be an instance of Fair TSS. If v ∈ V (G)
is a vertex such that ∀u ∈ N(v) : deg(u) < k, delete v from G and lower
the threshold values of its neighbours by one.

Lemma 15. Reduction Rule 1 is correct.

Proof. Let (G, thr, k) be a yes-instance and T be a target set of fair cost
` ≤ k in G. We can create a target set T ′ = T ∩ V (G)′ of G′ having a fair
cost at most `. Now, T ′ activates G since we have lowered the thresholds in
the neighbourhoods of vertices that are in T and not T ′, making the same

7



2. First Observations

effect as in T . Let (G′, thr′, k) be a yes-instance with target set T ′. We can
create a target set T in G by adding vertices missing G′, since by Lemma 13
those vertices do not increase the fair cost over k.

In the following lemma, we show what makes a vertex required to be in
every target set.

Lemma 16. Let G = (V,E) be an undirected graph, k is the maximum fair
cost, and v ∈ V a vertex such that thr(v) > deg(v). Vertex v must be in every
target set of G.

Proof. Let us assume towards a contradiction that v is not in a target set T .
Then it must have been activated by its neighbours. However, if the vertex v
has all neighbours active, it still cannot be activated since thr(v) > deg(v).
Which is a contradiction to T being a target set.

The following lemma shows a simple yet useful statement that can be used
for proving that some set is a target set.

Lemma 17. Let G = (V,E) be a graph and T ⊆ V be a target set. If S ⊆ V
activates T , then S is also a target set.

Proof. Once all vertices in T are active, they activate G since T is a target
set.

In the following lemma, we state the running time of an algorithm that
checks whether a set is a target set. And in the proof of the lemma, we show
the algorithm.

Lemma 18. Given a graph G = (V,E), we can check whether T ⊆ V is
a target set in O(n+m) time.

Proof. We can check if T is a target set of G by Algorithm 1.
Algorithm 1 is correct since each vertex in T activates each of its neigh-

bours. When a vertex v /∈ T gets activated by thr(v) of its neighbours, it also
activates its neighbours.

The algorithm visits each vertex at most twice. Once in the queue and
once at the end while checking if all vertices are activated. It also visits each
edge {u, v} at most twice. Once when u is activating its edges and once when
v is activating its edges. This gives us the running time of the algorithm
O(n+m).

Note 19. You might notice that Algorithm 1 does not work in a different
way than the activation process since vertices can be activated in different
order. However, the final effect is the same since each vertex in the target set
activates all its neighbours and once a vertex is activated, it also activates all
its neighbours.

8



2.2. Diameter one graphs

Algorithm 1: Target set check
Input : Graph G = (V,E), Set T ⊆ V
Output: True if T is a target set, otherwise False

1 Queue Q ← ∅
2 for v ∈ T do
3 label v as Active
4 Q.push(v)
5 while Q is not empty do
6 v ← Q.front()
7 for u ∈ N(v) do
8 u.thr ← u.thr - 1
9 if u is not Active then

10 label u as Active
11 Q.push(u)

12 Q.pop()
13 for v ∈ V do
14 if v is not Active then return False
15 return True

2.2 Diameter one graphs

Definition 20. The distance between two vertices is the minimum length of
a path between them.

Definition 21. The diameter of a graph G = (V,E) is the maximum distance
between two vertices u, v ∈ V .

Definition 22. A Complete graph on n vertices, denoted Kn, is a graph
G = (V,

(V
2
)
), where |V | = n.

Note 23. Since in a complete graph every two distinct vertices are at distance 1
from each other, complete graphs are diameter one graphs. Moreover, since
in diameter one graphs all vertices are at distance 1 from each other and thus
they are adjacent. Diameter one graphs are complete graphs.

Lemma 24. Let G = (V,E) be a complete graph and T be a target set of
G with fair cost k. Suppose that u ∈ T and v /∈ T are vertices for which
thr(v) > thr(u) holds. Then T ′ = T \ {u} ∪ {v} is a target set with the same
fair cost as T .

Proof. Let i denote the number of the activation round when the vertex v
gets activated by T . For all previous activation rounds j ∈ {0, . . . , i − 1}
it holds |AjT | ≤ |A

j
T ′ |. Since |A0

T | = |A0
T ′ | and each vertex activated by T

in round ` ∈ {1, . . . , i − 1} gets also activated by T ′ in the same round at

9



2. First Observations

latest. The latter holds, since vertices in V \T either neighbour with the same
number of vertices in T ′ as in T or are in T ′. It also holds that the vertex u gets
activated by T ′ at latest in the activation round AiT ′ . Since |Ai−1

T | = |Ai−1
T ′ |

holds and the vertex v has at least thr(v) active neighbours in Ai−1
T , the vertex

u with thr(u) < thr(v) has at least thr(u) active neighbours in Ai−1
T ′ . This

leads to T ′ being a target set as T is a target set and T ⊆ |AiT ′ |, according to
Lemma 17.

Lemma 25. If there exists a target set of size k in Kn, we can create it
from k vertices with the highest thresholds in Kn.

Proof. Let T be a target set with size k in Kn. By applying Lemma 24
exhaustively, we end up with a target set T ′ consisting of k vertices from Kn

with the highest thresholds.

Lemma 26. Fair TSS is solvable on graphs with diameter one in polynomial
time.

Proof. Let G = (V,E) be a complete graph and k the maximal fair price. If
|V | ≤ k + 1, then we can solve Fair TSS by adding all vertices from V into
the target set. Therefore, let us assume |V | > k + 1. A target set of Kn can
consist of at most k vertices, so that its fair cost is at most k. If there exists
a target set in G, we can create a target set T by choosing k vertices with
the highest thresholds in G according to Lemma 25. We can choose k vertices
with the highest thresholds after sorting vertices in V by their thresholds with
heap sort in O(n · log(n)) time. We can then check whether T is a target set
in O(n + m) time. Since the number of edges in a complete graph is O(n2),
the total running time of the algorithm solving Fair TSS on diameter one
graphs is O(n2).

2.3 W[2]-hardness with respect to the fair cost

In this section, we show that Fair TSS is W[2]-hard with respect to its nat-
ural parameter fair cost. We show the hardness by showing a parameterized
reduction from Hitting Set.

Hitting Set

Definition 27. A set family F over an universe U is a set, where each element
F ∈ F is a subset of U .

The Hitting Set problem is W[2]-hard with respect to the parame-
ter k [18] and is defined as follows.

10



2.3. W[2]-hardness with respect to the fair cost

Hitting Set
Input: An universe U = {u1, . . . , un}, a set family F = {F1, . . . , Fm}

over an universe U , and a positive integer k.
Question: Is there a hitting set H ⊆ U of size at most k so that ∀F ∈

F : H ∩ F 6= ∅ ?

Parameterized reduction

Let (U ,F , k) be an instance of Hitting Set. We create Fair TSS instance
(G, thr, k) in the following way.

Graph G. Vertices of the graph G consist of element-vertices V , subset-
vertices W , and a special vertex x. In V , there is an element-vertex vu for
each u ∈ U . In W , there is a subset-vertex wF for each F ∈ F . We add an edge
between an element-vertex vu and a subset-vertex wF if and only if u ∈ F . To
finish the creation of G, we connect every two distinct vertices u, v ∈ V ∪ {x}
and we connect x to all subset-vertices.

Figure 2.1: Graph G. the figure shows the graph G created as a reduction from
the Hitting Set problem to Fair TSS. Element-vertices, denoted V , are colored
in blue and they form a clique. Subset-vertices, denoted W , are green and they
form an independent set. The special vertex x is colored in red, forms a clique with
element-vertices and is connected to subset-vertices.

· · ·· · ·

· · ·

x

W

V

Thresholds. Thresholds in G are set in the following way:

• for the vertex x, it applies that thr(x) = k + |W |,

• each subset-vertex w ∈W has thr(w) = 1, and

11



2. First Observations

• each element-vertex v ∈ V has thr(v) = k + 1 + |{N(v) ∩W}|.

Correctness.

Theorem 28. We claim that (U ,F , k) is a yes-instance of Hitting Set if
and only if (G, thr, k) is a yes-instance of Fair TSS.

Proof. ⇒: Suppose that (U ,F , k) is a yes-instance and S ⊆ U is its hit-
ting set of size k. Then a subset T of element-vertices in G defined as
T = {vu ∈ V |u ∈ S} activates all subset-vertices W in the first activation
round A1

T . After A1
T , all vertices in W are activated and k vertices in V

are active. Thus, the vertex x gets activated in A2
T . Finally, in round A3

T , all
remaining element-vertices get activated, making T a target set.
⇐: Now suppose (G, thr, k) is a yes-instance with the target set T of fair cost
at most k.
Claim. We claim that the vertex x cannot be in T .
Proof. For a contradiction, assume that x ∈ T and thus activates all subset-
vertices in the first activation round A1

T . In order for each element-vertex
v /∈ T to get activated, it needs thr(v) = k + 1 + |{N(v) ∩W}|. Since it has
all subset-vertex neighbours active and x ∈ T , it still needs k active element-
vertices in T . The only way to activate them is to add k of them into T , which
increases the fair cost of T over k. Thus, x cannot be in T . �
Claim. We claim that a vertex w ∈W cannot be in T .
Proof. Assume that w ∈ W is in T . Even if all vertices in W get activated
by T , a vertex v ∈ V can get activated only when there are k active vertices in
V . Since element-vertex cannot get activated by its neighbours when v is not
activated, k element-vertices must be in the target set. That would increase
the fair cost over k and thus w cannot be in T . �

Therefore, the target set T consists only of element-vertices. It is not hard
to see that the vertex x and the vertices in V , which are not in T , must be
activated after the vertices W . Since (G, thr, k) is a yes-instance, k element-
vertices from T must activate all subset-vertices W in A1

T . Making (U ,F , k)
also a yes-instance.
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Chapter 3
Fair Vertex Cover reduction

In this chapter, we show how Fair TSS generalizes the Fair Vertex Cover
problem. Furthermore, we show the implications this relation has for W[1]-
hardness with respect to the structural parameters treewidth, treedepth, and
feedback vertex set.

3.1 Fair Vertex Cover

Fair Vertex Cover (Fair VC)
Input: An undirected graph G and a positive integer k.
Question: Is there a vertex cover of G of fair cost at most k?

Lemma 29. Let (G, k) be an instance of Fair VC, we can create an equivalent
instance of Fair TSS (G, thr, k), where the threshold function thr assigns
every vertex in G its degree.

Proof. Let G = (V,E) be a graph, thr a function which assigns each vertex in
V its degree, and k the fair cost.
⇒: Suppose the instance (G, k) is a yes-instance of Fair VC. Since it is a yes-
instance, it has a vertex cover C ⊆ V of fair cost at most k. Let (G, thr, k) be
an instance of Fair TSS. Then C is a target set of G of fair cost at most k,
since each vertex v ∈ V either is in C and thus is active in A0

C or has all its
deg(v) neighbours in C and is activated by them in the first activation round
A1
C .
⇐: For the other direction, assume that (G, thr, k) is a yes-instance of Fair
TSS. Then it has a target set T ⊆ V with fair cost at most k. We claim that
T is a vertex cover in G. For a contradiction, let {u, v} ∈ E be an edge, where
neither u nor v is in T . They cannot be activated in A0

T , since they are not
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3. Fair Vertex Cover reduction

in T . Thus, both of them must be activated by all their neighbours. Without
loss of generality, let i denote the number of the activation round AiT , where
u gets activated by deg(u) of its neighbours. Vertex v has to be active before
AiT since it is adjacent to u. Now, since v cannot be activated by the vertex
u before AiT , it must be in T , which contradicts u and v not being in T .

3.2 Hardness results

Theorem 30. Fair Target Set Selection is W[1]-hard with respect to
the parameters treedepth and feedback vertex number.

W[1]-hardness with respect to the combined parameter treedepth and fair
vertex cover for Fair VC was shown by Knop et al. [9]. These hardness
results hold for Fair TSS, since we can create a parameterized reduction
from Fair VC to Fair TSS according to Lemma 29. In this section, we show
the reduction from W[1]-complete problem `-Multicolored clique to Fair
VC, by which these results were proved.
Note 31. Note that the reduction from `-Multicolored clique to Fair
TSS can be done in the same manner as to Fair VC with additional setting
of the thresholds of vertices to their degrees.

`-Multicolored Clique (`-MCC)
Input: An undirected `-partite graph G = (V1 ∪ · · · ∪ V`, E), where

the partites are pairwise disjoint and each partite is an inde-
pendent set.

Question: Is there a clique of size ` in G?

The reduction

In this section, we show how an instance (G, `) of `-Multicolored Clique
can be reduced to an equivalent instance (G′, k) of Fair VC, where the fair
cost k = max(|E(G)| − 1, 2 · |V (G)|).

Introduction. The graph G′ consists of three types of parts, which we refer to
as gadgets. The types of gadgets in the reduction are vertex selection gadget,
edge selection gadget, and validation selection gadget. In this section, we first
define the gadgets composing the reduction and then we prove its correctness
and the consequent hardness.
Notation. By color we refer to a number c ∈ {1, . . . , `}. For each color
pair (a, b) in this section, suppose that a < b. Let Vc denote a partite of
color c in (G, `). Let n denote the number of vertices in G and m denote
the number of edges in G. Let low : V (G)→ {1, . . . , n} be a bijection and let

14



3.2. Hardness results

high : V (G)→ {n, . . . , 2n− 1} be a bijection assigning each vertex v ∈ V (G)
a number n− low(v).
Note 32. When constructing G′, we can require some vertices to be in every
solution. We require a vertex v to be in every solution by adding k+ 1 leaves
with threshold 1 adjacent to v. Since k + 1 neighbours of a vertex v cannot
be in a vertex cover with fair cost at most k, the vertex v has to be in every
solution of (G′, `). Since leaves have their degrees equal to one, they do not
increase the fair cost over k.
Note 33. Let v be a vertex and k the maximum fair cost. By the budget
of a vertex v, we denote the maximum number of vertices in N(v), whose
addition to the solution would not increase the fair cost over k. We can lower
the budget of a vertex v, by connecting v to a vertex u, that is required to be
in every solution as in Note 32, since such u has to be in every target set.
Vertex selection gadget. Firstly, for each color c, we construct the corre-
sponding vertex selection gadget Sc in the following way. The vertex selection
gadget Sc contains |Vc| choice vertices and a special vertex called guard gc. It
holds that each vertex v ∈ Vc is represented by one choice vertex in Sc and
each choice vertex in Sc represents one vertex in Vc. The guard vertex gc is
adjacent to all choice vertices in Sc and is required to be in every solution.
Furthermore, the budget of gc is lowered to |Vc| − 1. Now, for each choice
vertex v ∈ Sc, we add n new connecting vertices into Sc and connect them
to v. Connecting vertices of a choice vertex v ∈ Sc are divided into low(u)
low connecting vertices and high(u) high connecting vertices, where u ∈ Vc is
the vertex that the choice vertex v represents.
Edge selection gadget. Secondly, for every color pair (a, b) in `-MCC, we
construct an edge selection gadget E(a,b) in a similar manner to the vertex
selection gadget. The edge selection gadget E(a,b) consists of |{{u, v} ∈ E |
u ∈ Va ∧ v ∈ Vb}| choice vertices and a guard vertex g(a,b). It holds that each
choice vertex in E(a,b) represents one edge {u, v} such that u ∈ Va ∧ v ∈ Vb
and each edge {u, v} such that u ∈ Va ∧ v ∈ Vb is represented by one choice
vertex in E(a,b). The guard vertex g(a,b) is adjacent to all choice vertices
in E(a,b), is required to be in every solution, and its budget is lowered to
|{{u, v} ∈ E | u ∈ Va ∧ v ∈ Vb}| − 1. Each choice vertex v in E(a,b) has
2n connecting vertices, which are divided into two groups of n a-connecting
vertices and n b-connecting vertices. The a-connecting vertices are further
divided into low(u) low a-connecting vertices and high(u) high a-connecting
vertices, where u ∈ Va is the vertex adjacent to the edge represented by v.
The b-connecting vertices are divided in the same manner, only the vertex u
must be from Vb.
Validation gadget. For every color pair (a, b), we construct a validation
gadget V(a,b). The validation gadget V(a,b) consists of 4 validation vertices.
Particularly, we use two a-validation vertices to check the connections be-
tween Sa and E(a,b) and two b-validation vertices to check the connections
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3. Fair Vertex Cover reduction

between Sb and E(a,b). All validation vertices are required to be in a solution.
The two a-validation vertices are divided into the upper a-validation vertex
and the lower a-validation vertex. The upper a-validation vertex is connected
to high connecting vertices in Sa and to low a-connecting vertices in E(a,b).
Similarly, the lower a-validation vertex is connected to low connecting vertices
in Sa and high a-connecting vertices in E(a,b). The b-validation vertices are
connected in the same manner to connecting vertices in Sb and b-connecting
vertices in E(a,b).

Correctness of the reduction. Now, let us prove that the reduction is
correct.

Theorem 34. The presented reduction from `-Multicolored clique to
Fair TSS is correct.

Proof. ⇒: Suppose that (G, `) is a yes-instance of `-Multicolored Clique
and K ⊆ V1,× · · ·×, V` is its solution. We claim that the instance (G′, k) is
a yes-instance of Fair VC. We can create a vertex cover C of G′ with fair
cost at most k as follows:

• all guard and validation vertices, since they are required to be in every
vertex cover,

• let v ∈ Sc be a choice vertex representing a vertex u ∈ Vc in K, then all
connecting vertices of v and all choice vertices in Sc except v are in C,
and

• let v ∈ E(a,b) be a choice vertex representing an edge between u ∈ Va
and w ∈ Vb, where u,w ∈ K, then all connecting vertices of v and all
choice vertices in E(a,b) except v are in C.

From the definition of C, it holds that each vertex is either in C or all its
neighbours are. Thus, C is a vertex cover. To analyse the fair cost of C, we
need to consider all types of vertices in G′:

• each guard vertex gc neighbours with at most n− 1 vertices in C,

• each guard vertex g(a,b) neighbours with at most m− 1 vertices in C,

• each choice vertex in Sa neighbours with at most n+ 1 vertices in C,

• each choice vertex in E(a,b) neighbours with at most 2 · n vertices in C,

• each connecting vertex has at most two neighbours in C, and

• finally, each required vertex by its definition has at most k neighbours
in C.
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3.2. Hardness results

Thus, it holds that the fair cost k ≤ max(2 · n,m− 1).

⇐: To prove the other direction, suppose that (G′, k) is a yes-instance of Fair
VC. Let C be a solution of (G′, k). We will show that (G, `) is also a yes-
instance.

Claim. Let E(a,b) be an edge selection vertex. There must be 2n connection
vertices of some choice vertex v ∈ E(a,b) in C.
Proof. Let h be the number of choice vertices in E(a,b). For a contradiction
assume that there are not at least 2n connection vertices from E(a,b) in C.
Thus, all h choice vertices from E(a,b) must be in C. However, this is a contra-
diction with C having the fair cost at most k, since the budget of v is lowered
to h− 1. �

Claim. We claim that there is exactly one choice vertex from each Sa not
in C.
Proof. Suppose for a contradiction, that all |Va| choice vertices from Sa are
in C. Since the guard ga has its budget lowered to |Va|−1, this would increase
the fair cost over k. Now, suppose that there are at least two vertices u, v ∈ Sa
not in C. Since C is a vertex cover, it must contain 2n connecting vertices
of u and v. Let V(a,b) be a validation gadget and let v1, v2 be the pair of
a-validation vertices in V(a,b). Addition of connecting vertices from u and v
into C increases the total number of neighbours of v1 and v2 in C to 3n. Since
vertices v1 and v2 neighbour with n connecting vertices from E(a,b). Since
each connection vertex has lowered budget to n, the maximum total number
of neighbours of v1 and v2 is 2n. Making it a contradiction to u and v not
being in C. �

Observe that in the same manner we can prove that in each E(a,b), there
is one choice vertex not in C.
Claim. We claim that every pair of choice vertices from vertex selection
gadgets that are not in C must represent adjacent vertices in G.
Proof. Towards a contradiction, let u ∈ Sa and v ∈ Sb, both not in C, represent
two vertices in G that are not adjacent. Thus, the choice vertex w ∈ E(a,b)
not in C cannot represent the edge between vertices represented by u and v.
Hence, without loss of generality, we assume that the choice vertex u ∈ Sa does
not represent the vertex incident to the edge represented by the choice vertex
w ∈ E(a,b). Let v1 and v2 be upper and lower a-validation vertices from V(a,b)
connected to the connection vertices of u and w. It holds that v1 is connected
to low(u)+high(w) < n connection vertices in C, since low(u)+high(w) = n
if and only if u = w. Consequently, since

low(u) + high(u) + low(w) + high(w) = 2n (3.1)

holds, v2 is connected to low(w) + high(u) > n connection vertices in C.
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3. Fair Vertex Cover reduction

Which is a contradiction to the fair cost being at most k and thus u and v
must represent vertices adjacent in G. �

In our claims, we proved that each vertex selection gadget has exactly one
choice vertex not in C and all such choice vertices are connected in G. Hence,
such choice vertices form a clique of size ` in G, making (G, `) a yes-instance
of `-MCC.

Hardness. The total number of validation vertices is O(`2), since there are 4
validation vertices for each color pair. When we remove the validation vertices
from G′, we end up with an acyclic graph. Thus, the feedback vertex set
number of G′ is O(`2). Furthermore, once we remove the validation vertices,
we also end up with trees of height O(1). Hence, the treedepth of G′ is O(`2).
Finally, since the `-Multicolored Clique is W[1]-hard with respect to `
[19], W[1]-hardness with respect to the parameters treedepth and feedback
vertex set number for the Fair VC problem follows.
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Chapter 4
Parameterization by the vertex

cover number

In this chapter, we show that Fair TSS parameterized by the vertex cover
number vc(G) and the fair cost k combined is FPT.

4.1 Motivation

In the previous chapter, we have shown W[1]-hardness for the parameter
treewidth. Therefore, it is now reasonable to consider another structural
parameter, which imposes stronger restrictions on the problem instance than
treewidth. The weaker parameter in that manner could help us lower the prob-
lem’s complexity and make solving it more tractable. One such parameter is
the vertex cover number.

Lemma 35. Let G = (V,E) be a graph. It holds that tw(G) ≤ vc(G).

Given a vertex cover Z of G, we can show this relation. Let π denote
the cardinality of Z, we can create a tree decomposition of width π in the fol-
lowing way. We create a bag b consisting of vertices in Z. Then we connect to
b a bag bv for each vertex v ∈ V \Z consisting of Z ∪{v}. This tree decompo-
sition has the width equal to π. Since we can do this tree decomposition for
any vertex cover of G, it holds that tw(G) ≤ vc(G).

It is also worth pointing out that a path has treewidth 1 and its vertex
cover number depends on the length of the path.

4.2 FTP

In this section, we prove the fixed parameter tractability with respect to
the combined parameter vc(G) and fair price k of Fair TSS in a similar
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4. Parameterization by the vertex cover number

Figure 4.1: The tree decomposition based on the vertex cover as in the proof
of Lemma 35. On the left side of the figure, there is a graph with vertices of different
colors. A vertex cover Z of the graph is marked with red circles around its vertices.
On the right side of the figure, there is a tree decomposition of the graph with width
equal to |Z|.

manner to Niechterlein et al. [6] who gave an FTP algorithm with respect to
vc(G) for TSS.

Let G = (V,E) be a graph and let Z denote its vertex cover. Then
I = G \ Z is an independent set. Assuming that each vertex v ∈ V has
thr(v) at most deg(v), then Z is also a target set in G. Since each vertex
v ∈ V is either v ∈ Z and thus in A0

Z or it holds, N(v) ⊆ Z and thus v is
in A1

Z since it has deg(v) active neighbours in A0
Z . However, note that we

do allow the threshold of a vertex v ∈ V to be higher than v’s degree and
thus we cannot assume that Z is also a target set. Since a vertex v /∈ Z can
have thr(v) > deg(v) and then it cannot be activated by its neighbours. In
addition, note that since v cannot be activated by its neighbours, it holds that
v must be in every target set.
Note 36. Note that in this chapter we consider graphs to be connected, since
to solve Fair TSS on a disconnected graph, we can solve Fair TSS on each
its connected component.

Definition 37. Vertices u, v ∈ V are twins when N(v) = N(u).

Note 38. Note that Definition 37 prohibits twin vertices u and v from being
adjacent. Twins defined in such a manner are called false twins. On the con-
trary, true twins would be defined as u, v ∈ V with N(v) ∪ {v} = N(u) ∪ {u}.

Lemma 39. Let G = (V,E), u, v ∈ V be twins with thr(u) ≤ thr(v), and
T ⊆ V be a target set such that u ∈ T and v /∈ T . Then U = T \ {u} ∪ {v} is
a target set of the same fair cost.

Proof. Let i denote the number of an activation round AiT in which v gets
activated by T . For activation rounds AjT , where 0 ≤ j < i, it holds that
AjT \{u} ⊆ A

j
U \{v}, since u and v have the same neighbours. When j = i−1,
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4.2. FTP

v has at least thr(v) active neighbours in AjT . Since u and v have the same
neighbours, then at latest in AjU the vertex u has also at least thr(u) active
neighbours, since thr(u) ≤ thr(v) holds. Now that U activates T , we can say
that U is a target set according to Lemma 17.

Now, let us assume towards a contradiction that U does not have the same
fair cost as T . Since U has a different fair cost than T , vertex v must neigh-
bour with a vertex x ∈ V , such that x /∈ N(u) or vertex u must neighbour
with a vertex y ∈ V , such that y /∈ N(v). However, both situations are
a contradiction with u and v being twins.

Definition 40 (Critical Independent Set). Let G = (V,E) be a graph. A set
C of vertices is a critical independent set if every two distinct vertices from C
are twins and C contains every vertex from V that is a twin with some v ∈ C.

Lemma 41. Let G = (V,E) be a graph and Z be its vertex cover. Vertices in
I = V \ Z are contained in at most 2|Z| critical independent sets.

Proof. It holds that each vertex v ∈ I has all its neighbours in Z and thus
each critical independent set C ⊆ I has a unique set of neighbours in Z. Since
there are at most 2|Z| possible neighbourhoods of vertices from I, there are at
most 2|Z| critical independent sets the vertices from I are contained in.

Lemma 42. Let G = (V,E) be a graph and Z be its vertex cover, and let
C ⊆ V be a critical independent set. There can be at most k vertices from C
in any target set of fair cost k.

Proof. Having more vertices than k from the critical set C in a target set
would necessarily increase its fair cost to at least k + 1. Since all vertices in
a critical independent set have the same neighbours.

Lemma 43. Let G = (V,E) be a graph, Z be its vertex cover, and C ⊆ V \Z
be a critical independent set. Now, suppose that H ⊆ C consists of k vertices
with the highest thresholds in C. Given a target set T ⊆ V with fair cost
at most k, we can create a target set T ′ with fair cost at most k such that
C ∩ T ′ ⊆ H.

Proof. After an exhaustive application of Lemma 39 on T , we end up with
the target set T ′.

Lemma 44. Let G = (V,E) be a graph, Z be its vertex cover, and let G have
a target set with fair cost at most k. We can create a set S ⊆ V of size at
most |Z|+ 2|Z| · k containing a target set of a fair cost at most k.

Proof. Let T be a target set of fair cost at most k in G and I = V \ Z.
Let H ⊆ V contain k vertices with the highest thresholds from each critical
independent set in I. We claim that |Z ∪H| is the set S.
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4. Parameterization by the vertex cover number

The vertices in I are contained at most in 2|Z| critical independent sets as
in Lemma 41. Thus, it holds that |Z ∪H| ≤ |Z|+ 2|Z| · k.

After an exhaustive application of Lemma 43 on T , we end up with a target
set T ′ of the same fair cost as T . Now, let P ⊆ I be a critical independent set
and M be a set consisting of k vertices with the highest thresholds in P . It
holds that P∩T ′ ⊆M ⊆ H ⊆ I. Since this holds for every critical independent
set P ⊆ I, T ′ ⊆ Z ∪H follows.

Theorem 45. Fair TSS can be solved in O(2π+2π ·k · (n+m)) time, where π
is the vertex cover number and k is the maximal fair cost.

Proof. Let (G, thr, k) be an instance of Fair TSS. The algorithm first checks
whether there is a vertex v ∈ V with more than k neighbours with thresholds
higher than their degree. If there is such a vertex v, the algorithm returns
no. Since a vertex u with thr(u) > deg(u) must be in any TS by Lemma 16.
The vertex v with more than k such neighbours would increase the fair cost
over k. This check can be done in O(n+m) time.

Then the algorithm finds a minimal vertex cover Z of G. This can be done
by an FPT algorithm. Chen et al. [20] showed a polynomial space algorithm
for Vertex Cover that runs in O(1.2738h + h · n) time, where h is the size
of the V C.

Having computed the vertex cover Z, we can create the set S ⊆ V con-
taining a target set with fair cost at most k if it exists in G as in Lemma 44.
The total number of vertices in S is at most π+ 2π ·k. Note that every vertex
v with thr(v) ≥ deg(v) will be in this set. Since it is either in Z or it is in k
vertices with the highest thresholds from some critical set. Let I = V ⊆ Z.
The vertices in S∩I can be computed by picking k vertices from each of the 2π
critical sets. Since we pick from n vertices and we can check in linear time if
v belongs to the critical independent set, we can compute vertices in S ∩ I in
O(2π · n · π) time.

The algorithm then checks each combination from the set of candidates
whether it is a target set with fair cost at most k. Since one check can be
done in O(n + m) time, it gives us the total running time of the algorithm
O(2π+2π ·k · (n+m)). The algorithm is correct since it checks every combina-
tion in S.
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Chapter 5
NP hardness of Constant Fair

TSS

In this chapter, we show NP-hardness for Fair TSS.

Theorem 46. Fair TSS is NP-hard even when all thresholds are equal to
a constant c ≥ 3 and the fair cost k = c.

We prove Theorem 46 by designing a polynomial reduction from NP-hard
problem `-Multicolored Clique. In what follows, let I be an instance of
Fair TSS with all constant thresholds equal to c ≥ 3 and fair cost k = c.

5.1 Constructions

Before we start constructing our reduction, we first show some building blocks
that will be used by our gadgets. In this chapter, let thr be a constant thresh-
old function assigning each vertex a constant c, and let k = c be the maximum
fair cost.
Note 47. Note that for a leaf v, it holds that thr(v) ≥ 3 > 1 = deg(v). Thus,
according to Lemma 16, the leaf v must be in every target set.

Lemma 48. Let u be a vertex with c leaf neighbours, and let v be a vertex
adjacent to u. The vertex v cannot be in any target set.

Proof. For a contradiction, assume that v is in a target set T . Since the leaves
have to be in the target set, u has at least k + 1 neighbours in T . Which is
a contradiction to v being in a target set T .

Prohibited vertex. Let v be a vertex in I. The vertex v can be prohibited
from being in any target set by connecting v to a vertex u with c leaf neigh-
bours as in Lemma 48. The threshold of each prohibited vertex is lowered by
the number of its neighbours with at least c leaf neighbours.
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Figure 5.1: 2-to-1 edge. Let all thresholds be set to 3. On the left side of the figure,
we see a green vertex connected to a red vertex by a 2-to-1 edge. Light blue vertices
are prohibited from being in any target set since they are adjacent to the dark blue
vertices with three leaves. The leaves are crossed in the figure since they must be in
every target set as in Note 47. On the right side of the figure we introduce graphic
notation of the 2-to-1 edge. A red arrow denotes activation of one neighbour of
the green vertex, when red vertex is active. A green arrow denotes activation of two
neighbours of the red vertex, when the green vertex is active.

1

2

Lemma 49. Let H be a graph from Figure 5.1. Let u and v be the two vertices
connected with 2-to-1 edge. We claim that the following holds.

• Active u and inactive u results in activation of two neighbours of v, while

• active v and inactive v results in only one active neighbour of u.

Proof. To describe the graph H, it holds that the vertices u and v are ad-
jacent. The vertex u is connected to two prohibited vertices with thresholds
lowered to one. Those two vertices are connected to a prohibited vertex w
with a threshold lowered to two. Finally, the vertex w is connected to v. Sup-
pose a set S consisting of all required vertices in H. It holds that S consists
of all leaves in H that prohibit some vertices from being in the target set.

For T = S ∪ {v}, it holds that T does not activate w, since u cannot get
activated by T . Thus, the only active neighbour of u is v. Now, suppose that
T = S ∪ {u}, it holds that T activates two prohibited neighbours of u in A1

T

since they have thresholds lowered to one. Those two prohibited neighbours
then activate in A2

T the prohibited neighbour w of v, resulting in two active
neighbours of v.

2-to-1 edge. When two vertices u and v are connected by the construction
described in the proof of Lemma 49 and illustrated in Figure 5.1, we say that
they are connected by a 2-to-1 edge. In Lemma 49, we proved that active u
results in two neighbours of v getting activated and active v results in one
active neighbour of u.

Lemma 50. Let H be a graph and let x ∈ N be a number. Let u ∈ V (G), we
claim that we can add vertices into H so that u can activate x vertices and
yet itself is activated once all x vertices are active.
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Proof. Let each prohibited vertex in this proof have a threshold lowered to
two. By the last layer, we denote the prohibited vertices not connected by
2-to-1 edge to other prohibited vertices. Let the vertex u be connected by
2-to-1 edges to the two prohibited vertices. Let those vertices in the last
layer have two neighbours each. It holds that vertex u can activate 4 vertices
while u gets activated once the 4 neighbours of the last layer are activated.
(You can see the previously described construction on Figure 5.2.) By adding
a layer, we mean connecting two new prohibited vertices by 2-to-1 edges to
the prohibited vertices in the last layer. Observe that by adding layers or
removing vertices in the last layer, the vertex u can activate any number of
vertices and get activated once all those vertices are active.

Figure 5.2: Increased threshold construction. Red and green double edge repre-
sents 2-to-1 edges as in Figure 5.1. The green vertex is connected by a chain of 2-to-1
edges to the red vertices, for which it holds that they are activated by the green vertex
and that once all red vertices are activated they activate the green vertex. The light
blue vertices represent prohibited vertices with thresholds lowered to two. The dark
blue vertices prohibit the light blue vertices from being in a target set and the crossed
vertices are leaves required to be in a target set as in Note 47.

Increased threshold. The proof of Lemma 50 gives us a construction by
which a vertex u can activate x vertices and get activated once all x vertices
are active. When we create such a construction, we say that the vertex u
is connected by an increased threshold to x vertices. For the illustration of
the construction, please refer to Figure 5.2. These newly defined constructions
will be useful later in our reduction.
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5.2 The reduction

In this section, we define a polynomial reduction from the `-Multicolored
Clique problem to Fair TSS.

Notation. Let (G, `) be an instance of `-MCC and (G′, thr, k) an instance
of Fair TSS. By a color we denote a number in {1, . . . , `}. Let Vc denote
a partition of color c in G. For each color pair (a, b) in this section, suppose
that a < b. Let us define the following two functions for vertices in V (G).

Definition 51. Let low : V (G) → {1, . . . , |V (G)|} be an arbitrary bijection
that assigns each vertex in V (G) a number from one to |V (G)|.

Definition 52. Given a low function, let

high : V (G)→ {|V (G)|, . . . , 2 · |V (G)| − 1}

be a bijection that assigns each vertex v ∈ V (G) the number 2|V (G)|− low(v).

Similarly to the reduction in chapter 3, our reduction consists of vertex
selection, edge selection, and validation gadgets. We create one vertex selec-
tion gadget for each of the ` colors and for each color pair we create one edge
selection and one validation gadget.

Vertex selection gadget. The vertex selection gadget Sc of a color c ∈
[`] consists of a special vertex gc called guard and |Vc| vertices called choice
vertices. Each choice vertex in Sc represents one vertex in Vc and it holds
that each vertex in Vc is represented by some choice vertex in Sc. The guard
vertex gc is adjacent to k−1 leaves and to all choice vertices in Sc. Each choice
vertex in Sc has 2n (a, b)-connecting vertices for each color pair (a, b). Let (a, b)
be a color pair, the (a, b)-connecting vertices of a choice vertex v are divided
into low(u) low (a, b)-connecting vertices and high(u) high (a, b)-connecting
vertices, where u ∈ Vc is the vertex represented by v. The low (a, b)-connecting
vertices are enumerated from one to low(u) and the high (a, b)-connecting
vertices are enumerated from low(u)+1 to 2n. A choice vertex v is connected
to all its connecting vertices by the increased threshold construction (each
vertex in the last layer of the increased threshold construction is connected
to two connection vertices). Thus, a choice vertex v from Sc activates all
its connecting vertices and gets activated when all its connection vertices are
active.

Lemma 53. Let T be a target set of fair cost at most k. The target set T
contains at most one choice vertex v from Sc.

Proof. For a contradiction, assume that there are two or more choice vertices
from Sc in T . Since the guard vertex gc is adjacent to all choice vertices in Sc
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and to k − 1 leaves which must be in T , the fair cost of T would be greater
than k.

Edge selection gadget. The edge selection gadget E(a,b) of a color pair (a, b)
consists of a guard vertex g(a,b) and of h choice vertices, where

h =
∣∣∣{{u, v} ∈ E(G) | u ∈ Va ∧ v ∈ Vb

}∣∣∣.
It holds that each choice vertex in E(a,b) represents one edge {u, v} ∈ E(G),
where u ∈ Va ∧ v ∈ Vb, and each such edge is represented by one choice vertex
in E(a,b). The guard vertex g(a,b) is connected to all choice vertices in E(a,b)
and to k− 1 leaves. Each choice vertex v in E(a,b) has 4n connection vertices,
which are split into 2n a-connection vertices and 2n b-connection vertices. Let
u ∈ Va be a vertex incident to the edge represented by the choice vertex v.
The connection vertices of v are divided into low(u) low a-connection vertices
and high(u) high a-connection vertices. Then the low a-connection vertices
are enumerated from one to low(u) and the high a-connection vertices are
enumerated from low(u) + 1 to 2n. The b-connection vertices are divided
and enumerated in the same manner, except that u is the vertex from Vb
incident to the edge represented by the choice vertex v. A choice vertex in
E(a,b) is connected to all its connection vertices by an increased threshold
construction (each vertex in the last level of the construction is connected to
two connection vertices). Thus, active v activates all its connection vertices
and v gets activated when all its connection vertices are active.

Lemma 54. Let T be a target set of fair cost at most k. The target set T
contains at most one choice vertex v from E(a,b).

Proof. For a contradiction, let us assume that there are at least two vertices
from E(a,b) in T . It holds that the guard vertex g(a,b) is adjacent to all choice
vertices in E(a,b) and to k − 1 leaves, which must be in T as in Note 47.
Therefore, the fair cost of T would be at least k + 1.

Validation gadget. The validation gadget V(a,b) for a color pair (a, b) consists
of a-validation group and b-validation group. A validation group consists of
the higher and the lower validation row, where both validation rows consist
of 2n validation vertices. In each validation row, the validation vertices are
enumerated from one to 2n. Each validation vertex is prohibited from being
in a target set and its threshold is lowered to one. The a-validation group is
connected to (a, b)-connecting vertices of the vertex selection gadget Sa and to
a-connecting vertices of the edge selection gadget E(a,b) in the following way:

• let w be a low (a, b)-connecting vertex in Sa, we connect it to the vertex
in the lower validation row with the same enumeration,
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• let x be a high a-connecting vertex in E(a,b), we connect it to the vertex
in the lower validation row with the same enumeration,

• let y be a high (a, b)-connecting vertex in Sa, we connect it to the vertex
in the higher validation row with the same enumeration, and

• let z be a low a-connecting vertex in E(a,b), we connect it to the vertex
in the higher validation row with the same enumeration.

The b-validation group is connected to the (a, b)-connecting vertices of Sb and
to the b-connecting vertices of E(a,b) in the same manner.
Note 55. Intuitively, you might notice that there is a perfect pairing between
connecting vertices of a choice vertex u ∈ Sa, a-validation vertices, and a-
connecting vertices of a choice vertex v ∈ E(a,b) if and only if, the vertex
represented by u is incident to the edge represented by v in the graph G.

Lemma 56. Let v ∈ Sa be a choice vertex. The vertex v gets activated when
all a-validation vertices are active.

Proof. The vertex v can get activated by its connection vertices since it is
connected to them by an increased threshold structure. It holds that each
connection vertex of v is connected to one a-validation vertex and each a-
validation vertex is connected to one connection vertex of v. Therefore, all
connection vertices of v get activated when all a-validation vertices are active.

Lemma 57. Let v ∈ E(a,b) be a choice vertex. The vertex v gets activated
when all a-validation and b-validation vertices are active.

Proof. The vertex v can get activated by its connection vertices since it is
connected to them by an increased threshold structure. Let c ∈ {a, b}. It
holds that all c-connecting vertices of v get activated when all c-validation
vertices are active. Since each connection vertex of v is connected to one c-
validation vertex and each c-validation vertex is connected to one connection
vertex of v.

Lemma 58. Let v be a choice vertex in Sa and let T be a target set of fair
cost at most k. The vertex v gets activated only when v ∈ T or all a-validation
vertices are activated by T .

Proof. Suppose v /∈ T and that some a-validation vertex does not get acti-
vated by T . The connection vertices and vertices in the increased threshold
construction cannot activate v, since they are prohibited from being in T , and
they get activated only once v is active or all a-validation vertices are active.
Finally, the guard ga alone cannot activate the vertex v since v has a threshold
greater than one.
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Lemma 59. Let v be a choice vertex in E(a,b) and let T be a target set of fair
cost at most k. The vertex v gets activated only when v ∈ T or all a-validation
and b-validation vertices get activated by T .

Proof. Towards a contradiction, assume that v /∈ T and some vertex in a-
validation or b-validation vertices does not get activated by T . The a-connecting
vertices of v, b-connecting vertices of v, and the vertices in the increased
threshold construction between v cannot activate v, since they are prohibited
from being in T and thus they get activated only when v is active or all a-
connecting and b-connecting vertices are active. The guard vertex g(a,b) alone
cannot activate the vertex v since v has threshold greater than one.

Lemma 60. Let V(a,b) be a validation gadget. Let u ∈ E(a,b) be a vertex
representing an edge {x, y} ∈ E(G), where x ∈ Va and y ∈ Vb. Let v ∈ Sa be
a choice vertex representing z ∈ Va. Let T ⊆ V (G′) be a set with u, v ∈ T and
fair cost at most k. If x = z, the set T activates all vertices in a-validation
group of V(a,b).

Proof. It holds that all connection vertices of u and v get activated by T ,
since u and v are connected to their connecting vertices with the increased
threshold construction. Let AiT denote an activation round in which all choice
vertices of u and v are activated. Note that every validation vertex has its
threshold lowered to one. Let w be a vertex in the upper a-validating row,

• if w is enumerated by a number at most low(x), it gets activated by a low
a-connecting vertex from E(a,b) with the same enumeration at the latest
in Ai+1

T , and

• if w is enumerated by a number at least low(z) + 1, it gets activated by
a high connecting vertex in Sa with the same enumeration at the latest
in Ai+1

T .

Let w be a vertex in the lower a-validating row,

• if w is enumerated by a number at most low(x), it gets activated by
a low connecting vertex in Sa with the same enumeration at the latest
in Ai+1

T , and

• if w is enumerated by a number at least low(z) + 1, it gets activated
by a high a-connecting vertex from E(a,b) with the same enumeration at
the latest in Ai+1

T .

Since all validation vertices are enumerated by a number from one to 2n and it
holds, x = y. All a-validating vertices in V(a,b) get activated by the connecting
vertices of u and v at the latest in AiT + 1.
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Lemma 61. Let T ⊆ V (G′) be a set of fair cost k. Suppose that T does not
contain vertices v ∈ Sa and u ∈ E(a,b) for which it holds that v represents
a vertex x ∈ Va and u represents an edge {y, z} ∈ E(G), where y ∈ Va, z ∈ Vb
and it holds that x = y. The set T cannot be a target set.

Proof. Since each selection gadget can have at most one choice vertex in T ,
we can assume that T contains v ∈ Sa and u ∈ E(a, b) for which x 6= y.

Now, let AiT denote the activation round when all a-connecting vertices
become active. It holds that the vertex v ∈ Sa is the only choice vertex from
Sa in T , as in Lemma 53, and the vertex u is the only choice vertex from E(a,b)
in T , as in Lemma 54. Now, for other choice vertices from Sa and E(a,b) it
holds that they cannot get activated before AiT according to Lemma 58 and
Lemma 59. Since validation vertices are prohibited from being in T , it holds
that the only connection vertices activated by T before an activation round i
are the ones from u and v.

Towards a contradiction, let us assume that T activates all vertices in
a-validation group of V(a,b). It must hold that the upper validation row of
a-connecting vertices is connected to the low(x)+high(x) > 2n active connec-
tion vertices of u and v, since low(x)+high(y) = 2n applies if and only if x = y.
Therefore, the lower row is connected to the other low(y)+high(x) < 2n active
connection vertices of u and v, since it holds,

low(x) + high(y) + low(y) + high(x) = 4n.

Since vertices in the lower a-validation row are connected to at most 2n−1
active connecting vertices and one active connection vertex is connected to at
most one vertex in the lower a-validation row. Thus, all vertices in a-validation
group of V(a,b) cannot get activated and T cannot be a target set.

Proof of Theorem 46. Let (G, `) be an instance of `-MCC and (G′, thr, k) be
an instance of Fair TSS created by the reduction from (G, `).
⇒: Let (G, `) be a yes instance and K ⊆ V 1,× · · ·×, V is its solution, i.e.,
a clique in G. We claim that (G′, thr, k) is also a yes instance. Let T ⊆ V (G)
be created in the following way:

• add all required vertices from G′ into T ,

• for each color c ∈ [`] add a choice vertex from Sc representing the vertex
v ∈ Vc ∩K into T , and

• for each color pair (a, b) add a choice vertex from E(a,b) representing an
edge {u, v} ∈ E(G), where u ∈ Va ∧ v ∈ Vb ∧ v, u ∈ K.

It holds that T is a target set. Since all validation vertices get activated by
the choice vertices from vertex selection and edge selection gadgets, according
to Lemma 60. And the active validation vertices then activate the remain-
ing inactive choice vertices as in Lemma 56 and Lemma 57. Choice vertices
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neighbour only with guard vertices and vertices in the increased threshold
construction. Vertices in the increased threshold construction neighbour with
at most one choice vertex in T and every guard neighbours with one choice
vertex in T and k − 1 required vertices. The required vertices not adjacent
to a guard vertex also do not increase the fair cost over k, since there is at
most k such required vertices adjacent to a vertex u and it holds that u is not
adjacent to a choice vertex. Therefore, the fair cost of T is at most k.

⇐: To prove the other direction, suppose that (G′, thr, k) is a yes-instance and
T is the target set of fair cost at most k. For each validation gadget Va,b, there
must be u, v ∈ T where u ∈ Sa represents a vertex in G incident to an edge
represented by v ∈ E(a,b) according to Lemma 61. Thus, the choice vertices
in T form a clique of size ` in G, which makes (G, `) also a yes-instance.
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Chapter 6
Towards an Algorithm for Trees

In this chapter, we restrict the input of Fair Target Set Selection to
trees and we give arguments why we believe a polynomial time algorithm
might exist in the majority thresholds setting.

6.1 First claims

Definition 62 (leaves). Let G = (V,E) be a graph. We define a function
leaves : V → N, which assigns each vertex v ∈ V the number of its neighbours,
which are leaves. Formally, leaves(v) = |{u ∈ N(v)|deg(u) = 1}|.

In the following lemma, we show that the number of leaf neighbours is
a crucial attribute for deciding whether the vertex must be in the target set.

Lemma 63. Let G = (V,E) be a graph, thr a threshold function, and k a fair
cost. Let v ∈ V be a vertex for which it holds

thr(v)− (deg(v)− leaves(v)) > k. (6.1)

The vertex v must be in every solution of a Fair TSS instance (G, thr, k).

Note 64. In the equation (6.1) deg(v) − leaves(v) represents the number of
non-leaf neighbours of v. Assuming that all such neighbours are active and
not in the target set, thr(v) − (deg(v) − leaves(v)) expresses how many of
the leaf neighbours of v we have to add into the target set in order to activate
v.

Proof of Lemma 63. Assume towards a contradiction that T is a target set of
fair cost at most k and it holds, v /∈ T . Since v /∈ T , v has to be activated
by its neighbours. Even if we assume that all its non-leaf neighbours are not
in T and get activated in the activation process. The vertex v still has to
be activated by thr(v)− (deg(v)− leaves(v)) > k neighbours that are leaves,
raising the fair cost of T over k.

33



6. Towards an Algorithm for Trees

In what follows, let thr be the majority threshold function. The following
lemma shows us that when a vertex in a rooted tree has all children active, it
gets activated in the next round.

Lemma 65. Let G = (V,E) be a rooted tree, thr a majority threshold function,
and v ∈ V with deg(v) ≥ 2. Let T ⊆ V and let AxT be a round of activation
process which contains all children of v. We claim that v ∈ Ax+1

T .

Proof of Lemma 65. For a contradiction, let us assume that v /∈ Ax+1
T . Since v

has at most one parent, it must have less than one son in AxT to not be in Ax+1
T .

The vertex v having less than one son is a contradiction to its degree.

Let G be a rooted tree. In the next lemma, we show that the set consisting
of all leaves in G is a target set.

Lemma 66. Let G = (V,E) be a rooted tree and let T be a subset of V defined
as T = {u ∈ V | deg(u) = 1}. Then S is a target set of G.

Proof. Let AiT contain all vertices of some level k in the rooted tree. It holds
that Ai+1

T contains all vertices of level k− 1, since each such vertex v is a leaf
and thus in Ai+1

T or all its children are in AiT and thus v ∈ Ai+1
T according to

Lemma 65. Note that A0
T contains all vertices from the last level of G, since

those vertices are leaves. It follows that T is the target set.

Let G be a tree and let (G, thr, k) be an instance of Fair TSS with
majority thresholds. The previous lemma gives us some intuition that if we
manage to activate all vertices in the bottom levels of G, while satisfying
the fair cost, we might solve the (G, thr, k).

6.2 Our approach

In this section, we show how we would approach designing the algorithm for
Fair TSS with majority thresholds on trees.

By the intuition from Lemma 66. We think that it is worth trying to start
by processing all vertices gradually starting from the bottom level of the tree.
We know that there might be some vertices that must be in every target set,
according to Lemma 63. The following definitions of the vertices in the tree
will be helpful later. Let v be a vertex in a rooted tree, the labels are defined
as follows.

Definition 67 (mts). Let k be the fair cost. The vertex v is labeled mts, when
it cannot be activated by its neighbours without raising the fair cost over k,
and thus it must be in every target set.
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Definition 68 (xts). Let k be the fair cost. Let v be a vertex with a parent
vertex p. The vertex v is labeled xts, when it holds that v can be activated by
its neighbours without raising the fair cost over k only when v’s parent p is
activated by its neighbours N(p) \ {v}.

Definition 69 (nts). Let k be the fair cost. A vertex v is labeled nts when
adding v into the target set would certainly increase its child’s fair cost over k.

Note 70. Note that a vertex can have multiple labels.
Note 71. Let I be an instance of Fair TSS and v a vertex in I. Note that v
being labeled with both mts and nts would result in I being a no instance.

Let (G, thr, k) be an instance of Fair TSS with majority thresholds, where
G = (V,E) is a rooted tree and k is a positive integer. Let us consider
the following partitions of vertices in G:

• V1 - leaves,

• V2 - vertices with children, who are only leaves,

• V3 - vertices with children, who are only non-leaves, and

• V4 - vertices having both leaves and non-leaves as children.

Note that each vertex in G belongs to exactly one of these sets.
We will be processing the vertices in the rooted tree from the bottom level
upwards. Therefore, when the algorithm is processing some vertex, we can
assume that all its children were processed and thus are active and labeled.
V2. Let us first consider the vertices in V2. These vertices have children, who
are leaves only. We further divide these vertices in the following cases:

• V >
2 = {v ∈ V2 | thr(v) > k + 1}

• V =
2 = {v ∈ V2 | thr(v) = k + 1}

• V <
2 = {v ∈ V2 | thr(v) < k + 1}

Lemma 72. Let v be a vertex in V2. Then either v can be activated by its
children, is labeled xts, or is labeled mts. Moreover, this can be decided in
O(deg(v)) time.

Proof. Suppose that the vertex from V2 does not have a parent. The graph G
would be a rooted tree of height one and we could solve (G, thr, k) with a target
set consisting of the root vertex only. Therefore, in what follows, we assume
that vertices from V2 do have a parent p.

Claim. We claim that v ∈ V <
2 can be activated by its neighbours without

raising the fair cost over k.
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Proof. Let v ∈ V <
2 . It holds that the vertex v has one parent and at least one

child. Thus, v has at least thr(v) children, since we have majority thresholds.
Now, we can activate v by adding thr(v) ≤ k its children into the target set.
If we later add v’s parent into the target set and it would increase the fair
cost to k + 1, we can simply remove one child of v from the target set. �

If the vertex has one parent and all its children are leaves, it holds that
(deg(v)− leaves(v)) = 1. This observation is useful in the proof of the follow-
ing claim.

Claim. Let v ∈ V >
2 . The vertex v is labeled mts.

Proof. It holds that thr(v) > k+1, since v is in V >
2 . Furthermore, the vertex v

has one parent and all its children are leaves. Thus,

thr(v)− (deg(v)− leaves(v)) = thr(v)− 1 ≥ k + 1 > k (6.2)

holds and by Lemma 63 the vertex v must be in every target set. �

The last case of vertices in V2 is V =
2 . Let v be a vertex in V2. All its

children are leaves and it holds, thr(v) = k + 1.

Claim. Let v ∈ V =
2 be a vertex with a parent p. The vertex v can be

activated by its neighbours, only if its parent p is activated by thr(p) vertices
in N(p) \ {v} (i.e., v is labeled xts).
Proof. Since thr(v) = k+1, at least one neighbour of v must be active and not
in the target set before v gets activated by its neighbours. Otherwise, v must
be in the target set. All children of v are leaves and assuming that they are
not in the target set, they can get activated only after v is active. Therefore, v
can be activated by its neighbours only when p is activated by thr(p) vertices
in N(v) \ {v}. �

Let v ∈ V =
2 . We label it xts and we add k children of v and v itself into

the target set. This way, we can assume that v is active. If we later determine,
that the parent of v can get activated by thr(p) vertices in N(v) \ {v}, we
can remove v from the target set. Moreover, if the parent p gets added into
the target set, we remove one of v’s children from the target set to keep the fair
cost at most k.

We have shown that for each vertex v in V2 it can decide based on its
degree and fact if v has a parent, whether v either

• must be in the target set (mts),

• must be in the target set unless its parent p can be activated by thr(p)
vertices in N(p) \ {v} or (xts), or

• can be activated by its children.
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Which concludes our proof.

V4. Let us consider vertices in V4, whose children are leaves and non-leaves.
Since we process vertices from the last level in the rooted tree upwards, we
assume that it is already decided for the non-leaf children of a vertex in V2,
whether it is labeled mts, xts, or is activated by its children. Since v ∈ V4
can have children labeled xts and mts, the following functions will be useful.

Definition 73. Let mTS : V → N be a function that assigns each vertex
the number of its children labeled mts.

Definition 74. Let xTS : V → N be a function that assigns each vertex
the number of its children labeled xts.

If mTS(v) > k for some v ∈ V (G), the instance (G, thr, k) of Fair TSS
does not have a solution and the algorithm returns no, since the mts labeled
vertices increase the fair cost over k. We can check this property at the be-
ginning of the processing of a vertex, thus in what follows we can assume
that k −mTS(v) ≥ 0. Now, we further partition the vertices from V4 into
the following cases.

• V >
4 = {v ∈ V4 | thr(v)− (deg(v)− leaves(v)) > k −mTS(v)}

• V =
4 = {v ∈ V4 | thr(v)− (deg(v)− leaves(v)) = k −mTS(v)}

• V <
4 = {v ∈ V4 | thr(v)− (deg(v)− leaves(v)) < k −mTS(v)}

Firstly, we consider vertices from V >
4 . From the definition, for each vertex

v ∈ V >
4 the following equation applies.

thr(v)− (deg(v)− leaves(v)) > k −mTS(v) (6.3)

Observe that the equation (6.3) extends the inequality from Lemma 63 by
subtracting mTS(v) from the right-hand side. In Lemma 63, we assume that
all non-leaf neighbours of v are active but not in the target set. In the equa-
tion (6.3) we add into consideration the vertices that are active, but have to
be in the target set.

Lemma 75. Let v be a vertex in V >
4 . Then either v is labeled mts or the

graph is a no-instance. Moreover, this can be decided in O(deg(v)) time.

Proof. Claim. Let v ∈ V >
4 with xTS(v) = 0. The vertex v is labeled mts,

since it has to be in every target set.
Proof. Let T be a target set of fair cost at most k. Towards a contradiction,
let us assume that v /∈ T . The vertex v must be activated by its neigh-
bours. Suppose that all its (deg(v) − leaves(v)) non-leaf neighbours are ac-
tive. It holds that we need to add thr−(deg(v) − leaves(v)) leaves into T
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to activate v. However, this would increase the fair cost of T over k, since
thr(v)− (deg(v)− leaves(v)) +mTS(v) > k. �

Claim. Let v ∈ V >
4 with xTS(v) > 0. The algorithm returns no.

Proof. Let u be an xts labeled child of v. The vertex u is in the target set. We
can remove it from the target set if and only if v can be activated by its neigh-
bours without u. Since it holds, thr(v)− (deg(v)− leaves(v)) > k −mTS(v),
even if we assume that all its non-leaf children except mts labeled ones were
active and not in the target set, activating v with its neighbours would re-
sult in a fair cost greater than k. Therefore, we cannot remove the xts la-
beled vertex from the target set and the fair cost is greater than k, since
mTS(v) + xTS(v) > mTS(v) = k. �

We have proved that the vertex in V >
4 is either labeled mts or or there

isn’t a target set of fair cost at most k in the graph. Furthermore, for each
vertex v ∈ V >

4 , we can decide which case it is based on the number of its xts
labeled children.

Secondly, let us analyse the vertices from V =
4 . They have mixed sons and

for every vertex v ∈ V =
4 the following equation holds.

thr(v)− (deg(v)− leaves(v)) = k −mTS(v) (6.4)

Lemma 76. Let v be a vertex in V =
4 . Then either v is activated by its children,

labeled xts, or the graph is a no-instance.

Proof. We prove this lemma by proving the three following claims.

Claim. Let v be a vertex in V =
4 without a parent and without xts labeled

children. The vertex v is activated by its neighbours.
Proof. Since we can assume that all its non-leaf children are active and not in
the target set, except the mts labeled vertices, we can add thr(v)− (deg(v)−
leaves(v)) leaf children of v into the target set. This activates v and the fair
cost is equal to k since thr(v)− (deg(v)− leaves(v)) +mTS(v) = k. �

Claim. Let v be a vertex in V =
4 with a parent p and without any child labeled

xts. The vertex v is labeled xts.
Proof. Since the equation (6.4) holds for v, the vertex v can be activated by
its neighbours, assuming that all its non-leaf neighbours, except from the mts
labeled ones, are active and not in the target set. Since v does not have xts
labeled children, it holds that v can be activated by its neighbours without
raising the fair cost over k, when the parent p can be activated by thr(p)
vertices in N(p) \ {v}. Thus, the vertex v is labeled xts. �

38



6.2. Our approach

Let v be a vertex satisfying the proposition in the previous claim. The al-
gorithm puts v into the target set. It also puts thr(v)− (deg(v)− leaves(v)) of
its leaf-children into the target set. Later, if p gets activated by thr(p) vertices
in N(p) \ {v}, we can remove v from the target set. In case that p ends up in
the target set, we can remove one leaf-child of v from the target set to keep
the fair cost of v at k.

Claim. Let v be a vertex in V =
4 with xTS(v) > 0 labeled children. The al-

gorithm returns no.
Proof. The vertex v can be activated by its neighbours, assuming that all
its neighbours are active and the only neighbours of v in the target set are
leaves and mts labeled vertices. However, v has a non-leaf neighbour in T ,
which is not labeled mts. Thus, the activation of v by its neighbours would
increase the fair cost of T over k. We could remove an xts labeled child from
the target set only if v could get activated by its own neighbours excluding u.
However, the vertex v would necessarily need more leaf children in the target
set, which would also raise the fair cost over k. Thus, sincemTS(v)+xTS(v) >
mTS(v) = k, the algorithm returns no. �

We have showed, that a vertex v can be activated by its children, labeled
xts, or the algorithm returns no. Moreover, we can decide which case holds
for v based on the number of its children labeled xts and the fact if v has a
parent.

Now, let us consider V <
4 . We believe that similarly to the previous vertices

in V >
4 , V =

4 , and V2, we can decide based on its processed children, whether
the vertex from V <

4 is activated by its children, labeled xts, labeled mts, or
the tree is a no-instance. In the following paragraphs we give arguments why
that could be the case.

Let v be a vertex in V <
4 . The vertex v has mixed children and by its

definition the following equation holds.

thr(v)− (deg(v)− leaves(v)) < k −mTS(v) (6.5)

Since we can only assume that k−mTS(v) ≥ 0 it is possible that thr(v)−
(deg(v)− leaves(v)) is a negative number. This would mean that v has more
non-leaf neighbours than thr(v). Let us break down the vertices in V <

4 into
the two following cases.

1. {v ∈ V <
4 | thr(v)− (deg(v)− leaves(v)) < 0}

2. {v ∈ V <
4 | thr(v)− (deg(v)− leaves(v)) ≥ 0}

Let v be a vertex from the second case, it holds that we can add thr(v)−
(deg(v) − leaves(v)) leaves into the target set, in order to activate v by its
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neighbour. To make sure that v is activated and has the fair cost at most k,
the algorithm would have to consider whether v has a parent or not and
the number of children labeled xts and mts.

Let v be a vertex from the first case. For v it holds that

thr(v)− (deg(v)− leaves(v)) < 0 ≤ k −mTS(v).

Since v has more than thr(v) non-leaf neighbours, it holds that v gets activated
by its children without the need to add its leaf-neighbours into the target set.
The algorithm would still need to consider the number of vertices labeled xts
and mts, to check whether v can be activated, while its children stay acti-
vated, without raising the fair cost over k.

V1. Each vertex in V1 is a leaf, which has a parent either in V2 or in V4. If
a vertex v ∈ V1 has a parent in V2, the algorithm decides, if v is in the target
set or not while processing its parent. Similarly, when its parent is in V >

4 or
V =

4 . Let us assume that the algorithm could decide whether a vertex u ∈ V4
can be activated without raising the fair cost over k. Since active u would
result in activation of all its leaf children, it would mean that the algorithm
decides whether vertices in V1 are in the target set or not by processing ver-
tices in V2 and V4.

V3. The last category of vertices, the algorithm would need to handle, is V3.
Vertices in V3 have children, which are only non-leaf children. Since the al-
gorithm processes vertices from the last level gradually upwards, we could
assume when processing a vertex from V3 for all its children, it was decided
whether they are activated by its children, are labeled mts, or are labeled xts.

Now, let v be a vertex in V3. Since we have majority thresholds and v
has at most one parent and at least one child, it holds that v gets always
activated by its children. Since, we make sure that all vertices are active after
the algorithm processes them. However, we will need to check whether v has
a fair cost at most k.

Conclusion. In this section, we have shown that when trying to solve Fair
TSS with majority thresholds on trees, it is possible to decide for some groups
(specifically V2, V =

4 , and V >
4 ) of vertices in a rooted tree whether they can

be activated by their children or neighbours or they must be in the target set.
We believe it might be possible to extend such results to vertices in V =

4 . In
that case we could create an algorithm, which decides for every vertex in V1,
V2, and V4 in polynomial time, whether it can be activated by their neighbours
or must be in the target set in order to be active, and keep the fair cost at
most k.

The last category of vertices, which would such algorithm need to handle,
to solve Fair TSS with majority thresholds on trees, is V3. With the assump-
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tion that all its children are active, these vertices would surely get activated.
However, we would still need to check the fair cost and possibly need to re-
move some xts labeled vertices from the target set. An algorithm working in
such way could run in polynomial or even linear time.
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Conclusion

We have proposed the Fair Target Set Selection problem and initiated
the study of its parameterized complexity. We have obtained W[1]-hardness
with respect to the parameters treewidth, feedback vertex cover, and tree-
depth. For its natural parameter fair cost, we have shown W[2]-hardness. On
the positive side, we have shown an FPT algorithm for the combined parame-
ter vertex cover number and fair cost. Furthermore, we have shown that Fair
Target Set Selection is NP-hard even when all thresholds are equal to a
constant c ≥ 3. In the last chapter, we show arguments why we believe that
Fair Target Set Selection with majority thresholds might be solvable on
trees in polynomial time.

The open question that remains after our work is whether Fair TSS with
majority thresholds or even unrestricted thresholds is solvable on trees in
polynomial time. An interesting question that could extend our results is
whether Fair TSS is NP-hard even when all thresholds are equal to two.
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17. NEŠETŘIL, J.; DE MENDEZ, P. O. Sparsity Graphs, Structures, and
Algorithms. Springer Berlin, 2014.

18. CHEN, J.; CHOR, B.; FELLOWS, M.; HUANG, X.; JUEDES, D.; KANJ,
I. A.; XIA, G. Tight lower bounds for certain parameterized NP-hard
problems. Proceedings. 19th IEEE Annual Conference on Computational
Complexity. 2004. Available from doi: 10.1109/ccc.2004.1313826.

46

https://doi.org/10.1007/s00224-013-9499-3
https://doi.org/10.1109/12.24280
https://arxiv.org/abs/1803.06878
https://doi.org/https://doi.org/10.1016/j.dam.2008.09.012
https://doi.org/https://doi.org/10.1016/j.dam.2008.09.012
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00055-X
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00055-X
https://doi.org/10.4230/LIPIcs.ISAAC.2018.18
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1109/ccc.2004.1313826


Bibliography

19. PIETRZAK, K. On the parameterized complexity of the fixed alphabet
shortest common supersequence and longest common subsequence prob-
lems. J. Comput. Syst. Sci. 2003, vol. 67, no. 4, pp. 757–771. Available
from doi: 10.1016/S0022-0000(03)00078-3.

20. CHEN, J.; KANJ, I. A.; XIA, G. Improved upper bounds for vertex
cover. Theoretical Computer Science. 2010, vol. 411, no. 40, pp. 3736–
3756. issn 0304-3975. Available from doi: https://doi.org/10.1016/
j.tcs.2010.06.026.

47

https://doi.org/10.1016/S0022-0000(03)00078-3
https://doi.org/https://doi.org/10.1016/j.tcs.2010.06.026
https://doi.org/https://doi.org/10.1016/j.tcs.2010.06.026




Appendix A
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readme.txt ........................... the file with contents description
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