
Instructions

Design, implement and test a system for automatic furnishing a specific interior using artificial

intelligence methods based on parameters entered by the user.

1. Perform a search and describe the state-of-the-art.

2. Select one or more AI methods applicable to the problem.

3. Design a suitable representation to describe the elements of the interior equipment and to

describe the conditions of their location and interrelationships.

4. Design an algorithm for automatic furnishing. The algorithm must take into account the

conditions and parameters specified by the user.

5. Implement a user interface for entering the conditions imposed by the user on the proposed

interior equipment and an interface for displaying the final design.
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Abstrakt

Tato práce přisṕıvá k výzkumu automatizovaného interiérového designu návrhem a imple-
mentaćı nového systému. Proces designu je rozdělen na plánováńı funkčńıch zón pomoćı simulo-
vaného ž́ıháni a na aranžováńı nábytku genetickým algoritmem. Výsledky obou algoritmů jsou
dotaženy gradientńım sestupem. Systém dokáže splnit požadavky od uživatele na tvar mı́stnosti,
jej́ı funkce a použitý nábytek. Experimenty ukazuj́ı schopnost systému navrhnout interiér r̊uzně
tvarovaných mı́stnost́ı s r̊uzným výběrem kus̊u nábytku.

Kĺıčová slova automatizovaný interiérový design, metody umělé inteligence, genetický algo-
ritmus, simulované ž́ıháńı, knihovna Kivy, Python, uživatelské rozhrańı, požadavky od uživatele

Abstract

This thesis contributes to automated interior design research by designing and implementing
a new system. The design process is divided into the planning of the functional zones using
simulated annealing and arranging the furniture with a genetic algorithm. The system can fulfill
the user’s requirements on the room’s shape, functions, and used furniture. The experiments
show the ability of the system to design an interior of rooms with varying shapes and selection
of furniture.

Keywords automated interior design, AI methods, genetic algorithm, simulated annealing,
Kivy library, Python, user interface, user requirements
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Summary

Motivation

It is challenging to design a room to be comfort-
able and functional, and hiring a professional in-
terior designer is expensive. A system that does
this work quickly and for free would be helpful.
Also, automatically created layouts can be used
in games and virtual reality.

The thesis is a part of a larger project
that studies automatic interior design, and other
works will build on it.

Goal of thesis

The goal is to design, implement, and test a sys-
tem that takes user’s requirements and outputs
an arrangement of furniture that fulfills them.
A suitable representation of interior elements is
needed with a way how to capture their spatial
relationships. The system has to have a user
interface for entering requirements and showing
the results.

Solution procedure

I researched the methods used so far and decided
to use methods based on state-space search be-
cause they allow the incorporation of user re-
quirements. To reduce the size of the search
space, I divided the design process into high-level
planning and local furniture arrangement.

Planning is done by positioning functional
zones with simulated annealing enhanced by

restart technique and finalized by gradient de-
scent. A solution is composed of positions of all
zones and evaluated based on the proximity to
windows and walls, overlapping, shape, and flow
in the room.

After that, objects are placed into these zones
using a genetic algorithm. Chromosomes consist
of groups of objects that procedurally arrange
themselves. GA is optimizing the composition of
the groups and their positions. The furniture of
each zone is positioned separately. The quality
of its arrangement is measured based on overlap-
ping, proximity to the wall, and object relation-
ships.

Results

I tested the system on 36 rooms with varying
shapes, zones, and furniture. Ten runs were per-
formed on each of them. The results were manu-
ally evaluated and those unusable marked. 75 %
of the designs were usable, and 31 out of 36 rooms
achieved an average score over 6.

Conclusion

I developed a system for designing an interior ac-
cording to user requirements. The thesis builds
on an article that I wrote with my supervisor and
that was accepted at IEA/AIE 2021 conference.
I will continue working on it in the future.

x
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Chapter 1

Introduction

Our homes are our refuges where we relax, create and meet with family and friends. The interior
design ensures that these places are comfortable, eye-pleasing, and functional. However, it is
not easy to select and arrange objects to achieve such an environment. A person can struggle
with imagining what the room would look like with a different arrangement or how to fit all the
new furniture in. That is why professional interior designers exist, but designer’s help is often
expensive. So, a system that would take a person’s requirements for the room and proposed a
design would be helpful.

Furthermore, the rise of games and virtual reality brought a need for many indoor layouts
that will complement virtual worlds. Creating them all by hand is time-consuming, and their
simple procedural generation produces unconvincing (or even unplayable) results. Additionally,
the training of agents with artificial intelligence requires even more layouts. These agents have
to orient themselves in our environment and understand our commands (like “put the mug on
the coffee table”). They need thousands of 3D layouts for training. So, we have to come up with
a way how to generate these environments.

The majority of furniture configurations are unconvincing or even physically impossible (for
example, they contain overlapping furniture). For example, a wardrobe should not be in the
middle of the room, a chair should be aligned at the desk, and a bedside table 2 m away from the
bed is useless. For the computer, these are all possible choices. Therefore, the first big challenge
is to explain what possible designs are (what rules they have to follow and what features make
them plausible). Then comes the part that professional designers do. They study the design
guidelines, survey the client and plan the space. The problem for automation is, they often
optimize the “feel of the room”, which is highly non-programmable.

This thesis follows up work from the Research Summer on Faculty of Information Technology
(CTU). I developed the first version of core algorithms (GA, SA) during this program and wrote
a paper [14] on it in cooperation with my supervisor, Ing. Mgr. Ladislava Smı́tková Jank̊u, Ph.D.
The paper was accepted at IEA/AIE 2021 conference. This work further improves the methods.
It also accommodates a large dataset of furniture (3D-FUTURE [4], circa 10 000 objects) and
separates concrete objects from the general properties of their categories. Another contribution
of this thesis is the graphical user interface. The thesis is part of a larger project on the Faculty
of Information Technology that studies automatic interior design, and more works will build on
it.

The structure of this thesis is following. First, I define the automatic interior design problem
and goals for this work. Then, I describe the state of the research in the field and evaluate the
methods used so far. I explain the decision-making about what algorithms to use and summarize
the most influential papers. In the chapter Description of the used methods, I provide a brief
explanation of the selected methods. In the chapter Application of the methods, I propose a

1



2 Chapter 1. Introduction

representation of interior elements and relationships between them. I describe how I adapted
the chosen methods to automatic interior design. The implementation part of the work provides
the details of used technologies, the architecture of the system, and the tuning of algorithms. In
the chapter Results, I present the evaluation of the system based on experiments. Finally, the
Conclusion contains a discussion on this work with ideas and plans for future work.



Chapter 2

Goals

2.1 Definition of the problem
The output of the proposed automatic interior design system is an arrangement of objects in a
room. It can be either entirely autonomous (which is helpful for virtual environment generation)
or accept the user’s requirements on the design. Requirements include the shape and features of
the room (like windows, doors, and sockets), functions of the room, or furniture that has to be
included.

To accomplish this task, we have to define a representation of the room and objects inside
it. Furniture often needs to be positioned together to serve its function. So, the system needs
a definition of relationships between objects. Another challenge is how to define and quantify a
good design to construct an evaluation function.

2.2 Goals for this work
The main goal of this thesis is to design, develop and test a system that takes user requirements
and generates an indoor layout fulfilling them. The thesis is part of the research on automatic
interior design. The goal is to show the usability of selected algorithms, not to build a complete
software product.

The theoretical part contains a summary of the research in automated interior design. The
goal is to evaluate the advantages and disadvantages of different approaches and select appro-
priate algorithms for this work.

The practical part is focused on the application of the selected algorithms and their tuning.
A representation of interior elements (like furniture and a room) with a way how to capture
relationships between them will be designed. The architecture of the system will allow switching
the algorithms easily. The system will have a UI for taking the user’s requirements and for
showing the final layout.

The final goal is to test the ability of the system to generate usable interior designs. This
thesis aims at developing an experimental version of a system that will be part of the research
on automatic interior design.

3





Chapter 3

Related works

This chapter summarizes the state-of-the-art in automatic interior design and describes the most
influential papers in detail. I divide approaches into three main categories - i) search-based,
ii) graph-based, and iii) data-based.

3.1 Search-based methods
Search-based methods precisely define the environment and apply optimization or heuristic meth-
ods to find the most suitable positions for all objects. In [18] authors extract spatial relation-
ships from a set of human-designed rooms and use them in a cost function. The furniture is
first randomly positioned and then optimized by simulated annealing. The method allows great
incorporation of user requirements, but it optimizes only a few object relationships. Authors
of [6] and [1] divide a room into cells and probabilistically select a furniture into them. Cells
significantly narrow the search space of layouts, but there is always a limited number of cells and
their positions. [10] uses swarm intelligence to find a Pareto-optimum of a set of cost functions
(evaluating overlapping, aisle width, object relationships, . . . ). Authors of [8] applied a genetic
algorithm to search for the optimal layout. The results were promising, especially for kitchens
and living rooms, but slow (several seconds). So, they experimented with greedy cost minimiza-
tion [7]. These two papers were the main inspiration for the original article [14] and greatly
impacted this thesis. Therefore they will be described in more detail.

Advantages: These methods can easily incorporate all kinds of user requirements - for
example, what furniture to use, aisle width, or varying room shapes. Also, they do not need
large datasets (they only occasionally use them for space relationships extraction).

Disadvantages: They are slow. Generating a layout usually takes a few seconds because it
is always starting the state search from scratch.

3.2 Graph-based methods
Graph-based methods focus on spatial relationships between objects, like them being next to
or opposite each other. They define the layout by creating a graph with objects as nodes and
relationships as edges. The paper [11] represents layouts as And-Or-graph. It extracts the rela-
tionships from the SUNCG dataset [13], transforms them into And-Or-graph, and then samples
from the distribution given by it. The system finalizes the layout using simulated annealing.
[15] divides the process into two phases - planning and instantiation. The system iteratively
adds nodes to a spatial graph using neural networks. Then it takes it as a constraint for furni-
ture instantiation that is done by neural-guided search. The results of this method prove that

5



6 Chapter 3. Related works

separating high-level planning and low-level instantiation is beneficial. Authors of [19] focus on
accurate extraction and modeling of the object relationships. They use tests for complete spatial
randomness to learn a spatial graph, which is more relevant than counting co-occurrences of
objects. The system from [5] takes a few object categories from the user and tries to complement
them to a full layout. First, it extracts co-occurrences of furniture categories in data and creates
spatial graphs for each activity. According to them, complementary objects are selected and
arranged, imitating similar layouts from the data.

Advantages: They are capable of capturing the (sometimes complicated) relationships be-
tween objects.

Disadvantages: A spatial graph itself does not uniquely define a layout, so it needs an
additional method to finalize the design.

3.3 Data-based methods

Data-based methods use a large dataset (like SUNCG [13]) of indoor layouts to train deep
neural networks to imitate them. In the paper, [17] authors broke down the design process
into positioning activity zones and arranging furniture into them. For the first step, conditional
generative adversarial networks are used with an empty room as a condition. Then, a deep
network takes the dimensions and orientations of the generated zones and decides what furniture
should be in them. A separate network is trained for each activity. The paper [12] suggest a
pipeline from deep convolutional generative models. It iteratively adds objects to a given scene.
In each iteration, a representation of the input image is extracted and run through a set of
networks. They determine the existence, dimensions, and orientation of the new object. Authors
of [9] experimented with putting together deep generative models with spatial graphs. They
transform the room into a hierarchy (a tree graph), and an encoder is trained to encode it by
levels into a vector gradually. The Gaussian distribution approximates these vectors, so when
we give a random vector from this distribution to a decoder, it generates a new design. The
paper [3] applies deep reinforcement learning to position objects into a room iteratively. A room
with possibly other objects is taken as an environment, and the agent moves the new piece of
furniture around to find the optimal position. The agent is trying to imitate the given designs
through Q-learning.

Advantages: They have to be trained only once, and then they can produce authentic
results very fast. A user sees a result in a couple of milliseconds.

Disadvantages: Because the graph-based methods imitate layouts, they mostly cannot fulfill
specific user requirements like functions of the room, concrete furniture, or aisle width. Also,
they are highly dependent on the given dataset (a sufficiently large and quality dataset is hard
to find, SUNCG that was used in the past is no longer available).

3.4 Selection of the method

I divide the design process into phases and use the methods where they are suited the best. First,
the room is planned into functional zones, and then, the furniture is placed into them.

I decided to use search-based methods because they allow greater freedom in incorporating
user requirements. The cost function of zone arrangements is noisy and with many local mini-
mums, which is the specialty of simulated annealing. I chose a genetic algorithm for furniture
placements because the interior design can be described as the composition of individual objects.
GA samples the search space and combines parts of good solutions.



3.5. Chapter summary 7

Automated Interior Design Using a Genetic Algorithm
This paper [8] uses a genetic algorithm enhanced with an island model to find the best layout
and then optimizes material selection for the final result.

During initialization, furniture pieces are selected from the database based on the importance
of the specific room type and randomly placed and rotated. The authors use four islands with
50 individuals each. Then the search starts, in each generation are individuals evaluated with a
cost function. 70 % of the individuals continue to the next population, and a crossover creates
the rest. Finally, the mutation is applied to 50 % of the new population.

Objects have properties characterizing their ideal position - the probability of standing against
a wall, the required space on the sides, or possible parents (other objects they have to be aligned
against). A cost function is a weighted sum of terms representing design guidelines - circulation,
group relationships, or functional needs.

Crossover is done by interchanging half of the objects between selected individuals. Any
individual with overlapping objects is rejected. Mutation provides moves that help individuals
achieve believable designs - align with the closest object, snap the object to the closest wall or
add objects to a parent.

The authors conducted a perceptual study when testers had to choose between an automati-
cally created layout and a layout designed by an artist. It showed that the system could produce
livable interior designs. Kitchen and living room automatic designs were even preferred over the
artist’s ones.

Automatic Furniture Arrangement Using Greedy Cost
Minimization
This paper [7] follows [8]. It takes the mutation moves from the previous paper and uses them
for a greedy algorithm.

Furniture is again randomly positioned in the initialization phase. Then, in each iteration,
the layout is evaluated with the cost function, and a set of moves is applied. If the resulting
layout has a lower cost, it is accepted as a new solution.

Additionally, to make the design more believable, several small objects are procedurally added
as decorations - for example, a lamp is positioned in an empty corner, a coffee mug on a table,
or a shelf on an empty wall.

The authors repeated a perceptual study to compare the greedy algorithm with the genetic
algorithm. The greedy search was preferred in all types of rooms apart from kitchens and living
rooms (types with which the genetic algorithm was the most successful in the previous paper).
They assumed that it is given by the nature of the interior design problem. It is unnecessary to
search for the global minimum exhaustively. The search space contains multiple local minimums
that represent possible layouts. So the authors decided that it is better to present the user with
multiple good designs quickly.

3.5 Chapter summary
The state-of-the-art research was summarized and divided into three main approaches. The
search-based methods encode interiors as states and use a heuristic or an optimization algorithm
to find the optimum. They are generally better at incorporating user requirements. Their
disadvantage is that they are slow. Graph-based methods build from objects a spatial graph
capturing their relationships. They have to be used in conjunction with other methods that
find the concrete layout satisfying the given spatial graph. Data-based methods are based on a
large dataset of interior designs on which they train a model that then generates more designs.
However, they are just imitating the dataset and cannot incorporate user requirements easily.
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I divided the design process into high-level planning of the functional zones and low-level
furniture arrangement of the furniture inside them. I chose to use simulated annealing and genetic
algorithm. Both use a cost function to which I can include penalties for user requirements.



Chapter 4

Description of the used methods

4.1 Simulated annealing
Simulated annealing (SA) is a random-search technique that approximates the global optimum
of noisy functions. It got its name according to the annealing process in metallurgy, where a
material is heated and then slowly cooled down to achieve better properties. It originates in 1983
in a paper “Optimization by Simulated Annealing” by Kirkpatrick, Gelatt, and Vecchi, who used
it for solving the traveling salesman problem. I studied the algorithm in Busetti’s overview [2].

Algorithm 1 Simulated annealing
solution← generate initial solution()
T ← initial temperature()
while not terminate condition() do

for i← 0, num it do
new solution← neighbor(solution, T )
if cost(new solution) < cost(solution) then

solution← new solution
else if random(0, 1) < e−(cost(new solution)−cost(solution))/T then

solution← new solution
end if

end for
T ← cool down(T )

end while

The search is done in iterations by generating a neighbor of a current solution and either
accepting it as a new solution or rejecting it. The annealing process is simulated with the tem-
perature variable T that controls the probability of accepting a worse solution. The search starts
at a high initial temperature and gradually cools down. The algorithm does num it iterations
for every temperature value. A better solution is always accepted (with 100 % probability), a
worse solution has a P probability of being accepted:

P = e−δf/T

where δf is the increase of the cost between the current solution and the new one. It is also
dependent on the temperature. In the beginning, the temperature is high, and the algorithm
is exploring the search space. Then it is gradually decreased, so better solutions are mostly
accepted, which causes exploitation of the best area. This process prevents being stuck in a

9
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local optimum. Busetti, in his overview [2] states that 40% of the run is usually spent on
exploitation. The probability is calculated using the difference between a new and a current
solution. Therefore, only a little bit worse solutions have a bigger chance of being accepted than
the significantly worse ones.

The technique is robust and applicable to many problems. However, because it is so general,
one must specify the number of parameters to use it:

representation of solutions and definition of a neighboring solution

initial temperature

energy function

annealing schedule

terminating condition

The search space is defined by the representation of solutions and their neighbors. The
neighbor() function should introduce small random changes into the given solution. All solutions
must be reachable with a sufficiently short path between any two of them - the diameter of the
graph should be small.

Initial temperature significantly influences the efficiency of the algorithm. If it is too high,
almost no solutions are rejected, and the algorithm “wanders around”. If it is too low, the
algorithm does not have a chance to explore, and it is likely to get stuck in the local optimum.
A suitable initial temperature is the one that accepts the worse solution with an 80 % chance.
However, it is often hard to guess such a temperature. A common approach is to generate several
random solutions and their neighbors and initialize the temperature according to them.

Solutions are evaluated by the energy function. It has to be computationally fast because it
is called in every iteration. The algorithm is independent of its implementation and takes it as
a black box.

The annealing schedule describes the behavior of the temperature during the search. When
T tends to zero, the probability P has to tend to zero too. There are many cooling schedules,
following linear, quadratic, or exponential curves. The one originally used by Kirkpatrick, Gelatt,
and Vecchi is the exponential one:

Tk+1 = α ∗ Tk

where α is a parameter close to 1 (the original paper used 0.9). The choice of the cooling schedule
depends heavily on the problem we are trying to solve.

We decrease the temperature every L iterations, which is equal to generating Markov chains
of length L. The efficiency of this approach is given by the rate ∆T/L. The length of the Markov
chain can be defined by the number of iterations or the number of acceptances, or whichever
comes first.

The terminating condition can be the number of temperature decreases or the number of
solutions to be generated. Another option is to stop when there is no improvement in an entire
Markov chain at one temperature, and the acceptance ratio is below some fixed point.

SA handles constraints in two ways. The first approach is to reject the generated solutions
that violate them. It is easy to implement, but if there are too many constraints or they create
disjoint search space, we cannot use it. In that case, we have to transform constraints into
penalties. The cost of violating constraints increases with the decreasing temperature.

Simulated annealing is based on slowly cooling down the temperature, which means that
the longer we wait, the better solution we get. From Busetti [2]: “It has been proved that by
carefully controlling the rate of cooling of the temperature, SA can find the global optimum.
However, this requires infinite time.” That is why special adaptations of the algorithm have been
developed.
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Sometimes, the algorithm can come across a promising solution, but it bounces away because
randomness is part of its decision process. So, the restart technique remembers the best solution
so far, and if the algorithm seems stuck, it begins from it. The restart can be random or be
triggered by the difference between the current and the best solution, or it can be performed
every n iterations if there is no progress.

Fast (FSA) and very fast (VFSA) simulated annealing algorithms were developed to speed up
convergence. The FSA proposes different distributions to be used while generating a new solution
that allows using a faster cooling schedule. The VFSA (or adaptive simulated annealing) adds an
individual approach to all dimensions of the solutions with their respective temperatures. That
supports the solution’s encoding with each variable from a different distribution.

4.2 Genetic Algorithm
A genetic algorithm (GA) is an evolutionary algorithm inspired by natural selection. Solutions
are encoded into chromosome-like data structures (individuals) and selectively combined to create
a better set of solutions (population). The source of information about GA was [16] for me.

To apply GA to a problem, we have to define encoding for solutions and a cost function
evaluating them. The algorithm begins with generating the initial set of solutions - the initial
population. That can be done randomly or with some heuristic. Then, in every iteration,
individuals are selected based on their fitness1 into an intermediate population. Individuals with
higher fitness have a higher chance of being selected. Solutions in the intermediate population
are combined with a crossover operator. Finally, the mutation is applied to a small percent of
the new population. This process repeats until a termination condition is met - total number of
generations, minimal criteria for solution quality, or maximal computation time.

Algorithm 2 Genetic algorithm
population← generate initial population()
while not terminate condition() do

intermediate pop← select(population)
new pop← crossover(intermediate pop)
population← mutate(new pop)

end while

The original, canonical genetic algorithm introduced by John Holland works with solutions
encoded as fixed-length binary strings. However, since that, other encodings and operators for
them were explored. The parts of the chromosome should be as independent of each other as
possible because GA is especially good at finding their best combination. Nevertheless, there are
techniques how to overcome this limitation.

The selection operator is responsible for selecting individuals for the intermediate population.
One individual can be chosen multiple times. There are several selection operators. Tournament
selection iteratively chooses k individuals and selects the best one of them. Roulette wheel
selection creates a “wheel” with sectors with proportionate size of how good the individual is.
Then it takes a pointer, “spins the wheel” and lets it randomly choose a parent. An important
feature of all selection operators is selective pressure. If it is high, it means that only the very
best individuals are chosen to reproduce - the algorithm is exploiting a promising area. However,
that also means that the population is losing its diversity. So, if the selective pressure is already
high at the beginning of GA, it leads to premature convergence. If the selective pressure is
low, worse individuals can be selected and pass on their genes that can create a new valuable
combination.

1solutions are evaluated with cost function (a lower value is better), this cost is then transformed into fitness
value (higher is better)
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A crossover operator is given two individuals (parents) and recombines their genes into new
individuals (children). The classical ones randomly choose one or several crossover points in
the chromosomes and swap these parts between parents. Although the crossover operator is
technically problem-independent, its implementation can significantly impact the efficiency of
the algorithm. That is why special operators are developed for problems with parts of the
chromosome dependant on each other.

Mutation should introduce small random changes into the solutions to help explore (and
prevent premature convergence). For example, flip a bit in the binary chromosome or add a
random value to a part of a chromosome.

The advantages of GA include robustness against noisy functions and adaptability to many
different kinds of problems. Its primary disadvantage is the compute time. Especially the cost
function is called for every individual in every iteration, so it has to be fast. Additionally, its
strength is finding the area with a global optimum, but it is inefficient in discovering the precise
optimal point.

To adapt GA to varying kinds of problems and improve its performance, several techniques
were developed. Elitism always allows the best individuals to carry on to the next population
unchanged to ensure that we will not lose the best solutions that we found so far. The island
model uses more separate populations that are evolved separately for most of the time, but after
each x iterations, migrations occur. During migration is the best individuals from every island
moved to another island. That allows exploitation of different areas on different islands and
prevents premature convergence. A similar model is the cellular GA that arranges individuals
in a grid. During selection, they can select a mate only from their neighborhood. This results in
the appearance of several “islands” with different trends in the genome that compete with each
other and gradually form larger and larger islands.

4.3 Greedy search
Greedy search or Hill climbing is a simple optimization algorithm for finding the exact point of
local optimum. It iteratively examines neighbors of the current solution and picks the best one
to continue with. The algorithm stops when there is no better solution in the neighborhood.

The significant disadvantage of this algorithm is that it performs only a local search and
easily gets stuck on the local optimum. It looks only on the direct neighbors and does not
accept a worse solution even when it would lead it to a much better optimum. That is why it is
mostly used with another global-search algorithm (for example, simulated annealing or genetic
algorithm).

Algorithm 3 Greedy search
solution← get initial solution()
neighbors← get neighbors(solution)
best neighbor ← neighbor with lowest cost(neighbors)
while cost(solution) > cost(best neighbor) do

solution← best neighbor
neighbors← get neighbors(solution)
best neighbor ← neighbor with lowest cost(neighbors)

end while



Chapter 5

Application of methods

This chapter explains how were methods from chapter 4 applied to the automatic interior design
problem. It also contains a description of representation of objects and their relationships.

The goal is to position all selected furniture into the given room so that it does not violate any
physical laws (like overlapping of the objects) and that the arrangement is functional (objects are
arranged according to their relationships). As well as professional designers, I divided the design
process into two parts: high-level functional zones planning and low-level object arrangement.
For a human designer, it is useful to first think of what parts of the room will serve to what
function. They focus on how the person will move through space (the “flow”) and how are the
features of the room utilized (for example, light from the window). Then they arrange furniture
to support these functions.

This division is especially convenient for the AI designer because it allows it to reduce the
search space significantly. Without zones, the search space is composed of all combinations of
furniture positions, so it is enormous. On top of that, most of its solutions are unacceptable -
objects overlap, or their arrangement towards each other does not make sense. With zones, AI
can first plan the space and find the best positions for all functional zones (there are not many of
them and have simpler placement requirements). Then it can arrange the furniture only within
its zone and mostly ignore the rest of the room.

5.1 Zones arrangement
I am using a classic simulated annealing algorithm with an exponential annealing schedule and
step decrease enhanced by a restart technique. Details are explained in chapter 6.

The simulated annealing continues until the solution is not sufficiently improving between
temperature decreases and an average acceptance ratio is below 30 %. After that, the solution
is finalized by a greedy search. All direct neighbors are generated in its every iteration, and
the best one is picked as the new solution. A direct neighbor solution has only one of its zones
changed, and that zone solution is altered by step of size 1.

A functional zone is a part of the room that serves one of the functions: sleep, work, relaxation,
dining, conversation, or storage. It contains the furniture that supports this function. For
example, the sleep zone will likely contain a bed and a nightstand.

A zone has a rectangular shape, a list of objects and a function. The function defines the
placement requirements of the zone. For the time being, I distinguish only the probability of the
zone being by the window. In the future, the algorithm could also consider sockets, pipes, or the
proximity of other zones.

13
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5.1.1 Representation
In simulated annealing, one solution encodes the arrangement of all zones in the room. It consists
of zone solutions that specify the position of individual zones. Zone’s position and shape are
given by coordinates of its rectangular bounding box inside a room.

To further limit the search space, I am distinguishing between storage zones and other zones.
Each storage zone contains only one piece of furniture - the storage object and they have fixed
size. They are taken differently because the study of professional designs shows that they are
mainly positioned independently from other furniture. Also, they are always positioned at the
wall, facing into the room. On the contrary, other zones have variable sizes, can be positioned
anywhere in the room, and do not have any orientation.

The next thing to specify is the neighborhood of a solution. A random neighbor is obtained
by first randomly choosing zone solutions to change (from one to all of them). Those zone
solutions generate their neighbor, which is put to the neighboring solution along with unchanged
non-chosen zone solutions. The storage zone’s neighbor is created by moving the storage object
along the wall in a random direction and distance. Other zone solutions are either moved in a
random direction or resized. The current size of the step limits all these changes.

5.1.2 Cost function
A cost function measures the quality of an arrangement. The zone is penalized for every violation
of physical constraints or design guidelines. The components of the cost function:

By window penalty Some zones need more light (for example, work zone) or benefit from the
view from the window (like conversation zone). These zones have non-zero probability p of
being by the window. The penalty is calculated from the distance of the zone from its nearest
window.

windows =
∑

z∈zones
p ∗ distance(z, window) ∗ 2

By wall penalty Zones are mostly positioned by the walls because then they leave a natural
aisle in the middle of the room that allows the best flow. Also, some furniture in the zone
requires being placed by a wall. Distances of all zone corners from their nearest walls are
measured, and the three smallest ones d1, d2, d3 are used for the penalty. The third-smallest
distance is divided by two, so it brings a slight advantage to the zones in the corners.

wall =
∑

z∈zones
d1 + d2 + (d3/2)

However, zones were often positioned from wall to wall (across the whole room) and blocked
the pathway. So, I added a condition that if the third smallest distance from the wall is
shorter than the aisle width, the zone gets an additional penalty of 100.

Overlap penalty Zones cannot overlap because the object arrangement algorithm depends on
it. It performs a search only for the furniture in its zone, and if zones overlap, their furniture
will likely create a physically impossible design. As shown in the image 5.1 from the original
article [14], every zone is expanded by the size of an aisle, and the overlapping area of this
shape with other zones is added to the penalty. This motivates zones to leave an aisle between
each other and allows the user to move through the room. Storage zones are extended only on
their front side because they can be positioned directly next to each other. The non-storage
zone ensures the aisle between a storage zone and a non-storage zone.

overlapping = sqrt(
∑

z∈zones

∑
other∈(zones\z)

overlap area(expanded(z), other))
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Figure 5.1 Illustration of overlap penalty calculation. Each zone is expanded by the aisle size and
an overlapping area is measured. Overlapping of aisles isn’t penalized. This approach ensures free aisles
between zones.

Zone shape The rectangular shape of the zone should not exceed some ratio of the sides. The
algorithm needs to avoid awkwardly long rectangles because it would be likely impossible to
fit some of the furniture or arrange it correctly. The penalty is added if one dimension is at
least 3-times larger than the other.

shape = min{
∑

z∈zones
max dimension(z)− 3 ∗min dimension(z), 0}/4

Free space penalty This penalty evaluates the usage of the available space. The room area
that is not covered by a zone or an aisle is added to the penalty.

free space = sqrt(unused area(room))

Door space penalty Doors have to stay accessible. I measure the overlapping of the area in
front of the door with the zones.

doors =
∑

z∈zones
overlap area(door area, z)

Space ratios The available space in the room should be divided in such way, that zones with
more or larger furniture take up more space. The perfect ratio perfect of the zone’s furniture
areas is calculated as the area of each zone divided by the sum of areas of all zones. Then it
is compared with the ratio of the current solution.

space ratio = 100 ∗ abs(perfect− current)

With that many penalties, the cost function is very noisy and has many local minimums.
Even a slight change in the arrangement of the zones can have a massive impact on the cost of
the solution.
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Figure 5.2 An example of how the individual’s chromosome can look like. The chromosome is as
long as its number of objects with multiple references to the same group.

5.2 Objects arrangement

After functional zones are positioned, furniture is arranged inside them using a genetic algorithm.
Each zone is optimized separately as one population. Storage zones are excluded because they
contain just one piece of furniture, and their placement was decided during the zone optimization
phase.

5.2.1 Representation
A fundamental element is an object. It has its category, shape, and orientation. Its category
defines its probability of standing against a wall, a space around the object that has to be free
and spatial relationships. There are three kinds of relationships - the object can be next to
another object, it can be opposite to another object, or several objects can be around a central
object.

Objects are put together in groups. When a new group is created, its objects are arranged
in relation to each other to fulfill their spatial relationships. The group is then moving as one
object, preserving the arrangement of objects inside.

Each individual has its chromosome that represents an arrangement of all furniture in one
zone. A chromosome is composed of object groups and has a length same as the number of
objects inside the zone. At the beginning of the algorithm, groups are formed randomly. Then,
object groups can be joined or divided by crossover or mutation. That means that multiple
references to one group are held, one on the position of each of its inner objects. Groups are
distinguished by its indexes.

5.2.2 Relationships
Every Object has an instance of Category. The category contains a list of relationships that
it can participate in. Every relationship has a list of category names that can be used as the
other side of the relationship. A parent is the object that owns the relationship and a child is
any object with suitable category.

Each relationship has its arrangement function that places the parent object and its children
objects to satisfy the relationship. It also has a cost function that evaluates how the relationship
is fulfilled for the parent object.

When a new object group is created, it arranges its objects as is shown in 4. The method
object_with_most_relationships(rest, [type of relationship]) takes a list of objects
that weren’t yet positioned and a type of relationship. It counts possible children of every object
for this relationship and returns the one with the most of the children. That one is taken as a
parent. The rest of the objects that have suitable categories are arranged to it as its children.
The objects that couldn’t be arranged are returned.
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Algorithm 4 Arrangement of objects in a group
rest← all inner objects
parent, num rel← object with most relationships(rest, AroundCenter)
if num rel > 0 then

rest← arrange around center(rest, parent)
end if
parent, num rel← object with most relationships(rest,OppositeTo)
while num rel > 0 do

rest← arrange opposite to(rest, parent)
parent, num rel← object with most relationships(rest,OppositeTo)

end while
parent, num rel← object with most relationships(rest,NextTo)
while num rel > 0 do

rest← arrange next to(rest, parent)
parent, num rel← object with most relationships(rest,NextTo)

end while

Around center
The around relationship is asymmetrical. Categories that can be in the center has AroundCenter
relationship and the ones that can be arranged around some center have Around relationship.

The Around relationship is the simpler one. The object with Around relationship calculates
its cost by finding all its possible parents and measuring its distance and orientation to them.
The penalty for wrong orientation (from the parent) gives penalty of 100. The smallest sum of
distance and penalty for orientation is returned as a cost. Around’s arrangement function does
nothing, all work is done in AroundCenter relationship.

To calculate the cost of AroundCenter, the area of central object is divided to four sectors
as is shown in 5.3. The sum of intersecting area of all possible children is calculated for every
sector. Then the difference of opposite sectors are calculated and the penalty is:

penalty = sqrt(min(diff up down, diff left right))

This motivates a visually balanced arrangement.
When a central object’s arrangement function is called, all possible children are divided into

four groups - north, south, east, west. The opposite groups are trying to have similar areas. The
groups on the shorter side of the central object has a smaller chance at assigning some furniture
to them. These groups are then positioned on the corresponding sides of the central object with
regular spaces, oriented towards its center and a center of the group aligned with the object’s
center.

Opposite to
The cost of OppositeTo relationship consists of penalty for direction, distance and alignment.
The penalty for wrong (not opposite) orientation is 100. Alignment is measured as the difference
of x or y coordinates of centers.

The arrangement of children towards the parent object starts by rotating children to have
opposite orientation to the parent. Then they are positioned in a line in front of the parent. The
distance between a parent and its child is given by their free spaces on their front side.

Next to
NextTo has two possible alignments - side and center. The side alignment means that back
sides of the objects are on one line. A typical example is a nightstand with a bed. The center
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Figure 5.3 Illustration of the sectors for calculation of the cost of AroundCenter relationship.

alignment arranges object centers next to each other.
The cost is composed of penalties for direction, distance and alignment. Orientations of

objects must be the same, otherwise the NextTo relationship gets penalty of 100. As the alignment
cost is taken the absolute difference between corresponding coordinates of objects.

5.2.3 Cost function
Individuals are evaluated with a cost function. It does not take groups into account, only
positions of objects. It consists of the following penalties:

Overhanging room A solution is penalized for any area of its objects outside of the room.∑
o∈all objects

area(o)− area(intersection(room, o))

Overhanging zone Objects should not overhang their zone (otherwise, they could overlap with
other objects from neighboring zones). They are penalized for their area outside the zone
plus for the distance from the zone, if they are completely out.∑

o∈all objects

overhanging area(o, zone) + distance(o, zone)2/10

Overlapping Objects cannot overlap. Also, most objects have some space around them that is
supposed to be free too - for example, the space in front of the sofa. So, I expand all objects
by their free spaces and penalize any overlapping.∑

i∈{0..len(objects)−2}

∑
j∈{i+1..len(objects)−1}

overlap area(objects[i], objects[j])

By wall Some categories of objects are more likely to stand against a wall. They can be by it
with its back or with one of its sides (the category also defines that). Costs are calculated for
all “by wall” sides, and the smallest one is added as a penalty. The cost of one side is given
as a sum of distances of side’s corners to their nearest wall.∑
o∈all objects

min({side cost|side cost = distance(corner1, wall) + distance(corner2, wall)})
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Figure 5.4 Illustration of one point crossover with chromosomes containing groups of objects. A
random point is chosen and parts after it are switched.

Objects relationships Every category has defined the most relevant relationships, and every
object is trying to fulfill at least one of its relationships. Relationships that cannot be satisfied
because there are no objects with suitable categories are skipped.∑

oinall objects

min({relationship costs(o)})

5.2.4 GA operators
As a selection operator, I chose stochastic universal sampling (SUS). Individuals are evaluated
by the cost function and assigned a fitness according to it. SUS is an analogy to having a
roulette wheel with parts proportionally large to the fitness of individuals. We are selecting with
N equally spaced pointers, where N is the number of children we want to get.

Crossover is a variation on a classical one-point crossover. A point inside a chromosome is
randomly chosen, and objects after it are switched between the chromosomes and form two new
children chromosomes. That might divide or join some of the groups, as is shown in figure 5.4.
Each part of the chromosome knows to group with which id it belongs. New groups will rearrange
themselves according to the relationships inside them.

Mutation is applied to a random part of the population to explore the search space. To ensure
that the most promising solutions are not lost, ten best individuals are always copied into the
next generation without a change. There are five types of mutation:

A random group is moved randomly (the shift is chosen, so the group does not leave the zone
area).

A random group is rotated to the left or the right around its center.

A random group is snapped to the closest wall.

Two random groups are joined together.

A random group is divided.

Mutations are designed to apply small changes to the given chromosome that improve the
arrangement of the furniture.

5.3 Chapter summary
Functional zones mark the parts of a room that serves a specific function (sleep, dinning, storage,
conversation, . . . ). Zones are planned with simulated annealing. A solution consists of zone
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solutions that encode the positions and shapes of zones in a room. Storage zones are treated
differently because they contain only one storage object positioned by a wall facing inside a
room. Cost function evaluates zones’ distances to windows and walls, their overlapping, and the
available space usage.

Furniture is positioned inside zones with a genetic algorithm. Objects inside zones are com-
bined into groups that procedurally arrange themselves. The GA is optimizing the composition
and positions of these groups. Furniture has categories that define spatial constraints and re-
lationships with other objects (around, opposite, and next to). Solutions are evaluated based
on their overlapping, distance to a wall, and satisfaction of their relationships. I use stochastic
universal sampling to select the parents, one-point crossover to combine them, and mutations
designed to improve the designs.



Chapter 6

Implementation

This chapter contains implementation details of the system and used technologies. Tuning of the
genetic algorithm and simulated annealing is described.

The whole program is written in Python. I chose the Kivy library for the user interface
because it is multi-platform, GPU accelerated, and provides a user-friendly, easily extensible
interface. For geometric computing, I decided to use the Shapely package.

The code is organized into four packages:

representations contain all common classes that represent the room, the furniture, or features
of these objects. All other packages use them.

ui package consists of kv and Python files that define the user interface.

arrangement is the core package containing algorithms for space planning and furniture ar-
rangement.

database package provides access to databases of furniture categories, room functions, and
furniture.

Figure 6.1 Overview of the system.

GA’s and SA’s hyperparameters were tuned on a set of test rooms that consists of 14 L-shaped
rooms, 12 rectangular rooms, and 10 rooms of other varying shapes. Rooms contain different
combinations of functions and furniture. I measured the cost of the final solution and, for SA,
a number of iterations. Because every room is different, I divided the costs (and iterations) by

21
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their sums for that room, grouped data by the parameters that I was testing, and took their
mean.

This thesis aims at implementing a system that is a proof-of-concept. It was not developed as a
commercial software application. Concretely, that simulated annealing with a genetic algorithm
can be used to generate livable interior designs. So, the system as a software product isn’t
thoroughly tested and doesn’t contain a proper input validation. That could be a subject of
future work.

6.1 User interface
I implemented the user interface with the Kivy library. Kivy divides its code into Python and
kivy language (in .kv files). Kivy provides elementary UI elements - widgets, like Button, Label,
or TextInput. They are arranged together in layouts. The appearance and hierarchies of widgets
are defined in kivy files. Their behavior is added in Python code. Every widget has a canvas, an
area where the graphics elements can be drawn (like rectangles, ellipses, . . . ).

The entry point of the program is the DesignerApp class. It extends kivy’s App class that
provides two important methods - build() and run(). In build(), all screens are initialized
and given to kivy’s ScreenManager that switches between them.

There are three screens for taking user’s requirements - the shape and features of the room,
its functions, and furniture that is supposed to be arranged inside zones. Then comes the design
process, which is divided into the planning of the zones and furniture arrangement. First, a
screen with optimized zones is shown, and if it is satisfactory, the user can continue on the
screen with the arrangement of the furniture.

Every screen contains one top layout that extends the MainLayout class that defines the
common placement of the UI elements - heading of the screen, the previous and the next button,
and a horizontal BoxLayout for content.

6.1.1 Requirements
The requirements are entered on RoomScreen, FunctionsScreen and FurnitureScreen.

To allow the user to input requirements in arbitrary order and freely switch between require-
ments screens, I created a central class RoomBuilder. It gathers all features that the user enters
and notifies other parts of the requirements UI about the changes (the Observer pattern). It has
its inner instance of the Room and provides an interface for the UI elements to modify it.

Room shape and features
The user specifies the shape and features of the room with a command line. The progress is
shown on the canvas above the command line. The screen for defining room shape and features
contains a help box with all available commands, a history box with commands executed so far,
a canvas with visualization of the room and the command line.

The state is held in CanvasState class that remembers the command history, draws on canvas
(executes commands), and notifies about changes (the Observer pattern). It keeps track of the
center of the drawing, so the visualization of the room is always in the center of the canvas.
When the user writes a command in the command line and hits enter, CommandLine creates the
new command with CommandFactory and adds it to the CanvasState. CanvasState recalculates
the center, updates its history, redraws the room, and notifies its subscribers about a change.
CanvasState saves the inputted shape to RoomBuilder when the screen is switched to the next
one.

Because this is the first version of the system, there is no input validation yet. It needs to be
checked whether the walls aren’t skewed (arrangement of the storage zones assumes that) and
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room features are placed in possible places.

Figure 6.2 The screen for specifying the shape of the room and its features (like windows, doors and
sockets).

Room functions
The functions screen consists of two columns - the left one for selecting the new function and
the right one showing the selected functions. The user chooses from a drop-down containing all
available functions that are obtained from the FunctionsDatabase.

When the “Add” button is clicked, the function is handed over to the RoomBuilder that
transforms it into a new zone and adds it to the room. Then the RoomBuilder notifies its
subscribers about the change. The layout showing the selected functions is among them and
adds the new function to its list.

Figure 6.3 The screen for selecting room functions.

Furniture
In the furniture screen, the user can choose a super-category and then one of its categories. The
list of available furniture from this category appears. When one of them is clicked, an image of
it appears by the cursor. The user can put it to any of the zones on the right. That is done
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by SelectEvent. When a piece of furniture is clicked, it sets a time event that moves with the
image and stores the furniture piece. When ZoneBox is clicked, it cancels the event and saves
the object to the corresponding zone.

Figure 6.4 The screen for selecting furniture that will be arranges inside zones.

The furniture comes from the 3D-FUTURE database [4] which contains nearly 10 000 models.
So, I use RecycleView for the list of available furniture that prepares only those furniture cards
that are currently visible. That prevents performance degradation and long downloading of the
furniture from the remote server. Images are also cached to reduce network load.

6.1.2 Presentation of results
After requirements are entered, the user can move to the arranging phase by clicking “Start”
button on the furniture screen. The resulting room is got from the RoomBuilder and, with the
help of ScreenManager, given to the zone planning screen. Entering the zones screen triggers
the zones arrangement algorithm. When it finishes, the plan of the space is shown. By clicking
“Continue”, the plan is given (again with the ScreenManager) to the objects screen, and the
arrangement of the furniture begins. When it is done, the result is drawn to the canvas.

Figure 6.5 The screens showing the result of zone planning and furniture arrangement.
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Figure 6.6 Overview of ui for taking user requirements.
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6.2 Simulated annealing

Simulated annealing is a general technique, so we have to specify many parameters to adapt it
to the problem. Their choice has an enormous influence on the efficiency and result quality of
the algorithm.

The simulated annealing algorithm is implemented as a class that has to be instantiated for a
given room. Then, the run() method has to be called to start the computation. The constructor
of SimulatedAnnealing class takes restart and init_temp parameters. Those are interfaces
(in Python implemented as abstract classes) that allow easy switch of algorithm components.

Figure 6.7 Simulated annealing for zone planning

Initial temperature
The first parameter is the initial temperature. The ideal initial temperature is the one that
averagely accepts a worse solution with 80 % probability. The problem is that zone arrangement
is always performed on a different room with different zones. So, the average value of the cost
function in individual cases varies extremely.

I implemented two variants of the initial temperature calculation. Both take 200 random
solutions, generate their neighbors with the initial max step, and measure the absolute cost
difference between them. Then, the first one MaxDiff finds the largest difference between them
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Table 6.1 Simulated annealing initial temperature evaluation

Init type Parameter Number of iterations Final cost Score
MaxDiff 0.8 0.227414 0.262219 0.489633
MaxDiff 1 0.249747 0.244990 0.494737
Average - 0.255041 0.246064 0.501105
MaxDiff 1.2 0.267798 0.246727 0.514525

max diff and returns:
T = c ∗max diff

where c is a constant. I experimented with c = {0.8, 1, 1.2}
The second one Average calculates average difference from all trials avg diff and returns the

new initial temperature:

T = −avg diff
ln(0.8)

Every method was run five times for each room. The results are shown in table 6.1, the score
is calculated as the sum of number of iterations and final cost columns. Even though MaxDiff
with parameter 0.8 achieved the best score, it had the worst final cost. So I use the second-best
result - MaxDiff with parameter 1.

Hyperparameters
To achieve the best results possible, I ran the simulated annealing algorithm with different
combinations of its hyperparameters, collected performance data, and evaluated them. Simulated
annealing relies on the following hyperparameters:

Iterations per temperature For every temperature, p iterations of generating and evaluating
a neighbor are run. They give the algorithm time to explore and find the best area before
decreasing the temperature and reducing the space that is examined.

p = 30, 100, 200

Cool down ratio The temperature is decreased every time after a fixed number of iterations
according to an exponential annealing schedule: Tk+1 = p ∗ Tk.

p = 0.8, 0.9, 0.95

Step decrease ratio The size of step is limiting how different a solution’s neighbour might be.
I set the initial step to min(room dimensions)/2. Then is step decrease the same as at the
temperature: Sk+1 = p ∗ Sk.

p = 0.8, 0.9, 0.95

Every combination of the hyperparameters was run on all rooms. I took only results with
final cost better than was its median. In figure 6.8 are results sorted by the final cost (left)
and by the sum of cost and number of iterations. The final cost is almost the same, but the
number of iterations (and with it, the run-time of the algorithm) varies. Therefore, it is more
advantageous to take the parameters with the lowest number of iterations which is 50 iterations
per temperature, 0.9 cool down rate, and 0.95 step decrease ratio.
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Figure 6.8 Plots showing the results of SA hyperparameters tuning - iterations per temperature, cool
down ratio and step decrease. The final cost is almost the same but the number of iterations grows
significantly.

Restarts
The restart technique is supposed to speed up the algorithm and improve the quality of its
results. Its main function is to unstuck a solution from the local optimum by returning it to a
more promising starting point. I experimented with four types of restarts:

Random There is a small chance p that restart will happen in each iteration.

p = 0.005, 0.01, 0.05

Number of iterations If the algorithm cannot find a better solution for p iterations, restart
is performed.

p = 5, 10, 15

Difference Restart is triggered when the cost of the current solution is 1 - p % greater than
the cost of the best solution.

p = 0.4, 0.5, 0.6

Combination of difference and number of iterations Algorithm performs a restart when
at least one of the conditions is satisfied. Either the current solution is much worse than the
best one, or there was no improvement for a number of iterations.

p = (0.3, 10), (0.4, 10), (0.5, 10), (0.3, 20), (0.4, 20), (0.5, 20)

I tested multiple values of parameters for all restarts and a no restart for comparison. In
figure 6.9 are plotted results sorted by type (left) and by final cost (right). Not all restarts
are beneficial, and different types have different effects. The RandomRestart improves final cost
but extends computation time significantly. NumiterationsRestart is very similar to not using
the restart technique at all. DiffRestart is just increasing the number of iterations with no
cost improvement. I decided to use DiffNumCombinationRestart with a 0.3 diff rate and 20
iterations without change because it achieved the lowest cost without significantly prolonging
the run time.

6.3 Genetic algorithm
The furniture is arranged inside zones with GA. As the SA class, it has to be instantiated for
every room and started with the run() method. The constructor of GeneticAlgorithm class
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Figure 6.9 Plots showing the results of SA restart types testing.

Table 6.2 Initial groups size

Type of groups Final cost
Random groups 0.473741
Small groups 0.526259

takes (in addition to others) an InitializationOperator and a list of MutationTypes. The GA
optimizes several populations (zones) at once because I plan to implement cooperation between
them (for example, objects overlapping).

In contrast with the original paper [14], I had to devise a new representation of furniture
arrangement that better supports groups of furniture. I experimented with how to generate initial
solutions. I tried creating chromosomes with one object in each group so that the algorithm can
put together the best groups. As another option, I implemented the initialization operator that
creates groups randomly.

I ran both initialization operators three times on all test rooms and averaged final costs for
each room. Randomly created groups achieved better results, probably because they sample the
search space better.

Because the number of furniture in the zones varies, I calculate the population size as the
population size rate times the number of furniture in the zone. For the time being, the GA runs
for a fixed number of iterations. So, I tested it with the population size rate to find the best
combination.

As the best option proved both max iterations and population size rate equal 50.
Classic GA uses a high crossover rate and a low mutation rate. That ensures the convergence

of the algorithm. However, the authors of the article [8] applied mutation on 50 % of the new
population. I also experimented with high mutation rates, and they proved successful. Because
I use a fixed number of iterations, I don’t need the GA to converge fully. Figure 6.11 visualizes
the final costs of runs with different reproduction rates. Crossover rate 75 % and mutation rate
75 % achieved the best results. Compared to that, classic GA with a low mutation rate and high
crossover rate had the highest cost.
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Figure 6.10 Genetic algorithm for furniture arrangement

Table 6.3 Population size rates and number of iterations

Max iterations Population size rate Final cost
50 50 0.091860
50 75 0.097976
75 75 0.098001
25 75 0.099138
25 50 0.103068
75 50 0.111065
75 25 0.125846
50 25 0.130175
25 25 0.142871
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Figure 6.11 Visualization of results for different combinations of mutation and crossover rates. The
GA achieved lowest cost with both crossover and mutation rate 75 %.

6.4 Dataset
One of the contributions of his thesis is the incorporation of a large dataset of furniture. The
3D-FUTURE: 3D FUrniture shape with TextURE contains almost 10 000 models of furniture.
An image and a obj model are provided for every furniture piece. Each model has a unique id,
super-category, category, style, theme, and material.

I also added a size attribute calculated from the dimensions of the model. However, not
all models have the same size units, most are in meters, but some are measured in centimeters.
Because I translate all sizes to cm, some models have unrealistic dimensions. I solved this problem
by checking if the model has some dimension larger than 10 m and if so, I divide it by 100.

The dataset isn’t perfectly organized. Some objects are included in the wrong categories.
This would have to be corrected by hand, but that is beyond the scope of this thesis.

Data are stored on the faculty server in a folder hierarchy (super-category/category/models).
This is a temporary solution, and a database should be created in the future.

6.5 Chapter summary
The system is implemented in Python and is using Kivy library for user interface and Shapely
package for geometric calculations. The program provides UI for entering the shape and features
of the room, the functions of the room, and selecting furniture. The presentation of the results
is divided into showing the positions of the zones and visualization of the final design.

The efficiency and the quality of results of simulated annealing were improved by tuning
the method of initial temperature calculation, restart techniques, and SA’s hyperparameters
(iterations per temperature, cool down ratio, and step decrease ratio). To enhance the GA,
I experimented with mutation and crossover rates, random and small initial group sizes, and
reproduction rates. Unconventionally, I decided on a 75 % mutation rate because it achieved
the best results in the experiments. I can use it because I run the GA for a fixed number of
iterations.

I incorporated the 3D-FUTURE dataset into my work. It contains almost 10 000 models of
categorized furniture. However, it is not perfectly organized.
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Results

This chapter presents results of experiments on automatic interior design. By “testing of the
system” I mean testing the selected algorithms whether they can produce usable interior designs.
The goal of this thesis isn’t to create a perfect software product but to experiment with the
algorithms.

7.1 Test set
The proposed system was tested on a set of rooms that consists of 14 L-shaped rooms, 12
rectangular rooms, and 10 rooms of other varying shapes. Rooms contain different combinations
of functions and furniture. Figure 7.1 demonstrates the diversity of test data.

The shape of the room is drawn with black lines and coordinates in the corners. Windows
are marked with blue, doors are marked with light brown. The zones are visualized as colorful
rectangles. Each color corresponds to a zone function:

Function Color
conversation yellow

sleep blue
work red

relaxation green
dinning purple
storage brown

Grey rectangles indicate positions of objects with the category written on them. The actual
area of the object is drawn in darker grey, and it has a red line on the front side. The lighter
grey visualizes the space around the object that is supposed to stay free.

7.2 Run times
I ran the design process ten times for each test room and collected data about their run times.
Figure 7.2 shows the dependency of a run time of simulated annealing on a number of zones in
the room. Even though there is some randomness involved, the run times follow an exponential
curve. The most time-consuming operation in SA is the random neighbor generation and the
calculation of the cost function. The cost function is executed in every iteration, and the more
zones there are, the more complicated the computation is. When generating a neighbor, a
solution (containing positions of all zones) changes a random number of its zones. That causes
a larger variance of the run times.

33
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Figure 7.1 On the left are counts of room features and storage and other zones. The right part shows
histograms of room areas and areas of furniture in zones.

Figure 7.2 Run time of SA in dependence on number of zones (left). Run time of GA in dependence
on number of furniture (right).



7.3. Experiments 35

Figure 7.3 The histogram of scores

The results of GA aren’t that even. The run time grows with the growing number of objects,
but it also depends on the composition of furniture in the zone. Some categories of furniture
have more relationships than the others. That influences computation speed because, during a
cost function calculation, the cost of every object’s relationship is calculated.

7.3 Experiments
Even in real life, it isn’t easy to measure the quality of an interior design. The evaluation will
always be subjective. Authors of related papers used perceptual studies or comparisons with
other similar works to assess the quality of their methods. This is beyond the scope of this thesis
and can be a subject for the following works.

To decide about the system’s usability, I ran the design process ten times for each test room
and created a subjective evaluation of the results. I assigned each layout the following attributes:

Label I marked the best and the worst design from all trials on the specific room.

Room block If there is an inaccessible part of the room (blocked by furniture).

Usability The design is usable if there are no inaccessible parts of the room and no objects
overlap.

Relationships How many objects are correctly arranged towards another object.

Score Subjective impression of the room based on arrangement of the furniture. Unusable
designs cannot achieve a score higher than 5.

74.79 % of the designs are usable. Figure 7.3 shows the histogram of scores. Most of the
designs that got a score of 4 or 5 had one group of objects blocking a part of the room, making
the design unusable, but the rest of the layout was good.

Table 7.1 shows the distribution of usable and unusable designs. Out of 353 layouts, 263 were
usable. Most of the unusable arrangements were caused by blocking a part of the room. That
should be prevented by the combination of overlap penalty for zone arrangement and the penalty
for overhanging the zone during the furniture positioning. However, because zones are in some
cases too small to accommodate its furniture, the objects have to partly stand out of the zone.

As was described in chapter 3, both simulated annealing and genetic algorithms were already
used for automatic furniture arrangement and achieved promising results. The novelty of the
system is in using them together and for different parts of the design process. The simulated
annealing wasn’t, to my knowledge, applied to the planning of the functional zones. The genetic
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Table 7.1 The usability of designs

Overlapping objects No overlapping objects
Part of the room inaccessible 12 65

All parts of the room accessible 13 263

algorithm was used in [8] to arrange furniture, but I am narrowing its search space by giving it
one zone at a time.

The figures 7.4, 7.5, 7.6, 7.7, 7.8 present the examples of the generated designs. They are
grouped according to their average scores from all test runs. The important features that make
the rooms from figure 7.4 easily optimizable are enough space in the room and the simplicity
of their relationships. On the other hand, the rooms in figure 7.8 have an average score be-
low 5. Those rooms are extremely crowded or contain furniture groups that have complicated
relationships.

The results show the ability of a system to design rooms with varying shapes and features.
The zone arrangement needs an improvement because most unsatisfying results were caused by
a small area or dimensions of the zones. It will be a subject of future research.

7.4 Comparison with our paper
My Bachelor thesis builds on work from a Research Summer program at the Faculty of Informa-
tion Technology. During this program, I developed the first versions of simulated annealing and
genetic algorithm. In cooperation with my supervisor Ing. Mgr. Ladislava Smı́tková Jank̊u, Ph.D.,
I wrote a paper about it that was accepted at IEA/AIE 2021 conference and will be published
in July.

The contributions of this thesis are following:

Object relationships The paper works with manually created input data where relationships
are defined on the level of furniture. The relationships form a spatial graph that should
be satisfied. The current system incorporates a large dataset of categorized furniture with
multiple possible relationships defined for every category. The separation of relationships
from concrete objects allows greater extensibility.

Object groups in GA The GA in our paper optimizes the positions of objects. The thesis
introduces groups of objects in an individual’s chromosome. That makes the arrangement of
furniture towards each other easier.

User interface The original algorithms took input from XML and configuration files and out-
putted an image of the design. Now, the system has a simple UI for taking user requirements
and presenting the result.

Improvement of SA and GA I added a restart technique to enhance SA and experimented
with different combinations of hyperparameters. GA had to be modified to work with object
groups.

Figure 7.9 shows the same (or similar) rooms optimized with the original algorithms and the
the new system.
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Figure 7.4 The rooms that achieved the average score from all runs higher than 9.
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Figure 7.5 Examples of rooms with average score between 8 and 9.
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Figure 7.6 Examples of rooms with average score between 7 and 8.
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Figure 7.7 Examples of rooms with average score between 6 and 7.
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Figure 7.8 The rooms that algorithms weren’t able to sufficiently optimize (average score below 5).
They contain a lot of furniture or have complicated relationships.
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Figure 7.9 On the left are results of the algorithms presented in our paper. On the right are rooms
optimized with the system presented in this thesis.
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7.5 Chapter summary
The proposed system was tested on a diverse set of 36 rooms. The design process was run ten
times on each room, and 75 % of the results were usable. The rest was unusable mainly because
one group of objects blocked a part of the room. The examples demonstrate the usability of the
system for interior design.

The system was compared with the first implementation of core algorithms that will be
published in a paper at IEA/AIE 2021. The contributions of this thesis include the separation
of relationship definitions from concrete objects, incorporation of a large dataset of categorized
furniture, implementation of the user interface, and improvement of algorithms for zone planning
and furniture arrangement.
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Conclusion

This bachelor thesis aimed to create an algorithm for automatic furnishing of a given interior using
artificial intelligence methods. The algorithm has to be implemented as a part of an experimental
system that accepts requirements from the user and have a graphical user interface.

First, I summarized the research on automatic interior design and categorized it into three
groups - search-based, graph-based and data-based. Search-based methods can incorporate a
wide variety of user requirements, but they are slow (one layout takes seconds or minutes to
generate). Graph-based methods are capable of capturing complicated relationships between
objects. Their disadvantage is that the spatial graph itself does not uniquely define a layout. So
they have to be used with another method that finds a design satisfying the spatial graph. The
most significant advantage of data-based methods is their speed (one layout is generated in a
couple of milliseconds). However, they rely on neural networks that are trained only to imitate
human-created designs, so they are less able to incorporate user requirements.

The design process proposed in this thesis is divided into high-level planning of functional
zones and low-level furniture arrangement inside these zones. I chose simulated annealing for
the planning of the functional zones because the cost function that evaluates them is very noisy.
SA can overcome the many local minimums. Furniture is arranged by a genetic algorithm. This
algorithm searches for the best composition of groups of furniture and their positions.

I implemented SA with an exponential annealing schedule and decreasing step size. A solution
is composed of positions of all zones and evaluated based on overlapping, shapes of its zones, and
their distances from walls, windows, and doors. The performance of SA is enhanced by a restart
technique that returns to the best solution found so far. I experimented with different methods
to decide the initial temperature, restart techniques, and combinations of hyperparameters to
improve the efficiency and quality of results of SA.

The genetic algorithm evolves several populations at once - one per functional zone. Chro-
mosomes consist of groups of objects where each of them is arranged together procedurally. The
compositions of the groups and their positions are optimized with a crossover operator and mu-
tations. A new population consists of ten best individuals from the previous generation and
individuals created by crossover and mutation. 75 % individuals are selected as parents with
stochastic universal sampling and produce children. The rest is made of the best individuals. A
mutation is applied to 75 % of these individuals. The GA runs for 50 iterations. The reproduction
rates were selected based on experiments with their combinations.

Simulated annealing and a genetic algorithm were already applied on automatic interior
design and achieved promising results. The novelty of the proposed method lies in combining
them together and using them for different parts of the design process.

I tested the arranging process on 36 different rooms. I ran the design process ten times for
every room and assigned a score to each of the results. 75 % of the resulting layouts were usable
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(with no parts of the room blocked and no overlapping of the furniture). The most mistakes in
the designs were caused by zones that were too small to accommodate its furniture. The zone
planning will be the subject of future work. The chapter 7 provides examples of interior designs
created by the system. It was able to furnish rooms of varying shapes, number of zones and
number of furniture.

This thesis builds on a work from the Research Summer on Faculty of Information Technology
(CTU) where I developed the first version of core algorithms (GA, SA) and wrote a paper [14] on
it in cooperation with my supervisor, Ing. Mgr. Ladislava Smı́tková Jank̊u, Ph.D. The paper was
accepted at IEA/AIE 2021 conference. The contributions of this thesis are incorporation of a 3D-
FUTURE dataset of categorized furniture, separating concrete objects from general properties of
their categories, and implementation of user interface. The core algorithms were also improved
- the SA algorithm was enhanced by restart technique and tuned, and the GA now operates on
self-arranging groups of objects.

The proposed method is part of the more extensible research on usage of artificial intelligence
methods for automatic interior design. It will be utilized into a larger system.

I will continue to work on the system and improve the zone planning. Additionally, I want to
focus on combining furniture into hierarchies and their arrangement inside them. Also, further
study of the evaluation of designs is necessary. The system as a software product provide many
possibilities for future works. For example, the user interface lacks input data validation and a
drawing interface would be more user-friendly than a command line for specifying the shape of
the room.
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Contents of attached medium

readme.txt........................................a brief description of medium contents
src

impl..............................................source codes of the implementation
experiments .......................................inputs and results of experiments
thesis.................................................. source of the thesis in LATEX

text .................................................................. text of the thesis
thesis.pdf.................................................text of the thesis in PDF
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