
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Markov Logic Networks with Complex
Weights and Algorithms to Train Them

Bc. Jan Tóth

Supervisor: Ing. Ondřej Kuželka, Ph.D.
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2021



ii



MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457116Personal ID number:Tóth JanStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Artificial IntelligenceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Markov Logic Networks with Complex Weights and Algorithms to Train Them

Master’s thesis title in Czech:

Markovské logické sítě s komplexními váhami a algoritmy pro jejich učení

Guidelines:
1. Familiarize yourself with Markov logic networks (Richardson and Domingos, 2006) and their extension into the complex
domain (Kuzelka, 2020).
2. Implement an algorithm/algorithms for marginal inference in Markov logic networks with complex-valued weights (C-MLNs)
or in a tractable fragment thereof.
3. Using the solution to the previous point, design and implement a weight-learning algorithm for C-MLNs (optionally also
for structure learning).
4. Compare the quality of predictions of your algorithm with classical MLNs.

Bibliography / sources:
1. Richardson, M., and Domingos, P. (2006). Markov logic networks. Machine learning, 62(1-2), 107-136.
2. Kuzelka, O. (2020). Complex markov logic networks: Expressivity and liftability. In Conference on Uncertainty in Artificial
Intelligence (pp. 729-738). PMLR.
3. Schulte, O., Khosravi, H., Kirkpatrick, A. E., Gao, T., and Zhu, Y. (2014). Modelling relational statistics with bayes nets.
Machine Learning, 94(1), 105-125.
4. Das, M., Wu, Y., Khot, T., Kersting, K., and Natarajan, S. (2016). Scaling lifted probabilistic inference and learning via
graph databases. In Proceedings of the 2016 SIAM International Conference on Data Mining (pp. 738-746). Society for
Industrial and Applied Mathematics.
5. Van Haaren, J., Van den Broeck, G., Meert, W., and Davis, J. (2016). Lifted generative learning of Markov logic networks.
Machine Learning, 103(1), 27-55.

Name and workplace of master’s thesis supervisor:

Ing. Ondřej Kuželka, Ph.D., Intelligent Data Analysis, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 21.02.2021

Assignment valid until: 19.02.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Ondřej Kuželka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1



III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1



Acknowledgements
I want to express my deepest gratitude
to my supervisor, Ing. Ondřej Kuželka,
Ph.D., for his valuable advice, patience
and guidance while elaborating this thesis.
This work would not be possible without
his collaboration.

Declaration
I declare that I elaborated this thesis
on my own and that I mentioned all
the information sources that have been
used in accordance with the Guideline
for adhering to ethical principles in the
course of elaborating an academic final
thesis.

Prague, date . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
signature

v



Abstract
This thesis studies Markov logic networks
with complex weights (complex Markov
logic networks, C–MLNs). Those are an
extension of Markov logic networks that
achieves full expressivity in terms of

count distributions. Slight modification
of the C–MLN definition is proposed
attempting to solve a few identified

problems. An inference procedure based
on Gibbs sampling is developed for the

model. Two parameter learning
algorithms are proposed as well. The

first one utilizes the maximum likelihood
estimation. Due to the non-convexity of
the problem, gradient descent-based

maximization does not perform well. The
other learning procedure uses the discrete
Fourier transform to encode an arbitrary
count distribution as a C–MLN. However,
it requires a huge data set, and it learns
weights of unnecessarily large dimensions.

Keywords: Markov logic networks with
complex weights, inference, Gibbs
sampling, learning, maximum likelihood
estimation, discrete Fourier transform

Supervisor: Ing. Ondřej Kuželka, Ph.D.

Abstrakt
Tato práce se zabývá markovskými

logickými sítěmi s komplexními vahami
(komplexními markovskými logickými
sítěmi, C–MLNs). Ty jsou rozšířením

markovských logických sítí, které je plně
expresivní v kontextu počtových

distribucí. Text identifikuje několik
problémů s původní C–MLN definicí a
navrhuje její úpravu. Dále je odvozena
procedura pro inferenci založená na

Gibbsově vzorkování. Kromě toho jsou
odvozeny dva algoritmy pro učení

parametrů. První z nich je založen na
metodě maximální věrohodnosti. Z

důvodu nekonvexity problému nepodává
maximalizace založená na gradietním

sestupu dobré výsledky. Druhý
algoritmus využívá diskrétní Fourierovu

transformaci k vyjádření libovolné
počtové distribuce jako C–MLN.

Algoritmus nicméně vyžaduje velkou
trénovací množinu a učí se váhy o

zbytečně vysoké dimenzi.

Klíčová slova: markovské logické sítě s
komplexními vahami, inference, Gibbsovo
vzorkování, učení, metoda maximální
věrohodnosti, diskrétní Fourierova
transformace

Překlad názvu: Markovské logické sítě
s komplexními váhami a algoritmy pro
jejich učení
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Chapter 1
Introduction

The are two main approaches to machine learning. Those are statistical
and symbolic.

The statistical approach assumes a probability distribution over the data
which it aims to approximate. It often makes several limiting assumptions to
do so. The most common being identically independently distributed (IID)
samples from the target distribution and a fixed-sized vector for each data
point that provides all necessary information for accurate approximation of the
target distribution. The statistical perspective allows us to mathematically
describe the uncertainty that may be present in the data. Among other things,
that allows to, relatively with ease, reconcile any apparent contradictions in
a data set.

On the other hand, the symbolic approach relies on mathematical logic to
describe the data and infer new information (i.e., learn) from it. Using logical
formulas to represent provided data points allows one to avoid the assumption
of a fixed-sized input. It may also lead to a more natural and more easily
explainable models. However, the symbolic approach has its drawbacks, as
well. For one, it cannot, in its purest form, deal with contradictions in the
data set. Furthermore, first-order logic (FOL), which is required for any
relational modelling, is only semi-decidable [1].

Statistical relational learning is a discipline of machine learning that aims
to unite the two approaches described above. It deals with relational models
that additionally manifest some uncertainty.

Several techniques for combining FOL and probability theory have been
proposed. Markov logic networks (MLNs) are one of the most straightforward,
yet the most powerful among them [2]. Some insufficiencies of MLNs in terms
of their expressivity were pointed out in [3]. The paper then proposed an
extension of MLNs to complex Markov logic networks (C-MLNs), making
them fully expressive. However, the new model is incompatible with already
existing algorithms developed and implemented for classical MLNs. Some are
no longer applicable at all, others must be modified.

This thesis aims to develop basic inference and learning techniques for C-
MLNs. To do so, Chapter 2 first summarizes necessary background material,
definitions, and some notation that this text works with. Chapter 3 then
further explores the C-MLN model and identifies its challenges. Inference
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1. Introduction ...................................
and learning are tacked in chapters 4 and 5, respectively. Finally, Chap-
ter 6 describes implementation of the proposed techniques and summarizes
experiments performed to assess their quality.

2



Chapter 2
Background

2.1 First-Order Logic

This text uses a function-free subset of FOL, sometimes referred to as
relational logic. It should be noted that the following descriptions of logical
constructs are brief, and they are, in no way, meant as a replacement for
proper mathematical definitions. Those are usually quite cumbersome, and
restating them here would not be beneficial to the remainder of this text in
any way. Hence, they are omitted with a note that they can be found in more
specialized literature, e.g., [1].

2.1.1 Syntax

Subsequent sections assume a finite set of (typed) constants ∆, a finite
set of (typed) variables V, and a finite set of predicates P. For easier
differentiation, in any examples on the subsequent pages, constants’ names
shall start with uppercase letters, whereas variables’ names with lowercase
letters. A term is any constant or variable. An atom (or an atomic formula)
is any predicate p ∈ P applied to n terms, where n is the given predicate’s
arity (i.e., p(t1, t2, . . . , tn) where t1, t2, . . . , tn are terms). An atom is called
a positive literal, and a negation of an atom is called a negative literal. A
set of variables occurring in a FOL formula (or just a formula) α is denoted
as vars(α). A formula α is called ground if vars(α) = ∅. A substitution is
a mapping from variables to terms. Given a formula α and a substitution
ρ, α [ρ] denotes the application of the substitution ρ to α. Applying the
substitution produces a new formula with each variable in α, for which there
is an image defined in ρ, replaced by that image.

When working with logical formulas, it can be beneficial (especially in
computer science), to only consider formulas in special forms. One such
form is a conjunctive normal form (CNF), which is a conjunction of clauses.
A clause is, in turn, a universally quantified disjunction of literals. When
working with individual clauses, one can treat them as sets of literals (with
their disjunction implied) rather than actual logical formulas.

3



2. Background....................................
2.1.2 Semantics

This work adopts Herbrand semantics [1] to assign meaning to the language
specified in Subsection 2.1.1. In the function-free setting, the Herbrand
universe becomes the set of all constants ∆. The Herbrand base (HB) is
a set of all ground atoms whose arguments are only the elements of the
Herbrand universe. A Herbrand interpretation (also called a possible world
and usually denoted ω) is an arbitrary subset of the HB. Atoms contained
in an interpretation are those that are considered to be true. Others are
considered to be false. Ω denotes the set of all possible worlds, and it is thus
the power set of the HB, i.e., 2HB.

2.2 Gibbs Sampling

It is generally challenging to work with multivariate joint probability
distributions. Representing them exactly would have (in the discrete case)
memory requirements exponential in the number of random variables. Instead,
they are often stored only implicitly with the ability to sample from them
whenever drawing a data point is required.

One family of sampling algorithms are Markov chain Monte Carlo (MCMC)
algorithms. Those attempt to generate samples from a probability distribution
by constructing an ergodic Markov chain whose stationary distribution is the
distribution to be sampled from [4]. A popular member of this family is Gibbs
sampling.

The idea behind Gibbs sampling is that, though it is difficult to query a
marginal distribution of a random variable directly, it is relatively easy to
query its conditional with all other variables fixed [5]. The Gibbs sampler loops
over all variables, gradually querying each of their conditional distributions
with all other variables fixed; exchanging each variable for its newly sampled
value. The loop is then repeated until convergence.1

Algorithm 1 General Gibbs sampler
Require: X is an n-dimensional random vector and x a realization thereof
Require: q(X) is a prior distribution

1: function Gibbs_Sampler(q)
2: x(0) ∼ q(X) . Initialization
3: for i← 1 to ∞ do
4: for j ← 1 to n do
5: x

(i)
j ∼ p(Xj |X<j = x(i)

<j ,X>j = x(i−1)
>j )

6: return x(∞)

Algorithm 1 shows the Gibbs sampling procedure in detail. The pseu-
docode uses convenient but perhaps a bit confusing notation. The conditional

1In practice, theoretical convergence is usually replaced by a fixed number of iterations.
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............................ 2.3. Kullback–Leibler Divergence

distribution p(Xj |X<j = x(i)
<j ,X>j = x(i−1)

>j ) would be more formally written
as

p(Xj |X1 = x
(i)
1 , . . . ,Xj−1 = x

(i)
j−1,Xj+1 = x

(i−1)
j+1 , . . .Xn = x(i−1)

n ).

From a theoretical point of view, the entire GIBBS_SAMPLER procedure
produces one sample from the desired distribution p. Following the theory,
when several samples from the target distribution are required, one would
have to make repeated calls to the sampler, waiting for it to converge every
single time. That is often not done in practice, since it usually takes much
time for the sampling procedure to converge. Instead, the sampler runs only
once, and several samples it produces throughout the entire computation are
assumed to be samples from the target distribution p.

The first problem with such an approach is that early samples clearly do
not come from the distribution p, since the Markov chain has not yet had
enough time to converge. This is referred to as the burn-in phase. As it is
difficult to estimate how much time is enough for the sampler to converge,
the sampler is usually extended by a hyperparameter stating how many early
samples belong to the burn-in phase and thus should be discarded (rejected).

Another problem arises from the very nature of the Markov chain. Consec-
utive samples are strongly dependent on each other, violating the assumption
of sample independence in Monte Carlo methods. To tackle that, yet another
hyperparameter, called thinning, is added. Thinning denotes how many sam-
ples should be dropped between two accepted samples in order to decrease
their statistical dependence.

Gibbs sampling modified in such a way can be somewhat efficiently (de-
pending on its convergence speed) used to compute approximate inference or
expectation of a random variable or a function thereof.

2.3 Kullback–Leibler Divergence

Once a probability distribution is approximated, another difficult problem
is to assess how well it approximates the underlying phenomenon. This thesis
will only make that assessment in simple cases, when the target distribution
is known, and its domain is small enough to be stored explicitly.

In that case, Kullback-Leibler divergence [6] can be used to measure the
difference between the target and the approximation.
Definition 2.1. Let p and q be discrete probability distributions defined on
X .

KL(p||q) =
∑
x∈X

p(x) ln p(x)
q(x) , (2.1)

where

a ln a0 =
{

0 if a = 0.
∞ otherwise.

5



2. Background....................................
“KL(p||q) is the information lost when q is used to approximate p”.

(Burnham, K. P. & Anderson, D. R. — Model Selection and
Multi-Model Inference (2nd ed.,2002). Springer. p. 51.)

2.4 Complex Analysis

As the name suggests, complex Markov logic network is a probabilistic
model that encompasses complex numbers. It is effectively a function of a
complex variable. Hence, some basics from the theory of complex functions
are also required for further calculations.

It is worth noting that in all non-trivial cases, C-MLNs are actually multi-
dimensional complex functions. Despite that, the information presented in
this section is for one-dimensional case only. The reviewed theory should be
demonstrative enough to help with understanding the subsequent chapters,
yet still simple enough so that this chapter does not become unnecessarily
cumbersome.

As in Section 2.1, the provided descriptions are brief and they rely on
the reader’s intuition rather than exact formulations. Proper mathematical
definitions are left for more specialized literature (e.g., [7]).

2.4.1 Complex Exponential Function

The basis of all probabilistic models introduced in this text is the expo-
nential function. One way to define the complex exponential function is with
a power series. However, Definition 2.2 shows an alternative formulation,
which expresses the complex exponential in terms of real exponential and
real trigonometric functions. Defining the exponential in such a way will be
more advantageous later on.
Definition 2.2. For all z ∈ C such that z = x+ iy, where x ∈ R, y ∈ R and
i2 = −1 is the imaginary unit

ez = ex+iy = ex(cos(y) + i sin(y)). (2.2)

2.4.2 Holomorphic Functions

In Chapter 5, an optimization-based learning procedure utilizing function’s
gradient will be derived. That, however, will require the ability to compute
the gradient of a complex function.

An analogy of a differentiable real function in the complex domain is a
holomorphic (or complex differentiable) function.

A function is holomorphic if two conditions hold. Assume a complex
function f(z) = f(x+ iy), where x, y ∈ R and i is the imaginary unit. Denote

Re (f(z)) = u(x, y),
Im (f(z)) = v(x, y).

6



................................. 2.4. Complex Analysis

The function f can be written as

f(z) = u(x, y) + iv(x, y).

The two conditions for holomorphicity then read as follows [7]:. The partial derivatives of u and v are continuous.. The functions u and v satisfy the Cauchy-Riemann equations presented
in Equation 2.3.

∂u

∂x
= ∂v

∂y

∂u

∂y
= −∂v

∂x
(2.3)

An important consequence of the Cauchy-Riemann equations is the follow-
ing proposition:
Proposition 2.3. A function f(z) with z ∈ C such that Im (f(z)) = 0 can
only be holomorphic if it is a constant.
Proof. We have

f(z) = f(x+ iy) = u(x, y) + iv(x, y) = u(x, y) + 0i = u(x, y).

By Equation 2.3, it must hold that

∂u

∂x
= ∂v

∂y
= 0 ∂u

∂y
= −∂v

∂x
= 0.

Hence, the function u(x, y) = f(z) must be a constant with respect to both
x and y.

2.4.3 Discrete Fourier Transform

Fourier transform (FT) is an integral transformation with various appli-
cations across many disciplines. This section presents FT’s discrete multi-
dimensional formulation, i.e., the discrete Fourier transform (DFT), along
with its inverse.

Let d ∈ N be a positive integer and M = [N1, N2, . . . , Nd] ∈ Nd a vector
of positive integers. Define a set of multi-dimensional zero-based indices
J = {0, 1, . . . , N1 − 1} × {0, 1, . . . , N2 − 1} × . . . × {0, 1, . . . , Nd − 1} and
assume a function f : J 7→ C. The DFT of f , denoted as F{f} : J 7→ C, is
defined as

F{f}(k) =
∑
n∈J

f(n) exp(−i2π〈k,n/M〉), (2.4)

where n/N denotes component-wise division and 〈a,b〉 is the inner product
of a and b.

For a function g = F{f}, the inverse DFT F−1 : J 7→ C is then given as

F−1{g}(n) = 1
|J |

∑
k∈J

g(k) exp(i2π〈n,k/M〉). (2.5)

It holds that f = F−1{F{f}}.

7



2. Background....................................
2.5 Markov Logic Networks

An MLN Φ is a set of pairs (αi, wi) where αi is a function-free FOL formula2

and wi ∈ R is its weight [2]. Informally speaking, the weight represents how
strong a condition the respective formula is. With other things being fixed,
the higher the weight wi, the less probable the world that does not satisfy αi.
Setting wi =∞ (if weights from the extended real number line are allowed)
is equivalent to αi being universally quantified.

Together with a finite set of constants ∆ (the domain), an MLN induces a
probability distribution over possible worlds by the following formula:

pΦ,Ω(ω) = 1
Z

exp

 ∑
(α,w)∈Φ

w ·N(α, ω)

 (2.6)

The function N(α, ω) is the number of substitutions producing groundings
of α that are true in the interpretation ω. If α is already ground, N(α, ω)
is defined as an indicator function signalling whether α is satisfied in ω,
i.e., N = I(ω |= α). Often, in literature, N(α, ω) is simply referred to as
a number of true groundings of α in ω. That is a substantially shorter
description, however, formally speaking, it is not an accurate one since two
distinct substitutions may produce the same grounding of a formula α. Noting
that, this thesis consistently refers to the function N(α, ω) as the number of
true-grounding substitutions of α in ω.
Z is the so-called partition function, a normalizing factor that ensures

pΦ,Ω(ω) to be a probability distribution. It is defined straightforwardly as
the sum of the nominators over all possible worlds:

Z =
∑
ω∈Ω

exp

 ∑
(α,w)∈Φ

w ·N(α, ω)

 (2.7)

It is worth noting that the original MLN definition introduced in [2] was
described as a Markov random field (MRF) [8] induced by the pairs (αi, wi)
and the domain ∆. An MRF is a model for the joint distribution of a set of
random variables based on undirected graphs. It is a prominent member of
the class of probabilistic graphical models that has found many applications,
especially in the field of Computer Vision [8] . Equation 2.6 is a log-linear
model of an MRF.

Once one crosses over from classical Markov logic networks to complex
Markov logic networks, the underlying graphical structure is lost (or becomes
ambiguous, at the very least). That is why this section describes MLNs by
their log-linear model (which will be similar to the definition of C-MLNs in
Section 2.6) rather than by describing its underlying graph.

2Note, that αi may contain variables that do not appear in any of its atoms, e.g.,
∀x∀yp(x). That is an important fact when evaluating function N(αi, ω).

8



.................................. 2.6. Complex MLNs

2.6 Complex MLNs

According to [3], classical MLNs are not fully expressive. In order to reason
about the expressivity of MLNs, one must first define a suitable measure.
Hence, a few necessary definitions taken from [3] follow.
Definition 2.4. Let Φ be an MLN and ∆ be a finite domain. Let Ψ =
{α1, . . . , αm} be the knowledge base of Φ.

N(Φ, ω) = N(Ψ, ω) = [N(α1, ω), . . . , N(αnω)] (2.8)

is a vector of the count-statistics for a given interpretation ω.
Definition 2.5. Count Distribution. Let Φ be an MLN defining a distri-
bution pΦ,Ω(ω) over a set of possible worlds Ω. The count distribution of Φ is
the distribution of d−dimensional vectors of non-negative integers n given by

qΦ,Ω(n) =
∑

ω∈Ω:N(Φ,ω)=n
pΦ,Ω(ω). (2.9)

Definition 2.6. Support of a knowledge base. Let Ψ = {α1, . . . , αm} be
a knowledge base and Ω the set of all possible worlds. The support of Ψ on
Ω is defined as

Supp(Ψ,Ω) = {N(Ψ, ω)|ω ∈ Ω}. (2.10)
With count distributions and the support of the knowledge base (KB), the

full expressivity can finally be defined as well.
Definition 2.7. Full Expressivity. Let Ω be a set of possible worlds and
Ψ = {α1, . . . , αm} be a set of first-order logic formulas. A class of MLNs given
by Ψ is fully expressive if it holds that, for any distribution Q on Supp(Ψ,Ω),
there exists an MLN Φ such that its count distribution qΦ,Ω is equal to Q.

A count distribution is basically a histogram and an MLN is fully expressive
if its count distribution can capture an arbitrary distribution on Supp(Ψ,Ω).

A sufficient condition for an MLN Φ to be fully expressive in terms of the
definition above is that for any ω ∈ Ω, ω |= αi is satisfied for exactly one αi
from Φ [3]. As that condition is not usually met in practice, an extension of
classical MLNs to C-MLNs was proposed in [3] to achieve full expressivity in
the general case.
Definition 2.8. C-MLN. Let Ω be a set of possible worlds. A complex
Markov logic network is a set Φ = {(α1,w1), . . . , (αm,wm)} where αi is a
first-order logic formula and wi ∈ Cd is its weight. Φ defines a probability
distribution over possible worlds as

pΦ,Ω(ω) = 1
Z

d∑
k=1

exp
(

m∑
i=1

[wi]k ·N(αi, ω)
)
, (2.11)

where [wi]k denotes the k-th component of the vector wi and

Z =
∑
ω∈Ω

d∑
k=1

exp
(

m∑
i=1

[wi]k ·N(αi, ω)
)
. (2.12)

9



2. Background....................................
C-MLNs are thus defined directly in terms of a log-linear model (or a

mixture thereof) without any underlying graphical model. Definitions 2.4 to
2.7 can be simply copied over from MLNs to C-MLNs, since they only work
with the KB Ψ. The change in weights and introduction of a mixture are
inconsequential to them.

C-MLNs are fully expressive as long as they contain a trivial formula that
is always satisfied (i.e., the tautology denoted by >). [3].

Inspecting Equation 2.11 more closely, one can notice, that pΦ,Ω may be
complex-valued. Hence, one more definition is introduced.
Definition 2.9. A C-MLN Φ is called proper if and only if pΦ,Ω(ω) ∈ [0; 1]
for all ω ∈ Ω.

10



Chapter 3
Complex Markov Logic Networks

Complex Markov logic networks offer full expressivity in terms of count
distributions. However, as one could expect from the added expressivity, they
introduce challenges unknown to classical MLNs.

3.1 New Landscape

3.1.1 Real-Valued Weights

Classical MLNs are explicitly defined in terms of Markov random fields
with the formula for the induced probability distribution following from the
definition of MRFs. Due to that, they can take advantage of inference and
learning techniques developed in the field of probabilistic graphical models.
Said techniques include algorithms for exact and approximate inference, as
well as algorithms for both parameter and structure learning.

Inference in MRFs can be computed traditionally by sampling from the
target distribution. Nevertheless, specialized procedures such as Junction
Tree Algorithm, Belief Propagation or Loopy-Belief Propagation also exist [8].
Those algorithms leverage the model’s underlying graphical structure which
allows them to either compute exact inference or, in the case of Loopy-Belief
Propagation, compute approximate inference that tends to perform better
in practice them sampling-based algorithms. One of the advantages of the
graphical structure is that it allows considering only a subset of random
variables independently of the rest given only their immediate neighbors (i.e.,
given their Markov blanket).

Learning in MRFs is then usually based on the maximization of a likelihood
function of some training set or a similar quantity (e.g., pseudo-likelihood).

3.1.2 Multi-Dimensional Complex-Valued Weights

On the other hand, C-MLNs are defined directly in terms of a probability
distribution formula. The formula is similar to standard MRF log-linear
models, yet quite different. It has i d-dimensional complex vectors as weights
instead of i real numbers. Assuming an MRF would be constructed for a
C-MLN in the same way as for an MLN, how would one go about computing

11



3. Complex Markov Logic Networks ..........................
its potential? Besides the necessity to deal with complex-valued factors, it is
not even clear, if a node in the graph (more accurately, the random variable
it represents) would be statistically independent of all other nodes given its
Markov blanket.

Inference on C-MLNs can no longer take an advantage of an underlying
graph. Nevertheless, methods based on sampling can still be used. Chapter 4
discusses that topic in greater detail.

Unlike MLNs, learning using a likelihood is not as straightforward in C-
MLNs. The likelihood function is now a multi-dimensional complex function.
Optimizing those requires new considerations that do not apply in the real
domain.

Problems with the likelihood more or less stem from problems with the
definition itself. They are discussed in detail in Section 3.2.

Nevertheless, it might be possible to approach the learning problem from
a completely different direction than from the statistical one. One might
attempt to use Fourier transform to tweak network weights so that they would
best accommodate training samples. That option is explored in Section 5.2.

3.2 Definition Problems

As was already stated above, when using the definition of C-MLNs intro-
duced in Section 2.6, some issues may be encountered. Let us use concrete
examples to demonstrate them.

As was already mentioned, the distribution pΦ,Ω(ω) may turn out to be
complex-valued.
Example 3.1. Consider a C-MLN Φ along with domain ∆.

Φ = {
(
heads(x),

[
0, i π2

])
}

∆ = {A}
Then the distribution pΦ,Ω(ω) is given by Equation 2.11 as

p({}) = e0 + e0

Z
= 2
Z

= 2
3 + i

= 3
5 −

i

5

p({heads(A)}) =
e0 +

(
cos

(
π
2
)

+ i sin
(
π
2
))

Z
= 1 + i

Z
= 1 + i

3 + i
= 2

5 + i

5
Z = 2 + (1 + i) = 3 + i

Definition of a proper C-MLN may, at first glance, appear to solve that
issue. One must simply select weights in such a way so that the values
obtained from Equation 2.11 are valid probabilities. That, however, is not as
straightforward when moving from inference to learning.

The question is, how should one even optimize such a function. It would
no longer be a task of unconstrained optimization. The feasible set would be
limited to all complex vectors producing a proper network. The task could
be probably reformulated as a search for 2m weights rather than just m with
∀i ∈ {1, 2, . . . ,m} : wi = w∗i+m. That, however, does not appear to be an
easy task on its own and the possibility of exploring it is left for future work.

12



............................... 3.3. Alternative Definitions

Nevertheless, there is another problem with Definition 2.8. For some inputs,
it is not even properly defined.
Example 3.2. Consider a C-MLN Φ along with domain ∆.

Φ = {(heads(x), [iπ, iπ])}
∆ = {A}
Then the distribution pΦ,Ω(ω) is given by Equation 2.11 as

p({}) = e0 + e0

Z
= 2
Z

p({heads(A)}) = (cos (π) + i sin (π)) + (cos (π) + i sin (π))
Z

= −2
Z

Z = 2 + (−2) = 0

In Example 3.2, we obtain that Z = 0 which would lead to division by zero.
That might be another problem for a possible optimization procedure.

Of course, both problems shown in the examples above could be solved
by an appropriate reformulation of Definition 2.9. However, that would still
be only accommodating more fundamental issue with Definition 2.8.1 In its
current form, it only permits a (small) subset of all possible complex vectors
as its weights. Classical MLNs suffer no such limitation. Any real number is
a valid weight (even positive or negative infinity if one wishes to enforce a
formula to hold universally).

An alternative approach would thus be to somehow transform the unnor-
malized value of pΦ,Ω(ω) in such a way that any weights would produce a valid
probability distribution (a proper C-MLN). The remainder of this chapter
attempts just that.

3.3 Alternative Definitions

When thinking about alternative definitions of C-MLNs, this work seeks
to produce a proper C-MLN regardless of what weights are passed into the
model. It is also reasonable to only consider modifications such that the proof
of full expressivity of C-MLNs still holds.

Accomplishing that, all theory derived and proven in [3] can be utilized and
at the same time, the choice of weights for the model will not be restricted in
any way. Any complex vector will be a feasible weight, which will allow the
derivation of a gradient-based learning algorithm for C-MLNs in Section 5.1.

3.3.1 Squared Absolute Value

A natural extension of Definition 2.8 is to take the squared absolute value
of the unnormalized value of pΦ,Ω(ω). That is analogous to how physicists

1It is an issue when trying to approach learning in C-MLNs in a similar way as one
approaches learning in MLNs. It is not an issue with the model design overall (except for
situations demonstrated by Example 3.2 and later discussed singularities).

13



3. Complex Markov Logic Networks ..........................
evaluate the probability density of particles based on a wave function [9]. The
modified Equation 2.11 then reads as

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
)∣∣∣∣∣

2

. (3.1)

And the appropriate modification of the normalizing constant is

Z =
∑
ω∈Ω

∣∣∣∣∣
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
)∣∣∣∣∣

2

. (3.2)

It is easy to see that all C-MLNs proper before are proper still. On top of
that, any improper networks will be transformed into proper ones.

However, the problem with Equation 3.1 is that such function is not holo-
morphic. Holomorphicity of a complex function is reviewed in Subsection 2.4.2
for one-dimensional case (i.e., k = 1 and i = 1). The theory of holomorphic
functions is only more complicated for multi-dimensional complex inputs.
However, since it is clear from Proposition 2.3 that Equation 3.1 is not
holomorphic for k = 1 and i = 1, this text does not discuss the issue any
further.

It is worth mentioning that there are techniques to compute the gradient
of non-holomorphic functions [10]. That, however, is beyond the scope of this
thesis and left for future work.

3.3.2 Absolute Value of the Real Part

Another possible alternative to Equation 2.11 is to take only the real part
of the resulting complex number. That, on its own, is not sufficient as the
situation demonstrated in Example 3.2 would still be a problem. Hence, the
expression’s absolute value is further taken.

The newly proposed distribution is then prescribed as

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣Re

(
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
))∣∣∣∣∣, (3.3)

Z =
∑
ω∈Ω

∣∣∣∣∣Re

(
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
))∣∣∣∣∣. (3.4)

Transforming Definition 2.8 in such a way will produce a proper network
for all cases when the original definition does, with one notable exception. In
the case of the real part’s argument being a pure imaginary number for all
ω ∈ Ω, Equation 2.11 would produce a proper network, whereas Equation 3.3
is not even properly defined, since all nominators will be zero, which in turn
would cause the denominator to be zero as well.

However, that case is equivalent to multiplying all the nominators by the
negative imaginary unit. Doing that, for a complex number z = iy with
y ∈ R, a real number ẑ = y is obtained. The resulting distribution will be
the same for the original definition.

14



............................... 3.3. Alternative Definitions

Naturally, the nominator cannot be arbitrarily changed for cases, when Z
would be zero and remain the same for others.2 Appendix A shows that there
exists a transformation of weights that will produce the same distribution as
if the real part’s arguments were multiplied by −i.

With the weights transformed, the C-MLN defined by Equation 3.3 will
produce the same distribution as Equation 2.11 would.3 Distributions defined
by the original definition that have the nominator equal to a purely imaginary
number for all possible worlds, can thus still be represented by Equation 3.3,
albeit with different weights.

There are likely other cases when Equation 3.3 and also Equation 2.11
are not properly defined. Those would be the cases when the sum over the
dimensions produces a zero. Such arrangements of weights can be perceived
as singularities of the C-MLN model. They cannot be avoided in the cur-
rent setting, but none of the conducted experiments (see Chapter 6 and
Appendix C) encountered them. That suggests (as well as intuition does) that
the singularities are quite rare. However, a more rigorous analysis should be
performed before drawing any decisive conclusions, which is another possible
extension of this work.

Disregarding the singularities, Equation 3.3 ensures that the majority of
weights that would not produce a proper C-MLN with respect to Definition
2.8, will produce a proper network with respect to Equation 3.3.

Nevertheless, just like Equation 3.1, even Equation 3.3 is not a holomorphic
function. However, in this case, that can be circumvented.

Let us denote the real and the imaginary part of each weight vector wi as
follows:

xi =


Re ([wi]1)
Re ([wi]2)

...
Re ([wi]d)

 yi =


Im ([yi]1)
Im ([yi]2)

...
Im ([yi]d)

 (3.5)

Then, each weight can be expressed as

[wi]k = [xi]k + i [yi]k . (3.6)

For the sake of brevity in the remainder of the thesis, let us also introduce
a special notation for two transformations that will arise later on:

expcos(k, ω) =

= exp
(

m∑
i=1

([xi]k ·N (αi, ω))
)

cos
(

m∑
i=1

([yi]k ·N (αi, ω))
)

(3.7)

2In principle, it could. However, that would require changing the definition, and it would
pose practical problems since computing the partition function is often intractable.

3The network must contain the tautology formula, but since the tautology ensures full
expressivity, that is not a very surprising assumption.
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3. Complex Markov Logic Networks ..........................

expsin(k, ω) =

= exp
(

m∑
i=1

([xi]k ·N (αi, ω))
)

sin
(

m∑
i=1

([yi]k ·N (αi, ω))
)

(3.8)

Naturally, those are only properly defined for k ∈ {1, 2, . . . , d} in the context
of a particular C-MLN.

With the above introduced notation in mind, let us modify Equation 3.3
in the following way:

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣Re

(
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N(αi, ω)
))∣∣∣∣∣

= 1
Z

∣∣∣∣∣
d∑

k=1
Re

(
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
))∣∣∣∣∣

(3.9)

Denote A(k, ω) =
∑m
i=1 [wi]k ·N (αi, ω). Then

Re (A(k, ω)) =
m∑
i=1

([xi]k ·N (αi, ω)) ,

Im (A(k, ω)) =
m∑
i=1

([yi]k ·N (αi, ω)) .

By applying Equation 2.2, the derivation from Equation 3.9 can then be
continued as

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣Re

(
d∑

k=1
exp (A(k, ω))

)∣∣∣∣∣
= 1
Z

∣∣∣∣∣
d∑

k=1
exp (Re (A(k, ω))) (cos(Im (A(k, ω)))

∣∣∣∣∣
= 1
Z

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣
(3.10)

Equation 3.3 can thus be expressed equivalently as a function of only real
variables:

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣, (3.11)

Z =
∑
ω∈Ω

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣. (3.12)

Formally speaking, Equation 3.11 is also not differentiable4 due to the
absolute value. However, in the setting of optimization, which is where this

4Now, only real differentiable as pΦ,Ω(ω) in Equation 3.11 is no longer a complex function.
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.................................. 3.4. New Definition

thesis will require computing the gradient of Equation 3.11, the derivative of
the absolute value can be substituted by the signum function.

It is easy to see, that |x|′ = sgn(x) for all x where |x|′ exists (i.e., where
x ∈ R \ {0}). For x = 0, |x| is at a local optimum, where the gradient should
be zero, and it, in fact, holds that sgn(0) = 0.

3.4 New Definition

Equation 3.3, or equivalently Equation 3.11, appears to solve the problems
with Definition 2.8 outlined by examples in Section 3.2. It ensures that
all properly defined C-MLNs are necessarily proper C-MLNs. It will also
allow a fairly straightforward development of a likelihood maximization-based
learning algorithm in Chapter 5.

For those reasons, a new definition of complex Markov logic networks is
formulated. Unless otherwise specified, it will be used as the canonical one in
the remainder of this text.
Definition 3.3. C-MLN. Let Ω be a set of possible worlds. A complex
Markov logic network (C-MLN) is a set Φ = {(α1,w1), . . . , (αm,wm)} where
αi is a first-order logic formula and wi ∈ Cd is its weight. Φ defines a
probability distribution over possible worlds as

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣Re

(
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
))∣∣∣∣∣, (3.13)

where [wi]k denotes the k-th component of the vector wi and

Z =
∑
ω∈Ω

∣∣∣∣∣Re

(
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
))∣∣∣∣∣. (3.14)

As it will be useful to express Equation 3.13 as a function of only real
variables, let us also formally state its equivalent form.
Proposition 3.4. Definition 3.3 may be equivalently expressed as a function
of only real variables as

pΦ,Ω(ω) = 1
Z

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣, (3.15)

Z =
∑
ω∈Ω

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣. (3.16)

Proof. Proposition 3.4 is proven by the derivation shown in equations 3.9
and 3.10.
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Chapter 4
Inference in Complex MLNs

The fundamental task connected with probabilistic models is inference, i.e.,
given a model, compute the probability of a particular input (i.e., particular
realizations of the random variables the model works with).

In the best-case scenario, the probability is computed exactly according to
the model’s formula (up to numerical errors when delegating the computation
to computers). That is known as exact inference. Generally, exact inference
is a hard problem.

In classical MLNs (which are MRFs), exact inference is a #P-complete
problem [11]. There are two main issues when attempting to evaluate Equa-
tion 2.6. Firstly, one needs to compute N(α, ω). That is a complicated task
on its own, which is discussed in greater detail in Section 4.1. Secondly, the
normalization factor Z needs to be evaluated which requires to sum over the
set of all possible worlds Ω (which is exponential in the number of elements
of the HB).

One method to compute the normalizer, which can be extended to C-MLNs,
is weighted first order model counting (WFOMC) [3]. WFOMC is particularly
interesting in cases where the set of FOL formulas (the knowledge base)
contains only sentences (i.e., formulas with no free variables), each of which
containing at most two logic variables. Then, WFOMC can be computed in
polynomial-time in the number of elements of the domain ∆ [3, 12] . However,
even WFOMC is still intractable in the general case.

Thus, it is often the case that only approximate inference is computed.
A general MRF can take advantage of its graphical structure and compute
approximate inference using specialized algorithms such as Loopy-Belief
Propagation. Another approach is to approximate the target distribution by
sampling from it. Such procedures are usually based on the MCMC paradigm.

In C-MLNs, lacking the graphical structure, sampling-based inference
appears to be a natural choice. There are several sampling algorithms. Gibbs
sampling, introduced in Section 2.2, is a popular choice, and it is adopted by
this work as well. Section 4.2 describes the instance of Gibbs sampler for the
case of C-MLNs.
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4. Inference in Complex MLNs.............................
4.1 Counting Substitutions

A subprocedure required by inference in (complex) MLNs is to count the
number of true-grounding substitutions of the formula α in the interpretation
ω with respect to the domain ∆. The function returning that count is denoted
N(α, ω) throughout this text (the domain ∆ being implied by the network
which the inference is being computed for).

At first glance, this task may appear simple, but it is actually quite difficult.
The naive approach of enumerating all substitutions soon becomes infeasible,
as there are exponentially many of those in the number of variables in the
formula.

This section deals with devising two algorithms for the exact computation
of N(α, ω), that can be efficient when the KB Ψ is small.

To simplify matters a little, the remainder of the thesis further assumes all
the formulas αi to be clauses. By doing so, a particular network’s knowledge
base Ψ becomes a general CNF. It may limit the expressivity to some degree,
that weights will only be assigned to clauses as opposed to general first-order
formulas (CNFs) but such considerations are left for future work.

Straightforward implementation of N(α, ω) can simply generate all possible
grounding substitutions for each formula α in Φ and check how many of them
produce a true grounding for the possible world ω. However, there are 2|HB|
distinct possible worlds ω, and the inference in a particular C-MLN requires
to evaluate N(α, ω) for all ω ∈ Ω. Such an approach is thus infeasible for
most practical problems.

Furthermore, α was assumed to be a clause (a disjunction). In practice,
disjunctive queries often have many answers compared to conjunctive ones
since relations (data sets) tend to be sparse. As an example, let us take the
relation of friendship, putting together every two individuals on a planet that
are friends. The number of pairs of friends will be much smaller than the
number of pairs of people who are not friends.

The sparsity of relations also implies that it would be more efficient to
evaluate queries without negative literals. With a query expressed as a con-
junction, negative literals may be disregarded by employing Möbius transform
adapted for relational learning [13], which is described in Subsection 4.1.2.

The conversion of a disjunctive query (a clause in the network’s KB) to
a conjunctive one is discussed in Subsection 4.1.1. Procedures evaluating
N(α, ω) for α being a negation-free conjunction are then proposed in Subsec-
tion 4.1.3.

4.1.1 Conjunctive Queries

Assuming α to be a clause, how could one evaluate N(α, ω) using conjunc-
tive queries only?

Negation of a clause is a conjunction (existentially quantified), but then
N(¬α, ω) would be evaluated instead of N(α, ω). However, that is not a
problem as the two values are closely related.
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The number of true-grounding substitutions of a formula α in a possible
world ω is equal to the number of all possible substitutions without those
that produce true groundings of ¬α in the given ω.

The total number of possible substitutions of α is given by the size of the
domain ∆ and the size of vars(α). Each variable may be mapped to any of
the constants. Therefore, the total number is given as |∆|vars(α).

Hence, one can work with conjunctions of literals rather than disjunctions
when counting true-grounding substitutions. The following formula can then
be used to appropriately transform the result:

N(α, ω) = |∆|vars(α) −N(¬α, ω) (4.1)

4.1.2 Möbius Transform

Assume a conjunctive query β.1 Using Möbius transform [13], N(β, ω) can
be evaluated without the need for answering any negative literals contained
in β.

Denote each atom occurring in β as ak and partition the formula into
formulas A and B as follows:

β =
(

n∧
i=1

ai

)
∧

 m∧
j=1
¬aj


A =

n∧
i=1

ai

B =
m∧
j=1

aj

(4.2)

One thing to keep in mind is that β may contain variables that do not
appear in any of its literals. Those will not be included in either A or B.
Furthermore, Equation 4.3 will be counting the true-grounding substitutions
of formulas A ∧ γ, where γ ∈ 2B.2 A ∧ γ may contain even fewer variables
still.

All those free variables will, however, influence the total number of true-
grounding substitutions. For any true-grounding partial substitution con-
structed only for variables occurring in the atoms, the free variables may be
assigned any combination of constants from ∆. Hence, any N(A∧ γ, ω) must
be further multiplied by the factor |∆|vars(β)−vars(A∧γ).

With the above considerations in mind, Möbius transform may then be
given as

N(β, ω) =
∑
γ∈2B

(−1)|γ|
(
|∆|vars(β)−vars(A∧γ) ·N(A ∧ γ, ω)

)
. (4.3)

1The remainder of this chapter denotes the query as β rather than α to emphasize that
it is a conjunction rather than a disjunction. However, the notation is naturally strictly
arbitrary.

2Here, B is understood as a set of atoms rather than explicit conjunction thereof.
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4. Inference in Complex MLNs.............................
Let us demonstrate the application of Equation 4.3 more concretely by an

example.
Example 4.1. Assume a formula β = smokes(x) ∧ ¬cancer(x) and a general
interpretation ω ∈ Ω.

Equation 4.3 gives

N(β, ω) = N(smokes(x), ω)−N(smokes(x) ∧ cancer(x), ω).

The total number of those who smoke, yet do not have cancer, is the
number of all those who smoke without those who smoke and have cancer.

4.1.3 Answering Negation-Free Conjunctions

The only missing thing to be able to evaluate N(α, ω) in (complex) MLNs is
to count the true-grounding substitutions of a negation-free conjunctive query
(a formula) β in a database (an interpretation) ω . Subsequent paragraphs
propose two methods to obtain the count.

Backtracking

A straightforward approach to evaluate N(β, ω) is to recursively search the
space of possible variable mappings to constants in the domain. At each step,
the search checks that the partial assignment is still true in ω; and if not, the
procedure backtracks. Apart from it being simple and reliable, this method
can also be quite efficient when the query is not overly complicated, and the
database is not large.

The procedure is detailed in Algorithm 2. M denotes the currently con-
sidered (partial) substitution mapping variables from β to constants from
∆. atomβ [M] is then an atom from β with (partial) substitutionM applied
to it. Apart from stack primitives EMPTY, PUSH and POP, the pseudocode
also assumes the existence of functions UPDATE and REVERSE_UPDATE. Those
extend the substitutionM so that atomω |= atomβ[M] or remove the most
recent changes made to the substitutionM, respectively.

Relational Database Query

Relational database tables are a natural way of representing relations in
computer science. That is also the reason why a possible world ω is sometimes
referred to as a database.

Each table in the relational database can represent one relation, i.e., predi-
cate. Individual table entries then enumerate all tuples of constants, to which
a particular predicate is applied in the interpretation. To compute N(β, ω)
using such representation, one would have to, firstly, initialize a new database
reflecting the world ω, then translate the formula β into a database query
and finally count the number of entries in the resulting table. However, with
the prospect of ω changing each iteration of the Gibbs sampling (see Algo-
rithm 3), such an approach does not seem appropriate as the database would
be, potentially, changing many times over the course of a single iteration.
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Algorithm 2 Answering negation-free conjunctive queries
Require: β is a conjunction of atoms represented as a stack
Require: ω ⊆ Ω is a possible world

1: function N(β, ω)
2: M ← Map<Variable, Constant> . Current substitution
3: count ← N(β, ω,M)
4: return count

5: function N(β, ω,M)
6: if EMPTY(β) then
7: return 1
8: count ← 0
9: atomβ ← POP(β)

10: for all atomω ∈ ω do
11: if ∃ extension ofM s.t. atomω |= atomβ[M] then
12: UPDATE(M)
13: count ← count + N(β, ω,M)
14: REVERSE_UPDATE(M)
15: PUSH(β, atomβ)
16: return count

An alternative is to use a database-like data structure that is being stored
in memory. Changes can then be applied without much overhead, and the
same (or similar) queries can still be issued. Furthermore, it might even be
possible to incorporate some optimizations so that the queries do not have to
be executed from scratch every time.

The procedure for transforming a formula β into a database query is
omitted as that can become quite technical, and it can also differ significantly
based on the actual technology used (e.g., SQL database, pandas.DataFrame,
DataFrames.jl etc.). Instead, an example of using a relational database to
compute N(β, ω) is supplied in Appendix B.

4.2 Gibbs Sampling

Section 2.2 introduced the general Gibbs sampling algorithm. Here, a
specific instance of that algorithm is derived for the case of C-MLNs.

For a network Φ and a domain ∆, Equation 3.15 specifies the probability
distribution over all possible worlds. A particular ω ∈ Ω can be represented as
a vector of binary random variables, one for each element in the ordered HB.
Denote the vector x. If a realization xi of a particular random variable xi is
true, then the i-th element of the Herbrand base (denoted ai further on) is in
the interpretation ω. To increase readability of the subsequent equations, let
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4. Inference in Complex MLNs.............................
us also denote the unnormalized probability of a possible world as FΦ,Ω(ω):

FΦ,Ω(ω) = Z · pΦ,Ω(ω) =
∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣ (4.4)

As is already stated in Section 2.2, it is often infeasible to sample directly
from the joint distribution. Sampling from the joint using the marginals may
also be computationally demanding since it generally requires summing over
a large subset of Ω:

P (xi = true) =
∑

ω∈Ω:ω|=ai

1
Z
FΦ,Ω(ω) (4.5)

The problem complexity decreases if all other random variables except xi
are fixed. If that is the case, then the conditional distribution is given as

P (xi = true|x 6=i = x 6=i) = 1
Z
FΦ,Ω(ωx), (4.6)

where x6=i = x 6=i ⇐⇒ ∀k 6= i : xk = xk and ωx is the world precisely defined
by the query and the evidence passed to the distribution (i.e., defined by the
realization of the random vector x). However, Equation 4.6 is still infeasible
for most practical problems due to the normalizer Z.

To remove the normalization, one can compute the probability ratio rather
than the actual probability:

P (xi = true|x6=i = a 6=i)
P (xi = false|x6=i = a 6=i)

=
1
ZZ
FΦ,Ω(ωx)

1
ZZ
FΦ,Ω(ω̄x)

= λ (4.7)

The ω̄x is an interpretation containing all atoms that are contained in ωx,
except for the one whose probability is being computed, i.e., ai.

The normalizing factors cancel each other out, and the computation sim-
plifies to taking the ratio of the unnormalized probabilities. The actual
probability can then be recovered quite easily. For brevity, let the probability
be denoted by ρ, i.e.,

ρ = P (xi = true|x 6=i = x 6=i).

If ρ = 1, then the atom ai will always be in the interpretation.
For cases where ρ 6= 1, a linear equation is to be solved:

ρ

1− ρ = λ (4.8)

ρ = λ

1 + λ
(4.9)

Computed ρ is a parameter of a Bernoulli distribution. Sampling from
that distribution concludes a single step of one iteration of the Gibbs sampler.
Algorithm 3 summarizes the entire procedure.
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.................................. 4.2. Gibbs Sampling

Algorithm 3 Gibbs sampler for C–MLNs
Require: x(i) is a vector of n binary random variables representing ω(i)

1: function Gibbs_Sampler
2: x(0) ← RANDOM_BINARY_VECTOR(n) . Initialization
3: for i← 1 to ∞ do
4: for j ← 1 to n do
5: if FΦ,Ω(ω) = 1 then
6: x

(i)
j = 1

7: else
8: λ ← FΦ,Ω(ω(i))/FΦ,Ω(ω̄(i))
9: ρ ← λ/(1 + λ)

10: x
(i)
j ∼ Beurnolli(ρ)

11: return x(∞)

25



26



Chapter 5
Learning in Complex MLNs

Inference evaluates the probability of a particular input given the model.
In practice, however, one must first obtain the model. Expert knowledge
of the problem at hand may be sufficient to formulate the model in some
cases. Nevertheless, that may not be applicable every time, and even if it
were, it would likely be very tedious and time-consuming. It is a general
goal of artificial intelligence to automate such procedures. The automation is
usually done by assuming a data set of observations (samples obtained from
the underlying unknown phenomenon, which should be learned) that capture
all necessary information, i.e., the training set.1 A learning algorithm then
tries to guess a model, that would have generated the training data and that
is the most likely mathematical description of the unknown phenomenon.

In the specific case of C-MLNs, there are two things that can be learned.
Firstly, there are the model’s parameters, i.e., the weights wi and their dimen-
sionality d. The majority of models in artificial intelligence are parameterized
in some way. Thanks to that, a particular model is then, in fact, a class
(a set) of models rather than just one. They all share the same theoretical
approach but differ by their parameters which in turn affect how they behave.
Estimating such parameters from data is called parameter learning.

Secondly, there are the formulas Ψ. In the simpler case, those are already
provided along with the parameterized model. However, in the general case,
when one attempts to truly automate the entire learning procedure, they
may be unknown same as the parameters. Learning those would be structure
learning. That, however, is a much more complicated task and is left for
future work.

Even just for parameter learning, one more consideration should be made
regarding the dimensionality d. Although, in theory, it is also the model’s
parameter, it may be viewed quite differently from the weights wi. The
parameter d can be set to an arbitrary value without any consideration for
the weights wi, whereas the weights cannot be set to any value without first
deciding on the dimensionality. From a certain standpoint, it can thus be
regarded more as the model’s hyperparameter. In Section 5.1, a standard

1More accurate designation would be a training multiset as a sample may repeat several
times in the general case.
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5. Learning in Complex MLNs.............................
likelihood maximization-based weight learning algorithm utilizing gradient
descent (GD) is derived. There, d is considered as a given constant, i.e., a
hyperparameter.

Section 5.2 then explores the possibility for learning in the context of
C-MLNs that arises from the complex domain and is based on the discrete
Fourier transform. There, both wi’s and d are learned automatically viewing
the dimensionality as just another (discrete) parameter.

5.1 Maximum Likelihood Estimation

The likelihood function L assumes provided data points T to originate
from some statistical (parameterized) model (in general, each sample could
originate from a different model). L is then defined as a function of model
parameters prescribed by the joint probability distribution of the training
data T .

For T = {ω1, ω2, . . . , ω|T |} and the assumption, that a C-MLN generated
T , the likelihood is given as

L =
|T |∏
j=1

pΦ,Ω(ωj |ω<j), (5.1)

where pΦ,Ω(ωj |ω<j) denotes the probability of the j-th sample ωj given the
previous (j − 1) samples ω1, ω2, . . . , ωj−1.

To obtain a model that would most likely generate the data set T , the most
natural course of action is to maximize L with respect to the parameters of
the C-MLN model. That is generally referred to as a maximum likelihood
estimation (MLE).

To simplify the computation of the MLE, IID samples are further assumed.
Also, to simplify even more, instead of likelihood L directly, subsequent
calculations work with the log-likelihood ` = lnL.

` = lnL =
n∑
j=1

ln(pΦ,Ω(ωj)) (5.2)

Taking the logarithm turns the product into a sum that makes the eval-
uation easier and more numerically stable. Since logarithm is an injective
function, maximizing ` is equivalent to maximizing L.2 One more considera-
tion regarding the functions’ domains is necessary. The likelihood, basically
being probability, can take on values from [0; 1]. Logarithm, however, is only
defined for positive numbers. Nevertheless, it is easy to see that L cannot
be zero-valued, since it is defined by the training samples T . Those were
assumed to be generated by the underlying model, and thus none of them
can have zero probability (otherwise, they would not have been generated in
the first place).

2As long as one is only interested in the function’s argument that produces the maximum
value, i.e., the actual operation is arg maxL rather then just maxL.
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.......................... 5.1. Maximum Likelihood Estimation

5.1.1 Gradient Computation

The simplest way to search for the maximum of Equation 5.2, is to search
for parameters, for which the gradient ∇` is zero. The gradient is given as

∇` = ∇
n∑
j=1

ln(pΦ,Ω(ωj))

=
n∑
j=1
∇ ln

(
1
Z

∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣
)

=
n∑
j=1

(
∇ ln

(∣∣∣∣∣
d∑

k=1
expcos(k, ω)

∣∣∣∣∣
)
−∇ ln(Z)

)
.

(5.3)

Taking a partial derivative from Equation 5.3 for one sample ω = ωj with
respect to [xi]k, where i = a and k = b, gives

∂ log p(ω)
∂ [xa]b

=
sgn

(∑d
k=1 expcos(k, ω)

)
expcos(b, ω)N(αa, ω)∣∣∣∑d

k=1 expcos(k, ω)
∣∣∣

− 1
Z

∑
ω′∈Ω

sgn
(

d∑
k=1

expcos(k, ω′)
)

expcos(b, ω′)N(αa, ω′)︸ ︷︷ ︸
Z′

. (5.4)

Computing Z ′ would be intractable due to the sum over all possible worlds
and the normalization by Z. Nevertheless, a simple trick may be employed to
turn the value into an expectation of some value with respect to the current
model (current weights):

Z ′ = 1
Z

∑
ω′∈Ω

sgn
(

d∑
k=1

expcos(k, ω′)
)

expcos(b, ω′)N(αa, ω′)

= 1
@@Z

∑
ω′∈Ω

sgn
(

d∑
k=1

expcos(k, ω′)
)

expcos(b, ω′)N(αa, ω′)
@@Zp(ω′)
Zp(ω′)

=
∑
ω′∈Ω

p(ω′)
sgn

(∑d
k=1 expcos(k, ω′)

)
expcos(b, ω′)N(αa, ω′)∣∣∣∑d

k=1 expcos(k, ω′)
∣∣∣

= Ep

sgn
(∑d

k=1 expcos(k, ω)
)

expcos(b, ω)N(αa, ω)∣∣∣∑d
k=1 expcos(k, ω)

∣∣∣


(5.5)

The expectation on its own is still intractable, of course, but it can be
approximated by the Gibbs sampling-based inference technique developed in
Section 4.2.
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5. Learning in Complex MLNs.............................
Similarly, for the partial derivative with respect to [yi]k, where i = a and

k = b (with the exact same trick for transforming the value Z ′′):

∂ log p(ω)
∂ [ya]b

=

Z′′︷ ︸︸ ︷
1
Z

∑
ω′∈Ω

sgn
(

d∑
k=1

expcos(k, ω′)
)

expsin(b, ω′)N(αa, ω′)

−
sgn

(∑d
k=1 expcos(k, ω)

)
expsin(b, ω)N(αa, ω)∣∣∣∑d

k=1 expcos(k, ω)
∣∣∣ (5.6)

Z ′′ = Ep

sgn
(∑d

k=1 expcos(k, ω)
)

expsin(b, ω)N(αa, ω)∣∣∣∑d
k=1 expcos(k, ω)

∣∣∣
 (5.7)

The overall result resembles the gradient of classical MLNs. For an MLN
Φ, the gradient reads as follows [2]:

∂ log pΦ,Ω(ω)
∂wi

= N(αi, ω)− Ep[N(αi, ω)]. (5.8)

And from the computations above, for a C-MLN Φ:

∂pΦ,Ω(ω)
∂[xi]k

= C(k, ω)N(αi, ω)− Ep[C(k, ω)N(αi, ω)]

∂pΦ,Ω(ω)
∂[yi]k

= Ep[S(k, ω)N(αi, ω)]− S(k, ω)N(αi, ω)
(5.9)

The gradient can thus be interpreted as an error between the weighted3

number of true-grounding substitutions of αi in T and the expected value
thereof computed with respect to the current model. At optimum, the error
should be zero.

5.1.2 Gradient Ascent

Since there is no closed-form solution for the partial derivatives in Equa-
tion 5.9 to be zero, one must resort to numerical methods to find the likeli-
hood’s critical points. One of the most simple and straightforward methods
for such optimization problems is to follow the direction of the steepest ascent,
i.e., the gradient. Once the gradient is zero, a critical point is reached.

The function minimization technique generally called gradient descent, used
already by Cauchy [14], is based on that idea. At any point of a function, the
procedure follows the negative gradient, which causes the greatest decrease
in the function value. The technique can easily be used for maximization
instead by following the (positive) gradient in order to increase the function
value as much as possible at any point. That variant is sometimes referred to
as gradient ascent.

3Weighing is the only difference from classical MLNs.

30



............................... 5.2. DFT-Based Learning

In the context of C-MLNs, the optimization is clearly non-convex. Following
the gradient can lead to a local maximum, a local minimum or even a saddle
point. Following that, one might argue that GD may thus not be the most
suitable learning technique for the C-MLN model. Nevertheless, GD is easy
to use and simple to implement. It will be used with the caveat that the
procedure should be run multiple times with different initialization at each
time to maximize the chance that a (at least local) maximum was found.

5.2 DFT-Based Learning

Section 5.1 takes a traditional statistical approach to learning C-MLNs
using MLE. While that is perfectly valid, the complex domain offers another
way.

The idea is already implicitly contained in [3], and it could also be perceived
as an alternative proof of full expressivity of C-MLNs. The full expressivity is
defined in terms of count distributions, i.e., for any count distribution, there
exists a C-MLN whose count distribution is the selected one. Let us then first
estimate the count distribution and then construct the appropriate network.

For the subsequent paragraphs, assume a KB Ψ = {α1, . . . , αm} and data
samples T = {ω1, ω2, . . . , ω|T |} drawn from a set of all possible worlds Ω.
Further assume that T contains all necessary information to reliably estimate
a count distribution q̂Ψ,Ω(n) from it. The goal is to find a C-MLN Φ with a
count distribution qΦ,Ω(n) such that qΦ,Ω(n) = q̂Ψ,Ω(n). The goal can be met
as long as full expressivity is assured, i.e., > ∈ Ψ. Without lost of generality,
assume α1 = >.

Firstly, observe that for any ω, ω′ ∈ Ω such that N(Ψ, ω) = N(Ψ, ω′), it
holds that pΦ,Ω(ω) = pΦ,Ω(ω′) [3]. Following that, an inverse transformation
from count distributions back to the original probability distribution can be
derived as

pΦ,Ω(ω) =


qΦ,Ω(N(Ψ,ω))

MC(Ψ,N(Ψ,ω)) if MC(Ψ,N(Ψ, ω)) 6= 0,
0 otherwise,

(5.10)

where MC(Ψ,n) denotes the model count, i.e., the number of possible worlds
ω ∈ Ω such that N(Ψ, ω) = n.

Analogously to Equation 5.10, an estimate of the probability distribution
(in terms of the count-statistics) can be defined using the estimated count
distribution q̂Ψ,Ω:

p̂Φ,Ω(n) =


q̂Ψ,Ω(n)

MC(Ψ,n) if MC(Ψ,n) 6= 0,
0 otherwise.

(5.11)

Denote D = {0, 1, . . . , |∆|vars(α1)}× . . .×{0, 1, . . . , |∆|vars(αm)} the domain
of p̂Φ,Ω(n) and M = [|∆|vars(α1) + 1, |∆|vars(α2) + 1, . . . , |∆|vars(αm) + 1] the
vector holding the domain’s dimensions. Note that for α1 = >, |∆|vars(α1) = 1
and thus [M]1 = 2.
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5. Learning in Complex MLNs.............................
p̂Φ,Ω(n) is a mapping D 7→ C,4 meaning a DFT per Equation 2.4 can be

computed for it. Let g(k) = F{p̂Φ,Ω}.
Let us recover p̂Φ,Ω(n) using the inverse DFT:

p̂Φ,Ω(n) = 1
|D|

∑
k∈D

g(k) exp(i2π〈n,k/M〉)

= 1
|D|

∑
k∈D:g(k)6=0

exp(log(g(k)) + i2π〈n,k/M〉)
(5.12)

The complex logarithm used in Equation 5.12 is defined on C\{0}. The cases
where g(k) = 0 can be excluded, since then the product g(k) exp(i2π〈n,k/M〉)
is zero.

By the assumption, that qΦ,Ω(n) = q̂Ψ,Ω(n), it follows that:

pΦ,Ω(ω) = qΦ,Ω(N(Ψ, ω))
MC(Ψ,N(Ψ, ω)) = p̂Φ,Ω(N(Ψ, ω))

= 1
|D|

∑
k∈D:g(k)6=0

exp(log(g(k)) + i2π〈N(Ψ, ω),k/M〉)
(5.13)

The argument of the exponential function in Equation 5.13 can be com-
pacted into a single inner product. Firstly, denote J the set of indices j of
elements kj ∈ D, such that

j ∈ J =⇒ g(kj) 6= 0.

Next, construct a vector aj ∈ Cm such that aj = [log(g(kj)), 0, 0, . . . , 0].
Finally, denote

vj = i2πkj/M + aj . (5.14)
Then Equation 5.13 can be rewritten as

pΦ,Ω(ω) = 1
|D|

∑
j∈J

exp(〈vj ,N(Ψ, ω)〉). (5.15)

The trick to defining vj as is done in Equation 5.14 is in the assumption
that α1 = >. Then, [N(Ψ, ω)]1 = N(>, ω) = 1. The value log(g(kj)) thus
gets added to a number that is multiplied by 1 in the inner product. Hence,
the value is effectively added to the result of the inner product.

Equation 5.15 is a very advantageous form, since by setting

J = {1, 2, . . . , d},
wi = [[v1]i, [v2]i, . . . , [vd]i],
Z = |D|,

(5.16)

it can be rewritten into the original C-MLN formula:

pΦ,Ω(ω) = 1
Z

d∑
k=1

exp
(

m∑
i=1

[wi]k ·N(αi, ω)
)

4More specifically, it is a mapping D 7→ [0; 1], but [0; 1] ⊂ C.
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............................... 5.2. DFT-Based Learning

Thus, by using the DFT, not only the weights wi can be learned but also
the dimensionality d that had to be fixed when learning using MLE. There
is no intractable inference subprocedure required. Also, the problems of the
original C-MLN definition discussed in Section 3.2 do not apply here. There
was a probability distribution estimate p̂Φ,Ω(n) inputted into the DFT, so
its inverse will again be a probability distribution taking on values from the
interval [0; 1].

However, there are other practical considerations to this approach. First
and foremost, how to evaluate the MC function? That is, in fact, another
intractable task. Exact evaluation requires iterating over the entire Ω set.
Nevertheless, it can be approximated by (uniform) sampling. It will, however,
require linear memory space in the size of D.

Another problem is the discrete Fourier transform subprocedure. Although
efficient algorithms for evaluating the DFT exist, they will still likely be
overwhelmed when the problem size significantly increases.

Next, this approach may learn the parameter d on its own, however, the
parameter is not bounded by anything except the size of D. It may happen
that the DFT will learn a uselessly large value of d, producing unnecessarily
intricate model.

Last but not least, T was assumed to contain all necessary information for
accurate estimation of the count distribution. In practice, that means having
a lot of samples, which may not be satisfied in many scenarios.
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Chapter 6
Experiments

The techniques proposed in previous chapters were implemented and ex-
perimentally tested in the Julia programming language [15]. Julia is an
open-source, modern, high-level, dynamically typed programming language
that relies heavily on the multiple dispatch paradigm.

Experiments use formulas from the friends and smokers dataset [2]. A
classical example often used in literature that captures smoking habits among
friends.

6.1 Implementation

The implementation is mostly straightforward. Rather than provide an
application-ready library full of obscure optimizations, its purpose is to be a
proof of concept for the proposed algorithms, which can be used to decide
their scalability and usefulness, as well as to identify possible future areas of
interest.

The code is structured into a Julia package. The source files are split
into several subfolders, each implementing a particular logical unit, e.g., fol,
inference or learning.

The central type is MLN which is a structure holding the knowledge base
and possibly weights. MLN can then be wrapped along with a set of con-
stants (a domain) into a ConcreteMLN, which induces a particular probability
distribution over possible worlds and allows sampling from it.

The sampling is performed by iterating over a structure GibbsSampler
that takes a ConcreteMLN as one of its arguments upon construction. The
sampling is slightly optimized by caching the results of N(α, ω) for the most
recently used interpretations. LRUCache.jl package1 is used for the caching.
The sampler is not optimized for high numerical stability nor sparsity.

GD-based learning is implemented with a fixed-sized step rather than line
search. The convergence is evaluated by inspecting the gradient’s norm.

For the second learning procedure, computation of the DFT is delegated
to the FFTW.jl package [16]. The MC function is approximated by uniform
sampling from Ω.

1https://github.com/JuliaCollections/LRUCache.jl
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6. Experiments ...................................
6.2 Counting Substitutions

Section 4.1 concluded by suggesting two procedures to exactly compute
the number of true-grounding substitutions of a formula in an interpretation.

The first algorithm is based on a recursive search of the space of all
possible substitutions, backtracking whenever unsatisfiability is detected.
The second one relies on joining tables in a relational database.2 As obtaining
the count is generally a challenging problem, neither of those techniques is
particularly useful for large-scale problems. Nevertheless, this section briefly
compares their running times on small examples to demonstrate their pros and
cons. The presented running times are median running times obtained using
BenchmarkTools.jl package [17]. All the measurements were performed on
a laptop with Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz, 16GB DDR4
RAM and HDD.

Table 6.2 shows the median running times for the recursive-based (de-
noted R in the table) and the database-based (denoted DB) true-grounding
substitutions-counting procedures. The running times are provided for several
simple formulas with the interpretation fixed to atoms presented by Table 6.13

with ∆ = {Anna,Bob, Chris,Daniel, Edward, Frank,Gary,Helen}.

cancer

Anna
Edward

friends

Edward Frank
Anna Bob
Bob Anna
Anna Edward

Edward Anna
Anna Frank
Frank Edward
Chris Daniel
Daniel Chris
Gary Helen
Helen Gary
Gary Anna
Anna Gary
Frank Anna
Bob Chris
Chris Bob

smokes

Anna
Edward
Frank
Gary

Table 6.1: A possible world with |∆| = 8

One can observe that the database-based approach suffers greatly from the
overhead of creating new tables upon invokation. The recursive algorithm

2Actual implementation was done using DataFrames.jl package with tables stored in
memory rather than in an external database. The package can be found at
https://github.com/JuliaData/DataFrames.jl.

3The dataset was taken from
https://alchemy.cs.washington.edu/data/tutorial/smoking/smoking-train.db.
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.............................. 6.2. Counting Substitutions

Formula N R [ms] DB [ms]
> 1 0.23 0.23
⊥ 0 0.23 0.23
smokes(x) 4 0.26 48
cancer(x) 2 0.26 50
cancer(x) ∧ smokes(x) 2 0.29 106
cancer(x) ∨ smokes(x) 4 0.35 232
¬cancer(x) ∧ ¬smokes(x) 4 0.33 246
¬cancer(x) ∨ ¬smokes(x) 6 0.31 111
cancer(x) ∧ ¬smokes(x) 0 0.31 174
cancer(x) ∨ ¬smokes(x) 6 0.33 202
¬cancer(x) ∧ smokes(x) 2 0.32 196
¬cancer(x) ∨ smokes(x) 8 0.40 202
friends(x, y) ∧ smokes(x) ∧ ¬smokes(y) 2 0.47 349
friends(x, y) ∨ smokes(x) ∨ ¬smokes(y) 50 0.54 558
¬friends(x, y) ∧ ¬smokes(x) ∧ smokes(y) 14 0.51 585
¬friends(x, y) ∨ ¬smokes(x) ∨ smokes(y) 62 0.52 356
friends(x, y) ∧ smokes(x) 10 0.36 143
friends(x, y) ∨ smokes(x) 38 0.44 295
¬friends(x, y) ∧ ¬smokes(x) 26 0.42 296
¬friends(x, y) ∨ ¬smokes(x) 54 0.40 150

Table 6.2: Running times for N(α, ω) counting procedures with |∆| = 8

is much faster. However, Table 6.3 shows running times for a twice as large
domain size. The exact interpretation used for those measurements is not
provided as that would be extremely long and not at all demonstrative.

It should be sufficiently informative to say that a HB with atoms consti-
tuting from predicate symbols appearing in Table 6.3 and a domain with 16
elements was constructed, and one of its subsets was sampled. The possible
world contained 142 friends predicates, 9 smokes predicates and 5 cancer
predicates.

Table 6.3 demonstrates that the recursion-based procedure’s running time
increases radically with enlarging the domain, whereas the database-based
procedure is much more resilient to such change. That is to be expected
since there, the table joining is the bottleneck. Naturally, the running time
would increase with adding more predicates, but that would also increase the
running time of the first algorithm.

The backtracking algorithm thus appears more suitable for cases with
small-sized domains. For larger domains, the database-based procedure may
be more advantageous. Naturally, neither is suitable for large domains or
KBs.4

4The database-based algorithm allows for further optimizations in query evaluations
and table joining. Then, it can be useful for large-scale problems.
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Formula N R [ms] DB [ms]

friends(x,A) ∧ smokes(x) 6 1.98 122
friends(x,A) ∨ smokes(x) 12 2.13 244
¬friends(x, y) ∧ ¬smokes(x) ∧ smokes(y) 32 4.48 440
¬friends(x, y) ∨ ¬smokes(x) ∨ smokes(y) 226 9.22 292
cancex(x) ∧ ¬smokes(x) 4 1.92 168
cancex(x) ∨ ¬smokes(x) 10 1.92 178

Table 6.3: Running times for N(α, ω) counting procedures with |∆| = 16

6.3 Learning

This section shows a few attempts to learn a C-MLN model on simple
(small) examples. Since C-MLNs were defined to achieve full expressivity and
full expressivity is defined in terms of count distributions, the examples assess
the approximation quality of the count distribution rather than assessing the
distribution over possible worlds directly.

Small examples allow us to store count distributions exactly and measure
the information lost in approximation using Kullback-Leibler (KL) divergence
reviewed in Section 2.3. Moreover, for one-element or two-element KBs, the
count distributions can even be easily visualized.5

As was already mentioned in Subsection 5.1.2, the function given by
Equation 3.13 is non-convex. Gradient-based maximization will thus lead
to, at best, local maxima. It may, however, stop at any critical point. The
examples below mostly present the best-obtained results over multiple runs
of the GD-based learning. Appendix C then shows other critical points found
by the algorithm, indicating the sheer volume of weights that one needs to
consider.

6.3.1 Non-Relational Case

To start with, let us first consider the case with a single formula smokes(x)
in the knowledge base.6 Such KB cannot capture any relations in the do-
main. Nevertheless, it will already demonstrate some challenging properties
connected with learning C-MLNs.

It is easy to see that

N(smokes(x), ω) = |ω|. (6.1)

The count distribution can thus be visualized using a histogram.

5When visualizing a count distribution, if the KB contains the tautology formula >, the
tautology’s dimension can be disregarded. Assuming α1 = >, count distribution can be
non-zero only for inputs with the first coordinate set to one.

6To ensure full expressivity, the KB will be extended by > implicitly.
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Example 6.1. Consider |∆| = 5 and T such that it specifies a binomial count
distribution with the probability of each sample p = 0.5. One such example
of T contains each element of Ω once.

Such count distribution is equivalent to pΦ,Ω(ω) being a uniform distribution
over Ω and it can be captured even by a classical MLN with the weight w = 0.

Figure 6.1 shows the best obtained GD result for d = 2. Except the
histogram visualizing the approximated count distribution, the figure also
contains the learned weights for each formula, rounded to three decimal places,
and the KL divergence of the approximation from the true (target) count
distribution, rounded to five decimal places.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

KL = 0.01039
smokes(x) >

−0.155 + 0.000i 0.009 + 0.000i
0.031 + 3.142i 1.559− 0.000i

Figure 6.1: GD-approximated binomial count distribution with d = 2

The distribution approximates the binomial distribution to some degree,
but not particularly well. Some inaccuracies may be attributed to numerical
errors or using samples from an unconverged Markov chain but given the fact,
that a classical MLN will be able to learn such example with relative ease, it
is not a very encouraging result.

As one can see from Appendix C, there are many distributions to which
GD may converge. To guide the optimization a little, the imaginary parts of
the tautology’s weight were initialized to zero and the imaginary parts of the
other formula’s weight to the first factors of the DFT.7 The real parts of the
weights were initialized from N (0, π/2).

When learning with an arbitrary initialization, the learning procedure
converged to even quite surprising results, such as the one shown in Figure 6.2.

7In the case of Ψ = {smokes(x)} and |∆| = 5, those are 2π · 0
6 , 2π ·

1
6 , . . . , 2π ·

d−1
6 .
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6. Experiments ...................................
Figure 6.3 shows the resulting count distribution when learning using DFT

as proposed in Section 5.2. Accounting for numerical errors, the distribution
is exactly binomial. However, the learning algorithm produced 12-dimensional
weights. That seems highly excessive in contrast to a single zero-valued weight
in the context of classical MLNs. Nevertheless, it is another demonstration
of how many solutions there are to this problem.

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.13137
smokes(x) >

−0.000 + 8.821i 2.352 + 3.077i
−0.842 + 4.910i −2.643 + 1.745i
−1.628− 0.182i 1.062− 0.369i

Figure 6.2: GD-approximated binomial count distribution with d = 3
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0 1 2 3 4 5
0

0.1
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0.3

KL = 0.00000
smokes(x) >

0.000 + 0.000i −1.673 + 0.000i
0.000 + 1.047i −8.139− 0.627i
0.000 + 2.094i −7.219− 0.450i
0.000 + 3.142i −7.762 + 0.000i
0.000 + 4.189i −7.219 + 0.450i
0.000 + 5.236i −8.139 + 0.627i
0.000 + 0.000i −1.673 + 6.283i
0.000 + 1.047i −8.139 + 5.656i
0.000 + 2.094i −7.219 + 5.833i
0.000 + 3.142i −7.762 + 6.283i
0.000 + 4.189i −7.219 + 0.450i
0.000 + 5.236i −8.139 + 0.627i

Figure 6.3: DFT-approximated binomial count distribution with d = 12
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6. Experiments ...................................
Example 6.2. Consider |∆| = 5 and T such that it specifies a uniform count
distribution. One such example of T contains one possible world of each size.

It is already impossible to model this problem with a classical MLN (see
Subsection 6.3.3).

Figure 6.4 shows the best approximation obtained with MLE. The approx-
imation has d = 7. It is difficult to assess if that is the minimum required
dimension for achieving such approximation, or the experiments with lower
dimensions were just unlucky in finding the best possible result.

The approximation is, again, best when learning using DFT. The result
in displayed in Figure 6.5. Nevertheless, DFT, again, learns seemingly large
dimension d = 12.

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.000637
smokes(x) >

−2.345 + 0.000i 2.921 + 0.000i
0.771 + 36.717i −0.015 + 11.561i
0.537 + 1.825i 0.360 + 0.048i
1.008 + 2.757i −1.387 + 0.009i
0.532 + 3.600i 1.068− 0.001i
1.103 + 4.339i −1.508− 0.039i
1.221 + 5.593i −2.426 + 0.035i

Figure 6.4: GD-approximated uniform count distribution with d = 7
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KL = 0.00000
smokes(x) >

0.000 + 0.000i −0.834 + 0.000i
0.000 + 1.047i −1.345 + 0.520i
0.000 + 2.094i −2.146 + 1.034i
0.000 + 3.142i −6.464 + 0.000i
0.000 + 4.189i −2.146− 1.034i
0.000 + 5.236i −1.345− 0.520i
0.000 + 0.000i −0.834 + 6.283i
0.000 + 1.047i −1.345 + 0.520i
0.000 + 2.094i −2.146 + 1.034i
0.000 + 3.142i −6.464 + 6.283i
0.000 + 4.189i −2.146 + 5.249i
0.000 + 5.236i −1.345 + 5.764i

Figure 6.5: DFT-approximated uniform count distribution with d = 12
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6.3.2 Relational Case

Let us now consider a relational case with formulas

α1 = smokes(x),

α2 = (smokes(x) ∧ friends(x, y)) =⇒ smokes(x).

With two formulas, the count distribution can still be visualized using a
heatmap.
Example 6.3. Consider an MLN Φ = {(α1, 0), (α2, 0)} along with a domain
∆ such that |∆| = 4. Figure 6.6 shows the induced count distribution.

0 2 4 6 8 10 12 14 16
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0

5 · 10−2

0.1

0.15

0.2

x-axis represents α2, y-axis represents α1

α1 α2

0 0

Figure 6.6: Count distribution defined by an MLN

In this instance, the training data T was obtained by sampling from the
target MLN. Experiments were conducted for |T | = 100 and |T | = 1, 000.

Figures 6.7 and 6.8 show the count distributions estimated from T for both
sizes. The smaller training set was apparently not rich enough to capture
the true count distribution as accurately as the larger one did. Nevertheless,
experiments can be performed for both cases, assessing divergence of the
results from the count distribution estimates rather than from the true count
distribution shown in Figure 6.6. Therefore, KL divergence presented in the
following figures is always measured from the estimated count distribution
for the particular size of the training set.

GD converged very slowly for the cases with |T | = 100. For any of the
trials, it did not even fully converge. The algorithm remained oscillating
between points with |∇| ∈ [1; 2]. Decreasing the step size did not help. One
of the count distributions from the oscillating phase is shown in Figure 6.9.
As one can see, it is nowhere near the target.
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Figure 6.7: Estimate of the distribution from Figure 6.6 from 100 samples
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Figure 6.8: Estimate of the distribution from Figure 6.6 from 1, 000 samples

The optimization performed slightly better with the increased number of
training samples. The convergence speed remained low, but, at least one,
somewhat acceptable, set of weights was found. The result can be seen in
Figure 6.10.

As in the previous experiments, the best approximation was obtained
using the DFT. However, the dimensionality learned was 170. The result for
|T | = 1, 000 can be seen in Figure 6.11. The learned weights are omitted.
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x-axis represents α2, y-axis represents α1
|T | = 100

KL = 1.53673
α1 α2 >

−1.961 + 0.000i −0.058 + 0.000i 1.923 + 0.000i
−2.384 + 1.257i −1.134 + 0.370i −4.236− 0.000i

Figure 6.9: Unconverged GD approximation of Figure 6.7 with d = 2
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KL = 0.12460
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1.104 + 0.000i −0.163 + 0.000i −1.717 + 0.000i
−0.399 + 0.012i 0.167 + 0.452i −1.947 + 0.006i

Figure 6.10: GD-approximated distribution from Figure 6.8 with d = 2
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Figure 6.11: DFT-approximated distribution from Figure 6.8 with d = 170
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Example 6.4. For the final experiment, let us select a particular C-MLN and
try to learn the induced count distribution.

Assume Φ = {(α1, ln(3) + π
3 i), (α2, ln(3) + π

2 i), (>,
π
2 i)} along with four-

element domain. The situation is visualized in Figure 6.12.
Let us obtain training data by drawing 1, 000 samples from the specified

C-MLN. Estimated count distribution is shown in Figure 6.13.
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α1 α2 >
ln(3) + π

3 i ln(3) + π
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π
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Figure 6.12: Count distribution defined by a C–MLN
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Figure 6.13: Estimate of the distribution from Figure 6.12 from 1, 000 samples

In spite of the count distribution’s sparsity, gradient-based learning strug-
gled with approximating it. The best obtained result can be found in Fig-
ure 6.14. The approximation is not very satisfying.
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As one may already expect, DFT learning was, again, much more precise.
Figure 6.15 displays the learned distribution. Learned weights, however, were,
once more, 170-dimensional and they are omitted as in the previous case.
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x-axis represents α2, y-axis represents α1
|T | = 1, 000
KL = 0.30938

α1 α2 >
2.428 + 0.000i 0.981 + 0.000i 1.190 + 0.000i
0.681 + 1.257i −0.556− 0.000i −2.206− 0.000i
−0.348 + 0.000i −0.481 + 0.370i −0.494 + 0.000i
−1.784 + 1.257i −1.807 + 0.370i −0.837− 0.000i

Figure 6.14: GD-approximated count distribution from Figure 6.13 with d = 4
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Figure 6.15: DFT-approximated count distribution from Figure 6.13 with d = 170
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6.3.3 Classical vs. Complex MLNs

Examples 6.1 and 6.3 aim to approximate count distributions that can
be modelled by classical MLNs. In the latter case, an MLN was actually
the input that defined the count distribution. However, the other examples
present count distributions that cannot be captured by the MLN model.

Uniform count distribution (Example 6.2) implies that the probability of
the empty interpretation should equal the probability of the HB, i.e., the
interpretation containing all atoms from the HB. Such equation has one
solution:

1
Z

exp(w ·N(smokes(x), ∅)) = 1
Z

exp(w ·N(smokes(x), HB))

w · 0 = w · |HB|
w = 0

(6.2)

However, w = 0 leads to a binomial count distribution (see Example 6.1).
Figures 6.16 and 6.17 show attempts of an MLN to learn the uniform

count distribution, without and with the tautology formula > in the KB.
The approximations approach binomial distribution much more closely than
the uniform distribution. Moreover, they are the same. That is due to the
general role of > in the KB. The tautology formula serves as a bias term that
allows to shift the model while maintaining its shape.
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0.2
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KL = 0.38504
smokes(x)

0.146

Figure 6.16: MLN approximation of uniform count distribution

Figure 6.18 visualizes the MLN approximation of the distribution shown in
Figure 6.13 in Example 6.4. Similarly to the uniform distribution above, the
shape of the MLN approximation there approaches more the count distribution
of a network with the same KB, yet zero-valued weights (i.e., network from
Example 6.3).
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Figure 6.17: MLN approximation of uniform count distribution with tautology
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Figure 6.18: MLN approximation of Figure 6.13
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Chapter 7
Conclusion

Complex Markov logic networks are a model from the area of statistical
relational learning, that allows expressing compactly an arbitrary count
distribution. They are an extension of Markov logic networks, a simple, well
established and extensively studied method for combining first-order logic
and probability theory.

Compared to MLNs, C-MLNs lack underlying graphical structure, making
it impossible to reuse graph-based inference algorithms developed for MLNs.
The sampling-based inference is still possible. In Chapter 4, a sampling
algorithm for C-MLNs based on the popular Gibbs sampler was developed.
The algorithm was implemented and used as a subprocedure while computing
the gradient. It performed reasonably well on small examples.

The original C-MLN definition [3] specified the model as a mixture of
complex exponential functions. Although that is similar to the log-linear
model of MLNs, it introduces new challenges. One of the most notable being
that learning can no longer be formulated as a problem of unconstrained
optimization in the real domain. The weights may be complex vectors
rather than real number as it is in the case of classical MLNs. Furthermore,
Equation 2.11 permits only a small subset of all possible weights so that a
proper probability distribution is produced. However, the definition can be
modified (see Section 3.4) so that its expressivity is not lost and it becomes a
real function differentiable on the majority of its domain.

With the new definition, the gradient can be computed and used for
learning. This work used the simple technique of gradient descent. However,
the learning did not perform particularly well.

The negative log-likelihood is not a convex function. As one can observe
from Chapter 6 and Appendix C, there are many critical points that the GD
may converge to. The optimization-based learning algorithm was executed
several times with different initialization weights. The results were then
compared to the target count distribution using Kullback-Leibler divergence
to decide on their quality. The experiments were conducted only on small
examples so such comparisons would be possible. That, however, is not
a practical approach, since for real-life datasets, the target distribution is
unknown. Moreover, the best-found weights were often of a higher dimension
than was clearly necessary.
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7. Conclusion ....................................
Apart from the non-convexity, some issues with convergence were also

encountered in Example 6.3, in spite the fact, that the count distribution
there could be represented even by classical MLNs.

Section 5.2 approached the learning problem differently. Using discrete
Fourier transform, an arbitrary count distribution was directly encoded as
a C-MLN (the original one). However, that approach has two drawbacks.
Firstly, it learns not only weights but also their dimensionality, which may
grow extremely large even for simple examples. Secondly, a sufficiently large
training data set is required that allows an accurate estimation of the count
distribution.

7.1 Future Work

There are many ways in which this thesis can be expanded.
Firstly, GD could be replaced by a more sophisticated optimization tech-

nique, perhaps even higher-order one, that might be better at learning mixture
models. One possibility could be the L-BFGS algorithm, which is a popular
choice for parameter learning [18].

However, learning as is developed in Section 5.1 might be overall too
inspired by learning in MLNs. Even the modifications proposed in Section 3.3
to enable computation of gradient may not be the best approach. Learning
directly the original C-MLN model (which was also derived in Section 5.2
using DFT) could be a better strategy. The learning could be possibly done
by utilizing CR-Calculus [10] or algorithms from constrained optimization.

Besides refining parameter learning, examining the possibilities of structure
learning is another possible extension.

Going back to Chapter 4, this work assumed the formulas in the knowledge
base to be clauses. The question remains if assigning weights to clauses limits
expressivity when compared to assigning weights to general FOL formulas.

Regarding the C-MLN model itself, the matter of singularities discussed
briefly in Chapter 3 should be inspected further. They were not encountered
during experiments presented in Chapter 6; that, however, does not mean
that they can’t become a problem in other cases.

Apart from its singularities, the model appears to be overparameterized.
Even simple experiments showed that there exist distinct sets of weights that
approximate particular count distribution with similar accuracy. Furthermore,
individual dimensions are mutually independent, meaning that coordinates
may be shuffled, yet the distribution will remain the same. The possibility of
some C-MLN regularization, which could also be beneficial for the DFT-based
learning, should thus also be explored.

54



Bibliography

[1] H.D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Un-
dergraduate Texts in Mathematics. Springer New York, 1996.

[2] Matthew Richardson and Pedro Domingos. Markov logic networks.
Machine Learning, 62:107–136, 02 2006.

[3] Ondrej Kuzelka. Complex markov logic networks: Expressivity and
liftability. In Jonas Peters and David Sontag, editors, Proceedings of the
36th Conference on Uncertainty in Artificial Intelligence (UAI), volume
124 of Proceedings of Machine Learning Research, pages 729–738, Virtual,
03–06 Aug 2020. PMLR.

[4] W. K. Hastings. Monte carlo sampling methods using markov chains
and their applications. Biometrika, 57(1):97–109, 1970.

[5] Alan E. Gelfand and Adrian F. M. Smith. Sampling-based approaches
to calculating marginal densities. Journal of the American Statistical
Association, 85(410):398–409, 1990.

[6] S. Kullback and R. A. Leibler. On Information and Sufficiency. The
Annals of Mathematical Statistics, 22(1):79 – 86, 1951.

[7] H. A Priestley. Introduction to complex analysis. Clarendon, Oxford,
1985.

[8] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Prin-
ciples and Techniques. 01 2009.

[9] David J. Griffiths. Introduction to Quantum Mechanics (2nd Edition).
Pearson Prentice Hall, 2nd edition, April 2004.

[10] Ken Kreutz-Delgado. The complex gradient operator and the cr-calculus,
2009.

[11] Dan Roth. On the hardness of approximate reasoning. Artificial Intelli-
gence, 82(1):273–302, 1996.

[12] Guy Van den Broeck, Wannes Meert, and Adnan Darwiche. Skolemiza-
tion for weighted first-order model counting. 12 2013.

55



7. Conclusion ....................................
[13] O. Schulte, H. Khosravi, A. Kirkpatrick, Tianxiang Gao, and Yuke Zhu.

Modelling relational statistics with bayes nets ( poster presentation srl
workshop ). 2012.

[14] A. Cauchy. Methode generale pour la resolution des systemes d’equations
simultanees. C. R. Acad. Sci Paris, 25(1):536–538, 1847.

[15] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia:
A fresh approach to numerical computing. SIAM review, 59(1):65–98,
2017.

[16] Matteo Frigo and Steven G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005. Special issue
on “Program Generation, Optimization, and Platform Adaptation”.

[17] Jiahao Chen and Jarrett Revels. Robust benchmarking in noisy environ-
ments. arXiv e-prints, Aug 2016.

[18] Robert Malouf. A comparison of algorithms for maximum entropy
parameter estimation. In Proceedings of the 6th Conference on Natural
Language Learning - Volume 20, COLING-02, page 49–55, USA, 2002.
Association for Computational Linguistics.

56



Appendix A
Weights’ Transformation

Proposition A.1. Let Φ be a C-MLN with formulas Ψ = {α1, α2, . . . , αm},
where α1 = >, and with weights wi for each αi. Let ω ∈ Ω be a possible
world.

Multiplying
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
)

by the negative imaginary unit is equivalent to subtracting π
2 i from the

tautology weight along each dimension.

Proof. Denote zk(ω) =
∑m
i=1[wi]k · N(αi, ω), and let xk(ω) and yk(ω) be

its real and imaginary part, respectively. For brevity, let us also drop the
argument and assume the numbers zk, xk, yk for any ω ∈ Ω.

Then
d∑

k=1
exp

(
m∑
i=1

[wi]k ·N (αi, ω)
)

=
d∑

k=1
exp (zk) .

Multiplying the sum by −i produces:

−i
d∑

k=1
exp (zk) = −i

d∑
k=1

exp(xk)(cos(yk) + i sin(yk))

=
d∑

k=1
exp(xk)(sin(yk)− i cos(yk))

(A.1)

Remember elementary properties of the sine and cosine functions:

cos(x) = sin
(
x+ π

2

)
sin(−x) = − sin(x)
cos(−x) = cos(x)

(A.2)

57



A. Weights’ Transformation..............................
Using Equation A.2:

−i
d∑

k=1
exp (zk) =

d∑
k=1

exp(xk)(sin(yk)− i cos(yk))

=
d∑

k=1
exp(xk)

(
cos

(
yk −

π

2

)
− i cos (−yk)

)

=
d∑

k=1
exp(xk)

(
cos

(
yk −

π

2

)
− i sin

(
−yk + π

2

))

=
d∑

k=1
exp(xk)

(
cos

(
yk −

π

2

)
+ i sin

(
yk −

π

2

))

=
d∑

k=1
exp(zk − i

π

2 )

(A.3)

Returning to the weights:

zk − i
π

2 = xk + i

(
yk −

π

2

)
= xk + i

(
−π2 +

m∑
i=1

[yi]k ·N (αi, ω)
) (A.4)

Since α1 = > and N(>, ω) = 1 for any ω ∈ Ω, Equation A.4 can be
rewritten as

zk − i
π

2 = xk + i

(
([y1]k −

π

2 ) ·N(α1, ω) +
m∑
i=2

[yi]k ·N (αi, ω)
)
. (A.5)

Computing −i
∑d
k=1 exp (zk) is thus equivalent to subtracting π

2 i from each
dimension of the tautology weight.
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Appendix B
Answering Query with SQL

Example B.1. Assume a conjunctive query β and a database ω.

β = smokes(x) ∧ friends(x, y)
ω = {smokes(A), smokes(B), smokes(E), friends(A,B), friends(E,B)}

First of, initialize a fresh database so that it reflects the possible world ω:

CREATE TABLE smokes (
id VARCHAR(1 ) NOT NULL,

PRIMARY KEY ( ID)
) ;

INSERT INTO smokes ( ID) VALUES ( ’A ’ ) ;
INSERT INTO smokes ( ID) VALUES ( ’B ’ ) ;
INSERT INTO smokes ( ID) VALUES ( ’E ’ ) ;

CREATE TABLE f r i e n d s (
id_1 VARCHAR(1 ) NOT NULL,
id_2 VARCHAR(1 ) NOT NULL,
PRIMARY KEY ( id_1 , id_2 )

) ;
INSERT INTO f r i e n d s ( id_1 , id_2 ) VALUES ( ’A ’ , ’B ’ ) ;
INSERT INTO f r i e n d s ( id_1 , id_2 ) VALUES ( ’E ’ , ’B ’ ) ;

Next, translate the formula β into an SQL select query:

SELECT smokes . id AS X, f r i e n d s . id_2 AS Y
FROM smokes JOIN f r i e n d s ON smokes . id = f r i e n d s . id_1 ;

X Y
A B
E B

Table B.1: Result of an SQL select query

Hence N(β, ω) = 2, since there are 2 entries in the resulting table.
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Appendix C
Additional Learning Results

C.1 Example 6.1

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.01147
smokes(x) >

−3.015 + 0.000i −0.946 + 0.000i
0.143 + 3.142i −0.151− 0.000i

Figure C.1: GD-approximated binomial count distribution with d = 2
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0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.02100
smokes(x) >

−2.046− 3.726i −2.266 + 1.142i
−0.186 + 0.015i 0.208− 0.232i

Figure C.2: GD-approximated binomial count distribution with d = 2

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.04659
smokes(x) >

0.267 + 0.000i −0.342 + 0.000i
−1.677 + 2.091i −1.202− 0.004i
−0.473 + 4.189i −1.756 + 0.005i

Figure C.3: GD-approximated binomial count distribution with d = 3
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................................... C.1. Example 6.1

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.06040
smokes(x) >

−0.618 + 1.425i −2.038− 0.566i
0.003 + 3.722i −0.247 + 3.347i
−0.355− 0.755i −0.783− 2.194i

Figure C.4: GD-approximated binomial count distribution with d = 3

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

KL = 0.02130
smokes(x) >

−0.628 + 0.000i −1.893 + 0.000i
0.508− 1.334i 2.071− 0.786i
0.978 + 0.875i −0.165− 0.173i
0.648 + 2.693i 0.727 + 0.039i
−1.112 + 3.590i −2.698− 0.000i
−0.409 + 4.485i −1.246− 0.003i
−0.490 + 5.379i −0.268− 0.007i

Figure C.5: GD-approximated binomial count distribution with d = 7
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0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.05278
smokes(x) >

−0.048 + 0.000i 1.145 + 0.000i
−0.444 + 0.890i −0.254 + 0.009i
0.667 + 2.504i −0.772 + 0.266i
−0.784 + 2.869i 2.567 + 0.129i
1.017 + 4.146i −1.973 + 0.067i
−0.402 + 4.414i 0.157− 0.063i
−0.674 + 5.386i −0.609− 0.007i

Figure C.6: GD-approximated count binomial distribution with d = 7
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C.2 Example 6.2

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.07758
smokes(x) >

1.005 + 0.000i −1.940 + 0.000i
−0.818 + 3.142i 2.526− 0.000i

Figure C.7: GD-approximated uniform count distribution with d = 2

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.39869
smokes(x) >

0.634 + 0.000i −2.266 + 0.000i
0.216 + 0.000i 1.440 + 0.000i

Figure C.8: GD-approximated uniform count distribution with d = 2
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0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.08902
smokes(x) >

0.552 + 0.000i −0.976 + 0.000i
−0.113 + 2.156i −1.223 + 0.029i
−1.352 + 3.990i 2.518− 0.146i

Figure C.9: GD-approximated uniform count distribution with d = 3

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

KL = 0.36295
smokes(x) >

−0.645 + 0.000i 1.129 + 0.000i
−0.262 + 2.209i 2.404 + 0.100i
0.445 + 4.268i 1.846− 0.089i

Figure C.10: GD-approximated uniform count distribution with d = 3
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................................... C.2. Example 6.2

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.08057
smokes(x) >

−0.152 + 0.000i 2.657 + 0.000i
−0.998 + 1.258i 0.287 + 0.000i
1.752 + 2.749i −3.709 + 0.070i
−0.328 + 3.770i −2.718 + 0.000i
−0.630 + 5.015i 1.964− 0.005i

Figure C.11: GD-approximated uniform count distribution with d = 5

0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.10551
smokes(x) >

−1.105 + 0.000i −0.571 + 0.000i
0.055 + 1.384i 1.023 + 0.031i
−0.417 + 2.580i 1.963 + 0.034i
−0.224 + 3.742i 0.526− 0.013i
0.103 + 4.927i 0.505− 0.023i

Figure C.12: GD-approximated uniform count distribution with d = 5
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0 1 2 3 4 5
0

0.1

0.2

0.3

KL = 0.06044
smokes(x) >

−2.340 + 0.000i 2.909 + 0.000i
0.833 + 36.783i 0.014 + 11.582i
0.560 + 1.784i 0.370 + 0.023i
0.999 + 2.771i −1.394 + 0.009i
0.482 + 3.625i 1.031 + 0.025i
1.131 + 4.361i −1.502− 0.028i
1.264 + 5.574i −2.416 + 0.027i

Figure C.13: GD-approximated uniform count distribution with d = 7
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C.3 Example 6.3

0 2 4 6 8 10 12 14 16

0

1

2

3

4

0

5 · 10−2

0.1

0.15

0.2

x-axis represents α2, y-axis represents α1
|T | = 100

KL = 0.00000
weights are omitted

Figure C.14: DFT-approximated distribution from Figure 6.7 with d = 170
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C.4 Example 6.4

0 2 4 6 8 10 12 14 16

0

1

2

3

4

0

0.2

0.4

0.6

x-axis represents α2, y-axis represents α1
|T | = 1, 000
KL = 0.46821

α1 α2 >
0.455 + 0.000i 2.250 + 0.000i 0.251 + 0.000i
−2.492 + 1.257i 2.111 + 0.002i −1.282 + 0.000i

Figure C.15: GD-approximated distribution from Figure 6.13 with d = 2
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0 2 4 6 8 10 12 14 16

0
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3

4

0

0.2

0.4

0.6

x-axis represents α2, y-axis represents α1
|T | = 1, 000
KL = 0.36975

α1 α2 >
−1.480 + 0.000i −3.144 + 0.000i −1.184 + 0.000i
−2.446 + 1.257i 0.953− 0.001i −0.161− 0.000i
0.847 + 0.397i 0.718 + 2.636i 2.831 + 0.154i
−1.871 + 1.257i −1.045 + 0.370i 0.850− 0.000i

Figure C.16: GD-approximated distribution from Figure 6.13 with d = 4
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0.2

0.4

0.6

x-axis represents α2, y-axis represents α1
|T | = 1, 000
KL = 1.4530

α1 α2 >
−2.278 + 0.000i −2.580 + 0.000i 2.079 + 0.000i
1.225 + 1.257i −0.421− 0.000i 1.657− 0.000i
−0.940− 0.000i 0.888 + 0.370i −2.368− 0.000i
−0.428 + 1.766i 1.659 + 0.712i 0.373 + 0.021i

Figure C.17: GD-approximated distribution from Figure 6.13 with d = 4
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0.4

0.6

x-axis represents α2, y-axis represents α1
|T | = 1, 000
KL = 0.77133

α1 α2 >
0.452 + 0.000i −0.387 + 0.000i 1.940 + 0.000i
−0.059 + 1.257i 0.308− 0.000i −0.579− 0.000i
−2.205− 0.000i 1.163 + 0.370i −1.131− 0.000i
0.690 + 1.257i −1.083 + 0.370i −0.228− 0.000i
−0.721 + 1.257i −2.766 + 0.739i −1.085− 0.000i
0.194 + 2.513i 2.247 + 0.370i 0.415 + 0.000i
0.301 + 0.868i 3.742− 5.446i 1.792− 0.382i

Figure C.18: GD-approximated distribution from Figure 6.13 with d = 7
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Appendix D
Enclosed Source Codes

ComplexMLN

benchmark

src

fol

groundings

inference

learning

network

parsing

ComplexMLN.jl – main package file

test

Manifest.toml – locked versions of used dependencies

Project.toml – package (project) file
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Appendix E
List of Abbreviations

C-MLN complex Markov logic network

CNF conjunctive normal form

DFT discrete Fourier transform

FOL first-order logic

FT Fourier transform

GD gradient descent

HB Herbrand base

IID identically independently distributed

KB knowledge base

MCMC Markov chain Monte Carlo

MLE maximum likelihood estimation

MLN Markov logic network

MRF Markov random field

WFOMC weighted first order model counting
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Appendix F
List of Algorithms

1 General Gibbs sampler . . . . . . . . . . . . . . . . . . . . . 4
2 Answering negation-free conjunctive queries . . . . . . . . . 23
3 Gibbs sampler for C–MLNs . . . . . . . . . . . . . . . . . . . 25
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