
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Natural Language Generation from
Knowledge-Base Triples

Ondřej Kobza

Supervisor: Ing. Petr Marek
Field of study: Open Informatics
Subfield: Artificial Intelligence
May 2021



ctuthesis t1606152353 ii



ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457004Osobní číslo:OndřejJméno:KobzaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Generování přirozeného jazyka ze znalostních databází

Název diplomové práce anglicky:

Natural Language Generation from Knowledge-Base Triples

Pokyny pro vypracování:
1.Prozkoumejte veřejně dostupné množiny dat vhodné pro natrénování modelu pro generaci přirozeného jazyka ze
znalostních databází.
2. Prozkoumejte existující zdroje relevantní k dané úloze.
3. Na základě zdrojů z bodu 2. navrhněte možná řešení zadaného problému.
4. Implementujte a natrénujte navrhované modely na datové množině z bodu 1.
5. Najděte (popř. navrhněte) metriku pro hodnocení kvality jednotlivých modelů.
6. Porovnejte výsledky jednotlivých modelů/řešení, zhodnoťte jednotlivá řešení na základě metriky z předchozího bodu a
na základě manuální evaluace.
7. Vytvořte API pro použití modelu (jenž dosahoval nejlepších výsledků v bodě 6.) tak, aby bylo možné daný model
integrovat s dialogovým systémem.

Seznam doporučené literatury:
Ferreira, T. C., van der Lee, C., van Miltenburg, E., & Krahmer, E.
(2019). Neural data-to-text generation: A comparison between pipeline
and end-to-end architectures. arXiv preprint arXiv:1908.09022.
Gardent, C., Shimorina, A., Narayan, S., & Perez-Beltrachini, L.
(2017, September). The WebNLG challenge: Generating text from RDF
data. In Proceedings of the 10th International Conference on Natural
Language Generation (pp. 124-133).
Jurafsky, Daniel & Martin, James. (2008). Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition.
Zhu, Y., Wan, J., Zhou, Z., Chen, L., Qiu, L., Zhang, W., ... & Yu, Y.
(2019, July). Triple-to-text: converting RDF triples into high-quality
natural languages via optimizing an inverse KL divergence. In
Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 455-464).
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1



Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Petr Marek, velká data a cloud computing CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 21.02.2021

Platnost zadání diplomové práce: 19.02.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Marek

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1



Acknowledgements

I would like to express my sincerest grat-
itude and acknowledgment to my super-
visor Ing. Petr Marek, for the guidance
and helpful advices. Furthermore, I would
like to thank Ing. Jan Pichl for helpful
consultations.

Declaration

I, Ondřej Kobza, declare that the pre-
sented work was developed independently
and that I have listed all sources of infor-
mation used within it in accordance with
the methodical instructions for observing
the ethical principles in the preparation
of university theses.

In Prague, 21. 5. 2021

v ctuthesis t1606152353



Abstract

The main goal of this master thesis is to
create a machine-learning-based tool that
is able to verbalize given data, i.e., from
given RDF triples; it should be able to cre-
ate a corresponding text in a natural lan-
guage (English) such that the text must
be grammatically correct, fluent, must
contain all information from the input
data and cannot have any additional in-
formation.

The thesis begins with examining the
publicly available datasets; then, it fo-
cuses on the architectures of statistical
machine learning models and their pos-
sible usage for natural language genera-
tion. The work is also focused on possible
numerical text representation, text gen-
eration by machine learning models, and
optimization algorithms for training the
models.

The next part of the thesis proposes
two main solutions to the problem and
examines each of them. Automatic met-
rics evaluate all systems, and the best
performing models are then passed to a
human (manual) evaluation.

The last part of the thesis focuses on
implementing the final application and its
deployment for production.

Keywords: RDF Triple, Machine
Learning, Natural Language Generation,
LSTM, Transformer, T5, Roberta

Supervisor: Ing. Petr Marek

Abstrakt

Cílem této diplomové práce je vytvořit
nástroj jenž za pomocí strojového učení
dokáže verbalizovat data, t.j. ze vstupních
dat ve formě RDF trojic dokáže vytvořit
odpovídající text v přirozeném jazyce (an-
gličtina) takový, že bude gramaticky a
mluvnicky správný, bude obsahovat veš-
keré informace ze vstupních dat a nebude
obsahovat žádné informace navíc.

Práce nejprve zkoumá dostupná data,
poté se zabývá architekturami modelů pro
statistické strojové učení a jejich možné
použití pro generování přirozeného jazyka.
Práce se taktéž zabývá numerickou repre-
zentací textu, generováním textu pomocí
učících se modelů a optimalizačních algo-
ritmů pro trénování těchto modelů.

V další části práce jsou navrženy dva
rozdílné přístupy pro řešení zadání práce.
Navržené přístupy jsou poté zhodnoceny
pomocí automatických metrik a nejlepší
systémy jsou zhodnoceny manuálně.

Závěr této diplomové práce je věnován
nasazení výsledné aplikace pro produkční
běh.

Klíčová slova: RDF Triple, Strojové
Učení, Generování Přirozeného Jazyka,
LSTM, Transformer, T5, Roberta

Překlad názvu: Generování
Přirozeného Jazyka ze Znalostních
Databází

ctuthesis t1606152353 vi



Contents

1 Introduction 1

1.1 Structure of the Thesis . . . . . . . . . 2

1.2 Task Definition . . . . . . . . . . . . . . . . 2

1.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 WebNLG 2017 Dataset . . . . . . 3

1.3.2 WebNLG 2020 Dataset . . . . . . 4

1.4 Other Datasets . . . . . . . . . . . . . . . . 5

2 Related Work and Theory 7

2.1 Sequence to Sequence Models
Based on Recurrent Neural Networks 8

2.1.1 LSTM . . . . . . . . . . . . . . . . . . . . . 9

2.2 Sequence to Sequence Models
Based on Transformers . . . . . . . . . . 10

2.2.1 Attention . . . . . . . . . . . . . . . . . 11

2.3 Text Representation in Machine
Learning Models . . . . . . . . . . . . . . . . 12

2.3.1 Word Embedding . . . . . . . . . . 13

2.3.2 Byte-Pair Encoding . . . . . . . . 13

2.4 Decoding Output of an Sequence
to Sequence Model . . . . . . . . . . . . . . 14

2.4.1 Beam Search . . . . . . . . . . . . . . 14

2.4.2 Sampling . . . . . . . . . . . . . . . . . 14

2.5 Optimization Techniques . . . . . . 15

2.5.1 SGD . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Adam . . . . . . . . . . . . . . . . . . . . 16

2.5.3 AdamW . . . . . . . . . . . . . . . . . . 16

2.6 Metrics . . . . . . . . . . . . . . . . . . . . . . 17

2.6.1 Nomenclature . . . . . . . . . . . . . 17

3 Proposed LSTM-based Systems
for RDF-to-Text Generation
Problem 23

3.1 Seq-to-Seq LSTM Models . . . . . . 25

3.1.1 Data Preprocessing and
Postprocessing . . . . . . . . . . . . . . . . 25

3.1.2 Delexicalization . . . . . . . . . . . . 26

3.1.3 Relexicalization . . . . . . . . . . . . 28

3.2 Ordering and Text Structuring . 28

3.2.1 Ordering . . . . . . . . . . . . . . . . . . 28

vii ctuthesis t1606152353



3.2.2 Text Structuring . . . . . . . . . . . 31

3.3 Triples-to-Text Model . . . . . . . . . 32

3.3.1 Copy Attention . . . . . . . . . . . . 33

3.3.2 Inverse Kullback–Leibler Loss 34

3.4 Implementation Details . . . . . . . . 36

3.4.1 Data Preprocessing and
Postprocessing . . . . . . . . . . . . . . . . 36

3.4.2 LSTM Models . . . . . . . . . . . . . 37

4 Proposed Transformer-Based
Systems for RDF-to-Text
Generation Problem 39

4.1 Google T5 . . . . . . . . . . . . . . . . . . . 40

4.2 Roberta . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 BERT . . . . . . . . . . . . . . . . . . . . 41

4.2.2 Masked LM . . . . . . . . . . . . . . . 42

4.3 Data Preprocessing . . . . . . . . . . . 42

4.4 T5 for Triples-to-Text Setup . . . 43

4.5 Roberta for Ranker Setup . . . . . . 44

4.6 Implementation Details . . . . . . . . 46

4.6.1 T5 Model . . . . . . . . . . . . . . . . . 46

4.6.2 Roberta Model . . . . . . . . . . . . 46

5 Results of LSTM Models 47

5.1 Heuristic Ordering and Text
Structuring . . . . . . . . . . . . . . . . . . . . 48

5.2 Seq-to-seq Ordering . . . . . . . . . . . 49

5.3 Unseen test data . . . . . . . . . . . . . . 50

5.4 Discussion . . . . . . . . . . . . . . . . . . . 50

6 Results of Transformer Models 53

6.1 Unseen data . . . . . . . . . . . . . . . . . 54

6.2 Evaluation of Roberta Ranker . . 55

6.3 Discussion . . . . . . . . . . . . . . . . . . . 56

7 Speed Comparison 57

8 Comparison of Performance by
Automatic Evaluation metrics 59

8.0.1 WebNLG 3.0 Unseen Test
Data . . . . . . . . . . . . . . . . . . . . . . . . . 59

8.0.2 WebNLG 1.4 Seen Test Data 60

8.1 Discussion . . . . . . . . . . . . . . . . . . . 60

ctuthesis t1606152353 viii



9 Human Evaluation 61

9.1 Results . . . . . . . . . . . . . . . . . . . . . . 62

9.2 Discussion . . . . . . . . . . . . . . . . . . . 63

10 API 65

10.1 KFServing . . . . . . . . . . . . . . . . . . 65

10.2 Usage of the System . . . . . . . . . 66

10.3 Implementation Details . . . . . . . 66

11 Conclusion 69

Bibliography 71

Project Specification 77

ix ctuthesis t1606152353



Figures

2.1 Visualization of Transformer
architecture. . . . . . . . . . . . . . . . . . . . 10

2.2 Masked Multi–Head Attention . . 12

2.3 Algorithm proposed by Snover
et al. (2006) to calculate the number
of edits. . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Adversarial algorithm proposed by
Zhu et al. (2019). . . . . . . . . . . . . . . . 35

4.1 A diagram of the text-to-text
framework proposed by Raffel et al.
(2020). . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 A diagram of the ranker by
Harkous et al. (2020b). . . . . . . . . . . 45

9.1 Human evaluation of T5-large
model + Roberta-large ranker. . . . 62

9.2 Human evaluation of iklcpa model. 63

10.1 KFServing visualization. . . . . . . 66

Tables

5.1 Automatic evaluation of the
participants of WebNLG 2017. . . . . 47

5.2 Results of LSTM-based models
(end–to-end solution). . . . . . . . . . . . 48

5.3 Results of LSTM models trained
on unordered data with additional
two steps — ordering and text
structuring. . . . . . . . . . . . . . . . . . . . . 48

5.4 Effects of heuristic–ordering on
performance of Triples-to-seq
system. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Official results of the WebNLG
challenge 2017 — unseen part of the
test dataset. . . . . . . . . . . . . . . . . . . . 50

5.6 Results of LSTM-base models on
unseen data. . . . . . . . . . . . . . . . . . . . 50

6.1 Eleven best systems of the
WebNLG 2020 (all data, sorted by
METEOR). . . . . . . . . . . . . . . . . . . . . 53

6.2 T5 end-to-end models trained on
WebNLG 3.0 data set. . . . . . . . . . . . 54

6.3 T5 + Roberta-base ranker (all
data). . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4 T5 + Roberta-large ranker (all
data). . . . . . . . . . . . . . . . . . . . . . . . . . 54

ctuthesis t1606152353 x



6.5 T5 + Roberta-large ranker + text
structuring (all data). . . . . . . . . . . . 54

6.6 Official results of the WebNLG
challenge 2020 — unseen data. . . . 55

6.7 T5 + Roberta-large ranker (unseen
data) . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.8 T5 + Roberta-large ranker + text
structuring (unseen data). . . . . . . . 55

6.9 Performance of Roberta classifiers
(rankers). . . . . . . . . . . . . . . . . . . . . . . 55

7.1 Comparison of the speed of
different systems. . . . . . . . . . . . . . . . 58

8.1 Automatic evaluation: T5 vs
LSTM (unseen data). . . . . . . . . . . . 59

8.2 Automatic evaluation: T5 vs
LSTM (seen data). . . . . . . . . . . . . . . 60

xi ctuthesis t1606152353



ctuthesis t1606152353



Chapter 1

Introduction

In recent years one could witness a massive expansion of conversational
systems. From simple dialog systems, such was Eliza (Weizenbaum, 1966), the
technology developed into advanced conversational agents, such as Microsoft
Cortana 1, Apple Siri 2 or Amazon Alexa 3.

Conversational agents consist of many parts. Thus, there are many chal-
lenges during the development of such software – one such challenge is to
be able to use structural information (e.g., from knowledge bases) during a
conversation with a client. The structural information is typically in the form
of RDF triples and hence it is crucial to be able to generate natural texts
from the RDF triples (i.e., to verbalize the RDF triples). In this thesis, the
problem is further referred to as the ‘triples-to-text’ task.

One of many conversational agents that needs the ability to make natural
texts from RDF triples is Alquist AI (Pichl et al. (2018), Pichl et al. (2020b),
Pichl et al. (2020a)), which was developed at CTU CIIRC within the frame-
work of the Amazon Alexa Prize. Alquist AI took second place in 2018 and
2019 and third place in 2020.

This thesis aims to solve the ‘triples-to-text’ task for Alquist AI to help it
in the current Amazon Alexa Prize (2021).

1https://www.microsoft.com/en-us/cortana
2https://www.apple.com/siri/
3https://www.amazon.com/b?ie=UTF8&node=21576558011

1 ctuthesis t1606152353



1. Introduction .....................................
1.1 Structure of the Thesis

The following sections of this chapter focus on a more detailed task definition
and available data sets for the task.

The second chapter is describing theoretical frameworks which are necessary
for solving the task with a machine-learning system.

Chapters three and four focus on two different main architectures of sta-
tistical machine-learning models. Both chapters propose solutions for the
triples-to-seq task; each solution is based on the architecture described in the
particular chapter.

The fifth and sixth chapters focus on an automatic evaluation of the
earlier proposed systems, while the seventh and eighth chapters focus on a
comparison of the proposed approaches. The former compares computational
costs of various model–architectures, while the latter one is comparing their
performance.

The ninth chapter is focused on a human (manual) evaluation of the best
systems for each model–type.

The thesis ends with a description of the final application, its API, and
with a final conclusion.

1.2 Task Definition

An RDF triple consists of three parts:..1. subject..2. predicate..3. object

ctuthesis t1606152353 2



........................................ 1.3. Data

Where predicate determines the relationship between subject and object. An
example of an RDF triple can be:

subject: Abilene,_Texas
predicate: cityServed
object: Abilene_Regional_Airport

This thesis aims to tackle the problem of text generation from such RDF
triples or triple sets. Thus given a set of RDF triples, the main task is to
generate a natural language utterance, such that the utterance contains all
information in the triple set and does not contain irrelevant information
(information not present in the set). The utterance must also be fluent and
grammatically correct. Both the triples and generated utterances must be in
English.

1.3 Data

Since the topic of the thesis corresponds to the WebNLG challenge (Gardent
et al. (2017), Castro Ferreira et al. (2020)), it is natural to use this dataset,
so the performance of the proposed solutions in this thesis can be compared
with the results of the systems that participated in the competition. Since
many pieces of research which were done on the topic of verbalizing RDF
triples are using one of the WebNLG datasets, one can easily compare the
solutions presented in the thesis with the current state-of-the-art solutions.

The WebNLG dataset has two main versions — one used in the WebNLG
Challenge 2017 and one used in WebNLG Challenge 2020:

1.3.1 WebNLG 2017 Dataset

The data consists of data pairs with 15 categories; 10 are seen (they are in
training and validation set), five are unseen (they are present in the test set
only). The test set contains all 15 categories (Gardent et al., 2017).

3 ctuthesis t1606152353



1. Introduction .....................................
1.3.2 WebNLG 2020 Dataset

There are the 15 categories from the previous dataset (but all are seen) + there
is one additional seen category. The test set contains data of seen categories,
data of seen categories but with unseen entities (i.e., unseen subjects and
objects), and three additional unseen categories (Castro Ferreira et al., 2020).
Despite the low amount of unseen categories, 50% of the test data is of one
of the unseen categories, and above 20% of the data are of a seen category,
but an unseen entity.

For the first version of the WebNLG dataset, there also exists an enriched
version (Castro Ferreira et al., 2020), which contains additional information:..1. sorted tripleset: The triples are sorted in the same order as is the

corresponding information in the target sentence. Plus, the whole set is
fragmented into subsets; each subset corresponds to one single sentence...2. entity map: Entities (subjects and objects) are mapped to specific tags.
There are also two types of target texts - raw texts and texts where the
subjects or objects are replaced by the tags (AGENT-n, PATIENT-n,
BRIDGE-n - which are standard tags in NLP)...3. lexicalization: It is the target sentence with the tags but in the form
of the infinitive. Additionally, there are marks indicating to which form
should be particular predicates transformed. For instance:

<lexicalization>
AGENT-1 which VP[aspect=simple,tense=present,voice=active,

↪→ person=3rd,number=singular] be located in PATIENT-1 .
↪→ AGENT-1 VP[aspect=simple,tense=past,voice=passive,
↪→ person=null,number=singular] establish in PATIENT-2
↪→ and VP[aspect=simple,tense=present,voice=active,
↪→ person=3rd,number=null] fall under DT[form=defined]
↪→ the category of PATIENT-3 .

</lexicalization>

The triplets can contain maximally seven triples in all WebNLG datasets.
This restriction was discussed with the supervisor and other team members of
Alquist AI. The discussion resulted in the conclusion that Alquist AI should
use, in most cases, smaller sets of triples and that there is no necessity to use
more than seven triples at once. Thus thresholding the set size to 7 is not a
problem in this application.

ctuthesis t1606152353 4



....................................1.4. Other Datasets

1.4 Other Datasets..1. E2E: The input has a form of MR (meaning representation) instead of
RDF (Novikova et al., 2017)...2. LDC2017T10: in the dataset, the source is an Abstract Meaning Repre-
sentation (AMR) graph representing “who is doing what to whom,” the
target is a sentence (Knight).

5 ctuthesis t1606152353



ctuthesis t1606152353 6



Chapter 2

Related Work and Theory

Ferreira et al. (2019) shows that using traditional NLG (natural language
generation) pipeline leads to a significant improvement in comparison with
end-to-end approach. Ferreira et al. (2019) tried to train several different
models, such as LSTM, GRU-RNN, and transformer. While all their models
were trained from scratch on the task dataset, the current state-of-the-art
approach is to fine-tune some pretrained transformers (attention-based model:
(Vaswani et al., 2017)).

The participants of the first WebNLG challenge used either a template
(rule-based) system, statistical machine translation or NMT (neural machine
translation) systems with recurrent neural networks behind (Gardent et al.,
2017) — note that a standard NMT system’s architecture is equivalent to a
standard seq-to-seq architecture. Similarly, Zhu et al. (2019) used a standard
NMT system based (encoder-decoder architecture, where both encoder and
decoder are LSTMs (Hochreiter and Schmidhuber, 1997)) but instead of using
standard negative log-likelihood loss or cross-entropy loss, they proposed to
optimize adjusted Kullback–Leibler divergence loss Joyce (2011) (so-called
‘Inverse Kullback–Leibler divergence’).

In the second WebNLG challenge, most participants used some transformer
model, e.g., Kasner and Dušek (2020) fine-tuned MBART transformer (Liu
et al., 2020) or Li et al. (2020) used a fine–tuned Google T5 model (Raffel
et al., 2020) or Guo et al. (2020) used a pipeline, where they first ordered the
triples, and then they fed the ordered triple set into a fine-tuned T5.

Besides Ferreira et al. (2019) some other researches proposed various

7 ctuthesis t1606152353



2. Related Work and Theory ...............................
pipeline concepts. Harkous et al. (2020a) introduced amended GPT-2 (Rad-
ford et al., 2019) together with a ranker, which ranks topk outputs of the
fine-tuned amended gpt-2, and the final output is based on the rankings.
Other researches used various types of triples ordering as the first step and
text generation as a second step, e.g., Guo et al. (2020).

The discussed work can be divided into three basic groups based on archi-
tecture of each system used to solve to triples-to-seq problem:..1. Template/rule-based approach..2. Encoder-decoder architecture build upon some recurrent neural networks

(such as LSTM)..3. Attention model (transformer)

This thesis is focused on the last two mentioned groups. Hence the fol-
lowing sections of this chapter describe the two machine learning theoretical
frameworks.

2.1 Sequence to Sequence Models Based on
Recurrent Neural Networks

The standard RNN (recurrent neural network) sequence to sequence (seq-
to-seq) framework consists of an encoder and a decoder; both of them are
recurrent neural networks. The encoder takes in a series of discrete tokens
X = [x1, x2, ..., xL] and outputs a series of hidden states. At the t-th step,
the encoder takes in a token and updates the hidden state recurrently:

henct = fenc(henct−1, ex) (2.1)

where ex is the word embedding (Mikolov et al., 2013) of the t-th to-
ken, fenc is a parametrized nonlinear function (e.g. LSTM (Hochreiter
and Schmidhuber, 1997)). The output of an encoder are hidden states
Henc = [henc1 , henc1 , ..., hencL ].

The decoder takes in the hidden states Henc of the encoder as input and
outputs a sequence of hidden states Hdec:

hdect = fdec(hdect−1, eyt−1 , ct) (2.2)

ctuthesis t1606152353 8



.............2.1. Sequence to Sequence Models Based on Recurrent Neural Networks

where eyt−1 is the embedding of the last output token from decoder/generator
and ct is either the last encoder’s hidden state or it is an output from attention
mechanism ct = g(henc1 , henc1 , ..., hencL ) where g is a linear or nonlinear function.
Typical choice of attention mechanism is a weighted average of the encoder’s
hidden states or a parametrized function, such as a multilayer perceptron
(Bahdanau et al., 2016), (Wilson and Tufts, 1994), (Zhu et al., 2019).

The output of decoder is then fed into a generator, which outputs condi-
tional probabilities of the output tokens:

P (yt|x1, x2, ..., xL, y0, y1, ..., yt−1) = softmax(Whenct + b) (2.3)

where W is the weight matrix of the generator and b is its bias.

If we have a bidirectional encoder, the number of hidden states for a
sequence of length L would be 2L, but the principle described above still
holds.

2.1.1 LSTM

LSTM (Long short-term memory) is an artificial recurrent neural network
architecture, which was developed to deal with the vanishing gradient problem
and gradient explosion problem that occurred quite often in the standard
RNN’s architecture. The network consists of input, output, and forget gates
and is defined as follows:

ft = σg(Wfxt + Ufht−1 + bf ) (2.4a)
it = σg(Wixt + Uiht−1 + bi) (2.4b)
ot = σg(Woxt + Uoht−1 + bo) (2.4c)
c
′
t = σc(Wcxt + Ucht−1 + bc) (2.4d)

ct = ftct−1 + itc
′
t (2.4e)

ht = otσh(ct) (2.4f)

where xt is the input vector, ft is output of the forget gate, it is output of
the input gate, ot is output of the output gate, ht is the hidden state of the
whole LSTM unit, c′t is cell activation vector, ct is a cell state (the cell is
supposed to be a ‘memory’ - it accumulates information of the whole input
sequence from the beginning till the end), W,U are weight matrices and b is
bias. σ is an activation function. Hochreiter and Schmidhuber (1997).

The main disadvantage of LSTM models is that they are not very suitable
for transfer learning due to their tendency to ‘catastrophic forgetting’ (Schak

9 ctuthesis t1606152353



2. Related Work and Theory ...............................
and Gepperth, 2019) (when an LSTM is fine-tuned, it tends to forget the
knowledge gained during previous training). The main reason for this issue is
the architecture, which does not allow high parallelization during training.
Hence, LSTM-based models cannot be too large; otherwise, their training
won’t be possible (feasible) (generally small models are not suitable for
transfer learning). Thus before the invention of transformers (Vaswani et al.,
2017), transfer learning was not very common practice in NLP, unlike it is
in computer vision, where Convolutional Neural Networks are widely used
— they do not have such a high tendency to ‘catastrophic forgetting’ (Arora
et al., 2019).

2.2 Sequence to Sequence Models Based on
Transformers

Similar to the previous case 2.1, a seq-to-seq transformer model consists of
an encoder and a decoder. The encoder comprises a Multi-Head Attention
layer, residual connections, normalization layer, and generic feed-forward
layer. While the decoder is similar to the encoder — it consists of the same
type of layers but additionally contains several ‘masked’ Multi-Head Attention
layers.

Figure 2.1: Visualization of Transformer architecture from ‘Attention is all you
need’ paper by Vaswani et al. (2017)

ctuthesis t1606152353 10



...................2.2. Sequence to Sequence Models Based on Transformers

Encoder: The encoder takes as the input token’s embeddings summed with
the positional encoding, which allows injecting information about positions
of tokens in the input sequence. The positional encoding was defined by
(Vaswani et al., 2017) as follows:

PE(pos,2i) = sin(pos/10000(2i/dmodel)) (2.5a)
PE(pos,2i+1) = cos(pos/10000(2i/dmodel)) (2.5b)

Where pos is the position of the word in the input sequence, i is the dimension
(it can range from 0 to dmodel − 1), dmodel is the embedding dimension. The
token’s embedding layer maps a vector of real numbers to each token.
After embedding, layer and positional encoding layer follow N identical layers
consisting of Multi-Head attention mechanism, normalization layer, and a
standard feed-forward network. Around each those sublayers a residual
connection is employed (He et al., 2015), (Vaswani et al., 2017).

Decoder: The decoder has an almost identical structure to an encoder but
additionally uses ‘Masked’ Multi-Head attention.

2.2.1 Attention

Scaled dot-product Attention: Self-attention allows the Transformer to
identify relevant words in the input with respect to the current token. It is
defined as

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.6)

Which is a weighted average of the vector V . Given E is an output of a
previous layer:

Q = EWq (2.7a)
K = EWk (2.7b)
V = EWv (2.7c)

where Wq,Wk,Wv are weight matrices (learnable parameters).

Multi–Head Attention: Instead of performing a single attention function
with keys (K), values (V ), and queries (Q), one can linearly project the
queries, keys, and values h times with different learned projections and then
on each of these projections perform the attention function in parallel. The
particular outputs are concatenated and projected, which results in the final
output of the multi-head attention (Vaswani et al., 2017).

11 ctuthesis t1606152353



2. Related Work and Theory ...............................
Masked Multi–Head Attention: Masked Multi-Head Attention is multi-
head attention adjusted to prevent positions from attending to subsequent
positions (i.e., to prevent conditioning to future tokens). This masking ensures
that the predictions for position i can depend only on the known outputs at
positions less than i (Vaswani et al., 2017).

Figure 2.2: Masked Multi–Head Attention from ‘Attention is all you need’ paper
by Vaswani et al. (2017)

The most important feature of the Transformer architecture is that it does
not suffer so much from the ‘catastrophic forgetting’ (Chen et al., 2020) as
LSTM and that training of transformers can be well parallelized (Vaswani
et al., 2017). There are dozens of pretrained large transformer models, which
are ready to be fine-tuned on various specific tasks. For instance, Huggingface
Transformers (Wolf et al., 2020) offers many pretrained transformer models
and implements different transformer-based architectures.

2.3 Text Representation in Machine Learning
Models

There are many options, how to represent text numerically, from Bag–of–
words, Tf-idf, word–embeddings, or byte pair encoding (BPE) (Sennrich
et al., 2016). Since word–embeddings and Byte-Pair Encoding (BPE) are the
state–of–the–art, this section will focus on these two.

ctuthesis t1606152353 12



..................... 2.3. Text Representation in Machine Learning Models

2.3.1 Word Embedding

The idea behind word embedding is that words are defined by the context in
which they occur. Thus, in an unsupervised setting, it should be possible to
learn a dense vector for each word (in training data) Mikolov et al. (2013).
Such representation ease in dealing with synonyms, ambiguity, and other
challenges in natural language processing. Thus within word–embedding,
similar vectors should belong to words that are also similar in their meaning
or somehow related to each other.

However, a problem of the word–embedding are out-of-vocabulary words —
thus, if such a word comes in the input sequence, it cannot be represented
by any meaningful vector (its vector is typically initialized randomly). Here
comes also tokenization challenge: when a sequence of words is being tokenized,
one must decide, whether for instance don’t will be treated as one word or
two separate words: do, n’t (Jurafsky and Martin, 2009).

BPE tries to tackle the tokenization and out-of-vocabulary problem. (Sen-
nrich et al., 2016).

2.3.2 Byte-Pair Encoding

Byte-Pair Encoding was introduced by Sennrich et al. (2016) and relies on a
pretokenizer that splits the training data into words (e.g., separating words
by spaces). After pretokenization, BPE creates a base vocabulary consisting
of all symbols that occur in the set of unique words and learns merge rules to
form a new character composed of symbols from the base vocabulary. The
new character is then added to the vocabulary. Merging is repeated until the
size of the vocabulary is as desired. Thus, when a word is being encoded via
BPE, if it is a frequent word, it might be in the vocabulary, but otherwise, it
will be decomposed onto smaller, meaningful subwords.

There are also other algorithms based on BPE, such as WordPiece (Devlin
et al., 2018) or Sentencepiece (Kudo and Richardson, 2018).

13 ctuthesis t1606152353



2. Related Work and Theory ...............................
2.4 Decoding Output of an Sequence to
Sequence Model

The outputs of a standard seq-to-seq model (or neural-machine-translation
model) are conditional probabilities P (yt|x1, x2, ..., xL, y1, y2, ..., yt−1) where
xi is an input token and yi is an output token. The decoding problem can be
formulate as:

Given the conditional probabilities P (yt|x1, x2, ..., xL, y1, y2, ..., yt−1), find
an output sequence of tokens from the target vocabulary.

One can use greedy–search and at t-th step select always token yt with the
highest conditional probability; however, such solution is not optimal — to
find an optimal solution, one must try every possible combination of output
tokens — unfortunately, this is usually not tractable (even with pruning).
Besides greedy–search, there are other techniques, which can find a better
output sequence than greedy–search — beam search and sampling.

2.4.1 Beam Search

Given a beam size N , beam search keeps track of N tokens with the highest
conditional probabilities at each time step t. Then, the sequence with the
highest probability is selected.

Note that if N = 1, beam search is equivalent to the previously mentioned
greedy search.

2.4.2 Sampling

Sampling works as follows: at each time step a token yt is sampled randomly
(in fact pseudo–randomly) according to the conditional probability distribution
P (yt|x1, x2, ..., xL, y1, y2, ..., yt−1). In this pure form, sampling would generate
incoherent sentences as stated by Holtzman et al. (2020). To solve the issue
Holtzman et al. (2020) proposed so called ‘temperature’ which according
to an input hyperparameter lowers low probabilities and puts higher high
probabilities.

ctuthesis t1606152353 14



............................... 2.5. Optimization Techniques

Further improvement can be achieved by Top-k and Top-p sampling.

Top-k Sampling

Fan et al. (2018) introduced a simple sampling scheme — the Top-k, where
during sampling at each time step, only k tokens with the highest conditional
probability are considered. Afterward, the probability mass is redistributed
among only those k tokens, and a token is randomly sampled from the new
distribution.

Top-p Sampling

Fan et al. (2018) also proposed Top-p (or nucleus) sampling — instead of
sampling only from the most likely k words, Top-p sampling takes a parameter
p and selects the smallest subset of words (from the vocabulary) such that
their cumulative probability exceeds the value p. Thus the number of words
from which one is sampling may vary in each time step. Then, the probability
mass is again redistributed among the selected tokens, and the next output
token is sampled from the new distribution.

Top-p sampling can also be combined with Top-k.

2.5 Optimization Techniques

In this work, two optimization algorithms are used for training machine-
learning models: Stochastic gradient descent (SGD) (Ruder, 2017) and Adam
(Kingma and Ba, 2017) and its adjusted version AdamW (Loshchilov and
Hutter, 2019). These algorithms are widely used in deep–learning (Soydaner,
2020). Note, that standard optimization methods like the gradient descent or
the Newton method (Werner, 2018) would be too slow for deep–learning —
where we typically need a large dataset and the data are of high dimensionality
— gradient descent needs to compute the derivatives with respect to each
feature for each data point. This is often not feasible. Using even more
computationally costly algorithms, such as the Newton method or Levenberg-
Marquardt method (Werner, 2018) will not help.

15 ctuthesis t1606152353



2. Related Work and Theory ...............................
2.5.1 SGD

Instead of considering the whole training dataset at each time step (this is
considered by the standard gradient descent method), SGD picks M data
points I = {i1, ..., iM} and than the gradient is estimated (exact gradient
would have to be computed from the whole training dataset) as:

g̃t = 1
M

∑
i∈I
5li(θt) (2.8)

Where θt are parameters, which are afterward updated as in standard gradient
descent:

θt+1 = θt − αtg̃t (2.9)
αt is the step size. The subset {(xi, yi)|i ∈ I} is called a batch (Ruder,
2017). There can be more variants, e.g. one can do sampling with or without
replacement.

2.5.2 Adam

Adam is an adaptive learning rate method, which means, it computes indi-
vidual learning rates for different parameters. It uses exponential weighted
averages (EWA (Perry, 2010)) of gradients per parameter across the previous
time steps:

θt+1,i = θi − ε
EWAβ1( ˜g1:t,i)√
EWAβ2( ˜g2

1:t,i)
(2.10)

where ˜g1:t,i denotes the sequence of all past gradients.

Hence, each coordinate is rescaled differently. (Thus Adam is called an
adaptive learning method (Kingma and Ba, 2017) (Boris Flach)).

2.5.3 AdamW

The difference between Adam and AdamW is how they implement regular-
ization: while Adam implements L2 regularization (thus, an additional term
is added into the loss function), AdamW implements weight decay instead.
Note that while for many optimizers, weight decay and L2 regularization are
the same things, it is not so for adaptive learning optimizers, as shown by
Loshchilov and Hutter (2019).

ctuthesis t1606152353 16



....................................... 2.6. Metrics

2.6 Metrics

To be able to evaluate the performance of particular machine-learning models
automatically and to compare them with the current state of the art, this
work uses these for automatic metrics:..1. BLEU..2. METEOR..3. CHRF++..4. TER

All the metrics except TER should hold that the better the score is, the
better the trained model.

2.6.1 Nomenclature

Let hypothesis be the result generated (and decoded) by a trained seq-to-seq
model, i.e., given a triple set, the generated text from this triple set is called
a hypothesis.

Let reference be a human annotation for each input triple set. I.e.,
references are the targets, and triple sets are the source sequences in the
training dataset.

BLEU

BLEU (Bilingual Evaluation Understudy) was proposed by Papineni et al.
(2002) and is based on matching n-grams. The BLEU score is a real number
between 0− 1 and holds that the higher score with respect to the reference,
the better the inference is.

Given a hypothesis and N references (each reference belong to the one
hypothesis — e.g., an RDF triple can be verbalized in different synonymous

17 ctuthesis t1606152353



2. Related Work and Theory ...............................
ways), the metric is computed as follows:

pn =
∑
C∈{Candidates}

∑
n−gram∈C Countclip(n− gram)∑

C′∈{Candidates}
∑
n−gram′∈C′ Countclip(n− gram′)

(2.11)

BP =
{

1 if c > r

e(1−r/c) if c ≤ r (2.12)

BLEU = BP · exp
(

N∑
n=1

wnlog(pn)
)

(2.13)..1. pn is the modified n-gram precision on blocks of text...2. c is the length of the hypothesis...3. r is the effective reference corpus length...4. BP is the brevity penalty...5. wn are positive weights summing to one...6. N is a hyperparameter, determining, what n-grams should be used.
n = 0, 1, 2, ..., N .

In this work, two implementations of the BLEU score are used. They differ
mainly in tokenization, smoothing method, and in handling fringe cases. The
two implementations are:..1. MOSES BLEU 1..2. NLTK BLEU 2

In the later chapters, MOSES BLEU is referred to as ‘BLEU’, and NLTK
BLEU is referred to as ‘BLEU NLTK’.

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/generic/multi-
bleu-detok.perl

2https://www.nltk.org/_modules/nltk/translate/bleu_score.html

ctuthesis t1606152353 18



....................................... 2.6. Metrics

METEOR

Unlike BLEU, METEOR also considers semantic similarity, and instead of
n-grams, it is based just on unigrams. The last version of the metric is
proposed by Denkowski and Lavie (2014) — the white paper states that
METEOR can deal with some downsides of BLEU score and have a higher
correlation with human judgments.

Assume a hypothesis and n corresponding ground truth references. ME-
TEOR computes a score of how well the sample matches each reference and
then considers only the maximum score.

The metric first creates a word alignment (word matching) between the two
strings (hypothesis x reference). Every word in each string can have matched
only with one corresponding word in the other string. The alignments are
incrementally produced by several word-mapping modules:..1. Exact match (e.g., word ‘computer’ matches ‘computer’ in reference

string)...2. Porter stem module: the words in both strings are stemmed by Porter
algorithm (Jurafsky and Martin, 2009). The matching is then based on
matching the stems of the words...3. ‘WN synonymy’ - this module aligns synonymous words if both words
belong to the same WordNet’s ‘synset’ (Fellbaum, 1998).

From all possible matches, only the largest alignment is considered. If
more than one maximal cardinality alignment is found, METEOR selects the
alignment with the least amount of ‘crossing’ unigram mappings.

Given that..1. m — is the number of mapped unigrams...2. t — is the total number of unigrams in the hypothesis...3. r — is the total number of unigrams in the reference...4. P = m
t — is the unigram precision.

19 ctuthesis t1606152353



2. Related Work and Theory .................................5. R = m
r — is the unigram recall...6. Fmean = P ·R

α·P+(1−α)·R is the parametrized harmonic mean of P and R

(van Rijsbergen, 1979)...7. ch— is the number of chunks. METEOR divides the sequence of matched
unigrams into ‘chunks’. A chunk is a sequence of matched unigrams,
such that the unigrams in a chunk are adjacent in both (hypothesis
and reference) strings and are in identical word order as in the two
strings. METEOR divides the alignemnt into the fewest possible amount
of chunks...8. frag = ch

m — is a fragmentation fraction...9. Pen = γ·fragβ — is the penalty for different word order in the hypothesis
vs reference. γ, β are hyperparameters.

The METEOR score is computed as

score = (1− Pen) · Fmean (2.14)

TER

TER (Translation Edit Rate) was proposed by Snover et al. (2006). Unlike
METEOR and BLEU, TER measures the quality of inference by the editing
distance between reference and hypothesis. Hence, the lower the TER score
is, the better.

According to Snover et al. (2006), “TER is defined as the minimum number
of edits needed to change a hypothesis so that it exactly matches one of the
references, normalized by the average length of the references." When there
are more references available, TER is measured on each pair, and only the
minimal score is considered.

TER = # of edits

average # of reference words
(2.15)

ctuthesis t1606152353 20



....................................... 2.6. Metrics

Figure 2.3: Algorithm proposed by Snover et al. (2006) to calculate the number
of edits.

CHRF++

Popovic (2017) presents the general formula for n-gram based F-scores:

ngrFβ = (1 + β2) ngrP · ngrR
β2 · ngrp+ ngrR

(2.16)

where..1. ngrP : is n-gram precision — percentage of n-grams in the hypothesis
text that has a counterpart in the given reference...2. ngrR: is n-gram recall — percentage of n-grams in the reference which
also have a counterpart in the hypothesis.

21 ctuthesis t1606152353



2. Related Work and Theory ...............................
WORDF is calculated on word n-grams, and CHRF is calculated on

character n-grams. The proposed CHRF++ score is obtained by combining
word n-grams with character n-grams and averaged afterward. According to
Popovic (2017) the best maximum n-gram for CHRF is N = 6, for WORDF
it is N = 2 or N = 1. The optimal value for the β parameter is β = 2.

ctuthesis t1606152353 22



Chapter 3

Proposed LSTM-based Systems for
RDF-to-Text Generation Problem

This thesis proposes two types of solutions — while both are based on the
sequence-to-sequence framework, one type is based on LSTM recurrent neural
networks, and the other group is based on transformers. As shown by Ferreira
et al. (2019) training a transformer from scratch on a specific task would not
result in any significant improvement with respect to LSTMs (for the RDF-
to-Text task), therefore building a solution based on transformers requires
transfer–learning, i.e., to use a suitable transformer model for this particular
task and fine-tune it. The results published by Ferreira et al. (2019) suggest
that incorporating a model into some pipeline instead of an end-to-end setting
might lead to significantly better results (this holds for transformers as for
LSTMs).

From the results of the WebNLG challenge 2017 (Gardent et al., 2017) and
WebNLG challenge 2020 (Castro Ferreira et al., 2020) it seems clear that a
fine-tuned transformer (which has appropriate architecture, e.g., MBART
(Liu et al., 2020)) should outperform any LSTM seq-to-seq model, especially in
out-of-domain data. This is so due to the pretraining phase, where typically
a transformer is trained on some huge dataset (often in an unsupervised
setting). Thus a fine-tuned transformer should have knowledge that goes
beyond the dataset used for fine-tuning. This helps it to generalize better
than a model trained from scratch.

However, transformers have two main disadvantages — the input’s length
cannot be greater than some threshold (typically 512 tokens (Wolf et al.,
2020), while in the case of LSTMs, the length of input can be arbitrary). The

23 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
transformer models are huge to be able to cover the data from the pretraining
phase, their training is feasible on sufficient amount of GPUs because training
transformers (also as inferencing from them) can be highly parallelized. Thus
the second disadvantage is that running transformers on CPUs is slow in
general. Hence, while LSTMs cannot be too large (otherwise, their training
would not be feasible) because their training nor their inference is highly
parallelizable, counterintuitively, a typical LSTM-based seq-to-seq model
has less hardware demands than a typical transformer and is usually faster,
especially when running on CPU (because the parallelization advantage of
transformers is marginalized when running on CPU).

The thesis examines how much time requires both LSTMs and transformers
for inference in Chapter 7.

Despite the advantages of transformers, when one does not have access to
GPUs and needs a quick inference, it might be better (in some scenarios)
to use the LSTM seq-to-seq model instead of the transformer seq-to-seq
model. The performance of the LSTM model should not differ ‘a lot’ on
in-domain data, while it may decrease significantly on out-of-domain data.
Hence, depending on the task where one wants to use the RDF-to-Text system
and what hardware is available, the LSTM model could still be a good choice.
The final application (outcome of the thesis) uses both types of models, and
a user can, through API, select which model to use and consider the trade-off
between performance and hardware requirements.

ctuthesis t1606152353 24



............................... 3.1. Seq-to-Seq LSTM Models

3.1 Seq-to-Seq LSTM Models

Each proposed model uses this basic pipeline:..1. Delexicalization..2. Text generation from triples..3. Relexicalization

where delexicalization can be viewed as data preprocessing step and relexical-
ization as data postprocessing.

This work also examines the impacts of adding other steps into the pipeline,
such as triples ordering (in the dataset, the triples are in a set, thus are not
ordered) or structuring (to determine what triples will be in what sentence,
how many sentences should at least a model generate). Both steps are
proposed by Ferreira et al. (2019).

3.1.1 Data Preprocessing and Postprocessing

Data preprocessing can be defined as a delexicalization task as proposed by
the Melbourne solution of the WebNLG challenge 2017 (Distiawan) or by the
baseline system of the first challenge (Gardent et al., 2017). This step aims
to reduce the size of vocabulary and reduce the amount of out-of-vocabulary
cases.

Since a trained model on a delexicalized dataset outputs delexicalized utter-
ances, one must perform a reverse delexicalization step (hence relexicalization)
to transform the output utterances to natural utterances.

25 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
3.1.2 Delexicalization

Assume the following triple set containing just one triple:

"triples": [
[
[
"Adolfo_Suarez_Madrid_Barajas_Airport",
"runwayName",
"14L/32R"
]
]
]

During preprocessing, each predicate is being tokenized (i.e., in this example,
‘runwayName’ would be split into ‘runway name’), then each subject and
object is associated with ‘ENTITY-N’ placeholder. For our case, this would
be:

"Adolfo_Suarez_Madrid_Barajas_Airport": ENTITY-1
"runway name",
"14L/32R": ENTITY-2

Afterward each subject and object is associated with its type, for instance:

"Adolfo_Suarez_Madrid_Barajas_Airport": AIRPORT
"runway name",
"14L/32R": NOT_FOUND

The entity types are gathered from DBpedia (dbp). Dates and numbers are
discovered by regular expressions instead of DBpedia; For unknown entity,
the type is ‘NOT_FOUND.’

Next, each part of each triple is marked by the function it has, i.e., three
additional tokens are added to each triple:..1. <subject>..2. <predicate>..3. <object>

ctuthesis t1606152353 26



............................... 3.1. Seq-to-Seq LSTM Models

Finally, the triples in the triple set are concatenated and separated by ‘&&’
symbol. The shown triple would be finally delexicalized as:

<subject> ENTITY-1 AIRPORT <predicate> runway name <object>
↪→ ENTITY-2 NOT_FOUND

or an input triple

"triples": [
[
[
"Buzz_Aldrin",
"occupation",
"Fighter_pilot"
],
[
"Buzz_Aldrin",
"was a crew member of",
"Apollo_11"
]
]

would be delexicalized as

<subject> ENTITY-1 ASTRONAUT <predicate> occupation <object>
↪→ ENTITY-2 PERSON && <subject> ENTITY-1 ASTRONAUT <
↪→ predicate> was a crew member of <object> ENTITY-3
↪→ ARTIFICIALSATELLITE

For the training purpose, ‘targets’ are delexicalized as well — the ‘ENTITY-
N’ placeholder replaces the entities in targets, hence while the original target
sentence for the given 2-triplet is

Buzz Aldrin was a fighter pilot and crew member of Apollo 11 .

The delexicalized version is:

ENTITY-1 was ENTITY-2 and crew member of ENTITY-3 .

To be able to replace entities in the targets, the enriched version of the
WebNLG dataset is used, and hence all models from this chapter are trained
on the first version of the WebNLG dataset (because the enriched version
does not exist for later versions of the WebNLG dataset).

27 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
3.1.3 Relexicalization

The ‘ENTITY-N’ placeholders in the outputs are paired with corresponding
subjects and objects from the input and replaced.

3.2 Ordering and Text Structuring

We propose a seq-to-seq model and a heuristic for triple ordering and for text
structuring. We decided not to train any model for text structuring because
when such model makes an error, this error would be propagated into the
triples-to-text model, and the final output could be therefore significantly
distorted. This is not the case with the ordering model, where it is easy to
determine that the order is incomplete or has some other flaws and can be
eventually rejected — and replaced by a random or default order.

For comparison, we trained triples-to-text models with and also without
ordered data.

3.2.1 Ordering

We used two different approaches: a seq-to-seq system, where the input
triples are linearized into a text and output is a text (a similar technique used
Ferreira et al. (2019)), and another approach based on a custom heuristic.

Seq-to-Seq Ordering

The input consists of delexicalized tripleset with additional placeholder type
‘PREDICATE-N’, e.g.

<subject> ENTITY-1 AIRPORT <predicate> PREDICATE-1 runway name
↪→ <object> ENTITY-2 NOT_FOUND

The output is a sequence of the placeholders, for instance:

ctuthesis t1606152353 28



............................. 3.2. Ordering and Text Structuring

PREDICATE-1 PREDICATE-3 PREDICATE-2

This output means, that the new order of some 3-tripleset would be

triple-1 triple-3 triple-2

The reason for the target consisting of ‘PREDICATE-N’ instead of ‘TRIPLE-
N’ tags is that the decoder in the ordering seq-to-seq model can have a shared
embedding layer with encoder, and thus the representation of ‘PREDICATE-
N’ tags should be more meaningful. Moreover, a Pointer–Network can be
used (Vinyals et al., 2017).

Heuristic for Ordering

The ideas behind the ordering heuristic are that:..1. If there are two triples t1, t2 and t1[object] == t2[subject] then t2 should
be right after t1, because then in the output, t2[subject] can be sub-
stituted by a pronoun, which should increase fluency of the generated
output...2. If there are triples t1, t2, ..., tj such that both have the same subject,
they should follow each other, so again in the output, after the common
subject is mentioned for the first time, it can be then referenced by a
pronoun, so the output should look more natural...3. The rule n.1 has higher priority than rule n.2.

29 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
The following pseudo-code can describe the algorithm:

let grouper be a function, that groups the triples \
with same subject

let tripleset be a list of given triples
let ret_triples = list()
then:
tripleset = grouper(tripleset)
for i in range(tripleset.length){

if i==0: {ret_triples.append(tripleset[i]);
remove(triplesets[i]);continue;}

candidates = all triples t from triplesets:
st. t[object]==ret_triples[i][subject] ;

ret_triples.append(candidates[0]);
remove(tripleset[i]);

}
return ret_triples;

Ordering Seq-to-Seq Model Setting

Encoder consists of 2-layer bidirectional LSTM, has 128 hidden units and
the embedding vector has dimensionality d = 100.
Dencoder consists of 2-layer LSTM, with 128 hidden units and the embed-
ding is shared with encoder.

Both the encoder and decoder are using pretrained embeddings — GloVe
(Pennington et al., 2014).

As the attention layer we use a multi-layer perceptron attetntion proposed
by Bahdanau et al. (2016). Because in this setting, the trained model would
have problems with sorting large triple sets (discovered empirically — in case
of 7-triples, in 87.4% cases some ‘PREDICATE-i’ was missing in the output
or some placeholders were repeated), additional attention mechanism is used
- the coverage attention, which was proposed by Tu et al. (2016).

Coverage attention

Common problems in the seq-to-seq framework are the so-called under–
translation and over–translation, where the first term refers to the problem

ctuthesis t1606152353 30



............................. 3.2. Ordering and Text Structuring

when a word should be translated, but the seq-to-seq system did not translate
it. The latter term refers to when a word is translated multiple times, but
it should not be so. Note that the above-described problem with repeating
placeholders is over-translation.

Tu et al. (2016) suggested to use coverage vector, that is summarizing the
history of attention of particular encoder’s hidden state hj till the current
time step. Hence if we consider all encoder’s hidden states, the coverage is
represented by a matrix at each time step t. This matrix is passed as an
additional argument into the standard attention’s (Bahdanau et al., 2016)
function.

Tu et al. (2016) proposed also to adjust the objective function by adding
an additional coverage term which is scaled by a hyperparameter λ:

objective = loss− λ · coverage (3.1)

Tu et al. (2016) proposed to set the λ to 1.

3.2.2 Text Structuring

Text structuring aims at splitting the given triple set such that the final
verbalized outcome will be fluent. Splitting the triple set into subsets can be
beneficial, especially for larger triple sets, e.g., 7-triple sets. The heuristic is
based on the following ideas:..1. A good split is the one, after which the subsets have similar sizes...2. The number of splits should be minimal (not to harm fluency)...3. If there are two triples t1, t2 and t1[object] == t2[subject] then t2, then

t1, t2 should remain in a same group...4. If there are triples t1, t2, ..., tj such that both have the same subject, they
may be split into subsets, but since the subsets are ordered — the first
subset must contain at least triples t1, t2...5. Triplesets below five items should not be split...6. Triplesets of sizes 5, 6, and 7 should have only one split...7. Triplesets with more than seven triples are not expected.

31 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
Pseudo-code:

# let partition be a split defining how the set is splitted
# let n-partition be a partition splitting a set into n parts
# let ‘is_ok’ be a function controlling, whether a partition
# satisfies conditions 3. and 4. (mentioned above).
let splitter(triples, partition):
trans = list();
j = 0;
for p in partition{
ls = [];
for i in range(p){
ls.append(triples[i + j]);
}
j += (i + 1);
trans.append(ls);
}
return trans;

let tripleset be the set of input triples;
partitions = all possible 1-partitions;
sort partitions by abs(diff):\
where diff is the difference of subset’s \
sizes coming from the partition;

for each partition{
if is_ok(partition){
return splitter(partition, tripleset);
}
}

3.3 Triples-to-Text Model

We tried to train five different models; three of them were trained on the
objective of negative-loss likelihood, while the fourth and the fifth was trained
in an adversarial setting with ‘inverse Kullback-Leibler loss’ proposed by Zhu
et al. (2019).

The first three models differ in attention mechanisms: model1 is using only
Bahdanau et al. (2016) attention, model2 is using Bahdanau et al. (2016)
attention with the coverage term (Tu et al., 2016) and model3 uses the same

ctuthesis t1606152353 32



.................................3.3. Triples-to-Text Model

coverage attention as model2 but additionally uses copy attention (See et al.,
2017). Other parameters are as follows (for all models):..1. Embedding size: 100 (Glove (Pennington et al., 2014) pretrained embed-

dings was used)..2. RNN type: Bidirectional LSTM..3. Number of hidden units: 128..4. Dropout: 0.5..5. Number of layers: 4..6. Lambda coverage (model2,model3): 1..7. Optimizer: SGD for models 1,2,3 (as suggested by the baseline model of
WebNLG challenge (Gardent et al., 2017)); AdamW for model trained
by inverse KL divergence (as suggested by Zhu et al. (2019))..8. Batch size: 64..9. Decoding strategy: beam search (we empirically found out, that beam
search outperforms sampling)

The hyperparameters of the two models trained within the ‘Inverse Kullback–
Leibler Divergence’ framework are the same as presented in the white paper
(Zhu et al., 2019). The last two models differ only in copy attention — one is
using it, and one is not.

3.3.1 Copy Attention

Copy attention is a possible way of dealing with out-of-vocabulary words —
it allows the model to use the words from the input at the output, even if
the source words are not part of the model’s vocabulary. This can help the
model to deal with out-of-domain samples.

Let Pvocab(w) is the vocabulary distribution at time step t (conditional
probability distribution dependent on the input, last output and attention),
let at be the attention distribution as described by Bahdanau et al. (2016),
let the extended vocabulary be the union of the vocabulary and all words
appearing in the source document (input), let pgen be defined as follows:

pgen = σ(wTh∗h∗t + wTs st + wTx xt + btr) (3.2)

33 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
wh∗ , ws, wx, bptr are learnable parameters, all are vectors except the scalar
bptr, st is the decoder’s hidden state, h∗t is the context vector computed as
weighted sum of encoder’s hidden states, where the weights comes from the
softmaxed attention (Bahdanau et al., 2016). xt is the input token at time
step t. Then the distribution over the extended vocabulary is defined as:

P (w) = pgenPvocab(w) + (1− pgen)
∑

i:wi=w
ati (3.3)

Hence the copy attention works as a switch determining whether to consider
only the words from the vocabulary or from the source (i.e., from the input
sequence) (See et al., 2017).

3.3.2 Inverse Kullback–Leibler Loss

Zhu et al. (2019) claims that instead of considering minimizing the Kullback-
Leibler (KL) divergence between the target distribution P and the learned
distribution G, it is beneficial to take the inverse KL divergence. I.e., instead
of minimizing:

KL(P ||G) = EY∼P
[
log

P (Y )
G(Y )

]
(3.4)

Zhu et al. (2019) suggest to minimize

KL(G||P ) = EY∼G
[
log

G(Y )
P (Y )

]
(3.5)

for the following reasons:..1. If P (y) > 0 and G(Y )→ 0, then KL(P ||G) goes to infinity, thus for very
rare patterns, if the model fails to cover them, the penalty is extremely
high and thus sensitive for outliers...2. If P (y) → 0 and G(Y ) > 0 the penalty will be low; however, this case
means that the trained model may assign a quiet high probability to very
unlikely samples (hence may assign a high probability to some nonsense
and would be ‘punished’ only little during training).

The inverse KL loss does the opposite with respect to the mentioned two
points above.

ctuthesis t1606152353 34



.................................3.3. Triples-to-Text Model

While normally, instead of minimizing the KL divergence, one minimizes
the negative log-likelihood or the cross-entropy (both are equivalent). Hence,
one does not need to know the true distribution in this setting of inverse KL
loss; the true distribution (or its approximation) is needed. Zhu et al. (2019)
proposed adversarial algorithm, where the true distribution is approximated
by a model trained on negative log-likelihood:

Figure 3.1: Adversarial algorithm proposed by Zhu et al. (2019).

The hyperparameters m,n are both set to 1.

35 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
3.4 Implementation Details

The implementation consists mainly of Python scripts for data preprocessing,
model builders, trainers, data loaders, and a pipeline that performs ordering,
text structuring, and text generation.

For more details, one can see the ‘README.md’ in the attached CD.

The repository is organized into several folders and packages (the following
list is describing the whole structure of the repository — including Python
packages used only for the transformer-based system described in Chapter 4):..1. utils: data preprocessing and postprocessing. Tools to help manipulation

with data...2. onmt_based: Python package for training seq-toseq LSTM models
(compatible with OpenNMT versions 1.x and 2.x)...3. onmt_based_2: Python package for training seq-toseq LSTM models
(compatible with OpenNMT versions 2.x only)...4. webnlg3: Contains Python scripts for extracting data from the third
WebNLG dataset and for data preprocessing...5. train_t5: Python package for training and using the Google T5 trans-
former (Raffel et al., 2020)...6. ranker: To train Roberta ranler (see 4.5)...7. root directory: Despite Readme, requirrements.txt etc. there are
Python files implementing pipeline for transformer part, LSTM part and
a pipeline using both of them. All LSTM models should have a record
of their specification in the specs_of_models file.

All code is compatible with the Python version of 3.6.

3.4.1 Data Preprocessing and Postprocessing

The Python package called ‘utils’ contains all necessary scripts for data
preprocessing and postprocessing. The main tasks needed to do are described
below:

ctuthesis t1606152353 36



................................ 3.4. Implementation Details..1. Data extraction: The WebNLG dataset is provided in XML format
(for each category and triple set size, there is a special XML file), Gardent
et al. (2017) also provides Python utilities to convert the dataset into
a JSON. One must extract the data source and target files (source
files are containing linearized triple sets while target files contain the
corresponding verbalizations)...2. Data delexicalization: The objects and subjects are replaced by entity
placeholders, which are taken from DBpedia...3. Data relexicalization: This is a necessary postprocessing step — the
‘ENTITY-N’ placeholders are replaced back to the original entities.

The ‘utils’ package provides the following functionalities:..1. Load data from a file into a list and Write data (list) to a file [inputters.py]..2. Data preprocessing (loading a given json file and output delexicalized
triples) [data_preprocessing.py]..3. Delexicalization of input triplesets [delex_src.py]..4. Create references for measuring BLEU, METEOR, TER and CHRF++
[create_references.py]..5. Find types of entities from DBpedia [utils.py]..6. Relexicalization [relexicalize.py]..7. Restructuring - if a structured input is given to a model, the output
must be restructured [restruct.py]..8. Heuristic ordering and structuring [struct_for_lstm.py]..9. Create targets for training and validation [create_tgts.py]

The preprocessed data are stored in data_melbourne folder, where are
other preprocessing scripts, e.g., for data shuffling and clearing.

3.4.2 LSTM Models

All models are implemented as PyTorch models (Paszke et al., 2019) and all
models are compatible with the PyTorch version of the OpenNMT library
(Klein et al., 2017).

37 ctuthesis t1606152353



3. Proposed LSTM-based Systems for RDF-to-Text Generation Problem ............
Because of the adversarial training of one of the models, we implemented

new model builders, the inverse KL loss, the inverse KL loss for the model
using copy attention, data loaders, and adjusted training method (new training
class inherits from OpenNMT’s training class). However, the core models (i.e.,
the encoder-decoder architecture and attention mechanisms) are imported
from the OpenNMT library. In the attached code, the implementation of
the adversarial training and data loaders, model builders, and translator
can be found in the ‘onmt_based’ directory. The system is compatible with
OpenNMT version 1.x and 2.x — there are some duplicate classes, each
compatible either with 1.x or 2.x version (there are some big changes between
these two versions). Concretely, the package ‘onmt_based’ implements the
following functionality:..1. Data loader and Data iterator...2. Trainer for training the generator for the adversarial mode; Trainer for

training classical seq-to-seq model. Both trainers are compatible with
OpenNMT 1.x and 2.x versions. They take the version of the library as
a parameter...3. Model builder — to build a seq-to-seq LSTM model...4. The inverse KL loss and the modified inverse KL loss for copy attention...5. Translator...6. Script for training a seq-to-seq model...7. Script for training a model by the inverse KL loss .

The ‘onmt_based’ package can also be used to train a seq-to-seq model
with other losses than the inverse KL loss. Also, note that when one is
training a model on inverse KL loss, an additional seq-to-seq model is being
trained simultaneously on the negative log-likelihood loss. That model is
also being stored (by default, it is named ‘judger’ as proposed by Zhu et al.
(2019)).

ctuthesis t1606152353 38



Chapter 4

Proposed Transformer-Based Systems for
RDF-to-Text Generation Problem

As already stated in the Chapter 2 and 3, the transformer-based solution
should be (thanks to the transfer learning method) more robust. Transformers
should have better performance, especially on unseen data (i.e., should
generalize better) than the solution based on Recurrent neural networks
trained from scratch.

The disadvantage is that the pretrained transformers are ‘heavy’ and slow
on CPUs (see 7).

This chapter proposes to use the pretrained transformer ‘Google T5’ Raffel
et al. (2020) for converting triple sets into natural texts. Additionally, our T5
transformer retrieves more outputs per each input; a ‘ranker’ (Roberta) then
ranks the outputs, and if a retrieved sample is ranked as ‘ok’, that sample
is finally retrieved by the system. If there are more ’ok’ retrieved samples,
the one with the highest probability is considered. Otherwise (no sample was
classified as ‘ok’), the sample with the highest probability of being ‘ok’ is
selected. The ranker is the ‘Roberta’ transformer (Liu et al., 2019) and is
inspired by Harkous et al. (2020b).

39 ctuthesis t1606152353



4. Proposed Transformer-Based Systems for RDF-to-Text Generation Problem..........
4.1 Google T5

T5 model aims to solve text-to-text tasks; hence, the input of the model is a
string, and the output is a string. While the T5 model is aimed at text-to-text
tasks, it can also be applied for classification tasks, etc. — but the output is
always a text. Moreover, the model can be trained on various data such that
a single model can perform various tasks, as shown in the following picture:

Figure 4.1: A diagram of the text-to-text framework proposed by Raffel et al.
(2020).

The model uses standard encoder-decoder Transformer architecture as
described in chapter 2. Both the encoder and decoder consist of 12 blocks
(each consisting of self-attention, optionally with encoder-decoder attention,
and feed-forward network). As an embedding layer, T5 uses Sentencepiece
(Kudo and Richardson, 2018). The T5-base model has about 220 million
parameters. Raffel et al. (2020) proposed other variants of the T5 model,
which varies by the number of parameters:..1. T5-small: 60 million paramters..2. T5-large: 770 million parameters..3. T5-3B: 2.8 billion paramters..4. T5-11B: 11 billion parameters

This work explores T5-small, T5-base, and T5-large only since the two
largest models require too many resources for fine-tuning as well as for
inference.

ctuthesis t1606152353 40



.......................................4.2. Roberta

4.2 Roberta

RoBERTa is a shortcut for ‘A Robustly Optimized BERT pretraining Ap-
proach’ and was proposed by Liu et al. (2019). The model is basically a
standard BERT Transformer (Devlin et al., 2018), but trained in a bit different
manner than the original BERT model, namely:..1. The model is trained longer (more epochs), with bigger batches and over

more data...2. The ‘next sentence prediction objective’ (Devlin et al., 2018) is removed...3. The sequences in datasets are longer in average...4. Dynamically changing the masking pattern (Devlin et al., 2018), (Liu
et al., 2019).

Since the Roberta is pretrained more robustly than the original BERT, it
should generalize better not just before fine-tuning but also after fine-tuning.

4.2.1 BERT

BERT (Bidirectional Encoder Representations from Transformers) was intro-
duced by Devlin et al. (2018). BERT also uses the Transformer architecture
described in the chapter 2, but unlike T5, it uses only an encoder and requires
fewer parameters. There are several variants of the model varying by their
size. This work uses only ROBERTA-base (equivalent for BERT-base), which
has ca. 110 million parameters and ROBERTA-large with ca. 336 million
parameters.

BERT uses WordPiece embeddings and can decode a single sequence
of tokens or a pair of sequences. The two sequences are distinguished by
the [SEP ] special token and also by the so-called segment embeddings (an
embedding layer for distinguishing sequenceA from sequenceB). Additionally,
for each input, a special token ([CLS]) is prepended. The output of the
last hidden layer corresponding to the [CLS] token comprises the sentence
embedding of the input. Thus, the token’s hidden state can be fed to other
additional layers (e.g., dense layer) for classification, etc. (we use it for the

41 ctuthesis t1606152353



4. Proposed Transformer-Based Systems for RDF-to-Text Generation Problem..........
Roberta ranker, where the hidden state is fed into a single dense layer, and
the output of the ranker is softmaxed output of the dense layer).

Devlin et al. (2018) suggests two approaches how to pretrain the BERT
model: Masked LM and Next Sentence Prediction. Since Roberta uses only
the first one, this chapter describes Masked LM only:

4.2.2 Masked LM

To train a bidirectional representation of a language model instead of one-
directional, Devlin et al. (2018) propose to mask some percentage of the input
tokens at random (replacing them by either [MASK] token or a random
token) and then predict the masked tokens. The loss during the training is
computed w.r.t. the prediction.

4.3 Data Preprocessing

The Transformer-based system requires a little data preprocessing and does
not require any data postprocessing.

Given a triple set, the input must be preprocessed as follows:..1. Linearization: converting the triple set into a sequence of tokens...2. Tokenization: Each subject and object is in snake case form in the
WebNLG data. We split each such ‘word’ into single words. Predicates
are in camel case form (in WebNLG), and they are split into single words
as well...3. Adding special tokens: Triples are concatenated by ‘&&’ token. More-
over, each subject is prepended by ‘<subject>’ token, and similarly, each
object and predicate is prepended by ‘<object>’ and ‘<predicate>’ re-
spectively.

ctuthesis t1606152353 42



.............................. 4.4. T5 for Triples-to-Text Setup

Thus given an input:

"triples": [
[
[
"Adolfo_Suarez_Madrid-Barajas_Airport",
"runwayName",
"14L/32R"
]
]
]

the preprocessed sample would look as follows:

<subject> Adolfo Suarez Madrid-Barajas Airport <predicate>
↪→ runway name <object> 14L/32R

Note that the same preprocessing is done for the triples-to-seq model (T5)
as for the ranker (Roberta).

4.4 T5 for Triples-to-Text Setup

The models are trained on the preprocessed third version of the WebNLG
dataset (i.e., the dataset used for WebNLG challenge 2020).

Each T5 model is trained with these hyperparameters:..1. Optimizer: AdamW (β1 = 0.9, β2 = 0.999, lr = 2e− 4)..2. Early stopping: patience = 10, evaluation metric on validation set is
BLEU..3. Batch size: 16 for T5-small and T5-base, 8 for T5-large..4. Beam size: 6..5. Maximum number of epochs: 100..6. Learning rate decay: Linear learning rate decay with γ = 0.9

43 ctuthesis t1606152353



4. Proposed Transformer-Based Systems for RDF-to-Text Generation Problem............7. Decoding strategy: beam search (we empirically found out, that beam
search outperforms sampling)

The additional tokens (<subject>, <predicate>, <object>, &&) are added
into the vocabulary and their embeddings are learned during fine-tuning.

4.5 Roberta for Ranker Setup

For training the ranker, the third version of the WebNLG dataset is used as
well. However, the data are transformed to fit in the classification task of the
ranker. Particularly, the model takes two sequences in the input:..1. A linearize preprocessed triplet..2. Target sequence

The output of the model is one of the following classes (as proposed by
Harkous et al. (2020b)):..1. Accurate..2. Omission..3. Repetition..4. Hallucination..5. Value errors

The WebNLG dataset is transformed into the dataset for ranker as follows
(note that in the input there are two sequences: linearized preprocessed triple
set and target, the output is expected to be a class; the linearized preprocessed
triple sets are unchanged in the dataset for ranker; also note, that for all
other classes except ‘Accurate’, it is expected that the triple set in the input
has a size larger than one):

ctuthesis t1606152353 44



............................... 4.5. Roberta for Ranker Setup..1. Accurate: The target in the input pair is the target from the WebNLG
dataset...2. Omission: The shortest sentence in the target is removed...3. Repetition: Select a random sentence from the target and insert it
before another random sentence in the target...4. Hallucination: Select a random sentence from another sample and
insert it before a random sentence in the target...5. Value errors: Select a random entity in the triple set and replace that
entity in the target with a random entity from the triple set...6. Omission+Hallucination: This case is treated as Hallucination class.

The scheme of the ranker model can be visualized as follows:

Figure 4.2: A diagram of the ranker by Harkous et al. (2020b).

The model is trained with the following parameters:..1. Optimizer: AdamW (β1 = 0.9, β2 = 0.999, lr = 2e− 5)..2. Early stopping: patience = 10, evaluation metric on validation set is
the negative lielihood loss

45 ctuthesis t1606152353



4. Proposed Transformer-Based Systems for RDF-to-Text Generation Problem............3. Batch size: 32..4. Maximum number of epochs: 25..5. Learning rate decay: Linear learning rate decay with γ = 9

Similarly to the T5 models, the additional tokens are added into the model’s
vocabulary, and their embeddings are learned during fine-tuning.

4.6 Implementation Details

Both (pre-trained) models (T5 and Roberta) are obtained from Huggingface
Transformers 1 (Wolf et al., 2020) and both models are Pytorch (Paszke et al.,
2019) models.

4.6.1 T5 Model

The training function uses a dataset class, which is copied from 2 and the fine-
tuning step is done by a custom training function which is inspired by 3. The
model is an instance of the class ‘transformers.T5ForConditionalGeneration’,
which is the standard T5 model with an additional language model head on
top. The language model head is represented by a single dense layer.

Additionally, a script for inference is provided. All training scripts regarding
this model can be found in the ‘train_t5/’ Python package, the scripts for
inference can be found in the root directory.

4.6.2 Roberta Model

The Roberta model is an instance of the ‘transformers.RobertaForSequenceClassification’
class, and the implementation of fine-tuning as well as of inference can be
found in the ‘ranker’ Python package. All implementation is custom.

1https://huggingface.co/transformers/index.html
2https://github.com/znculee/finetune-transformers
3https://github.com/znculee/finetune-transformers

ctuthesis t1606152353 46



Chapter 5

Results of LSTM Models

The computation of BLEU, TER, METEOR, and CHRF++ is done by a
package provided within the WebNLG challenge 1.Because the LSTM models
are trained on the enriched WebNLG dataset, we should compare them to
the participants’ systems from the WebNLG challenge 2017.

The table below is showing the results of the WebNLG challenge 2017
(except baseline):

model BLEU METEOR chrF++ TER
Melbourne 45.13 0.37 0.625 0.47
TILB-SMT 44.28 0.38 0.647 0.53

PKUWRITER 39.88 0.31 0.5452 0.55
UPF-FORGE 38.65 0.39 0.645 0.55
TILB-NMT 34.60 0.34 0.586 0.6

TILB-PIPELINE 44.34 0.38 0.646 0.48
ADAPT 31.06 0.31 0.560 0.84
UIT-VNU 7.07 0.09 0.184 0.82

Table 5.1: Results of BLEU, METEOR, and TER are the official results of the
WebNLG challenge 2017. The CHRF++ metric is measured on the output of the
test set that is provided for each of the systems on the website of the challenge.

1https://github.com/WebNLG/GenerationEval

47 ctuthesis t1606152353



5. Results of LSTM Models................................
The next figure depicts the performance of LSTM models proposed in this

work:

model BLEU BLEU NLTK METEOR chrF++ TER
model1 39.78 39.78 0.378 0.620 0.517
model2 40.21 40.23 0.369 0.601 0.502
model3 43.11 43.11 0.390 0.642 0.486
ikl 41.5 41.5 0.385 0.633 0.505
iklcpa 42.19 42.19 0.396 0.648 0.502

Table 5.2: Results of the proposed models on the delexicalized dataset. Model1
does not contain copy attention nor coverage attention, model2 contains coverage
attention and model3 contains both coverage and copy attention. The ikl model
is the small model trained by the inverse Kullback-Leibler divergence loss in
adversarial mode, and iklcpa is the same model with additional copy attention.

5.1 Heuristic Ordering and Text Structuring

To examine the effect of ordering and text structuring, we took the architec-
tures of model3 and ikl, and trained the two models on ordered data. For
comparison, we also used the same model but trained on unordered data and
measured its performance on structured test data. The performance of the
latter model is shown in the table below:

model BLEU BLEU NLTK METEOR chrf++ TER
model3 42.74 42.76 0.394 0.648 0.491
iklcpa 42.13 42.13 0.40 0.653 0.513

Table 5.3: The two best performing models trained on unordered data. The
results are improved on METEOR and chf++ metrics while BLEU and TER are
worse. A possible explanation is that both reordering and text structuring would
break some n-grams in the output, which could harm all metrics, especially TER
and BLEU. The text structuring should help to prevent information omission,
however necessarily the generated sentences would have fewer references to
the given entities by pronouns, which should not have a significant impact on
METEOR and chrf++, but should impact BLEU and TER negatively.

The next table shows the performance of the same models trained on
ordered data. The inference is made on ordered and structured data:

ctuthesis t1606152353 48



................................. 5.2. Seq-to-seq Ordering

model BLEU BLEU NLTK METEOR chrf++ TER
model3 42.81 42.81 0.393 0.646 0.489
iklcpa 42.15 42.15 0.399 0.651 0.510

Table 5.4: The two best performing models trained on ordered triple sets. The
table shows that the heuristic ordering does not lead to better performance.

5.2 Seq-to-seq Ordering

Seq-to-seq ordering model presented by Ferreira et al. (2019) does not have
very good results, since (as Ferreira et al. (2019) presents in their paper) the
model is not significantly better than just random ordering.

Unfortunately, the seq-to-seq model proposed in this work does not work
well either — below are indicators, implying the model did not learn the task
(measurements were done on the test set):..1. When there are n triples in the input, the output should have n tokens

(each token corresponds to one particular triple as described in section
3.2.1), i.e., after n tokens, the model should generate the end-of-sentence
token. However, in 43.26% cases, it does not do so...2. On validation data, the model has perplexity of 29.9; on test data, the
perplexity is 61.48. Note that perplexity = 2crossentropy, hence the cross-
entropy of the model is very high. For comparison, the models used for
text generation from triples have perplexity on validation data around 4.7
and on test data around 11.3. (Both values are medians across model1,
model2 and model3)...3. The model frequently outputs tokens corresponding to i− th triples, even
the input triple set contains only n triples, where n < i. This happens
in 38.4% cases.

Based on these results, we conclude that the model is not very good for
the ordering task and is further considered to be a ‘blind alley’ — hence the
model is not used by the triples-to-seq system.

49 ctuthesis t1606152353



5. Results of LSTM Models................................
5.3 Unseen test data

The results of the WebNLG 2017 challenge on unseen test data are shown in
the table below:

model BLEU METEOR TER
Melbourne 33.27 0.33 0.55
TILB-SMT 29.88 0.33 0.61

PKUWRITER 25.36 0.24 0.67
UPF-FORGE 35.70 0.37 0.55
TILB-NMT 25.12 0.31 0.72

TILB-PIPELINE 20.65 0.21 0.65
ADAPT 10.53 0.19 1.4
UIT-VNU 0.11 0.03 0.87

Table 5.5: Official results of the WebNLG challenge 2017 — unseen part of the
test dataset.

While the results of the two best performing models proposed in this thesis
are:

model BLEU METEOR TER
model3 33.86 0.37 0.56
iklcpa 34.11 0.37 0.55

Table 5.6: Results of the two best models (with text structuring) on the unseen
part of the test set.

5.4 Discussion

Let’s compare the results of the ikl_cpa model (with text structuring) with
the systems from the challenge. One can observe that the ikl_cpa outperforms
all solutions (measured on the complete test set) on METEOR and CHRF++
metrics, while it is fourth on BLEU score and third on TER. Considering the
unseen data only, ikl_cpa model performs equally to UPF-FORGE system on
METEOR and TER metrics, while it would be second (after UPF-FORGE)
on the BLEU score.

Since UPF-FORGE is the winner of the challenge (outcome of human
evaluation) and ikl_cpa outperforms UPF-FORGE on 3 out of 4 metrics on

ctuthesis t1606152353 50



......................................5.4. Discussion

the whole test dataset and performs equally on two out of three metrics on
the unseen data (except BLEU, where it is worse — but with a relatively low
difference), we would conclude that ikl_cpa should have similar quality as
UPF-FORGE. Note that the maximum number of references of the whole
test dataset is 8, while for the unseen part, it is only 5, which also affects the
results. It is hard to say whether UPF-FORGE scores are affected by this
comparably, more or lower than ikl_cpa.

UPF-FORGE is, however, a rule-based system, while all other competitors
in the challenge used some kind of machine-learning models (systems). Hence
one can also conclude that from the ML systems, ikl_cpa has the best
performance (even it is not so good on BLEU measured on all data — because
very high BLEU on seen data and abysmal results on unseen data indicates bad
generalization of the model) and that it can generally be hard to outperform
manually tuned rule-based systems by a machine learning models.

51 ctuthesis t1606152353



ctuthesis t1606152353 52



Chapter 6

Results of Transformer Models

Since the transformer models are trained on the latest version of the WebNLG
dataset, their performance should be compared to the results of the last
WebNLG challenge. The following table presents results (automatic metrics)
of the first ten competitors (sorted by METEOR, measured on the whole test
dataset):

system id BLEU BLEU NLTK METEOR CHRF++ TER
id18 53.98 53.5 0.417 0.690 0.406
id30 53.54 53.2 0.414 0.688 0.416

id30_1 52.07 51.8 0.413 0.685 0.444
id34* 52.67 52.3 0.413 0.686 0.423
id5 51.74 51.7 0.411 0.679 0.435

id35* 51.59 51.2 0.409 0.681 0.431
id23 51.74 51.4 0.403 0.669 0.417
id2 50.34 50.0 0.398 0.666 0.435
id15 40.73 40.5 0.393 0.646 0.511
id28 44.56 43.2 0.387 0.637 0.479
id12 40.29 39.3 0.386 0.634 0.504

Table 6.1: Eleven best systems of the WebNLG 2020 (all data,
sorted by METEOR). Full results are available at https://beng.dice-
research.org/gerbil/webnlg2020results. * refers to late submissions.

We trained three T5 models, their perofrmance is shown below:

53 ctuthesis t1606152353



6. Results of Transformer Models .............................
model BLEU BLEU NLTK METEOR chrf++ TER

T5-small 46.32 46.21 0.399 0.657 0.476
T5-base 53.60 53.24 0.411 0.684 0.428
T5-large 53.70 53.46 0.417 0.686 0.420

Table 6.2: T5 end-to-end models trained on WebNLG 3.0 data set.

Since T5-small has significantly lower performance than T5-base and T5-
large, we did not examine this architecture any further. The following two
tables show results of the T5-base and T5-large models together with the
Roberta-base and Roberta-large rankers:

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 53.79 53.42 0.412 0.685 0.412
T5-large 53.79 53.53 0.417 0.692 0.411

Table 6.3: T5 + Roberta-base ranker

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 53.79 53.43 0.413 0.686 0.412
T5-large 53.81 53.54 0.418 0.692 0.410

Table 6.4: T5 + Roberta-large ranker

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 53.74 53.41 0.414 0.687 0.413
T5-large 53.75 53.49 0.419 0.693 0.410

Table 6.5: T5 + Roberta-large ranker + text structuring

6.1 Unseen data

The table below shows ten best (according to METEOR) systems of the
WebNLG challenge 2020 on unseen categories — a subset of the full test set:

ctuthesis t1606152353 54



............................. 6.2. Evaluation of Roberta Ranker

model BLEU BLEU NLTK METEOR chrf++ TER
id18 49.15 49.1 0.404 0.660 0.413

id30_1 45.34 45.5 0.398 0.651 0.471
id30 47.4 47.4 0.397 0.652 0.437
id34* 46.2 46.3 0.394 0.647 0.444
id5 43.98 44.1 0.393 0.636 0.470
id23 45.57 45.4 0.388 0.632 0.438
id35* 43.84 44.0 0.387 0.637 0.458
id15 35.85 36.4 0.384 0.617 0.512
id28 40.87 40.5 0.379 0.615 0.486
id4 43.82 43.6 0.379 0.618 0.472

Table 6.6: Official results of the WebNLG challenge 2020 — unseen part of the
test dataset. * refers to late submissions.

Below, the two tables show the performance of T5-base and T5-large with
Roberta-large ranker without and also with text structuring.

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 45.98 46.07 0.392 0.646 0.431
T5-large 48.12 48.36 0.403 0.656 0.421

Table 6.7: T5 + Roberta-large ranker

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 45.88 45.95 0.396 0.650 0.432
T5-large 48.04 48.29 0.405 0.661 0.422

Table 6.8: T5 + Roberta-large ranker + text structuring

6.2 Evaluation of Roberta Ranker

The performance of the trained Roberta rankers is measured by the F1-score:

F1 = 2
recall−1 + precision−1 (6.1)

model F1
Roberta-base 0.92
Roberta-large 0.95

Table 6.9: Performance of Roberta classifiers (rankers).

55 ctuthesis t1606152353



6. Results of Transformer Models .............................
6.3 Discussion

While expectably T5-large has better performance than T5-base, the difference
is relatively low, and hence the API 10 allows to choose between the two
models. Note that T5-large can be significantly slower as shown in Chapter
7.

To compare the WebNLG challenge 2020 results with the results in this
thesis, it is fair to consider the T5-large only, since the ‘id18’ model (the best
performing model) is also based on T5-large (Guo et al., 2020).

The T5-large+Roberta-large combination outperforms all models on the
whole test dataset on BLEU NLTK, METEOR, and CHRF++ metrics, while
it is second on TER and BLEU metrics. Note that the difference is very
small — on the BLEU score, one implementation maps a higher score to the
‘id18’ system while the other to the system proposed in this thesis. Similar
results are achieved with an additional step — the text structuring (but the
differences are slightly higher).

On unseen data, if T5-large+Roberta-large + structuring is considered,
then the system would be the best on METEOR and CHRF++, while it
would be second on both BLEU scores implementations and TER.

Due to the fact that the overall differences between the scores of the system
proposed in this thesis and the best performing ‘id18’ system are very low,
we would suggest that the systems are +- equally good.

Note: the ‘id18’ system was proposed and is described by Guo et al. (2020).

ctuthesis t1606152353 56



Chapter 7

Speed Comparison

The Chapters 2 and 3 concluded that there should be a significant difference
in computational demands of the two different architectures: the LSTM and
the Transformer.

We measured the speed on both — CPU and GPU:..1. CPU: Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60GHz..2. GPU: Nvidia GeForce GTX 1080 Ti

57 ctuthesis t1606152353



7. Speed Comparison ..................................
The next table shows the results and is confirming the claims from Chapters

2 and 3. The reported time costs are averages made on WebNLG 1.4 test
data set, and they tell us how much time does the model on average requires
to transform a single triple set into a text (i.e., the batch size was set up to
one, during the experiment).

Model GPU CPU
LSTM 121ms 192ms

Delexicalization - 129ms
Relexicalization - < 1ms

T5-base 1022ms 1414ms
T5-large 2003ms 3468ms

Ranker Roberta-base 81ms 265ms
Ranker Roberta-large 163ms 950ms

Table 7.1: Comparison of the speed of different systems. If LSTM is used,
the total average time should be computed as the average time for the LSTM
model plus the average time for delexicalization and relexicalization. For the
transformer-based solution, one should add the average time of the ranker only
if one intends to use it. Clearly, T5 models are much slower than the LSTM
model, although if the data are feed-in batches, the difference would be lower for
a run on GPU.

ctuthesis t1606152353 58



Chapter 8

Comparison of Performance by Automatic
Evaluation metrics

This chapter aims to compare the iklcpa model with the T5-base and T5-large
models. For the best objectivity, the performance is measured on the unseen
part of the last release of the WebNLG test dataset (so it is out-of-domain
for both models) and on the seen part of the WebNLG 1.4 (in-domain for
both models) test dataset. Moreover, for better evaluation of the iklcpa
model, the results include the performance of the UPF-FORGE system from
WebNLG challenge 2017 (this system was used as a baseline system in the
last challenge).

This comparison incorporates only the iklcpa model and T5-base and T5-
large models. Hence, no ordering, text structuring, nor ranker is used.

8.0.1 WebNLG 3.0 Unseen Test Data

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 45.89 45.91 0.391 0.639 0.435
T5-large 48.03 48.27 0.402 0.648 0.426
iklcpa 23.23 23.23 0.346 0.563 0.682

UPF-FORGE 34.63 34.3 0.347 0.565 0.544

Table 8.1: T5 vs LSTM. The table shows, that both T5 models generalize
significantly better, than the best LSTM model. Scores for UPF-FORGE are
taken from Castro Ferreira et al. (2020)

59 ctuthesis t1606152353



8. Comparison of Performance by Automatic Evaluation metrics................
8.0.2 WebNLG 1.4 Seen Test Data

model BLEU BLEU NLTK METEOR chrf++ TER
T5-base 67.11 67.11 0.468 0.775 0.291
T5-large 68.27 68.27 0.474 0.783 0.284
iklcpa 48.47 58.47 0.425 0.700 0.454

UPF-FORGE 40.88 - 0.40 - 0.55

Table 8.2: T5 vs LSTM. The table shows, that both T5 models perform
significantly better, than the best LSTM model. Scores for UPF-FORGE are
taken from Gardent et al. (2017)

8.1 Discussion

On both datasets: out-of-domain and in-domain, the transformers significantly
outperformed the LSTM model. However, on the in-domain data, the scores
are higher than the scores for transformers measured on the whole test set.
However, the scores on in-domain data suggest that iklcpa might perform
sufficiently on these data since the values of the scores are better than are
scores of transformers measured on the whole test set.

If one focuses on the WebNLG 3.0 unseen test data, the performance of
the iklcpa may seem very low; however, it has still better or comparable
performance than some competitor’s (participants of the challenge) systems
that use transformers Castro Ferreira et al. (2020). Comparing to UPF-
FORGE, iklcpa has similar performance on METEOR and CHRF++, but
significantly worse results on BLEU and TER, which may suggest that the
generated sentences are semantically more-less correct, but they may be
disfluent or not grammatically correct.

The next chapter provides the same comparison but uses human evaluation.

ctuthesis t1606152353 60



Chapter 9

Human Evaluation

For the human evaluation, only the best performing models are taken, i.e.,
the iklcpa + text structuring (even the text structuring has a negative impact
on TER and BLEU, we consider METEOR and CHRF++ more relevant
metrics because especially METEOR correlates better with the results of
human evaluation of the WebNLG 2017 and 2020 challenge) and the T5-
large with Roberta-large ranker. (The performance of the iklcpa could be
further improved by using the ranker; however, the idea is to compare a
non-transformer-based system to a transformer-based system).

To make a fair comparison between the Transformer-based system and the
LSTM-based system, 100 random samples were sampled from the unseen part
of the third version of the WebNLG dataset (so it is ensured that none of the
models have seen the entities in the given data during training/fine-tuning)
and also 100 random samples were sampled from the seen part of the WebNLG
1.4 (test) dataset (hence both models have seen the entities during training).

The human evaluation is focusing on these features:..1. Grammar correctness...2. Whether the generated text captures all information from the input...3. Whether the generated text does not contain any information that was
not in the input...4. Whether the generated text is fluent and semantically correct.

61 ctuthesis t1606152353



9. Human Evaluation ..................................
Each sentence is evaluated on ‘binary’ basis, i.e., a text can be either

grammatically correct or incorrect, it can contain all information from the
input or not, it has additional information, or it does not, and it is fluent and
semantically correct, or it is not.

9.1 Results

The results of the human evaluation are provided in a form of two figures
(one for each model — LSTM/T5), each containing two bar charts (one for
seen and the other for unseen data):

(a) : Human evaluation on in-domain (seen) part of the test data.

(b) : Human evaluation on out-of-domain (unseen) part of the test data.

Figure 9.1: Human evaluation of T5-large model + Roberta-large ranker.

ctuthesis t1606152353 62



......................................9.2. Discussion

(a) : Human evaluation on in-domain (seen) part of the test data.

(b) : Human evaluation on out-of-domain (unseen) part of the test data.

Figure 9.2: Human evaluation of iklcpa model.

9.2 Discussion

The manual human evaluation proved that the expectations from Chapter 3
were correct, i.e., the LSTM model has lower performance in general, moreover,
while on in-domain data, the performance is decent; on out-of-domain data,
the quality of generated texts drops significantly.

During the manual evaluation, we have found that both models sometimes
mismatched subjects for objects and vice versa. The LSTM model did so
more often. However, in some input triples (in both data sets), the objects
and subjects seem to be swapped, as shown here:

63 ctuthesis t1606152353



9. Human Evaluation ..................................
No-hair_theorem | knownFor | Brandon_Carter
Anthropic_principle | knownFor | Brandon_Carter

In these cases, the triples seem to be wrong — i.e., Brandon Carter should
be a subject, and the thing he is known for should be an object. Note that
the error when subjects and objects are swapped in the hypothesis affects
negatively the fluency+semantic correctness (dark-red bar in the reported
figures).

The T5 model is better in dealing with such cases probably because it has
seen many data during pretraining. Hence, it can ‘know’ the meaning of the
entities inside the triples, which can help in generating the target text.

Perhaps if no subjects-objects were swapped, the results would be improved
more for the LSTM model than for the T5.

ctuthesis t1606152353 64



Chapter 10

API

The final system uses KFServing 1 for serving the models for serverless
inference. The idea is that the system will run in a Docker (hence the
repository is containing a docker file to create a docker image) 2 and that the
Docker image will be deployed onto a Kubernetes 3 cluster.

10.1 KFServing

KFServing uses two cloud technologies:..1. Knative: is a platform for Kubernetes to deploy and manage serverless
workloads...2. Istio: is a mesh that helps to manage networking microservices.

The whole system based on KFServing can be visualized as follows:

1https://github.com/kubeflow/kfserving
2https://www.docker.com/
3https://kubernetes.io/

65 ctuthesis t1606152353



10. API ........................................

Figure 10.1: KFServing visualization from
https : //github.com/kubeflow/kfserving.

10.2 Usage of the System

The system can be used by a POST request, e.g., by curl 4. The request
must contain the linearized input triple set (string) and can include different
options:..1. Whether to use LSTM or T5...2. Whether to use Roberta ranker or not...3. Whether to use text structuring...4. If using T5 - whether to use T5-base or T5-large...5. If using Roberta - whether to use Roberta-base or Roberta-large.

The output of the system is a string — the verbalized input data.

10.3 Implementation Details

The system uses functions for delexicalization, relexicalization and structuring
as described in 3. During initialization, the system loads all pretrained models,

4https://curl.se/

ctuthesis t1606152353 66



................................10.3. Implementation Details

i.e. the ikl_cpa, T5-base, T5-large and the Roberta ranker. The main class
implements all necessary methods required by KFServing, namely..1. __init__..2. load (to load the models)..3. predict

Except for the name of the model and the running port, the system does
not take any other arguments during initialization.

Delexicalization, relexicalization, structuring and all other preprocessing
and postprocessing steps are done inside the main class (including restructur-
ing and inference).

The code can be found in the root directory in final_system.py.

67 ctuthesis t1606152353



ctuthesis t1606152353 68



Chapter 11

Conclusion

The goal of this thesis was to create a system that is able to make natural
texts from given triple sets. We examined existing datasets and chose to use
two different versions of the WebNLG dataset. The thesis described two main
approaches to solve the main task, where one approach is based on LSTM
neural networks and has low computational demands while the other is based
on pretrained Transformers. The thesis examined the computational costs of
each of the models as well as the performance of each of the models. Addition-
ally, the thesis proposed further steps, which could improve text generation,
such as triples’ ordering, text structuring, and ranking. While ordering did
not bring any improvement, text structuring brought improvement on some
automatic metrics, and ranker improved performance on all measured metrics
(but only a little).

Automatic metrics evaluated all proposed solutions, and the two best
various systems were evaluated manually. The outcome of the automatic
evaluation and the manual evaluation is that the Transformer-based system
(T5 + Roberta ranker) works well on in-domain as well as on out-of-domain
data. On the other hand, the LSTM-based system performs well on in-domain
data but cannot sufficiently perform on out-of-domain data. Hence the thesis
found a trade-off between good generalization on one side (Transformers) and
between low computational requirements on the other side (LSTM).

All trained models are standard PyTorch (Paszke et al., 2019) models
compatible with PyTorch 1.5.0 and newer versions. The LSTM is built
upon the OpenNMT library, while the T5 and Roberta are built upon the
Huggingface Transformers.

69 ctuthesis t1606152353



11. Conclusion .....................................
The last part of the work puts both models and other possible steps (text

structuring, ordering, ranking) together into a single system that is virtualized
in a Docker image and served by KFServing. The final system provides an
API, which allows selecting a particular model type (transformer/LSTM), for
transformers a specific size of the model (base/large) and whether to use text
structuring, (heuristic) ordering and ranking (this is not dependent on the
selected model type). The system then takes a single triple set or a batch of
triple sets and outputs a list of texts.

ctuthesis t1606152353 70



Bibliography

URL https://www.dbpedia.org/.

Gaurav Arora, Afshin Rahimi, and Timothy Baldwin. Does an LSTM
forget more than a CNN? an empirical study of catastrophic forgetting in
NLP. In Proceedings of the The 17th Annual Workshop of the Australasian
Language Technology Association, pages 77–86, Sydney, Australia, 4–6
December 2019. Australasian Language Technology Association. URL
https://www.aclweb.org/anthology/U19-1011.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine
translation by jointly learning to align and translate, 2016.

Alexander Shekhovtsov Boris Flach. Bev033dle – deep learning - lecture slides.
URL https://cw.fel.cvut.cz/b192/courses/bev033dle/start.

Thiago Castro Ferreira, Claire Gardent, Nikolai Ilinykh, Chris van der Lee, Si-
mon Mille, Diego Moussallem, and Anastasia Shimorina. The 2020 bilingual,
bi-directional WebNLG+ shared task: Overview and evaluation results
(WebNLG+ 2020). In Proceedings of the 3rd International Workshop on Nat-
ural Language Generation from the Semantic Web (WebNLG+), pages 55–
76, Dublin, Ireland (Virtual), 12 2020. Association for Computational Lin-
guistics. URL https://www.aclweb.org/anthology/2020.webnlg-1.7.

Sanyuan Chen, Yutai Hou, Yiming Cui, Wanxiang Che, Ting Liu, and
Xiangzhan Yu. Recall and learn: Fine-tuning deep pretrained language
models with less forgetting, 2020.

Michael Denkowski and Alon Lavie. Meteor universal: Language specific
translation evaluation for any target language. In Proceedings of the EACL
2014 Workshop on Statistical Machine Translation, 2014.

71 ctuthesis t1606152353

https://www.dbpedia.org/
https://www.aclweb.org/anthology/U19-1011
https://cw.fel.cvut.cz/b192/courses/bev033dle/start
https://www.aclweb.org/anthology/2020.webnlg-1.7


Bibliography ......................................
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

Bayu Distiawan. URL https://webnlg-challenge.loria.fr/files/
melbourne_report.pdf.

Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story
generation, 2018.

Christiane Fellbaum. WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

Thiago Castro Ferreira, Chris van der Lee, Emiel van Miltenburg, and Emiel
Krahmer. Neural data-to-text generation: A comparison between pipeline
and end-to-end architectures, 2019.

Claire Gardent, Anastasia Shimorina, Shashi Narayan, and Laura Perez-
Beltrachini. The WebNLG challenge: Generating text from RDF data.
In Proceedings of the 10th International Conference on Natural Language
Generation, pages 124–133, Santiago de Compostela, Spain, September 2017.
Association for Computational Linguistics. doi: 10.18653/v1/W17-3518.
URL https://www.aclweb.org/anthology/W17-3518.

Qipeng Guo, Zhijing Jin, Ning Dai, Xipeng Qiu, Xiangyang Xue, David Wipf,
and Zheng Zhang. √∈ : A plan-and-pretrain approach for knowledge graph-

to-text generation. In Proceedings of the 3rd International Workshop on
Natural Language Generation from the Semantic Web (WebNLG+), pages
100–106, Dublin, Ireland (Virtual), 12 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.webnlg-1.
10.

Hamza Harkous, Isabel Groves, and Amir Saffari. Have your text and use
it too! end-to-end neural data-to-text generation with semantic fidelity,
2020a.

Hamza Harkous, Isabel Groves, and Amir Saffari. Have your text and use
it too! end-to-end neural data-to-text generation with semantic fidelity,
2020b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition, 2015.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious
case of neural text degeneration, 2020.

ctuthesis t1606152353 72

https://webnlg-challenge.loria.fr/files/melbourne_report.pdf
https://webnlg-challenge.loria.fr/files/melbourne_report.pdf
https://www.aclweb.org/anthology/W17-3518
https://www.aclweb.org/anthology/2020.webnlg-1.10
https://www.aclweb.org/anthology/2020.webnlg-1.10


.......................................Bibliography

James M. Joyce. Kullback-Leibler Divergence, pages 720–722. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011. ISBN 978-3-642-04898-2.
doi: 10.1007/978-3-642-04898-2_327. URL https://doi.org/10.1007/
978-3-642-04898-2_327.

Dan Jurafsky and James H. Martin. Speech and language process-
ing : an introduction to natural language processing, computational
linguistics, and speech recognition. Pearson Prentice Hall, Upper
Saddle River, N.J., 2009. ISBN 9780131873216 0131873210. URL
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/
dp/0131873210/ref=pd_bxgy_b_img_y.

Zdeněk Kasner and Ondřej Dušek. Train hard, finetune easy: Multilingual
denoising for RDF-to-text generation. In Proceedings of the 3rd Inter-
national Workshop on Natural Language Generation from the Semantic
Web (WebNLG+), pages 171–176, Dublin, Ireland (Virtual), 12 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/
anthology/2020.webnlg-1.20.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization, 2017.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander
Rush. OpenNMT: Open-source toolkit for neural machine translation. In
Proceedings of ACL 2017, System Demonstrations, pages 67–72, Vancouver,
Canada, July 2017. Association for Computational Linguistics. URL https:
//www.aclweb.org/anthology/P17-4012.

et al. Abstract Meaning Representation (AMR) Annotation Release 2.0
LDC2017T10. Web Download. Philadelphia: Linguistic Data Consor-
tium 2017. Knight, Kevin.

Taku Kudo and John Richardson. Sentencepiece: A simple and language
independent subword tokenizer and detokenizer for neural text processing,
2018.

Xintong Li, Aleksandre Maskharashvili, Symon Jory Stevens-Guille, and
Michael White. Leveraging large pretrained models for WebNLG 2020.
In Proceedings of the 3rd International Workshop on Natural Language
Generation from the Semantic Web (WebNLG+), pages 117–124, Dublin,
Ireland (Virtual), 12 2020. Association for Computational Linguistics. URL
https://www.aclweb.org/anthology/2020.webnlg-1.12.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach, 2019.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan
Ghazvininejad, Mike Lewis, and Luke Zettlemoyer. Multilingual denoising
pre-training for neural machine translation, 2020.

73 ctuthesis t1606152353

https://doi.org/10.1007/978-3-642-04898-2_327
https://doi.org/10.1007/978-3-642-04898-2_327
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
https://www.aclweb.org/anthology/2020.webnlg-1.20
https://www.aclweb.org/anthology/2020.webnlg-1.20
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/P17-4012
https://www.aclweb.org/anthology/2020.webnlg-1.12


Bibliography ......................................
Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization,
2019.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space, 2013.

Jekaterina Novikova, Ondrej Dušek, and Verena Rieser. The E2E dataset:
New challenges for end-to-end generation. In Proceedings of the 18th
Annual Meeting of the Special Interest Group on Discourse and Dialogue,
Saarbrücken, Germany, 2017. URL https://arxiv.org/abs/1706.09254.
arXiv:1706.09254.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a
method for automatic evaluation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Computational Linguistics,
pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association
for Computational Linguistics. doi: 10.3115/1073083.1073135. URL https:
//www.aclweb.org/anthology/P02-1040.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. ‘Alch‘ e-Buc, E. Fox, and R. Garnett, editors,
Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove:
Global vectors for word representation. In EMNLP, volume 14, pages
1532–1543, 2014.

Marcus Perry. The Exponentially Weighted Moving Average. 06 2010. doi:
10.1002/9780470400531.eorms0314.

Jan Pichl, Petr Marek, Jakub Konrád, Martin Matulík, Hoang Long Nguyen,
and Jan Šedivý. Alquist: The alexa prize socialbot, 2018.

Jan Pichl, Petr Marek, Jakub Konrád, Petr Lorenc, Van Duy Ta, and Jan
Šedivý. Alquist 3.0: Alexa prize bot using conversational knowledge graph,
2020a.

Jan Pichl, Petr Marek, Jakub Konrád, Martin Matulík, and Jan Šedivý.
Alquist 2.0: Alexa prize socialbot based on sub-dialogue models, 2020b.

Maja Popovic. chrf ++ : words helping character n-grams. 09 2017. doi:
10.18653/v1/W17-4770.

ctuthesis t1606152353 74

https://arxiv.org/abs/1706.09254
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


.......................................Bibliography

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer.
J. Mach. Learn. Res., 21:Paper No. 140, 67, 2020. ISSN 1532-4435.
doi: 10.1080/15502287.2020.1772903. URL https://doi.org/10.1080/
15502287.2020.1772903.

Sebastian Ruder. An overview of gradient descent optimization algorithms,
2017.

Monika Schak and Alexander Gepperth. A Study on Catastrophic Forgetting
in Deep LSTM Networks, pages 714–728. 09 2019. ISBN 978-3-030-30483-6.
doi: 10.1007/978-3-030-30484-3_56.

Abigail See, Peter J. Liu, and Christopher D. Manning. Get to the point:
Summarization with pointer-generator networks, 2017.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine transla-
tion of rare words with subword units, 2016.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Linnea Micciulla, and John
Makhoul. A study of translation edit rate with targeted human annotation.
01 2006.

Derya Soydaner. A comparison of optimization algorithms for deep learning.
International Journal of Pattern Recognition and Artificial Intelligence, 34
(13):2052013, Apr 2020. ISSN 1793-6381. doi: 10.1142/s0218001420520138.
URL http://dx.doi.org/10.1142/S0218001420520138.

Zhaopeng Tu, Zhengdong Lu, Yang Liu, Xiaohua Liu, and Hang Li. Modeling
coverage for neural machine translation, 2016.

C. J. van Rijsbergen. Information retrieval. Butterworths, London, 2 edition,
1979. URL http://www.dcs.gla.ac.uk/Keith/Preface.html.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks, 2017.

Joseph Weizenbaum. Eliza—a computer program for the study of natural
language communication between man and machine. Commun. ACM, 9(1):
36–45, January 1966. ISSN 0001-0782. doi: 10.1145/365153.365168. URL
https://doi.org/10.1145/365153.365168.

Tomas Werner. Optimalizace (elektronicka skripta predmetu a4b33opt),
2018. URL https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/
opt.pdf.

75 ctuthesis t1606152353

https://doi.org/10.1080/15502287.2020.1772903
https://doi.org/10.1080/15502287.2020.1772903
http://dx.doi.org/10.1142/S0218001420520138
http://www.dcs.gla.ac.uk/Keith/Preface.html
https://doi.org/10.1145/365153.365168
https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf
https://cw.fel.cvut.cz/old/_media/courses/a4b33opt/opt.pdf


Bibliography ......................................
E. Wilson and D. W. Tufts. Multilayer perceptron design algorithm. In
Proceedings of IEEE Workshop on Neural Networks for Signal Processing,
pages 61–68, 1994. doi: 10.1109/NNSP.1994.366063.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement
Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan
Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,
Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers:
State-of-the-art natural language processing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online, October 2020. Association for Com-
putational Linguistics. URL https://www.aclweb.org/anthology/2020.
emnlp-demos.6.

Yaoming Zhu, Juncheng Wan, Zhiming Zhou, Liheng Chen, Lin Qiu, Weinan
Zhang, Xin Jiang, and Yong Yu. Triple-to-text. Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in
Information Retrieval, Jul 2019. doi: 10.1145/3331184.3331232. URL
http://dx.doi.org/10.1145/3331184.3331232.

ctuthesis t1606152353 76

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
http://dx.doi.org/10.1145/3331184.3331232


ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457004Osobní číslo:OndřejJméno:KobzaPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Umělá inteligenceSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Generování přirozeného jazyka ze znalostních databází

Název diplomové práce anglicky:

Natural Language Generation from Knowledge-Base Triples

Pokyny pro vypracování:
1.Prozkoumejte veřejně dostupné množiny dat vhodné pro natrénování modelu pro generaci přirozeného jazyka ze
znalostních databází.
2. Prozkoumejte existující zdroje relevantní k dané úloze.
3. Na základě zdrojů z bodu 2. navrhněte možná řešení zadaného problému.
4. Implementujte a natrénujte navrhované modely na datové množině z bodu 1.
5. Najděte (popř. navrhněte) metriku pro hodnocení kvality jednotlivých modelů.
6. Porovnejte výsledky jednotlivých modelů/řešení, zhodnoťte jednotlivá řešení na základě metriky z předchozího bodu a
na základě manuální evaluace.
7. Vytvořte API pro použití modelu (jenž dosahoval nejlepších výsledků v bodě 6.) tak, aby bylo možné daný model
integrovat s dialogovým systémem.

Seznam doporučené literatury:
Ferreira, T. C., van der Lee, C., van Miltenburg, E., & Krahmer, E.
(2019). Neural data-to-text generation: A comparison between pipeline
and end-to-end architectures. arXiv preprint arXiv:1908.09022.
Gardent, C., Shimorina, A., Narayan, S., & Perez-Beltrachini, L.
(2017, September). The WebNLG challenge: Generating text from RDF
data. In Proceedings of the 10th International Conference on Natural
Language Generation (pp. 124-133).
Jurafsky, Daniel & Martin, James. (2008). Speech and Language
Processing: An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition.
Zhu, Y., Wan, J., Zhou, Z., Chen, L., Qiu, L., Zhang, W., ... & Yu, Y.
(2019, July). Triple-to-text: converting RDF triples into high-quality
natural languages via optimizing an inverse KL divergence. In
Proceedings of the 42nd International ACM SIGIR Conference on Research
and Development in Information Retrieval (pp. 455-464).
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805.

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1



Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Petr Marek, velká data a cloud computing CIIRC

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: _____________Datum zadání diplomové práce: 21.02.2021

Platnost zadání diplomové práce: 19.02.2023

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Petr Marek

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1


	Introduction
	Structure of the Thesis
	Task Definition
	Data
	WebNLG 2017 Dataset
	WebNLG 2020 Dataset

	Other Datasets

	Related Work and Theory
	Sequence to Sequence Models Based on Recurrent Neural Networks
	LSTM

	Sequence to Sequence Models Based on Transformers
	Attention

	Text Representation in Machine Learning Models
	Word Embedding
	Byte-Pair Encoding

	Decoding Output of an Sequence to Sequence Model
	Beam Search
	Sampling

	Optimization Techniques
	SGD
	Adam
	AdamW

	Metrics
	Nomenclature


	Proposed LSTM-based Systems for RDF-to-Text Generation Problem
	Seq-to-Seq LSTM Models
	Data Preprocessing and Postprocessing
	Delexicalization
	Relexicalization

	Ordering and Text Structuring
	Ordering
	Text Structuring

	Triples-to-Text Model
	Copy Attention
	Inverse Kullback–Leibler Loss

	Implementation Details
	Data Preprocessing and Postprocessing
	LSTM Models


	Proposed Transformer-Based Systems for RDF-to-Text Generation Problem
	Google T5
	Roberta
	BERT
	Masked LM

	Data Preprocessing
	T5 for Triples-to-Text Setup
	Roberta for Ranker Setup
	Implementation Details
	T5 Model
	Roberta Model


	Results of LSTM Models
	Heuristic Ordering and Text Structuring
	Seq-to-seq Ordering
	Unseen test data
	Discussion

	Results of Transformer Models
	Unseen data
	Evaluation of Roberta Ranker
	Discussion

	Speed Comparison
	Comparison of Performance by Automatic Evaluation metrics
	WebNLG 3.0 Unseen Test Data
	WebNLG 1.4 Seen Test Data

	Discussion

	Human Evaluation
	Results
	Discussion

	API
	KFServing
	Usage of the System
	Implementation Details

	Conclusion
	Bibliography
	Project Specification

