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Abstract

This thesis focuses on improving the transductive learning approach to video
object segmentation proposed by Zhang et al.’s paper A Transductive Ap-
proach for Video Object Segmentation. The paper is summarized, and neces-
sary background knowledge of label propagation and metric learning, includ-
ing deep metric learning, is introduced. An overview of current approaches to
solving the video object segmentation was introduced as well. Two streams
of improvements are proposed. The first one aims at improvements focusing
on better inference by improving the label propagation by introducing prob-
ability propagation and by using various test-time augmentation strategies.
The other improvements are focusing on better model training using triplet
loss with different training triplet miners. In the last part, the thesis focuses
on both quantitative and qualitative analysis of the proposed improvements.
Suggested improvements increased the original paper’s J and F metrics were
increased by 12% and 13% for the inference-based improvements and 5% and
4% respectively using the training-based improvements.

Keywords video object segmentation, label propagation, deep metric learn-
ing, transductive learning
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Abstrakt

Tato práce si klade za ćıl vylepšeńı př́ıstupu učeńı s omezenou superviźı
k vyřešeńı problému segmentace objekt̊u ve videu vylepšeńım př́ıstupu navrženém
ve článku Zhang a kol. – A Transductive Approach for Video Object Seg-
mentation. Článek je shrnut a daľśı nezbytné informace týkaj́ıćı se algoritmu
š́ı̌reńı značek a učeńı metrik, včetně hlubokého učeńı metrik jsou nast́ıněny.
Uveden je i přehled současných metod řešeńı problému segmentace objekt̊u
ve videu. Práce představuje dva nezávislé směry vylepšeńı. Prvńı směr se
zaměřuje na vylepšeńı inference za pomoci vylepšeńı šǐreńı značek š́ı̌reńım
pravděpodobnost́ı značek a použit́ım r̊uzných inferenčńıch strategíı. Druhý
směr vylepšeńı se zaměřuje na zlepšeńı tréninku modelu za použit́ı ztrátové
funkce triplet loss a návrhem r̊uzných algoritmů pro źıskáváńı trénovaćıch tro-
jic. V posledńı části se práce zaměřuje na jak kvantitativńı, tak i kvalitativńı
analýzu navržených vylepšeńı. Původńı hodnoty metrik J a F byly zvýšeny
o 12% a 13% za použit́ı vylepšeńı upravuj́ıćıch inferenci a o 5% a 4% při použit́ı
vylepšeńı upravj́ıćıch trénink p̊uvodńıho modelu.

Kĺıčová slova segmentace objekt̊u ve videu, š́ı̌reńı značek, hluboké učeńı
metrik, transduktivńı učeńı
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Introduction

As stated in Russell and Norvig’s Artificial Intelligence: A Modern Approach,
artificial intelligence is a field of computer science that aims at building in-
telligent systems and understanding the principles behind them [1]. Machine
learning is one of the branches of artificial intelligence that seeks to create
algorithms that would learn patterns and connections from given data. It is
actively used on a day-to-day basis practically everywhere around us, from
image recognition in our smartphones to machine learning-powered language
translation. However, one of the most popular fields of machine learning is
computer vision. It is a field that focuses on analyzing either image or video
data and providing insights from them on a scale that would usually be in-
tractable for humans.

With the recent exponential increase of data volume globally, there is a
tremendous need to effectively analyze and use video data. One of the tasks
to be solved on such video data is video object segmentation – one of the
essential tasks in the field of computer vision. Video object segmentation
aims at separation of foreground pixels from the background pixels in a given
video sequence. Additionally, we are given a pixel-level annotation of the
first frame indicating which objects in the video are the ones of interest and
the background. This task has raised a lot of attention, especially since the
introduction of benchmarks like DAVIS 2016 [2] and YouTube-VOS [3]. An
example of couple annotated frames from DAVIS 2017 dataset is shown in
Figure 0.1. However, it is important to note that the images and annotations
are not given in this form in the dataset but are given in two separate files.
This task is quite challenging since there can be many occlusions, abrupt
motions, camera shakes, background clutter, and other complexities.

This thesis focuses on the aforementioned video object segmentation using
one-shot learning. As mentioned in its name, the one-shot learning in VOS’s
case aims to learn the object appearance from just one annotated sample. An-
notation given from the sample is then propagated using a simple yet strong
transductive method that relies on a proximity graph between local regions on
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Introduction

Figure 0.1: Example of couple annotated frames from the DAVIS 2017 dataset.
Source: [4].

images from a video at different times. The image features for the similarities
graph are obtained using a deep convolutional neural network, and regions
correspond to feature map locations and their receptive field. The ultimate
goal of this thesis is to improve the learning so that a better graph is estab-
lished and also, given a trained convolutional neural network, to improve the
propagation during inference. Since labels for only one frame in each video
are provided, this task clearly corresponds to transductive learning.
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Chapter 1
Goals

This thesis aims to improve the approach to video object segmentation task
proposed by a paper called A Transductive Approach for Video Object Seg-
mentation [5] by Zhang et al. presented at CVPR2020. The thesis has three
main objectives:

1. Read and understand the mentioned paper in detail.

2. Reproduce results of the approach proposed by the paper.

3. Propose improvements to the paper’s approach.

In order to complete the objectives, this thesis consists of several chapters
dealing with the tasks at hand.

The first chapter (this one) lays down the thesis’ tasks and describes the
thesis’ structure and its chapters.

The second chapter deals with the background knowledge needed to com-
plete the goals, namely summarization of the CVPR2020 paper, description
of label propagation, and metric learning, which are both required for later
proposed improvements.

The following chapter briefly goes over other related approaches to solve
the video object segmentation task.

The fourth chapter proposes improvements to the original paper’s ap-
proach. There are two ways of improvements proposed, inference-based and
training-based.

Finally, the last chapter measures the results of proposed improvements
and puts them into perspective with the original paper’s approach.

3





Chapter 2
Background

The Section 2.1 summarizes the paper [5] this thesis is built on. To be more
precise, this thesis shows improvements and ideas where to focus on improving
a novel approach to the video object segmentation problem described in [5].
The following Sections 2.2 and 2.3 lay the foundations for label propagation
and metric learning, respectively, which are then further used in the next
chapter describing the proposed approach to improve the original paper. Label
propagation algorithm plays an important role in the predictions given by the
approach from [5]. It is the background knowledge needed to understand
better the propagation used in the paper. Metric learning is also important
in both the paper and the thesis as the objective of the metric learning is
aligned with the graph created during the label propagation. Also, one of the
streams of proposed approaches exploits metric learning to learn better pixel
embeddings.

2.1 A Transductive Approach for Video Object
Segmentation [5]

The paper was written in 2020 by Yizhuo Zhang, Zhirong Wu, Houwen Peng,
and Stephen Lin and submitted to the CVPR2020 (http://cvpr2020.thecvf.com/)
conference. Overall it provides a simple yet high-performing and efficient
method to solve the video object segmentation problem.

In the introduction part, the paper describes the problem of video object
segmentation. It sets it into relation with other visual problems such as seg-
mentation, object reidentification, optical flow estimation, or object tracking.
It also claims that optical flow and tracking encourage local dependencies
while instance segmentation and object reidentification enforces global de-
pendencies. Another important thing it claims is the basic assumptions for
semi-supervised learning (SSL) which are:

1. nearby samples tend to have the same label

5
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2. Background

2. samples that lie on the same manifold should should have the same label

Then it shows that the previous classical approaches to SSL include random
walk, graph cut, and spectral methods. The authors then claim that they
model the local dependency using a spatial prior and a motion prior and global
dependency using visual appearance learned by CNN on the training data.
The inference uses the regularization framework [6] using label propagation
in the spatio-temporal graph. Then they claim that their approach better
exploits the temporal volume compared to the current methods for the video
object segmentation problem. Lastly, they claim their model does not rely on
any additional modules (such as optical flow, reidentification, etc.) and works
using ResNet-50 architecture [7] trained on the ImageNet dataset [8]. There
are also claims of the speed of 37 FPS and achieving an overall score of 72.3%
on DAVIS 2017 [4] validation set and 63.1% on DAVIS 2017 test set. Their
proposed method is competitive to the current methods while being faster and
simpler.

2.1.1 Approach

Third section called Approach describes the concrete methods used in the pa-
per. The paper’s approach doesn’t finetune the model on a single annotated
frame nor doesn’t transfer knowledge but rather it exploits unlabelled struc-
ture in a video sequence. It uses the generic semi-supervised classification
framework [6] modified to work for VOS problem. The framework assumes
that we are given a dataset D = {(x1, y1), (x2, y2), (xl, yl), xl+1, . . . , xn} con-
taining l labelled data pairs and n− l unlabelled data points. Task is to infer
the labels {ŷl+1, . . . , ŷn} using the known data points {xl+1, . . . , xn}. Inference
is formulated using following formula,

Q(ŷ) =
n∑
i,j

wij‖
ŷi√
di
− ŷj√

dj
‖2 + µ

l∑
i=1
‖ŷi − yi‖2 (2.1)

where wij encodes the similarity between datapoints xi and xj and di denotes
the degree for pixel i which is computed as ∑

j wij . The first term of the
equation denotes a smoothness constraint forcing similar points to have the
same labels. The second term is a fitting constraint that penalizes the solutions
that are different from the initial observations. The µ parameter helps with
balancing the terms. Given the formula, the inference itself is made using the
following,

ŷ = arg minQ(y) (2.2)
The above problem can be actually solved iteratively using the normalized
similarity matrix S constructed from wij as S = D−1/2WD−1/2. The iterative
solution is solved until convergence and is formulated as,

ŷ(k + 1) = αSŷ(k) + (1− α)y(0) (2.3)

6



2.1. A Transductive Approach for Video Object Segmentation [5]

where α = µ/(µ + 1) and y(0) = [y1, . . . , yn]T . The paper then proposes a
simplification of this using approximate by expanding the inference procedure
through time,

ŷ(t+ 1) = S1:t→t+1ŷ(t) (2.4)

where S1:t→t+1 represents the similarity matrix S constructed only between
pixels up to the time t and the pixels in the following time. As no labels are
provided apart the first frame the term y(0) is ommited for time t+ 1. Also
the propagation procedure from 2.1 gets simplified to,

Qt+1(ŷ) =
∑
i

∑
j

wij‖
ŷi√
di
− ŷj√

dj
‖2 (2.5)

where i is the index of the pixels at target time t + 1 and j is the index of
pixels in all the previous times (including) to time t. The aforementioned
approximation from Equation 2.4 is needed as the original iterative solution
Equation 2.3 is unable to work online for a video stream. Also, the number
of pixels in one video sequence can scale into many millions, and then the
original similarity matrix would be intractable to compute.

Next part of the Approach section describes the label propagation pro-
cedure based on the Equation 2.4. It also points out that the VOS heavily
depends on the similarity metric S and on its core component the affinity
matrix W. In the paper, the similarity matrix is defined as,

wij = exp (fTi fj) exp (−‖loc(i)− loc(j)‖2
σ2 ) (2.6)

with fi, fj being the feature embeddings for pixels pi, pj obtained using the
CNN. loc(i) denotes the spatial location of pixel i. The latter term (spatial)
is controlled by parameter σ. Another important part of label propagation is
frame sampling. As mentioned earlier, it is intractable to compute the matrix
S for a long video sequence. Therefore the paper proposes to sample only a
small number of frames. The sampling strategy is shown in Figure 2.1. It was
discovered that this sampling of a total of nine frames from the previous 40
provides a good balance between efficiency and effectiveness. The sampling
approach was heavily inspired by the Temporal Segment Networks [9]. The
last part of the label propagation talks about the simple motion prior model.
It is represented by the second term in the Equation 2.6. It uses the knowledge
of distant pixels (in the temporal domain) having weaker spatial dependencies.
Therefore the paper proposes using σ = 8 for short term dependencies and
σ = 21 for long term dependencies.

Another important part of the approach is learning the appearance embed-
dings. In the paper, it is done using a 2D CNN (more specifically ResNet-50
architecture [7]) trained on separate frames from the video, with each pixel
being annotated whether or not it contains the segmented object (and its

7



2. Background

Figure 2.1: Sampling strategy for label propagation. In the recent history the
samples are sampled more densely than in the distant history. Source: [5]

identity) or not. The prediction for pixel i is given by the formula,

ŷi =
∑
j

exp (fTi fj)∑
k exp (fTi fk)

yj (2.7)

where xi is the target pixel, j spans over all previous pixels in prior frames. fi
and fj represent the feature embedding from the CNN. The optimization of
embedding is done using standard cross-entropy loss on all pixels in the target
frame.

The next part of the Approach section goes over the implementation de-
tails of the paper’s solution. As mentioned before, the paper uses ResNet-50
architecture with a minor change. That is, setting the convolution stride of
the 3rd and 4th residual blocks to maintain high-resolution output. Addition-
ally, one 1 × 1 convolutional layer is added to project the features to a final
embedding of 256 dimensions. The final embedding also has a stride of 8. The
neural net is trained from a pretrained model taken from the ImageNet model
zoo and then finetuned on DAVIS 2017 [4] training set for 240 epochs and
Youtube-VOS [3] for 30 epochs. Standard augmentations of random flipping
(both vertical and horizontal) and random cropping of size 256× 256 are ap-
plied on the input images. The model is optimized using SGD with a learning
rate of 0.02 together with cosine annealing learning rate scheduling [10]. The
training was done in 16 hours using 4 Tesla P100 graphic cards using a batch
size of 16, each containing ten subsequences from a video sequence. During
inference, the features are extracted from images of 480p resolution.

8



2.1. A Transductive Approach for Video Object Segmentation [5]

2.1.2 Results

The next section describes the results of the proposed methods and detailed
ablations and discussion on temporal stability and the relationship to optical
flow.

First, let’s start with the experimental setup. As mentioned before, the
used datasets were DAVIS 2017 and Youtube-VOS. The first one contains 150
video sequences and involves multiple objects, many occlusions, fast move-
ments, and other challenges. The other one contains 4453 training sequences
and 474 validation sequences. Both datasets contain high-resolution annota-
tions for both train and validation sets. The difference is, though, in FPS.
Each video in DAVIS 2017 is 24 FPS, while in YouTube-VOS, it is only 5
FPS.

Another important thing to mention is the evaluation metrics. The paper
uses a standard evaluation metric of mean intersection over union (mIoU),
averaged across objects, and summed over all frames. The mIoU gets evaluated
on both full objects – then it is called J measure and only on object boundaries
– F measure. Another measure used is the G measure which is a mean of J
and F measures.

The next part of the results section talks about the ablation study. It
is divided into three parts: dense local and global dependencies, transferred
representations, and the simple motion prior. The first part of the ablation
study, dealing with dense local and global dependencies, states that the paper
focuses on building long-term models over the spatio-temporal volume. It also
provides a table comparing the effects of local and global dependencies. It
shows that inference over the longer-term improves the performance together
with dense sampling near the target frame. Meanwhile, during training, it
proved better to train on nine consecutive frames. The second part of the
ablation study shows that inference using just a standard model pretrained
on ImageNet without any further finetuning performed even better than some
of the previous methods, which were actually trained on DAVIS data. Even
an unsupervised model pretrained on images performed competitively using
the transductive inference algorithm. The third part of the ablation study
briefly goes over the simple motion prior. It shows that the simple motion
prior model used in the paper leads to approximately 1% improvement. It is
also stated that more complicated motion models could be even more effective.

The next part of the results section deals with the quantitative results com-
pared to other recent methods and divides them into two groups. The first
one which use the first frame for finetuning are: CNN-MRF [11], DyeNet [12],
PReMVOS [13]. The other group contains the methods that work differently,
such as FEELVOS [14], STM [15] and the paper itself. It also provides a
simple table comparing which method requires which external module (re-
identification, etc.). It also points out that methods such as PReMVOS,
DyeNet, and CNN-MRF cannot run in an online fashion because they use
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2. Background

information from future frames to stabilize prediction for the current frame.
Meanwhile, propagation-based methods can track objects online. Next, it
provides a table comparing quantitative evaluation on DAVIS 2017 test-dev
dataset showing that the paper’s proposed method performs better than any
other propagation-based method by about 3−4% while being either the same
or worse than the methods using finetuning on the first frame. The very
same fact also shows the table comparing different methods on the YouTube-
VOS dataset. But what is important to point out is the fact that the pa-
per’s proposed method is very fast compared to any other method. It is able
to run up to 40 FPS on a single NVIDIA Titan Xp GPU, while the other
propagation-based methods run about 2 − 3 FPS. The best finetuning-based
method (DyeNet) is able to run only about 0.5 FPS.

Last part of the results section discusses two topics. The first one is tem-
poral stability. Even though it is usually not an evaluation criterion, the
paper states it is significantly more temporal stable than other methods such
as PReMVOS. It is clearly shown that the proposed method is robust against
noise and therefore makes temporally consistent predictions. Another topic
discussed is whether or not the model learns optical flow. Paper’s method
learns a soft mechanism for associating pixels in the target frame with pix-
els in the history frames, which is similar to optical flow. The paper pro-
vides a simple formula to calculate optical flow from two consecutive frames
∆di = ∑

j sij∆dij where sij is the normalized similarity and ∆dij is displace-
ment between i, j. It then compares the calculated flow to flow computed by
the FlowNet [16] model. The flow net computed by the paper’s model is much
worse than the one computed by the FlowNet, even with adding a smoothness
constraint.

2.2 Label propagation

Label propagation algorithm was first introduced in 2002 by Zhu and Ghahra-
mani in [17]. It is a graph-based semi-supervised method that works iteratively
to propagate labels and create communities based on this propagation. It uses
two main assumptions:

1. Smoothness Assumption – if points are close to each other, their
labels should likely be the same

2. Cluster Assumption – if points are in the same cluster, their labels
should likely be the same

Thus intuition behind the algorithm is that a single label can quickly be-
come dominant in a densely connected group of nodes but will have trouble
crossing a sparsely connected region. Labels will get trapped inside a densely
connected group of nodes, and those nodes that end up with the same label
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2.2. Label propagation

when the algorithms finish can be considered part of the same community.
Unfortunately, this suggests the algorithm will not work well when dealing
with high-dimensional data or if the manifolds on which the data lies are
highly curved. Though compared with other methods, the main advantages
of the label propagation are relatively low running time and no prior infor-
mation about the graph. The disadvantage is that the solution produced by
the algorithm is not unique. As mentioned before the algorithm works on a
graph representation g = (V,E) where nodes V = {1, . . . , n} represent the
data points from the dataset and E represents set of weighed, undirected
edges between the vertices, where weight is given by the similarity between
the vertices. These similarities are given by a weight matrix W where Wij is
non-zero if and only if E contains edge (i, j) (with its weight given by Wij).
In general, we assume that W is given by a symmetric positive function WX

by Wij = WX(xi, xj) ≥ 0. Some of the examples of matrix W include:

1. Wij = 1 if and only if E contains (i, j), otherwise Wij = 0. Thus being
a variant of the k-NN algorithm.

2. Wij = e−
||xi−xj ||

2

2σ2 , Gaussian kernel of width σ.

The original algorithm proposed by [17] is outlined in Algorithm 1.

Algorithm 1: Label propagation
Result: Label point xi by the sign of ŷ(∞)

i

W← affinity matrix as described before
D←

∑
jWij , the diagonal degree matrix

Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
while not converged to Ŷ (∞) do

Ŷ (t+1) ← D−1WŶ (t)

Ŷ
(t+1)
l ← Yl

end

The Algorithm 1 works in iterative manner and requires nodes 1, 2, . . . , l to
be labelled with their known label (either +1 or −1) and nodes l + 1, . . . , n
to be labelled with 0. For simple illustration of how the algorithm work see
Figure 2.2. There are many improvements to this algorithm, for example label
propagation inspired by Jacobi iteration algorithm proposed in [19] which is
described by Algorithm 2, which adds the regularization parameter ε and a
parameter µ.

In 2004 Zhou et al. [6] introduced improved label propagation algorithm
called Label spreading which is described in Algorithm 3. This algorithm is
also used as inspiration for the transductive approach in the original paper [5]
this thesis builds on.
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2. Background

Figure 2.2: Simple illustration of work of the label propagation algorithm.
Source: [18]

Algorithm 2: Label propagation (inspired from Jacobi iteration al-
gorithm). Source: [19]

Result: Label point xi by the sign of ŷ(∞)
i

Compute an affinity matrix W such that Wii = 0
Compute the diagonal degree matrix D by Dii ←

∑
jWij

Choose a parameter α ∈ (0, 1) and a small ε > 0
µ← α

1−α ∈ (0,+∞)
Compute the diagonal matrix A by Aii ← I[l](i) + µDii + µε

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Iterate Ŷ (t+1) ← A−1(µWŶ (t) + Ŷ (0)) until convergence to Ŷ (∞)
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2.3. Metric learning

Algorithm 3: Label spreading (Zhou et al. [6]). Source: [19]
Result: Label point xi by the sign of ŷ(∞)

i

Compute an affinity matrix W for i 6= j and Wii = 0
Compute the diagonal degree matrix D by Dii ←

∑
jWij

Compute the normalized graph Laplacian L ← D−1/2WD−1/2

Initialize Ŷ (0) ← (y1, . . . , yl, 0, 0, . . . , 0)
Choose a parameter α ∈ (0, 1)
Iterate Ŷ (t+1) ← αLŶ (t) + (1− α)Ŷ (0) until convergence to Ŷ (∞)

Recently, with the rise of deep learning, semi-supervised learning and label
propagation had seen a surge in interest. For example, in Transductive Prop-
agation Networks [20] the authors were motivated by a few-shot learning task,
which aims to learn a classifier that is trained on a small number of training
examples per class. Such a task usually has a set of known examples (called
support and used for training) and a set of unknown examples (called query
and used for testing). The paper uses a transductive approach by including
query set in the optimization objective. It uses a convolutional neural network
to transform examples into embeddings, which are then used as vertices in a
graph constructed by the union of support and query sets. Then, label prop-
agation is used to inference labels of unknown examples in the graph. The
loss is computed with respect to the embeddings in the graph. Another in-
teresting use is in a paper called Label Propagation for Deep Semi-supervised
Learning [21] which also takes the transductive approach to semi-supervised
tasks. At first, the neural network is trained using the original labeled samples.
Then the iterative process is initialized. A nearest neighbor graph is created
for the samples, and unknown labels are inferred using the label propagation
algorithm. Newly created labels called pseudo-labels are then together with
original labels used to retrain the network with respect to certainty-based
weights.

2.3 Metric learning

Many approaches in machine learning require a measure of distance between
data points. Traditionally one would use one of the ”standard“ distances such
as Euclidean, Manhattan, Chebyshev, etc. However, using these distance
metrics requires prior domain knowledge of the problem to solve. Actually,
it is challenging to design and implement metrics that are tailored to the
task at hand and that work well. With high-dimensional data, it is even
intractable. The field of metric learning aims to design such distances (or
metrics) automatically from given data to solve specific tasks. Such tasks
might include ranking, clustering, k-NN classification, information retrieval,
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or even data visualization (more exactly lowering dimensions of the input data
to make visualizations easier for humans to understand). This section uses
one of the best sources on metric learning, which is Bellet et al. [22].

2.3.1 Problem settings

Historically there were two main categories of metric learning problems de-
pending on the type of supervision (supervised and weakly supervised) given
about the training data. More recently, there are also efforts done in the
area of semi-supervised setting especially together with self-supervised learn-
ing in works such as Chen et al. [23] who presented a simple framework for
contrastive learning of visual representations called SimCLR.

For simplicity, we assume that the training data consist of vectors that lie
in some feature space called X ⊆ Rd. The training data is in form of a set of
inputs which we will denote X = {x1, . . . , xn} where each of the xi ∈ X . Also,
let’s formally denote three sets that encode the relation between samples in
set X,
S = {(xi, xj) ∈ X ×X : xi is similar to xj},
D = {(xi, xj) ∈ X ×X : xi is dissimilar to xj},
R = {(xi, xj , xk) ∈ X ×X ×X : xi is more similar to xj than to xk}

(2.8)

The first set D contains pairs of instances that are known to be similar. The
second set called D contains pairs of instances that are known to be dissimilar
to each other. The third and last set R includes, in this case, triplets (can be,
of course, generalized to any tuple) where we know that the first one is more
similar to the second one than to the third one. This, as we will further see,
can be useful for use in the triplet loss.

2.3.1.1 Supervised setting

The algorithm has access to a set of labelled training samplex Z = {(x1, y1), . . . , (xn, yn)}
where each pair consists of a training sample from the feature space xi ∈ X
and a corresponding label yi ∈ Y. Y is finite and discrete set of |Y| labels.
From the set Z usually come the aforementioned sets S,D,R which create
constraints for learning algorithm. An example of such setting is given in
Figure 2.3.

2.3.1.2 Weakly supervised setting

In the weakly supervised setting, the algorithm has no access to the labels of
individual training samples. It is only provided with constraints in the form
of S,D,R. This is a meaningful setting in various applications where labeled
data is costly to obtain. Getting the sets, as mentioned earlier, is easy and
cheap such as links between websites, user feedback, etc. This can be seen as
having label information only at the pair/triplet level.
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2.3. Metric learning

Figure 2.3: Example of supervised setting in metric learning. Labelled points
in embedding space (left) are pushed together and points of different classes
away from each other (right).

2.3.1.3 Semi-supervised setting

Besides the supervision (either full or weak), the algorithm also has access to
a sample of unlabelled instances for which no side information is available.
This is useful to avoid overfitting when the labeled data or other information
is scarce. As mentioned before, one of the examples of semi-supervised setting
is SimCLR [23] framework, which uses data augmentations on large batches
to create pairs of positive and negative training data automatically.

2.3.2 Mahalanobis distance

Classical metric learning aims at learning linear metrics such as the Maha-
lanobis distance. Their expressive power is limited, but they are easy to
optimize, as they lead to convex formulations and therefore guarantee the ex-
istence of a globally optimal solution. Compared to nonlinear metrics, they
are also more robust to overfitting [22].

The Mahalanobis distance was first introduced in 1936 as a distance be-
tween some point P and a distribution D [24]. Its definition is quite simple.
Given a vector x = (x1, x2, . . . , xn)T from a set of observations with mean
µ = (µ1, µ2, . . . , µn)T and a covariance matrix S it is defined as:

DM (x) =
√

(x− µ)TS−1(x− µ) (2.9)

However, it can also be defined as a dissimilarity measure between two vectors
x and y on the same distribution again with the covariance matrix S:

DM (x,y) =
√

(x− y)TS−1(x− y) (2.10)

The latter definition is usually used in the field of metric learning. Since the
covariance matrix S is always positive semi-definite, we can use the decompo-
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sition M = LTL to rewrite the Equation 2.10 as:

DM (x,y) =
√

(x− y)TS−1(x− y)

=
√

(x− y)TLTL(x− y)

=
√

(L(x− y))T (L(x− y))

=
√

(Lx− Ly)T (Lx− Ly)

(2.11)

In other words, Equation 2.11 shows that the Mahalanobis distance is a Eu-
clidean distance after a linear transformation L. Actually, if we take L to be
the identity matrix, we get the standard Euclidean distance.

Furthermore, since the matrix M is always positive semi-definite, the dis-
tance in the form of Equation 2.10 always holds properties required for a valid
metric:

1. d(x,y) ≥ 0

2. d(x,y) = d(y,x)

3. d(x,y) + d(y, z) ≥ d(x, z)

4. d(x,y) = 0⇔ x = y

If the fourth condition is dropped, then d(x,y) is called a pseudometric instead
of a metric [25].

2.3.3 Deep learning and metric learning

Even though the Mahalanobis distance is widely used and studied for decades,
its major drawback is that it is very limited in capturing non-linear dependen-
cies in the training data. With the rise of deep learning, neural networks have
become state-of-the-art in many machine learning tasks. For example, in the
field of face recognition, one of the ”hot“ topics of these days, the advances
would hardly be possible without the usage of convolutional neural networks.
In works like Schroff et al. [26] the convolutional neural networks are used
to extract features from the images of faces and to map the features to a
Euclidean embedding space of dimension 128.

While the Mahalanobis distance’s goal was to learn the transformation
matrix L or M in the case of deep metric learning it is to learn network’s
parameters θ to provide a mapping function f which would map the inputs
into a d-dimensional vector in some feature space. As being optimization of
neural network’s parameters θ it becomes a non-convex optimization problem
of minimizing the loss l ∈ R which si given by a loss function. Unfortunately,
the classic losses used with neural networks such as cross-entropy loss or mean-
square loss are not as suitable for deep metric learning as others specifically
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designed for metric learning purposes. Some examples are contrastive loss as
proposed by Chopra et al. [27] or triplet loss proposed by Hoffer et al. [28]. In
the last couple of years, there has been tremendous progress in designing such
losses [29], [30] some even surpassing the traditional cross-entropy loss on the
task of image classification [29].

2.3.3.1 Contrastive loss

First introduced in Chopra et al. [27] is defined as:

L(xa,xb, y) = yd(xa,xb) + (1− y) max(0,m− d(xa,xb)) (2.12)

where xa is the anchor embedding, xb is embedding of the other training
sample, y ∈ {0, 1} is a label denoting whether training samples are from
dissimilar (y = 0) or similar (y = 1), m ≥ 0 is a margin parameter and d(·, ·)
is the parametrized distance function. The m term is used to ”tighten“ the
constraint: if the two embeddings in a pair are dissimilar, then their distance
should be at most m, or the loss of the given pair is ignored (in other words,
there is no need to worry about negatives that are far enough from the first
sample). We will call such negative samples easy negatives other negatives
obeying the d(xa,xb) ≤ m condition will be called hard negatives (these terms
will be useful in the next subsection). The intuition behind the contrastive
loss is shown in Figure 2.4.

2.3.3.2 Triplet loss

As the name mentions, the triplet loss uses triplets for training instead of pairs,
such triplet (xa,xp,xn) contains an anchor, positive and negative sample. The
main idea of triplet loss is again to pull similar samples together and dissimilar
apart. Still, we don’t want to push the embeddings of each label to collapse
into tiny clusters. The only requirement is that given two positive examples
of the same class and one negative example. The negative should be farther
away than the positive by some margin m ≥ 0. The loss is defined as:

L(xa,xp,xn) = max(0, d(xa,xp)− d(xa,xn) +m) (2.13)

where xa is the anchor embedding, xp is embedding of the positive sample, xn
is embedding of the negative sample, m ≥ 0 is a margin parameter and d(·, ·)
is parametrized distance function. In this case, the parameter m forces the
negative sample to be farther away than the positive by some margin. The
intuition behind the triplet loss is shown in Figure 2.5. In the contrastive loss
case, if the distance of dissimilar samples was higher than margin m, the loss
would become 0, in the case of triplet loss, there is a similar issue, but as
there are three components in the calculation, it gets a little bit more tricky.
There are not only easy and hard negatives but also semi-hard negatives. The
intuition of the three types is shown in Figure 2.6. If we analyze the three
negatives types, we get:
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Figure 2.4: Example of contrastive loss used for image recognition. Embed-
dings of similar faces are pulled together, while dissimilar are pushed away
from each other. Source: [31].

Figure 2.5: Example of triplet loss used for image recognition. Embeddings of
anchor and positive sample are pulled together, while embedding of negative
sample is pushed away. Source: [31].

1. easy triplets: d(xa,xn) ≥ d(xa,xp) + m, in this case the negative is far
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Figure 2.6: Representation of the 3 types of negatives, bubble with a represents
the anchor and bubble with p is the positive sample. Source: [31].

enough so the loss becomes 0

2. hard tripets: d(xa,xn) ≤ d(xa,xp), here the negative sample is closer to
the anchor than the positive, the loss is positive

3. semi-hard triplets: d(xa,xp) ≤ d(xa,xn) ≤ d(xa,xp)+m, the negative is
farther than the positive, but closer than the margin, loss is still positive

As can be seen in the list, the selection of training triplets highly affects the
performance of triplet loss. In the worst-case scenario, all sampled triplets
could be only easy, so the loss wouldn’t converge and stay constant. Also, if
we are given n training samples, there are O(n3) possible triplets, so we face
another problem, and that is whether we want to select all triplets prior to
training (this approach is called offline mining) or during the training (called
online mining). Both methods have their pros and cons, and choosing the
right one is highly dependent on the given task and available hardware.

2.3.4 Applications

There are many possible applications of metric learning (both traditional and
deep). This thesis will list a couple of the most used and notable [22, 32].

1. Computer Vision – in the field of computer vision, there is a vast usage
of metric learning (deep metric learning specifically), from visual search
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systems working over large databases of products [33] to face identifica-
tion and verification that is present in our phones and computers [26]

2. Information retrieval – metric learning in the case of information
retrieval can be used to create inputs, for example, for recommendation
systems, search engines, or anywhere where it is crucial to be able to
gather the most relevant documents to given query (document, in this
case, can be anything from a piece of text to a song or a video)

3. Nearest neighbors models – the learned metric can be used to en-
hance the performance of the nearest neighbors algorithms for tasks such
as classification, anomaly detection, etc.

4. Clustering – the learned metric can provide a way to bias the clusters
found by clustering algorithms to offer more sensible results

5. Dimensionality reduction – the learned metric L can map inputs
from higher dimension m to a lower dimension n, and this can be ben-
eficial for tasks like visualization of high dimensional data, or generally
as preprocessing the data for another machine learning algorithm
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Chapter 3
Related work

This chapter goes over the notable existing methods for solving the video
object segmentation problem. It is further divided into couple of sections
based on the approach of the methods.

3.1 Single frame models

In the past few years, most models have been based on finetuning the model
on a single input image and then inferencing on individual frames. These
methods usually only learn the objectness prior and spatial continuity without
even considering the temporal information. Their effectiveness shows that
optimizing a domain-specific spatial smoothness term dramatically enhances
performance. Unfortunately, due to their nature, it takes a long time to
process a single video (about tens of seconds) which renders them unfeasible
for online applications.

3.1.1 One-Shot Video Object Segmentation [34]

One of the first works in single frame models area. It leverages the use of
transfer learning, where it starts with a pre-trained base CNN trained for
image labeling on the ImageNet dataset. This network is then trained on bi-
nary masks obtained from the DAVIS dataset. And finally, during inference,
the network is further finetuned on the first annotated frame from the test
video, making it able to target a specific object in a single frame. This ap-
proach has some drawbacks, though. The first one is the architecture used –
the paper uses VGG [35] architecture (it is not specified which one), which
is somewhat slow compared to state-of-the-art networks used nowadays. An-
other drawback is the ability of the model to track only one object. This is
given that the paper uses the DAVIS 2016 dataset, which contains only one
annotated object per frame. The network is not modified to perform multil-
abel segmentation. Drawbacks aside, the model surpassed its predecessors by
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whopping 11.8 points, scoring 79.8 points on the DAVIS 2016 validation set.
Even though being slow in today’s standard, it also performed much faster
than its predecessors.

3.1.2 Online Adaptation of Convolutional Neural Networks
for Video Object Segmentation [36]

Builds on top of the OSVOS approach mentioned in the preivous subsec-
tion 3.1.1. Apart from finetuning on the first frame, it performs online adap-
tations during the processing of the video. It means that for every other
frame than the first one, the network gets finetuned for that particular frame
as well as the first frame again. Despite its name, the method is significantly
slower than the previous (because of the finetuning for each frame) but per-
forms much better in terms of qualitative results. It surpassed the OSVOS
by 5.9 points, scoring 85.7 points. But again, this approach uses slow VGG
architecture and can track one mask only.

3.1.3 Video Object Segmentation Without Temporal
Information [37]

Also called OSVOS-S by its authors is yet another model building on top of
the original OSVOS. This model treats each frame independently and thus
ignores the temporal information from a video. Compared to the previous
model, this one is robust to object occlusions, lost frames, etc. The model
has three main components: a base network acting as a feature extractor and
three classifiers with shared features: the first round of foreground estimator
and two conditional classifiers to model the appearance likelihood. Compared
to the original OSVOS, the improved version scored 86.5 points and was better
by 7.7 points.

3.1.4 Proposal-generation, Refinement and Merging for
Video Object Segmentation [13]

Or short, PReMVOS is entirely different from the previously mentioned mod-
els. As already stated in the name, the model first generates coarse object
proposals using the Mask R-CNN [38], then followed by a refinement network
producing accurate pixel masks for each proposal. These proposals are then
merged over time using optical flow warping and a Re-ID feature embedding
vector. The complexity of the model can be seen in Figure 3.1. Despite the
complexity, it was the best model on the DAVIS 2017 benchmark scoring
71.6 points. It achieved first place in both DAVIS 2018 VOS Challenge and
YouTube-VOS 1st Large-scale Video Object Segmentation Challenge.
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Figure 3.1: PReMVOS model diagram clearly shows the complexity of the
proposed model. Source: [13]

3.1.5 CNN in MRF: Video Object Segmentation via
Inference in A CNN-Based Higher-Order
Spatio-Temporal MRF [11]

This model also uses an entirely different approach to tackle the VOS problem.
The model exploits the spatial-temporal properties of a video by modeling the
video as a Markov Random Field defined over pixels of a video. Specifically,
for a given object, a CNN trained for this specific object can predict the
probability of labeling to a set of spatially neighboring pixels. As a result,
higher-order, richer dependencies among pixels in the set can be implicitly
modeled by the CNN. Also, the model learns the optical flow of a video.
However, given the nature of MRFs, the inference is very hard. So the paper
came up with an algorithm to perform approximate inference in the MRF.
Without any additional modules or ensembling, the model outperformed all
other entries in the DAVIS 2017 Challenge.

3.2 Propagation-based models

While the models in the previous Section 3.1 finetuned on the first frame,
the models mentioned in this section don’t perform any finetuning on the
frames whatsoever. Instead, they embed image pixels into a feature space and
utilize pixel similarity to guide propagation between the frames. As there is
no finetuning involved, the propagation-based models run much faster than
the single frame models mentioned in the previous section. However, the lack
of domain-specific finetuning leads to much worse performance in terms of
quality.
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3.2.1 Blazingly Fast Video Object Segmentation with
Pixel-Wise Metric Learning [39]

Even though the model results were significantly worse than the state-of-the-
art (77.4 compared to OnAVOS’s 85.5), it proposed a novel way to video
object segmentation problem using metric learning. The model uses a slightly
modified triplet-loss to train a feature extractor which puts pixels into sepa-
rable embedding space. The inference is made using extracting embeddings
from the first annotated frame. For each subsequent frame, the embeddings
are extracted and classified using a simple nearest neighbor’s classifier. The
predicted labels are applied to the input image, and thus segmentation is ob-
tained. Unfortunately, the model totally ignores any temporal information
which could be helpful.

3.2.2 VideoMatch: Matching based Video Object
Segmentation [40]

The model uses provided ground truth mask to obtain the foreground and
background features which are then soft matched with the foreground and
background features of all other inferred frames (one by one, though) to get
the similarity score with the reference (the first) frame. Then the similarities
are concatenated and softmaxed to get the final prediction. This model brings
an exciting concept of soft matching later. It works in the following manner:
first, we take two sets of features and compute the pairwise cosine similarity
between all pairs of features. The final matching score is then produced by
calculating the average of top K similarity scores. This model proved to
be state-of-the-art on the Youtube-Objects and JumpCut datasets and to be
competitive on DAVIS 2016 and DAVIS 2017 (being significantly worse than
the best models) but with the computational time of at least one order of
magnitude better than current state-of-the-art models.

3.3 Long-range spatio-temporal models

There are two main branches of the models tackling the video object segmen-
tation problem using this approach. The first uses a recurrent neural network
that uses the previous frame estimate to predict the object segmentation in
the current frame. The model is then trained using backpropagation through
time. These models are unfortunately prone to estimate errors from previ-
ous frames. The other branch is based on Markov Random Fields over the
spatio-temporal domain of a video. This approach was popular before the rise
of deep learning and is computationally expensive and cannot compete with
deep learning-based models. As they are not able to compete with modern
approaches, none of them will be mentioned in this thesis.
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3.3.1 Fast Video Object Segmentation by Reference-Guided
Mask Propagation [41]

This model uses a deep Siamese encoder-decoder network. The network has
two parallel encoders which encode the target frame with the previous frame’s
mask and reference frame and its mask. These latent representations are then
concatenated, passed through global convolution block, couple refine modules
which handle upsampling and reconstruction and finally passed through a
convolutional layer with softmax to get the target mask. But the exciting
thing about the model is its training. The model uses two-stage training
where in the first stage, the model is pre-trained on simulated samples (from
datasets such as Pascal-VOC [42], ECSSD [43], and MSRA10K [44]) using
two different sampling strategies. One uses various augmentations to select a
pair of images to train on, and the other one uses augmentations on a pair of
foreground and background objects. The second stage of training is done by
fine-tuning on video data. This model scored 81.5 points on DAVIS 2016, thus
not being better than the state-of-the-art but was much faster on inference
than any state-of-the-art models with only approximately 130ms needed to
process one frame.

3.3.2 MaskRNN: Instance Level Video Object
Segmentation [45]

The model combines the recurrent component with segmentation and local-
ization nets to take advantage of the temporal information and the location
before improving the results. Basically, the model combines binary segmenta-
tion for each object together with effective tracking using bounding boxes. To
get a bounding box proposal, the model uses optical flow estimation followed
by binary segmentation. After the combination of masks from all objects in
a video is used recurrently to improve the bounding box proposals even more
and exploit the temporal information. To improve performance even further,
online finetuning is employed in a semi-supervised setting. On DAVIS 2016
dataset, the model scored 80.38 points.

3.4 Other relevant models

3.4.1 Video Object Segmentation using Space-Time Memory
Networks [15]

This is the most relevant work to the original paper. It uses very similar
exploitation of dense long-term information as the original. The original pa-
per has a much simpler implementation and doesn’t require any additional
datasets, and infers all objects simultaneously. The model uses past frames
with object masks as encoded key, value pairs that are then so-called space-
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time memory read, which means the memory gets combined with the query
using a dot-product and then exponentiated power of e. This then gets put
through a decoder to get the final segmentation for the query frame. The
model produces a mask of scale 1

4 to the size of the input image. As men-
tioned before, the model is unable to infer more objects simultaneously. Each
object must be inferred on its own, and then the predictions get merged by soft
aggregation operation. The model also requires two-stage training. First is
pretrained on a simulation dataset generated from static images and is further
finetuned on real-world videos. The trained model got 72.2 points in DAVIS
2017 Challenge.
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Chapter 4
Proposed approach

This chapter provides an overview of the proposed approach by the thesis’ au-
thor. It is divided into two subsections. The first one describes the inference-
based techniques. These approaches, as the name suggests, only exploit the
transductive inference procedure. Improvements proposed in this section are
mainly based on combining multiple models or a combination of preprocessed
video frames. The other describes improvements to training procedure which
were believed to improve the embeddings produced by the model. The im-
provements are mainly based on using deep metric learning to train a better
feature extractor than the one proposed by the original paper [5]. This chap-
ter does not provide any benchmark results as they have their own dedicated
Chapter 5.

4.1 Inference-based improvements

Most of the inference-based improvements described in this section exploit
combining predictions of the original model but in different settings such as
flipped video sequence as the input, etc. Only the improvement suggested
in Section 4.1.1 changes the prediction flow of the original paper [5]. Due to
limitations of the hardware the author had access to (NVIDIA Tesla T4 with
16GB memory), only a combination of at most two predictions (or models)
could have been done.

The inference-based improvements should help build a better graph to
propagate the labels on, for example, by making it bigger as proposed in
Subsection 4.1.3 or by flipping the input images both horizontally or vertically.
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4.1.1 Propagation of probabilities instead of one-hot encoded
labels

Before describing the approach let us recollect the inference Equation 2.4
which reads as,

ŷ(t+ 1) = S1:t→t+1ŷ(t) (4.1)

it is important to note, that the result ŷ(t + 1) ∈ R(NO+1)×(m∗n), where NO

stands for the number of objects in the video sequence plus one for background,
n,m stand for input withd and height respectively. This matrix denotes the
probability of a given pixel to be one of the possible classes. During inference
the prediction for frame t+ 1 is obtained by

Ŷ = arg max ŷ(t+ 1) (4.2)

which is then transformed to one-hot encoded vector and fed into next round of
prediction as ŷ(t+1). The prediction Ŷ is again in shape of (NO+1)×(m∗n).

As shown in previous equations, we might simply omit the arguments of
the maxima part (the Equation 4.2) and propagate it in the next round as
ŷ(t) instead. However, in order to work properly then we need to change the
similarity measure from Equation 2.6 from,

wij = exp (fTi fj) exp (−‖loc(i)− loc(j)‖2
σ2 ) (4.3)

to
wij = exp (fTi fj) (4.4)

therefore using only frame features as similarities with omitting the spatial
similarity term. It is unclear why it is needed to skip the spatial term, but it
was experimentally discovered that it is required in order to omit the spatial
weight to work correctly.

Using probability propagation also provides an opportunity to use various
fusion operations to merge the predictions. With one-hot encoded labels,
one must usually use operations such as maximum, while with probabilities,
one could use functions like summation, difference, or mean, for example.
However, using probabilities instead of one-hot encoded labels brings potential
problems with numerical instability in the propagation operation (which is
matrix multiplication).

4.1.2 Test-time flip augmentations

The approach introduced as second combines predictions generated from the
original video sequence with predictions generated from a horizontally mir-
rored video sequence. The rationale behind this approach is simple. It is
believed that the embedding model could capture different relations for dif-
ferently oriented images. Prediction generated from the horizontally flipped
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Figure 4.1: Diagram showing the horizontal test-time augmentation approach.
Prediction is done using same model for both images.

video is flipped horizontally again to align with the original video. Then both
predictions are merged to get the final prediction. At first, the operation used
to merge the predictions was simple max as it works fine with the one-hot
encoded predictions. After converting the inference code to probability prop-
agation, three different operations were used (independently of each other) to
get the final prediction. Operations used to obtain final fused prediction p
from predictions po and pf were:

1. p = max(po, pf )
2. p = min(po, pf )
3. p = po+pf

2 – a simple arithmetic mean

The final prediction was then obtained from p by applying the argmax op-
eration. Mean was not used as one of the fusion operations since there are
only two predictions to combine, and mean would not change the outcome

29



4. Proposed approach

of the argmax operation. The flow diagram of this approach can be seen in
Figure 4.1

Additionally we propose usage of not only horizontally but also vertically
flipped images, which could also help with better inference.

4.1.3 Test-time rescale augmentation

After laboring with horizontally and vertically flipped videos, it only made
sense to shift attention to scaled ones. Getting more detailed and better
predictions from scaled images makes sense since the model might capture
more details when inferencing using different resolution inputs. The flow of the
prediction was chosen to be very much the same as in previous sections dealing
with flipped images. Only this time, the other input to the model would be of
either smaller or higher resolution by some scale N ≥ 0 and N 6= 1. However,
due to the technical limitations mentioned in Section 4.1 parameter, N had
to be capped at N = 1.15 as higher values would quickly deplete the GPU
memory. Unfortunately, at the time of writing this thesis, PyTorch’s support
for sparse matrices was quite bad, so optimization using sparse matrices for
the computations would be almost impossible to implement.

Both the original label propagation and probability propagations were im-
plemented for this approach, together with previously mentioned fusion oper-
ations.

Even with the previously mentioned limitations, this approach performed
the best of all proposed methods being significantly better than the original
paper’s results – more on this in Chapter 5.

4.1.4 Backbone combinations

After experimenting with combining multiple outputs from the same model,
it was decided to try the combination of predictions provided by multiple
different backbone models. It is believed that using predictions by two inde-
pendently trained models could help to capture finer ones. The other model
chosen for this approach is using ResNet-50 architecture provided by Yalniz et
al. [46]. The model was trained on a large collection of images (up to 1 bil-
lion) in a semi-weakly supervised manner using the teacher/student paradigm.
Performance of the model is 81.2 top-1 accuracy on ImageNet benchmark.

However, the model had to be slightly modified to produce embeddings of
required dimension 256. To be compatible with embeddings from the thesis’
model, it had to be changed somewhat. It also uses the first 8 layers as the
original paper’s model, but to provide same number of embeddings, the stride
of layers 6 and 7 had to be set to 1 (otherwise, the model would produce
only one-quarter of the required number of embeddings). Furthermore, to get
embeddings of dimension 256 two convolutional layers had to be added as
dimension adjustment.
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Two versions of label propagation (both one-hot encoded and probability-
based) were implemented, and, interestingly, the probability-based one per-
formed better. Also, couple different fusion operations (maximum, mean, etc.)
were tried to combine the predictions – more on the results in Chapter 5.

4.2 Training-based improvements

Unlike the improvements mentioned in the previous Section 4.1, improve-
ments mentioned in this section exploit various learning techniques to im-
prove the pixel embeddings produced by the model. In theory, training-based
improvements should help enhance the pairwise similarity by learning better
embeddings, which is much needed to build correctly the similarity matrix S
mentioned in Equation 2.4.

Suggested improvements use metric learning described in Section 2.3. Us-
ing metric learning in this setting can be beneficial to learn better embeddings
than the ones learned by the original cross-entropy loss proposed by [5]. Nat-
urally, it makes sense to try one of the most straightforward techniques in the
deep metric learning field – contrastive loss. It is straightforward to implement
yet very powerful loss function used to model the embedding space. But it has
certain limitations, so its usage can be mostly justified as a proof-of-concept
before moving on more complex algorithms. Triplet loss is the next (and one
of the most popular) loss function that comes to mind. Using the notion of
triplets instead, it can model the embedding space even better by being aware
of both positive and negative data points as well as the anchor at each update
step. But as mentioned in Section 2.3, metric learning is quite demanding in
terms of selected tuples of samples for learning. Therefore it makes sense to
try a couple of different mining algorithms to obtain such tuples (triplets in
this case).

Finally, weighed combination of cross-entropy loss with triplet loss is pro-
posed as it should help the most to learn proper embeddings for the pixels.
Triplet loss, in this case, should help build better feature space for the em-
beddings, while cross-entropy loss should help the model classify the pixels
better.

4.2.1 Contrastive loss

The simplest idea was to use the contrastive loss described in Section 2.3.3.1 to
push pixel embeddings of the same classes together and of different away from
each other. While being very simple, the contrastive loss has its limitations.
If two points are different, the contrastive loss pushes both data points in the
opposite direction. However, this solution is not optimal if one of those points
is already at its cluster center.
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4.2.2 Triplet loss

Triplet loss tackles the limitations of the aforementioned contrastive loss by
calculating the loss on triplets instead of pairs. The formal description of
triplet loss and types of triplets is given in Section 2.3.3.2. Unfortunately,
triplet loss also has some limitations. For example, in the case when all triplets
are ”easy“ (e.g., their loss is 0), the network’s weights do not update at all.
Therefore the network doesn’t learn. Since for N embeddings there are O(N3)
possible triplets, it would be computationally very expensive to evaluate all
of them (not to mention, that majority will be either ”easy“ or violate the
necessity of being in form (anchor, positive, negative)). It is generally difficult
to sample meaningful triplets from training data – That’s why several negative
sampling (or mining) algorithms are proposed in the following subsections.

4.2.3 Triplet miners

As mentioned in the previous Section 4.2.2, the selection of triplet is crucial
for triplet loss’ performance. In the following subsection we propose various
algorithms (called miners), that given a set S of N embeddings as input
provide a set of triplets (ea, ep, en), such that ea, ep, en ∈ S and class of ea
is the same as ep and different from class of en. Furthermore the returned
triplets should have an added information value, thus not being ”easy“ (as
mentioned in Section 2.3.3.2).

In the case of this thesis, the set of embeddings S is given in a tabular form,
which allows us to propose both spatially and temporally based improvements.

4.2.3.1 Spatially nearest negative miner

This miner has got its name from leveraging the spatially nearest negatives
for each anchor embedding. To quickly get positions of the nearest negative
for each anchor, the distance transformation operation is used (more exactly
by using SciPy’s distance transformation function we can quickly obtain dis-
tances of the nearest negatives as well as their indices). The distance transfor-
mation is an operation applied to binary images (where 0 denotes background
and 1 foreground). The operation transforms the image so that background
pixels still have value 0 and the value of each foreground pixel is the distance
to the nearest background pixel. One can use many different distance met-
rics to calculate the resulting distance. For example (with their respective
formulas):

1. Euclidean – d(x,y) =
√

(x1 − y1)2 + (x2 − y2)2

2. Manhattan – d(x,y) = |x1 − y1|+ |x2 − y2|

3. Chessboard – d(x,y) = max (|x1 − y1|, |x2 − y2|)
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Figure 4.2: Example of distance transformation applied on a binary image (on
the left). Result is on the right and shows distance of each foreground pixel to
the nearest background pixel (using a color scale on the right). Metric used
in this case is Manhattan.

Example application of the operation is in Figure 4.2. The implemented miner
uses the Manhattan distance to calculate the distance to the nearest back-
ground. Note that the miner calculates the distance for each class in the
training mask separately. This is due to the limitation of the operation to
binary images only. Embeddings of all pixels that belong to objects (thus
not being background) are used as anchors. For each anchor, the positive is
sampled as the least similar (using cosine similarity) pixel having the same
class as the anchor. Negative for each pixel is selected using the calculated
distance as the spatially closest pixel of a different class.

4.2.3.2 Skeleton anchors miner

As the name suggests, the skeleton miner uses morphological skeletonization
to obtain the anchors for training triplets. Simply put, skeletonization is an
operation that reduces binary objects to 1 pixel-wide representations. Using
this representation can be helpful for feature extraction or representing an
object’s topology, for example. An example of how the operation works is
given in Figure 4.3. Pixels that are on the skeleton are roughly in the middle
of segmented objects. Therefore we can suppose that they should be the best
representation of an object and thus are used as anchors. For each object in
the training mask, the skeleton is calculated, and pixel embeddings on the
skeleton are selected as anchors. We then choose positive for each anchor
as the least cosine similar embedding of a pixel not being on the skeleton
and having the same class as the anchor. Negatives are sampled from pixel
embeddings having different labels from the anchor and being most cosine
similar to the anchor. Again, this way of selecting positives and negatives
should minimize the probability of sampling an ”easy“ triplets.
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Figure 4.3: Skeletonization performed on semgentation mask given in the left
picture. The right picture shows finished skeletonization.

4.2.4 Combining cross entropy loss with triplet loss

When the miner does not discover any triplet that would contribute to the loss
(or would contribute very little), it is still desirable to update the network’s
weight nevertheless. It would only make sense to combine the proposed triplet
loss with the paper’s originally proposed cross-entropy. For this purpose, a
simple addition of the two losses would do the trick. However, we do not
want both losses to contribute with the same weight. Ideally, we want triplet
loss to contribute more than the cross-entropy loss (as it is only some sort
of ”backup“ if the miner does not return meaningful triplets). Therefore we
could replace the loss with the weighted sum of the two losses given by the
following formula,

L = w1 ∗ CL+ w2 ∗ TL
w1 + w2

(4.5)

where CL is the cross-entropy loss, TL is triplet loss and w1, w2 are non-
negative weights of the respective losses. The weighted sum is divided by the
sum of the weights to rescale the loss to a more desirable range so the loss
would not be too high so that the weights would be updated too much, and
we would ”overshoot“ the ideal weights. For simplicity we could set w1 = 1.0
so we only need to find optimal w2. This can be done using a simple grid
search, for example.

4.2.5 Experimental miners

This subsection contains miners that were used for experimenting. They either
restrict the spatial volume in order to sample positives from anchor’s neigh-
borhood or they extend the sampling over temporal dimension of the input
video. Some of them combine approaches suggested by miners mentioned in
Subsection 4.2.3. These miners are not as important as the ones mentioned
previously, they are just results of experimenting with various ideas which
were believed to improve the embeddings.
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4.2.5.1 Kernel miner

The first experimental miner is called Kernel. The name comes from using
an n × n mask M similar to a kernel known from image processing. The
mask ”slides“ over the embeddings (just like in 2-dimensional convolutions)
to select the anchors and positives. At each step, the anchor is selected as
embedding at Mbn2 c,bn2 c, then cosine similarity between the anchor and all
other embeddings in the mask is calculated. The positive is then selected
as the least similar embedding from the mask. After that, we calculate the
cosine similarity between the anchor and all embeddings not in the mask and
having a different class than the anchor. We select the negative as the most
similar embedding from the set of the embeddings not in the mask and having
another class.

This miner works under the assumption that most similar samples (set of
positives) will always be close to the anchor (thus using the n× n mask).

However, it is essential to note that this miner does not exploit the tempo-
ral volume of the volume of input video at all. It uses only the spatial volume.
Furthermore, it restricts the spatial volume to sample positives from.

4.2.5.2 Temporal miner

As mentioned, the Kernel miner does not exploit the temporal volume of the
input video at all. The temporal miner, on the other hand, uses only the
temporal volume and not the spatial.

It works as follows. The embeddings of the current n-th frame are all
used as anchors. Embeddings from the previous four frames are then used
to sample positives and negatives. Then we calculate the cosine similarity
between anchors and embeddings from the previous frames. For each anchor,
we sample its corresponding positive as the least similar embedding from the
previous frames and the negative as the most similar embedding from the
previous frames. Choosing in this manner again minimizes the probability of
selecting ”easy“ triplets.

4.2.5.3 One-back one-ahead miner

Just like the previous one, this miner exploits only the temporal volume of the
input video. And just like the previous one, this miner also uses the embed-
dings from the n-th frame as anchors, but this time positives and negatives are
chosen from embeddings of (n− 1)-th and (n+ 1)-th frames. Otherwise, the
sampling process remains the same as with the previous miner. The idea be-
hind this miner is that sampling from both previous and future frames should
exploit temporal volume in a better way than just sampling from previous
frames.
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4.2.5.4 Skeleton with nearest negative miner

Combining skeletonization operation with the nearest negative miner could
yield even better results. This is where the skeleton with the nearest negative
comes to the play. First, the skeleton is calculated for each object in the
input image. Then the input image (containing only the current object) gets
distance transformed. Embedding of each pixel of the skeleton is considered
to be an anchor, and for each anchor, the positive is sampled by getting the
least similar pixel embedding that has the same label but is not present on the
skeleton. Negative for each anchor is obtain using the precalculated distance
transformation by selecting the spatially closest pixel (again, its embedding)
on the object boundary. Selecting in this manner yields fewer triplets than
both skeleton and nearest negative miners on their own, but the triplets should
be more exhaustive in terms of participation in the loss.

4.2.5.5 Skeleton temporal miner

This miner combines the previously mentioned Skeleton miner but this time
with adding temporal volume from the Temporal miner. Functionality is
basically the same as Skeleton miner but with added extra frames to sample
triplets from. This miner was added solely as an experiment.
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Chapter 5
Benchmarks

This chapter has two main goals. The first is to give an overview of metrics
typically used to measure performance on video object segmentation tasks
and datasets used for training and evaluation of the task. The other goal is
to present the measured results for all proposed approaches, put them into
context with the original paper’s results, and discuss the results. The chapter
also offers some possible directions for future work.

5.1 Metrics

In order to know how well the proposed improvements perform, we need to
evaluate their performance. Typically we are given a ground truth mask G
and a predicted mask M .

One of the most intuitive metrics to use would be a simple pixel accuracy.
But it has some significant drawbacks that eliminate it from using in a general
setting. Even if the accuracy is very high (even close to 100%), it does not
necessarily mean that the approach performs well as shown in Figure 5.1,
even with relatively high accuracy (∼ 83% in this case), it is an unusable and
awful result. So in order to trustworthily measure performance, we need to

Figure 5.1: Ground truth mask G and predicted mask M . Accuracy in this
case is ∼ 83%.
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use a different metric than just accuracy. The most widely used metrics were
proposed by Perazzi et al. in [2]. They proposed using three metrics to use
to evaluate video object segmentation. The first two are based on individual
images using two different points of view, region-based and contour-based.
The third metric considers the temporal dimension of a video and measures
the temporal stability of the predictions.

5.1.1 Region similarity J

The first metric also referred to as the Jaccard index, is defined as the area
of overlap between the predicted segmentation M and the ground truth G
divided by the area of union between the predicted segmentation M and the
ground truth G. Its formula is written as J = |M ∩ G|

|M ∪ G| . A rough illustration
of the calculation is shown in Figure 5.2. In layman’s terms, the metric tells

Figure 5.2: Illustration of how Jaccard index is calculated. Source: [47].

us how well is the object of interest covered by the prediction mask. In the
case of multi-class evaluation, the final value is calculated as a mean of the
Jaccard index for each object in the image. By design, the value of the metric
is in the range [0, 1], where 0 is a totally incorrect prediction, and 1 is a perfect
match. It is often interpreted as percents and therefore multiplied by 100. It
is one of the most widely used metrics for both image detection and image
segmentation [42].

5.1.2 Contour accuracy F

The contour accuracy F is also often called Sørensen–Dice coefficient. In the
case of this metric, the mask is treated as a set of closed contours delimiting
the spatial extent of the mask. For the ground truth mask G, we will consider
a set of closed contours c(G), and for predicted mask M , we will consider
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another set c(M). Having these two sets, we can calculate the contour-based
precision Pc and recall Rc between the contour points of the finite sets using
a bipartite graph matching in order to be robust to small inaccuracies. Once
we have calculated Pc and Rc we can simply calculate the contour score. We
define the F as F = 2PcRc

Pc+Rc (note that it is similar to F1 metric). Again in
layman’s terms, this metric tells us how well the prediction copies the contours
of the object (or objects) of interest. According to Perazzi et al. [2] and Xu et
al. [3] this is another widely used metric for video object segmentation task.

5.1.3 Temporal stability T

Many of the video object segmentation methods also use temporal stability to
measure inaccuracy and turbulence of the predicted contours. It is measured
by the dissimilarity of the target shape descriptors that describe the contour
pixels between two adjacent video frames. However, DAVIS 2017 [4] doesn’t
use the T metric as the dataset contains many occlusions for which the metric
is not suitable. Thus the metric is described only for completeness and is not
measured in the following sections.

We show all of the used metrics – J , F and J&F with examples in
Figure 5.3. These examples come from DAVIS 2017 validation set, and the
predictions are actual predictions calculated by the baseline method.

Figure 5.3: Examples of used metrics shown together with the video frame,
ground truth and predicted segmentation mask.
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5.2 Datasets

The original paper [5] measures performance on two different major datasets,
DAVIS 2017 [4] and YouTube-VOS [3]. However, due to long training and test-
ing times and some issues of the YouTube-VOS described in Subsection 5.2.2,
this thesis measures results only on DAVIS 2017 dataset. YouTube-VOS is
still described for completeness.

5.2.1 DAVIS 2017

The DAVIS dataset first appeared in 2016, but at that time, each video had
only one object. Since 2017 each video sequence contains at least two ob-
jects. The videos are more complex with more distractors, smaller objects,
and smaller structures, more occlusions, fast motions, etc. Overall the dataset
consists of 150 sequences containing a total of 10459 annotated frames and 376
objects. Each sequence has 24 FPS. The dataset is provided in 2 resolutions,
480p and the other original (which depends on video, some are 4K, some Full
HD, etc.). Due to the mentioned occlusions and difficulties in the dataset, the
temporal stability - T metric was discarded since the 2017 edition. One of
the annotated frames from the dataset is shown in Figure 5.4 it shows that
compared to YouTube-VOS (in Figure 5.5), the annotation is much finer, and
the video resolution is much better.

Figure 5.4: Sample frame from the DAVIS 2017 dataset. Source: [4]

5.2.2 YouTube-VOS

As claimed on their website, YouTube-VOS is the first large-scale benchmark
that supports multiple video object segmentation tasks. It is directed mainly
at semi-supervised video object segmentation and video instance segmentation
tasks. It also has the following features:

1. 4000+ high-resolution YouTube videos

2. 90+ semantic categories
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3. 7800+ unique objects

4. 190k+ high-quality manual annotations

5. 340+ minutes duration

As shown in the Figure 5.5 the quality of videos is not high though. Further-
more the annotations are worse than in the DAVIS daset. Also the framerate
at 5 FPS is much lower compared to DAVIS dataset with 24 FPS.

Figure 5.5: Sample frame from the YouTube-VOS dataset. Source: [3]

5.3 Evaluation

For all approaches, both J and F metrics are calculated. Additionally, J&F
is also calculated as mean of the J and F to provide quick and easy high-level
metric. In all cases, the higher scores, the better.

All evaluations are done on DAVIS 2017 validation dataset. Training is
done on DAVIS 2017 train dataset. In all cases for inference-based improve-
ments, the model used was pretrained on DAVIS 2017 for 240 epochs using
SGD optimizer with a learning rate of 0.02 and cosine annealing as learning
rate scheduler. The model was trained in the same way [5] suggests. Fur-
thermore, the models for training-based improvement were all trained for 30
epochs in order to show whether or not they improve the original model.

Measurements (in both cases of inference-based and training-based ap-
proaches) were done on AWS g4dn.2xlarge instance with NVIDIA Tesla T4
graphics card with 16 GB of graphics memory, 8 core Intel Xeon Platinum
8259CL CPU, and 32 GB of RAM.

5.3.1 Inference-based approaches

First, we evaluate the probability propagation, as it requires finding the opti-
mal temperature T ≥ 1, so we do not need to find optimal T for each of the
following approaches, which uses probability propagation. Tuning of the T is
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shown in Table 5.1. The optimal value is T = 1.375. The selection was made
using a simple pseudo-binary search. Note that if the value of parameter T
is set high enough (in our case, it was experimentally set as T = 1000.0), the
probability propagation becomes very close to the original 1-hot encoded label
propagation.

T J F J&F
0.5 0.085 0.015 0.045
1.0 0.802 0.802 0.802
2.0 0.805 0.809 0.807
5.0 0.770 0.745 0.757
10.0 0.745 0.699 0.722
1000.0 0.735 0.729 0.733
1.5 0.811 0.819 0.815
1.25 0.811 0.816 0.814
1.375 0.824 0.819 0.821

Table 5.1: Selecting the optimal parameter T using pseudo-binary search.

After finding the optimal temperature, we need to find the best fusion
operation for combining predictions of approaches using two models or two
sets of features generated by the same model (but again only for probabil-
ity propagation). The available fusion operations are already mentioned in
Subsection 4.1.2. Obtained results are shown in Table 5.2. Measuring was
done using the horizontal flip test-time augmentation. As can be seen from
Table 5.2, the best fusion operation to use is the mean with 0.81 J&F score.
From now on when referring to probability propagation one can assume that
the T = 1.375 and used fusion operation is mean.

Fusion operation J F J&F
maximum 0.750 0.784 0.767
minimum 0.689 0.651 0.670
mean 0.831 0.789 0.810

Table 5.2: Selecting the best fusion operation for combining multiple predic-
tions.

Additionally, before selecting the best inference, we need to select the
optimal (or maximum feasible) scale for the rescale test-time augmentation.
Table 5.3 shows various scales and their performances. Note that for a scale
of 1.0, the performance is identical to the baseline approach. The best scale
showed to be 1.15. However, larger values could not be tested due to the hard-
ware limitations mentioned at the beginning of Section 5.3. Furthermore, for
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the sake of simplicity, the evaluation was done only for the 1-hot encoded label
propagation and not for the probability propagation version of the algorithm.

Scale J F J&F
0.75 0.7830 0.7490 0.7660
0.9 0.7836 0.7565 0.7700
1.0 0.7400 0.7342 0.7371
1.05 0.7990 0.7798 0.7894
1.1 0.8164 0.8038 0.8101
1.12 0.8133 0.8005 0.8069
1.15 0.8254 0.8243 0.8248

Table 5.3: Selecting the best scale for the second image in rescale test-time
augmentation.

Finally, after selecting optimal T for probability propagation and the best
fusion operation for probability propagation, we need to select the best test-
time agumentation. The available test-time augmentations were already men-
tioned in Section 4.1. Measured results are shown in Table 5.4, which shows
results for each test-time agumentation with both probability propagation and
original label propagation. The first measured test-time agumentation is only
following the paper’s provided baseline and is only mentioned for reference. It
is interesting to see that probability propagation with mean as reducing op-
eration performed better in all strategies but the last one. In the case of the
last test-time augmentation, its poor results might be due to the fact, that as
already mentioned in Subsection 4.1.4 the Facebook’s model architecture was
slightly different from the one used by the original model and by the fact that
Facebook’s model was trained with image recognition task in mind, and not
for video object segmentation. However, in the original label propagation set-
ting, the Facebook model combination performed better in terms of J metric
than the baseline, the F score was worse than the baseline, mainly due to the
fact that the model was not trained with the notion of contours in mind. An-
other interesting observation can be seen in the case of the vertically flipped
image test-time agumentation. In this case, the model performed much worse
compared to the horizontally flipped image test-time agumentation, which is
because of a simple reason. The original model was not trained on randomly
vertically flipped images (while it was trained on randomly horizontally flipped
images). The overall best test-time agumentation showed to be the scaled
images proposed in Subsection 4.1.3. It scored 0.830 combined mean score,
which is the overall best of all test-time augmentations. The best-performing
version was using probability propagation. But the version with original label
propagation scored comparably well (being only 0.006 points overall worse).
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The ideal scale for the second image in the case of this test-time agumentation
was 1.15 for both probability propagation and label propagation versions.

Test-time agumentation Probability
propagation J F J&F

original (baseline) 3 0.824 0.819 0.821
7 0.740 0.734 0.737

horizontal flip 3 0.831 0.789 0.810
7 0.811 0.801 0.806

vertical flip 3 0.651 0.596 0.623
7 0.606 0.541 0.573

rescale images 3 0.827 0.833 0.830
7 0.825 0.824 0.824

backbone combination 3 0.683 0.577 0.630
7 0.764 0.713 0.738

Table 5.4: Selecting the best test-time agumentation using both probability
propagation and original label propagation.

Figure 5.6 shows examples of inference-based improvements on example
sequence from the DAVIS 2017 validation set (called india). The first line
shows predictions by baseline approach. The second and third lines show
horizontal flip and resscale test-time augmentation, respectively. See, that
predictions on the last line are even better and more detailed than the baseline
predictions.

5.3.2 Training-based approaches

With the training-based approaches, the crucial task is to evaluate which of
the proposed losses (and possibly triplet miners) is performing the best.

For brevity, we only discuss the improvements that surpassed the baseline
approach. Performance of the others which were tried as experiments is men-
tioned in Section 5.5. The overall best mining algorithm for the triplet loss
was the one using the spatially nearest negatives. The best performing version
of it uses Manhattan distance as the metric for the underlying distance trans-
formation algorithm. Even though the miner supports other metrics (such as
Euclidean and Chebyshev), the Manhattan distance showed to perform best
in both J and F metrics. The performance increased by 5.2% and 3.8% for
the respective metrics compared to the baseline approach. Overall improve-
ment was by 4.5%. This is not by a big margin, but in combination with the
inference-based methods, the improvement could be more significant.

After finding the best miner for the triplet loss, which performed the best
of all proposed losses, we need to also find the best weight for the triplet
loss for the combining cross-entropy loss with triplet loss as mentioned in
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Figure 5.6: Examples of inference-based improvements, the first line shows
original RGB image from the dataset, the second line shows hand-created
annotation of the image and the next line contains prediction by the base-
line approach. The fourth line shows predictions by horizontal flip test-time
agumentation without prob. propagation. On the last line are scaled images
test-time agumentation with probability propagation.

Loss Miner J F J&F Loss value
Cross-entropy (baseline) 0.740 0.734 0.737 0.0812

Triplet sp. near. negatives 0.7806 0.7635 0.7721 0.0262
skeleton anchors 0.7696 0.7272 0.7484 0.0289

Table 5.5: Comparison of baseline cross-entropy loss with triplet loss using
different miners.

Subsection 4.2.4. The kernel miner was used to find the weight because since
it performed the worst in the finding ideal miner function, we can make sure
that any improvements in the watched metrics will be due to the combination
of losses and not by the miner function. Results of finding are shown in
Table 5.6. If we recollect the Equation 4.5, we set w1 = 1.0 (tied with the
cross-entropy loss) and therefore simplify the problem only to finding only
weight w2 belonging to the triplet loss part of the equation. As the Table 5.6
shows the best weight, w2 appears to be 8.0, which outperformed our baseline
of kernel miner by almost 74%. It also outperformed the other selected weight
candidates by a significant margin. Note that the weight candidates were
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chosen arbitrarily.

Weight w2 J F J&F
1.0 0.5540 0.5287 0.5414
1.5 0.5823 0.5616 0.5719
4.0 0.6558 0.6344 0.6451
6.0 0.6712 0.6685 0.6699
8.0 0.7027 0.6911 0.6969
9.0 0.7003 0.6832 0.6918

Table 5.6: Comparison of different weights for the combined cross-entropy and
triplet loss.

Additionally, we show examples of predicted frames. Figure 5.7 shows ex-
amples of training-based improvements on example sequence from the DAVIS
2017 validation set (called motocross-jump). The first line shows predictions
by baseline approach. The second and third lines show predictions by models
trained using the nearest negative miner and skeleton miner, respectively. Pre-
dictions produced by the model trained by the nearest negative miner actually
better capture the details of the motorcycle and better distinguish between
the motorcycle and the rider. The model trained using skeleton miner also
very well distinguishes between the motorcycle and the rider, but does not
cover the objects as good as the previous model.

5.4 Combining best inference-based and
training-based improvements

After finding both the best inference and training-based improvements, it
only makes sense to measure their combined performance. Table 5.7 shows
the combination of scaled test-time agumentation with a model trained using
the nearest negative miner. The table shows both versions with probability
propagation and with the original 1-hot encoded label propagation. As ex-
pected, both versions performed as good as the proposed improvements on
their own, but again the probability propagation version showed to be slightly
better than the original 1-hot encoded label propagation.

Probability propagation J F J&F
7 0.8143 0.8090 0.8116
3 0.8386 0.8261 0.8323

Table 5.7: Comparison of different weights for the combined cross-entropy and
triplet loss.
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Figure 5.7: Examples of training based improvements. The first line shows
original RGB image from the dataset, the second line shows hand-created
annotation of the image and the next line contains prediction by the baseline
approach. The next line shows predictions by a model trained using the
nearest negative miner. The last line depicts predictions produced by model
trained using the skeleton miner.

Figure 5.8 shows predictions obtained by the combination of the best meth-
ods. It can be clearly seen that with the probability propagation, the model
was able to capture much more details, and there would not be any blank
spots in the middle of objects, unlike with the original label propagation.
Both versions handled very well disappearance of the objects from the video
for a short while.

5.5 Experiments

In this section, we evaluate the experimental losses and miners. All of the
mentioned losses and miners performed worse than the baseline, yet they
provide an area to focus on in possible future work.

One of the losses tried at the very beginning was the focal loss [48]. The
focal loss is supposed to help learn better classifier of pixels as it is more suit-
able for learning on highly imbalanced datasets, which a segmentation mask
certainly is (most of the segmentation mask is background, usually shown in
black color in the segmentation masks). Focal loss is simply an extension of
the cross-entropy loss adding a modulation factor (1−pt)γ making the formula

47



5. Benchmarks

Figure 5.8: Examples of predictions obtained by combination of best proposed
improvements. The first line shows original RGB image from the dataset, the
second line shows hand-created annotation of the image and the next line con-
tains prediction by the baseline approach for reference. The other two lines
show predictions obtained by combining scaled images test-time agumenta-
tion with model trained using the nearest negative miner. Additionally both
versions with original label propagation and with probability propagation are
shown.

of the loss as follows,

FL(pt) = −αt(1− pt)γ log(pt) (5.1)

where αt ∈ [0, 1] is a weighting factor for class t and γ ≥ 0 is focusing pa-
rameter. The modulating factor causes the loss to give hard samples (false
negatives) more weight than easy samples (true negatives). However, as shown
in Table 5.8 it did not perform even as good as the baseline. This could be
caused by the incorrectly set parameter γ, which could be more explored as a
part of future work.

Another of the experimental losses used was the contrastive loss, which
performed better in terms of the J metric than the baseline, but was much
worse in terms of the contour accuracy F .

Additionally mentioned here are some of the experimental miners that
were tried as a part of an effort to learn better pixel embeddings by exploiting
either temporal volume of input videos, restrict spatial volume to sample
from, or combined multiple approaches from simpler miners. Neither of them
performed even as good as the baseline.
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Loss Miner J F J&F Loss value
Cross-entropy (baseline) 0.740 0.734 0.737 0.0812
Focal 0.740 0.680 0.710 0.0921
Contrastive 0.753 0.675 0.714 0.1108

Triplet

kernel 0.507 0.295 0.401 0.5670
temporal 0.7619 0.6964 0.7291 0.0419
1-back-1-ahead 0.7480 0.6981 0.7230 0.0417
skeleton dist. trans. 0.7607 0.7164 0.7385 0.0268
skeleton temporal 0.7398 0.6944 0.7171 0.0284

Table 5.8: Comparison of different performance on validation set of losses (and
miners if applicable).

5.6 Discussion and future work

Most of the evaluation of the inference-based approaches dealt with finding
optimal settings for probability propagation. It turned out that the best tem-
perature for it is T = 1.375, which showed the best F and J&F metrics.
Regarding the best fusion operation for a combination of more predictions
(or models) in the probability propagation setting, the best operation by far
turned out to be simple arithmetic mean with J&F = 0.8. Selecting the best
test-time agumentation (shown in Table 5.4) demonstrated that in all strate-
gies but the last one, the probability propagation outperformed the baseline
approach from [5]. The best test-time agumentation turned out to be the
scaled images with a scale of 1.15. It is possible that a larger scale could yield
better results, but it was not possible to evaluate larger scale due to hardware
limitations.

In terms of future work for the inference-based improvements, there’s an
area to explore the usage of scaled images. Using scaled images allows the
model to focus on both high-level interpretation (with the original ”small“
image) as well as finer and finer details with the upscaled images. With GPU
having more memory than 16 GB (or being able to inference on multiple
GPUs), more upscaled images could be used (both in terms of numbers of
images and scales). Another improvement might be switching over to sparse
tensors. As of writing this thesis, Pytorch 1.8.1 doesn’t support enough
sparse tensors operations to infer using only them and save some GPU mem-
ory.

With the training-based approaches, the main task was to select the best
loss and, if that loss would be the triplet loss, also select the best mining
algorithm for getting training triplets from available embeddings. It turned
out that the contrastive loss did not even perform comparably to the baseline.
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However, the triplet loss showed that it is capable of learning better embed-
dings than the original approach. Especially with the nearest negative miner
(see Subsection 4.2.3.1), it outperformed the baseline approach by almost 5%
in the mean J&F metric with a score of 0.7721 vs. 0.737.

As mentioned in the previous section, the training-based approaches re-
lied solely on different training losses. For future work, there are still some
areas of metric learning worth exploring, for example, novel Circle Loss [49],
which claims to find better embeddings than the triplet loss. Another area of
interest could be finding optimal hyperparameters of the triplet loss and the
miners (such as margin m, limited number of triplets, using other similarity
metric than cosine similarity, etc.). Another area worth exploring is using dif-
ferent architecture for extracting the embeddings of input images like recent
DINO model [50], which claims to achieve the-state-of-the-art performance on
DAVIS 2017 in video object segmentation task using self-supervised learning,
leveraging the recent Vision Transformers [51].

Just as expected, the best results were obtained by the combination of
proposed improvements using the scaled images test-time agumentation and
model trained using the nearest negative miner. It scored J&F of 0.8323,
which is better than the model trained using the aforementioned miner on
its own, and it is also a slight improvement over the scaled images test-time
agumentation.

Another important discussion is about the J and F metrics. In certain
cases, for example, with the contrastive loss, it happens that even though
the J rises, the F falls. This is due to the fact that models trained using
some of the miners or losses fail are able to correctly predict the pixels in-
side the objects but have problems with object boundaries (they are usually
quite jaggedy). Opposite situation interestingly never occurred during the
measurements for this thesis.
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Conclusion

The goals of this thesis were to summarize the Zhang et al.’s paper A Trans-
ductive Approach for Video Object Segmentation, provide an overview on back-
ground knowledge needed to understand it, reproduce the paper’s results, and
suggest possible improvements to the approach introduced by the original pa-
per.

The thesis summarizes the original paper and provides an introduction to
label propagation and metric learning. Both of these topics are important for
understanding the proposed improvements. Furthermore, the thesis provides
an overview of the current methods of solving the video object segmentation
problem, including the current state-of-the-art methods.

Two streams of improvements are proposed. The first stream focuses on
inference-based approaches to be able to build better and exploit the proximity
graph that is created to propagate the labels. The other focuses on training-
based techniques to improve the model for generating pixel embeddings. These
approaches are based on training using the triplet loss with using various
triplet mining algorithms to obtain better triplets for training the model.

Lastly, the results of the original paper were reproduced, together with
measurements of the suggested improvements. Inference-based improvements
were able to improve the J metric by 12% and the F by 13%. Training-based
improvements were able to improve the metrics by 5% and 4%, respectively.
The best inference-based improvement propagates probabilities rather than
1-hot encoded labels to improve the label propagation and additionally uses
multiple scaled input images instead of one as the original approach. The
best training-based improvement replaces the original cross-entropy loss with
triplet loss and adds novel triplet mining algorithms to improve performance.
In the end, the measured results are discussed, and possible topics for future
works are provided.
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Appendix A
Implementational details

The project is implemented using Python 3.8.5 and with PyTorch 1.8.1.
Other dependencies are listed in the requirements.txt file. The original
code accompanying the Zhang et al. [5] can be found on Microsoft’s GitHub
repository (https://github.com/microsoft/transductive-vos.pytorch).

Source codes of the project are available on the author’s GitHub repository
(https://github.com/hynekdav/semi-supervised-VOS).

Some of the pretrained models are available on Google Drive (https://
drive.google.com/drive/folders/1MTbu9-6tfPvF9pbBxByQmUrqcyxs5sTW?usp=
sharing).

A.1 Prerequisites

First of all Python version at least 3.8 must be installed (https://www.python.org).
Then install pip from https://pip.pypa.io/en/stable/, which is required
to install the project’s dependencies. Run following command to install the
dependencies:

pip install -r requirements .txt

A.2 Usage

The main application entrypoint main.py supports 4 basic commands:

• train

• inference

• validation

• evaluation
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A. Implementational details

The application is written using Click library, so every command has auto-
matically generated help pages. Each can be invoked by running:

python main.py <command > --help

Examples of running each command are in file example.sh.
Additionally, the project offers various visualizations of predicted frames.

Available commands for visualizations are:

• overlay

• side-by-side

• prediction-only

The visualizations are invoked same way as the main entrypoint:

python visualization .py <command > --help
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Appendix B
Acronyms

SSL Semi-supervised learning

CNN Convolutional neural network

VOS Video object segmentation

FPS Frames per second

SGD Stochastic gradient descend

TVOS Transductive video object segmentation

DAVIS Densely Annotated Video Segmentation

IoU Intersection over union
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Appendix C
Contents of attached CD

models .......................... directory containing pretrained models
src

impl............directory containing project’s source code in Python
thesis.........directory containing thesis’ text source code in LATEX

text
thesis.pdf............................... the thesis in PDF format
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