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Abstract— In detection and matching problems in computer
vision, both classification errors and time to decision character-
ize the quality of an algorithmic solution. We show how to for-
malize such problems in the framework of sequential decision-
making and derive quasi-optimal time-constrained solutions for
three vision problems.

The methodology is applied to face and interest point
detection and to the RANSAC robust estimator. Error rates of
the face detector proposed algorithm are comparable to the
state-of-the-art methods. In the interest point application, the
output of the Hessian-Laplace detector [9] is approximated by a
sequential WaldBoost classifier which is about five times faster
than the original with comparable repeatability. A sequential
strategy based on Wald’s SPRT for evaluation of model quality
in RANSAC leads to significant speed-up in geometric matching
problems.

I. INTRODUCTION

In many decision problems in computer vision, both
classification errors and time to decision characterize the
quality of an algorithmic solution. This is especially true for
applications of vision to robotics where real-time response
is typically required.

Time-constrained classification, detection and matching
problems can be often formalized in the framework of
sequential decision-making. We show how to derive quasi-
optimal time-constrained solutions for three different vision
problems by applying Wald’s sequential analysis. In partic-
ular, we adapt and generalise Wald’s sequential probability
ratio test (SPRT) and apply it to the three vision problems:
(i) face detection, (ii) real-time detection of distinguished re-
gions (interest points) and (iii) establishing correspondences
by the RANSAC algorithm with application e.g. in SLAM,
3D reconstruction and object recognition.

In the face detection problem, we are interested in learning
the fastest detector satisfying constraints on false positive and
false negative rates. We solve the problem by WaldBoost
[15], a combination of Wald’s sequential probability ratio
test and AdaBoost learning [2]. The solution can be viewed
as a principled way to build a close-to-optimal ”cascade
of classifiers” [21]. Naturally, the approach is applicable to
other classes of objects.

In the interest point detection emulation, we show how
a fast (real-time) implementation of the Hessian-Laplace
detector [9] is obtained by WaldBoost. The emulated detector
provides a training set of positive and negative examples
of interest points. WaldBoost finds an approximation to
the detector output in terms of a linear combination of
efficiently computable filter responses. The trained detector

output differs from the ”teacher” detector only at a small,
controllable fraction of locations and yet is significantly
faster.

RANSAC (RANdom SAmple Consensus) is a robust esti-
mator that has been used in many computer vision algorithms
e.g. for short and wide baseline stereo matching and structure
and motion estimation. In the time-optimal RANSAC, we
derive the fastest randomised strategy for hypothesis veri-
fication satisfying a constraint on the probability that the
returned solution is correct. The optimal strategy is found
again with the help of Wald’s SPRT test.

The rest of the paper is structured as follows. First, we
formally define the time-constrained detection problem and
present the relevant parts of Wald’s theory (Section II). Next,
the WaldBoost algorithm for sequential decision making
is presented (Section III). A face detector trained by the
WaldBoost procedure is presented in Section IV. A similar
methodology is applied in Section V to the problem of
fast approximation of a repeatable interest point detector. In
Section VI, Wald’s SPRT test is combined with RANSAC
and a very fast method for robust estimation of geometric
relations and model parameters in general is obtained.

II.THE TWO-CLASS SEQUENTIAL DECISION-MAKING
PROBLEM

Let x be an object belonging to one of two classes
{−1,+1}, and let an ordering on the set of measurements
{x1, . . . , xm} on x be given. A sequential decision strategy
is a set of decision functions S = {S1, . . . , Sm}, where
Si : {x1, . . . , xi} → {−1,+1, ]}. The strategy S takes the
measurements one at a time and at time i makes a decision
based on Si. The ’]’ sign stands for a “continue” (do not
decide yet) decision1. If a decision is ’]’, xi+1 is measured
and Si+1 is evaluated. Otherwise, the output of S is the class
returned by Si.

In other words, a sequential strategy takes one mea-
surement at a time. After the i-th measurement, it either
terminates by classifying the object to one of the classes +1
or −1, or continues by taking the next measurement.

In two-class classification problems, errors of two kinds
can be made by strategy S. Let us denote by αS the
probability of error of the first kind (x belongs to +1 but
is classified as −1) and by βS the probability of error of the
second kind (x belongs to −1 but is classified as +1).

1In pattern recognition, this is called “the rejection option”
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A sequential strategy S is characterized by its error rates
αS and βS and its average evaluation time

T̄S = E(TS(x)), (1)

where the expectation E is over p(x) and TS(x) is the
expected evaluation time (or time-to-decision) for strategy

TS(x) = arg min
i

(Si(x) 6= ]). (2)

An optimal strategy for the sequential decision making
problem is then defined as

S∗ = arg min
S

T̄S (3)

s.t. βS ≤ β,

αS ≤ α

for specified α and β.
The sequential decision-making theory was developed by

Wald [22], who proved that the solution of the optimization
problem (3) is the sequential probability ratio test.

A. Sequential Probability Ratio Test
Let x be an object characterized by its hidden state (class)

y ∈ {−1,+1}. This hidden state is not observable and has to
be determined based on successive measurements x1, x2, . . ..
Let the joint conditional density p(x1, . . . , xm|y = c) of the
measurements x1, ..., xm be known for c ∈ {−1,+1} and
for all m.

SPRT is a sequential strategy S∗, which is defined as:

S∗m =

+1, Rm ≤ B
−1, Rm ≥ A

], B < Rm < A
(4)

where Rm is the likelihood ratio

Rm =
p(x1, ..., xm|y = −1)
p(x1, ..., xm|y = +1)

. (5)

The constants A and B are set according to the required error
of the first kind α and error of the second kind β. Optimal A
and B are difficult to compute in practice, but tight bounds
are easily derived.

Theorem 1 (Wald): A is upper bounded by (1−β)/α and
B is lower bounded by β/(1− α).

Proof: For each sample {x1, . . . , xm}, for which SPRT
returns the class −1 we get from (4)

p(x1, . . . , xm|y = −1) ≥ A · p(x1, . . . , xm|y = +1). (6)

Since this holds for all samples classified to the class −1

P{S∗ = −1|y = −1} ≥ A · P{S∗ = −1|y = +1}. (7)

The term on the left is the probability of correct classification
of an object from the class −1 and is therefore 1 − β. The
term on the right is the probability of incorrect classification
of an object to the class +1, and is equal to α. After this
substitution and rearranging, we get the upper bound on
A. Repeating this derivation with the samples classified by
SPRT to the class +1 the lower bound on B is derived.

In practical applications, Wald suggests to set the thresh-
olds A and B to their upper and lower bound respectively

A′ =
1− β

α
, B′ =

β

1− α
. (8)

The effect of this approximation on the test error rates was
summarized by Wald in the following theorem.

Theorem 2 (Wald): When A′ and B′ defined in (8) are
used instead of the optimal A and B, the real error proba-
bilities of the test change to α′ and β′ for which

α′ + β′ ≤ α + β. (9)
Proof: From Theorem 1 it follows that

α′

1− β′
≤ 1

A′ =
α

1− β
, and (10)

β′

1− α′
≤ 1

B′ =
β

1− α
. (11)

Multiplying the first inequality by (1 − β′)(1 − β) and the
second by (1 − α′)(1 − α) and summing both inequalities,
the result follows.

This result shows that at most one of the probabilities α
and β can be increased and the other has to be decreased by
the approximation.

Theorem 3 (Wald): SPRT (with optimal A and B) is an
optimal sequential test in a sense of the optimization prob-
lem (3).

Proof: The proof is complex. We refer interested reader
to [22].

Wald analyzed SPRT behavior when the upper bound A′

and B′ is used instead of the optimal A and B. He showed
that the effect on the speed of evaluation is negligible.

However, Wald did not consider the problem of optimal
ordering of measurements, since in all of his applications
the measurements were i.i.d and the order did not matter.
Secondly, Wald was not concerned with the problem of
estimating (5) from a training set, since in the i.i.d case

p(x1, . . . , xm|y = c) =
m∏

i=1

p(xi|y = c) (12)

and thus Rm can be computed incrementally from a one
dimensional probability density function.

III.WALDBOOST

For dependent measurements, which is the case in many
computer vision tasks, SPRT can still be used if the likeli-
hood ratio can be estimated. However, that usually encom-
passes many-dimensional density estimation, which becomes
infeasible even for a moderate number of measurements.

In [15], it was suggested to use the AdaBoost algorithm
for measurement selection and ordering and we review the
relevant results in this section. The section is structured as
follows. First, the AdaBoost learning algorithm is reviewed .
In Section III-B, an approximation for the likelihood ratio
estimation is proposed for such (statistically dependent)
measurements. The WaldBoost algorithm combining SPRT
and AdaBoost is described in Section III-C.
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A. AdaBoost
The AdaBoost algorithm [13], [2]2 is a greedy learn-

ing algorithm. Given a labeled training set T =
{(x1, y1), . . . , (xl, yl)}, where yi ∈ {−1,+1}, and a class
of weak classifiers H, the AdaBoost produces a classifier of
the form

HT (x) =
T∑

t=1

h(t)(x), (13)

where h(t) ∈ H and usually T � |H|. Weak classifiers can
be of an arbitrary complexity but are often chosen to be very
simple. The final classifier then boosts their performance by
combining them into a strong classifier HT .

The outputs of selected weak classifiers will be taken as
measurements used in SPRT.

In AdaBoost training, an upper bound on the training error
is minimized instead of the error itself. The upper bound has
an exponential form

J(HT ) =
∑

i

e−yiHT (xi) =
∑

i

e−yi
PT

t=1 h(t)(xi). (14)

Training of the strong classifier runs in a loop. One weak
classifier is selected and added to the sum at each loop cycle.
A selected weak classifier is the one which minimizes the
exponential loss function (14)

hT+1 = arg min
h

J(HT + h), (15)

It has been shown [13], [3] that the weak classifier
minimizing (15) is

hT+1 =
1
2

log
P (y = +1|x,w(T )(x, y))
P (y = −1|x,w(T )(x, y))

, (16)

where w(T )(x, y) = e−yHT (x) is a weight of a sample (x, y)
at cycle T .

As shown in [3], choosing a weak classifier according
to (16) in each cycle of the AdaBoost learning converges
asymptotically to

lim
T→∞

HT (x) = H̃(x) =
1
2

log
P (y = +1|x)
P (y = −1|x)

. (17)

This result will be used in the following section.

B. Likelihood Ratio Estimation with AdaBoost
The likelihood ratio (5) computed on the outputs of weak

classifiers found by AdaBoost has the form

Rt(x) =
p(h(1)(x), ..., h(t)(x)|y = −1)
p(h(1)(x), ..., h(t)(x)|y = +1)

, (18)

where the outputs of the weak classifiers cannot be treated
as statistically independent.

Since the computation of Rt(x) involves a high dimen-
sional density estimation, it is approximated so that this task
simplifies to a one dimensional likelihood ratio estimation.
The t-dimensional space is projected into a one dimensional
space by the strong classifier function Ht (see equation (13)).
Hence, all points (h(1), ..., h(t)) are projected to a value

2The real valued version is used.

given by the sum of their individual coordinates. Using this
projection, the ratio (18) is estimated by

R̂t(x) =
p(Ht(x)|y = −1)
p(Ht(x)|y = +1)

. (19)

Justification of this approximation can be seen from equa-
tion (17) which can be reformulated using Bayes formula to
the form

H̃(x) = −1
2

log R(x) +
1
2

log
P (+1)
P (−1)

. (20)

Thus, in an asymptotic case, the strong classifier is related
directly to the likelihood ratio. In particular, it maps all
points with the same likelihood ratio to the same value.
Consequently, it makes sense to estimate the likelihood ratio
for every value of H̃(x) and the estimate (19) is then
exactly equal to R(x). For a non-asymptotic case we take
an assumption that the same relation holds between Ht(x)
and R̂t(x) as well.

Several methods can be used to estimate R̂t(x), like
logistic regression for direct ratio estimation or the class
densities can be estimated instead and the ratio can be
calculated based on these density estimates. The method used
in our implementation is described in Section III-F.

Having the likelihood ratio estimate R̂t, the SPRT can be
applied directly. Assuming monotonicity of the likelihood
ratio, only two thresholds are needed on Ht values. These
two thresholds θ

(t)
A and θ

(t)
B , each one corresponding to one

of the conditions in (4), are determined uniquely by the
bounds A and B.

Algorithm 1 WaldBoost Learning

Input: (x1, y1), ..., (xl, yl); xi ∈ X , yi ∈ {−1, 1},
desired final false negative rate α and false
positive rate β.

Initialize weights w1(xi, yi) = 1/l
Set A = (1− β)/α and B = β/(1− α)
For t = 1, ..., T

1) Choose ht according to equation (16),
2) Estimate the likelihood ratio Rt according to eq. (19)
3) Find thresholds θ

(t)
A and θ

(t)
B

4) Throw away samples from training set for which
Ht ≥ θ

(t)
B or Ht ≤ θ

(t)
A

5) Sample new data into the training set
end
Output: strong classifier HT and thresholds θ

(t)
A and θ

(t)
B .

C. The WaldBoost Algorithm
The analysis given above allows us to define the Wald-

Boost algorithm. The WaldBoost learning phase is summa-
rized in Algorithm 1 and described in Section III-D. A Wald-
Boost classifier evaluation is explained in next Section III-E
and summarized in Algorithm 2. Finally, a discussion of the
algorithm details is given in Section III-F.
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D. Learning
WaldBoost requires, in addition to the usual AdaBoost

initialization by a labeled training set, two additional pa-
rameters specifying desired final false negative rate α and
false positive rate β of the output classifier. These rates are
used to compute the two thresholds A and B according to
equation (8). The training runs in a loop, where the first step
is a standard AdaBoost search for the best weak classifier
(Step 1), as described in Section III-A. Then, the likelihood
ratio is estimated (Step 2) and the thresholds θ

(t)
A and θ

(t)
B

are found (Step 3), as described in Section III-B. Based on
the thresholds, the training set is pruned (Step 4). Finally,
a new training set is created by a random sampling over
the samples, which have not been decided yet (Step 5). The
steps 4 and 5 are discussed in more detail below.

Pruning of the training set (Step 4) is necessary to
keep the final false negative and false positive rate under
the specified values α and β. SPRT requires the likelihood
ratio Rm to be estimated only over the samples which have
passed undecided through all pruning steps up to the current
learning cycle. The samples already classified as positive or
negative class samples are removed from the training set.

For the new data collection (Step 5), a random sampling
is performed over those data samples, which have not been
assigned to any class yet. The number of newly sampled
samples depends on the previous pruning step.

These two steps are similar to the bootstrapping tech-
nique [16] except that the samples are not collected only
but thrown away in Step 4 as well. Another close approach
is the cascade building procedure [21] with the substantial
difference that the pruning and new data collection in the
WaldBoost learning are run after every weak classifier is
trained.

E. Classification

Algorithm 2 WaldBoost Classification

[tbp] Given: HT , θ
(t)
A , θ

(t)
B , γ.

Input: a classified object x.
For t = 1, . . . , T (SPRT execution)

If Ht(x) ≥ θ
(t)
B , classify x to the class +1 and terminate

If Ht(x) ≤ θ
(t)
A , classify x to the class −1 and terminate

end
If HT (x) > γ, classify x as +1. Classify x as −1 otherwise.

The structure of the WaldBoost classifier is summarized
in Algorithm 2. The classification executes the SPRT test on
the trained strong classifier HT with thresholds θ

(t)
A and θ

(t)
B .

If Ht exceeds the respective threshold, a decision is made.
Otherwise, next weak classifier is taken. If a decision is not
made within T cycles, the input is classified by thresholding
HT on a value γ specified by the user.

F. Algorithm Details
Two parts of WaldBoost have not been fully specified.

First, the exact likelihood ratio Rt(x) is not know. Only

its approximation R̂t is used. Although this estimate is ap-
proaching the correct value with onward training, wrong and
irreversible decisions can be made easily in early evaluation
cycles. Hence, an inaccurate likelihood ratio estimation can
affect performance of the whole classifier.

To reduce this effect, we estimate the likelihood ratio in
the following way. The densities p(Ht(x)|y = +1) and
p(Ht(x)|y = −1) are estimated not from the training set
directly, but from an independent validation set to get an
unbiased estimate. Moreover, the estimation uses the Parzen
windows technique with the kernel width set according to
the oversmoothing rule for the Normal kernel [14]

hOS = 1.144σn−1/5, (21)

where σ is the sample standard deviation and n the number
of samples. The hOS is an upper bound on an optimal
kernel width and thus, the density estimate is smoother than
necessary for an optimal density estimation. Due to this
conservative strategy, the evaluation time can be prolonged
but the danger of wrong and irreversible decisions is reduced.

Second important aspect of the WaldBoost learning is the
stopping criterion. For practical reasons, only limited number
of weak classifiers is found, which implies truncation of the
sequential test during strong classifier evaluation. Wald [22]
studies the effect of truncation of the sequential test pro-
cedure, however, his derivations hold only for cases where
independent identically distributed measurements are taken.
For that case, he suggests to threshold the final likelihood
ratio at zero and analyzes the effect of such method on the
false negative and false positive rates of the test.

In our implementation, the final threshold is left unspec-
ified. It can be used to regulate a false positive and a false
negative rate in the application. It is also used in a ROC
curve generation in the experiment section.

Generally, the more training cycles are allowed, the more
precise is the likelihood ratio estimation and the better is
the separation of the classes, but the slower is the classifier
evaluation. For an analysis of the effect of truncation on
WaldBoost performance see Section IV-A.

IV.WALDBOOST APPLIED TO FACE DETECTION

The WaldBoost algorithm is applicable to any time-
constrained classification task. In this section, we show how
to apply WaldBoost to face detection. The face detection
problem has two specific features: (i) highly unbalanced class
sizes and complexities, and (ii) particular requirements on
error of the first and the second kind.

The object class size (the face class in our case) is usually
relatively small and compact compared to the non-object
class. The object class samples are difficult to collect and too
much pruning can reduce the size of the object training set
irreversibly. The non-object class, on the other hand, consists
of all images except the images of an object itself. Such a
huge and complex class cannot be represented by a small
training set sufficiently. So, the goal of the learning is to
explore the largest possible subspace of the non-object class
while keeping most of the object samples during the learning
process.
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Fig. 1. ROC curve comparison of the WaldBoost algorithm with the state-
of-the-art methods.

The second specific of the object detection is that error of
the first kind (missed object) is considered as more serious
than error of the second kind (falsely detected object). An
ideal way of training a classifier would be to require a zero
false negative rate and the smallest possible false positive
rate.

Having the above specifics in mind, WaldBoost can be ini-
tialized in the following way. Let the required false positive
rate β is set to zero and the required false negative rate α to
some small constant (note the inverse initialization compared
to the above reasoning). In this setting, equations (8) reduce
to

A =
1− 0

α
=

1
α

, B =
0

1− α
= 0 (22)

and the SPRT strategy (4) becomes

S∗m =

+1, Rm ≤ 0
−1, Rm ≥ 1/α

], 0 < Rm < 1/α
(23)

Since Rm is always positive, the algorithm will never classify
a sample to the object class. The only allowed decision is
the classification to the non-object class. Hence, the learning
process will never prune the object part of the training set
while pruning the non-object part. Such initialization thus
leads to an exploration of the non-object class (by pruning
and new sample collection) while working with a small and
unchanging object training set. Moreover, the detection rate
of the final classifier is assured to be 1 − α while the false
positive rate is progressively reduced by each training cycle.

A. Experiments
The proposed WaldBoost algorithm was tested on the

frontal face detection problem. The classifier was trained on
6350 face images divided into a training and a validation set.
In each training cycle, the non-face part of the training and
the validation set included 5000 non-face samples sampled
randomly from a pool of sub-windows from more than 3000
non-face images. The weak classifier set H used in training
is the same as in [21] but WaldBoost is not feature-specific

#wc 600 500 400 300
T̄S 13.92 12.46 10.84 9.57

TABLE I
SPEED FOR DIFFERENT LENGTH WALDBOOST CLASSIFIERS.

and any other weak classifiers can be used. Unlike [21], the
weak classifiers are real valued (defined by equation (16))
and implemented as in [6]. The allowed false negative rate
α was set to 5 · 10−4. The training was run with T = 600,
i.e. till the strong classifier consisted of 600 weak classifiers.

The WaldBoost classifier was tested on the MIT+CMU
dataset [12] consisting of 130 images containing 507 labeled
faces. A direct comparison with the methods reported in
literature is difficult since they use different subsets of this
dataset with the most difficult faces removed (about 5 % in
[6], [24]!). Nevertheless, we tested the WaldBoost classifier
on both full and reduced test sets with similar results, so
we report the results on the full dataset and plot them in
one graph with the other methods (see Figure 1). However,
the results of the other methods are not necessarily mutually
comparable.

The speed and the error rates of a WaldBoost classifier are
influenced by the classifier length. To examine this effect,
four classifiers of different lengths (300, 400, 500 and 600
weak classifiers) were compared. The average evaluation
time T̄S (for definition see (1)) for these four classifiers
is reported in Table I. As expected, the average evaluation
time decreases when less weak classifiers are used. However,
shortening of the classifier affects the detection rates as well.
The ROC curves for the four classifiers are depicted in
Figure 2. Detection rates are comparable for the classifiers
consisting of 400, 500 and 600 weak classifiers but the detec-
tion rate drops significantly when only 300 weak classifiers
are used. Thus, using the classifier consisting of 400 weak
classifiers only may be preferred for its faster evaluation.
However, further reducing the classifier length leads to a
substantial detection results degradation.

For a comparison of the WaldBoost classifier length with
the other methods see Table II. From the compared methods,
the WaldBoost classifier needs the least number of weak
classifiers, or in other words it produces the most compact
classifier.

The bottom row of Table II shows the average evaluation
times to decision T̄S (sometimes referred to as the average
number of weak classifiers evaluated) for the compared meth-
ods. The WaldBoost learning results in the fastest classifier
among the compared methods except for the Viola-Jones
method which, despite its high speed, gains significantly
worse detection results.

To conclude the experiments, the WaldBoost algorithm
applied to the face detection problem proved its near opti-
mality in the number of measurements needed for a reliable
classification. The detection rates reached by the proposed
algorithm are comparable to the state-of-the-art methods.
The only method outperforming the proposed algorithm in
the quality of detection is the “nesting-structured cascade”
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Method WB VJ[21] Li[6] Xiao[24] Wu[23]
#wc 400 4297 2546 700 756
T̄S 10.84 8 (18.9) 18.1 N/A

TABLE II
THE NUMBER OF WEAK CLASSIFIERS USED AND A SPEED COMPARISON

WITH THE STATE-OF-THE-ART METHODS. THE PARENTHESES AROUND

T̄S OF LI’S METHOD INDICATE THAT THIS RESULT WAS NOT REPORTED

BY THE AUTHORS BUT IN [24].
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Fig. 2. The effect of reducing the number of weak classifiers in WaldBoost
classifier on the detection rate.

approach by Wu [23]. This can be caused by different
features used, different subset of the MIT+CMU dataset used
or any other implementation details.

V. WALDBOOST TRAINED FAST INTEREST REGION
DETECTION

Learning a sequential classifier implementing a face de-
tector as described in Section III can be viewed as a process
of a fast minimum error approximation of the face detector.
If suitable computation elements are available, many other
binary functions can be approximated in the same way.

This section shows how to train a sequential detector ap-
proximating the behaviour of an interest region detector – the
non-affine Hessian-Laplace detector of Mikolajczyk [9]. The
detector has been shown to be widely useful in applications
like wide baseline matching or image retrieval.

A. Hessian-Laplace WaldBoost Classifier

In the task of Hessian-Laplace region detector3 approxi-
mation the positive examples correspond to the regions found
by the detector and all other regions in the image are used
as negative examples. The approximation error is determined
by the agreement of the detectors outputs.

An example of output of a non-affine Hessian-Laplace de-
tector is shown in the Figure 3. Only the strongest responses

3Available from http://www.robots.ox.ac.uk/˜vgg/research
/affine/

Fig. 3. The strongest responses of Mikolajczyk Hessian-Laplace region
detector (threshold 3500).

Fig. 4. The strongest responses of WaldBoost Hessian-Laplace region
detector (similar number of responses as in Figure 3). T̄S = 1.68.

corresponding to threshold 3500 are shown. Training a Wald-
Boost classifier approximating the behaviour of the Hessian-
Laplace detector entails several important differences in the
training settings compared to the face detection.

First, positive examples are collected as an output of
rotationally invariant Hessian-Laplace detector. To mimic
this quality, the training set has to include rotated versions
of positive examples. Nevertheless, the haar-like filters are
inherently axis parallel and thus the final rotation invariance
will be weakened.

An important property of the interest regions detection task
is that the positive examples are very easy to collect. Running
the original detector on any image gives a new set of positive
examples. The situation is similar to the problem of very
huge negative examples set in the face detection problem.
To process as many positive examples during training as
possible, the positive examples set can be bootstrapped as
well (i.e. β is set to a non-zero value).

Another difference is that there are no images without
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positive samples for negative examples collection by random
sampling. Negative examples are not taken from an indiffer-
ence region in the vicinity of a positive sample.

Finally, the positive and negative classes are highly over-
lapping. The interest region detectors have usually one pa-
rameter regulating the amount of returned positive samples.
However, the more regions are returned, the less reliable the
regions are and thus changing this parameter, the difficulty
of the training set is controlled.

Another consequence of positive and negative class over-
lapping is that the WaldBoost classifier will give responses
on many positions and scales. One way of removing the less
trusty detections is to threshold the final classifier response.
However, a better option is to set α to a higher value and let
the training to concentrate on the most representative part of
the positive class. This leads to much faster classifier, since
the less trusty detections are decided earlier and do not need
full classifier evaluation.

B. Experiments

The Hessian-Laplace detector has been approximated by a
sequential WaldBoost classifier consisting of 20 weak classi-
fiers. The strongest responses of the WaldBoost classifier are
shown in Figure 4. Note that the detections are not exactly
the same as the strongest responses of the Hessian-Laplace
detector (Figure 3). The WaldBoost training does not retain
the quality ordering of the detections of the original detector.
Nevertheless, similar and sometimes the same structures are
detected.

To evaluate the detector, the same tests as in [10] have
been run to test the repeatability rate. The result on the Bark
sequence is shown in Figure 5. The sequence contains scale
and rotation changes. The repeatability of the WaldBoost de-
tector is similar to the affine version of the Hessian-Laplace
detector. The important property of the trained detector is
its speed of 1.5 weak classifier evaluated per window on
average. The WaldBoost detector is approximately five times
faster then the original one.

VI.ROBUST ESTIMATION OF MODEL PARAMETERS -
RANSAC WITH OPTIMAL SEQUENTIAL VERIFICATION

RANSAC (RANdom SAmple Consensus) is a widely used
robust estimator that has become a de facto standard in
the field of computer vision. RANSAC has been applied to
many vision problems: short baseline stereo [19], [18], wide
baseline stereo matching, motion segmentation [19], mosaic-
ing, detection of geometric primitives , robust eigenimage
matching, structure and motion estimation [11], [17], object
recognition and elsewhere.

In this section, we show how RANSAC speed can be
improved by application of Wald’s theory. We first briefly
review a model verification strategy for RANSAC based
on Wald’s SPRT test. The resulting method [8] finds, like
RANSAC, a solution that is optimal with user-specified prob-
ability. The solution is found in time that is (i) close to
the shortest possible and (ii) superior to any deterministic
verification strategy.

Fig. 5. Repeatability score of the WaldBoost detector for Bark sequence
(overlap 40%, norm. size = 30 pixels).

The RANSAC algorithm proceeds as follows. Repeatedly,
subsets of the input data (e.g. a set of tentative correspon-
dences) are randomly selected and model parameters fitting
the sample are computed. In a second step, the quality of
the parameters is evaluated on the input data. Different cost
functions have been proposed [20], the standard being the
number of inliers, i.e. the number of data points consistent
with the model. The process is terminated when the proba-
bility of finding a better model becomes lower than a user-
specified probability η0 . The 1−η0 confidence in the solution
holds for all levels of contamination of the input data, i.e.
for any number of outliers within the input data.

The speed of standard RANSAC depends on two factors:
the number of random samples and the number N of the
input data points. In all common settings where RANSAC
is applied, almost all models whose quality is verified are
incorrect with arbitrary parameters originating from contam-
inated samples. Such models are consistent with only a small
number of the data points.

A provably fastest model verification strategy is designed
for the (theoretical) situation when the contamination of
data by outliers is known. In this case, the algorithm is
the fastest possible (on average) of all randomized RANSAC
algorithms guaranteeing a given confidence in the solution.
The derivation of the optimality property is based on Wald’s
theory of sequential decision making, in particular a modified
sequential probability ratio test (SPRT). In application, the
requirement of a priori knowledge of the fraction of outliers
is unrealistic and the quantity must be estimated online.

The speed of RANSAC depends on two factors. First, the
percentage of outliers determines the number of random
samples needed to guarantee the a given confidence in
the optimality of the solution. Second, the time needed to
assess the quality of a hypothesized model parameters is
proportional to the number N of input data points. The total
running time t of RANSAC can be expressed as

t = k(tM + mS tV ), (24)
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where k is the number of samples drawn, tM is time needed
to instantiate a model hypotheses given a sample, mS is an
average number of models per sample and tV is average time
needed to evaluate the quality of the sample. We choose the
time needed to verify a single correspondence as the unit
of time for tM , tV and t. Note that in standard RANSAC
tV = N .

The core idea of the Randomized (hypothesis evaluation)
RANSAC, i.e. RANSAC with sequential hypothesis testing,
is that most evaluated model hypotheses are influenced by
outliers. To reject such erroneous models, it is sufficient to
perform a statistical test on only a small number of data
points. The test can be formulated as follows. The hypothesis
generation step proposes a model. It is either ‘good’, i.e.
it is uncontaminated with outliers and leads to the optimal
solution (the solution with maximal support), or it is ‘bad’
(or contaminated), i.e. at least one of the data points in
the sample is an outlier The property ‘good’ is a hidden
state that is not directly observable but is statistically linked
to observable events. The observable events are ”data point
(correspondence) is/is-not consistent with the model”.

The statistical test has two effects on RANSAC behaviour:
it (i) reduces the number of verified correspondences (and
thus time complexity of the verification step) and (ii) in-
troduces the possibility of rejecting (overlooking) a good
sample. The probability α of rejecting a good sample is the
significance of the test and it increases the number of samples
drawn before the 1−η0 confidence is ensured. The correct
model parameters are recovered if an uncontaminated sample
is drawn and passes the test. This happens with probability

P = Pg(1− α).

The problem is to find a test that balances the number
of correspondences needed for model verification and the
increase in the number of samples induced by false rejections
so that the total running time t eq. (24) is minimized. Since
the average time to draw an uncontaminated model that
passes the test is k̄ = 1/(Pg(1− α)), we have

t =
1

Pg(1− α)
(tM + mS tV ). (25)

A. The Optimal Sequential Test
In sequential testing, as applied e.g. in industrial inspec-

tion, the problem is to decide whether a model (or the
batch of products) is ‘good’ or ‘bad’ in the shortest possible
time (i.e. making the smallest number of observations) and
yet satisfying the predefined bounds on the probabilities
of the two possible errors – accepting a ‘bad’ model as
‘good’ and vice versa. Wald’s SPRT test is a solution of
this constrained optimization problem. The user supplies the
acceptable probabilities of the errors of the first and the
second kind and the resulting optimal test is a trade-off
between time to decision (or cost of observations) and the
errors committed.

However, when evaluating RANSAC, the situation is dif-
ferent. First of all, a ‘good’ model is always evaluated for
all data points (correspondences) since the number of inliers

is one of the outputs of the algorithms. So the only error
that can be committed is an early rejection of a ‘good’
model (error of the first kind). But this only means that
more samples have to be drawn to achieve the required
confidence 1−η0 of finding the optimal solution. So unlike
in the classical setting, we are solving a global optimization
problem, minimizing a single real number – the time to
decision, since the consequence of an error is also a loss
of time.

The model evaluation step of the optimal R-RANSAC
proceeds as Wald’s sequential probability ratio test (SPRT)
with the probability α of rejecting a ‘good’ sample set to
achieve maximum speed of the whole RANSAC process.

In the model evaluation step, our objective is to decide
between the hypothesis Hg that model is ‘good’ and the
alternative hypothesis Hb that the model is ‘bad’. A ‘good’
model is computed from an all-inlier sample. The Wald’s
SPRT is based on the likelihood ratio [22]

λj =
j∏

r=1

p(xr|Hb)
p(xr|Hg)

= λj−1 ·
p(xj |Hb)
p(xj |Hg)

, (26)

a ratio of two conditional probabilities of the observation xr

under the assumptions of Hg and Hb respectively. Not that
here, unlike in the case of face and interest point detection,
observations are independent since we are sampling at ran-
dom and the product rule applies. In RANSAC, xr is equal
to 1 if the r-th data point is consistent with a model with
parameters θ and 0 otherwise. For example, a correspondence
is consistent with (i.e. supporting) an epipolar geometry
represented by a fundamental matrix F if its Sampson’s
error is smaller than some predefined threshold [4]. The
probability p(1|Hg) that any randomly chosen data point
is consistent with a ‘good’ model is approximated by the
fraction of inliers ε among the data points4. The probability
of a data point being consistent with a ‘bad’ model is
modeled as a probability of a random event with Bernoulli
distribution with parameter δ: p(1|Hb) = δ. The process of
estimation of δ and ε is discussed in Section VI-B.

Algorithm 3 The adapted sequential probability ratio test
(Adapted SPRT).

Output: model accepted/rejected, number of tested data
points j, a fraction of data points consistent with the
model
Set j = 1
1 Check whether j-th data point is consistent with the

model
2 Compute the likelihood ratio λj eq. (26)
3 If λj > A, decide the model is ’bad’ (model ”re-

jected”), else increment j
4 If j > N , where N is the number of correspondences,

decide model ”accepted” else go to Step 1.

4The probability ε would be exact if the data points were selected with
replacement. Since the objective of the verification is to count the size of the
support of the model, the correspondences are drawn without replacement.
However, the approximation is close.
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After each observation the standard Wald’s SPRT makes
one of three decisions: accept a ‘good’ model, reject a
‘bad’ model, or continue testing. Since in RANSAC the total
number of inliers is needed to decide on termination, nothing
is gained by an early decision in favor of a ‘good’ model.
Therefore the option of an early acceptance of the model has
been removed in the Adapted SPRT (Alg. 3). The full SPRT
is described e.g. in Wald [22] and, in a more accessible form,
in Lee [5].

The Optimal Value of the Decision Threshold The
decision threshold A is the only parameter of the Adapted
SPRT. In [8], Chum and Matas show show how to set it
to achieve optimal performance. The total expected time of
RANSAC is expressed as a function of A: The average time
to the solution expressed as a function of A is

t(A) =
1

Pg(1− 1/A)
(tM + mS

log A

E
(
log p(x|Hb)

p(x|Hg)

) . (27)

The minimum of t(A) is found iteratively by process with
fast convergence.

The R-RANSAC with SPRT algorithm is outlined in Alg. 4.
To fully specify details of the algorithm, two issues have
to be addressed. First, the estimation of parameters δ and
ε; second, the termination criterion guaranteeing 1 − η0

confidence in the solution has to be derived.

Algorithm 4 The structure of R-RANSAC with SPRT.

Initialize ε0, δ0, calculate A0 and set i = 0.

Repeat until the probability η of finding a model with
support larger than ε̂ falls under a user defined value η0 :

1. Hypothesis generation
• Select a random sample of minimum size m from the

set of data points.
• Estimate model parameters θ fitting the sample.

2. Verification
Execute the SPRT (Alg. 3) and update the estimates if
a Model rejected: re-estimate δ. If the estimate δ̂ differs

from δi by more than 5% design (i+1)-th test (εi+1 =
εi, δi+1 = δ̂, i = i + 1)

b Model accepted and the largest support so far: design
(i+1)-th test (εi+1 = ε̂, δi+1 = δ̂, i = i + 1). Store the
current model parameters θ.

Algorithm 4 proceeds like standard RANSAC [1], [4], only
instead of checking all data points in the model verification
step, the data points are evaluated sequentially and hypothe-
ses with low support are rejected early. After a hypothesis
is rejected, δ is re-estimated (Alg. 4, step 2a). Accepted
hypotheses are candidates for the RANSAC outcome (see
below). The overhead of the evaluation of the likelihood ratio
λj eq. (26) is negligible compared to the evaluation of the
model versus data point error function.

B. Estimation of δ and ε
The optimal test derived in Section VI-A requires the

knowledge of two parameters, ε and δ. These probabilities

are different for different data sets and we assume they are
unknown. The proposed algorithm uses values of ε and δ
that are estimated during the sampling process and the test
is adjusted to reflect the current estimates.

If the probabilities ε and δ are available a-priori, e.g. in
some standard setting where the algorithm is run repeatedly,
they can be used in the initialisation of the algorithm.

Estimation of δ. Since almost all tested models are ‘bad’5,
the probability δ can be estimated as the average fraction
of consistent data points in rejected models. When current
estimate δ differs from the estimate used to design the
SPRT (by more than 5%, for example), new (i+1)-th test
is designed. The initial estimate δ0 is obtained by geometric
considerations, i.e. as a fraction of the area that supports a
hypothesized model (a strip around an epipolar line in case
of epipolar geometry) to the area of possible appearance of
outlier data (the area of the search window). Alternatively,
a few models can be evaluated without applying SPRT in
order to obtain an initial estimate of δ.

Estimation of ε. In general, it is not possible to obtain
an unbiased estimate of ε, since this would require the
knowledge of the solution to the optimization problem we
are solving. The tightest lower bound on ε is provided by
the size of the largest support so far. It was shown in [7]
that a sample with the largest support so far appears log k
times, where k is the number of samples drawn. When such
a sample (with support of size Ii+1) appears, new test is
designed for εi+1 = Ii+1/N . Throughout the course of the
algorithm, a series of different tests with

ε0 < . . . < εi < . . . < ε

are performed. The initial value of ε0 can be derived from the
maximum time the user is willing to wait for the algorithm
to terminate.

The properties of R-RANSAC with SPRT were tested on a
wide range of standard data and a two to tenfold speed up of
the algorithm was observed [8]. Tests included epipolar ge-
ometry estimation in both wide and narrow baseline settings
and homography estimation.

VII. CONCLUSIONS

A framework exploiting Wald’s sequential analysis for
designing time-efficient two-class detection and matching
algorithms was presented. Besides Wald’s sequential prob-
ability ratio test, we relied on WaldBoost, a method that
allows learning sequential classfiers in the case of non-i.i.d.
features.

The WaldBoost algorithm was applied to the problems
of face and interest point detection. Error rates of the face
detector proposed algorithm were comparable to the state-of-
the-art methods. In the interest point application, the output
of the Hessian-Laplace detector [9] was approximated by
a sequential WaldBoost classifier consisting of 20 weak
classifiers. The detector was evaluated according to the

5RANSAC verifies, on average, − log(η0 ) ‘good’ models, e.g. for the
typical η0 = 0.05 a ‘good’ model is hypothesized three times prior to
termination of the algorithm.
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standard testing protocol on reference images [10] and its
repeatability was similar to the affine version of the Hessian-
Laplace detector. The WaldBoost detector is approximately
five times faster then the original Hessian-Laplace - only
about 1.5 weak classifiers are evaluated per window on
average, which means that about six additions are needed
on average to decide a window corresponds to an interest
point. Finally, we have presented a sequential strategy based
on Wald’s SPRT for evaluation of model quality in RANSAC.
The resulting RANSAC with SPRT is significantly faster (2
to 10 times) than its deterministic counterpart.
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