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Abstract
This work is focused on the processing of 2D data from the standard format for

the design of integrated circuits (GDSII) and its possible simulation in TCAD

(technological computer-aided design) tool for the simulation of semiconductor

structures. For a better understanding, this work also provides a 2D layout and

a subsequent 3D model. Both, the layout and the model try to approach the

real production processes of integrated circuits (IC). This work is the possibility

of creating a 3D model and simulation of the circuits using TCAD from Silvaco,

Inc. The implementation of this work is mainly done using free software, such as

Blender, and Python programming language.

Keywords: 3D modeling, integrated circuits, BCD and CMOS processes, Silvaco

TCAD simulations, Python programming
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Abstrakt
Tato práce je zaměřena na zpracování 2D dat ze standardního formátu pro návrh

integrovaných obvodů (GDSII) a jejich možnou simulaci v TCAD (technological

computer-aided design; překlad "techonolgický, počítačem podporovaný návrh")

programu určenému pro simulaci polovodičových struktur. Pro lepší porozumění

tato práce poskytne i 2D layout a následný 3D model. Layout i model se snaží

přiblížit skutečným výrobním procesům integrovaných obvodů. Výsledkem této

práce je možnost vytvoření 3D modelu a simulace daných obvodů za pomoci TCAD

od společnosti Silvaco, Inc.. Pro realizaci této práce je používaný zejména svobodný

software, např. Blender, a programovací jazyk Python.

Klíčová slova: 3D modelování, integrované obvody, BCD a CMOS procesy, Silvaco

TCAD, Python
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List of Abbreviations

2D 2-dimensional

3D 3-dimensional
◦C Celsius degree

AI Vector graphic format used by Adobe

ASCII American standard code for information interchange

β Current factor of bipolar junction transistor
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Introduction
These days layout design reached the point, at which is needed to stack component

structures on top of each other to save space on a chip. This development step has

significant advantages and can help with higher integration of larger structures into

smaller areas. It also may cause issues between components in separate layers, e.g.,

parasitic PN structures, interferences of electromagnetic fields and heat influences

between components.

This thesis is focused on generating the 3D model considering technological

and physical parameters. The output of this thesis is a 3D model generated from

the GDSII file by Virtuoso (Cadence Virtuoso Layout Suite), and a possibility to

import the model to TCAD (Technology Computer-Aided Design) using a Python

program.

The output of this thesis is 3D visualization generated with a program written

in Python. Parts of this thesis can be used as documentation for the program and

libraries that have been created. Another output of this program is a file executable

in TCAD software that allows setting and running various simulations.

Throughout the whole process, there are many issues to solve. Starting with

translation from GDSII to a human-readable format and ending with the generation

of TCAD structures. Everything in this thesis is based on 2D data from GDSII. This

data must be processed and edited to serve as a template for easier and accurate

3D structure generation, the verge of the real process.
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1. Literature Review

1.1 State of the Art

The development of ICs is with decreasing the size of transistors, and using the third

dimension is getting delicate, and many errors can occur. Visualization of these

circuits in 3D can reveal possible critical parts. Localization and solving potential

issues, these parts may cause, can be simplified by simulations.

Most of the existing tools simply stretch the 2D layout and create a 3D model

that serves only for visualization purposes. Only a few tools are capable of generating

accurate 3D models and running simulations.

1.1.1 Visualization Tools

As mentioned, tools for 3D visualization can be useful for debugging layout issues.

There is quite a lot of tools with this function. Tools that create 3D visualization

from GDSII format are described in following sub-sections.

a) GDS2POV

The program GDS2POV, written by Roger Light, generates a POV-Ray scene

description file from GDSII data [1]. POV-Ray is a free raytracer. It can

be downloaded from [2]. GDS2POV is focused on the visual side more than

the technical. The program is able to generate a POV file by simply extruding

layout, POV-Ray afterward permits to set visual effects.

GDS2POV is one tool from the collection GDSTO3D written by Roger

Light. The collection consists of GDS2POV, GDSOGLVIEWER, and GDS2SVG.

GDSOGLVIEWER is 2D GDSII viewer based on OpenGL, which is provided

with the developer’s commentary "It’s not very good yet!". GDS2SVG is still in

the experimental version.

More information about this project are placed at [3]. Latest information on this

page are from 2008.
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Chapter 1. Literature Review

b) GDS3D

The open-source software GDS3D is developed by Ph.D. students Jasper Velner and

Michiel Soer at the University of Twente [4], [5] based on GDS2POV. The software

can visualize complex topology up to 7 metal layers. Creators made a video to

demonstrate the functionality, a link is available at [4].

Figure 1.1: GDS3D window look [4].

In Fig. 1.1 is an example of software usage. From the figure can be seen that

this software is only extruding a 2D layout and creating that way a 3D visualization.

The software seems to be quick, even for larger layouts. Users can browse through

the whole 3D visualization. It also has the capability of turning off and on single

layers.

The software does not have the possibility to create a 3D output file, but it seems

like a useful viewer that can be used as the Virtuoso plugin.

c) ShapeshifteR Koala

A program specialized in real-time, high-quality 3D visualization of GDSII [6].

The main advantage of this program is supposed to be speed, the possibility to

quickly generate huge layouts with eye-catching visuals. Koala should be able

to create layers from user-defined boolean operations and cutaways through its

interactive 3D viewer.
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1.1. State of the Art

Figure 1.2: ShapeshifteR Koala visualization [6].

In Fig. 1.2 is an example of visualization in Koala with its texturing. It is also

noticeable that 3D structures are created by simply extruding the original layout.

d) Qckvu3 – Extract 3D

Qckvu is a GDSII viewer that can generate 3D output with its Extract 3D plugin

[7], [8]. Qckvu has over 20 years of experience with layout viewing.

Figure 1.3: Qckvu3 – Extract 3D visualization window [8].
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Chapter 1. Literature Review

1.1.2 Simulation Tools

The visualization may be useful while debugging; even more information can be

obtained from simulations. In the following sub-section, there are a few tools that

can run 3D simulations from GDSII data.

a) Victory Process

Victory process from Silvaco, Inc. is a tool capable of 3D visualization and more

importantly it allows to run simulations [9], [10]. For creation of a 3D object is

used among others the Monte Carlo method to achieve most accurate visualization

and physical parameters. Algorithms and equations that ensure physical accuracy

may be challenging for computing power. It can lead to larger computing times or

inability to process bigger GDSII layouts. Nevertheless single components of layout

can be precisely converted to 3D with the possibility of precise simulations.

Figure 1.4: Victory process buffered oxidation [10].

The example of sophisticated modeling can be seen in Fig. 1.4. This is one of

many features accompanying the process of 3D modeling. Every single one of these

and all together lead to accurate model as can be seen in Fig. 1.5.

Figure 1.5: Structure from Victory process [11].
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1.1. State of the Art

Output 3D format of Victory process is STR (Silvaco structure file format), this

file format is a main format for Silvaco, Inc. 3D visualization and simulation tools.

b) Gds2Mesh

Cogenda is another company specialized in TCAD software development, one of

their products enables 3D simulation from GDSII [12]–[14]. This tool is supposed to

be similar with Victory process, main difference is in the solution. Gds2Mesh seems

to have a simpler attitude using only extrusion in combination with distribution

functions and a mask distortion. This rather straightforward attitude can enable

generating of larger layouts and its simulations.

Figure 1.6: Structure from Gds2Mesh [12].

In Fig. 1.6, there is an example of a structure created with Gds2Mesh.

The output file is in TIF3D format but it can also be exported to GDML format.

c) Sentaurus TCAD

A tool from Synopsys Inc., that does not allow to generate 3D form GDSII data, is

able to visualize and run simulations [15], [16]. It is a renowned company with wide

field of interests, among them the IC development.

Sentaurus Device is a useful tool for development IC, including nanoscale

technologies. A NAND array structure with its mesh is in Fig. 1.7. This tool is

using its own structure format TDR.
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Chapter 1. Literature Review

Figure 1.7: Simulated mesh and structure in Sentaurus Device [15].

d) Layout-Based TCAD Device Model Generation

A research aiming on visualization and simulation is described in [17]. This paper

is focused on creation a 3D model of a single component and running mixed-mode

simulations using tools from Global TCAD Solutions GmbH.
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1.2. Technology of Integrated Circuits

1.2 Technology of Integrated Circuits

Understanding the technology of IC is the key knowledge for the successful

generation of their 3D structures. It is a dynamic and broad science discipline.

Nowadays, the main engine of development is a race between companies to hold on

Moore’s Law [18] and gain a technological lead [19].

Moore’s law is getting quite a lot of attention since there is a big question

if the law will continue or if this prediction fails in the future (e.g., [20]–[23]).

A graphical represented Moore’s Law (Fig. 1.8) shows the actual transistor count

per square millimeter by a year, from 1971 to 2020.
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Figure 1.8: Graphical representation of Moore’s Law (data from [24]).

1.2.1 Steps in Planar Process

The planar process of IC is a process used in semiconductor manufacturing. There

are various processes, and each of them has a unique set of steps. The following

section describes the key process, using information from [25] and [26].

a) Wafer Manufacture

The IC technology can be based on silicon, figuratively, and literally, too.

The essential component of the silicon-based planar process is a silicon wafer.

The silicon wafer is a thin plate of a pure monocrystalline silicon ingot. There
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Chapter 1. Literature Review

Table 1.1: Dependency of wafer thickness on diameter [27].

Diameter Thickness

(mm) (µm)

25 ——

51 275

76 375

100 525

125 625

150 675

200 725

300 775

450 925

are various methods for the ingot growth, resulting in various diameters of wafers.

The wafer thickness changes with its diameter (Tab. 1.1).

The wafer used as a substrate in IC manufacturing is from p-type silicon, which

can be enhanced with an epitaxial layer to avoid latch-up [28]. For a maximal

yield (and minimal cost) are used wafers with the larger diameters. The data in

[29] are showing, that 300 µm diameters were the best selling in 2019. It is to be

expected, that with new technologies and factories build for their manufacture, will

be implemented technologies for the largest wafer diameters currently available, to

maximize the efficiency.

b) Photolithography

Once the wafer is prepared there are many processes for finishing IC. Application

of photoresist is a first step of photolitography. There are two types of photoresist,

a negative, and positive resist. Main difference between the negative, and positive

resist is reaction under UV light. Negative resist polymerize, while the positive resist

decompose.

The resist needs to be "shaped", for further use. This is done with a system of

UV source, lens (mirrors), and the photomask. With decreasing size, this process is

14



1.2. Technology of Integrated Circuits

more challenging, and it is needed to use mechanisms for minimization of distortions

and even change wavelengths to reach smaller dimensions.

The polymerized resist stays on wafer after use of a developer, that washes down

unpolymerized parts. Covered areas are not influenced with the other processes,

they selectively affects uncovered areas. When there is no resist needed, it is washed

down with more aggressive developer.

c) Oxidation

Most important of silicon oxides, thanks to electrical properties, and easy

generation, is silicon dioxide (SiO2). Silicon dioxide is in IC manufacturing process

used so massively, its called just oxide. Silicon itself does not have best electrical

properties among semiconductors, but in combination with oxide it became

dominant semiconductor.

Oxide Growth

It is a high temperature process, that creates oxide on top of silicon. Heat itself

can be used for oxide growth, thanks to oxygen diffusion from atmosphere. Process

can be fasten when are wafers placed in a furnace, with a precursor gases injection

(oxygen, steam, and additional gasses) to achieve greater thickness in shorter time

with possibility of adding substances to enhance material parameters (Fig. 1.9).

Figure 1.9: Diagram of oxidation furnace; [26] used as template.

The oxide can also be grown on top of the material. This method is often used

for oxide between metalization layers. In this case, silicon and oxygen have to be

added from an external source.
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Chapter 1. Literature Review

Oxide Removal

This operation is called etching; it removes created oxide layer. To be able to

create desired patterns, masking has to be applied. Masking is done by applying

a photoresist. The unmasked area is ready to be etched.

There are two types of etching. The wet etching and the dry etching (Fig. 1.10).

Both are used in planar processes.

The wet etching is no more used in modern processes for selective etching

because of the "undercuts" it creates. These undercuts, which can be seen in

Fig. 1.10, are causing inaccuracy in the planar process. Modern planar processes

can not tolerate these inaccuracies, and wet etching is not used for selective etching

but for dissolving whole layers of oxide.

A more precise type of etching is reactive ion etching (RIE), also called dry

etching. It uses an ionized etching agent in the form of gas plasma. This technology

is able of precise, selective etching. Unlike the wet etching, RIE can create trenches

deeper than wider.

Figure 1.10: Comparison of wet (isotropic) and dry (anisotropic) etching [25].

Local Oxidation

This type of oxidation is also known as LOCOS (local oxidation of silicon), and it

is used to produce a field oxide. Silicon nitride (Si3N4) is used as a masking layer.

Silicon nitride is the most commonly used nitride in the planar process, so it is

called just "nitride". The pad oxide is a thin layer that enables to bond of nitride

to the silicon. An unwanted structure called "bird’s beak" can appear when are no

precautions taken, such as etching of silicon, as shown in Fig. 1.11.

16



1.2. Technology of Integrated Circuits

Figure 1.11: Schematic representation of the idealized LOCOS process [25].

Oxidation Aftereffects

Oxidation is a delicate process that can create unwanted uneven surfaces in

the planar process. There are quite a few inaccuracies that can be created, such as

steps on the silicon surface and the "bird’s beak" (Fig. 1.12). Both mentioned are

caused by the isotropic characteristics of the oxidation process.

Figure 1.12: Uneven surfaces caused by oxide process [25].

d) Doping

The make IC work, there are needed two types of silicon, they are called p-type and

n-type. Their name comes from the main type of conduction.

The conduction type that uses electrons is called n-type. It is created by doping

a 5-valent foreign substance such as phosphor, arsenic, and antimony. This causes

the silicon to have more free electrons thanks to the doping of the foreign substance,

thanks to the donation of its electron is the substance being called a donor.

P-type is uses holes (missing electrons) for the conduction. Doping a 3-valent

foreign substance creates a material with more holes. Most common material for

doping is boron. Created holes are used to accept electrons, the foreign substance

of this type is also being called acceptor.

17



Chapter 1. Literature Review

Diffusion

Diffusion is a high temperature (800 ◦C – 1250 ◦C) process when substances

spontaneously penetrate the substrate. When the substrate cools down, dopants

are locked in the crystal lattice. Depth and profile are dependent on temperature,

time, and dopant concentration; the graph is shown in Fig. 1.13. The dopant can

be delivered as a layer or in the form of a gas.

Figure 1.13: Demonstration of diffusion to silicon and graph of dopant concentration

depending on depth [25].

The gas method is quite straightforward. Wafers are placed in a diffusion furnace,

similar to the oxidation furnace from section 1.2.1.c. The main difference is the use

of carrier gasses instead of precursor gases.

Method using a layer of dopant material is more complicated. Diffusion can be

divided into two steps. The first diffusion is done with a layer of material applied

on top of the substrate to create a shallow diffusion with a high concentration.

Afterward, the dopant layer is removed, high temperature is applied again, and

the original profile diffuses and creates a new, deeper, and less concentrated profile.

Ion Implantation

This method is using ionized dopants that are being "shoot" in the wafer at

high speed. These dopants create a thin layer with a high concentration inside

the substrate; depth depends on dopants’ kinetic energy (speed).

The principle is shown on the diagram in Fig. 1.14. The linear accelerator

accelerates ions emitted by the ion source. A magnetic field is normal to the ion

beam, and thanks to the Lorentz force, are ions forced to a circular trajectory whose
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diameter differs by the mass. The electrical field of capacitor plates controls the final

location of ion impact.

Figure 1.14: Diagram of an ion implanter; [25] and [26] used as template.

The ion implantation can be used to create more precise diffusion with a suitable

profile and smaller outdiffusion. Ion implantation is the first step of this process.

When is layer of doped material prepared (Fig. 1.15a), the substrate is heated

(800 ◦C – 1000 ◦C) and dopant diffuses into the substrate (Fig. 1.15b).

Comparing of graphs in figures 1.13 and 1.15 shows benefits of the ion

implantation. Using the ion implantation with diffusion can reach deeper and is

also faster than the diffusion itself.

(a) (b)

Figure 1.15: Demonstration of ion doping to silicon and graph of depth dependency

on concentration and time; (a) visualization of ion implantation to substrate; (b)

visualization of final diffusion area [25].
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e) Methods of Epitaxy

The process of growing a layer of material is called the epitaxy; a short overview of

different methods in this section (1.2.1.e) is based on [30] and [31]. When the layer

is created from the same material as the substrate, it takes over the crystallographic

properties of a substrate; the process using a single substance is called homoepitaxy,

but most of the time, it is just called epitaxy. The process, when multiple substances

are used, is called heteroepitaxy. It creates its s own crystallographic structure

There is a lot of methods for how to grow materials on top of each other. Most

of these methods require heat and the presence of a depositing material. The phase

of the material is the main difference between the methods; thus, the names of these

methods have been inherited from the phase used for the deposition.

The vapor-phase epitaxy can use different transport mechanisms of the gaseous

species. Every transport mechanism is suitable for different materials. Method,

where the material is chemically unchanged, is called physical-vapor deposition

(PVD). It can be evaporated by arc discharge, electron beam, or by other means.

The material can also originate from a chemical reaction; the method using this

material origin is called chemical-vapor deposition (CVD). These methods have

a common principle, and it is the use of a reactor similar to those shown in Fig. 1.16.

(a) (b)

Figure 1.16: Reactor types for metalorganic vapor-phase epitaxy; (a) schematic of

horizontal reactor; (b) Schematic of vertical reactor [31].

There are even more epitaxial methods, liquid-phase epitaxy, solid-phase epitaxy,

and many other special types based on those already mentioned. A special type of

PVD deserves to be mentioned, and it is a molecular beam epitaxy. It takes longer

than other epitaxy methods, but it is one of the most precise technologies.
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f) Material Removal

In the last section are mentioned methods of material generation. To create

a complete integrated circuit is important to remove materials or their parts. There

are two basic methods etching and chemical-mechanical polishing (CMP).

Etching

Methods of etching are described in section 1.2.1.c. The main difference is in a wet

etching method. It uses different etchers (chemicals used for etching) that can

selectively remove the required material.

Chemical-Mechanical Polishing

Information about this process are from [32]. The method of polishing is known for

centuries. It has been used to make metal objects nice and shiny by creating its

surface smooth as possible. While smoothening is top of material ground away. To

make CMP work even better, chemical compounds that can be used for etching or

for improving polishing are added. Diagram of CMP (Fig. 1.17) shows a principle

of this method.

Figure 1.17: Schematic diagram of chemical-mechanical polishing [33].
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CMP has its downsides when it is not done correctly. The bad setting of this

method can cause not enough material ground away or grinding more material than

intended. One of the unwanted outcomes can be dishing (Fig. 1.18); it appears

mostly when there are larger continuous areas of some (metal) material.

Figure 1.18: Visualization of dishing caused by CMP [32].

g) Silicon Layers Structuring

Silicon layers epitaxy can help create quite many structures that help with

the integration density, such as buried layers and trench insulations. Creating

polysilicon, often used as the gate, is also an important step. This section will

overview mentioned structures.

Buried Layer

A buried layer is created when the silicon substrate has a thin diffusion with a high

concentration. When is epitaxy of silicon applied on this substrate, it creates a new

silicon layer and since it is a high-temperature process, the doped area diffunds into

it (Fig. 1.19).

Figure 1.19: Buried layer generation [25].

Trench Isolation

A field oxide (FOX) created between components of IC is necessary for placing

components as close as possible. It also helps to use higher voltages. Trench

isolation can be divided by depth to shallow trench isolation (STI) deep trench
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isolation (DTI). In this chapter are described basic steps. The actual processes can

be different and far more complicated.

A bit easier trench to create is STI. It doesn’t reach so deep as DTI. The process

can be divided into three steps shown in Fig. 1.20. First is needed to remove part

of the substrate. An applied photoresist works as a mask for etching. On the top of

the etched substrate with removed photoresist is grown a layer of oxide. The oxide

is meant to be only in trenches, so CMP is used to grind away surplus oxide.

Figure 1.20: STI process visualization [25].

A DTI method is similar to STI. It has even similar steps, as shown in

the visualization (Fig. 1.21). The trench in this process can be much wider.

An oxide does not fill it up. Polysilicon is used to fill this space. Finishing is done

with CMP to create an even surface.

Figure 1.21: DTI process visualization [25].

Polysilicon

The polysilicon is a special structure, a product of heteroepitaxy called

polycrystalline silicon. It consists of grains and has different physical properties

than silicon monocrystalline silicon. It can be used as a gate, ohmic resistor, or

electrodes for capacitors.

Polysilicon is insulated from monocrystalline silicon with a layer of oxide. In

the case of the gate, there is only a thin layer and is called gate oxide (GOX).
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A polysilicon deposition and structuring on FOX and GOX have the same

steps (Fig. 1.22). The first step is creating a layer of polysilicon. Using an etching

with a photoresist mask keeps just desired structures.

Figure 1.22: Structuring of polysilicon [25].

h) Metallization

The planar process can be split into two parts, the front-end-of-line (FEOL) and

the back-end-of-line (BEOL). FEOL is focused on the fabrication of individual

devices and their patterns. Electrical connections are created in the BEOL part.

This part of the process connects prepared components into the functional device.

Most of the time, a routing of components cannot be done with one layer. That

is the reason why metal layers have to be stacked on each other. A simplified view

of metal routing is in Fig. 1.23.

Figure 1.23: Typical view of the routing layers [25].
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The used metal has to have high electrical conductivity, current-carrying

capacity, mechanical stability, and good contact with the rest of the materials,

e.g., aluminum and copper. To avoid Schottky contact can be used a thin layer of

self-aligned silicide (salicide) on top of the silicon.

Planarization

The state-of-the-art metallization uses planarization. One of the reasons for its

use is bad connections in integrated circuits without planarization. In sub-micron

structures, it can resolve in disconnected or shorted circuits. A difference between

both variants of metallization is shown in Fig. 1.24.

Figure 1.24: Difference between metallization without (left) and with (right)

planarization [25].

The process used for the planarization of metallization is called the damascene

technique. A creation of copper metallization using this technique is described in

Fig. 1.25. The deposit barrier there is for the prevention of diffusion of copper.

CMP is used for every layer to create even surfaces.

Figure 1.25: Damascene technique used to create copper interconnections [25].
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1.2.2 CMOS Process

In section 1.2.1 are explained the steps of the planar process. These steps are

the basic foundations of the CMOS process. The information in the section 1.2.2

are from [25], and [26], even more detailed information are in [34]. There is no actual

standard for CMOS manufacture because it is a dynamically changing industry.

The basic structure of this process is the field-effect transistor (FET).

The acronym CMOS stands for "complementary metal-oxide-semiconductor", which

means this process can create both NMOS-FET and PMOS-FET. The MOS part

is most interesting; this name is just a remnant of the past because the metal has

been replaced with polysilicon. NMOS-FET is sometimes called NMOS transistor

or just NMOS for short. Its name comes from the main carriers of the main type

of conductivity, which are, in this case, electrons (n-type semiconductors). For

transistor that uses holes (p-type semiconductor) is used name PMOS-FET, PMOS

transistor, or just PMOS for short.

The cross-section of the basic NMOS transistor (Fig. 1.26) can serve as

an illustration of its operation. An environment of the transistor is called backgate

or bulk. The field-effect transistors are turned on using a control electrode, also

known as the gate. This electrode is placed between two doped areas – source

and drain, and it is insulated from bulk by GOX. To avoid the body effect is used

contact on bulk that is connected to the source.

Figure 1.26: NMOS transistor cross-section [25].

Reference potential for bulk and source is selected as 0 V. When is applied voltage

VGB > 0 between gate and bulk, they start acting like a capacitor. It creates an area

of material with a high concentration of minor carriers underneath the GOX. This

channel works as a connection between drain and source, and when it is applied,
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VDS > 0 current can flow through this channel. This principle is "normally off,"

meaning it is not conducting voltage when the gate is not being powered.

There are various options for the final realization. The basic processes are

the single-well process, twin-well process, and triple-well process (Fig. 1.27).

These processes with few changes and additional structures are the foundation of

the CMOS process.

Figure 1.27: CMOS process options (p-doped substrates) [25].

To complete the process are used basically all operations from section 1.2.1.

The smart use of mask layers, doping, and growing operations can lead to desired

structure (Fig. 1.28). By using structures such as lightly doped drain (LDD) can be

achieved better voltage capabilities.

Figure 1.28: CMOS process options with LDD [25].

Using CMOS technology can be created various components, such as resistors,

capacitors, diodes, and even antennas. This means this technology process is great

for circuit integration.

The final chip is sealed from getting moisture inside it, using a passivation layer

(Si3N4). Depending on the packaging, bond wires are connected to bond pads, or

the bond pads can be soldered directly to the chip carrier.

1.2.3 BCD Process

This process is one of the "mixed technologies"; information for its overview are from

[35], and [36]. BCD combines analog precision of Bipolar transistors, digital design of

CMOS, and power and high voltage capabilities of DMOS. This combination allows
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creating various products like high-voltage, high-power, and high-density BCD while

being able to keep small chip area and reduced electromagnetic interference.

Figure 1.29: Visualization of BCD composition [36].

Products of this process have good reliability and are often used in

the automotive and aerospace industry. BCD technology has the capability

to manage various peripherals and its modularity. That is the reason why is BCD

suitable for use in multimedia techniques.

1.2.4 Parasitic Phenomena

Both CMOS and BCD can create complicated structures that can be easily affected

by many factors. There is quite a lot of failure mechanisms [26]. This section is

focused on the part of these factors called parasitic phenomena and how to avoid

them.

a) Latchup

CMOS circuit can trigger to low resistance and high current state, i.e., latchup, of

the parasitic bipolar transistors and p-n-p-n paths inside of it [37]. The information

about latchup are from [37], [38], and [39].

The latchup model has been developed to predict the latchup characteristics

accurately. It also has an experimental background to support it. The circuit of this
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model is shown in the CMOS structure (Fig. 1.30). The main trigger mechanisms

are current across a reverse-biased junction and lateral current in the substrate.

Figure 1.30: Latchup model inside of CMOS invertor [39].

There are many ways how to suppress the latchup. By increasing spacing

between source/drain to the well borders or using a buried layer can reduce

the gain of the product β1 · β2 of parasitic bipolar transistors. Using deep trenches

separates device groups. It can greatly suppress the latchup. In combination

with the technology of "silicon-on-insulator" (SOI) can prevent latchup almost

completely. There are many other ways, such as protective rings or multiple well

structures, to suppress the latchup effectively.

b) Parasitic Capacitances

The information for this section is from the science paper focused on parasitic

capacitances [40]. The integrated circuits have capacitance practically everywhere.

The main parasitic capacitances are originated in the BEOL part.

The metallization, even one single line of metal, creates capacitance. With

the use of multiple lines, interconnections between them, parallel lines, and more

complicated metal structures can be really challenging to understand the total

capacitance of the circuit. The small circuits (only a few components) can be

solved using the models for single parts of the metallization. Bigger circuits would

take a long time to solve manually. Smart layout design can prevent high parasitic

capacitance, and in case of high capacitance influencing circuit functionality,

simulations or 3D visualization can help to reveal the issue.
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c) Parasitic channel

The description of the parasitic channel is based on [37]. The parasitic channel is

a structure created by a conductor with high potential above p+-n-p+ or n+-p-n+

structure. This may lead to induction of inverted channel by this unintentional

control electrode.

The parasitic channel can be prevented by shielding vulnerable parts of

the structure. Shielding can be done by metal connected to the substrate, STI, and

doping (p+-n-p+ to p+-n-n+-n-p+ or n+-p-n+ to n+-p-p+-p-n+).

d) Parasitic Resistance

Parasitic resistance can be a problematic issue, although it probably is mostly

an issue only for modern (FinFET) technologies. This issue is dependent on the

technology size. It is primarily described in the nanometer processes, e.g., [41]–[43],

and many others. The parasitic resistance can cause voltage drop on analog signals’

interconnections and increase the delay of digital signals, which can desynchronize

the clock.

1.3 File Formats

The thesis is mainly focused on the technical part such as 1) GDSII data format

conversion for the 2D and 3D visualization, 2) possibility to simulation critical part

on silicon by a device simulator. Therefore, there is a need to understand file formats

that can be used along with the data processing. It means to be able to operate

with them and be able to choose between multiple formats.

1.3.1 Graphic Design System

A brief overview of the Graphic Design System, also known as GDSII, is based

on information from [44]. GDSII is used as the industry-standard database for IC

layout. This format is used for over 35 years, thanks to its simplicity and elegant

architecture.

The GDSII database is binary by default. Binary databases can achieve better

compactness. Many companies have created a binary-ASCII converters. The main
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motivation behind converting is to be able to work with the raw data.

A set of records represents raw data. Every record has a number in brackets,

and the hierarchy of records can put together the whole structure. All of the records

are nicely organized in [45].

1.3.2 2D Formats

There is quite a lot of graphic formats, which are in everyday use, e.g., [46]. This

work will overview only in the vector graphic formats. These formats use coordinates

for visualization, and they can be easily scaled (zoomed) without loss of quality [46].

Some of the commonly used formats are SVG, DXF, EPS, AI, and PDF [46], [47].

Some of these formats are proprietary, and their inner structure can be copyrighted.

Two file formats are documented enough, and no special program license is

needed to work with them. One of those formats is SVG, the second one is DXF.

Scalable Vector Graphic

Scalable vector graphic, also known as SVG is nicely described in [48], even more

detailed information can be found in [49]. SVG is a language in XML describing two-

dimensional graphics. This format has an open-source viewer and can be embedded

into websites.

Drawing Exchange Format

The DXF format has been developed by Autodesk and is used as a format for

the exchange of data between various CAD software [50]. This format uses "group

code" to which are associated variables [51]. Syntax and specifications are in [51].

1.3.3 3D Formats

According to [52] there are hundreds of 3D formats. In this section will be

mentioned only a few of popular formats. These formats can be used for

visualization, animation, and for 3D printing.
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Wavefront OBJ

One of the most popular 3D formats, developed by Wavefront Technologies [52].

There are two variants of this format, ASCII and binary. The ASCII format is

open-source. This format is mostly used for visualization, but 3D printing can use

it too.

Blender

CAD manufacturers often use proprietary file formats [52]. One of those proprietary

formats is the BLEND format. This format belongs to Blender, which enables

scripting graphics using python [53].

Stereolitography

The most popular stereolithography format is STL [52]. Its main domain is 3D

printing. The use of this format in rapid prototyping is almost a matter of course.

STL is a simple format that uses only surface geometry, the rest of the information

it ignores.

Universal 3D

A bit of special format in terms of documents is U3D [54]. This format is not listed

among the most popular in [52]. As mentioned, U3D is special in term of documents

and that is because U3D can be embedded in PDF (Fig. 1.31). The 3D view has

been tested in Adobe Acrobat (ver. 2021.001.21050).

Figure 1.31: Cube embedded using U3D format (click-on 3D activation).
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();





2. Methods
This chapter is focused on methods and ideas used in the process of developing

the diploma thesis program. The name of this program is G-Visit, it is an acronym

for "GDSII visualization and simulation tool". The idea that G-Visit is a gate to

the world of GDSII visualization and simulations is behind the draft of its icon.

Figure 2.1: Draft of G-Visit icon.

The workflow of G-Visit (Fig. 2.2) shows the basic principle of the whole program

functionality and formats it uses. This diagram can be parted into three parts by

its main focus. These parts are a 2D part, a 3D part, and a TCAD part marked

by different colors. The process of development has been done gradually, part by

part from start to end. In the beginning, there was a similar but different diagram.

Changes including used formats and the structure itself have been incorporated in

the process of development.

The module hierarchy shows all modules used by G-Visit (Fig. 2.3). This

diagram helps to understand the inner structure better. G-Visit is developed

the modular way, and in case of need, modules can be edited or even replaced

in the future. The reason for splitting operations into more modules is to make

them less complicated and easily editable. The same colors mark the 2D part,

the 3D part, and the TCAD part as in Fig. 2.2. Also, the imported modules

and operationalize parts are marked by their own colors. The imported modules

support the functionality of newly created modules. The operationalization part is

focused on algorithmization and making things work together.

Further information about modules, their structures, and used file formats is

reviewed in upcoming sections. The structure of sections is divided into the same

parts as the workflow and module hierarchy. This should make it easier to

understand and interconnect information.
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Chapter 2. Methods

2.1 Definition File

The module defMaping loads data from definition file. Although this module

belongs in 2D part, it loads all definitions to the dictionary, which is available

through the whole process. It means that correct definition is important for 3D and

TCAD part, as well.

There is few commands, that are supposed to make loading of definitions easier.

For commenting is used the hash symbol "#". The whole file is splitted into parts

with use of \part command.

The first part is for the layer definitions (List. 2.1). There are defined layers using

the *.layerprops file or manual input. The *.layerprops file has a great advantage

because it contains color information. The manual input consists of LayerName,

LayerPurpose, GDSName, and GDSPurpose. The color file has to be added with

the manual definition, if not, as the default is used a color file from Cadence

Virtuoso’s library (GPDK090).
1 \part # Part for layer definitions command

2 # Automatic definition from file

3 \ defined_in ( INVENTOR_1s .gds. layerprops )

4 # Manual definition

5 LayerName : active # Layer name and begin of layer definition ( mandatory )

6 LayerPurpose : drawing # Layer purpose

7 GDSName : 1 # GDS layer number

8 GDSPurpose : 0 # GDS layer purpose number

Listing 2.1: Part for layer definitions.

The second part defines logic operations (List. 2.2). These operations are stored

in the dictionary, and afterward, they are used to alter existing layers or create new

ones. Its definition consists of LayerName, LogicOperation, and RGB.
1 \part # Part for logical operations command

2

3 LayerName : salicide_down # Layer name ( mandatory )

4 LogicOperation : geomOr ( nplus pplus ) # Logic layers operation

5 # - nested function not implemented

6 RGB: [0 ,255 ,255] # Color setting by RGB or keep_old

Listing 2.2: Part for definition of logic operations.

The third part is used for definition of 3D operations (List. 2.3). In this part can

be used the \sti command, which allows the generation of STI, the parameter of this

command is the masking layer. There are also defined operations, the possibility of

using bevel, visibility, and height of operation. The special parameter is "trapezoid,"

which applies the bevel operation with only one face.
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2.2. 2D Part

1 \part # Part for 3D operations command

2 \sti active # STI layer generation + masking layer

3 # First are sinking operations --> from smaller sinks to bigger sinks

4 LayerName : pplus # Layer name and begin of layer definition ( mandatory )

5 Operation : sink # operations - sink , grow , growPlane ( default grow)

6 Bevel : 1 # 0 [ False ] or 1 [True] ( default 0)

7 Trapezoid : 0 # Special Bevel - 0 [ False ] or 1 [True] ( default 0)

8 Visibility : 1 # 0 [ False ] or 1 [True] ( default 1)

9 Height : 1 # Height in micrometers (if growPlane used - planarization

10 # above actual maximal height ) - last parameter !!!

Listing 2.3: Part for 3D definitions.

The last part defines materials and operations needed for TCAD *.in file creation

(List. 2.4). Materials such as silicon need to have defined their doping. It is

an optional parameter, which consists of doping type, concentration, and doping

profile. In the TCAD part, there are not defined heights because they are already

defined in 3D definitions.
1 \part #Part for TCAD definitions

2 # automatically generates oxide and substrate

3 # materials --> atlas user ’s manual p. 811

4

5 \ substrate

6

7 LayerName : pwell # Layer name and begin of layer definition ( mandatory )

8 Material : silicon # TCAD name for material

9 DopingType : p # Doping type parameter

10 Concentration : 1e18 # Concetration in cm ^{ -3} format 1e##

11 DopingProfile : uniform # Uniform or gaussian ( default uniform )

12 Operation : sink # Operation sink or grow (on the previous layer )

13 PreviousLayer : substrate # Previous layer - last parameter !

Listing 2.4: Part for TCAD definitions.

The defMaping module use for its function gds2txt (overviewed in section 2.2.1)

and the os module. Many others modules use the os module. It is used for getting

paths in the operating system.

2.2 2D Part
This section focuses on operation with 2D data, i.e., reading input data, editing

them with the help of definition files, and exporting them. The data exported to

SVG have great visualization capability.

2.2.1 Definitions and GDSII Mapping

The defMaping module does not load just definitions stored in the definition file,

but it loads coordinates from GDSII and has many functions that help to orient in

the stored data.
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Chapter 2. Methods

The GDSII format is commonly used for layout design, as mentioned in section

1.3.1. This is also the default format of Cadence Virtuoso Layout Suite, available in

one of the laboratories in our faculty. The first thing needed to do is to translate data

from its binary format. This is done by module gds2txt, based on [56]. Translated

data are processed with information from [45] and stored into dictionary.

2.2.2 2D Logic Operations

The operations from definitions are scripted in the logic module. There are also

operations used internally that helps with GDSII coordinates processing, and other

processing steps. These functions can for example change format of coordinates

so it can be used by imported modules, such as pycliper (boolean operations) and

shapely (graphical operations).

Boolean

Pyclipper (ver. 1.2.1) is used for boolean operations (Fig. 2.4). It uses one object

as a clip (mask for the operation) and second one as a subject. When are used

complicated polygons, that intersects on multiple places, it can create multiple

outputs. G-Visit uses boolean operations with these function names: geomOr

(Fig. 2.4a), geomAnd (Fig. 2.4b), and geomAndNot (Fig. 2.4c).

(a) geomOr (b) geomAnd (c) geomAndNot

Figure 2.4: Representation of 2D boolean operations with names of their functions.

The definition of boolean operations takes only one operation argument, and

when it is needed to use more, it has to be split into more single operations.

Implementing of nested function is not priority.
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2.3. 3D Structure

Geometric

Shapely (ver. 1.7.1) is a graphic tool, used for some graphic operations (Fig. 2.5).

The operations called geomScale and geomGrowBy seem familiar on the first

look, but geomScale (Fig. 2.5a) uses multiplication for change of the original (red)

rectangle, and geomGrowBy (Fig. 2.5b) uses addition. There can also be seen

a secondary property of geomGrowBy; it rounds the corners. Another important

function is rect2Elli (Fig. 2.5c), which changes a rectangle to ellipse, in the case of

the square to circle.

(a) geomScale (b) geomGrowBy (c) rect2Elli

Figure 2.5: Representation of 2D operations with names of their functions.

2.2.3 Generation of SVG

The SVG format has been chosen for this work over DXF for its better handling

with holes inside of objects, which have been tested. SVG also has an advantage in

graphic visualization possibilities.

The module that create the *.svg file is svgCreator. There are many modules

available, but they didn’t suit the application. They were unnecessarily complicated,

or missing crucial functions, like grouping by layers.

2.3 3D Structure

For 3D structures, there are many tools for Python that have been taken into

consideration, e.g., bpy, trimesh, pygame, panda3d, openpyscad, etc... Every

tool has its pros and cons, and finally, the Blender (bpy) was chosen for its

versatility, ability to work with various formats, extensive documentation, and

active community.
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2.3.1 Blender Connector

Blender uses two main modules, bpy (ver. 2.82.1) and bmesh, that is part of bpy’s

dependencies. The module blend creates usable functions from sets of bpy and

bmesh commands. It also uses mathutils modules for vector operations.

2.3.2 Generator of 3D View

Nowadays, the run3D is more or less the main file for 3D operations; it generates

the whole 3D view from processed 2D data. Bugs in boolean operations cause that

the whole process can not be fully automated yet. Once the bugs will be resolved in

future versions of bpy, automation will occur in the runner module using the run3D

functions.

Extrude

The function that adds the third dimension is in Blender called extrude. Using

this function, there two functions are created, grow, and sink (Fig. 2.7). Although

the outcome of these functions looks different, they are quite similar to each other.

A simplified flowchart (Fig. 2.6) shows a principle of the grow function.

This flowchart works with profile.blend, and layer.svg. The profile changes with

every layer’s growth; the output profile is the original profile that is changed by

the union function with the growing layer. To avoid issues with boolean operations,

there are added overlapses that ensure the correct location of objects.

Start

End

Profile

Layer  

Create thin
layer on top 

of profile

Bevel

Extrude by 
height + 0.001

Move -0.001

Boolean 
union for profile and 
difference for layer

Bevel

True

False

Material 
data

height

bevel

Figure 2.6: Simplified flowchart of "grow" function.
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2.3. 3D Structure

(a) grow (b) sink

Figure 2.7: 3D operations using extrude method with name of functions (click-on

3D activation).

Bevel

One of the parameters of grow and sink function is a bevel. This parameter is

for rounding of desired edges. Bevel with the grow function rounds edges on top

of the object and sink on the bottom (Fig. 2.7b). The important parameter for

the bevel is the number of edges it splits.

Boolean

The most problematic part of the whole G-Visit development is boolean operations.

There is quite a lot of bugs in bpy version 2.82.1 (Fig. 2.8). Since boolean operations

are one of the most important 3D operations, it has been quite challenging to avoid

these issues.

(a) (b) (c)

Figure 2.8: Cross-section of problematic positions for boolean operations in blender

library - bpy (2.82.1); (a) faces on the same level; (b) touching faces; (c) complicated

profile of face.
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The 3D boolean operations (Fig. 2.9) are quite similar to 2D boolean operations

(Fig. 2.4). The operation can be done by function bool3D with operators

’DIFFERENCE’(Fig. 2.9b), ’UNION’(Fig. 2.9c), and ’INTERSECT’(Fig. 2.9d).

A cross-section view for this examples is in Fig. 2.9a.

(a) (b) ’DIFFERENCE’

(c) ’UNION’ (d) ’INTERSECT’

Figure 2.9: Boolean operations overview (click-on 3D activation); (a) cross-section of

substrate and operator object; (b-d)function bool3D operation with different inputs.

Special operations

Special operations, except "planar," are created to avoid bugs of boolean operations.

They are used to create layers where cannot be avoided one of the mentioned issues

(Fig. 2.8).

42






2.4. TCAD Export

2.4 TCAD Export

The final part of this program is creating input for TCAD. There is available Silvaco

TCAD in a laboratory at our university, so its format is used for G-Visit. The data

are generated into *.in file, which can run in DeckBuild and generate the mesh.

Input from 2D

This process is done by splitting polyline into lines. These lines are one by one

used with and operation on other layers. In this process, coordinates converse from

the X-Y coordinate system to the X coordinate system. The Y data are generated

from definitions.

Input from 3D

This part is not yet implemented. The 2D data should be generated from the cross-

section, and for beveled objects is a planned approximation method. There also

should be a 3D input for TCAD.

2.4.1 Generation of TCAD Input

The principle of TCAD *.in file generation by the genIn module is shown in

Fig. 2.10. It only generates regions, mesh, and dopings. The electrodes have to

be added manually. The user also has to prepare the simulations.

Start

End

Generate 
regions

Generate 
mesh

Add dopings

Coordinates 
and  

material data

Doping
True

False
Create *.in file

Figure 2.10: Simplified flowchart of genIn module principle.

It is necessary to generate regions as first, to be able to match mesh with

generated regions. If not done properly, it can resolve in badly generated

regions (Fig. 2.11a). This inaccuracy leads to a dysfunctional model.
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(a) (b)

Figure 2.11: Bad meshing.

Meshing is very important for simulations: the more precise and detailed mesh,

the more precise simulation. In Fig. 2.12 there is the comparison of mesh with two

different grid parameters. This figure also shows substrate and oxide generation; it

is by default generated with minimal mesh precision (noticeable on the substrate).

The precision is achieved by adding more layers to the model, which can be seen on

the oxide part.

(a) grid=2 (b) grid=5

Figure 2.12: Visualization of mesh precision dependence on the grid parameter.
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3. Results
This chapter contains results of created visualization files, TCAD input with its

simulation, and an overview of time complexity. For testing of G-Visit has been

used the GDSII file with a layout of an inverter (Fig. 3.1).

Figure 3.1: Screenshot of input GDS file layout from KLayout (legend added).
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3.1 Visualization

This section shows the visualization of the input file (Fig. 3.1) using G-Visit. It

shows possibilities for 2D layout and 3D structure views.

3.1.1 Layout View

The original layout makes layers really indistinct (Fig. 3.1). Its format is not great

for visualization purposes. G-Visit edits and generates new layers to really show

the layout of the final product (Fig. 3.2) and legend (Fig. 3.3). The SVG format

makes it really easy to decompose and arrange layers into the synoptical complexes

manually. GDSII can turn on and off the layers; creating a similar output is possible

but difficult, and it does not contain all layers of IC.

(a) (b) (c) (d)

Figure 3.2: Layout generated by G-Visit; (a-c) decomposed layout; (d) STI mask.
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3.1. Visualization

Figure 3.3: Legend for figures (3.2a-3.2c).

3.1.2 Generated 3D Structure

The 3D view (Fig. 3.4) has really clean look. Although this view has wrong colors

caused by export to OBJ format the legend in Fig. 3.3 does mostly correspond to

the 3D view. The spacer has yellow color but it should be grey.

Figure 3.4: Final view of generated IC (click-on 3D activation).

The STI layer is visualized separately (Fig. 3.5). The STI layer (black) is sunk

in the substrate. Visualization of STI together with the rest of the layers breaks

them. Reasons and solutions will be discussed in chapter 5.
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Figure 3.5: Generated STI layer (click-on 3D activation).

Blender file is the native output of G-Visit. This format keeps the correct colors

of objects, and the IC can be there edited for visualization. Example is shown in

Fig. 3.6. It also shows the possibility of layer decomposes to show better the inner

structure. There can also be done cross-section or other graphical editing.

Figure 3.6: Screenshot of decomposed inverter in Blender (legend added).
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3.2. TCAD Data

3.2 TCAD Data

Generated file from G-Visit is executable in Silvaco TCAD Deckbuild. It has set

regions, their doping, and mesh. Electrodes and simulations have to be set manually.

Layers as the gate oxide and salicide are about 10× thicker for visualization purposes.

Figure 3.7: TCAD output structure.

For simulations has been used the NMOS transistor from the generated inverter

with gate oxide thickness 8 nm. From the transfer characteristic can be estimated

threshold value about 1 V.

Figure 3.8: Transfer characteristics of the transistor.
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The effective channel length of this transistor is 1 µm, the LDD regions length is

0.1 µm and width of the transistor is 2 µm. Doping of p-type substrate is 1016 cm−3.

The n+ region doping is 1023 cm−3 and for LDD it is 1020 cm−3.

The standard simulation of transistors is an output I-V characteristic. This

simulation has been done for the same transistor. The I-V characteristic has been

measured for 4 gate voltages, 1.0 V, 1.1 V, 1.2 V, and 1.3 V. The characteristic has

been manually split into linear and saturation regions.

Figure 3.9: Output I-V characteristics of NMOS.

3.3 Time Complexity

Time complexity is important attribute. It can show advantage that can G-Visit

bring to its users.

3.3.1 Comparison with Manual Work

Manual work is not a normalized parameter, and it can vary with users’ proficiency.

The measured data are just for demonstrative purposes.

Manual creation of Silvaco TCAD *.in file has not been measured. Many

coordinates users have to measure in GDS manually and translate them from X-Y

coordinates to X coordinates and set the Y parameter. Another complication would

be adding layers that GDS misses and are applied in the manufacturing process.
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3.3. Time Complexity

A manual visualization in Blender has been done approximately without

the measurement of GDS sizes. This took me about 7 hours of work. Using

generated SVG from G-Visit took 1 hour and 10 minutes of work. These results

are compared with G-Visit run time in Tab. 3.1.

Table 3.1: Overview of inverter 3D visualization methods.

Method Time (s)

manual 25 200

manual with
4 200

generated SVGs

G-Visit 25

3.3.2 Layout Size Influence

With bigger layouts, the run time of G-Visit is growing. A graph shows the time

dependency on transistor count (Fig. 3.10); data have been measured by the cProfile

module in Python on a laptop with the processor i5-8250U and 8 GB RAMs.
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Figure 3.10: Graph of time dependency on transistor count (dual Y-axis).
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4. Future Work
The development of G-Visit will be continued. One of things that can be improved

is optimization and transition to newer version (2.91) of Blender, that is supposed

to have less bugs in boolean operations.

4.1 3D TCAD

The biggest step planned for the future is the possibility of getting the 3D object

for Silvaco TCAD and be able to run simulations. This step can bring G-Visit

to professional tools from companies focused on IC simulations, such as Victory

Process, Gds2Mesh, and Sentaurus TCAD.

There are two ways, how to do that. Generation of 3D from 2D layout data, or

using generated 3D object in Blender.

The first method may be easier to do since X-Y coordinates are already mapped

and are needed to add the Z coordinates. This method should also be easier to set

doping profiles.

The existing 3D object from Blender should be closer to the actual IC from

manufacturing. That may be motivation for using the method of importing

data from Blender. The operation of data transition from Blender can be really

challenging. It has to be correctly mapped so that could be correctly transferred

to TCAD. This can be divided into two basic steps of data transition to TCAD.

At first, it should be done without a bevel; afterward, the bevel could be

approximated.

All mentioned presumptions may be verified by comparing cross-sections

generated from the 3D objects with cross-sections from 2D data in TCAD.

The generation from 2D data is already implemented. The generation from 3D

could also be a good way to better understanding mapping for planned 3D TCAD.
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5. Discussion
This chapter analyzes the results of the whole work (chapter 3). It also briefly

overviews methods and mechanisms necessary for a deeper understanding of G-Visit.

Processing 2D data and creating 3D objects in this work is a complex issue.

During this process, real manufacturing processes are taken into account, making

the process even more complicated. There are tools with a similar focus, and only

a few can do what G-Visit can (Tab. 5.1).

Table 5.1: Tools capabilities comparison.

Tool
2D Cross- 2D 3D Adv 3D 3D

view section sim. view view sim.

G-Visit planned

Victory Process ×

Gds2Mesh × ◦

Sentaurus TCAD ×

GDS2POV × × × ×

GDS3D × × × × ×

ShapeshifteR × × × × ×

Qckvu3 × × × × ×

This table (Tab. 5.1) is showing tools with similar focus and comparing their

capabilities. It compares 2D capabilities, such as 2D view of the full layout

(with layers added during manufacturing), the possibility of the cross-section

visualization, and 2D simulation. It also compares a 3D visualizations and

simulations. The column for "Adv 3D view" compares the possibility of the

advanced 3D view that takes into account real manufacturing processes.

Standard symbols used in the table are, for confirmation, × for rejection

of statements. There is one special symbol ◦; in this case, the tool is capable

of advanced 3D visualization, but it is recommended not to use that for bigger

structures. It is a compromise that enables generating larger structures in a shorter

time.
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5.1 Visualization

The visualization is important to better understanding layers used in IC

manufacture. It may also reveal potential issues of manufactured structures.

The visualization also can serve for debugging the G-Visit functionality. It is a first

output, where can be actually observed inaccuracies without going trough variables

in Python.

Visualization provided by G-Visit shows all layers used in manufacturing,

which IC layout design tools do not show. These tools contain those layers

that are necessary for IC mapping. Other layers are automatically added during

the manufacturing process.

Adding those layers is done by the correct definition file and 2D operations.

The visualization is in SVG format. This format based on the vector graphic can

be viewed and edited by free tools. This means that the layers (which are grouped

by material) can be shown separated for higher clarity (Fig. 3.2).

The 3D visualization can achieve better insight into the IC structure. G-Visit

uses Blender for its operations, so the default file format is *.blend. This tool also

supports export to OBJ format, one of the most used formats in 3D visualization.

This export has coloration issues. This is probably caused by Blender itself. While

testing, the manual export in Blender of the same structure exported using G-Visit

script had more issues, even though the same version of bpy was used.

The bugs of boolean operations in bpy, created a difficulties to overcome. One

of the biggest challenges is STI layer. This layer can be generated (Fig. 3.5), but it

fails when it has to do boolean operations with other layers. This may be related

to the issue shown in Fig. 2.8c.

Mentioned issues does not outbalance positives this work brings. During 3D

visualization materials can be beveled, nested in each other and even create layers

theirs faces touches. The bug that is causing issue (Fig. 2.8a, 2.8b) in most cases

has been successfully bypassed.

Using a generated *.blend file has its advantages. The user can freely turn on

and off layers, move with them freely and even create cross-sections. This can be

really helpful for demonstrative purposes.

56



5.2. TCAD

5.2 TCAD

The generation of TCAD makes from G-Visit not only visual tool, but a technological

tool that enables import of semiconductor structures in TCAD. The mesh is

calculated from prepared regions to ensure correct rendering. Electrodes are only

addressed as the metal during the whole process, so they cannot be really scripted

as TCAD electrodes. They have to be set manually, same as simulations.

Shown visualization does not show contact to PMOS source. It is caused by

a cross-section line missing the contact. If something like this happens, the user can

easily add this contact manually for TCAD simulations. The visualization also uses

thicker salicide, and GOX to make these layers visible.

The possibility of setting mesh density can help with the balance between

the speed and precision of simulations. The denser is the mesh, the more precise

and time-consuming the simulation is. When is the mesh too dense, it resolves in

Deckbuild error.

Simulations are beneficial and can show the parameters of the ICs. An NMOS

transistor, which is part of the generated inverter, is used to demonstrate

simulations. GOX of this NMOS is set on 8 nm. The threshold of this transistor is

about 1 V. This value has been estimated from the transfer characteristic (Fig. 3.8).

The second simulation shows the output I-V characteristic of this NMOS transistor

(Fig. 3.9). This characteristic can be used for the determination of the transistor’s

operation region. An approximate curve of this interface (pinch off voltage) has

been manually added.

Those were only exemplary simulations. There could be more simulations of this

NMOS or even simulations of the inverter, but it could be really time-consuming.

5.3 Time Complexity

Time complexity is an important factor. Valuable would time comparison with other

tools, but this information has not been found. Anyway the time comparison with

manual work is really illustrative and shows the advantages of G-Visit (Tab. 3.1).

The mentioned table is missing one important parameter, and it is time for
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Chapter 5. Discussion

setting the definition file. Since it is one-time work, it can be evenly split for every

single use of these definitions (Fig. 5.1). The assumption is that this definition

file can be created even faster than the 3D visualization itself. Even when manual

3D visualization time is exceeded, the final time investment to definitions will be

worth it after few uses. The repeated use of the definition file can suppress the time

towards zero.

Ti
m
e

Count of use
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f(x)=T
f(x)=T/x

T

T/2

0

Figure 5.1: Graph of time amortization.
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Conclusion
During the work on master’s thesis has been developed tool G-Visit. This tool was

created to help the development of IC by providing visualization and input data

for TCAD. These capabilities are compared with other similarly focused tools in

Tab. 5.1. It shows that G-Visit holds on with offered professional tools, such as

Victory Process (Silvaco), Gds2Mesh (Cogenda), and Sentaurus TCAD (Synopsys).

New Python modules were specifically created for G-Visit. A good example is the

svgCreator, a module for SVG generation that allows grouping layers. The module

genIn generates the input file for TCAD. These two modules have been created

because other available modules did not provide the necessary functionality. Both

of them use only the os module for paths in the operating system. G-Visit uses even

more created custom created modules, but they are dependent on other modules’

functions (Fig. 2.3).

This tool can accelerate the work of its users. It can generate the TCAD input

file together with 2D visualization in 0.5 seconds and 3D visualization in 25 seconds.

The time of 3D generation compared to the one done manually is more than 1 000

faster (Tab. 3.1). The graph of time dependency on transistors illustrates the

time complexity (Fig. 3.10). The time investment for new technology definitions

is amortized by use of these definitions (Fig. 5.1).

Section 1.2 introduces semiconductor structures used in IC manufacture, and it

also explains basic physical principles of IC and their parasitic effects. With that in

mind has been developed G-Visit. The development has been done in these steps:

• processing of GDSII data,

• 2D logical operations and their definitions,

• advanced 3D structure generation and its definition,

• import of data to TCAD together with material properties, which creates

a structure, that can be used for user defined simulations.

The development of G-Visit proved that the visualization and TCAD export is

a complex matter. There will always be the possibility of further development and

enhancements. Some of them are described in chapter 4.
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