




Bachelor’s thesis

Classification of the traffic content within
Tor connection

Lukáš Jančička

Department of Theoretical Computer Science
Supervisor: Ing. Tomáš Čejka, Ph.D.

May 13, 2021





Acknowledgements

I would like to express my gratitude to my supervisor, Ing. Tomáš Čejka,
Ph.D., for his valuable guidance. I would also like to express my appreciation
to the Network Traffic Monitoring Lab members for their assistance. Finally,
my thanks go to my friends and family for all their support and encouragement
during the creation of this thesis.





Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity.

In Prague on May 13, 2021 . . .. . .. . .. . .. . .. . .. . .



Czech Technical University in Prague
Faculty of Information Technology
c© 2021 Lukáš Jančička. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Jančička, Lukáš. Classification of the traffic content within Tor connection.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Informa-
tion Technology, 2021.



Abstract

This thesis deals with the detection of the Tor anonymity network and the clas-
sification of its traffic using machine learning techniques. Statistical properties
of network traffic extracted from the network flow data are used for training a
variety of supervised learning models. AdaBoost model was the best perform-
ing for both the Tor detection and Tor traffic category classification. Machine
learning offers a viable approach to detecting Tor traffic, as the final classifier
detected 94 % of Tor samples and was 99 % precise in those decisions, with the
F-score being 96 %. The second classifier distinguishes between eight traffic
categories and does that with an accuracy of 65 %. The results demonstrate
that even though Tor encrypts the traffic, some information about the user’s
activity can still be revealed.

Keywords anonymity networks, network traffic analysis, Tor, Tor traffic
detection, Tor traffic classification, machine learning, network flow

vii



Abstrakt

Tato bakalářská práce se zabývá detekćı anonymizačńı śıtě Tor a klasifikaćı
jej́ıho provozu pomoćı metod strojového učeńı. Statistické vlastnosti śıt’ového
provozu źıskané z dat ve formě śıt’ových tok̊u jsou použity k trénováńı r̊uzných
model̊u supervizovaného učeńı. Model AdaBoost podával nejlepš́ı výsledky jak
v detekci Toru, tak v klasifikaci kategorie provozu śıtě Tor. Strojové učeńı
se ukazuje být vhodným př́ıstupem pro detekci śıtě Tor, nebot’ finálńı klasi-
fikátor dokázal detekovat 94 % vzork̊u provozu śıtě Tor a v těchto rozhodnut́ıch
byl přesný na 99 %, s F-skóre 96 %. Druhý klasifikátor rozlǐsuje mezi osmi
kategoriemi provozu a vykazuje klasifikačńı přesnost 65 %. Výsledky ukazuj́ı,
že některé informace o aktivitě uživatele lze zjistit i přes fakt, že śıt’ Tor šifruje
sv̊uj śıt’ový provoz.

Kĺıčová slova anonymizačńı śıtě, analýza śıt’ového provozu, Tor, detekce
provozu śıtě Tor, klasifikace provozu śıtě Tor, strojové učeńı, śıt’ový tok

viii



Contents

Introduction 1
Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Traffic analysis 3
1.1 Individual packet inspection . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Packet inspection methods . . . . . . . . . . . . . . . . 3
1.1.2 Packet capturing . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Flow-based analysis . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Network flow standards . . . . . . . . . . . . . . . . . . 5
1.2.2 Capturing flows . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Flow analysis examples . . . . . . . . . . . . . . . . . . 6

1.3 Traffic analysis by machine learning . . . . . . . . . . . . . . . 7

2 Machine learning 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Supervised learning . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Unsupervised learning . . . . . . . . . . . . . . . . . . . 10

2.3 Classification models . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Decision tree . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Random forests . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 AdaBoost . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 K-nearest neighbours . . . . . . . . . . . . . . . . . . . . 12
2.3.5 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6 Logistic regression . . . . . . . . . . . . . . . . . . . . . 13
2.3.7 Support vector machines . . . . . . . . . . . . . . . . . . 13

2.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Classification quality metrics . . . . . . . . . . . . . . . 14
2.4.2 Confusion matrix . . . . . . . . . . . . . . . . . . . . . . 15

ix



2.4.3 Cross-validation . . . . . . . . . . . . . . . . . . . . . . 16

3 Tor 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Onion routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Onion services . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Ways of accessing Tor . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Works detecting and classifying Tor . . . . . . . . . . . . . . . 23

3.6.1 Tor detection . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.2 Tor classification . . . . . . . . . . . . . . . . . . . . . . 24

4 Dataset creation and analysis 27
4.1 Dataset requirements . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Available sources . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 Anon 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 ISCXTor2016 . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Dataset analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.1 Flow export . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Tor detection dataset analysis . . . . . . . . . . . . . . . 30
4.3.3 Tor classification dataset analysis . . . . . . . . . . . . . 33
4.3.4 Analysis results . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.5 Flow-based dataset analysis tool . . . . . . . . . . . . . 35

5 Experiments with ML models 37
5.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Feature vector . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Models used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Tor detection classifier . . . . . . . . . . . . . . . . . . . . . . . 39

5.3.1 Feature vector . . . . . . . . . . . . . . . . . . . . . . . 39
5.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Tor traffic category classifier . . . . . . . . . . . . . . . . . . . . 41
5.4.1 Feature vector . . . . . . . . . . . . . . . . . . . . . . . 41
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Outcomes of the thesis 43
6.1 Software prototype . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.1 Tor detection classifier . . . . . . . . . . . . . . . . . . . 44
6.2.2 Tor traffic category classifier . . . . . . . . . . . . . . . 45

Conclusion 49

Bibliography 51

x



A Acronyms 57

B Contents of the SD card 59

xi





List of Figures

1.1 Example of deep packet inspection . . . . . . . . . . . . . . . . . . 4

2.1 Diagram of classification . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Diagram of clustering . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Example of a decision tree . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Example of a confusion matrix . . . . . . . . . . . . . . . . . . . . 15

3.1 Diagram of Tor circuit . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.1 Flow length distribution of the NonTor class . . . . . . . . . . . . 31
4.2 Flow length distribution of the Tor class . . . . . . . . . . . . . . . 31
4.3 Flow length distribution comparison (Tor classification data) . . . 34

5.1 Tor detection classifier model ranking by F-score . . . . . . . . . . 40
5.2 Tor traffic category classifier model ranking by F-score . . . . . . . 42

6.1 Tor detection classifier confusion matrix . . . . . . . . . . . . . . . 45
6.2 Tor traffic category classifier confusion matrix . . . . . . . . . . . . 46

xiii





List of Tables

1.1 Fields exported by the ipfixprobe flow exporter . . . . . . . . . . . 7

4.1 Most common ports of the NonTor class . . . . . . . . . . . . . . . 32
4.2 Most common ports of the Tor class . . . . . . . . . . . . . . . . . 32
4.3 Comparison of the protocols between the Tor and NonTor class . 32
4.4 Counts of records corresponding to Tor traffic classes . . . . . . . . 33

5.1 Comparison of the Tor detection models . . . . . . . . . . . . . . . 40
5.2 Comparison of the Tor classification models . . . . . . . . . . . . . 42

6.1 Metrics of the AdaBoost model for Tor detection . . . . . . . . . . 44
6.2 Comparison of my Tor detection classifier with existing solutions . 45
6.3 Metrics of the AdaBoost model for Tor traffic category classification 46
6.4 Comparison of my Tor traffic category classifier with existing so-

lutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

xv





Introduction

More and more Internet users are becoming aware of how their Internet activ-
ity can be tracked and surveilled, and the demand for a tool enhancing privacy
and anonymity rises. One of the most popular solutions for that is using the
Tor network. It allows its users to browse the Internet while protecting the
user’s identity, with relatively low latency and high ease of use.

Tor is a popular anonymisation tool for a variety of users. It can protect
the identity of people sharing sensitive information in dangerous places, such
as whistle-blowers, dissidents and journalists. It enables its users to access
websites blocked by their Internet provider or government in countries where
the Internet is censored. On the other hand, it can also give anonymity to var-
ious illegal and illicit activities, such as the sales of drugs and black market
items.

This motivates researchers to make Tor a widely explored research topic.
There have been various efforts of finding attacks that can deanonymise Tor.
Ways of detecting and classifying Tor by the type of application have also been
researched and will make the primary goal of this thesis. Even though the
traffic between the user and Tor is encrypted, it is possible to discover some
presumably hidden information, such as the type of application generating
that traffic, just by analysing various statistical properties of that traffic. This
can be achieved by utilising machine learning, which is getting more and more
popular and can solve problems in many fields. It also proves to be useful
in the area of network analysis.

The goal of the theoretical part is to research the Tor network protocol
and its traffic. Flow-based network traffic monitoring and analysis should also
be studied. The practical parts of the thesis consist of these goals: Firstly,
a dataset of Tor traffic should be created from publicly available samples or
using some testing environment. Based on that data, a feature set will be de-
signed and a classification algorithm that can identify the Tor traffic. Another
goal is the creation of an algorithm that can distinguish traffic categories. The
final goal is to evaluate the quality of created software prototypes.

1



Introduction

Structure of the Thesis

The theoretical part of the work is divided into three chapters based on the dif-
ferent researched topics. The first chapter describes various ways of analysing
network traffic, with the emphasis on flow-based analysis as the classification
will be done based on data extracted from network flows.

Research into the area of machine learning is done in the next chapter. The
core paradigms of machine learning are described, and the principles behind
common machine learning models considered to be used in the practical part
are examined. In the last part, the best practices and various solutions for
evaluating the quality of trained machine learning models is studied.

Chapter 3 describes various details behind the Tor network. The core
principles behind the design and traffic of Tor are studied. Related works in
the area of Tor detection and classification are outlined in the last part.

The fourth chapter researches the ways of creating a dataset of Tor traffic
and the available solutions. The chosen dataset is then analysed to determine
if it suits this work and to gather additional knowledge about Tor traffic.

Chapter 5 describes the creation of the classification models. It shows how
the features for the machine learning models are extracted and the experiments
with the various models in search of the most accurate model. In the end, the
best performing models for each task are chosen to be used in the software
prototype.

The final chapter provides a deeper evaluation of the best performing clas-
sifiers for both designated problems. On top of that, the software prototype
is shown, and the results are discussed and compared with other works.

2



Chapter 1
Traffic analysis

Network traffic monitoring and analysis present a crucial step in the network
administrators’ work of keeping the network behaving as expected. Network
monitoring offers the administrators a better understanding of how the net-
work performs, which can help solve possible issues in the network needing to
be resolved. It helps to discover malicious traffic and attacks on the network
and the network misuse by its users.

1.1 Individual packet inspection

Packets represent the basic unit of network data as of the network layer of the
OSI model. Packets consist of the control information inside of the header
and the user data inside of the payload. One approach of network traffic
monitoring focuses on analysing the contents of the individual packets. It has
some positives over other methods, but also some negatives, mainly the con-
cerns about the privacy of the network’s users and the issues with speed, both
explained in the following sections.

1.1.1 Packet inspection methods

The analysis of the packet contents can be done at several levels. The packet
header contents can be analysed, but some methods inspect the payloads,
which can be seen as an intrusion of the network’s users’ privacy. The ex-
amples of the less intrusive methods would be the analysis of the source and
destination IP addresses and ports. The IP addresses can be used for block-
ing unwanted connections from the blacklisted IPs. The numbers of ports
can be used for estimating the service that generated the traffic. The global
standards organisation IANA (Internet Assigned Numbers Authority) assigns
ports to network services. It can be assumed that the services are open for
communication on those designated ports, but in the end, this depends on
how the devices are configured. [1]

3



1. Traffic analysis

Deep packet inspection (DPI) introduces more complex analysis of the
packet content. DPI presents a accurate and widely used method in the area of
network monitoring and security. For example, the methods of DPI are highly
effective for classification of the network traffic and detection of malicious
connections or network attacks. Usually, DPI techniques work by pattern
matching the packet contents to a database of known samples. Example of
DPI using the Wireshark application can be seen in figure 1.1, where the
service is identified as DNS and the DNS query can be seen. [1]

The ethical side of deep packet inspection is a topic complex enough for
its own research, such as [2]. There are some concerns about how DPI affects
the privacy of the network’s users and how it can be misused by Internet
providers, governments, and advertisements. The other inconvenience of DPI
is its computational efficiency for real-time network monitoring. Inspecting
each packet can be incredibly computationally intensive and can negatively
impact the performance of the network.

Figure 1.1: Example of deep packet inspection — analysis of DNS packet
using the Wireshark application

1.1.2 Packet capturing

There are various tools for the capture and analysis of the network traffic
on the packet level, sometimes known as packet sniffers. Packet sniffers can
exist as a command-line applications or can have graphical interface, and there
exist both commercial and open-source solutions. The examples of commonly
used packet analysers would be tcpdump, OmniPeek, and Wireshark.

Packet sniffers work by first collecting the raw binary data from the net-
work. This is usually done by using the selected network interface in a promis-
cuous mode. Promiscuous mode allows the network interface to listen to all
traffic on its network segment, not only the traffic that got addressed to it.
The captured raw binary data then gets converted into a human-readable
form. This can be displayed in the command line or can be further analysed
by the tool. The protocol or the service can be identified and based on that
knowledge, sniffers can analyse and present information about the captured
traffic specific to the protocol. [3]

4



1.2. Flow-based analysis

1.2 Flow-based analysis

Network flows offer a layer of abstraction of captured network traffic data on
top of the raw captured packets. Network flow is usually defined as a sequence
of packets sharing the same quintuple of key features — source and destination
IP address, source and destination port, and the protocol number. Various
additional statistics, such as the count of transmitted packets, flow beginning
and ending timestamps, and TCP flags, can also be measured. The captured
flow data can be then analysed to examine the state of the network – to
discover network incidents or to show network load, for example.

As described in [4], the idea of flow-based monitoring is based on observing
the behaviour of the network and not the data itself. Even though packet-
based monitoring is more powerful in some cases, monitoring flows is the more
acceptable approach from the ethical point of view. Flow-based monitoring
is also more robust and efficient in the use of computational resources. Flow-
based analysis proves useful when working with large amounts of captured
traffic. Flows sharing some common feature can be aggregated, creating flows
with their statistics combined. This can be useful for long-term monitoring
of the network and identification of trends.

1.2.1 Network flow standards

The idea of network flows was proposed by Cisco in the late 1990s with their
NetFlow technology. To this day, there have been several iterations of the
NetFlow standard and other network flow standards, as described in [5].

NetFlow v5 represents the original Cisco standard that is widely used and
supported. However, it has been surpassed by other standards because
of limitations such as not having the support for IPv6 traffic and not
being extensible.

NetFlow v9 is the standard that dealt with the limitations of NetFlow v5.
It allows the monitoring of IPv6 traffic and the customisation and ex-
tension of the flow fields.

IPFIX — Internet Protocol Flow Information Export — is the flow expor-
tation format standardised by IETF (Internet Engineering Task Force)
community of engineers. IPFIX was inspired by Cisco’s NetFlow v9, but
is meant to provide an open standard and be the modern and extensible
alternative to NetFlow.

1.2.2 Capturing flows

The usual network flow real-time capturing architecture is designed as follows.
The flow capturing is done using two different components. Flow exporter

5



1. Traffic analysis

monitors the packets and aggregates those packets into flows while calculat-
ing the flow statistics. The captured data gets exported to the flow collector,
which stores the received data. It can then present the data to the adminis-
trator or send it to some flow analysis applications. The flow exportation can
be done by software inside the network devices themselves or by a specially
designed hardware probe. The examples of used flow exporters are:

Cisco is the original creator of the NetFlow format and offers the exportation
of flows directly from their routers and switches, usually as a commercial
or enterprise-level solution.

Flowmon Probe represents one of the most advanced flow exportation so-
lutions, available both as a virtual machine or as dedicated hardware
probes. It represents an example of a commercial and enterprise-level
(for some of the models) solution. Flowmon offers the exportation of
the application layer data, and their advanced models handle monitor-
ing 100 Gb/s networks.

ipfixprobe flow exporter is a part of the NEMEA open-source network traf-
fic analysis framework. It is available as software for exporting network
flows from a network interface or from captured traffic in a pcap for-
mat. The captured flow traffic can be then logged to a human-readable
CSV format or sent to various other analysis modules of the NEMEA
framework using an internal binary format called UniRec. [6]

The different flow exports measure and store various statistics about the
captured flow, other than the flow-defining quintuple. For example, in the
case of ipfixprobe, the fields it exports in the basic configuration can be seen
in table 1.1. On top of these primary fields, plugins can be used for exporting
various additional statistic, such as those relating to a specific protocol.

1.2.3 Flow analysis examples

Flow-based monitoring has many practical use cases in the area of network
management and security, as described in [4]. For example, it can be used
to observe how the users comply with the network usage policy. Users and
services unnecessarily straining the network can be identified. From the point
of view of network administrators, one of the potentially unwanted services
would be BitTorrent and other Peer-to-peer (P2P) traffic. Not only is it
a potential source of illegal data sharing, but it can also put an unnecessary
burden on other legitimate traffic of the network. P2P traffic can be discovered
using flow monitoring.

Flow-based monitoring can also help discover attacks on the network. Port
scanning can be detected by an increased number of flows. Flows can be
then filtered and aggregated in a way that helps to discover the attacker.

6



1.3. Traffic analysis by machine learning

Table 1.1: Fields exported by the ipfixprobe flow exporter in its basic config-
uration, taken from [6]

Field Type Description
DST MAC macaddr destination MAC address
SRC MAC macaddr source MAC address

DST IP ipaddr destination IP address
SRC IP ipaddr source IP address
BYTES uint64 number of bytes (src to dst)

BYTES REV uint64 number of bytes (dst to src)
LINK BIT FIELD uint64 exporter identification

TIME FIRST time first time stamp
TIME LAST time last time stamp
PACKETS uint32 number of packets (src to dst)

PACKETS REV uint32 number of packets (dst to src)
DST PORT uint16 transport layer destination port
SRC PORT uint16 transport layer source port

DIR BIT FIELD uint8 determines outgoing/incoming traffic
PROTOCOL uint8 transport protocol
TCP FLAGS uint8 TCP protocol flags (src to dst)

TCP FLAGS REV uint8 TCP protocol flags (dst to src)

Another example would be the detection of Denial-of-Service attacks, where
the attacker tries to deny access to the legitimate users by overwhelming the
resources of the server. Those attacks can be detected by discovering a large
number of flows containing only a single packet or finding an increased number
of RST flags in the opposite direction of communication.

1.3 Traffic analysis by machine learning

A variety of traditional approaches to traffic analysis were described in the
preceding sections. Some tasks of the traffic analysis require a human analyst,
and some are automated. Network traffic was usually classified using pattern
matching of packet payloads or by relying on known port numbers. Machine
learning offers an alternative approach of classification based on various sta-
tistical traffic characteristics, as described in [7].

There exist various ways how machine learning aids the area of network
analysis. In the mentioned case of traffic classification and service detection,
machine learning models work by training on captured traffic examples. The
captured traffic is labelled by the desired class. The models then detect and
generalise the differences in traffic statistics between the classes and classify
unknown examples based on that trained knowledge.

7



1. Traffic analysis

Another example would be the detection of anomalous traffic. There are
several ways of anomaly and outlier detection that can detect traffic anomalies
based on how much they share the traffic statistics with other legitimate flows.
The field of machine learning is further described in the following chapter.

8



Chapter 2
Machine learning

2.1 Introduction

Machine learning (ML) is a field of study combining artificial intelligence,
statistics, and computer science, resulting in an alternative approach to the
creation of algorithms. These algorithms improve themselves by extracting
knowledge from data. This approach differs from the classic way of explicit
programming, where the programmer has to exactly describe the algorithm.
Machine learning can be applied to problems in various fields and can often
provide a simpler solution than creating a human-made algorithm. For exam-
ple, there are applications such as anomaly detection, customer segmentation
of an e-shop, image recognition and stock price estimation. [8]

The ideas of machine learning are similar to the way humans learn. A child
seeing some object for the first time gets told by the parents what the object is.
For the child to understand how to identify other instances of the same object,
it has to select relevant features of that object, such as its shape, size, colour
etc. These features are often called independent variables. After learning from
examples, the child can make a decision when presented an example it hasn’t
seen before. [9]

2.2 Paradigms

Machine learning is usually divided [9] into two main paradigms, derived from
the way the algorithm learns — supervised and unsupervised learning. These
two approaches can be combined, and there exist other categories of machine
learning, but only these two paradigms will be further described for simplicity
reasons.

9



2. Machine learning

2.2.1 Supervised learning

In the case of supervised learning, the ML algorithm is presented with data
labelled with the desired output. The training data consists of the target
variable Y and a set of independent variables X. The goal of the training is
to find a mapping from X to Y , which is accurate for most examples, thus can
be used to predict labels for unseen data. When the values of Y are taken from
a set of a few discrete labels, we are talking about a classification problem.
The other case being the regression problem, where the values of Y are taken
from a continuum of real values.

X1

X2

X1

X2

Figure 2.1: Diagram of classification

2.2.2 Unsupervised learning

In the process of unsupervised learning, no label or class is given to the algo-
rithm. The goal of these problems is not to predict a class but to find some
intrinsic structure in the data. The usual output of unsupervised learning is
the segmentation of the data into clusters, where the clusters consist of data
with a similar structure. Because there isn’t a defined desired output in our
data, the assessing of the quality of unsupervised learning models gets more
complicated.

X1

X2 X2

X1

Figure 2.2: Diagram of clustering

10



2.3. Classification models

2.3 Classification models

As the goal of this thesis is to create a classification algorithm, machine learn-
ing models used for classification, considered to be helpful with the task, will
be further discussed. A wide variety of commonly used classification algo-
rithms will be used for the experiments in this work.

2.3.1 Decision tree

Decision trees present a simple and easily understandable tree-structured
model and are one of the oldest and most used techniques. The way the
model makes its decision can be read and understood by humans by following
the visual representation of the decision tree. The nodes represent conditional
moves based on the values of the features, and the leaves represent the pre-
dicted value of the target variable. The classification of unknown data is made
by following the path based on the unknown data from the root to the leaf,
representing the predicted value. In the case of decision trees, a greedy ap-
proach is often used for the learning process consisting of repeatedly splitting
the dataset while minimising some quantifier of disorder, such as entropy. [10]

X1 > 0.4

X2 > 10 X1 > 0.1

X2 > 5Tor Regular Tor

Regular Tor

True

True

True

True

False

False

False

False

Figure 2.3: Example of a decision tree

2.3.2 Random forests

Random forests represent a model based on the technique of ensemble learning.
Ensemble models are based on the idea of training multiple simpler models
and combining their predictions into the final decision. This decision is usually
more accurate than any of the decisions of the individual models. There exist
two common approaches to combining the models in ensemble techniques —
bagging (bootstrap aggregating) and boosting.

Random forests implement the ideas of bagging. Various subsets are cre-
ated from the training dataset using the bootstrapping technique — selection

11



2. Machine learning

of samples with repetition. A decision tree, which doesn’t need to be very
deep, is constructed for every subset. While classifying unknown data, each
tree provides a decision, with the final result being determined by the majority
of those decisions. [11]

2.3.3 AdaBoost

AdaBoost (Adaptive Boosting) represents the latter of mentioned ensemble
techniques — boosting. Boosting works by creating a set of models, and the
decision of the individual models gets averaged into a final decision, the same
as with bagging. The main difference between these two ensemble approaches
is that in boosting, the models aren’t independent. The models are trained
sequentially, new model each round. At the end of each round, misclassified
examples are found, and their weights are increased, thus making the training
focus more on these misclassified instances. This means that the training of
a new model in the sequence depends on previous models.

AdaBoost can use various classification methods in its ensemble of models.
The only requirement is the usage of weights in the training of the model.
Shallow decision trees are often used as the base estimators. [12]

2.3.4 K-nearest neighbours

K-nearest neighbours (KNN) takes a different approach than the previously
discussed models. It requires no training; the computation is done during the
prediction. The prediction of unknown data is made by finding k neighbouring
points (meaning points having the shortest distance) to our unknown point
we want to classify. The decision of the classifier is then made as the most
common class of the neighbours.

The distance metric can be defined, depending on the nature of the prob-
lem, with the Euclidean or Manhattan distance being popular examples.
The number of neighbours k also has to be defined by the user and changes
how the model behaves. If the value is set too low, it can lead to the insuffi-
cient generalisation of the problem and the fixation on the training data. This
effect is known as overfitting and results in a model that behaves worse on
new, unseen data.

Because KNN makes its decision by finding the nearest points, it is very
sensitive to having different types or scales in its features. Imagine having
a feature representing a boolean (being either zero or one) and then having
a second feature that ranges from zero to millions. The differently scaled
features would not contribute to the final distance in the same way. Because
of that, the data should be preprocessed; re-scaling the data to the interval
< 0, 1 > is usually done. [13]

12



2.3. Classification models

2.3.5 Naive Bayes

The Naive Bayes algorithm works by estimating the conditional probabilities
of the data being correctly classified based on the feature vector and selecting
the most probable class. The calculations based on the Bayes rule dictate the
strong assumption that the features are independent (in the sense of probabil-
ity), given the class. The naming of Naive Bayes is based on this assumption,
which is often false, and it can yield satisfactory results anyway.

There are several advantages to using Naive Bayes. It is very computa-
tionally efficient, robust in the face of missing values and noise. It is also
less affected by the issues with high-dimensional feature vectors than many
other models. However, in the case of classifying captured traffic data, the
dependencies of the features might result in worse quality of the model. [14]

2.3.6 Logistic regression

Logistic regression is a classification algorithm based on linear regression,
which is used for problems of regression, not classification. The linear re-
gression model can be described by the following formula

Y ≈ w0 + w1x1 + . . . + wpxp

where x denotes the features and w the weights.
Using this regression model in the area of classification can be achieved

by it predicting the probability of Y having a value of 1, being classified as
true (considering the case of binary classification). This means the results
of the regression formula have to be transformed to stay within the range of
< 0, 1 >. Commonly used function for that is the sigmoid function, defined
by:

f(x) = ex

1 + ex
= 1

1 + e−x

The final performance of the classifier highly depends on the nature of the
data. The model assumes that the relation between the target variable and
the independent variables can be effectively captured with the linear regression
formula. However, how well it estimates the relation varies case by case. [15]

2.3.7 Support vector machines

Support vector machines (SVMs) work by finding a way of linearly separating
the training data, assuming that the data is linearly separable. The training
set with examples containing n features can be understood as points in n-
dimensional space. In the least complicated case of two-class classification,
SVMs find a hyperplane separating the two classes with the largest possible
margin. Margin is defined as the distance between the hyperplane and the
closest point. Finding the largest margin leads to a better generalisation of
the model and better accuracy on new, unseen data. [16]

13



2. Machine learning

2.4 Evaluation

At the start of the training process for supervised learning models, we have
a labelled dataset, preprocessed to have no missing or non-numerical values.
Some models require additional preprocessing for a better quality model, such
as the normalisation of values to the interval < 0, 1 >.

The training is not done on the whole dataset, because of the effects of
overfitting — a bad generalisation of the problem and accuracy on new data.
The data has to be split in some ways; the simplest solution is to divide the
data into a training and testing set. Better solution would be cross-validation,
described in one of the following section 2.4.3.

Usually, the models have various parameters, which change how the indi-
vidual model learns and behaves. They are called hyperparameters, and their
examples could be the depth of a decision tree or a number of individual mod-
els in ensemble methods. The combination of hyperparameters that yields the
best result is usually not known, so the model is trained for a variety of com-
binations, and the one with the best quality metric is chosen. After having a
trained model, its performance can be evaluated on the testing dataset, which
consists of unknown data to the model and thus should represent performance
on completely new data.

2.4.1 Classification quality metrics

There exist various metrics used for assessing the quality of trained classifiers.
The final quality assessment should be made by observing multiple of those
metrics and can be based on the understating of the problem. Commonly
used metrics, chosen from [17], considered to be used in this work are:

Accuracy denotes the fraction of correct predictions and is calculated as:

Accuracy = count of correctly classified examples
count of all examples

This metric gives us the idea of overall performance and is easy to under-
stand and imagine what it represents. However, there are some caveats
to be aware of when evaluating the classifier performance using this met-
ric. For example, take the case of a highly imbalanced dataset, where
99 % of data consists of class A and only one per cent of class B. A clas-
sifier that would predict everything to be of class A would have 0.99
accuracy, which seems like a perfect result. In spite of that, it would be
unusable in real life as it doesn’t detect any samples of class B.

Precision is calculated as:

Precision = true positive
true positive + false positive

14



2.4. Evaluation

The terms positive and negative refer to the prediction of the classifier,
and the terms true and false indicate how the prediction corresponds
to reality. For example, true positive can be understood as a count of
examples where the classifier predicted a true label and was correct in
that prediction when compared to the actual label.

Recall is defined as:

Recall = true positive
true positive + false negative

F-score combines the information from precision and recall. The traditional
F-score, known as F1 score is defined as their harmonic mean:

F1 score = 2 · precision · recall
precision + recall

2.4.2 Confusion matrix

The confusion matrix offers a useful solution for evaluating the quality of
the classifiers. It visualises the performance into a table, so it can be easily
read and understood. The rows of the matrix represent the true class of the
examples, while the columns represent the predicted classes. This means that
the cell with coordinates i, j stores the number of examples with true class of
i, which were classified as j.

Figure 2.4: Example of a confusion matrix

15



2. Machine learning

2.4.3 Cross-validation

Cross-validation offers a better solution than simply dividing the dataset into
training and testing sets, as described in [13]. It helps eliminating some effects
of randomness as the performance of a classifier on the same data with the
same hyperparameters can slightly differ every time. Using a mean of the
metrics from several samples helps better estimating the general performance
of the classifier on unseen data.

A common approach is a technique called the k-fold cross-validation:

1. The dataset is divided into k equally sized sets.

2. The classifier gets trained on k − 1 sets.

3. The set that got left out consists of unknown data, so is then used for
testing and measuring of the metrics.

4. This process gets repeated k times, so every set is used for testing in one
run of the algorithm.

5. The final cross-validation metrics are calculated as the mean of those
metrics from individual runs.

A variation of k-fold called Stratified k-fold cross-validation proves useful
on datasets consisting of imbalanced classes. It is designed for the individual
folds to have approximately the same ratio of samples of each target class as
the whole dataset.

16



Chapter 3
Tor

3.1 Introduction

Tor is a privacy-enhancing tool offering protection against common ways of
network surveillance and traffic analysis. By tunnelling the traffic through
a worldwide, volunteer-run network, it provides the anonymisation of its user’s
Internet activity and identity. Tor stands for “The Onion Router” as the ser-
vice is built on the technique of onion routing1. The Tor network is currently
maintained by The Tor Project — a research non-profit organisation.

Tor is an overlay network on top of the Internet and offers relatively low
latency and ease of use. This means it is targeted at a wide variety of users.
It offers a solution for Internet users aware of their digital footprint by pro-
tecting them from third-party web trackers and their Internet activity from
their ISP (Internet service provider). On top of extending privacy, it provides
unrestricted access to websites and services restricted by the user’s ISP or in
the country of their origin. This means Tor can be used to bypass censor-
ship in countries with restricted access to the Internet. It allows reporters to
protect their source, for example, when communicating with whistle-blowers
or dissidents. Tor has been used by a branch of the U.S. Navy while deployed
abroad and by law enforcement agencies. [18]

Although Tor was built as a tool for preventing censorship, there are ways
it is being misused for illegal activities. Researchers [19] discovered that
BitTorrent accounted for the majority of their captured Tor traffic. Tor is
used to distribute copyrighted content anonymously, hidden from anti-piracy
groups and ISPs. Tor offers a way for servers to stay anonymous called the
onion services2. This way of running Internet services while protecting their
location creates a popular platform for a variety of illegal activities such as
sales of drugs and black market items, child abuse, and pornography [20]. The
majority of onion services content was found to be illicit [21]. Onion services

1described in section 3.3
2described in section 3.4

17



3. Tor

were also used to protect the identity of botnet command and control servers
when they transmit the instructions to the infected devices [20].

The idea of onion routing originated in 1995 when military scientists at
the Naval Research Laboratory were developing ways of protecting the United
States’ intelligence communications over the Internet. A proof of concept
prototype consisting of five nodes simulated on a single machine was shown
in 1996. A year later, the U.S. military research agency DARPA (Defense
Advanced Research Projects Agency) became a major investor in the project
of onion routing. After the release of the research paper called Anonymous
Connections and Onion Routing [22] describing the first generation of onion
routing, its development was suspended for some time because of missing
funding. The generation 0 prototype network was shut down in 2000, and its
operation was further analysed for possible changes in a future generation of
onion routing. This single machine setup was active for circa two years and
processed over twenty million requests from more than sixty countries.

The second-generation onion routing became the implementation known
as Tor and used to this date. The original Tor network was deployed in the
October of 2003, and the Tor source code was released under an open-source
MIT licence. A paper presenting the original design and goals of Tor called
Tor: The Second-Generation Onion Router [23] was published in 2004. Tor
became ready for the use by the general public, and after that, funding from
the Naval Research Laboratory and DARPA was cut. Electronic Frontier
Foundation, a non-profit advocating digital rights, became the new major
investor in Tor. At that time, there were over a hundred Tor nodes on three
continents. The non-profit organisation The Tor Project, Inc. was founded
in 2006 to maintain and develop Tor further, and it keeps maintaining it to
this day. [24, 25, 26]

Throughout the years, Tor has gained its user base and became one of
the most used privacy enhancement tools. At this time, the Tor network
consists of over 6,500 relays [27] with the advertised total bandwidth of nearly
600 Gbits/s of which circa 250 Gbit/s gets usually consumed daily [28]. It is
estimated, that on average, more than two million people use Tor every day
[29] and most users come from the United States, Russia and Germany [30].

3.2 Design goals

The main design of Tor is to provide extended anonymity and privacy on top
of the TCP protocol. The latency should be low enough that it is possible
for interactive applications such as web browsing, instant messaging and file
transfer to be used. Tor’s fundamental goal is to complicate connecting which
user is communicating with which server to the attackers. The core design
principles were described by the developers in their original design paper [23]
as follows:

18



3.3. Onion routing

Deployability: Tor has to be designed in a way that allows its deployment
and usage in the real world. This means it shouldn’t be difficult and
costly for the volunteers to set up and run the relays. Neither can it
place a heavy liability burden on its volunteer operators.

Usability: A large enough user base is a basic requirement for the anonymity
of the network. User-friendly system will be adopted by a larger amount
of people. Users should be able to run Tor without complex configura-
tions and do so on a variety of common operating systems.

Flexibility: The protocol should be designed in a flexible and well-defined
way, so its design can prove itself useful for future research of low-latency
anonymity networks.

Simple design: Tor should be deployed as a simple and stable system, based
on proven and secure privacy enhancement techniques. The protocol
has to be designed without using complex and experimental, untested
principles.

The creators also defined [23] which goals aren’t prioritised in their design,
because they are solved in other systems or would make the design more
complex:

Not peer-to-peer: There are other solutions based on decentralised peer-to-
peer networks. The creators found these solutions appealing, but with
too many unsolved issues.

Not secure against end-to-end attacks: The attacks where an adversary
has control or can observe both the traffic incoming from client to Tor
and the traffic from Tor to the sever are a possible weakness. Tor creators
do not claim it protects their users against these types of attack.

No protocol normalisation: When using complex and variable protocols,
other services, such as Privoxy3, should be used to protect the identity
of the client.

Not steganographic: The fact client is accessing Tor isn’t hidden.

3.3 Onion routing

Onion routing is the underlying principle behind the design of Tor. The idea
of onion routing is that instead of the client directly communicating with the
server, the connection passes through several Onion routers (ORs). A path
through various routers to the destination is created, and the client may begin
communicating with the first OR. The communication gets encrypted several

3https://www.privoxy.org/

19

https://www.privoxy.org/


3. Tor

times, once for every OR in the path (This represents the onion analogy as
the network consists of encryption layers that get “peeled off”). When Onion
routers receive data, they remove their layer of encryption and pass the data to
the next OR in the path. The final data sent to the destination isn’t encrypted
by the routers. This method ensures each router knows the identity of the
previous router (or the client in the case of the first router) and of the next
router (or the destination server in case of the last router), but the information
of which client communicated with which server gets protected. [31]

Tor implements the ideas of onion routing in its specific way. Let’s suppose
user A wishes to communicate with a server B via Tor. Usually, a three-
hop circuit to the destination is created, consisting of the ORs called entry
(or guard) node, middle node and exit node. For the client to understand
which routers to communicate with, which act as entry nodes, which have
been compromised etc. it fetches this information from directory servers.
Directory servers are trusted ORs defined by the creators, storing the state
of the network. At the time of writing, there are nine running directory servers
[32]. When creating the circuit, a set of symmetric keys gets negotiated, one
for every OR in the circuit.

The construction of the circuit and key negotiation is done incrementally,
with one router at a time. The key negotiation is based on the Diffie-Hellman
key exchange method. After the circuit is constructed, client has a negotiated
key with every OR and may begin communicating. Client encrypts the mes-
sage with every one of the negotiated symmetric keys. The encrypted message
gets sent to the first OR — the guard node. Guard node decrypts the message
with its key and relays it to the middle node. At that time, only one layer of
encryption was “peeled off”, so the middle node decrypts it once more with
its key and sends it to the exit node. After the final decryption by the exit
node, the message isn’t encrypted by Tor and can be sent to the server. This
means that using more secure protocols such as HTTPS is needed if the user
wants the data to be encrypted on the way leaving Tor. These principles are
visualised in figure 3.1. In the first prototypes of onion routing, a new circuit
was built for every TCP stream. This would be too time-consuming, so cir-
cuits in Tor are shared with multiple streams. After some time, they expire
and are periodically rebuilt.

There are several positions the adversary can be in and ways Tor protects
its users. When the adversary observes the communication from the user to
the guard node (This would be the position of the user’s ISP), it can’t know
its destination and contents because of the encryption. However, the fact
Tor is being used isn’t concealed in the original design and the identities of
the routers are publicly known. This creates the possibility of governments
restricting access to these known Onion routers, thus restricting access to Tor.
Solution for that exists in a way of Tor bridges, which are Tor relays, that
aren’t listed publicly [33]. Another way Tor tries to prevent the censorship and
blocking of Tor access is called Pluggable Transports. This process obfuscates

20



3.4. Onion services

A Guard Middle Exit B

Tor network

Figure 3.1: The diagram represents a communication through the Tor circuit.
User A anonymously communicates with a server B via Tor. Solid lines repre-
sent the individual layers of encryption of the transmission between two points
in the path, while the dashed line represents the data that isn’t encrypted by
the Tor itself.

the Tor traffic in a way that should confuse the analysis of said traffic and
prevent the detection of Tor [34]. This process is not used on all Tor traffic,
but users in countries where Tor is restricted use this solution. The Onion
routers themselves have knowledge only about the adjacent ORs in the circuit.
The observers of the traffic leaving the exit node can read the message, but
cannot easily connect the traffic to a specific user. Tor stays susceptible to
end-to-end attacks in situations where the adversary controls both the traffic
leaving the user and the exit node, such as those based on correlation [35].
The communication between the ORs is comprised of 512 bytes long cells.
The fixed size hides the information of how many times has the message been
decrypted, which would show in which part of the circuit the message currently
is. There is a validity checking mechanism which destroys the circuit if the
cells were tampered with. [23]

3.4 Onion services

Onion services (formerly known as hidden services) offer a way of connecting
to a server through Tor without knowing its IP address, thus protecting its
identity and location. Onion addresses are used for accessing these services,
which usually consist of pseudo-random automatically generated 16- or 56-
character strings followed by the .onion pseudo-top-level domain. Connection
to onion services can be described in six parts:

1. In order for the onion service to be contacted, it needs to advertise its
existence to the Tor network. To do that, the service picks a couple of
relays at random, shares them the service’s public key and makes them
act as introduction points. This communication between a service and
introduction points goes through full Tor circuits, so the IP address of
the server can stay protected.

21



3. Tor

2. Onion service generates an onion service descriptor storing its public key
and the addresses of the introduction points, signed with its private key.
These descriptors are then uploaded to a distributed hash table, spread
across ORs designated as “hidden service directories”.

3. To establish transmission to the service, a circuit to a randomly selected
OR is created. The client asks it to act as a “rendezvous point” by shar-
ing a one-time secret with it. If needed, the client also downloads the
service descriptor from the distributed hash table.

4. Client creates a Tor circuit to one of the service’s introduction points
and instructs the point to forward an introduce message to the service.
The message consists of the address of the rendezvous point and the
one-time secret and is encrypted with the onion service’s public key.

5. After decrypting the client’s introduction request, the onion service may
establish a Tor connection to the designated rendezvous point and send
it the one-time secret to it in a rendezvous message.

6. The rendezvous point verifies the one-time secret and announces to the
client that the connection to the onion service has been established.
After that, the rendezvous point relays the traffic, connecting the two
circuits, enabling the client to communicate with the onion service.
[23, 36]

3.5 Ways of accessing Tor

Tor has always stated it is meant to be simple to use in order to attract
a wide variety of users. Because of that, it offers other solutions than manually
configuring a client on user’s machine or router, which requires some technical
knowledge. Tor tries to be accessible from as many platforms and operating
systems as possible. The creators offer various applications based on Tor
and there are solutions created by third parties, such as Tor-based operating
systems heavily focused on security. [37]

Tor browser 4 is the flagship project aimed at the general public. It is a mod-
ified version of the Mozilla Firefox ESR (Extended Support Release)
browser that automatically routes the traffic through the Tor network
and requires little configuration.

Mobile phones have their own ways of accessing Tor. There is an official
version of the Tor browser for Android5. A solution for routing other

4https://www.torproject.org/download/
5https://play.google.com/store/apps/details?id=org.torproject.torbrowser

22

https://www.torproject.org/download/
https://play.google.com/store/apps/details?id=org.torproject.torbrowser


3.6. Works detecting and classifying Tor

Android applications also exists in the way of the Orbot6 proxy appli-
cation. Users of iOS can use the Onion Browser7 application. However,
because of the limitations of the system, some privacy features could not
be implemented. [38]

Tor-based security-oriented operating systems are complete solutions,
which tunnel every connection through Tor. Tails (The Amnesic Incog-
nito Live System)8 offers booting off a live USB/CD into a preconfigured
modified version of Debian. Tails leaves no trace on the local system and
the user data gets erased after system shutdown. Whonix9 is based on
running two virtual machines, a workstation and a gateway. The work-
station is protected from the network, and its data is stored persistently.

3.6 Works detecting and classifying Tor

Tor remains a popular anonymisation tool helping people to access the Internet
freely. However, there are several ways it is being misused for various illegal
activities. This makes Tor a widely researched topic, both by the network
research communities and by law enforcement agencies. There have been nu-
merous efforts of detecting and blocking Tor, with complete deanonymisation
of Tor being the final goal, which can be achieved in some scenarios. Traffic
correlation attacks have been found to offer a viable solution for deanonymis-
ing Tor in the case where adversary observes the guard and the exit node
[39, 40]. However, this work focuses on detecting the Tor traffic and then the
classification of Tor into various categories based on the type of application.

3.6.1 Tor detection

Tor stated in its original design paper that the fact user is accessing Tor is not
hidden in the original design of Tor [23]. The identity of the Tor relays is
publicly known; Tor Project itself offers tools for Tor relay lookup10 and has a
bulk list11 of all exit nodes. This list can be used by administrators of services
that wish not to be accessible from Tor.

Research of detecting Tor using known addresses of Tor relays has been
done [41]. They created a working solution that can be incorporated into real-
time network monitoring tools. However, there is one caveat of techniques that
detect Tor based on the known Tor servers. Tor bridges are not publicly listed,
so connecting to Tor using them prevents this type of detection.

6https://play.google.com/store/apps/details?id=org.torproject.android
7https://apps.apple.com/us/app/onion-browser/id519296448
8https://tails.boum.org/
9https://www.whonix.org/

10https://metrics.torproject.org/rs.html
11https://check.torproject.org/torbulkexitlist

23

https://play.google.com/store/apps/details?id=org.torproject.android
https://apps.apple.com/us/app/onion-browser/id519296448
https://tails.boum.org/
https://www.whonix.org/
https://metrics.torproject.org/rs.html
https://check.torproject.org/torbulkexitlist


3. Tor

Another approach is detecting Tor by understanding its statistical features,
which can be done using machine learning. Cuzzocrea et al. [42] researched
detecting Tor using machine learning models trained at statistical time-based
features extracted from network flow data. They proved this can be an ef-
fective approach to detecting Tor as many of the models had the accuracy
and F-score better than 0.99, some approaching flawless classification. They
used data from a publicly available dataset from the Canadian Institute for
Cybersecurity12. The research [43] of the creators of the dataset is one of the
most influential works in the field of Tor detection and classification and will
be further described in the following section.

3.6.2 Tor classification

There are several approaches to classifying Tor into categories based on the
application used. They are based on various machine learning techniques, but
the main difference is the type of data used for training. One research [44]
was based on burst volumes, with bursts being defined as a set of consecutive
packets sent in one direction before another is sent from the opposite direction.
They chose four categories — P2P (Peer-to-peer), web, file transfer and instant
messaging. They were fairly successful in their approach, resulting in accuracy
and F-score exceeding 0.8 in some instances. Their experiments represented
an attack where the adversary observes the traffic incoming to the entry node.

Another two possible approaches are based on extracting statistical fea-
tures from either circuits or flows. Shahbar and Zincir-Heywood compared
these two techniques in their research [45]. Obtaining the statistical data
from circuits requires the adversary to have a compromised OR. This ap-
proach differs from the goal of this thesis, which focuses on analysing traffic
between the user and the guard node, but can be solved by their second ap-
proach — extracting traffic flow features. They classified the Tor traffic into
three categories — browsing, video streaming and BitTorrent.

The researchers from Canadian Institute for Cybersecurity [43] experi-
mented with both the detection and classification of Tor while making their
dataset publicly available. They decided to classify Tor into eight categories
— Browsing, Audio streaming, Chat, E-mail, P2P, File transfer, VoIP (Voice
over Internet Protocol), and Video streaming. For generating and capturing
their Tor traffic, they used the Whonix security-oriented system, which routes
its connection through Tor. Whonix is based on running two virtual machines,
a workstation, which is for the user, and a gateway, which handles the rout-
ing. This enabled them the simultaneous capturing of both the regular traffic,
coming from workstation to gateway, and Tor traffic, which leaves the gateway
to the entry node of Tor. Their focus was purely on time-based statistical data
extracted from flows, such as the inter-arrival times between the packets.

12dataset available from: https://www.unb.ca/cic/datasets/tor.html

24

https://www.unb.ca/cic/datasets/tor.html


3.6. Works detecting and classifying Tor

They experimented with the effect the length of timeout has on the quality
of the result, splitting the flows with shorter timeouts. They ran all the
experiments on data exported with timeout of 10, 15, 30, 60, 120 seconds
and compared the results. Their Tor detection model had the best results
when trained on the data with the longest timeouts. In the case of the Tor
application type classifier, shorter flows helped the results by having more
data samples. They observed the best classification results when the timeout
was set at 15 seconds. The results of their best Tor detection model was the
recall of the NonTor class of 0.994 and the precision of 0.992. In the case
of the classifier of application types, they achieved a recall of 0.841 and a
precision of 0.836.

25





Chapter 4
Dataset creation and analysis

4.1 Dataset requirements

There are several approaches to creating the dataset required for training
the machine learning experiments. The examples of the Tor traffic can be
manually generated and captured in some controlled network. The alternative
would be discovering a publicly available dataset to base the experiments on.
Either way, the first step is to analyse the goals of the work and understand
the requirements for the data. These requirements can help design the data
capture procedure or determine whether some publicly available dataset offers
a viable solution.

The first question is the position of the observed point in the Tor network.
There exist attacks on Tor that require having compromised ORs, capturing
both the traffic incoming to and outgoing from the Tor network etc. This
work’s approach is simpler as it replicates the point of view of a security analyst
monitoring some network or the user’s Internet service provider. The traffic
between the client and the Guard node should be captured.

The first classifier distinguishes between Tor traffic and regular non-Tor
traffic. This means that on top of the Tor traffic data, some examples of regular
traffic have to be captured as well. The variety of the data is important, so
traffic from multiple types of applications should be captured. Additionally,
the traffic should originate from the same applications in both classes in order
to prevent some systematic error unknowingly being brought into the dataset.
Imagine the case where the Tor data would capture only web traffic while the
non-Tor class would be comprised of data of peer-to-peer file transfer, resulting
in a systematic error in the data. The ideal solution would be capturing the
regular traffic and its Tor-encrypted equivalent simultaneously, making the
effects of Tor tunnelling the only distinguishing factor between the classes.

The second model classifies Tor by the type of application that generated
the traffic. The chosen Tor dataset should consist of several classes of traffic,
which can well represent the usual traffic categories of common Internet usage.

27



4. Dataset creation and analysis

The perfect case would be obtaining a dataset that can be used for both
classifiers. A logically labelled dataset of simultaneously captured Tor and
non-Tor traffic from a mixture of application types, and represents the real-
word traffic well, would be well suited for the machine learning experiments.

4.2 Available sources

The possibility of using a training dataset based on publicly available data
should be researched first. Finding a suitable dataset would speed up this
research, and the final results could then be compared.

4.2.1 Anon 17

The researchers [46] of multiple anonymity networks made their dataset13

called Anon 17 publicly available. The dataset consists not only of Tor traffic
but of other anonymity networks — JonDonym and I2P. The majority of the
Tor part of the dataset was carried using Tor pluggable transports, a way of
obfuscating Tor’s characteristics in order to confuse the Tor detection. This
thesis aims to recognise the traditional traffic statistics of Tor, so researching
pluggable transports is better suited for some following work. A minor part
of the dataset is labelled by the type of application carried over Tor, divided
into three classes — Browsing, Video and BitTorrent.

Anon 17 is available in the ARFF format for the Weka machine learning
suite, with the features already extracted from the captured network traffic.
For the experiments in this thesis, we require unprocessed traffic samples,
ideally in the pcap format. All these characteristics of the dataset make its
use in this thesis unfeasible.

4.2.2 ISCXTor2016

Research [43] into Tor detection and classification resulted in a publicly avail-
able dataset14. Their dataset consists of the regular non-Tor and Tor traffic;
both were captured simultaneously. The captured traffic was carried over
Tor using the Whonix security-oriented operating system. The dataset offers
a large variety of types of traffic as they captured eight traffic categories.

The Whonix distribution is provided as a set of two virtual machines —
the gateway and the workstation. The workstation is meant to be the sys-
tem used while its connection to the Internet via the Tor network is handled
by the gateway. This means the regular traffic can be captured leaving the
workstation before the Tor client encrypts it when leaving the gateway, which
can be also captured. This way, a pair of regular traffic and Tor traffic can

13dataset can be accessed via: https://web.cs.dal.ca/˜shahbar/data.html
14dataset can be accessed via: https://www.unb.ca/cic/datasets/tor.html

28

https://web.cs.dal.ca/~shahbar/data.html
https://www.unb.ca/cic/datasets/tor.html


4.2. Available sources

be captured at the same time. They captured a total of 22 gigabytes of data
in the pcap format. Additionally, they offer the data exported to the network
flow format using their flow exporter called ISCXFlowMeter.

ISCXTor2016 seems to offer viable data to base the training dataset on.
It is also available in the unprocessed form before it was exported with a
flow exporter. It has both the samples of regular non-Tor traffic and traffic
tunnelled over Tor. The Tor traffic was labelled into eight different categories
that are described in the following section. They captured a wide range of use
cases, and the data should be representative of real-world traffic.

Traffic categories

ISCXTor2016 [47] captured traffic from the following categories, as they rep-
resent the real-word Internet usage well:

Browsing label denotes HTTP and HTTPS traffic generated while browsing
using Chrome and Firefox browsers.

Email traffic was generated using a Thunderbird client. Mail was delivered
using the SMTP/S, and received using POP3/SSL in one client and
IMAP/SSL in the other.

Chat label represents traffic from instant-messaging applications, generated
using Facebook and Hangouts via web browser, Skype, and IAM and
ICQ using an application called pidgin.

Audio-Streaming identifies audio applications with a continuous stream of
data, represented with traffic generated using Spotify.

Video-Streaming identifies video applications with a continuous stream of
data, represented with traffic captured from YouTube (HTML5 and flash
versions) and Vimeo services using Chrome and Firefox.

FTP class represents applications whose main purpose is to send or receive
files. The captured traffic consists of Skype file transfers, FTP over SSH
and FTP over SSL traffic sessions.

VoIP consists of voice calls captured from Facebook, Hangouts and Skype.

P2P class represents file-sharing protocols, such as BitTorrent. Creators of
the dataset captured traffic sessions using the Vuze application, down-
loading various .torrent files of the Kali Linux distribution, using various
combinations of upload and download speeds.

29



4. Dataset creation and analysis

4.3 Dataset analysis

ISCXTor2016 seems to be a viable basis for the training data. The quality of
the datasets will be analysed in this section. This analysis helps to decide if
the goal can be achieved using this data. The analysis can also discover some
facts that have to be considered when creating the classifiers and can help us
understand the Tor traffic better.

4.3.1 Flow export

The dataset offers both the unprocessed pcap data and the exported flows in
the CSV format using their flow exporter, formerly called ISCXFlowMeter,
known as CICFlowMeter today. For the final classifier to be easily incorpo-
rated in the already existing flow capturing infrastructure used by CESNET,
only the pcap data was used from the dataset, and the same flow exportation
process was used. The trained prototype of a classifier will then accept the
same network flow data CESNET’s system for traffic analysis already uses.

The pcap data from ISCXTor2016 was exported using the ipfixprobe flow
exporter [6], resulting in network flow data based on the IPFIX standard.
Apart from the primary exported fields (storing information such as the source
and destination IP addresses and ports, number of bytes and timestamps),
the PSTATS plugin was used. PSTATS gathers statistics about the first n
(30 by default) packets of the flow, the statistic being the packet lengths,
timestamps, packet directions and TCP flags. As ipfixprobe operates with an
internal binary format called UniRec, the binary data was then logged and
converted to a human-readable CSV format, which can be then analysed.

4.3.2 Tor detection dataset analysis

The first classifier is intended to distinguish between the regular traffic and
the traffic that was tunnelled over the Tor network. The whole dataset was
used and divided into two classes - Tor and NonTor.

The whole dataset consists of 633 flow records of the Tor class and 96,568
records of the NonTor class. Duplicate flow records were then thrown away,
totalling 112 Tor records and 33,827 cases of the NonTor class. After removing
duplicate flows, there are 521 records of the Tor class and 62,741 records of
the NonTor class. This would make this a highly imbalanced dataset, with an
imbalance ratio (proportion of samples of the majority class to the number of
samples of minority class) of 1 : 120. This is an expected behaviour resulting
from how network flows are defined and how tunnelling works. It means that
imbalance should be considered in the training and evaluation of the classifier.

The empty flows were then studied. There aren’t any records without
outgoing traffic; having flows without outgoing traffic could indicate some
errors in the flow exportation or missing data. There aren’t any Tor flows

30



4.3. Dataset analysis

without incoming traffic. The NonTor class differs in this case; there are
7,149 NonTor flows without incoming traffic (circa 11 % of the NonTor data).

The distribution of flow lengths was then analysed and displayed as his-
tograms based on the number of outgoing packets. The flow length distribu-
tion of the NonTor class, shown in figure 4.1, can be compared with the flow
length distribution of the Tor class, shown in figure 4.2.

Figure 4.1: Flow length distribution of the NonTor class

Figure 4.2: Flow length distribution of the Tor class

31



4. Dataset creation and analysis

The most commonly used destination ports were then analysed and the dif-
ferences between the classes compared. As seen in the table 4.1, the majority
of the NonTor data represents communication with destination port assigned
by IANA (Internet Assigned Numbers Authority) to the DNS, HTTP and
HTTPS protocols.

Table 4.1: Most common ports of the NonTor class

Port Count of samples Assigned to by IANA
53 11,997 DNS
443 11,846 HTTPS
80 11,078 HTTP

51413 2,734 Port from dynamic range
9100 2,179 PDL Data Streaming

The destination ports of the Tor class can be seen in the table 4.2. Circa
40 % of the samples communicated with the port 443, assigned to HTTPS.
Majority of the remaining samples used various ports from the dynamic range
or ports unassigned by IANA. Port 80 assigned to HTTP traffic was not
present in the Tor data at all.

Table 4.2: Most common ports of the Tor class

Port Count of samples
443 218
9010 25
49580 24
9001 22
110 20

How the protocols used differ between the classes was studied in the next
part of the analysis. As seen in the table 4.3, Tor traffic uses exclusively the
TCP protocol. On top of TCP, a circa of a third of NonTor traffic was carried
using the UDP protocol.

Table 4.3: Comparison of the protocols between the Tor and NonTor class

(a) NonTor class

Protocol Count of samples
TCP 43640
UDP 19056
ICMP 42
IGMP 3

(b) Tor class

Protocol Count of samples
TCP 521

32



4.3. Dataset analysis

In the end, possible issues with the dataset were searched for. There were
not any flows with missing or illogical values, which would indicate errors in the
flow exportation process. There was not any indication of mis-labelled data
or of systematic errors being brought in because of different data structure
between the classes.

4.3.3 Tor classification dataset analysis

The goal of the second classification model is to classify the traffic carried
over Tor by the type of application that generated the traffic. Only the part
of the dataset capturing Tor traffic will be considered in this section; data
is labelled with eight different traffic classes. The detailed description of the
classes was described in the section 4.2.2. In this stage, the duplicate samples
were already deleted from the dataset.

The imbalance of the dataset was studied first. The numbers of samples
corresponding to the classes can be seen in the table 4.4. The table shows
potential issues the classifier will face as there are not many samples for some
of the classes.

Table 4.4: Counts of records corresponding to Tor traffic classes

Class Count of samples Percentage of samples
Audio-Streaming 68 13 %

Browsing 137 26 %
Chat 28 5 %
FTP 47 9 %
Mail 19 4 %
P2P 56 11 %

Video-Streaming 54 10 %
VoIP 112 21 %

Analysis of destination ports did not discover any useful information, which
is the expected result of Tor tunnelling. All Tor data used TCP protocol, so
the study of protocols was not needed. There were no flows with missing or
illogical values, and there were not any samples without any outgoing traffic
and without any incoming traffic.

Distributions of lengths of the various classes were compared in the next
step. The results can be seen in the figure 4.3 and look like as expected based
on the type of traffic captured.

4.3.4 Analysis results

The dataset was analysed to determine if it is well suited for the classifiers
to be based on. New knowledge about the data was also gained, and some
differences between the classes were discovered.

33



4. Dataset creation and analysis

Figure 4.3: Flow length distribution comparison (Tor classification data)

There have not been found any issues preventing from successfully using
the dataset in the following process. However, some minor caveats were dis-
covered, and they have to be addressed in the training and evaluation of the
classifiers. The data for the Tor detection classifier is highly imbalanced, with
an imbalance ratio of 1 : 120. Because of that, it was experimented with class
weighing in the training process, and stratified k-fold cross-validation was
used. The hyperparameter selection and evaluation of the final classifier was
done more thoroughly and based on more metrics than accuracy. The second

34



4.3. Dataset analysis

classifier will probably face issues because of an insufficient amount of data
samples, which can be especially seen in some classes. To address that issue,
the creators of the dataset experimented in their research [43] with export-
ing the flows with various timeouts, thus shortening the flows and gaining
more data samples. This method can drastically improve the quality of the
final classifier. However, this approach was not used in this research, as the
resulting classifier could not be used for real deployment. In practice, the
parameters have to be stable as they are shared across multiple analysis tools.

The studied flow data proved helpful for analysing the captured traffic
but is not well suited for the classifiers to be trained on. Better suited time-
based features were then extracted from said flow data. On top of that, some
additional features that seem to divide the classes for the Tor detection clas-
sifiers were added to the feature vector. Those features sere mainly designed
around the observable differences in the used destination ports and transport
protocols between Tor and non-Tor traffic.

4.3.5 Flow-based dataset analysis tool

As the task of analysing unknown datasets or comparing data from multiple
sources is often repeated in this type of research, I created a universal tool for
that. The tool is available as two Jupyter notebooks. The first one requires
two data sources, which it then compares; the second one uses a single data
source, which has to be labelled. The required data source is a set of network
flows exported with ipfixprobe with the PSTATS plugin enabled and logged
to the CSV format.

The tool compares the classes based on the two source files or the class
label column and then outputs various statistics. Some of the statistics and
graphs it created can be seen in the previous sections. On top of that, it also
exports a standard time-based feature vector and analyses created features in
various graphs.

35





Chapter 5
Experiments with ML models

5.1 Feature extraction

The procedure of creating training data was done as follows. The pcap data
from the ISCXTor2016 dataset represents the captured traffic used as a basis
for the training data. Ipfixprobe flow exporter (with the PSTATS plugin
enabled) was then used to export the captured packet data into network flows.
The last step in the preparation of data for the machine learning models to be
trained on was the extraction of features describing various traffic statistics
from the network flow data.

Some features can be designed based on knowledge gained from analysing
the dataset, but the majority of features were designed based on the commonly
used statistics of network traffic data. Feature Exploration Toolkit15 (FET)
by Daniel Uhricek offers various ways of analysing and processing network
flow data and also offers the extraction of features. It can be then used to
further analyse and graph out those features, which can lead to the creation of
a better performing machine learning model. Feature Exploration Toolkit was
used for the extraction of commonly used statistical features (described in the
following section) and additional analysis of those features. As most of the
features are time-based, some samples with the duration of communication
shorter than the sampling rate of timestamps had to be removed.

5.1.1 Feature vector

Feature Exploration Toolkit extracts these features from the flow data:

• duration of flow in seconds

• transmitted bytes and packets per second in the forward direction, back-
ward direction and both directions

15can be accessed via: https://gitlab.liberouter.org/uhricdan/fet

37

https://gitlab.liberouter.org/uhricdan/fet


5. Experiments with ML models

• count of following TCP flags and ratio of packets with those flags:

– FIN, SYN, RST, PSH, ACK, URG

• minimum, maximum, mean and standard deviation of these metrics:

– length of packets in the forward direction, backward direction and
both directions

– packet inter-arrival time in the forward direction, backward direc-
tion and both directions

• mean and standard deviation of the normalised inter-arrival times in the
forward direction, backward direction and both directions (Normalised
inter-arrival times are calculated as either zero for inter-arrival times
shorter than a specified margin and one in the other case)

5.1.2 Feature selection

As described in [48], feature selection is a process that can improve the per-
formance and training speed of machine learning models by removing some of
the features. Because of that, it was experimented with feature selection in
the creation of the classifiers. The field of study surrounding feature selection
is quite complex and there exists plenty of approaches; These two methods
were chosen:

• Feature ranking was used to determine how much the features attribute
to the quality of the classifiers. The worst performing features were not
used in the final feature vector.

• Highly correlated features were removed as they provide little additional
information and can potentially cause some issues in the final quality.

5.2 Models used

It was experimented with a large variety of common machine learning models
to determine which ones are best suited for this specific task. Which models
offered the highest quality results can also give us some useful information
about the distribution of the data, how well is it linearly separable etc. For
every model, it was searched for the best performing hyperparameters (decided
using the F-score metric) and some models gained better performance after
some data preprocessing specific to those models. For assessing the qualitative
differences between the models, stratified 5-fold cross-validation was used. The
performance of those models was then evaluated and the best performing one
chosen for the software prototype. It was experimented with the following
surpervised learning models; used data preprocessing approaches described
for the specific models.

38



5.3. Tor detection classifier

Decision tree, Random forest, AdaBoost

K-nearest neighbours — it was experimented with using PCA dimension-
ality reduction and data normalization — rescaling every feature to the
interval < 0, 1 >.

Naive Bayes

Logistic regression — the data was preprocessed using standardisation —
changing the distribution to have a mean of zero and a standard devia-
tion of one.

Support vector machines — preprocessed using standardisation.

Scikit-learn is a popular open-source machine learning library for the
Python language, and it offers a vast range of machine learning models and
tools for data preprocessing, model evaluation etc. Because of that, it was
chosen for the machine learning experiments in this work. The experiments
were done inside the Jupyter Notebook environment, which offers the creation
of interactive documents containing code (Python code in this work), text and
visualisations.

5.3 Tor detection classifier

5.3.1 Feature vector

Feature Exploration Toolkit was used for extracting the majority of used fea-
tured from the flow data. These extracted features can be seen in the previous
section. On top of that, it was experimented with several other features based
on the discovered facts from the dataset analysis in section 4.3. The additional
features are as follows:

• Protocol feature is set to one for the traffic using the TCP protocol and
zero for the other protocols

• Port DNS feature is true when the destination port was 53, which is
assigned to DNS

• Port HTTP feature is true when the destination port was 80, which is
assigned to HTTP

• Port HTTPS feature is true when the destination port was 443, which is
assigned to HTTPS

• Port Dynamic feature is true when the destination port was from the
dynamic/private range

39



5. Experiments with ML models

5.3.2 Results

The performance of the various models was analysed based on the mean of
metrics from the 5-fold cross-validation. Note that the training dataset is
heavily imbalanced, with the majority class — NonTor — being roughly a
hundred times more represented than the minority one in the dataset. Because
of that, the model selection focuses on the metrics of the minority class —
Tor. The comparison of the validation F-scores of the Tor class of the various
models can be seen in the figure 5.1.

Figure 5.1: Tor detection classifier model ranking by F-score

The graph shows that ensemble models based on decision trees and decision
trees themselves are among the best performing models based on this metric.
Logistic regression and Naive Bayes, especially, do not seem to be suitable
models for this specific task based on this metric. Additional assessments can
be done using the table 5.1, showing the validation accuracy and the precision,
recall and F-Score of the Tor class.

Table 5.1: Comparison of the Tor detection models; The following metrics are
shown: validation accuracy, and the precision, recall and F-Score of the Tor
class.

Model Accuracy Precision Recall F-Score
Decision tree 0.9980 0.9122 0.8747 0.8931

Random forest 0.9978 0.8469 0.9425 0.8921
AdaBoost 0.9993 0.9870 0.9384 0.9621

K-nearest neighbours 0.9975 0.9011 0.8234 0.8605
Naive Bayes 0.9551 0.1395 0.7269 0.2341

Logistic regression 0.9793 0.3089 0.9670 0.4682
Support vector machines 0.9958 0.7268 0.8850 0.7981

40



5.4. Tor traffic category classifier

The table shows that accuracy does not capture the final quality of the
models well in this case of a heavily imbalanced dataset. Because of that, ad-
ditional metrics were used for assessing the performance of the various models.
Naive Bayes is shown not to be a fitting model for this type of classification
problem, showing the worst performance in every metric. Decision tree and
random forest demonstrated decent results, having fairly similar performance,
with the difference in focus on precision or recall. However, AdaBoost man-
ifested the best results in the majority of metrics, being beaten only in the
recall metric.

The logistic regression model was measured to have the best recall of the
Tor class. However, it was also measured to have the second-worst precision
and thus was not considered to be a quality model for this specific task. This
is an example of how the precision and recall metrics are connected. Usually,
improving precision leads to worsening recall and vice versa, and some com-
promise sometimes has to be made, for example, based on the knowledge of
the classified problem. The same decision, usually based on some additional
knowledge, has to be made when comparing models showing roughly the same
F-score and precision but noticeably differing in their focus on recall or preci-
sion. However, the decision was fairly clear in this case. Even though logistic
regression model has managed to discover a few per cent more Tor samples
(indicated by the better recall) than the AdaBoost model, its classification
of Tor is not trustworthy as most of the samples classified as Tor were false
positives. AdaBoost was considered to be the best performing model for the
Tor detection task and thus was chosen for the software prototype.

5.4 Tor traffic category classifier

5.4.1 Feature vector

Only the feature vector generated by the Feature Exploration Toolkit was used
in the creation of this classifier. As with the Tor detection classifier, a feature
selection was done, eliminating the correlated and low-ranking features.

5.4.2 Results

As with the previous classifier, a 5-fold cross-validation was used for assessing
the performance of the classifiers. The comparison of the weighted average of
the F-scores can be seen in the figure 5.2.

The graph shows that the order of the best performing models is fairly
similar as in the case of Tor detection classifier, with the exception of the
decision tree model. As in the case of the first classifier, additional evaluation
was done to determine which model to use in the software prototype. The
weighted validation precision, recall and F-score of the models can be seen

41



5. Experiments with ML models

Figure 5.2: Tor traffic category classifier model ranking by F-score

in the table 5.2. The accuracy is not specifically shown in that table as the
weighted recall provides virtually the same metric.

Table 5.2: Comparison of the Tor classification models; The following metrics
are shown: weighted validation precision, recall and F-score.

Model Precision Recall F-Score
Decision tree 0.5892 0.5646 0.5561

Random forest 0.6428 0.6112 0.6086
AdaBoost 0.6844 0.6485 0.6465

K-nearest neighbours 0.5923 0.5784 0.5650
Naive Bayes 0.5116 0.2944 0.2548

Logistic regression 0.5120 0.4947 0.4924
Support vector machines 0.5738 0.5255 0.5367

Ensemble models with the decision tree as their base classifier proved to
be the best performing. As with the previous classifier, it was shown that
Naive Bayes isn’t a suitable model for this type of data. AdaBoost is once
again the best performing model, showing the best results in all the measured
metrics. The results clearly indicate that AdaBoost should be used for the
software prototype.

42



Chapter 6
Outcomes of the thesis

6.1 Software prototype

In the task of creating two classification models — Tor detection classifier and
Tor traffic category classifier — it was experimented with a large variety of
supervised learning models. After assessing the performance of those models,
the best performing model for each classifier was then chosen. The AdaBoost
model proved to be the most suitable in both cases. The software prototype
was created based on those highest performing models.

Software prototype is available in the form of a python command-line
program. The chosen best performing models were saved in an already trained
state, prepared to classify unknown data. As is described in [49], there are
several ways of persistently storing trained machine learning models, such
as using Python’s built-in persistence model from the module called pickle
or using the joblib library. Joblib was chosen as it is described to be more
efficient in saving machine learning models from scikit-learn. At this time,
the result is a simple prototype designed for showcasing the created classifier.
A more complex application or incorporation into an existing network flow
analysis solution can be made in future work.

The required data input for the prototype is a set of network flows exported
by the ipfixprobe flow exporter. The flow exporter has enabled PSTATS plugin
and the output is converted into the CSV format. The application can then
use the Tor detection model, Tor category classification model or a mix of
both. In a hybrid mode, it filters the Tor traffic using the detection model,
and then uses the category classification model on the discovered Tor traffic.
The prototype is operated using the following arguments:

--input (-i) input file.csv — Mandatory argument for specifying the path to
the network flows in the CSV format

--output (-o) output file.csv — When the output argument is present, pre-
dicted labels will be added to the flow data and stored at the specified

43



6. Outcomes of the thesis

location. The predicted labels are printed to the standard output when
no output location is given.

--mode (-m) detect/classify/hybrid — Mandatory argument for selecting
which classifier will be used

6.2 Evaluation

Machine learning experiments with various supervised learning models were
designed and carried out, as described in the previous chapter. The perfor-
mance of those various models was then assessed, and the most suitable model
chosen; AdaBoost performed the best in both cases. This chapter further eval-
uates the performance of the final models (with the metrics measured using a
5-fold cross-validation) and compares it with the results from research of the
creators of the ISCXTor2016 dataset.

6.2.1 Tor detection classifier

First impressions from the comparison of models for Tor detection in the
preceding chapter are that machine learning offers an effective approach for
detecting Tor based on its traffic characteristics. To support this claim, ad-
ditional evaluation was done and described in this section. Table 6.1 shows
the precision, recall and F-score of all the classes and their weighted average.
Confusion matrix, shown in the figure 6.1, can be used for understanding what
types of miss-classification were made by the model.

Table 6.1: Metrics of the AdaBoost model for Tor detection

Class Precision Recall F-Score
NonTor 0.9994 0.9999 0.9996

Tor 0.9870 0.9384 0.9621
Weighted average 0.9993 0.9993 0.9993

It is shown that the detection of Tor is very precise and reliable as only
circa 0.01 % of NonTor flows were misclassified to be of Tor class. Most of the
model’s misclassifications come from some Tor samples not being detected. If
the classifier performs the same on the real-world data, some minority of Tor
traffic would not be detected by the final tool, but the decision of the tool
could be relied on.

The final Tor detection classifier was compared with the classifier from the
creators of ISCXTor2016, described in their work in [43]. For that comparison,
see the table 6.2. My classifier shows a slightly better recall and noticeably
better precision. To conclude, the final classifier seems to represent a suitable
approach to detecting Tor traffic as it performed well and even better than
the classifier from the creators of the original dataset.

44



6.2. Evaluation

Figure 6.1: Tor detection classifier confusion matrix

Table 6.2: Comparison of my Tor detection classifier with existing solutions;
precision, recall and F-score of the Tor class are shown; my classifier is com-
pared with the classifier from [43]

Classifier Precision Recall F-Score
My 0.9870 0.9384 0.9621

ISCXTor2016 0.9487 0.9343 0.9410

6.2.2 Tor traffic category classifier

A further assessment of the AdaBoost model for Tor traffic category classi-
fication is described in this section. One approach for that is studying the
precision and recall of all the classes. It shows which classes are tricky to de-
tect or are being falsely detected. Table 6.3 show said comparison of metrics.
Studying the confusion matrix (see figure 6.2) also helps better understand-
ing which classes were being mistaken for each other, among other possible
findings.

The following findings were derived from the confusion matrix and the met-
rics of all the classes. The classifier was most successful in detecting the VoIP
class, shown by the highest precision and recall. Browsing class presented the
second-best recall. On the other hand, it also had the worst precision. It can
be seen that all the classes had some noticeable percentage of samples mis-
takenly classified as the Browsing class. In the case of Chat and Mail classes,
less than half of related samples was correctly classified. The majority of Chat
data was misclassified as Browsing. Most of the remaining classes showed no
noteworthy trend, with the metrics being close to the average.

The table 6.4 shows the comparison between my Tor traffic classifier and
the classifier from the creators of ISCXTor2016. In their research [43], they
used the same classes, so the results are directly comparable. It can be seen

45



6. Outcomes of the thesis

Table 6.3: Metrics of the AdaBoost model for Tor traffic category classification

Class Precision Recall
Audio 0.6176 0.6364

Browsing 0.5535 0.7323
Chat 0.6428 0.3462

File transfer 0.6470 0.5238
Mail 0.7000 0.4118
P2P 0.6923 0.6923

Video 0.6136 0.5510
VoIP 0.9077 0.7763

Weighted average 0.6844 0.6485

Figure 6.2: Tor traffic category classifier confusion matrix

that their performance is substantially higher in all the metrics. This finding
confirms the suspicion that the Tor dataset based on ISCXTor2016 was not
large enough for creating a classifier that manages to generalise the problem
well. The approach of the creators of ISCXTor2016 of shortening the flows was
not feasible in this work as the created classifier could not be used in practice,
where the exportation parameters are shared across multiple analysis modules.

46



6.2. Evaluation

Table 6.4: Comparison of my Tor traffic category classifier with existing solu-
tions; weighted precision, recall and F-score are shown; my classifier is com-
pared with the classifier from [43]

Classifier Precision Recall F-Score
My 0.6844 0.6485 0.6465

ISCXTor2016 0.8430 0.8380 0.8404

To sum up, this work showed that even-though Tor uses encryption, its
traffic can be classified by analysing various statistical properties. The work
demonstrated how Tor users should be aware that Tor’s encryption and tun-
neling process does not completely prevent all ways of analysing their activity.
However, the final performance of the classifier is hampered by the dataset
not being large enough and it did not reach its full potential. In future work,
capturing a more extensive dataset would yield a more reliable Tor traffic
category classification tool.

47





Conclusion

This bachelor’s thesis dealt with ways of using supervised learning methods for
detecting the traffic of the Tor network and classifying it into multiple traffic
categories. The first part of the research described the different approaches
for network traffic analysis — either based on analysing packets or network
flows. A modern approach for network traffic analysis is using various machine
learning techniques. An overview of the field of machine learning was also done
in this thesis. The functionality and traffic of Tor were studied in the next
part, and existing works into Tor detection and classification were investigated.

For the creation of the machine learning models, a dataset of labelled Tor
traffic had to be created. Options of basing the dataset on some publicly
available data were researched. One of the researched works into Tor classi-
fication made their dataset called ISCXTor2016 [43] publicly available. The
raw packet capture data from ISCXTor2016 was exported into the format of
network flows using the ipfixprobe flow exporter. An analysis of this existing
data was done to decide if this data sufficed the needs of this work and gain
more knowledge about the workings of Tor. It was found out that the dataset
is more or less sufficient for the training data to be based on, with the only
issue being the lack of samples for the Tor traffic category classification.

A feature vector based on extracting various statistics from the network
flows was then designed. Part of the features was using a standard set of
various time-based features and features based on the TCP flags. Additional
features were based on the knowledge gained from the dataset analysis. The
work dealt with two different classification problems – distinguishing between
Tor traffic and regular traffic outside the Tor network and classifying the Tor
traffic into several categories by the type of traffic. For both of the prob-
lems, it was then experimented with a variety of supervised learning models.
The performance of those models was then assessed to determine which model
to use as the final classifier. AdaBoost ensemble model with decision trees as
its base learners proved to be the best performing in both cases, so they were
then stored and used in a software prototype.

49



Conclusion

The final classifiers were then further analysed, and the findings discussed.
In the case of Tor traffic detection, machine learning offers a viable approach.
The classifier managed to detect 94 % of Tor samples and was 99 % precise
in those decisions, with the F-score being 96 %. The misclassifications of
regular traffic samples as Tor traffic happened only for roughly one in every
10,000 non-Tor samples. My classifier showed a better performance than the
classifier from the creators of ISCXTor2016. Throughout the existence of
the Tor network, there have been censorship attempts of restricting access to
it by some governments. This makes a compelling incentive for additional
research in some future work of how these techniques prevent my method of
Tor detection as Tor can be made to obfuscate its traffic characteristics using
so-called pluggable transports.

The second classifier was designed to distinguish between several Tor traffic
categories, such as web browsing, file transfer and video streaming. As Tor
encrypts its traffic and passes it around multiple routers, it could seem that
knowledge of what the user does is protected. This work demonstrates that
machine learning algorithms can analyse various statistical properties of the
traffic and use them to detect the type of Tor traffic somewhat effectively.
The performance of the final model which classifies Tor traffic into eight trafic
categories was measured to have the weighed precision of 68 %, recall of 65 %
and F-score of 65 %. Its performance was hindered by dataset not being
large enough for the classifier to properly generalise the problem. Creating
a larger dataset of Tor traffic in the future can lead to a significantly better
performance of the classifier.

For now, the created classifiers can be used in a software prototype. The
next logical step is the real deployment of the classifier and its incorporation
into other analysis tools. It was shown how well the classifiers behaves in
some presumably controlled environment. For the creation of more complex
software tool in the future, additional capturing of more sources of data repre-
senting real life traffic should be done. This will result in a more reliable tool,
which would better generalise the Tor detection and classification problems
and would be tested on multiple independent data sources.

50



Bibliography

1. DERI, L.; MARTINELLI, M.; BUJLOW, T.; CARDIGLIANO, A. nDPI:
Open-source high-speed deep packet inspection. In: 2014 International
Wireless Communications and Mobile Computing Conference (IWCMC).
2014, pp. 617–622. Available from DOI: 10.1109/IWCMC.2014.6906427.

2. FUCHS, Christian. SOCIETAL AND IDEOLOGICAL IMPACTS OF
DEEP PACKET INSPECTION INTERNET SURVEILLANCE. Infor-
mation, Communication & Society. 2013, vol. 16, no. 8, pp. 1328–1359.
Available from DOI: 10.1080/1369118X.2013.770544.

3. SANDERS, Chris. Packet Analysis and Network Basics. In: Practical
packet analysis: Using Wireshark to solve real-world network problems.
No Starch Press, 2017, chap. 1. ISBN 978-1593278021.

4. ŽÁDNÍK, Martin. Network Monitoring Based on IP Data Flows. Best
Practice Document GN3-NA3-T4-CBPD131. 2010.

5. FLOWMON. NetFlow / IPFIX Monitoring [online] [visited on 2021-05-
01]. Available from: https://www.flowmon.com/en/solutions/networ
k-and-cloud-operations/netflow-ipfix.

6. GITHUB – CESNET. ipfixprobe - IPFIX flow exporter [online] [visited
on 2021-05-01]. Available from: https://github.com/CESNET/ipfixpr
obe.

7. NGUYEN, Thuy T.T.; ARMITAGE, Grenville. A survey of techniques
for internet traffic classification using machine learning. IEEE Communi-
cations Surveys Tutorials. 2008, vol. 10, no. 4, pp. 56–76. Available from
DOI: 10.1109/SURV.2008.080406.

8. MÜLLER, Andreas; GUIDO, Sarah. Introduction to machine learning
with Python: a guide for data scientists. O’Reilly Media, Inc., 2016. ISBN
978-1449369415.

51

http://dx.doi.org/10.1109/IWCMC.2014.6906427
http://dx.doi.org/10.1080/1369118X.2013.770544
https://www.flowmon.com/en/solutions/network-and-cloud-operations/netflow-ipfix
https://www.flowmon.com/en/solutions/network-and-cloud-operations/netflow-ipfix
https://github.com/CESNET/ipfixprobe
https://github.com/CESNET/ipfixprobe
http://dx.doi.org/10.1109/SURV.2008.080406


Bibliography

9. FERNANDES DE MELLO, Rodrigo; ANTONELLI PONTI, Moacir. A
Brief Review on Machine Learning. In: Machine Learning: A Practical
Approach on the Statistical Learning Theory. Springer International Pub-
lishing, 2018, pp. 1–74. ISBN 978-3-319-94989-5. Available from DOI: 1
0.1007/978-3-319-94989-5_1.

10. FÜRNKRANZ, Johannes. Decision Tree. In: Encyclopedia of Machine
Learning. Ed. by SAMMUT, Claude; WEBB, Geoffrey I. Springer US,
2010, pp. 263–267. ISBN 978-0-387-30164-8. Available from DOI: 10.10
07/978-0-387-30164-8_204.

11. BROWN, Gavin. Ensemble Learning. In: Encyclopedia of Machine Learn-
ing. Ed. by SAMMUT, Claude; WEBB, Geoffrey I. Springer US, 2010,
pp. 312–320. ISBN 978-0-387-30164-8. Available from DOI: 10.1007/97
8-0-387-30164-8_252.

12. SCIKIT LEARN. Ensemble methods [online] [visited on 2021-04-11]. Avail-
able from: https://scikit-learn.org/stable/modules/ensemble.h
tml.

13. CAPEK, M.; DEDECIUS, K.; KLOUDA, K. kNN and Cross-validation
technique. In: Data Mining [online]. FIT, CTU, 2020 [visited on 2021-
04-11]. Available from: https://courses.fit.cvut.cz/BIE-VZD/lect
ures/files/2020/05/BI-VZD-05-en-slides.pdf.

14. WEBB, Geoffrey I. Näıve Bayes. In: Encyclopedia of Machine Learn-
ing. Ed. by SAMMUT, Claude; WEBB, Geoffrey I. Springer US, 2010,
pp. 713–714. ISBN 978-0-387-30164-8. Available from DOI: 10.1007/97
8-0-387-30164-8_576.

15. CAPEK, M.; KLOUDA, K. Logistic regression. In: Data Mining [online].
FIT, CTU, 2020 [visited on 2021-04-11]. Available from: https://cour
ses.fit.cvut.cz/BIE-VZD/lectures/files/2020/09/BI-VZD-09-en
-slides.pdf.

16. ZHANG, Xinhua. Support Vector Machines. In: Encyclopedia of Machine
Learning. Ed. by SAMMUT, Claude; WEBB, Geoffrey I. Springer US,
2010, pp. 941–946. ISBN 978-0-387-30164-8. Available from DOI: 10.10
07/978-0-387-30164-8_804.

17. SCIKIT LEARN. Metrics and scoring: quantifying the quality of predic-
tions [online] [visited on 2021-04-11]. Available from: https://scikit-
learn.org/stable/modules/model_evaluation.html.

18. THE TOR PROJECT, INC. Tor: Overview [online] [visited on 2021-03-
30]. Available from: https://2019.www.torproject.org/about/overv
iew.html.en.

52

http://dx.doi.org/10.1007/978-3-319-94989-5_1
http://dx.doi.org/10.1007/978-3-319-94989-5_1
http://dx.doi.org/10.1007/978-0-387-30164-8_204
http://dx.doi.org/10.1007/978-0-387-30164-8_204
http://dx.doi.org/10.1007/978-0-387-30164-8_252
http://dx.doi.org/10.1007/978-0-387-30164-8_252
https://scikit-learn.org/stable/modules/ensemble.html
https://scikit-learn.org/stable/modules/ensemble.html
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/05/BI-VZD-05-en-slides.pdf
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/05/BI-VZD-05-en-slides.pdf
http://dx.doi.org/10.1007/978-0-387-30164-8_576
http://dx.doi.org/10.1007/978-0-387-30164-8_576
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/09/BI-VZD-09-en-slides.pdf
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/09/BI-VZD-09-en-slides.pdf
https://courses.fit.cvut.cz/BIE-VZD/lectures/files/2020/09/BI-VZD-09-en-slides.pdf
http://dx.doi.org/10.1007/978-0-387-30164-8_804
http://dx.doi.org/10.1007/978-0-387-30164-8_804
https://scikit-learn.org/stable/modules/model_evaluation.html
https://scikit-learn.org/stable/modules/model_evaluation.html
https://2019.www.torproject.org/about/overview.html.en
https://2019.www.torproject.org/about/overview.html.en


Bibliography

19. CHAABANE, A.; MANILS, P.; KAAFAR, M. A. Digging into Anony-
mous Traffic: A Deep Analysis of the Tor Anonymizing Network. In: 2010
Fourth International Conference on Network and System Security. 2010,
pp. 167–174. Available from DOI: 10.1109/NSS.2010.47.

20. MEDIA.CCC.DE. Dr Gareth Owen: Tor: Hidden Services and Deanony-
misation [online]. 2015 [visited on 2021-03-30]. Available from: https:
//www.youtube.com/watch?v=-oTEoLB-ses.

21. MOORE, Daniel; RID, Thomas. Cryptopolitik and the Darknet. Sur-
vival. 2016, vol. 58, no. 1, pp. 7–38. Available from DOI: 10.1080/0039
6338.2016.1142085.

22. REED, M.G.; SYVERSON, P.F.; GOLDSCHLAG, D.M. Anonymous
connections and onion routing. IEEE Journal on Selected Areas in Com-
munications. 1998, vol. 16, no. 4, pp. 482–494. Available from DOI: 10.1
109/49.668972.

23. DINGLEDINE, Roger; MATHEWSON, Nick; SYVERSON, Paul. Tor:
The second-generation onion router. 2004. Technical report. Naval Re-
search Lab Washington DC.

24. THE ONION ROUTER. A Brief History of Onion Routing [online] [vis-
ited on 2021-03-30]. Available from: https://www.onion-router.net
/History.html.

25. THE TOR PROJECT, INC. Tor: History [online] [visited on 2021-03-
30]. Available from: https://www.torproject.org/about/history/.

26. LEVINE, Yasha. Almost Everyone Involved in Developing Tor was (or
is) Funded by the US Government [online]. 2014 [visited on 2021-03-30].
Available from: https://pando.com/2014/07/16/tor-spooks/.

27. THE TOR PROJECT, INC. Tor metrics: Servers [online] [visited on
2021-04-03]. Available from: https://metrics.torproject.org/netwo
rksize.html.

28. THE TOR PROJECT, INC. Tor metrics: Traffic [online] [visited on
2021-04-03]. Available from: https://metrics.torproject.org/bandw
idth.html.

29. THE TOR PROJECT, INC. Tor metrics: Users [online] [visited on 2021-
04-03]. Available from: https://metrics.torproject.org/userstats
-relay-country.html.

30. THE TOR PROJECT, INC. Tor metrics: Users by country [online] [vis-
ited on 2021-04-03]. Available from: https://metrics.torproject.or
g/userstats-relay-table.html.

31. THE ONION ROUTER. The Onion Routing Solution [online] [visited
on 2021-03-30]. Available from: https://www.onion-router.net/Summ
ary.html.

53

http://dx.doi.org/10.1109/NSS.2010.47
https://www.youtube.com/watch?v=-oTEoLB-ses
https://www.youtube.com/watch?v=-oTEoLB-ses
http://dx.doi.org/10.1080/00396338.2016.1142085
http://dx.doi.org/10.1080/00396338.2016.1142085
http://dx.doi.org/10.1109/49.668972
http://dx.doi.org/10.1109/49.668972
https://www.onion-router.net/History.html
https://www.onion-router.net/History.html
https://www.torproject.org/about/history/
https://pando.com/2014/07/16/tor-spooks/
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/networksize.html
https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/bandwidth.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-country.html
https://metrics.torproject.org/userstats-relay-table.html
https://metrics.torproject.org/userstats-relay-table.html
https://www.onion-router.net/Summary.html
https://www.onion-router.net/Summary.html


Bibliography

32. THE TOR PROJECT, INC. Tor Metrics: Authority relays [online] [vis-
ited on 2021-04-01]. Available from: https://metrics.torproject.or
g/rs.html#search/flag:authority.

33. THE TOR PROJECT, INC. Tor Manual: Bridges [online] [visited on
2021-04-01]. Available from: https://tb-manual.torproject.org/bri
dges/.

34. THE TOR PROJECT, INC. Tor: Pluggable Transports [online] [visited
on 2021-04-01]. Available from: https://2019.www.torproject.org/d
ocs/pluggable-transports.html.en.

35. CROMBÉ, Henri; DECLERCQ, Mallory; PEREIRA, Olivier; CANINI,
Marco; ROCHET, Florentin. Correlation attacks on the Tor network.
2016. Master’s thesis, École polytechnique de Louvain (EPL).

36. THE TOR PROJECT, INC. Tor: Onion Service Protocol [online] [visited
on 2021-04-01]. Available from: https://2019.www.torproject.org/d
ocs/onion-services.html.en.

37. THE TOR PROJECT, INC. Tor: Software and Services [online] [visited
on 2021-04-01]. Available from: https://2019.www.torproject.org/p
rojects/projects.html.en.

38. THE TOR PROJECT, INC. Tor Mobile [online] [visited on 2021-04-01].
Available from: https://support.torproject.org/tormobile/.

39. JOHNSON, Aaron; WACEK, Chris; JANSEN, Rob; SHERR, Micah;
SYVERSON, Paul. Users Get Routed: Traffic Correlation on Tor by
Realistic Adversaries. In: Association for Computing Machinery, 2013.
ISBN 9781450324779. Available from DOI: 10.1145/2508859.2516651.

40. NASR, Milad; BAHRAMALI, Alireza; HOUMANSADR, Amir. Deep-
Corr: Strong Flow Correlation Attacks on Tor Using Deep Learning.
In: Association for Computing Machinery, 2018. ISBN 9781450356930.
Available from DOI: 10.1145/3243734.3243824.

41. GHAFIR, I.; SVOBODA, J.; PRENOSIL, V. Tor-based malware and Tor
connection detection. In: International Conference on Frontiers of Com-
munications, Networks and Applications (ICFCNA 2014 - Malaysia).
2014, pp. 1–6. Available from DOI: 10.1049/cp.2014.1411.

42. CUZZOCREA, A.; MARTINELLI, F.; MERCALDO, F.; VERCELLI,
G. Tor traffic analysis and detection via machine learning techniques.
In: 2017 IEEE International Conference on Big Data (Big Data). 2017,
pp. 4474–4480. Available from DOI: 10.1109/BigData.2017.8258487.

43. HABIBI LASHKARI, Arash; DRAPER GIL, Gerard; MAMUN, Mo-
hammad; GHORBANI, Ali. Characterization of Tor Traffic using Time
based Features. In: 2017, pp. 253–262. Available from DOI: 10.5220/00
06105602530262.

54

https://metrics.torproject.org/rs.html#search/flag:authority
https://metrics.torproject.org/rs.html#search/flag:authority
https://tb-manual.torproject.org/bridges/
https://tb-manual.torproject.org/bridges/
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/onion-services.html.en
https://2019.www.torproject.org/docs/onion-services.html.en
https://2019.www.torproject.org/projects/projects.html.en
https://2019.www.torproject.org/projects/projects.html.en
https://support.torproject.org/tormobile/
http://dx.doi.org/10.1145/2508859.2516651
http://dx.doi.org/10.1145/3243734.3243824
http://dx.doi.org/10.1049/cp.2014.1411
http://dx.doi.org/10.1109/BigData.2017.8258487
http://dx.doi.org/10.5220/0006105602530262
http://dx.doi.org/10.5220/0006105602530262


Bibliography

44. HE, Gaofeng; YANG, Ming; LUO, Junzhou; GU, Xiaodan. A novel appli-
cation classification attack against Tor. Concurrency and Computation:
Practice and Experience. 2015, vol. 27, no. 18, pp. 5640–5661. Available
from DOI: https://doi.org/10.1002/cpe.3593.

45. SHAHBAR, K.; ZINCIR-HEYWOOD, A. N. Benchmarking two tech-
niques for Tor classification: Flow level and circuit level classification.
In: 2014 IEEE Symposium on Computational Intelligence in Cyber Se-
curity (CICS). 2014, pp. 1–8. Available from DOI: 10.1109/CICYBS.20
14.7013368.

46. SHAHBAR, Khalid; ZINCIR-HEYWOOD, A Nur. Packet momentum
for identification of anonymity networks. Journal of Cyber Security and
Mobility. 2017, pp. 27–56. Available from DOI: 10.13052/2245-1439.6
12.

47. CANADIAN INSTITUTE FOR CYBERSECURITY [online] [visited on
2021-04-17]. Available from: https://www.unb.ca/cic/datasets/tor
.html.

48. LIU, Huan. Feature Selection. In: Encyclopedia of Machine Learning. Ed.
by SAMMUT, Claude; WEBB, Geoffrey I. Springer US, 2010, pp. 402–
406. ISBN 978-0-387-30164-8. Available from DOI: 10.1007/978-0-387
-30164-8_306.

49. SCIKIT LEARN. Model persistence [online] [visited on 2021-05-03]. Avail-
able from: https://scikit-learn.org/stable/modules/model_pers
istence.html.

55

http://dx.doi.org/https://doi.org/10.1002/cpe.3593
http://dx.doi.org/10.1109/CICYBS.2014.7013368
http://dx.doi.org/10.1109/CICYBS.2014.7013368
http://dx.doi.org/10.13052/2245-1439.612
http://dx.doi.org/10.13052/2245-1439.612
https://www.unb.ca/cic/datasets/tor.html
https://www.unb.ca/cic/datasets/tor.html
http://dx.doi.org/10.1007/978-0-387-30164-8_306
http://dx.doi.org/10.1007/978-0-387-30164-8_306
https://scikit-learn.org/stable/modules/model_persistence.html
https://scikit-learn.org/stable/modules/model_persistence.html




Appendix A
Acronyms

CSV Comma-separated values

DARPA Defense Advanced Research Projects Agency

DNS Domain Name Server

DPI Deep packet inspection

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IANA Internet Assigned Numbers Authority

IETF Internet Engineering Task Force

IP Internet Protocol

IPFIX Internet Protocol Flow Information Export

ISP Internet service provider

KNN K-nearest neighbours

MAC Media Access Control

ML Machine learning

OR Onion router

OSI Open Systems Interconnection

P2P Peer-to-peer

PDL Page description language

SVMs Support vector machines

57



A. Acronyms

TCP Transmission Control Protocol

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

58



Appendix B
Contents of the SD card

readme.txt...................description of the contents of the SD card
text..........................................the thesis text directory

thesis.pdf...........................the thesis text in PDF format
thesis..............the directory of LATEX source codes of the thesis

experiments ............... Jupyter notebooks used for the experiments
software....................software prototype and the trained models

Tor classifier.py..........Python script of the software prototype
data..............................the directory of the training datasets

59


	Introduction
	Structure of the Thesis

	Traffic analysis
	Individual packet inspection
	Packet inspection methods
	Packet capturing

	Flow-based analysis
	Network flow standards
	Capturing flows
	Flow analysis examples

	Traffic analysis by machine learning

	Machine learning
	Introduction
	Paradigms
	Supervised learning
	Unsupervised learning

	Classification models
	Decision tree
	Random forests
	AdaBoost
	K-nearest neighbours
	Naive Bayes
	Logistic regression
	Support vector machines

	Evaluation
	Classification quality metrics
	Confusion matrix
	Cross-validation


	Tor
	Introduction
	Design goals
	Onion routing
	Onion services
	Ways of accessing Tor
	Works detecting and classifying Tor
	Tor detection
	Tor classification


	Dataset creation and analysis
	Dataset requirements
	Available sources
	Anon 17
	ISCXTor2016

	Dataset analysis
	Flow export
	Tor detection dataset analysis
	Tor classification dataset analysis
	Analysis results
	Flow-based dataset analysis tool


	Experiments with ML models
	Feature extraction
	Feature vector
	Feature selection

	Models used
	Tor detection classifier
	Feature vector
	Results

	Tor traffic category classifier
	Feature vector
	Results


	Outcomes of the thesis
	Software prototype
	Evaluation
	Tor detection classifier
	Tor traffic category classifier


	Conclusion
	Bibliography
	Acronyms
	Contents of the SD card

