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Abstract
The requirements put on embedded sys-
tems are ever-increasing. As these sys-
tems are being tasked with handling
an increasing number of safety-critical
tasks, their reliability must be guaran-
teed. It is therefore vital to prevent them
from overheating. In this thesis, we ex-
plore thermal-aware scheduling of periodic
safety-critical workloads to isolation win-
dows. We propose an empirical model
for estimating power consumption of an
MPSoC based system that allows us to for-
mulate the scheduling problem as an ILP
optimization problem for minimizing the
system’s power consumption, which leads
to minimization of the system’s steady-
state temperature. We design and imple-
ment software to help us prepare exper-
iments to evaluate our method. Subse-
quently, we perform the evaluation of the
method on a hardware platform powered
by the i.MX8 processor supplied by NXP.
The results show that schedules produced
by our method can result in steady-state
temperatures lower by up to 12% when
compared to other tested methods and
around 3% lower compared to a method
adapted from literature. We also show
how changing a schedule length can af-
fect the steady-state temperature of the
system.

Keywords: offline scheduling,
thermal-aware scheduling, thermal-aware
task mapping, MPSoC, safety-critical
workloads, isolation windows, ARINC
653

Supervisor: Ing. Ondřej Benedikt

Abstrakt
Požadavky kladené na vestavěné systémy
se stále zvyšují. Vzhledem k tomu, že tyto
systémy obsluhují rostoucí množství úloh
kritických pro bezpečnost, jejich spoleh-
livost musí být zaručena a nesmí proto
docházet k jejich přehřívání. V této práci
se zabýváme rozvrhováním periodických
úloh kritických pro bezpečnost do izolač-
ních oken s ohledem na ustálenou teplotu
systému. Navrhli jsme empirický model
pro odhadování příkonu systému s hete-
rogenní architekturou, který jsme využili
k zformulování naší rozvrhovací úlohy ja-
kožto ILP optimalizačního problému pro
minimalizaci příkonu systému. Minimali-
zací příkonu je možné dosáhnout minima-
lizace ustálené teploty systému. Dále jsme
navrhli a implementovali software, který
nám usnadnil přípravu experimentů pro
vyhodnocení kvality naší metody. Kvalitu
této metody jsme následně vyhodnotili na
hardwarové platformě s procesorem i.MX8
od NXP. Výsledky ukázaly, že rozvrhy vy-
tvořené naší metodou dosáhly ustálených
teplot nižších až o 12% v porování s ji-
nými testovanými metodami a okolo 3%
nižších než existující rozvrhovací metoda
adaptovaná z literatury. Dále jsme v práci
ukázali, jak délka rozvrhu může ovlivnit
ustálenou teplotu systému.

Klíčová slova: offline rozvrhování,
rozvrhování zohleďnující teploty,
mapování úloh zohleďnující teploty,
MPSoC, bezpečnostně kritické úlohy,
izolační okna, ARINC 653

Překlad názvu: Offline rozvrhování
kritických úloh v rámci časových oken
zajišťujících jejich izolovanost
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Chapter 1
Introduction

As the automotive and avionics industries grow with the technological ad-
vances of recent years, so do the demands on embedded systems. Nowadays,
these systems are being tasked with handling more and more safety-critical
workloads whilst often operating under harsh environmental conditions. As
the workload of these systems increases, so must their performance in order to
satisfy the increasing requirements. However, with the performance increase
the produced waste heat increases as well. Since reliability is one of the
key requirements for systems handling safety-critical workloads, to satisfy it,
the systems must operate within a given thermal envelope. Active cooling
is one of the most straightforward ways to guarantee the thermal envelope.
However, implementing it increases the mechanical complexity which then
results in increased costs. As such, it is beneficial to explore passive cooling
as an alternative approach.

An emerging trend in the hardware platforms used for embedded systems is
the use of so-called Multiprocessor System on a Chip (MPSoC). As the name
suggests, these are chips containing multiple different microprocessor cores.
Usually, the chips consist of cores that share the same instruction set, which
means that the same workload can easily be executed on any of the cores.
One of the possible MPSoC setups is a combination of cores offering high
performance at the cost of high energy demand (resulting in increased heat
produced), with cores that are more energy efficient in exchange for lower
computational performance. On heterogeneous platforms utilizing MPSoCs,
a clever allocation of the workload to the available processor cores can be
used as a passive cooling technique to reduce the system’s temperature.

In this thesis, we explore thermal-aware scheduling of safety-critical work-
loads that are executed periodically. Our main goal is to design, implement
and evaluate a method for creating a schedule in an offline manner, which
minimizes the steady-state temperature of the system. We are interested in
the behavior of real hardware, and thus we rely mostly on experiments and
empirical observations to achieve this goal.

In Chapter 2, we introduce the hardware we use for experiments, explain our
scheduling problem and how we can minimize the steady-state temperature of
the system by minimizing its average power consumption. Next in Chapter 3,
we explore the existing research in the field that is relevant to the problem we
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1. Introduction .....................................
are solving. In Chapter 4 we formalize our problem and introduce the PEWMS
model, which we use to estimate the power consumption of our system. To
find a schedule minimizing the system’s average power consumption with
the use of the PEWMS model, we formulate the task as an optimization
problem with ILP formalism in Chapter 5. In this chapter, we also introduce
alternative methods for creating a schedule, which we use for comparison
with the method based on the PEWMS model.

In Chapter 6, we describe the software tools we created to help us prepare
experiments for the evaluation of our model. We then perform the evaluation
in Chapter 7. We look at the thermal performance of the schedules we
prepared and at the power consumption estimation accuracy of the PEWMS
model. We also perform experiments demonstrating a tradeoff between
schedule length and steady-state temperature of the system in Chapter 8.
We conclude this thesis by summarizing our results and discussing the future
work in Chapter 9.

The main contributions of this work are:. A proposal of a thermal-aware scheduling method for periodic safety-
critical workloads.. An introduction of a model for estimating power consumption based
on empirical observations, which serves as a base for our thermal-aware
scheduling method.. Experimental evaluation of both the scheduling method and the power-
estimation model performed on real hardware.. Assessment of a tradeoff between schedule length and temperature.

2



Chapter 2
Preliminaries

We begin by introducing the hardware platform we use for experimenting in
Section 2.1. Then we present our scheduling model and related terminology
in Section 2.2 and explain the ideas behind thermal-aware scheduling in
Section 2.3 and Section 2.4.

2.1 Hardware platform

The core of our testbed is the i.MX8 QuadMax Multisensory Enablement Kit
(MEK) board supplied by NXP [1]. It is based around the i.MX8 QuadMax
multiprocessor system on a chip (MPSoC), which is the latest generation of
the i.MX MPSoC family from NXP. We chose this particular system as it is
used in numerous areas, including the automotive and avionics domains.

The i.MX8 QuadMax is a representative of ARM’s big.LITTLE architecture
and offers two computing clusters. The first cluster consists of two ARM
Cortex-A72 cores, while the second cluster consists of four ARM Cortex-
A53 cores. The i.MX8 QuadMax also offers two GPUs. However, we only
address thermal-aware scheduling of tasks that do not use them in this thesis.
Figure 2.1 shows a block diagram of the computing cluster arrangement in
the i.MX8 QuadMax chip.

A53 cluster

CPU

32 KB
L1-D

CPU

32 KB
L1-D

CPU

32 KB
L1-D

CPU

32 KB
L1-D

1 MB L2

A72 cluster

CPU

32 KB
L1-D

CPU

32 KB
L1-D

1 MB L2

System bus

Main memory

Figure 2.1: Block diagram of the i.MX8 QuadMax computing cluster arrange-
ment

Our testbed is also equipped with an ambient temperature sensor and an
external power meter module, which we use to measure the power consumption
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2. Preliminaries .....................................
of the MEK board. The power meter module uses the INA219 chip [2] to
measure the power consumption. We use built-in sensors of the i.MX8 chip
to measure the chip’s temperature. The testbed setup is shown in Figure 2.2
– MEK is the largest board in the picture.

Figure 2.2: Testbed setup

2.2 Scheduling model

We are tasked with creating a schedule for a set of safety-critical partitions. A
safety-critical partition is a set of processes that must be executed periodically.
Otherwise, the safety of the system would be compromised. The safety-critical
partitions are to be scheduled within isolation windows. An isolation window
spans across all CPU cores of the system. Inside of an isolation window,
at most one safety-critical partition can be executed on a single CPU core.
The set of these isolation windows is known as a major frame. We call the
mapping of the safety-critical partitions to isolation windows and CPU cores,
along with the fixed order in which the windows are executed a schedule. We
assume that all safety-critical partitions are ready at the start and must be
completed before a common deadline denoted h, known as the major frame
length. The major frame is repeatedly executed on the system. Figure 2.3
shows a valid major frame schedule of six safety-critical partitions (T1-T6)
respecting the described rules.

The introduced model is motivated by the ARINC 653 standard [3]. This
standard is used in the avionics domain and deals, among others, with

4



............................... 2.3. Thermal-aware scheduling

0 h

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

T1

SC partition T2

T3

T4

T5

T6

Window
W1

Window
W2

Window
W3

Major frame

Cluster
R1

Cluster
R2

Figure 2.3: Valid schedule of a major frame

space and time partitioning in real-time operating systems. It specifies that
processes on the system are grouped into partitions, which are then scheduled
into windows. The standard also specifies implementation details, such as
the behavior of an operating system scheduler or handling of interprocess
communication.

2.3 Thermal-aware scheduling

The idea of thermal-aware scheduling is not new. Sheikh et al. [4] provide an
overview of achieved results and explain the common approaches to modeling
the thermal behavior of a system.

We can assume that our system will spend enough time executing the
major frame to reach its steady-state temperature since the major frame
lengths we work with are significantly shorter than the system’s operating
time. According to [4], under this assumption, the steady-state temperature
of the system can be estimated as:

T∞ = Tamb + C · P (2.1)

where T∞ is the steady-state temperature, C is a constant dependent on the
hardware specification, P is the power consumption, and Tamb is the ambient
temperature. Note that this is a simplified model that considers the entire
system to be a single thermal node and is not entirely accurate. Nevertheless,
it is clear from Equation (2.1) that power consumption and steady-state
temperature are directly connected. Thus, we can minimize the steady-state
temperature of the system by minimizing its power consumption.

2.4 Power consumption minimization

The most common methods for reducing power consumption of a CPU
include dynamic voltage and frequency scaling (DVFS) and dynamic power
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2. Preliminaries .....................................
management (DPM), as stated by Bambagini et al. [5]. DVFS allows for
a trade-off between computational performance and power consumption by
altering the CPU frequency and supply voltage. The idea of DPM is to
switch the CPU to a low-power state when it is inactive. Another way of
reducing power consumption available on heterogeneous systems is mapping
tasks to different computing clusters. Depending on the system’s architecture,
a trade-off between power consumption and execution time of a task can be
achieved.

Due to the requirements of our industrial partner, all computing clusters of
our CPU run on a fixed frequency that is decided in advance. Use of DVFS
is forbidden as it would compromise predictability of the workload execution.

We will not consider the effects of DPM either due to the limitations of
our software as it does not allow us to directly control the power state of
the CPU. Therefore, we are going to focus on controlling the system’s power
consumption only by mapping the safety-critical partitions to the different
computing clusters our MPSoC offers.

6



Chapter 3
Related work

As we pointed out in Section 2.3, research in the area of thermal-aware
scheduling already exists. Likewise, methods for minimizing average power
consumption of a system and the related problem of energy-aware scheduling
have also been explored. Most of the research is centered around real-time
systems. In this chapter we discuss the works we consider to be relevant to
our cause.

3.1 Thermal and energy-aware scheduling

A common approach to solving the problem of thermal and energy-aware
scheduling is to present a thermal or a power model of the system. Based
on these models, the authors usually develop a mathematical model of the
system which can be used for solving the relevant optimization problem.

For example, Chen et al. [6] propose a system model which they develop
into an integer linear programming (ILP) model for energy minimization.
They note that the ILP model can suffer from performance issues due to its
complexity and present a simplified model and several heuristic algorithms
for approximating solutions of their ILP model. However, the authors focus
on the quality of solution of their heuristic algorithms when compared to
their ILP model and do not test their energy minimization model on real
hardware. They also do not specify how to obtain some parameters of the
model, such as the power characteristic of a task. Similarly, Qin et al. [7]
present a generalized system model, which they also develop into an ILP
model. Their model relies heavily on the DVFS capabilities of the target
system. They also note the performance issues a complex ILP model suffers
from.

Another approach is to create an algorithm directly solving the assignment
or the scheduling problem studied. Zhou et al. [8] present a greedy heuristic
algorithm, which works by assigning tasks to processors based on their
expected energy consumption. While scheduling, they insert idle periods
into the schedule as a way of lowering the peak temperature of the system.
Kuo et al. [9] propose a greedy heuristic algorithm which is also based on
the idea of processing tasks in order of their expected energy consumption.
In this algorithm, the tasks are processed in order from the most energy

7



3. Related work.....................................
demanding to the least demanding one. For each task, the best (the least
energy-demanding) assignment to a processor possible is selected.

A broader overview of results in the areas of thermal and energy-aware
scheduling can be found in [4, 5, 10]. As for the thermal and energy models, the
main ideas are not too different across the referenced works. The differences
lie mostly in the complexity of adopted models. A common issue among the
papers is not specifying a way of obtaining some of the parameters of the
models. A prominent example of this issue is a coefficient representing the
energy consumption behavior of a task used in [6, 8, 9]. Neither of these
papers discusses how this parameter is obtained despite its importance.

3.2 Time-partitioned scheduling

To the best of our knowledge, a scheduling model similar to ours (as described
in Section 2.2) has not been studied in the context of thermal or energy
optimization on heterogeneous systems. This is not true for the general
idea of time-partitioned scheduling. For example, Huang et al. [11] group
tasks into different categories. Tasks from each category are then executed
in isolation windows together. Their motivation is optimizing the usage
of shared resources of a real-time system, such as memory cache. While
these issues may be relevant for us, the method of creating isolation windows
presented does not help us with the problem at hand because it deals with
neither temperatures nor power consumption of the system.

The scheduling model we use loosely resembles the scheduling of so-called
batching machines, which are typically used in semiconductor manufacturing.
We can think of fitting tasks to isolation windows as creating batches on a
batching machine – a window would correspond to a batch on the batching
machine. Batching machine schedule optimization problems are usually not
concerned with optimizing temperatures or power consumption. Instead, more
traditional goals for scheduling problems are pursued, such as minimizing
makespan or the maximum lateness of the schedule. These problems have
been widely studied, and a comprehensive summary of results was published
by Brucker et al. [12].

8



Chapter 4
Problem formalization

In this chapter, we formalize the presented problem. We start by introducing
notation in Section 4.1. Then we describe the Power Estimation With Max
Static power term (PEWMS) model, which we created based on empirical ob-
servations in Section 4.2 and finally, we provide the formal problem statement
in Section 4.3.

4.1 Notation

Let R = {R1, R2, ..., Rm} be a set of computational resources, where each
resource has ck ∈ N processing units. Resource Rk corresponds to a computing
cluster of the real system and its capacity to the number of the cluster’s cores.
We consider the processing units of a computational resource to be identical.

Let T = {T1, T2, ..., Tn} be a set of safety-critical partitions to be scheduled.
For the sake of simplicity, we will henceforth refer to them simply as tasks and
assume that each partition consists only of a single process. The execution
time of task Ti when executed on resource Rk is pi,k ∈ N. Tasks are non-
preemptive and cannot be terminated early.

Let W = {W1,W2, ...,W`} be the set of isolation windows that constitute
the major frame. Let lj ∈ N denote the length of isolation window Wj . Let
h ∈ N be the major frame length. The following holds:∑

Wj∈W
lj = h (4.1)

It is possible that no tasks are assigned to a window. We call such window
empty. We allow the set W to contain at most one empty window, since
according to the PEWMS power model we introduce in Section 4.2, multiple
empty windows can be merged together without affecting the average power
consumption of the major frame. Note that the value ` (the number of
isolation windows) is not known in advance. Despite that, we can define its
upper-bound as:

` ≤ |T |+ 1 (4.2)
Since in the worst case, each window Wj ∈ W will contain only a single

task. The addition of one accounts for the possibility of an empty window.

9



4. Problem formalization.................................
Each task Ti is assigned to be executed on resource Rk in isolation window

Wj . Each task is assigned to a single resource (always requiring one processing
unit) and to a single window. We use functions ar : T → R and aw : T → W
to model these assignments. These assignment functions are not known in
advance. The length of window Wj must be no less than the execution time
of the longest task assigned to it:

lj ≥ max
Ti∈T
Rk∈R

{pi,k|aw(Ti) = Wj ∧ ar(Ti) = Rk} (4.3)

The schedule is given by the assignment functions ar and aw and the fixed
order in which the isolation windows are to be executed.

4.2 The PEWMS power model

As discussed in Section 3.1, a common issue we encountered when explor-
ing existing research is the lack of discussion with regard to obtaining the
parameters relating to the energy consumption behavior of a task. We are
going to mitigate this by proposing a simple power model based on empirical
observations.

Our model is based on the model proposed by Chen et al. [6] which
considers power consumption to be composed of two parts: static power
consumption and dynamic power consumption. According to the authors,
static power consumption is a constant that represents the power needed
for the system to maintain its activity, while dynamic power consumption is
directly proportional to the system’s activity.

We will adopt a similar idea of static and dynamic power consumption for
our model.1 Unlike [6], we presume that the static power consumption is
influenced by the system’s activity as well. We do not model DVFS or DPM
due to the reasons stated in Section 2.4.

When the system is completely idle, it consumes power Pidle. This is the
base static power consumption of the system, which can be measured.

We characterize the power consumption behavior of task Ti on resource Rk
by two coefficients: ai,k and bi,k. Coefficient ai,k corresponds to the dynamic
power consumption characteristic of the task, while coefficient bi,k represents
the increase in static power consumption of the system when executing task
Ti. We obtain these values from measurements for each resource Rk ∈ R
and task Ti ∈ T : the task in question is executed first on a single processing
unit of resource Rk and then on ck processing units of this resource. Power
consumption is measured each time and a linear function Pi,k(x) = a′x+ b′

is fitted through the measured values, where Pi,k(x) is the measured power
consumption and x is the number of processing units used. We identify the

1The terms static and dynamic power are usually used in the context of modeling
behavior of CMOS devices where these terms correspond to characteristics rooted in the
physical properties of the modeled device. This is not the case in our model – we use
them in a looser way. Furthermore, we do not consider leakage power, which is another
component used when modeling CMOS devices.
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.............................. 4.2. The PEWMS power model

slope of the function a′ with dynamic power consumption characteristic of the
task and the intercept of the function b′ with the static power consumption of
the system when the task was being executed. The coefficient ai,k is therefore
equal to a′. Since we are interested only in the characteristics of the task itself,
we correct the b′ value by subtracting the base static power consumption
Pidle to obtain coefficient bi,k: bi,k = b′ − Pidle. This process is illustrated in
Figure 4.1.

1 ck

Number of active cores of Rk

P
[W

]

Pi,k(1)

Pi,k(ck)

ai,k = Pi,k(ck)−Pi,k(1)
ck−1

Pidle

bi,k

Pi,k(x)

Figure 4.1: Interpolation of the power consumption coefficients

Given these values, we estimate the power consumption P of the system
while running a single task Ti on resource Rk as:

P = Pidle + ai,k + bi,k (4.4)

Next, we need to estimate the power consumption of running multiple
tasks, e.g., Ti and Tj , on the system. Based on empirical observations, we
have determined that the dynamic power coefficients add up, while only the
maximum increase in static power is effective.2 Therefore, the estimated
power consumption of the system running tasks Ti and Tj is:

P = Pidle + ai,k + aj,k + max{bi,k, bj,k} (4.5)

The next step is extending the estimation to cover the entire major frame.
Until now, our estimations assumed that the tasks were running indefinitely.
This is not the case in the major frame, as during the course of different
isolation windows, different tasks are executed on the computational resources.
To overcome this, we will compute the estimated energy consumption of each
window, which we can use to compute the average power consumption of the
major frame.

2Comparison with alternative power estimation functions that we experimented with
can be found in Appendix C.

11



4. Problem formalization.................................
To estimate the energy consumption of an isolation window, we need to

know its dynamic power consumption characteristic and its effect on the
static power consumption of the system. We use Equation (4.5) to obtain
these values as the same assumptions apply. Each task Ti in window Wj

is active for pi,k time units. We assume that the increase in static power
consumption of the system is effective during the course of the entire window.
While this may lead to overestimating the energy consumption of window
Wj , it keeps the estimation function relatively simple:

Ej = lj ·Pidle +
∑

Ti∈T :aw(Ti)=Wj

∑
Rk∈R:ar(Ti)=Rk

pi,k · ai,k + lj · max
Ti∈T :aw(Ti)=Wj

Rk∈R:ar(Ti)=Rk

bi,k

(4.6)
We can now estimate the average power consumption of the entire major

frame as:

PMF = 1
h

∑
Wj∈W

Ej (4.7)

We will refer to the described model as PEWMS, short for Power Estimation
With Max Static power term.

4.3 Problem statement

The goal is to find a schedule (which consists of task mapping functions ar
and aw and the execution order of the isolation windows) that minimizes the
average power consumption of the major frame according to the PEWMS
power model (Equation (4.7)). In the PEWMS model, the order of windows
is arbitrary, as the average power consumption of the major frame depends
only on the task mapping. Therefore the actual goal is to find a feasible task
mapping, such that the average power consumption of the major frame is
minimized. The input consists of the sets R, T , and the value h.

We consider the task mapping to be feasible if and only if the following
conditions are satisfied:.Task assignment: Each task Ti ∈ T is assigned to exactly one resource

Rk ∈ R and exactly one window Wj ∈ W.

∀Ti ∈ T ∃!Rk ∈ R : ar(Ti) = Rk (4.8)

∀Ti ∈ T ∃!Wj ∈ W : aw(Ti) = Wj (4.9).Resource capacity: In each isolation window Wj ∈ W, at most ck
tasks are assigned to resource Rk ∈ R:∑

Ti∈T :aw(Ti)=Wj

1[ar(Ti)=Rk] ≤ ck ∀Rk ∈ R, ∀Wj ∈ W (4.10)

12



.................................. 4.3. Problem statement

. Isolation window length: Each isolation window is at least as long
as the longest task assigned to it.

lj ≥ max
Ti∈T
Rk∈R

{pi,k|aw(Ti) = Wj ∧ ar(Ti) = Rk} ∀Wj ∈ W (4.11)

.Major frame length: The combined length of all isolation windows is
equal to the major frame length:∑

Wj∈W
lj = h (4.12)
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Chapter 5
Solution approach

To find the optimal task mapping according to the PEWMS power model, we
use ILP formalism. Section 5.1 details the ILP formulation of this problem.
We also introduce heuristic solution methods as an alternative approach in
Section 5.2 to gain a basis for comparison for evaluating the PEWMS model.

5.1 PEWMS model ILP formulation

We choose to use the ILP formalism as it poses several advantages for us. For
example, we can use an existing ILP solver, which means that we do not have
to spend time developing a custom algorithm for our problem. It is also much
easier to alter the objective function and constraints of an ILP model than it
is to modify a custom algorithm in case we need to make changes later. The
biggest disadvantage of ILP is its possibly poor scalability, meaning that we
might not be able to solve large problem instances.

The input for the model consists of:

. The set of tasks T with associated execution times pi,k and power
consumption coefficients ai,k and bi,k.. The set of computing resources R with their capacities ck.. The major frame length h.

For each task Ti ∈ T , resource Rk ∈ R and window Wj ∈ W , we introduce
binary variable xi,j,k ∈ {0, 1} modeling the assignment of task Ti to resource
Rk and window Wj . Since the size of set W is not known in advance, we
consider it to be the upper-bounded according to Equation (4.2). Next,
we introduce a variable lj ∈ N for each window Wj ∈ W representing the
window length. Finally, we use auxiliary variable Bi,j,k ∈ R+

0 for each task
Ti ∈ T , resource Rk ∈ R and window Wj ∈ W to represent the increase in
static power consumption of the system caused by task Ti being executed on
resource Rk in window Wj .
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5. Solution approach...................................
The model, to which we will refer as global-ILP follows:

min 1
h
·
∑

Wj∈W

∑
Ti∈T

∑
Rk∈R

xi,j,k · pi,k · ai,k + max
Ti∈T
Rk∈R

Bi,j,k

 subject to: (5.1)

xi,j,k = 1 =⇒ Bi,j,k = lj · bi,k ∀Ti ∈ T , ∀Wj ∈ W,∀Rk ∈ R (5.2)

∑
Wj∈W

∑
Rk∈R

xi,j,k = 1 ∀Ti ∈ T (5.3)

∑
Ti∈T

xi,j,k ≤ ck ∀Wj ∈ W,∀Rk ∈ R (5.4)

lj ≥ xi,j,k · pi,k ∀Ti ∈ T ,∀Wj ∈ W,∀Rk ∈ R (5.5)

∑
Wj∈W

lj ≤ h (5.6)

Equation (5.1) is the objective function derived from our power model
(Equation (4.7)). The aim is to minimize the average power consumption
of the major frame in accordance with the problem statement presented in
Section 4.3. The Pidle term was left out from the objective function as it is
a constant that does not affect the quality of the solution. The value of 1

h
is also a constant not affecting the quality of the solution, but we keep it in
the objective function. This way, the value of the objective function can be
interpreted as the estimated increase in average power consumption caused
by the tasks being executed.

Implication (5.2) serves to assign a value to variable Bi,j,k. If xi,j,k = 0,
the value of Bi,j,k is arbitrary and the solver will force it to zero, which is
optimal.

Constraint (5.3) ensures that each task is assigned to exactly one resource
and exactly one isolation window. Constraint (5.4) enforces the capacity limit
of computing resources in each isolation window, and constraint (5.5) ensures
that lengths of isolation windows are correctly set. Finally, constraint (5.6)
ensures that the major frame length is not exceeded.

Since the order of windows is arbitrary, we use additional constraint forcing
the ordering of the windows, which removes symmetrical solutions from the
search space, thus significantly reducing the time needed to obtain a solution:

lj ≥ lj+1 ∀j ∈ {1, 2, ..., `− 1} (5.7)

There are two things to note about the global-ILP model. First thing is
that the global-ILP model is not linear due to the maximum in the objective
function (5.1) and the implication in constraint (5.2). While both of these
expressions can be linearized by introducing additional variables and the use
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...............................5.2. Heuristic solution methods

of ’big M’, modern ILP solvers can do the linearization internally. Therefore
we leave the model in this form for better readability.

The second thing is that it does not output the empty window (and its
length), which may be needed to satisfy the requirement (4.1). Because of
this, constraint (5.6) uses inequality. However, it is simple to calculate the
length of the empty window lempty from the solution produced by global-ILP:

lempty = h−
∑

Wj∈W
lj (5.8)

5.2 Heuristic solution methods

We adopt a decomposition approach for our heuristic solution methods to seek
the resource mapping and the window mapping separately. Such approach
is often used in literature, for example in [6] and [9]. A complete schedule
will be found by first applying the resource assignment heuristic and then
the window assignment heuristic.

Let us begin by introducing our window assignment heuristic. We call it the
longest-tasks-first (LTF) schedule. LTF schedule, listed as Algorithm 1, works
by assigning tasks to a window in non-increasing order of their execution
times until all resources in the window are fully occupied. Then a new window
is created, and this process is repeated. This heuristic method minimizes the
total length of non-empty windows.1 The assignment of tasks to windows
is valid if the total length of non-empty windows does not exceed the major
frame length. Therefore, if a feasible assignment of tasks to windows exists,
it can be found by the LTF schedule method, which produces an assignment
with the minimal total length of non-empty windows.

As for the resource assignment heuristic, we use the following resource
assignment methods:..1. Random assignment of tasks to resources...2. Assignment of tasks to resources that minimizes the total utilization of

the system...3. Assignment of tasks to resources based on a greedy heuristic proposed
in literature.

There is not much to discuss about method 1, each task will simply be
assigned to a resource randomly with a uniform probability. We will denote
schedules with random resource assignment and a LTF schedule window
assignment as RA+LTF. The details of methods 2 and 3 are described in
Section 5.2.1 and Section 5.2.2 respectively.

1This scheduling problem corresponds to scheduling tasks on a bounded batching machine.
Optimality of the LTF method for this problem was proven by Brucker et al. [12].
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5. Solution approach...................................
Algorithm 1: LTF-schedule heuristic

input : set of computational resources R = (R1, ..., Rm), value ck
associated with each resource Rk ∈ R representing the
resource capacity, set of tasks T = (T1, ..., Tn), values pi and
ri associated with each task Ti ∈ T representing execution
time and index of resource the task has been assigned to
respectively

output : value wi associated with each task Ti ∈ T representing the
index of the isolation window the task has been assigned to

1 u = ones(m) // vector of size m filled with ones
capturing the index of the last window in which
resource Rk is not fully occupied

2 i = zeroes(m) // vector of size m filled with zeroes
capturing the used capacity of resource Rk in window
u[k]

3 l = zeroes(n) // vector of size n filled with zeroes
capturing lengths of non-empty isolation windows

4 sort T by p values in non-increasing order
5 foreach Ti ∈ T do
6 if i[ri] == c[ri] then
7 u[ri] += 1
8 i[ri] = 0
9 wi = u[ri]

10 i[ri] += 1
11 l[u[ri]] = max(pi, l[u[ri]])

5.2.1 Resource assignment minimizing the total system
utilization

One of the possible uses for a resource assignment minimizing the total system
utilization is to find a schedule to which more tasks can be added easily at
a later time. Intuitively, one would also expect the resource assignment
with minimal utilization not to heat up the processor as much as resource
assignments with more utilization since it maximizes the processor idle time.

We define the total system utilization U for a given resource assignment
as:

U =
∑
Rk∈R

∑
Ti∈T :ar(Ti)=Rk

pi,k

h ·
∑
Rk∈R ck

(5.9)

To find the resource assignment minimizing U , we modify the global-ILP
model by altering the objective function and dropping unneeded constraint
(5.2). The modified model, henceforth referred to as minutil-ILP, follows:

min
∑

Wj∈W

∑
Ti∈W

∑
Rk∈R

xi,j,k · pi,k subject to: (5.10)
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...............................5.2. Heuristic solution methods

∑
Wj∈W

∑
Rk∈R

xi,j,k = 1 ∀Ti ∈ T (5.11)

∑
Ti∈T

xi,j,k ≤ ck ∀Wj ∈ W,∀Rk ∈ R (5.12)

lj ≥ xi,j,k · pi,k ∀Ti ∈ T , ∀Wj ∈ W,∀Rk ∈ R (5.13)

∑
Wj∈W

lj ≤ h (5.14)

lj ≥ lj+1 ∀j ∈ {1, 2, ..., `− 1} (5.15)

Equation (5.9) has been simplified for use in objective function (5.10)
because task execution time, given by the assignment of a task to a resource,
is the only variable present in that expression.

While minutil-ILP model maps tasks to both resources and to isolation
windows, we disregard the window mapping as it is not deterministic and
use LTF-schedule window assignment heuristic instead. We will refer to this
method of obtaining a schedule as minutil+LTF.

5.2.2 Greedy assignment heuristic

The greedy heuristic we use is based on algorithms proposed by Zhou et al. [8]
and Kuo et al. [9]. These algorithms share the idea of processing tasks in
non-increasing order based on their projected power consumption behavior
(though they differ in how this criterion is computed) and assigning the tasks
to the best processor available.

To determine the order of processing tasks, we use the same method as
Algorithm 1 proposed in [8], with the slight modification of disregarding
the periodicity parameter of the tasks, as in our case, it is the same for
all tasks and would not affect the ordering. Because the parameter µi of
the referenced algorithm is not explained in detail, we identify it with our
dynamic power consumption coefficient ai,k since the meaning should be
similar. The task order we use therefore corresponds to the expected dynamic
energy consumption of task Ti when executed on resource Rk:

Ei,k = ai,k · pi,k (5.16)

Next, we need to assign the task to a resource. We select the assignment
with minimal Ei,k value such that a feasible assignment of tasks to windows
can be found. Determining if a resource assignment is feasible is easy in the
referenced algorithms, as they do not work with isolation windows. Because
we work with isolation windows, we have to resort to a more complicated
approach. To determine if a feasible assignment of tasks to windows exists,
we use a simplified version of the global-ILP model, without the objective
function and unneeded constraint (5.2).
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5. Solution approach...................................
Let Tassigned be a set of tasks for which the assignment to a resource has

been decided. Let r : Tassigned → N be a function that maps the tasks
from set Tassigned to number k, representing the index of the resource task
Ti ∈ Tassigned has been assigned to. For this model, we introduce additional
constraint (5.23) fixing the already decided assignment of task Ti to resource
Rk. The ILP model, from now on referred to as feasible-schedule-ILP, follows:

min 0 subject to: (5.17)

∑
Wj∈W

∑
Rk∈R

xi,j,k = 1 ∀Ti ∈ T (5.18)

∑
Ti∈T

xi,j,k ≤ ck ∀Wj ∈ W,∀Rk ∈ R (5.19)

lj ≥ xi,j,k · pi,k ∀Ti ∈ T ,∀Wj ∈ W,∀Rk ∈ R (5.20)

∑
Wj∈W

lj ≤ h (5.21)

lj ≥ lj+1 ∀j ∈ {1, 2, ..., `− 1} (5.22)

∑
Wj∈W

xi,j,r(Ti) = 1 ∀Ti ∈ Tassigned (5.23)

A feasible assignment of tasks Ti ∈ T to windows exists if and only if a
feasible solution of the feasible-schedule-ILP model exists.

Algorithm 2 lists the complete pseudocode of the introduced heuristic
algorithm, henceforth referred to as reference assignment heuristic.
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...............................5.2. Heuristic solution methods

Algorithm 2: Reference assignment heuristic
input : set of tasks T , set of resources R, major frame length h
output : assignment of tasks to resources

1 Function feasibleWindowAssignmentExists(Tassigned) is
2 if a feasible solution of feasible-schedule-ILP model for Tassigned

exists then return true;
3 else return false;
4 Function referenceAssignmentHeuristic() is
5 sort tasks in T by their maximal Ei,k value in non-increasing order
6 Tassigned = { }
7 foreach task Ti ∈ T do
8 assigned = false
9 sort possible resource assignments of Ti in non-decreasing

order of Ei,k
10 foreach resource Rk to which Ti can be assigned do
11 assign Ti to Rk
12 add Ti to Tassigned
13 if feasibleWindowAssignmentExists(Tassigned) then
14 assigned = true
15 break
16 else
17 unassign Ti from Rk
18 remove Ti from Tassigned

19 if assigned is false then
20 error: feasible assignment of tasks to resources does not

exist
21 return resource assignment of tasks in Tassigned
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Chapter 6
Software for preparing experiments

In the previous chapters we have introduced the problem of scheduling safety-
critical tasks to isolation windows with the goal of minimizing average power
consumption. To achieve this, we have created the global-ILP model. The
next step is to evaluate the model on real hardware and compare it against
other methods introduced in Chapter 5. This means that we need to create
several problem instances (sets of tasks). For each instance, we will create
schedules to be evaluated by applying the aforementioned methods. We will
then execute these schedules on our testbed and evaluate their results.

The MEK board in our testbed is powered by a Linux-based system. The
Linux kernel does not natively support scheduling of tasks in the way we need,
however, it does provide means to achieve it with the help of additional tools.
DEmOS [13] is an open-source tool developed specifically for this reason. It
is able to execute tasks on specified CPU cores and limit their execution to
specified time intervals. DEmOS can be configured via YAML files allowing
us to specify how DEmOS will execute the tasks, i.e. the assignment to CPU
cores and the time intervals corresponding to the isolation windows.

However, the path toward execution of a schedule is not as simple as
creating a configuration for DEmOS. We consider the input to be the list of
benchmarks that can be run on the system. For each of these benchmarks,
we know the characteristics for the available computing clusters: execution
time for a single iteration and the power consumption coefficients. From this
list of benchmarks, we need to create test instances (select a given number of
benchmarks) and for these instances, we have to create the actual schedules.
Finally, a configuration file for DEmOS must be produced in order to execute
the schedules to evaluate them. Since performing these steps by hand would
be extremely time consuming, we will create support software to automate
the workflow.

6.1 Analysis

The motivation for creating software that will help with preparing the experi-
ments to evaluate the PEWMS power model is clear. We will now discuss in
detail what tasks we require the software to perform.

The support software shall cover the path between the input data and
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6. Software for preparing experiments ...........................
the configuration for DEmOS. This path can be broken up into three steps:
creating a problem instance, creating schedules for the instance, and creating
a DEmOS configuration.

Let us discuss the input data first. The input shall be composed of two
parts: a description of the hardware platform and characteristics of available
benchmarks. The benchmark characteristics shall consist of single iteration
execution times and power consumption characteristics (the dynamic and
static power consumption coefficients according to the PEWMS model) for
available computing clusters. The description of the hardware platform shall
consist of the available computing clusters and their capacities. This data is
all the information needed to create a problem instance and solve it, that is,
to create the schedules.

The next step entails the creation of the schedule. We consider the following
methods of creating a schedule:..1. The global-ILP model...2. Random resource assignment with LTF-schedule...3. minutil-ILP resource assignment with LTF-schedule...4. Resource assignment given by the reference assignment heuristic with

LTF-schedule.

It is apparent from this list that for three out of the four methods considered
(2, 3, 4), the resource assignment and window assignment phases are split.
Thus it would make sense for our software to consider the resource assignment
and window assignment part of the problem to be separate so that the
LTF-schedule algorithm does not have to be reimplemented each time. The
exception is method 1, where the schedule can be obtained directly by solving
the global-ILP model.

Another thing to note is that three out of the four methods (1, 3, 4) require
an ILP model to be solved. As solving an ILP model efficiently is a challenging
task, it shall be delegated to an existing ILP solver.

The final step consists of transforming the internal representation of the
produced schedule to a configuration for DEmOS. Another useful feature
would be a visualization of the produced schedule to give us an idea of what
will actually be executed on the target system. It might also be useful for the
internal representation to be saved alongside the DEmOS configuration. This
representation should be human-readable as well as machine-readable (format
such as JSON, YAML, or XML). This would give us the ability to process
the solution in other software to for example analyze some properties of the
schedule, such as resource utilization or window fullness. The software should
also allow for the representation to be converted to DEmOS configuration
independently of creating and solving an instance to allow us to make changes
in the intermediate representation. The discussed pipeline for producing and
solving problem instances is shown in Figure 6.1.
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Figure 6.1: Problem instance pipeline

6.1.1 Software requirements

Based on the conducted analysis, we summarize the requirements for the
support software to be created. We require that the support software we shall
create:. Is able to create a problem instance so that schedules to be evaluated

can be produced.. Is able to solve the global-ILP model with the help of an ILP solver so
that schedules produced by this method can be evaluated.. Is able to solve the minutil-ILP model with the help of an ILP solver so
that schedules with this resource assignment method can be evaluated.. Is able to execute the reference assignment heuristic so that schedules
with this resource assignment method can be evaluated.
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6. Software for preparing experiments ...........................
. Is able to solve the feasible-assignment-ILP model with the help of an

ILP solver so that it is able to execute the reference assignment heuristic.. Is able to randomly assign tasks to resources so that schedules with this
resource assignment method can be evaluated.. Is able to execute the LTF-schedule heuristic so that it can produce a
schedule for methods that only produce resource assignments.. Is able to export the solution to a DEmOS configuration so that the
schedule can be executed on our testbed.. Is able to visualize the produced schedule so that we know how the
schedule looks like.. Is able to save the solution of a problem instance in a format that is both
human and machine-readable, so that it can be integrated with other
software as well as inspected and manipulated by us, should we want to.

6.2 Design

By analyzing the requirements we have for the support software, we discovered
that we require it to perform a multitude of varied tasks: generating problem
instances, solving ILP models, executing heuristic algorithms, and more.
While it was not explicitly specified as a requirement, it might be useful to be
able to save intermediate results between the stages shown in Figure 6.1. A
simple way to design and implement software that fits all of these requirements
would be to adopt the Unix philosophy [14]. Namely, instead of making a
single program that ’does it all’, we will instead create several small and
simple programs, each designed for a single specific task. We will achieve the
desired results by chaining these small programs together. That implies that
we will need to design a way of exchanging the data between the programs
which gives us a way of saving the output of each stage of the data pipeline.

We shall create a program for each of the transitions in Figure 6.1:. Instance generator: will use the input data to create a problem instance.. Solver for global-ILP: will use the output of the instance generator to
produce a complete schedule by solving the global-ILP model.. Resource assignment solver: will use the output of instance generator
to assign tasks to resources either by solving the minutil-ILP model,
by executing the reference assignment heuristic (which includes solving
the feasible-assignment-ILP model) or by assigning tasks to resources
randomly..Window assignment solver: will use a fixed resource assignment to create
a schedule by executing the LTF-schedule heuristic.
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. DEmOS configuration exporter: will export the completed schedule to a
configuration for DEmOS.. Visualizer: will create a visual representation of the schedule in the form
of a bitmap image.

1..* 1..*
1..*

1..* 1..*

Environment

majorFrameLength : int

Processor

name : string
processingUnits : int

Task

name : string
command : string

ResourceAssignment

dynamicPowerCoeff : float
staticPowerCoeff : float
processingTime : int

Solution

feasible : bool

Window

length : int

Figure 6.2: Conceptual data model of our software

Figure 6.2 shows the conceptual data model of the designed software. This
is the data that will be exchanged between the individual programs in our
toolchain. The model can be divided into three parts, which can be thought
of as layers: the environment, the tasks, and the solution. Each step of the
data pipeline adds another layer of data. We start with a description of the
environment consisting of a list of available computing resources (computing
clusters) and the major frame length. This will be passed to the instance
generator along with the characteristics of available benchmarks. Note that
the benchmark data is not part of the data model as it will be used only by
the instance generator. We expect that this data will be provided in a CSV
file. The instance generator shall also be able to accept additional parameters,
namely the desired size of the problem instance (number of tasks) and the
desired range of execution time to output. The parameters for generating the
problem instance shall be passed as the program arguments.

The instance generator will use the provided inputs to add a second layer of
data: the tasks. Each task has a name (for easy identification when visualizing
the schedule), a command for running the task, and a list of possible resource
assignments.

The solvers will use the list of tasks to add the final data layer: the solution.
The solution consists of an attribute identifying its feasibility. A feasible
solution also contains a list of isolation windows, where each window has a
length and a list of task assignments (describing the assignment of a task to
a resource). The execution order of the windows is given by their order in
this list.

We skipped over the ’assign tasks to resources’ transition because no actual
data is added in this step, as it consists only of selecting a single resource
assignment for each task. Nevertheless, this information still needs to be
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6. Software for preparing experiments ...........................
passed from the resource assignment solver to the window assignment solver.
We shall address this point during implementation.

6.3 Implementation

We implemented the following six tools in accordance with the design described
in Section 6.2: instance_generator, ilp_global_solver, assignment_solver,
schedule_solver, demos_config_export, and visualizer. The implementation
was done in C++, as it is a highly portable language with great performance
and an extensive standard library. We chose JSON as the format for data
exchange between individual tools. JSON is a lightweight format that is
human-readable and is supported in all common programming languages,
either directly in the language’s standard library or by an external library. As
C++ does not natively support the JSON format, we used the json library
created by nlohmann [15] available under a free license.

As we have previously mentioned, we will use an existing ILP solver for the
purpose of solving our ILP models. This affects the ilp_global_solver and
assignment_solver tools. We chose to use the Gurobi [16] solver, because it
offers good performance, academic license, and we already have experience
using it.

Consistent with the Unix philosophy, our tools read from the standard
input and write to the standard output by default. This allows for them to
be chained together by Unix pipes. The use of the Gurobi solver introduces a
small issue to this system. By default, Gurobi logs its progress to the standard
output, which interferes with the expected output of the tool in question.
In case this presents an issue, it is possible to change the configuration of
Gurobi to disable its output. This can be done via gurobi.env file present
in the working directory. Configuration of Gurobi in this way is not limited
to its output, other useful parameters such as the number of threads to use
while solving an ILP model or the time limit for finding a solution can be set,
for example:

OutputFlag 0
Threads 8
TimeLimit 60

This configuration disables the output of Gurobi, specifies that 8 threads
will be used while solving the model, and sets the time limit for finding a
solution to 60 seconds.

If a time limit is set, the tools making use of ILP models will use the
best solution available once the time limit expires. If the use of standard
input/output is not desired, the behavior of our tools can be altered through
program parameters to use files instead.

Let us now discuss the implementation of the data model. Some minor
changes (mostly additions) were made to make the software more flexible
for use in future research. However, the core idea stayed the same. At
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the start of the toolchain pipeline, a JSON describing the environment is
provided. Each tool then adds another layer of data. These layers are
realized as JSON objects. There are four types of these objects: environment,
assignmentCharacteristic, task, and solution. At each step of the pipeline, the
JSON representing the intermediate result contains a subset of these objects.
Note that the assignmentCharacteristic object is not required in the stages
after being processed by ilp_global_solver or assignment_solver, but since
there is no reason to remove it from the file, it is kept there. Thus, if the file
went through the entire pipeline, it will contain all of the mentioned objects
at the end of it. Listing 1 shows such JSON.

{
"environment":{

"majorFrameLength":2000,
"problemVersion":1,
"processors":[

{ "name":"A53", "processingUnits":4, "type":"main_processor" },
{ "name":"A72", "processingUnits":2, "type":"main_processor" } ]

},
"assignmentCharacteristics":[

{ "task":"T1", "command":"yes >/dev/null", "resourceAssignments":[
{ "slope":0.2, "intercept":0.3, "length":100,

"processors": [{"processingUnits":1, "processor":"A72"}]
}] },

{ "task":"T2", "command":"yes >/dev/null", "resourceAssignments":[
{ "slope":0.1, "intercept":0.2, "length":80,

"processors": [{"processingUnits":1, "processor":"A53"}]
}] }

],
"tasks":[

{ "assignmentIndex":0, "command":"yes >/dev/null", "length":100,
"name":"T1", "processors": [{"processingUnits":1,
"processor":"A72"}]},

{ "assignmentIndex":0, "command":"yes >/dev/null", "length":80,
"name":"T2", "processors": [{"processingUnits":1,
"processor":"A53"}] }

],
"solution":{

"feasible":true,
"solutionTime":10,
"solverMetadata":{},
"solverName":"global-ILP Solver",
"windows":[

{ "length":100, "tasks":[{"length":100, "processingUnit":0,
"processor":"A72", "start":0, "task":"T1"}] },

{ "length":80, "tasks":[{"length":80, "processingUnit":0,
"processor":"A53", "start":0, "task":"T2"}] } ]

}
}

Listing 1: Complete JSON representation of a solved instance

The notable differences from the conceptual model include:. The environment object contains a new field problemVersion, which was
added to help differentiate between different formats of input files used
during the development of the software.
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6. Software for preparing experiments ...........................
. The processor object inside the environment object contains a new

field processorType, which was added to identify the different types of
computing resources (CPU and GPU). It is unused for the purposes of
this thesis.. The assignmentCharacteristic object corresponds to the Task object
defined in the conceptual model. A new object type stored in the tasks
array was added. The objects in this array represent the selected task
assignment and contain all necessary data related to it. This was done
to simplify subsequent processing of the data, which is needed in the
window assignment solver as well as in the visualizer and the configuration
exporter for DEmOS.. The dynamic power consumption coefficient is named slope and the static
power consumption coefficient is named intercept.. The solution object contains metadata provided by the solver that are
intended mainly for statistics and analyzing the solver’s performance.

The data pipeline as realized by our toolchain is shown in Figure 6.3.
The next thing to address is the second part of input data for in-

stance_generator, which is the benchmark data. We mentioned that we
expect it to be a CSV file. The expected format of the file is as follows:

benchmark,affinity,slope,intercept,runtime
dijkstra,A53,0.23314,0.21280,0.01750
dijkstra,A72,0.20275,0.22218,0.00033

This example shows the characteristics of the dijkstra benchmark when
executed on the A53 and the A72 computing clusters.

It is also possible to add a column command with a string containing the
command to be executed for that particular benchmark. If this column is
not provided, the generator will use the benchmark name as the value of the
command field. The user can then use a tool such as sed to replace these
values as required.

The visualizer tool makes use of the CImg [17] and the lodepng [18] libraries
for creating a bitmap image visualizing the schedule. Both of these libraries
are available under a free license. A visualized schedule produced by the
visualizer tool can be seen in Figure 6.4.

Despite none of our tools using any platform-specific code, their portability
is limited by the use of the Gurobi ILP solver. Nonetheless, they have been
tested on recent versions of both GNU/Linux and Windows operating systems.
The source code of the software, as well as the instructions for compiling and
using it can be found on the attached CD.

6.4 Testing

Because the software we created consists of simple tools built for a single
purpose, formal testing was not conducted. Rather, we used exploratory
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Environment data
environment

Input data
environment,

assignmentCharacteristics

Resource assignment
environment,tasks

Solution
environment,tasks,

solution

DEmOS
configuration

Schedule
visualization

instance_generator

assignment_solver

schedule_solver

ilp_global_solver

demos_config_exportvisualizer

Figure 6.3: Realization of the problem instance pipeline

Figure 6.4: Schedule visualization produced by the visualizer tool

testing to verify that each tool is working correctly. Further, using the tools
to prepare the actual experiments used for evaluating the PEWMS model
served as user acceptance testing. It led to a discovery and remediation of
some minor usability issues.

31



32



Chapter 7
Experimental evaluation

To evaluate the PEWMS power model, we generated a number of test instances.
For these instances, we created schedules according to the solution methods
introduced in Chapter 5. Details of how the experiments were set up are
explained in Section 7.1. We executed the schedules on our testbed (described
in Section 2.1) and measured the steady-state temperatures and average
power consumptions. The results are reported in Section 7.2 and Section 7.3
respectively and summarized in Section 7.4.

7.1 Experiment setup

The workload for our test instances consisted of six selected benchmarks from
the Taclebench benchmark suite [19] (dijkstra, fft, prime, sha, susan, test3 ),
a 3D rendering tool tinyrenderer [20], and a memory stressing benchmark
membench [21]. The membench tool stresses the memory by continuously
performing read and write operations over a fixed size data. We used the tool
in two different configurations: membench-1M (using 1MB of data), which
was intended for stressing the L2 cache, and membench-4M (using 4MB of
data), intended for stressing the main memory. The execution times and
power consumption coefficient of the benchmarks are listed in Table 7.1.

Single iteration
execution time

Dynamic power
consumption coeff.

Static power
consumption coeff.

Benchmark A53 A72 ratio A53 A72 A53 A72
dijkstra 17.50 ms 10.80 ms 1.62 0.233 0.914 0.213 0.211
fft 0.332 ms 0.114 ms 2.91 0.203 1.201 0.222 0.231
prime 0.372 µs 0.199 µs 1.87 0.208 1.091 0.219 0.141
sha 0.454 ms 0.170 ms 2.67 0.276 1.467 0.224 0.160
susan 20.49 ms 5.64 ms 3.63 0.176 1.220 0.233 0.175
test3 67.14 ms 34.77 ms 1.93 0.343 1.298 0.248 0.184
tinyrenderer 953 ms 409 ms 2.33 0.297 1.279 0.963 0.925
membench-1M 814 ms 606 ms 1.34 0.528 0.755 0.547 1.263
membench-4M 7.15 s 5.45 s 1.31 0.287 0.559 1.544 1.593

Table 7.1: Benchmark parameters

We generated six problem instances: four without the membench bench-
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7. Experimental evaluation ................................
marks and two with them (Instance #4 and #5). Each generated instance
consisted of 25 tasks randomly selected (with repetitions and uniform prob-
ability) from the benchmark set. A random execution time from interval
[40, 160] ms was selected for execution on the A72 computing cluster for each
task. The execution time for the A53 cluster was scaled accordingly, based
on the ratio between execution times of a single iteration of the benchmark.
These times were chosen to get major frames with lengths of around one
second, as according to our industrial partner, such major frame lengths are
typical.

The major frame length was set as h = p̄·n
κ , where n = 25 (the number of

tasks), p̄ is the average task execution time across all clusters and κ = 3.5 is
an empirical constant setting the major frame length not too tight for the
instance to be infeasible, but not too loose to have a trivial solution.

Each schedule was executed three times to measure the uncertainty of the
results. Each time, the experiment ran for 30 minutes, which was enough
time for the system to reach the steady-state temperature. After each run,
the system was allowed to cool down to a base temperature of 30 °C, which
could take up to six minutes depending on the ambient temperature. This
resulted in over 54 hours needed in total for the experiments to be completed.
The time-demanding nature of these experiments is the main reason why we
only present six different instances.

The frequency of the A53 computing cluster was set to 1200 MHz. The
frequency of the A72 cluster was set to 1596 MHz. Both of these are the
maximal available frequencies for each cluster. The system’s idle power was
measured to be Pidle = 5.59 W.

7.2 Thermal results

In Table 7.2, we report the average relative steady-state temperature Trel
across all three runs of the schedule and the standard deviation for the
different schedules. The relative steady-state temperature Trel is calculated
as:

Trel = T∞ − Tamb (7.1)

where T∞ is the steady-state temperature as measured by the temperature
sensor in the i.MX8 chip (we used the thermal zone 0 sensor for all mea-
surements), and Tamb is the ambient temperature obtained from the ambient
temperature sensor. The results from Table 7.2 are visualized in Figure 7.1.

The global-ILP schedules show the best relative steady-state temperature
results, being on average 12.63% better when compared against minutil+LTF
schedules and by 7.38% better when compared against the random resource
assignment schedules.

The schedules based on the reference assignment heuristic are on average
9.50% better than minutil+LTF schedules and by 4.08% better than random
resource assignment schedules. However, they are by 3.44% worse on average
than the global-ILP schedules.
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7. Experimental evaluation ................................
The reference assignment heuristic tends to assign more tasks to the A72

cores, though they are usually short. Combined with the use of the LTF-
schedule heuristic window assignment, this results in most of the isolation
windows being fully occupied. Compare, for example, the global-ILP schedule
for Instance #1 shown in Figure 7.2 with the reference assignment heuris-
tic+LTF schedule for the same instance shown in Figure 7.3.

A72

A53

40
8

67
8

90
7

10
89

12
40

dijkstra fft prime sha susan test3 tinyrenderer

Figure 7.2: global-ILP schedule for Instance #1
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Figure 7.3: Reference assignment heuristic+LTF schedule for Instance #1

The minutil+LTF schedules consistently show the worst thermal results
out of the evaluated methods. This can be attributed to the fact that this
method prefers the more powerful A72 cores to use the shortest task execution
times possible. By doing so, it minimizes the total system utilization. The
A72 cores, however, heat up significantly more than the A53 cores, which
results in bad thermal performance. An example minutil+LTF can be seen
in Figure 7.4, which shows the minutil+LTF schedule for Instance #1.
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Figure 7.4: minutil+LTF schedule for Instance #1
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................................7.3. Power estimation results

7.3 Power estimation results

Besides thermal results, we are also interested in evaluating the accuracy
of the average power consumption estimation of the PEWMS model since
estimating the system’s average power consumption is its primary purpose.
To evaluate the accuracy, we define the power estimation error ε as:

ε = Pmeasured − Pestimated
Pestimated

· 100 (7.2)

where Pmeasured is the average power consumption of the system during a
run and Pestimated is the average power consumption as estimated by the
PEWMS model.

In Table 7.3 we report the power estimation error ε for the different schedules
evaluated. To calculate the power estimation error, we use the average of
Pmeasured across all three runs. Note that the standard deviation of the
measured power consumptions does not exceed 0.05 W for all except three of
the evaluated schedules.

Power estimation error ε [%]

Instance global-ILP minutil+LTF RA+LTF 1 RA+LTF 2 RA+LTF 3 Ref. assgmnt.
heuristic+LTF

#1 -0.09 -0.53 -0.13 -1.69 -1.60 -0.16
#2 0.15 0.94 0.06 -0.26 -2.73 -0.33
#3 -1.70 -0.32 -2.23 2.72 -0.56 -2.66
#4 1.50 0.60 -0.66 1.24 -1.24 0.95
#5 -0.42 -0.64 0.90 0.64 -0.51 -7.69
#6 -0.24 0.59 -2.87 -1.04 -1.05 -2.88

Table 7.3: Power estimation errors of the PEWMS model for the evaluated
schedules

The power estimation error is -0.66% on average, meaning that the PEWMS
power model tends to overestimate the power consumption, which we expected
(see Section 4.2). The greatest estimation error of -7.69% (Instance #5,
reference assignment heuristic+LTF schedule) is the only occurrence of error
greater than 5%. Figure 7.5 shows the schedule in question. A possible
explanation for the error could be the presence of the membench benchmarks
in four windows. Because the membench tool is designed to stress memory,
when executed in parallel with other tasks, a congestion occurs as the tasks
being executed compete for the L2 cache, which alters the power consumption
behavior of the system. This effect is even more pronounced if multiple
membench instances are running in parallel, which occurs in two of the
windows in this particular schedule. Still, we consider the estimation errors
of the PEWMS power model to be within an acceptable range.

7.4 Summary of results

The performed experiments showed that the global-ILP schedules consistently
exhibited the best thermal results: these schedules achieved on average
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Figure 7.5: Reference assignment heuristic+LTF schedule for Instance #5

12.63% better results than minutil+LTF schedules, 7.38% better results than
schedules based on random resource assignment, and 3.44% better results
than reference assignment heuristic schedules. A visualization of the evaluated
schedules can be found in Appendix D.

The average power estimation error of the PEWMS power model was
-0.66%. The model had a tendency to overestimate the power consumption,
which conforms to our expectations. The worst estimation error the model
showed was -7.69%. This was an outlier case and a single occurrence of error
greater than 5%, which could be explained by the presence of a memory
stressing benchmark. With these numbers in mind, we conclude that the
PEWMS power model is able to estimate the average power consumption of
our system reasonably well. We provide the measured and estimated average
power consumption values in Appendix E.

Only six different problem instances were used for the evaluation because of
the time-demanding nature of the experiments. At the time of writing, more
experiments with a more varied task set are taking place. The preliminary
results of these experiments further support our findings: the global-ILP
schedules still achieve the best thermal results, and the average estimation
error of the PEWMS model remains inside a 5% range. More details of the
preliminary results are contained in Appendix F.

Several authors [6, 7] have noted that complex ILP models can suffer
from performance issues when solving larger problem instances. We have
encountered this issue as well, as we were not able to find an optimal solution
for instances with more than 32 tasks within a reasonable timeframe. Our
assessment of the global-ILP model scalability can be found in Appendix G.
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Chapter 8
Major frame length/temperature tradeoff

Sheikh et al. [4] postulate that in the case of thermal-aware scheduling, there
exists a tradeoff between schedule length and steady-state temperature. For
us, this would imply a tradeoff between the major frame length and the
relative steady-state temperature of our system. We evaluate the tradeoff
by conducting the following experiment: we take a problem instance used
for evaluating the PEWMS power model and create several schedules for
this instance with differing major frame lengths. We use the global-ILP
and minutil+LTF methods for creating schedules as the best and the worst
performing schedules according to their thermal results to evaluate the tradeoff
regardless of schedule quality.

We make an arbitrary decision to use Instance #2 from Chapter 7, for
which we use major frame lengths h = {930, 1130, 1330, 1530, 1730, 1930} ms.
For shorter major frames, the problem instance is no longer feasible and for
longer major frames, no further improvement to the global-ILP optimization
objective can be achieved. For each of these major frame lengths, we create
optimal global-ILP and minutil+LTF schedules. We also evaluate the global-
ILP schedule for h = 930 ms in the following way: for the different major
frame lengths, we keep the resource and window assignments and only extend
the length of the empty window to see how only adding idle time to the
schedule affects it.

8.1 Thermal results

The described experiment was conducted under the same conditions as
described in Section 7.1. Three runs of each schedule were performed and the
steady-state temperatures measured. The average of measured temperatures
is listed in Table 8.1 and shown in a graph in Figure 8.1.

The results clearly show that by increasing the major frame length, the
steady-state temperature of the system decreases. This can be attributed
to more time being available to perform the same amount of work. The
global-ILP model can find a more efficient task mapping, while the other
schedules utilize the system less, giving it more time to cool down. In our
case, by approximately doubling the major frame length, the steady-state
temperature of the schedules produced by the global-ILP method decreased
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8. Major frame length/temperature tradeoff.........................
Average Trel [°C]

h [ms] global-ILP global-ILP
solution for h = 930 minutil+LTF

930 35.90 ± 0.29 35.90 ± 0.09 36.94 ± 0.16
1130 31.88 ± 0.19 33.06 ± 0.33 36.01 ± 0.16
1330 29.60 ± 0.36 31.35 ± 0.14 34.30 ± 0.19
1530 28.33 ± 0.32 29.92 ± 0.25 32.61 ± 0.06
1730 27.09 ± 0.31 28.90 ± 0.15 31.30 ± 0.08
1930 25.99 ± 0.27 28.02 ± 0.29 30.21 ± 0.16

Table 8.1: Average relative steady-state temperatures of the schedules with
different major frame lengths
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Figure 8.1: Visualization of the average relative steady-state temperatures of
the schedules with different major frame lengths

by 27%, and by 18% in case of the minutil+LTF schedules.
The greatest decrease in temperature can be achieved on tight schedules.

By extending the major frame length from 930 ms to 1130 ms, the global-ILP
schedule temperature improved by 4 °C. However, when the same amount of
time was added to the global-ILP schedule for h = 1730 ms, the steady-state
temperature improved only by 1.1 °C.

Adding idle time to the global-ILP solution for h = 930 ms also served to
improve the steady-state temperature, however, not by as much as finding
the optimal schedule. By comparing the global-ILP schedule for h = 1930 ms
(shown in Figure 8.2) with the global-ILP schedule for h = 930 ms with
idle time added (shown in Figure 8.3), an interesting observation can be
made. The total resource utilization of the optimal global-ILP schedule for
h = 1930 ms is greater (U = 55.5%) than that of the global-ILP solution
for h = 930 ms with idle time added (U = 36.5%), despite the steady-state
temperature of the optimal schedule being lower. This result can be attributed
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................................8.2. Power estimation results

to A53 cores consuming less power and consequently heating up less than the
A72 cores, at the cost of them having worse computational performance. The
worse computational performance results in more time needed to complete
the tasks, which causes the higher resource utilization.
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Figure 8.2: global-ILP schedule for h = 1930 ms
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Figure 8.3: global-ILP schedule for h = 930 ms with 1000 ms of idle time added

8.2 Power estimation results

For the sake of completeness, we measured the average power consumption
of the schedules used for evaluating the tradeoff between major frame length
and steady-state temperature. Table 8.2 shows the power estimation error of
the PEWMS model for these schedules.

Power estimation error ε [%]

h [ms] global-ILP global-ILP
solution for h = 930 minutil+LTF

930 1.62 2.28 1.57
1130 0.64 1.24 1.20
1330 0.15 1.57 0.98
1530 -0.05 1.15 0.79
1730 -0.44 1.15 0.81
1930 -1.03 1.06 0.68

Table 8.2: Power estimation errors of the PEWMS model for the schedules with
different major frame lengths
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8. Major frame length/temperature tradeoff.........................
In this experiment, the PEWMS model underestimated the power consump-

tion of most of the schedules. Still, with an average estimation error of 0.85%
and the greatest estimation error being 2.28%, we consider the accuracy of
the PEWMS model to be reasonably good.
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Chapter 9
Conclusion

The main goal of this thesis was to design, implement and evaluate an offline
thermal-aware scheduling method for periodic safety-critical workloads on a
system with heterogeneous architecture. Our focus was on mapping tasks to
different computing clusters available on an MPSoC-based system to reduce its
steady-state temperature. Instead of minimizing the steady-state temperature
directly, we worked on minimizing the average power consumption of the
system since there is a direct relationship between the power consumption
and the steady-state temperature of the system.

With the use of empirical observations and measurements, we created the
PEWMS power estimation model. Before validating the model, we had to
design and implement software tools to help us prepare the experiments.
The subsequent evaluation of the schedules based on the PEWMS model
confirmed the validity of the approach used, as these schedules exhibited
steady-state temperatures lower by 3% to 12% compared to other methods
we tested in the main evaluation experiment presented in Chapter 7.

We also verified the accuracy of the PEWMS model power consumption
prediction. In the main evaluation experiment, the model showed an average
power estimation error of -0.66%, with the vast majority of prediction errors
not exceeding an absolute value of 3%. These results are further supported
by the experiments we conducted to show the tradeoff between schedule
length and steady-state temperature, as well as by the preliminary results of
additional experiments that are taking place at the time of writing. All of
the described evaluation was performed on real hardware.

With all of this in mind, we consider the goals of this thesis to be fulfilled.
The next step in the research is to test (and possibly improve, depending

on the results) the PEWMS model on a more varied task set, such as memory-
intensive workloads or workloads utilizing the GPU. We focused on working
with primarily CPU-intensive benchmarks, and we only slightly touched on
stressing the memory with the membench benchmarks. During the evalua-
tion, we encountered an outlier case in which the PEWMS model made an
estimation error of -7.69% in an instance that included the membench tasks.
This suggests that there may be circumstances under which the PEWMS
model does not perform as well as we would expect it to.

43



44



References

[1] MCIMX8QM-CPU: i.MX 8QuadMax Multisensory En-
ablement Kit (MEK). https://www.nxp.com/design/
development-boards/i-mx-evaluation-and-development-boards/
i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU.
[Online] Accessed: 2021-04-20.

[2] INA219 data sheet, product information and support. https://www.ti.
com/product/INA219. [Online] Accessed: 2021-05-07.

[3] ARINC Specification. 653-2: Avionics application software standard
interface: Part 1-required services. Technical report, Technical report,
Avionics Electronic Engineering Committee (ARINC), 2006.

[4] Hafiz Fahad Sheikh, Ishfaq Ahmad, Zhe Wang, and Sanjay Ranka. An
overview and classification of thermal-aware scheduling techniques for
multi-core processing systems. Sustainable Computing: Informatics and
Systems, 2(3):151–169, 2012.

[5] Mario Bambagini, Mauro Marinoni, Hakan Aydin, and Giorgio Buttazzo.
Energy-aware scheduling for real-time systems: A survey. ACM Trans.
Embed. Comput. Syst., 15(1), January 2016.

[6] Jian-Jia Chen, Andreas Schranzhofer, and Lothar Thiele. Energy mini-
mization for periodic real-time tasks on heterogeneous processing units.
In 2009 IEEE International Symposium on Parallel Distributed Process-
ing, pages 1–12, 2009.

[7] Yang Qin, Gang Zeng, Ryo Kurachi, Yutaka Matsubara, and Hiroaki
Takada. Energy-aware task allocation for heterogeneous multiprocessor
systems by using integer linear programming. Journal of Information
Processing, 27:136–148, 2019.

[8] Junlong Zhou, Tongquan Wei, Mingsong Chen, Jianming Yan, Xi-
aobo Sharon Hu, and Yue Ma. Thermal-aware task scheduling for energy
minimization in heterogeneous real-time mpsoc systems. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems,
35(8):1269–1282, 2016.

45

https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.nxp.com/design/development-boards/i-mx-evaluation-and-development-boards/i-mx-8quadmax-multisensory-enablement-kit-mek:MCIMX8QM-CPU
https://www.ti.com/product/INA219
https://www.ti.com/product/INA219


9. Conclusion......................................
[9] Chin-Fu Kuo and Yung-Feng Lu. Task assignment with energy effi-

ciency considerations for non-dvs heterogeneous multiprocessor systems.
SIGAPP Appl. Comput. Rev., 14(4):8–18, January 2015.

[10] Marco ET Gerards, Johann L Hurink, and Philip KF Hölzenspies. A
survey of offline algorithms for energy minimization under deadline
constraints. Journal of Scheduling, 19(1):3–19, 2016.

[11] Pengcheng Huang, Georgia Giannopoulou, Rehan Ahmed, Davide B Bar-
tolini, and Lothar Thiele. An isolation scheduling model for multicores.
In 2015 IEEE Real-Time Systems Symposium, pages 141–152. IEEE,
2015.

[12] Peter Brucker, Andrei Gladky, Han Hoogeveen, Mikhail Y Kovalyov,
Chris N Potts, Thomas Tautenhahn, and Steef L Van De Velde. Schedul-
ing a batching machine. Journal of scheduling, 1(1):31–54, 1998.

[13] CTU-IIG/demos-sched: Scheduler for simulation of avionics multi-core
workloads on Linux. https://github.com/CTU-IIG/demos-sched. [On-
line] Accessed: 2021-05-05.

[14] Basics of the Unix Philosophy. https://homepage.cs.uri.edu/
~thenry/resources/unix_art/ch01s06.html. [Online] Accessed:
2021-04-18.

[15] nlohmann/json: JSON for Modern C++. https://github.com/
nlohmann/json. [Online] Accessed: 2021-04-18.

[16] Gurobi - The fastest solver. https://www.gurobi.com/. [Online] Ac-
cessed: 2021-04-18.

[17] The CImg Library - C++ Template Image Processing Toolkit. https:
//cimg.eu/. [Online] Accessed: 2021-04-18.

[18] lvandeve/lodepng: PNG encoder and decoder in C and C++. https:
//github.com/nlohmann/json. [Online] Accessed: 2021-04-18.

[19] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang
Puffitsch, Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen,
Peter Wägemann, and Simon Wegener. Taclebench: A benchmark collec-
tion to support worst-case execution time research. In 16th International
Workshop on Worst-Case Execution Time Analysis, 2016.

[20] Tiny renderer or how OpenGL works: software rendering in 500 lines of
code. https://github.com/ssloy/tinyrenderer. [Online] Accessed:
2021-05-03.

[21] Michal Sojka, Ondřej Benedikt, Zdeněk Hanzálek, and Pavel Zaykov.
Testbed for thermal and performance analysis in mpsoc systems. In
2020 15th Conference on Computer Science and Information Systems
(FedCSIS), pages 683–692. IEEE, 2020.

46

https://github.com/CTU-IIG/demos-sched
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
https://homepage.cs.uri.edu/~thenry/resources/unix_art/ch01s06.html
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://www.gurobi.com/
https://cimg.eu/
https://cimg.eu/
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/ssloy/tinyrenderer


...................................... 9. Conclusion

[22] AutoBench – Automotive Industrial Benchmarking - EEMBC Embed-
ded Microprocessor Benchmark Consortium. https://www.eembc.org/
autobench/. [Online] Accessed: 2021-05-13.

47

https://www.eembc.org/autobench/
https://www.eembc.org/autobench/


48



Appendix A
List of abbreviations

.CPU: Central Processing Unit.DPM: Dynamic Power Management.DVFS: Dynamic Voltage Frequency Scaling.GPU: Graphics Processing Unit. ILP: Integer Linear Programming. LTF: Longest Tasks First.MEK: Multisensory Enablement Kit.MPSoC: Multiprocessor System on a Chip.PEWMS: Power Estimation With Max Static power term
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Appendix B
Contents of the attached CD

. tools – Directory containing the source code of the developed software.
For instructions on compiling and using it, please see the README.md file
inside this directory.. test_instances – Directory containing the JSON representation used
by our tools of the evaluated schedules.. experiment_results – Directory containing an unprocessed output from
the conducted experiments.. thesis/latex – Directory containing the LATEX source code of this
thesis.. thesis/thesis.pdf – This thesis in PDF format.
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Appendix C
Comparison of power estimation functions

Here we show the power estimation results for alternative power estimation
functions that showed promise during the early stages of the research and
compare them to the PEWMS function, which ultimately had the best results.
The comparison is performed on the schedules for the six instances from
Chapter 7.

To recapitulate, the PEWMS power estimation function is:

PMF = 1
h

∑
Wj∈W

Ej (C.1)

Ej = lj ·Pidle +
∑

Ti∈T :aw(Ti)=Wj

∑
Rk∈R:ar(Ti)=Rk

pi,k · ai,k + lj · max
Ti∈T :aw(Ti)=Wj

Rk∈R:ar(Ti)=Rk

bi,k

(C.2)
The other functions we present here are the No Static Power (NOSTAP),

which does not work with the static power consumption coefficients:

PMF = 1
h

∑
Wj∈W

lj · Pidle +
∑

Ti∈T :aw(Ti)=Wj

∑
Rk∈R:ar(Ti)=Rk

pi,k · ai,k

 (C.3)

And the Proportional Estimation of Static Power (PESP) function, which
considers the static power consumption coefficient to add up with the dynamic
power consumption proportionally to the resource capacity:

PMF = 1
h

∑
Wj∈W

lj · Pidle +
∑

Ti∈T :aw(Ti)=Wj

∑
Rk∈R:ar(Ti)=Rk

pi,k ·
(
ai,k + bi,k

ck

)
(C.4)

Because of the amount of data, the comparison of the power estimation
functions is shown in two separate tables: Table C.1 and Table C.2.

The NOSTAP function exhibits the greatest estimation error, on average
6.35%, which can be attributed to the function not accounting for the static
power consumption. The PESP function exhibits an average estimation error
of 1.49%. Compared to the PEWMS function, which exhibits an average
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C. Comparison of power estimation functions ........................
estimation error of -0.66%, the other two functions tend to underestimate the
power consumption. We consider the slight overestimation that the PEWMS
function manifests to be better than an underestimation for our purposes.

54



.........................C. Comparison of power estimation functions

Po
we

r
es
tim

at
io
n
er
ro
r
ε
[%

]

gl
ob

al
-IL

P
m
in
ut
il+

LT
F

R
ef
.
as
sg
m
nt
.

he
ur
ist

ic
+
LT

F
In
st
an

ce
PE

W
M
S

N
O
ST

A
P

PE
SP

PE
W

M
S

N
O
ST

A
P

PE
SP

PE
W

M
S

N
O
ST

A
P

PE
SP

#
1

-0
.0
9

4.
16

-0
.3
6

-0
.5
3

4.
14

0.
81

-0
.1
6

5.
79

0.
91

#
2

0.
15

4.
49

0.
14

0.
94

5.
09

2.
02

-0
.3
3

7.
05

2.
65

#
3

-1
.7
0

2.
31

-1
.1
7

-0
.3
2

2.
67

0.
08

-2
.6
6

0.
99

-2
.6
3

#
4

1.
50

5.
80

1.
80

0.
60

6.
86

2.
42

0.
95

6.
86

2.
23

#
5

-0
.4
2

5.
55

-1
.5
3

-0
.6
4

7.
42

1.
49

-7
.6
9

10
.2
0

1.
25

#
6

-0
.2
4

5.
69

-0
.4
7

0.
59

6.
52

1.
86

-2
.8
8

7.
33

0.
92

Ta
bl
e
C
.1
:
C
om

pa
ris

on
of

po
we

r
es
tim

at
io
n
er
ro
rs

of
ot
he
r
fu
nc
tio

ns
(p
ar
t
1)

Po
we

r
es
tim

at
io
n
er
ro
r
ε
[%

]
R
A
+
LT

F1
R
A
+
LT

F2
R
A
+
LT

F3
In
st
an

ce
PE

W
M
S

N
O
ST

A
P

PE
SP

PE
W

M
S

N
O
ST

A
P

PE
SP

PE
W

M
S

N
O
ST

A
P

PE
SP

#
1

-0
.1
3

6.
89

2.
62

-1
.6
9

6.
82

2.
41

-1
.6
0

5.
04

1.
06

#
2

0.
06

7.
56

3.
41

-0
.2
6

5.
65

1.
72

-2
.7
3

5.
05

0.
94

#
3

-2
.2
3

1.
13

-2
.0
7

2.
72

6.
08

2.
47

-0
.5
6

3.
49

-0
.1
8

#
4

-0
.6
6

7.
87

2.
63

1.
24

6.
66

2.
28

-1
.2
4

5.
87

0.
60

#
5

0.
90

11
.3
5

4.
71

0.
64

11
.6
6

4.
81

-0
.5
1

10
.2
2

3.
87

#
6

-2
.8
7

7.
58

1.
81

-1
.0
4

10
.4
9

4.
16

-1
.0
5

10
.1
4

3.
83

Ta
bl
e
C
.2
:
C
om

pa
ris

on
of

po
we

r
es
tim

at
io
n
er
ro
rs

of
ot
he
r
fu
nc
tio

ns
(p
ar
t
2)

55



56



Appendix D
Visualization of the evaluated schedules

Here we provide a visualization of all the evaluated schedules from Chapter 7.
Table D.1 lists the major frame lengths of the individual instances.

Instance Figure h [ms]
#1 Figure D.1 1300
#2 Figure D.2 1330
#3 Figure D.3 1000
#4 Figure D.4 1150
#5 Figure D.5 1170
#6 Figure D.6 1290

Table D.1: Major frame lengths of the evaluated instances
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58



......................... D. Visualization of the evaluated schedules

global-ILP
A72

A53

40
2

73
0

96
2

11
68

13
12

minutil+LTF
A72

A53

16
1

32
1

46
4

60
4

73
9

86
7

98
7

10
77

11
54

12
18

12
79

13
29

RA+LTF 1
A72

A53

46
3

76
2

94
0

10
68

11
32

11
93

RA+LTF 2
A72

A53

46
3

73
5

91
3

10
48

11
38

11
99

12
40

RA+LTF 3
A72

A53

58
2

91
0

11
05

12
15

12
79

13
29

Reference assignment heuristic+LTF
A72

A53

58
2

92
9

11
48

12
58

13
19

dijkstra fft prime sha susan test3 tinyrenderer
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Figure D.3: Schedules for Instance #3
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Appendix E
Measured and estimated average power
consumption values

Table E.1 and Table E.2 show the measured (averaged across all three runs)
and estimated average power consumption of the schedules evaluated in
Chapter 7.

Average power consumption [W]

global-ILP minutil+LTF Ref. assgmnt.
heuristic+LTF

Instance Measured Estimated Measured Estimated Measured Estimated
#1 7.313 ± 0.016 7.320 8.276 ± 0.009 8.321 7.638 ± 0.027 7.650
#2 7.410 ± 0.014 7.398 8.476 ± 0.003 8.397 7.782 ± 0.024 7.808
#3 7.232 ± 0.027 7.357 8.221 ± 0.031 8.248 7.239 ± 0.100 7.437
#4 7.435 ± 0.044 7.324 8.333 ± 0.026 8.284 7.549 ± 0.039 7.478
#5 7.396 ± 0.023 7.427 8.474 ± 0.031 8.529 7.659 ± 0.045 8.297
#6 7.410 ± 0.009 7.428 8.493 ± 0.037 8.443 7.698 ± 0.012 7.927

Table E.1: Measured and estimated average power consumptions of the evaluated
schedules (part 1)

Average power consumption [W]
RA+LTF 1 RA+LTF 2 RA+LTF 3

Instance Measured Estimated Measured Estimated Measured Estimated
#1 7.918 ± 0.020 7.928 7.960 ± 0.026 8.097 7.916 ± 0.012 8.045
#2 7.992 ± 0.015 7.988 7.932 ± 0.007 7.952 7.769 ± 0.024 7.987
#3 7.483 ± 0.130 7.654 7.767 ± 0.043 7.561 7.605 ± 0.206 7.648
#4 7.753 ± 0.038 7.804 7.968 ± 0.038 7.870 7.533 ± 0.024 7.627
#5 8.236 ± 0.034 8.163 8.380 ± 0.043 8.326 8.098 ± 0.030 8.140
#6 7.962 ± 0.006 8.197 7.990 ± 0.034 8.074 8.031 ± 0.008 8.116

Table E.2: Measured and estimated average power consumptions of the evaluated
schedules (part 2)
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Appendix F
Preliminary results of additional
experiments

The problem instances of the additional experiments we present here consist
mainly of benchmarks from the well-established EEMBC Autobench bench-
mark suite [22] often used in the automotive industry. The suite is comprised
of 12 different benchmarks, each with two different workload sizes: 4K and
4M. The benchmarks include signal processing algorithms, for instance, finite
impulse response filter and inverse discrete cosine transform, automotive
algorithms like road speed calculation, as well as generic workloads such as
matrix arithmetic.

We evaluated schedules for instances with only a single workload size,
instances with combined workload sizes, as well as instances with combinations
of benchmarks from the Autobench and the Taclebench suite. The thermal
results are shown in Table F.1. Table F.2 contains the evaluation of the
power estimation error for schedules of these instances. So far, only a single
measurement for each schedule was performed. Still, we believe the results
can be considered representative since they conform to the observations made
on the Taclebench instances in Chapter 7.

The steady-state temperature of the global-ILP schedules was on aver-
age better by 13.23% than minutil+LTF schedules, by 6.57% better than
RA+LTF schedules, and by 3.23% better than schedules based on the refer-
ence assignment heuristic. Interestingly, there were a few cases in which the
reference assignment heuristic schedules were slightly better (by less than 1%)
than the global-ILP schedules. This could have been caused by an inaccuracy
in the measurement (possibly because of an ambient temperature change
during the experiment), considering the temperature difference is almost
insignificant.

The average power estimation error of the PEWMS model across all the
evaluated schedules was -0.78%.
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Appendix G
Scalability of the global-ILP model

To evaluate the scalability of the global-ILP model, we measured the time
needed to find an optimal solution for |T | = {20, 22, 24, 26, 28, 30} on five
different instances. The time limit of 10 minutes was not enough to find the
optimal solution of the global-ILP model for instances with 32 and more tasks.
For comparison, we also measured the time needed for the reference assignment
heuristic to find a solution. The instances were randomly generated, with
the same execution time and major frame length parameters as described in
Section 7.1.

The evaluation was performed on a system with four Intel Xeon 4110 CPUs
running at 2.1 GHz and 192 GB of RAM. The ILP solver used was Gurobi,
version 9.0. The average times needed for finding a solution are listed in
Table G.1 and shown in a graph in Figure G.1. The times strongly depend
on the tightness of a particular instance, hence the considerable variance in
results.

Solve time [s]

|T | global-ILP
Reference assignment

heuristic
20 1.9 ± 0.4 1.0 ± 0.1
22 3.7 ± 2.0 2.2 ± 0.7
24 7.9 ± 3.1 3.0 ± 0.4
26 33.3 ± 16.3 4.1 ± 0.8
28 87.9 ± 22.2 9.0 ± 1.1
30 100.1 ± 44.9 13.2 ± 2.4

Table G.1: Average time needed to find an optimal solution

71



G. Scalability of the global-ILP model ...........................

20 22 24 26 28 30

0

20

40

60

80

100

120

140

|T |

So
lv
e
tim

e
[s]

global-ILP
Reference assignment
heuristic

Figure G.1: Average time needed to find an optimal solution
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