
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

GIT based markdown online editor

Bc. Vojtěch Sajdl

Supervisor: Ing. Martin Komárek
Field of study: Open Informatics
Subfield: Software Engineering
May 2021

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

457089Osobní číslo:VojtěchJméno:SajdlPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Softwarové inženýrstvíSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Online Markdown editor postavený na GIT

Název diplomové práce anglicky:

GIT Based Markdown Online Editor

Pokyny pro vypracování:
Vytvořte online nástroj, který bude podporovat celý životní cyklus tvorby
dokumentace software pomocí značkovacího jazyka Markdown a verzovacího
nástroje GIT. Nástroj by měl být použitelný zejména pro práci se systémem
Docusaurus.
Nástroj musí zejména zohledňovat:
- potřeby různých zúčastněných rolí (autor, korektor, copywriter,...)
- potřebu tvorby dokumentace pro různé verze dokumentovaného systému
Aplikace by měla umožnit zobrazení změněných souborů, zvýraznit jejich změněné
části a umožnit soubory editovat. Klaďte důraz na jednoduchost použití, proveďte
také kvalitativní uživatelské testování. Vývoj provádějte agilním způsobem.

Seznam doporučené literatury:
1. Facebook Inc.: Docusaurus, https://v2.docusaurus.io/docs/
2. John Gruber: Markdown: Syntax,
https://daringfireball.net/projects/markdown/syntax
3. CommonMark: Commonmark: A strongly defined, highly compatiblespecification of
Markdown, https://commonmark.org/
4. Scott Chacon a Ben Straub: Pro Git, ISBN: 1484200772
5. Yakov Fain a Anton Moiseev: Exploring Modern Web Development, ISBN:
9781617297809

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Martin Komárek, katedra informační bezpečnosti FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 21.05.2021Datum zadání diplomové práce: 10.02.2021

Platnost zadání diplomové práce: 30.09.2022

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Komárek

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Acknowledgements

I would like to thank my supervisor, Ing.
Martin Komárek, for providing guidance
and feedback throughout this thesis.

I would also like to express my gratitude
to Justin Dalrymple for his help solving
the mime type issue in Gitbeaker.

And finally, I would also like to greatly
thank my girlfriend, family and friends
who have all been very supportive.

Declaration

I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

In Prague on May 21, 2021

v

Abstract

This thesis focuses on creating a compre-
hensive online tool that supports the en-
tire life cycle of software documentation
creation, using GIT and Markdown at
its core. It aims to satisfy the needs of
multiple user groups, especially authors,
proof-readers and documentation man-
agers. The system should also support cre-
ation of documentations for different ver-
sions of the documented system and most
importantly be able to highlight changed
parts of the text.

The developed system was aimed to be
integrated with the existing documenta-
tion process used by Stratox Enterprises
s.r.o. - the main source of information
for this purpose was the thesis supervisor.
The system was to be integrated with the
technology that was already used - this
means using the Gitlab repository host-
ing service and Docusaurus - the static
page generator. Also, the system was to
be deployed on the in-house developed
CodeNow platform.

As Docusaurus supports all the require-
ments imposed upon the resulting doc-
umentation, the focus was to create a
tool, that would allow for easy file edit,
simplified proof-reading process and man-
agement of the documentations. After
prototyping and finishing the minimal vi-
able product, user testing was conducted.
Found problems and their solutions are
also discussed.

Keywords: Markdown, GIT, Editor,
Docusaurus, Documentation
management

Supervisor: Ing. Martin Komárek

Abstrakt

Tato práce se zabývá tvorbou komplex-
ního online nástroje pro podporu celého
životního cyklu tvorby dokumentace za
použití nástroje Git a jazyku Markdown.
Jejím cílem je uspokojit potřeby různých
uživatelských skupin, zejména pak autorů,
korektorů a manažerů dokumentací. Vý-
sledný systém by měl podporovat tvorbu
dokumentací pro různé verze dokumen-
tovaného systému a funkci zvýrazňování
změn souborů.

Vyvíjený systém byl určen pro integraci
do stávajícího procesu dokumentace pou-
žívaného firmou Stratox Enterprises s.r.o.
- pro získávání informací o tomto procesu
a použitých technologiích byl kontaktní
osobou vedoucí práce. Systém bylo třeba
integrovat s používanými technologiemi –
zejména pak s hostingem GIT repositářů
Gitlab a generátorem statických stránek
Docusaurus. Vyvíjený systém měl být také
nasazen na jejich vlastní platformě Code-
Now.

Jelikož Docusaurus podporuje všechny
požadavky na výslednou podobu doku-
mentace, práce se zabývala zejména vývo-
jem nástroje, který by umožnil snadnou
editaci, zjednodušený proces korektury a
správy dokumentací. Po dokončení proto-
typování a vývoje minimálního použitel-
ného produktu bylo provedeno uživatelské
testování. Jeho výsledky – zejména pak
nalezené problémy a jejich řešení jsou ná-
sledně v práci diskutovány.

Klíčová slova: Markdown, GIT, Editor,
Docusaurus, Documentation
management

Překlad názvu: Online Markdown
editor postavený na GIT

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Thesis structure 2

2 Analysis 3

2.1 Requirements analysis 3

2.1.1 Functional requirements 3

2.1.2 Non-functional requirements . . 5

2.2 Use cases & processes 6

2.2.1 Use cases 6

2.2.2 Documentation management . 7

2.2.3 Proofreading process 8

2.3 Available technology 9

2.3.1 Technology used in current
setup . 9

2.3.2 Markdown 9

2.4 Alternative markdown parsers . . 11

2.4.1 Remark 11

2.4.2 Marked 12

2.4.3 markdown-to-jsx 12

2.5 React . 13

2.5.1 Javascript 13

2.5.2 React and JSX 13

2.5.3 Comparison of React to other
frameworks 14

2.6 Redux . 15

2.7 Diff libraries 15

2.7.1 Plain text diff libraries 15

2.7.2 Markdown diff libraries 16

2.8 Markdown editors 17

2.9 Application access to GIT 19

2.9.1 Credentials 19

2.9.2 Local access vs API 19

2.9.3 Authentication 20

2.10 Other related software 21

2.10.1 StackEdit 21

2.10.2 CodeNow platform 22

3 Design 23

3.1 Architecture 23

3.1.1 Monolithic architecture 23

3.1.2 Microservice architecture 23

3.2 Markdown diff and render 24

3.3 Final architecture 24

3.3.1 NodeJS & Express 25

3.4 Database . 26

3.4.1 Database model 26

3.4.2 Database access 28

vii

3.5 OAuth2 login process 29

3.6 User Interface 30

3.6.1 User interface design 30

3.6.2 Early wireframe prototyping . 31

3.6.3 Final product wireframe
prototyping 33

4 Implementation 35

4.1 Prototyping 35

4.2 Final product 37

4.2.1 API server 37

4.2.2 Frontend 37

4.3 Problems . 38

4.3.1 Diff quality 38

4.3.2 Gitbeaker 40

4.3.3 Gitlab issues 41

4.3.4 Deployment 42

5 Testing 45

5.1 User testing 45

5.1.1 User behaviour tracking 45

5.1.2 Methodology 47

5.1.3 Results 49

5.1.4 Implementation changes after
user testing 53

5.2 Automated tests 56

5.2.1 Static analysis 56

5.2.2 Dynamic testing 57

5.2.3 Implementation 59

6 Conclusion 61

6.1 Achieved results 61

6.2 Further improvements 61

6.2.1 Diff algorithm 62

6.2.2 Various UI and UX
improvements 62

6.2.3 Better test coverage 62

6.2.4 Database migration 63

Bibliography 65

A CD 69

viii

Figures

2.1 App use cases 6

2.2 Documentation use cases 7

2.3 Proofreading process 8

2.4 Markdown syntax example [6] . . 10

2.5 MDX syntax example [10] 11

2.6 Parser popularity chart [14] 12

2.7 Output of the react-rich-diff
library . 16

2.8 Different JSDiff settings 17

2.9 Google Docs output 17

2.10 Codenow user interface 22

3.1 Microservice and Monolithic
architecture side by side [29] 24

3.2 Application architecture 25

3.3 Database diagram 27

3.4 SQL vs Query builders vs ORM
[35] . 28

3.5 Postgres database libraries
benchmark measured in ms [36] . . 28

3.6 GitLab Oauth2 login procedure
diagram . 29

3.7 Wireframe of the diff view 31

3.8 Wireframe of the edit page 32

3.9 Wireframe of the dashboard page 33

3.10 Wireframe of the files page 34

3.11 Wireframe of the settings page 34

4.1 Code block placeholder example 36

4.2 Comparison of output from the
significant space mode (top) and the
modified markdown-diff library
(bottom) . 39

4.3 Wrong output - the heading should
be a paragraph as described above 39

4.4 Hard to fix syntax error example 40

4.5 The block of problematic code in
Gitbeaker . 40

4.6 Codenow deployment overview . 43

5.1 Smartlook recording 46

5.2 User testing and amount of total
errors found [48] 47

5.3 The root cause of the login error 52

5.4 Breadcrumbs implementation on
the proofreading edit page 53

5.5 Comparison of information display
in proofreading request - old at the
top, new at the bottom 54

5.6 The overhauled documentation
page . 55

5.7 Dashboard implementation 56

5.8 Testing pyramid [52] 58

ix

Tables

2.1 User role mapping 8

2.2 Popularity of frontend frameworks
based on data from GitHub on May
11, 2021 from the respective GIT
repositories . 14

2.3 Highlights of frontend frameworks 14

2.4 Diff library overview 16

x

Chapter 1

Introduction

1.1 Motivation

Software documentation is a thing that every programmer uses almost every
day. Yet, this part of the job is often neglected, as it is often seen as
a burden than a co-created artifact [1]. This is mainly true for internal
code documentation, because more often than not, companies take a great
care of user-facing documentations. This is mainly because these can have
the power to decide whether their platform will be used or not. User-
facing documentations can include architecture documentation, technical
documentation and end user documentation [2]. These can take shape of API
endpoint documentation to enable companies to integrate the software into
their own apps or even tutorials for the end user on how to use their solution.
It is these types of documentation that this thesis focuses on.

Nowadays there are many solutions for generating documentation websites,
many of which are open source. That makes it easy for companies to cut
costs of trying to develop their own documentation system. But while these
tools work great for technically skilled users, there are still many other people
included in the documentation process. Some of them might not have the
technical knowledge to use the technologies these tools often utilize. Although
Markdown aims to have a simple syntax that should be easy to read and
write [3], especially older users might not be able to use it. And with GIT,
which is often used to track the documentation changes, can be hard even
for experienced users. This is something we need to keep in mind as many
companies employ proof-readers and translators who might not have any
prior experience with these technologies.

1

1. Introduction
1.2 Goals

Because of the reasons mentioned above, the current process required the
submitter to create a document from the markdown page they wanted to
proofread. This document would then need to be sent to the proof-reader,
who would make corrections and return the modified document back to the
submitter. Submitter would then need to apply these changes manually and
add them to the GIT repository. This makes for a long process when many
pages are to be proofread.

Therefore, the focus of this thesis is to design and implement a system, that
would solve these issues. The system should be a web application compatible
with all modern web browsers. It should allow for the most common use
cases such as editing files and requesting proofreading, without the burden
of the previous processes. All changes should be automatically saved to the
corresponding GIT repository and should not require user intervention unless
absolutely necessary.

1.3 Thesis structure

The structure of this thesis is as follows:

. In this chapter we outlined what problem are we trying to solve and why.. Chapter 2 contains a more in-depth look at the requirements and use
cases of the application and researches the current state of technology.. Chapter 3 shows the application design decisions and the reasoning
behind them.. Chapter 4 contains information about the finished application implemen-
tation.. Chapter 5 shows the results of user testing and the consequent improve-
ments along with how automatic testing is implemented.. Chapter 6 contains the results of this thesis along with a list of improve-
ments that can be made.

2

Chapter 2

Analysis

2.1 Requirements analysis

Throughout the entire thesis, the supervisor acted as the point of contact in
regards of requirements gathering. Below you will find the requirements that
were collected throughout working on the thesis.

2.1.1 Functional requirements

Login & permissions

The application should require users to log in and display only information
the user should have access to. There should be at least 3 user levels -
proof-reader, author and administrator. The administrator has full access
to the documentation, while author can only edit the files contained in it or
resolve proofreading requests. The proof-reader has access to own assigned
proofreading requests.

Documentation management

The application should allow for a new documentation to be created, edited
and deleted. Documentation administrator should be able to grant users
access, so that more people can collaborate. Appropriate changes should be
made in the hosted repository.

3

2. Analysis
File diff

The application should allow for file differences to be displayed. This includes
a list of changed files as well as highlighted changes in their content. These
changes should be highlighted as green (in case of addition) or red (in case of
deletion).

File edit

The application should allow file edit in such a manner that a WYSIWYG
editor would be utilized. The changes should be written to the GIT repository
on save and the changes should be autosaved so that in case of mistakenly
closed tab the content could be recovered.

Proofreading

The application should facilitate the entire proofreading process. The process
should start with selection of files that need to be proofread on a page with
file differences displayed. The submitter should then create a proofreading
request and assign a proof-reader to that request. Proof-reader will then edit
the files and submit the finalized version. It is possible that the finalized
version will contain no changes, the system should be able to handle such a
situation. Then the submitter will either accept (merge) or reject the changes.

4

.................................2.1. Requirements analysis

2.1.2 Non-functional requirements

File format support

The application should be able to work with the MD and MDX file formats.
It does not need to support all features of the MDX format. If possible, the
application should support displaying images hosted in the GIT repository or
use placeholders otherwise.

Versioning system

The application should support the GIT versioning system. The GIT repos-
itories will use one of the available hosting solutions such as GitHub or
Gitlab.

Interface

The GUI should be available publicly from any web browser. The interface
should also be responsive and usable on mobile devices.

Browser support

Only last two versions of browsers under active development need to be
supported.

Language

The GUI language doesn’t need to be switchable and should be primarily in
English.

Deployment

The application is to be deployed using Docker images on the CodeNow
platform.

5

2. Analysis
2.2 Use cases & processes

In this section the two most important use cases are described more in-depth.
This is done mainly to paint a better picture of the logic behind the process
design. User roles and their use cases are described in the diagram below.

2.2.1 Use cases

When we consider only the app as a whole, there is just one user group. Each
user can login, logout, create new documentation and view the documentations
they have access to.

As the applications main purpose is documentation management, the
use cases are documentation dependent. Therefore, without the user being
assigned to a documentation or having created a documentation, the use of
the app is limited. The use cases are illustrated in the diagram below.

Figure 2.1: App use cases

When we take a look at the use cases related to documentations, we can see
4 main user groups. The main idea between the split is, that the proof-reader
should only be able to do proofreading related tasks, author should be able
to CRUD operations on any file, the documentation manager should be able
to create proofreading requests and the admin should have full access to the
documentation. You can see the details in figure 2.2.

6

.................................2.2. Use cases & processes

Figure 2.2: Documentation use cases

2.2.2 Documentation management

The documentation management is one of the most important things to
describe, mainly because of the underlying connection to the GIT. Usually, if
we talk about documentation, we mean the representation in the application
and if we talk about the repository, we mean the repository where the
documentation files are stored.

The underlying repository is expected to be managed solely by the provided
application, any user interaction with the underlying repository should not
be required and is not recommended. This is because no synchronization
mechanism will be implemented in this thesis. The application can create and
delete the documentation, add and remove users, change their permissions or
modify the title, slug or description of the documentation. All the required
changes should be made to the repository automatically. If the user makes
modifications to the repository, everything should still be able to work (unless
the user does not have the required permissions), but the changes will not be
reflected in the application.

7

2. Analysis
User roles

Almost all the changes can be made in 1:1 manner apart from one: user
permissions. The user should always get the minimal required access to the
repository. To be able to push files into the repository, at least developer role
is required [4]. This is needed even for our user role with the least permissions.
Should further user access control be required, protected branches could be
utilised.

Role GitLab role Gitlab permission summary

Admin Maintainer Has full control over the repository

Documentation
manager

Developer Can perform any action on unprotected
branches

Author Developer Same as above

Proofreader Developer Same as above

Table 2.1: User role mapping

2.2.3 Proofreading process

The design of the proofreading process was important, as this was the main
intended functionality of the application. The user should be able to select
files they want included, and only those files should be visible to the proof-
reader. It should be also possible to write a note to the proof-reader and
either accept or reject the changes the proof-reader made. The proof-reader
should be able to work on the request and submit it when the proofreading
is finished. This led to the design of the simple process depicted below.

Figure 2.3: Proofreading process

8

................................. 2.3. Available technology

2.3 Available technology

2.3.1 Technology used in current setup

Docusaurus

Docusaurus is Open-Source project made by Facebook that is often used to
generate documentation. Lately the developers recommend using the alpha
version of Docusaurus - Docusaurus 2. This version has been rebuilt from the
ground up, so that it keeps the benefits of Docusaurus 1 (such as versioned
documentation and i18n) while implementing many new features. Docusaurus
2 now can generate many common content-driven websites such as blogs,
landing pages and many more [5]. The new version has also switched its page
syntax from GitHub Flavoured Markdown (GFM) to MDX which brings a
lot of new features.

GitLab

As their GIT hosting service, the Stratox Enterprises s.r.o. uses a self-hosted
GitLab instance. This is important because it means that we should support
configuring the instance URL. Moreover, each hosting service has their own
specific APIs and libraries. And even with the libraries provided, there are
still many ways to implement such API access - this will be explained in the
Chapter 3.

2.3.2 Markdown

Markdown history

The original Markdown specification was written by John Gruber in the year
of 2004 [6]. The main advantage of Markdown is that its use does not require
any WYSIWYG editor, because of its easy syntax. This syntax is designed
in such a way, that it should be very easy to read even though the text is not
rendered. For illustration, you can see a Markdown file example below.

9

2. Analysis

Figure 2.4: Markdown syntax example [6]

Thanks to its simplicity it spread and is nowadays used in many different
applications. Along with Docusaurus, many popular services such as GitHub,
Slack, Trello and even the Reddit social network have implemented it as their
text markup syntax [7]. But the original specification was vague and that
left room for different interpretations. As a result, if you take a GitHub Wiki
page and run it through a different system (such as Pandoc), the output can
be very different [8]. Moreover, the original Markdown specification does
not specify any conditions that would lead to syntax error; therefore, these
implementation differences might not be noticeable at the first sight.

To try to solve this issue, the CommonMark project was founded, creating
a comprehensive test suite and an unambiguous Markdown specification
[8]. The project even provides reference implementations of the specification
in various languages. Therefore, CommonMark is the specification most
flavours are based on. Why are there still flavours if CommonMark created
an unambiguous Markdown specification?

There are still some problems that persist - mainly the absence of some
common elements used in text processors - such as tables. But even though
this is a problem, most flavours are mainly platform specific extensions. For
example, GitHub has its own specification that supports referencing issues,
pull requests, navigation inside wiki pages and even the beforementioned
tables. Other flavours include GitLab Flavoured Markdown, StackOverflow’s
Markdown and many more [9]. Frontmatter is one of the most added features,
mainly for services that generate websites using Markdown. It allows for
specification of additional information including, but not limited to author,
page title, page id and edit link.

10

............................. 2.4. Alternative markdown parsers

Markdown vs MDX

Now that we know more about the history of Markdown, let us look at what
MDX is trying to solve. Even though CommonMark is a new specification,
the core concept remains unchanged - readability above all. MDX takes a
slightly different approach. MDX sacrifices some of its readability, so that JSX
code can be incorporated. An example of the syntax can be seen in figure 2.5.
This allows users to create dynamic pages using JavaScript - more specifically
React components. This can be anything from interactive tables, dynamic
alerts or even charts [10]. MDX also provides not just the specification, but
the toolkit to make generation of such interactive pages possible.

Figure 2.5: MDX syntax example [10]

2.4 Alternative markdown parsers

Because in the application requirements MDX parity was not specifically
requested, we would be able to use a different Markdown parser in case the
MDX toolkit was hard to implement or slow. Below you will find a list of
other well-known Markdown parsers.

2.4.1 Remark

Remark is the world’s most popular Markdown parser. It can do much more
than just parsing - it can inspect and transform the parsed Markdown too.
Using plugins, it can do anything from linting the code to even transforming
the code into valid React markup. It uses the micromark parser internally -
this parser has 100% CommonMark compatibility, and it can be extended
to support different flavors using plugins [11]. It is used by beforementioned
MDX, Gatsby or Netlify CMS.

11

2. Analysis
2.4.2 Marked

Marked is second most popular markdown parser. Its main advantage is that
it is built with speed in mind. Although it is fast, it implements features
from many common markdown specifications, although it does not aim for a
strict compliance to any specification. It works in the browser as well as in
the NodeJS environment. The extension system was designed with simplicity
in mind and allows us to extend the renderer and tokenizer [12].

2.4.3 markdown-to-jsx

Markdown-to-jsx is an easy-to-use markdown component that takes GitHub
flavoured Markdown (GFM) and makes native JSX without dangerous hacks.
It uses a heavily modified fork of simple-markdown as its parsing engine [13].
This parser is notable thanks to its JSX support and seamless integration
with React. Below you will find a popularity chart taken from npmtrends.

Figure 2.6: Parser popularity chart [14]

12

..2.5. React

2.5 React

2.5.1 Javascript

Before we talk about React, it would be appropriate to make a quick intro-
duction to JavaScript and some of its problems. JavaScript is an interpreted
programming language mainly known for its use in web browsers, though it is
also used in other environments - for example NodeJS [15]. As the browsers
improve, the web technology specifications are bound to change. Most often
these changes bring along new features, make the specifications less vague or
deprecate some less known or experimental APIs.

In a perfect world, we would not have to care and could just use the
latest and greatest features of the JavaScript language. But as it happens,
some users are reluctant to change. Even to this date, Internet Explorer, for
which Microsoft is releasing bug fixes and security patches only1, has over
2.5% of desktop market share worldwide [16]. Looking at modern browsers,
even Safari made by Apple lacks some of the features specified in ES6+ [17].
Therefore, many libraries have either limited browser support, or require
polyfills to add it (as is the case with React) - this mainly applies to the
beforementioned Internet Explorer.

2.5.2 React and JSX

React is a JavaScript library for building user interfaces across a variety of
platforms [18]. It allows programmers to design simple views while React
will efficiently update and render only the components that have changed.
Declarative views make the code more predictable and easier to debug. React
can be used on the server side using NodeJS, in the browser or it can even be
used to build mobile applications using React Native [19].

And what is the relation between React and JSX? JSX looks similar to a
templating language but is actually an extension of the JavaScript language,
that was designed specifically for React. JSX is used in React to describe
what the user interface should look like, but it is not the only way to write
React. JSX embraces the fact that the rendering and other UI logic are
inherently coupled together - including event handling, state changes or data
preparation [20].

Instead of artificially separating the code by splitting files into UI and logic
parts, React separates concerns with loosely coupled units called “components”

1Applies only to Internet Explorer 11, all other versions are unsupported.

13

2. Analysis
that contain both. Although React doesn’t require JSX to be used, many
people find it useful, because they can see the user interface structure while
working with the corresponding logic [20].

2.5.3 Comparison of React to other frameworks

When talking about React, usually two other big frameworks come up too.
These are Angular and Vue.js. Each has their own benefits, which will be
quickly summarized below.

React Angular Vue

Watchers 6.7k 3.2k 6.3k
Stars 168k 73.1k 183k
Forks 33.8k 19.2k 29k
Contributors 1542 1407 399
Used by 6.4M 1.8M 145k

Table 2.2: Popularity of frontend frameworks based on data from GitHub on
May 11, 2021 from the respective GIT repositories

From the popularity of each framework, we can draw conclusions about
the maturity and community. As we can see, Vue is the most popular based
on the number of stars. But it is used by the least number of projects.
Therefore, there might be a lack of resources in case of issues. It also has the
least number of contributors, although React and Angular being backed by
Facebook and Google respectively might be the reason those two have much
larger numbers [21]. Main highlights of each library:

React Angular Vue

Flexible
Relatively mature
Widely used
Easy to learn

Steep learning curve
MVC architecture
Uses Typescript
Mature

Flexible
Relatively new
Easy to learn

Table 2.3: Highlights of frontend frameworks

14

....................................... 2.6. Redux

2.6 Redux

Redux is a predictable state container for JavaScript apps [22]. What does
this mean? Every application has its state. It might contain response from a
server, the page user is on or maybe some user data. When the application
grows, it is easy to introduce errors, if state is not managed correctly. This is
because the state of the application can often be mutated by many different
actions asynchronously [23].

Debugging these problems then becomes increasingly hard and sometimes
always impossible. There also might be many sources of truth if the state
is not centralized. This is what Redux is trying to solve. It aims to provide
single, centralized source of truth. This allows for an easier state management
or even "time travel" debugging. It is extensible and has a wide array of
addons, including React bindings [22].

2.7 Diff libraries

Before starting the development of this application, it was necessary to get to
know the state of Markdown diff libraries. From a quick research it became
apparent, that these libraries use plain-text diff libraries at their core, which
might cause some problems.

2.7.1 Plain text diff libraries

There are two important plaintext libraries - the most widely used JSDiff and
diff-match-patch library made by Google. Both libraries use the algorithm
proposed in "An O(ND) Difference Algorithm and its Variations” by Eugen
W. Myers. The diff-match-patch library then applies various filters, that
aim to make the output cleaner and more human readable. In one of the
Markdown diff libraries the difflib library was also used, but this library
was last updated in the year of 2012 and the respective GIT repository does
not show any signs of activity.

15

2. Analysis
2.7.2 Markdown diff libraries

Markdown diff libraries are mostly based on beforementioned libraries, except
for react-rich-diff. Each library does things a little bit differently - let
it be the flavour support or how they handle various markdown elements.
Below you will find a quick summary of flavour support and underlying
implementation of each library.

Name Markdown flavor Implementation

markdown-diff GitHub Flavored Markdown JSDiff
@ads-vdh/md-diff CommonMark difflib
rich-text-diff GitHub Flavored Markdown JSDiff
react-rich-diff GitHub Flavored Markdown Own implementation

Table 2.4: Diff library overview

Notice, that we do not see any library that would support MDX. Moreover
the rich-text-diff and react-rich-diff libraries are already 5 and 3
years without any activity respectively and the other libraries do not seem
to be doing much better, thus any help from the developers is unlikely. The
MDX support and eventual problems will have to be tested and fixed by
the application developer. But the differences do not end there, the outputs
also differed in quality and representation. Below you can see an image of
react-rich-diff output, which differed from the other libraries:

Figure 2.7: Output of the react-rich-diff library

The different quality of the results was caused mainly by the used diff mode.
For example, markdown-diff uses char mode, which means it highlighted
every different letter. That is not ideal, because when used by humans, the
diff is not easy to read and even more so to understand. Just by changing
this mode we achieved a big difference in readability without sacrificing the
correctness of the output. Google Docs output was added for comparison.

16

.................................. 2.8. Markdown editors

Figure 2.8: Different JSDiff settings

Figure 2.9: Google Docs output

2.8 Markdown editors

Although Markdown is a widespread language, there are not many Open-
Source editors to choose from. Even more so if you require the editor to
support WYSIWYG mode. There are some editors that seem well made, but
the developer stopped its support a long time ago. This would mean that the
burden of bugfixes and improvements would be on the application developer.
Some of the most notable popular editors are:

17

2. Analysis
. SimpleMDE. no active development. EasyMDE. Fork of SimpleMDE, under active development. has side-by-side mode allowing seamless write & preview. has autosave built in. provides option to change the built-in markdown renderer. easy React setup using react-simplemde-editor wrapper.TOAST UI Editor. under active development, most active community. works well with frontmatter. provides option to disable the built-in markdown renderer. has side-by-side mode allowing seamless write & preview. easy React setup. biggest package size of all mentioned editors.React MDE. under active development. provides option to change the built-in markdown renderer. easy React setup

Same as with the diff libraries, there are not any WYSIWYG editors for
the MDX format. The only available MDX editor found was ok-mdx, but
it does not fit the needs of our application, as it doesn’t offer WYSIWYG
mode and is made to work with local files only.

18

............................... 2.9. Application access to GIT

2.9 Application access to GIT

As one of the most used parts of code would be the GIT connection, the first
step was to find out what are the recommended and most common ways to
implement such a system. From research, some common GIT access imple-
mentation approaches emerged. The implementation and their implications
are described below.

2.9.1 Credentials

There were two main approaches when it comes to credentials. One approach
is to create a service user. This user might be a regular user or if the GIT
hosting allows, it can be a bot. This approach has one big flaw - if the user
account or application is compromised, all the repositories it has access to
are compromised too.

This might not be a big issue if the access was read-only or if it was a bot
that automatically closes issues and cannot do much more. And although
having company secrets leaked is a big deal, malicious code inserted into a
repository with production code could do more harm. For the purpose of this
thesis, we need full read write access on the repository - meaning the attacker
could do a lot of damage and a malicious code would be hard to find, as all
the commits would be made by one account.

The other implementation utilizes the user’s own account. This works much
better for our purposes - each user has access only to the repositories, that
they require for their work. In case of unauthorized access, the commits can
be easily located and reverted, and the access revoked, and the application
will still work for other users.

2.9.2 Local access vs API

Local access

One of the common approaches is accessing locally cloned GIT. This poses
many challenges and would work best combined with the service user approach.
Again, there are two main implementations of this kind of access - utilizing
an installed GIT application or the ligbit2 library. The first approach was
used in the prototype app and did not work very well with blob files - the
problem was that it utilized the output from terminal and as such, it expected
to be string.

19

2. Analysis
The conversion of the binary file to string is not lossless - should the parser

encounter unrecognized characters; it will replace it with a U+FFFD character
[24]. Therefore, the issue couldn’t be resolved, and the approach was deemed
as unviable.

The second approach would utilize the libgit2 library. This library
implements a small set of GIT functions and accesses the repository directly.
Therefore, this approach would solve the issues with blob files, but the limited
set of functions could cause problems. Still there are other issues that this
second approach does not solve, such that we would need to solve conflicts
when updating the local repository and more.

API access

Using the API to communicate with the GIT repository host is by far the
easiest way to work with the GIT repository. The access can be obtained via
OAuth2 when the user logs in into the application, although the service user
approach can still be used. As most of the providers have official or unofficial
libraries that provide a wrapper around their APIs, the implementation is
also fairly simple.

2.9.3 Authentication

After a consultation with the supervisor, it was decided, that authentication
using GitLab OAuth2 API would be sufficient. For proof-readers that do
not have a Gitlab account, the account would be created by the company.
This also gives us the opportunity to ask Gitlab for the API keys required to
access the repositories. These keys will then be stored inside the database for
reasons described in section 3.4.1.

As the HTTP protocol is stateless, we also need a mechanism to keep the
user logged in. There are many approaches to solving this problem. The
most prevalent are session based auth and JWT.

20

................................ 2.10. Other related software

Session based auth

Session based auth keeps the session data stored on the server. When first
contacted, the server sends a cookie with a session id to the browser. The
browser then sends this cookie every time it accesses the server again [25].
This way the server "remembers" who the user is. The main benefit of this
approach is that it is easy to implement, but as the identifier is specific to
the server, it causes problems with scalability. This approach also caused
problems2 during prototyping, therefore JWT based auth was introduced.

JWT

JWT tries to solve the main problems of the session based auth - it uses
tokens to create a universal identifier that can be used to authenticate the
user. This token is then stored on the client side and does not have any
meaning for the client. This approach allows for a great scalability but adds
another layer of complexity. All JWTs are constructed from three different
elements: the header, the payload, and the signature/encryption data [26].
This token has no meaning to the client and is meant solely for the server.
But still, some new problems are introduced.

The main problem is that JWT tokens are not easily revokable as they are
meant to be stateless. If they were, then each service would need to check a
database of active/revoked tokens before serving the request and that means
scalability issues. Some exploits for this approach were also discovered [27].
To solve some of these issues long lived revokable refresh tokens tend to be
implemented. These are used to request new tokens once the short-lived
access tokens expire.

2.10 Other related software

2.10.1 StackEdit

Stack edit is an in-browser Markdown editor. It supports WYSIWYG editing,
simultaneous preview with scroll synchronization, comments, collaboration
and much more. It can even connect to GitHub and GitLab to edit files stored
there. This application seems to be a good candidate to use for documentation
management, but it has its own problems.

2If the server was restarted, the developer would need to log in again. Even with code
hot swap, this could occur relatively often over the course of several minutes of development.

21

2. Analysis
While this application works well for basic use cases such as file edit, the

setup is somewhat complicated. It requires user to create a new application
in their GitLab account, give it correct permissions and then configure which
project they want to use. This would be hard for non-technical users such as
proof-readers. Also, it does not support creating or deleting the repository
and the user can only edit one branch at a time (branches need to be imported
separately).

2.10.2 CodeNow platform

For the purpose of this thesis, access to the CodeNow Software Factory, made
by Stratox Enterprises s.r.o. was provided by the supervisor free of charge.
CodeNow aims to provide an all-in-one solution that would cover the entire
software delivery lifecycle. Everything is done automatically - application
building, deployment, testing or even logging and monitoring. To deliver this
solution, it uses Open-Source software, so the danger of vendor lock-in is not
present [28]. The applications are deployed using docker images, which can
be built in the platform. Configuration can also be managed there, but some
constraints apply - such as that it all must be present in one specific folder.
Below, you can see a view of a successfully built version of the application on
the CodeNow platform.

Figure 2.10: Codenow user interface

22

Chapter 3

Design

3.1 Architecture

The first important decision was to select an architecture, that would allow
for a good scalability and speed of development. The architectural section
will focus mainly on the high-level design, thus describing technologies used
and not the internal implementation.

3.1.1 Monolithic architecture

Although monolithic applications are usually easier to develop, debug, test
and deploy, the negatives come to light at a later time. As the monolithic
architecture has inherent scalability issues, the architecture becomes a problem
when a large user base starts using the application. Furthermore, as the
application grows the codebase becomes harder to understand and manage.
Should the need to switch to a different technology arise, the changes would
need to be made to the entire code [29].

3.1.2 Microservice architecture

On the other hand, there is the microservice architecture. This architecture is
based on independent components, providing much more flexibility. Moreover,
if one service fails or has a bug in it, the rest of the system remains operational.
Additional benefit of this architecture is that there is less code in a service
for the programmer to understand and scaling is also much easier unless

23

3. Design..
the application is implemented incorrectly. Technologies can be switched
relatively easily, as the change can affect only one microservice at a time.

The downsides of this approach are that it adds complexity. You need to
set up logging systems, health monitoring and handle the communication
across all the microservices and deployment alone becomes harder. Testing
also becomes more complex, as each microservice must be tested separately.

Figure 3.1: Microservice and Monolithic architecture side by side [29]

3.2 Markdown diff and render

During prototyping all the markdown diff and render libraries were evaluated.
Ideally the entire diff and rendering process should be offloaded to the browser
so as to not require an expensive infrastructure. However, at the early stages
of prototyping it has become clear, that the MDX library had problems
running in a browser environment. This meant that either we would need to
sacrifice render feature parity to Docusaurus and use a different parser, or
that a render server would need to be deployed.

3.3 Final architecture

The decision was made to utilize a hybrid approach between monolithic and
microservice architecture. The basic idea was that there would be one API
server and one frontend server, serving a single page application.

24

...................................3.3. Final architecture

The API server could be further separated into an auth and documenta-
tion/proofreading microservices, but for the sake of simplicity of development,
all of it stayed on the same server in the current implementation. The Auth
part can be separated at any time, as it should not be coupled with any other
part of the application.

The frontend library was selected to be React, because it is the most
widely used and we are unlikely to encounter any major problems. The
server language was selected to be JavaScript, using NodeJS as the runtime
environment, because if some code would be found to be slow in the browser,
porting it to the server would be simpler than with other languages.

There are also many toolkits that allow to generate the basic application
structure - for example React has its own create-react-app, and there is the
Neutrino project, which can generate multiple different presets. CodeNow
has their own scaffolders for their supported languages too, but access to the
CodeNow platform was obtained later in the development, therefore their
scaffolders could not be used from the start. In the figure 3.2 you can see the
proposed deployment of the application.

Figure 3.2: Application architecture

3.3.1 NodeJS & Express

Before we finish this section, we should also quickly introduce the beforemen-
tioned NodeJS and its most prevalent web framework library - ExpressJS.

Node.js is a JavaScript runtime environment built on Chrome’s V8 JavaScript
engine, designed to build scalable network applications with the help of its
asynchronous, event-driven nature [30], [31]. It is open source, cross-platform,
and since its introduction in 2009, it got hugely popular [32].

25

3. Design..
Express is a minimal and flexible Node.js web application framework that

provides a robust set of features for web and mobile applications [33]. It
builds on top of its features to provide easy to use functionality that satisfy
the needs of the Web Server use case [34]. The combination of NodeJS and
Express is widely used and already very mature. As of writing this thesis,
ExpressJS was used by over 9.7M projects based on data from the Gitlab
repository.

3.4 Database

The database choice was mainly constrained by the CodeNow platform
support. A relational database is best suited for this application; therefore,
we are left with two options - the PostgreSQL and CockroachDB. The database
for this application was chosen to be PostgreSQL mainly because of its better
NodeJS support.

3.4.1 Database model

The database model was designed in such a way, so that we could minimize
API communication, primarily in the proofreading case. Also, the possibility
to add more GIT hosting providers was considered. To achieve this, each
documentation has the provider where it is hosted specified. However, in the
current implementation, this will only be Gitlab. Linking user account to
multiple providers is also possible, thanks to the JSONB columns linked
(links account with provider account ID) and tokens (keeps access tokens
stored for our use). The structure of the linked and tokens fields is as follows:

Linked account :
{

<provider >: {
<number >

}
}

Tokens :
{

<provider >: {
access : <token >,
refresh : <token >

}
}

26

...................................... 3.4. Database

Note that in the current implementation the tokens could easily be stored
in the JWT payload, when obtained from the provider on login. This would
not work when the support for more providers would be added - the user
would always need to login through the provider they wanted to use. This
would not be very user friendly, so the approach described above was utilized.

The tokens table contains JWT refresh tokens, and the app checks whether
the token is present (if it is, it was not revoked) before it generates new access
token for the user. The rest of the tables and their columns is self-explanatory,
apart from proofreading request. The columns sourceBranch, targetBranch,
revFrom and revTo are all GIT-related. But why are they there, when we
could simply open a merge request that would store this information for us?

The main reason is that we need to access this data often. It is used in the
file diff part of the proofreading request as well as to indicate which branch
the file should be saved to and various other features. This way we know
all the information needed and the merge request can be created once the
proofreading is finished, minimizing the need to access the Gitlab API. The
modified column exists for the same reason - so that we know which files were
modified by the proof-reader without having to request a diff from Gitlab.

Figure 3.3: Database diagram

27

3. Design..
3.4.2 Database access

There are various approaches to database access - raw SQL, query builders
and ORMs can be used. Each has their own benefits and drawbacks, some of
which can be seen in the figure below.

Figure 3.4: SQL vs Query builders vs ORM [35]

The choice of the approach is often dependent on the skills and preferences
of the developer. NodeJS has a great collection of tools for all of these
approaches. Although the other options may be easier for some people to use,
I personally like to know what exactly the application is querying, therefore I
focused on the Raw SQL approach.

Database access libraries

As of writing there were multiple libraries to choose from, namely: pg,
postgres and slonik. As of writing the pg library was the most popular one
and postgres was by far the fastest one. As the postgres library had a good
documentation and an active developer, it was used in the final application.

Figure 3.5: Postgres database libraries benchmark measured in ms [36]

28

................................. 3.5. OAuth2 login process

3.5 OAuth2 login process

The OAuth2 login process works great when used with a monolithic, session
auth based application, but brings another layer of complexity while creating
a microservice app. This is mainly because the process of frontend and
backend communication needed is not well described. A library for PassportJS
was found, but the implementation was not straightforward, as basically
every example assumed a monolithic architecture. Note that a simpler
implementation using an auth provider such as Auth0 could be used, but it
would also mean that we might need to use a paid plan in the future.

First, we need the access tokens to be sent to the NodeJS API server,
so that we can store them in our database. Second, the API server needs
to somehow let the frontend know that the user logged in successfully and
transfer the appropriate JWT. After a while of research, the process was
designed as follows:

Figure 3.6: GitLab Oauth2 login procedure diagram

As can be seen from the diagram, the resulting JWT are sent from the
backend to the frontend. This is done via a redirect to a special URL, in
which these tokens are contained. This is not a security risk, as the HTTPS
protocol encrypts the entire request. This basically means that a hacker may
be able to figure out which host name the user is connected to but not the
rest of the URL, keeping the tokens safe [37].

29

3. Design..
3.6 User Interface

The user interface design was an important focus of this thesis. The aim was
to provide the users with an UI that would be easy to navigate in and more
importantly fast to get things done.

3.6.1 User interface design

A good user interface design is fundamental for any applications success
as there often are a lot of competitors. Therefore, a user centred design is
nowadays a requirement, not an advantage over the competition.

Properly analysing the collected requirements and understanding their
meaning is essential for a good UI and UX design [38]. User centred design has
to also account for many problems that are not mentioned in any requirements
- for example if the application has a long-running task, the design should be
created in such a way, that the user will know that something is happening,
and the application didn’t just freeze.

Although it would seem so, to create a good UI design, you do not have to
consult with users all the time. There are some general rules, that if utilized
properly will help us create a good UI/UX. These include:

. Proximity - items close together seem related, therefore they should be. Visibility - size of elements and their contrast can make user notice them
first. Hierarchy - if a hierarchy exists, it should be discernible in the UI.Mental Models - confirmation dialogs, utilization of Fitt’s Law and
consistent UI are just some examples of how we can help improve the
user experience

Another good technique to use is creating wireframes before an actual
implementation. Wireframes are used to represent the user interface and
describe the hierarchy of components in the final product. These wireframes
then can be consulted and validated with users even before implementing the
design [39]. In the next sections we will focus on the low fidelity wireframes
created before the main implementation.

30

.................................... 3.6. User Interface

3.6.2 Early wireframe prototyping

The UI prototyping went through two phases - first the prototypes for the
main documentation view designated for the documentation manager (the
diff view) was designed along with the edit page. Most of those wireframes
stayed the same during the development, although the wireframe of the diff
view was updated, because the branch selection was not present in the initial
design. Other changes such as the user menu and cog wheel for documentation
settings were added in the next design iteration to more reflect the actual
design that would be used.

Figure 3.7: Wireframe of the diff view

At this point the design of the edit page assumed, that the preview would
be implemented as an in-editor preview. However later due to the editor’s
limitations, this was found to be impossible, and the design had to be changed.
This change is not reflected in the wireframe below but can be seen in the
figure 5.4.

31

3. Design..

Figure 3.8: Wireframe of the edit page

Along with the first prototypes, the UI was to be implemented. It was
at this time that the question of which UI framework to use arose. There
is a wide variety of frameworks that aim to help the coders to create and
prototype user interfaces quickly, but not every one of them has a complete
React implementation. Why is that important? More often than not, these
frameworks enable us to create dropdowns, modals and various other elements
that require JavaScript to work properly. Having those elements implemented
in React makes it easier to use them as they behave as a React developer would
expect. Due to previous experience, I preferred the Bootstrap framework. It
even had ready-made React bindings library react-bootstrap.

Bootstrap UI framework

Originally created by a designer and a developer at Twitter, Bootstrap
has become one of the most popular front-end frameworks and open-source
projects in the world. It went through a major rewrite in each version,
incorporating new technologies such as media queries and flexboxes [40]. As
of writing, Bootstrap is used by over 2.5M projects worldwide.

32

.................................... 3.6. User Interface

3.6.3 Final product wireframe prototyping

After implementing the initial app version, it was time to design more of the
UI. There were additional features to be added that were not included in
the original version: Dashboard, Documentation settings, Documentation
creation, File view and the entire proofreading process.

Some of the features would use the same or very similar wireframes as
in the previous iteration - mainly the proofreading page and file edit while
proofreading. Also, the creation of a new documentation and the proofreading
request creation are just simple forms, therefore these wireframes were not
created.

First off, we have the Dashboard wireframe. In this wireframe the main
focus was on simplicity. The proposed tile layout of the proofreading requests
and documentation was assumed to make it easier for users to select the correct
item, as the clickable area is rather large. It also gives us the space to fit in
more information in the proofreading request tile, such as the proof-reader
and submitter name.

Figure 3.9: Wireframe of the dashboard page

As for the files page, the main focus was easily distinguishable hierarchy as
well as making it easy to create or delete a new file. The file deletion should
also have confirmation dialog not displayed in this wireframe. At this stage,
the problem that is not solved is that we need to indicate which files can be
edited, as the application supports only Markdown files.

33

3. Design..

Figure 3.10: Wireframe of the files page

Finally, the documentation settings page design. The main point of this
wireframe is to illustrate, how the user management will work, as all other
documentation settings can be solved by a simple form. The user dropdown is
meant to be searchable, searching all users registered on the Gitlab instance.
The information that could be obtained about each user was not known at this
point, therefore the design of the dropdown is taking available information
into account. Also, the access level list was shortened for convenience.

Figure 3.11: Wireframe of the settings page

34

Chapter 4

Implementation

The implementation could be split into two phases - prototyping (as mentioned
in previous sections) and the final implementation. Only the important parts
of the prototyping will be described.

4.1 Prototyping

The prototyping iterated over a few solutions. The first two prototype
versions were CLI based and meant to solve the immediate problem at hand -
generating Markdown diffs that could be at least copy-pasted into a word
processor to help facilitate proofreading. The CLI based versions utilized
Bash and NodeJS.

The difference between them was that the first version could generate
Markdown diffs locally, but they were not very usable yet. The second version
uploaded them directly to Google Drive to allow to utilize its diff algorithm.
This script utilized the ability to convert HTML to a Google Document, but
the diff could not be done automatically, as Google does not provide such an
API endpoint.

After finishing this implementation that was requested by the supervisor,
we moved onto the planned web version of this application. During this
phase, a simple React application was created, and the viability of a web
solution was tested. The first point was whether it is possible to generate
diffs and render them in the browser. Also, the viability of different GIT
access methods was explored. Immediately problems were encountered while
trying to render the Markdown.

35

4. Implementation....................................
When trying to use the MDX toolkit, it was found, that it had problems

running in a browser environment. To render the markdown with at least
partial feature support, Remark was then tried. When we implemented
Remark as the main parser, it slowed the browser down noticeably. Later, the
marked and markdown-to-jsx parsers were tried. Both worked fairly well,
but although the feature parity to Docusaurus was not specifically required,
it would be a great help, because the end user could easily preview what they
were doing.

Therefore, more effort to get the MDX parser working was made, trying
to get it working via server-side rendering. Including it on the same server
was deemed as a bad idea (mainly due to performance concerns), therefore a
new service was made. Deployed in such a manner, the MDX library started
working and rendering similar to the Docusaurus could be done.

The diff libraries were compared at this time, and the markdown-diff library
was later chosen as the primary diff library, due to its readability and thus
ease of modification. Some diff enhancements were also introduced at this
time, mainly detecting changes inside the code blocks and shortening them
using a placeholder, as they are not important to the proof-reader. Other
work included image placeholders and eventually image loading. This was all
solved using regex expressions.

Figure 4.1: Code block placeholder example

During prototyping phase, the application was used as a local app, therefore
prototyping started by implementing local GIT access using the installed GIT
application. This implementation worked fairly well, until the image display
feature started to be implemented. During its implementation problem with
the string conversion described in section 2.9.2 was discovered, making any
blob file corrupted. But at this point, the proof-of-concept implementation
was good enough and we moved onto the final product, where the approach
would be changed.

36

.................................... 4.2. Final product

4.2 Final product

During the final implementation it was important, to have the API server
ready to be extensible. Due to the choice of programming language, some
limitations were present - mainly the inability to create interfaces and enums.
Also, the structure of either a React or NodeJS project is not fixed, it is up
to the programmer to choose their preferred way to write the application.

4.2.1 API server

The prototyping stack was designed, to make it easy for me to work with. At
this point, the problem with interfaces and enums needed to be addressed to
move forward. As I have a good experience with plain JavaScript, I chose to
change my approach to designing the application structure to account for the
missing interfaces. The technique to emulate enums was easy - for a basic
implementation we can use an object containing explicitly stated key-value
pairs and then use the widely supported Object.freeze() API to prevent
any object modification. These problems could be solved with the use of
Typescript too, but at the time CodeNow did not support generic Docker
images and Typescript was not explicitly listed as supported.

The implementation was built still tried to account for the future possibility
to add more GIT hosting providers. Although the API server was not split
into several microservices, it was designed to keep the services separate and
clearly distinguish the API endpoints of each service. Moreover, both the
documentation and proofreading services need to access the GIT hosting
provider. The API endpoints were designed using the REST API approach.

The GIT hosting provider is accessed through a wrapper class, that selects
the appropriate implementation based on the provider requested. At the
moment only Gitlab client is implemented. This approach should ensure that
the application does not need to be entirely rewritten when a new provider
would be added. Although Gitlab promotes GitLab-Yaac on their website, it
has not been updated for over 6 years. Therefore, to implement the Gitlab
client, the library Gitbeaker was used, as it was by far the most popular and
feature-complete.

4.2.2 Frontend

The React and Redux combination was used to implement the frontend, with
the addition of wouter to enable us to use multiple pages. Several other

37

4. Implementation....................................
libraries, such as react-select used to implement searchable dropdowns and
slugify, used to automatically create slugs from documentation names were
also introduced. The most notable addition that sped up the development
process was the addition of the ky library, which is a tiny and elegant HTTP
client based on the browser Fetch API [41]. The aim of this library is to
provide an easy-to-use wrapper to the browsers fetch API. Thanks to this
library, the requests became much easier to implement and are much more
readable - especially those containing a JSON body.

The application structure aimed to mainly separate the components and
pages as some of the components would be reusable. Redux was also utilized
to make the state management easier, mitigating problems with passing the
values through many components. In the end the frontend manages the file
diffing to lessen the load on the API and the diff is then sent to the Render
service.

Before sending the content to the service, it is modified using regex ex-
pressions that replace the url of the images contained in the page with our
own. This ensures that the images are working once the content is rendered.
When the image is rendered a request to the API server is made and the API
server in turn requests the file from Gitlab. The tokens need to be passed
along with the requested file to prevent unauthorized access; therefore, it has
to be included as a part of the URL.

4.3 Problems

Over the course of the final implementation, many problems were discovered
and resolved. The most important ones are described below.

4.3.1 Diff quality

The diff quality problems were already discovered during the prototyping
phase. In the final implementation, these problems had to be fixed. The main
two problems were readability (as mentioned in analysis) and validity (the
MDX library refused to render them). To solve this issue, the original library
was forked and modified.

Readability

The readability issues were explored previously, but some still remained. The
main improvement was seen in implementing a way that multiple consequent

38

...................................... 4.3. Problems

additions and deletions could be merged, to make it more readable. A solution
utilizing a lookahead approach, that would stop should any non-modified or
special block be encountered, was designed.

Figure 4.2: Comparison of output from the significant space mode (top) and
the modified markdown-diff library (bottom)

Validity

The validity problem consisted of two parts: the <ins> and html
tags were either placed inside links, images or other HTML tags or caused
the renderer to crash due to syntax errors. The MDX toolkit is especially
susceptible to syntax errors - even having these tags placed across multiple
lines of text causes errors. The first part of the problem was solved by utilizing
regex expressions to fix the affected parts of the Markdown file, but some
minor problems are effectively unsolvable by just these expressions. Below
you will find an image of how a change of heading to paragraph is incorrectly
rendered.

Figure 4.3: Wrong output - the heading should be a paragraph as described
above

The issue of the MDX syntax errors getting triggered by wrongly placed
html tags is a bigger issue. Again, regex expressions were utilized, along with
splitting tag content when a newline is encountered, but still, some of the
issues remained unsolved as some are hard to debug or a very specific issue
to the MDX renderer. Also, even though efforts were made to fix any broken
HTML syntax, some invalid syntax is hard to detect and/or fix.

39

4. Implementation....................................

Figure 4.4: Hard to fix syntax error example

4.3.2 Gitbeaker

The Gitbeaker library had two issues, one of which I managed to fix. This
includes blob file and error handling.

Blob handling

This was the same issue I encountered while prototyping. I was very curious
why the issue was present, although the Gitlab API was utilized, therefore I
searched for a bug in my implementation. The issue persisted when I tried
writing the file directly to the hard drive, therefore I assumed the problem
has to lie elsewhere and begun searching in the library source code.

Soon enough, the source of the problem was found. The blob file was being
treated as a UTF string. Again. This time though, this was deliberate.

Figure 4.5: The block of problematic code in Gitbeaker

The code above actually expects only 3 different mime types to be handled

40

...................................... 4.3. Problems

as raw binary data. I encountered this problem because I was using the
library to fetch an image/png file type. The fix was rather obvious - that is
to treat only text type as a string, regardless of its subtype and every other
file type as raw binary file.

After I reported the issue, the developer of the library - Justin Dalrymple
was quick to respond. After I created a fix for the issue and added appropriate
tests, he quickly merged the pull request I made and published a new version
of the library.

Error handling

The other problem encountered while working with the library was error
handling. I am currently not sure why, but the HTTP status code returned by
the Gitlab instance is inaccessible and the error codes provided by Gitbeaker
are not very descriptive. If the HTTP status code was included, it would be
a lot easier to provide meaningful messages to the user and more importantly
- handle the errors appropriately.

4.3.3 Gitlab issues

Performance

Another interesting problem was encountering multiple strange performance
issues while using the Gitlab API. Both of them were encountered, when
requesting all data from a particular endpoint - more precisely the file structure
and all commits in the repository. The issue with getting the full file tree was
expected and an implementation using lazy loading of folders was created.
The load time of the entire file tree was a lot shorter, when the folders were
eagerly loaded, too.

But getting all commits from Gitlab was exceptionally slow - and that was
only with around 250 commits at that! One would expect that this process
would have been optimized a lot. But this request caused browser to timeout
the fetch - with ky as the fetching library this is 10s in the default setting.
When tested from my PC the commit information retrieval request alone took
around 3.5 s. On a hunch, I tried to limit the number of returned commits to
100. Almost magically, the response time went down to 120 ms. Returning
100 commits takes 120ms and returning around 250 takes 3.5 s? Something
does not add up. Therefore, setting the limit to 1000 was tried next and the
250 commits were returned in around 300 ms.

41

4. Implementation....................................
Repository API

Another problem with the API that was encountered during the development
was that the Documentation changes could not be saved, which was only
true for newly added admins, not the owner. The api actually returned the
403 Forbidden error code. There was no information about this issue on
the internet and there was no obvious issue with the implementation, as it
works for the repository owner. Also, there was no problem when tested
in the Gitlab UI. Therefore, it is assumed that this is a bug in the API
implementation.

4.3.4 Deployment

As the development was agile, it was split into smaller sprints. The application
was deployed on the CodeNow platform at least once a sprint was finished,
after the access to the platform was obtained around halfway through the
development. This meant that the application needed to be modified to
accommodate the workflow utilized by CodeNow.

Docker

Docker is a widespread virtualization tool which utilizes containers to run
application in their own environments. The environment is isolated from all
other processes on the host machine. The approach Docker utilizes leverages
kernel namespaces and cgroups, which are Linux kernel features [42].

Docker compose is a tool for defining and running multi-container Docker
applications. With Docker compose, YAML files are used to configure the
application services and connections between them. After writing this config-
uration, the application can be started up using a single command [43].

The implementation uses different Docker images for the local deployment
and the deployment on CodeNow. Local deployment also utilizes the Docker
compose tool to enable users to easily run all services, including the app
services, database, pgAdmin and even the API documentation.

42

...................................... 4.3. Problems

CodeNow

There were various problems when first deploying the application to the
CodeNow platform. First, it is expected that the code will be hosted in
separate repositories in the Gitlab instance provided by Stratox Enterprises
s.r.o. This was an issue, because the development was fully in progress and the
project was already hosted at GitHub. But still, this could be easily solved by
utilizing the subfolders in the repository as separate GIT repositories, which
made it relatively easy to use. The second problem was that the platform
expects use of the provided scaffolders, which is something that was not
expected, therefore the folder structure had to be modified a bit. At the time
of writing, this was already remedied, and generic Docker images are now
allowed.

Figure 4.6: Codenow deployment overview

43

44

Chapter 5

Testing

5.1 User testing

During the writing of this thesis, the Coronavirus was rampant in the Czech
Republic. So much so, that the government decided to impose district
lockdown. This posed a problem in two areas: firstly, people were less willing
to participate in the user testing and secondly, remote user testing tends to
be more time consuming and for older, less technically able users often hard
to do. It is also harder to assess the (dis)satisfaction of the user. For the
beforementioned reasons, it was decided to include user behaviour tracking
service in the app.

5.1.1 User behaviour tracking

User behaviour tracking tools, unlike normal analytics, track how the user
interacts with the page. Several tools exist on the market with various features
ranging from basic heatmap tracking to recordings and some even allow users
to report bugs via a form embedded in the page. For this thesis, we considered
two services - Hotjar and Smartlook.

Hotjar

Hotjar is a behaviour analytics and user feedback service that helps companies
understand the behaviour of your website users and get their feedback [44].
There are many success stories, including even some large companies such
as Tomtom and Ryanair [45]. Hotjar is GDPR-ready and provides multiple

45

5. Testing
useful features - from the standard heatmaps, and recordings to collecting
and managing user feedback. It also has the option to survey users [44]. The
implementation in React is simple with the react-hotjar npm package.

Smartlook

Smartlook is a direct competitor to Hotjar. It offers many of the features
Hotjar supports and adds some of their own [46]. There are many success
stories too - including the biggest Czech online store Alza.cz or the Kiwi.com
online travel agency [47]. It is also GDPR ready but does not offer any
features to collect user feedback. For React integration the smartlook-client
package is provided.

Implementation & UI overview

Although both options were evaluated, due to its better pricing options, it
has been decided to use Smartlook. In both cases the implementation is very
simple as the basic implementation takes just about one line of code. Below
you will find an example of Smartlook recording with automatic sensitive
information censoring which is a part of their GDPR-ready design.

Figure 5.1: Smartlook recording

46

..................................... 5.1. User testing

5.1.2 Methodology

According to Jakob Nielsen1, there is no need to test usability with no more
than 5 users. Furthermore, he goes as far as to claim that as soon data from
a single test user are collected, it contains about 1

3 of the information that
there is to know about the usability of the design.

Figure 5.2: User testing and amount of total errors found [48]

Because of the coronavirus limitations there was only a limited number
of users that wanted to participate and time to evaluate the application.
Therefore 2 rounds of testing with 3 users were conducted.

Target audience

As the target audience a group of people between 20 and 60 years without
any major disabilities were selected. The users were to be at least moderately
technically inclined - the main factors included their knowledge of markdown
or word processors and git knowledge. Users with little to no knowledge of
GIT were preferred.

Tested scenarios

When the testing was planned, it was expected that there would be at least
5 participants split into 2 different user groups. First (the less technically
inclined one) was meant to test the proof-reader use cases and the second
one was meant to test the administration interface. But because of the
unexpectedly long government regulation of the freedom of movement, the

1Jakob Nielsen is an web usability consultant and human-computer interaction researcher,
has invented some of the usability methods that are widely used today, including heuristic
evaluation.

47

5. Testing
test group was missing 2 people who were meant to mainly test the usability
of the editor. Therefore, it was decided to include all the remaining users in
both types of tests. In the end the scenario was split into three parts - basic
documentation administration testing, file view/edit testing and proofreading
process testing. Therefore, the user was first presented with the scenario,
outlined in points below:

. Login using Gitlab. Create a new documentation. Add a specific user to the documentation. Change the documentation information (any of the name, slug or de-
scription). Remove a user from the documentation

After completing the first test the user was added to an existing documen-
tation which was prepared with existing snapshot of CodeNow documentation.
The testing then continued as outlined below:

. Edit a file (e.g., make some text bolder or change the heading level) and
save it. Edit a file and "accidentally" close the tab. Then try to edit the file
again.. Create a folder or file. Delete a file

Now the testing continued with the proofreading process evaluation:

. Compare two revisions of the documentation. Create a proofreading request from this comparison. user was asked to exclude one specific file. while user was completing this step, a proofreading request was
assigned to them. Check whether any new requests were assigned to you. Complete the assigned request

48

..................................... 5.1. User testing

. while user was completing this step, the proofreading request they
created was completed. If any requests are finished, accept them

The average time to complete the entire testing scenario was about 65
minutes, with the second test being significantly shorter, as it was primarily
focused on reviewing the changes made to the application.

5.1.3 Results

During the testing, various problems were encountered. Some of them were
bugs, but there were also some major oversights in the original design, although
the fixes were usually fairly easy to implement. Below you will find summary
of some of the most important problem that were discovered, that were not
caused by bugs.

User 1

User 1 was currently studying Open Informatics bachelor programme. They
had some basic understanding of GIT and a good understanding of the
Markdown language. They had their own Gitlab account.

. Large priority problems. Cursor does not indicate that a documentation on the dashboard is
clickable. Cannot easily tell which revision is earlier, date would help. Proofreading request - warning alert "Merge not yet possible" con-
fusing when shown right after creating the request. Buttons not hiding when merged/submitted changes. Option to go back should be added, user feared the changes would
disappear should they press the back button.Medium priority problems. State of the request should be more easily distinguishable. Proofreading request description - not sure where is displayed, what
to write. Allow switching "My changes" and "Diff changes" in proofreading. No invisible changes badge is confusing

49

5. Testing
. Low priority problems. Link to users GitLab account. Indicate a folder has editable elements

User 2

User 2 was currently studying Open Informatics master’s programme. They
had good understanding of GIT and a good understanding of the Markdown
language. They had their own Gitlab account.

. Large priority problems. A documentation of the application functions should be available. Access levels should be described. Proofreading requests should contain information about which doc-
umentation they belong to. It should be possible to change user access level without their
removal. Proofreading request should include contact for the proof-reader &
requester.Why some files cannot be opened?.Medium priority problems. Highlight required fields. Unknown email - unclear what it means. File badges are confusing. Commit message in commit select is too short. Low priority problems. User search requires diacritics. Some elements change position when alert disappears

We can see that some problems start repeating at this point. Also, some
problems that were identified are constrained by API limitations and therefore
cannot be fixed, for example the user search User 2 mentioned.

50

..................................... 5.1. User testing

User 3

User 3 was an employee of Stratox Enterprises s.r.o. They had good under-
standing of GIT and a good understanding of the Markdown language. They
had their own Gitlab account, but it was unusable due to a problem that was
encountered. This will be described below.

. Blocker problems. Login not working. Large priority problems.We should be able to write commit message. Commits are not limited and it is not easy to know what is "from"
and what is "to".We should have some info about the user levels present.We should send out emails when user is added / proofreading req.
state changed. Edit button should be present, not only clickable title.We shouldn’t allow user to navigate away from the editor if changes
were made.Medium priority problems. If file did not change, do not allow saving. Detect whether branch is protected and we don’t have access. Select all files / deselect all files. File badges confusing - add tooltips. Low priority problems. Proof-reader should see differences by default, not "Preview".Mark as complete button could be named Proofreading finished. Start typing when searching user might not be clear.Duplicate file could be added - useful so that we do not have to
start from a blank file. Internal links should work.Green colour of newly added file did not seem correct. Autosave diff would be nice to have

51

5. Testing
This user was the first one to encounter any problems while logging in,

which was confusing, because it worked for all previous users with me included.
Therefore, it seemed unlikely to be problem with the implementation and a
bug in the underlying library was assumed. I tried to reproduce the issue
with existing accounts without success, therefore the same procedure used by
the user to log into their account was used.

As the user was not sure whether the account has previously existed
under the same Google account login method, new account using the same
method was created, then the bug was successfully reproduced. After some
investigation along with forking the library and updating its dependencies, it
seemed like the library was in a good working order. The next step was to
check the account settings to look for any abnormalities. It was then when
the root cause was discovered.

Figure 5.3: The root cause of the login error

It was found out, that although the OAuth process continued successfully,
the account was in fact not yet active. That caused the application to not be
able to retrieve the user’s data. Unfortunately, there is no way for us to fix
or detect this problem.

52

..................................... 5.1. User testing

5.1.4 Implementation changes after user testing

As the result, many changes to the user interface were implemented. Some of
the more interesting ones are highlighted below.

Back navigation

After the first user testing, the need for a non-browser based back navigation
was identified. This might have been implemented in many different ways -
for example as a back button. Using heuristic evaluation, it was recognized
that this implementation might not be ideal as the problem of remembering
the navigation sequence would be necessary.

This might be a problem when the user focuses on writing a new docu-
mentation page or proofreading an existing one. Therefore, it was decided to
implement this in the way of breadcrumbs. This approach is also beneficial
when a large navigation sequence led to the resulting page, the user can then
decide to skip a few steps. This case is depicted below.

Figure 5.4: Breadcrumbs implementation on the proofreading edit page

Still one problem with the implementation was discovered - which was that
the inclusion of the IDs instead of the proofreading request or documentation
name were confusing to one of the users. This problem was fixed only partially
due to time constraints.

53

5. Testing
Information display

In a few cases, the user testing revealed a problem with how the information
is being displayed. This ranged from "I am not sure what x means" to "I felt
I’ve done something wrong". This was the main case when the proofreading
request was created. To solve this, a tooltip was introduced on the element
that it was referring to. Below you can see a comparison of a new and
previously used implementation.

Figure 5.5: Comparison of information display in proofreading request - old at
the top, new at the bottom

Notice that more information was added to the proofreading request too.
Originally this information was omitted, which was found to be a bad idea
from the user testing.

Documentation display

The documentation page underwent a complete overhaul, as problems with
the original design were discovered. The original design was implemented to
match the original wireframe almost exactly. The new implementation can
be seen below.

54

..................................... 5.1. User testing

Figure 5.6: The overhauled documentation page

This implementation added the edit button to each document, the badges
moved to the top of the document card and now the document is collapsed
by default and can be expanded by clicking at the arrow at the bottom. This
solves the problem where, if many files were modified at once, the page would
be very long and cluttered.

Dashboard

The dashboard was implemented almost exactly as the original wireframe
intended. The most significant change is the inclusion of the state badges, as
the states were written in the header previously and were not very recognizable.
This can be seen on the image below.

55

5. Testing

Figure 5.7: Dashboard implementation

5.2 Automated tests

Automated software testing is an important part of any production-ready
application. It helps in preventing introduction of bugs or security vulnera-
bilities in the code. It is even more important, when the codebase becomes
large and when more developers are working at the same project as the tests
often check the code behaviour. Automated tests can be split into two parts:
static and dynamic tests, both of which will be described in this section.

5.2.1 Static analysis

Static analysis, as the name suggests, does not actually run the code. The
methods utilize semantic analysis methods such as type checking and vulner-
ability signature matching. These tools can often reveal a bug in the code
even before any tests are written.

56

................................... 5.2. Automated tests

Lint tools

Lint tools specialize on code style enforcement, but they often go beyond
that. Most of the tools are code-aware and therefore can detect bad syntax,
use of undefined variables and much more. Some even offer the option to
automatically fix the style issues. These tools mostly eliminate problems
that for humans would be hard to spot, such as writing = instead of == in a
condition.

Vulnerability detection

Another important part of static code analysis is vulnerability detection.
These tools have a great database of code patterns that introduce vulnerabili-
ties in the code or can cause the application to overload or behave unexpectedly.
They can detect pretty much anything from Cross Site Scripting, to missing
rate limiting or even the use of vulnerable version of packages.

5.2.2 Dynamic testing

Dynamic testing actually runs the code and can check its results. The dynamic
testing methods can be split into multiple categories. Each of them has their
own use-cases and the complexity of implementation and runtime length also
differs a lot. Moreover, different test types can discover different category of
bugs. Below you will find a quick summary of the dynamic testing techniques.

Unit testing

Unit tests are the most used type of tests. The aim is to test every unit
separately - therefore if it depends on a different unit, it needs to be mocked.
The unit tests should be minimal and therefore fast and will always identify
the exact point of failure in the application. Unit testing also allows for
refactoring and even re-implementing parts of code with confidence, because
the output of the modified component is tested [49], [50].

Integration testing

Integration testing is a level of software testing where individual units are
combined and tested as a group [51]. It is performed to expose defects in the

57

5. Testing
interactions between individual units. As this kind of testing often takes up
more time than unit testing, test cases and data should be more carefully
chosen.

End to end testing

End to end testing is the most complex one as it simulates the end user. It
tests the application as a whole, utilizing a defined scenario. They rely on
the whole app; therefore, they cannot identify the point of failure and can be
flaky - for example, a 3rd party service might fail temporarily during testing
and therefore yielding wrong test results.

The recommended split

From the quick summary above, it is apparent that each of the methods
has its advantages and disadvantages. According to the Google Testing blog
article written by Mike Wacker, end to end tests are overly complex and often
do not provide enough insight [52]. Google often suggests a 70/20/10 split:
70% unit tests, 20% integration tests, and 10% end-to-end tests [52] - this
roughly translates into the testing pyramid depicted below.

Figure 5.8: Testing pyramid [52]

58

................................... 5.2. Automated tests

5.2.3 Implementation

In this thesis, we implemented our own solution as well as modified some of
the libraries it uses. For those libraries, most modifications warranted writing
new unit tests. For example, for the markdown-diff library, unit tests trying
to capture minimal test cases encountered in the wild were written. In the
Gitbeaker library, minimal test cases for the encountered bug were written.

The API relies mainly on static analysis and basic unit tests right now,
as due to setbacks during the development, there was not enough time to
write meaningful integration tests. The implemented unit tests were written
to cover the most basic cases - such as verifying that a new object is created
properly using the constructor parameters. More importantly the frontend
part remains completely untested from React component standpoint and
relies on static analysis only. The Redux reducers and actions have some basic
test cases written. Also, in both the frontend and backend, the immutability
of the enums is tested, as well as their values.

59

60

Chapter 6

Conclusion

6.1 Achieved results

The result of this thesis is a fully working, user tested application that is
deployed in a CodeNow academy environment. As the application supports
custom Gitlab instances, it is currently planned to start real-world testing of
the application by utilizing it in the CodeNow documentation management
process at Stratox Enterprises s.r.o.

User testing discovered some major usability problems, most of which
are already fixed. The application should be mostly production-ready, but
due to the smaller than expected user testing group, some usability issues
might still arise. There are also some known areas that would deserve further
improvements.

6.2 Further improvements

There are some areas that are known to require additional improvements,
that unfortunately were not incorporated during this thesis. These will be
described below.

61

6. Conclusion......................................
6.2.1 Diff algorithm

The diff algorithm underwent a lot of changes during the development. Over
the time it became clear, that even though for most cases, regex fixing is
enough, there are some unfixable problems as mentioned before. These
problems would most likely require a different approach to the entire diff
algorithm. One of those approaches could be using an AST diff algorithm.

Gumtree algorithm

Gumtree algorithm is an AST diff algorithm, inspired by the way programmers
search in the code, aims to create diffs that are close to capturing the
developer’s intent [53]. Using such algorithm would resolve all the syntax
problems caused by the existing libraries. Libraries such as JSDiff could still
be utilized to highlight changes inside the AST blocks.

6.2.2 Various UI and UX improvements

There also were some good UX improvements that unfortunately could not
be included. Some of them are relatively easy, such as excluding users that
have already access to the documentation. Some are minor annoyances like
the one when on reload, the active tab is not remembered. And there were
also some functionality improvements - mainly file duplication or making the
internal links in markdown files work.

Also something many might not consider an UX improvement, but im-
provement nonetheless - the quality of the emails. Right now, the emailing is
relatively barebones and a better worded emails including more information
would be great for users.

6.2.3 Better test coverage

As of now, the API server is partially covered by the test suite and the
frontend is not covered at all, except for the Redux tests. This is a big room
for improvement, because right now a bug in the React app could cause users
to be unable to complete some tasks.

62

.................................6.2. Further improvements

6.2.4 Database migration

Another important improvement to implement would be database migrations.
Until now all the migrations were either done manually or by dropping the
table and recreating it, as the application was not running in a production
environment. This will not be possible when the application is deployed and
used by real users. Thus, implementing a database migration library such as
ley would be highly beneficial.

63

64

Bibliography

[1] C. J. Stettina and W. Heijstek, “Necessary and neglected?: An empirical
study of internal documentation in agile software development teams”,
in Proceedings of the 29th ACM international conference on Design
of communication - SIGDOC ’11, ACM Press, 2011, p. 159, isbn:
9781450309363. doi: 10.1145/2038476.2038509. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2038476.2038509.

[2] ClickHelp LLC, What is software documentation? [Online]. Available:
https://clickhelp.com/software-documentation-glossary/soft
ware-documentation/.

[3] J. Gruber, Markdown: Syntax. [Online]. Available: https://daringfi
reball.net/projects/markdown/syntax.

[4] GitLab, Permissions. [Online]. Available: https://docs.gitlab.com/
ee/user/permissions.html.

[5] Facebook Inc., Docusaurus: Introduction. [Online]. Available: https:
//v2.docusaurus.io/docs/.

[6] M. Cone, An overview of markdown, how it works, and what you can
do with it. [Online]. Available: https://www.markdownguide.org/
getting-started/.

[7] ——, Applications and components that support markdown. [Online].
Available: https://www.markdownguide.org/tools/.

[8] CommonMark, Commonmark: A strongly defined, highly compatible
specification of markdown. [Online]. Available: https://commonmark.
org/.

[9] ——, Markdown flavors. [Online]. Available: https://github.com/
commonmark/commonmark-spec/wiki/Markdown-Flavors.

[10] MDX, Mdx. [Online]. Available: https://mdxjs.com/.
[11] Remark, Readme. [Online]. Available: https://github.com/remarkjs/

remark/blob/main/readme.md.

65

https://doi.org/10.1145/2038476.2038509
http://dl.acm.org/citation.cfm?doid=2038476.2038509
https://clickhelp.com/software-documentation-glossary/software-documentation/
https://clickhelp.com/software-documentation-glossary/software-documentation/
https://daringfireball.net/projects/markdown/syntax
https://daringfireball.net/projects/markdown/syntax
https://docs.gitlab.com/ee/user/permissions.html
https://docs.gitlab.com/ee/user/permissions.html
https://v2.docusaurus.io/docs/
https://v2.docusaurus.io/docs/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/tools/
https://commonmark.org/
https://commonmark.org/
https://github.com/commonmark/commonmark-spec/wiki/Markdown-Flavors
https://github.com/commonmark/commonmark-spec/wiki/Markdown-Flavors
https://mdxjs.com/
https://github.com/remarkjs/remark/blob/main/readme.md
https://github.com/remarkjs/remark/blob/main/readme.md

6. Conclusion......................................
[12] Marked, Marked documentation. [Online]. Available: https://marked.

js.org.
[13] E. Jacobs, Markdown-to-jsx. [Online]. Available: https://github.com/

probablyup/markdown-to-jsx.
[14] npm trends, Remark-parse vs marked vs markdown-to-jsx. [Online].

Available: https://www.npmtrends.com/remark-parse-vs-marked-
vs-markdown-to-jsx.

[15] Javascript | mdn. [Online]. Available: https://developer.mozilla.
org/en-US/docs/Web/JavaScript.

[16] Desktop browser market share worldwide. [Online]. Available: https://
gs.statcounter.com/browser-market-share/desktop/worldwide/
2020.

[17] J. Zaytsev, Ecmascript 2016+ compatibility table. [Online]. Available:
https://kangax.github.io/compat-table/es2016plus/.

[18] M. T. Thomas, React in action. Manning Publications, 2018, isbn:
9781617293856.

[19] Facebook Inc., React. [Online]. Available: https://reactjs.org/.
[20] ——, Introducing jsx. [Online]. Available: https://reactjs.org/docs/

introducing-jsx.html.
[21] S. Daityari, Angular vs react vs vue: Which framework to choose in

2021. [Online]. Available: https://www.codeinwp.com/blog/angular-
vs-vue-vs-react.

[22] Redux - a predictable state container for javascript apps. [Online]. Avail-
able: https://redux.js.org/.

[23] D. Bugl, Learning Redux: write maintainable, consistent, and easy to-test
web applications. O’Reilly Media, 2017, isbn: 9781786469533. [Online].
Available: https://proquest.safaribooksmisc.com/9781786462398.

[24] T. U. Consortium, The unicode standard, version 12.1.0, 2019. [Online].
Available: http://www.unicode.org/versions/Unicode12.1.0/.

[25] S. Hsu, Session vs token based authentication, Jul. 2018. [Online]. Avail-
able: https://sherryhsu.medium.com/session-vs-token-based-
authentication-11a6c5ac45e4.

[26] S. Peyrott, JWT Handbook, 0.14.1. Auth0® Inc.
[27] B. Pontarelli, Pros and cons of jwts. [Online]. Available: https://

fusionauth.io/learn/expert-advice/tokens/pros-and-cons-of-
jwts/.

[28] S. E. s.r.o., Codenow. [Online]. Available: https://www.codenow.com/.
[29] Microservices vs monolith. [Online]. Available: https://www.n-ix.com/

microservices-vs-monolith-which-architecture-best-choice-
your-business/.

[30] Node.js, Node.js. [Online]. Available: https://nodejs.org/en/.

66

https://marked.js.org
https://marked.js.org
https://github.com/probablyup/markdown-to-jsx
https://github.com/probablyup/markdown-to-jsx
https://www.npmtrends.com/remark-parse-vs-marked-vs-markdown-to-jsx
https://www.npmtrends.com/remark-parse-vs-marked-vs-markdown-to-jsx
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020
https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020
https://gs.statcounter.com/browser-market-share/desktop/worldwide/2020
https://kangax.github.io/compat-table/es2016plus/
https://reactjs.org/
https://reactjs.org/docs/introducing-jsx.html
https://reactjs.org/docs/introducing-jsx.html
https://www.codeinwp.com/blog/angular-vs-vue-vs-react
https://www.codeinwp.com/blog/angular-vs-vue-vs-react
https://redux.js.org/
https://proquest.safaribooksmisc.com/9781786462398
http://www.unicode.org/versions/Unicode12.1.0/
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://sherryhsu.medium.com/session-vs-token-based-authentication-11a6c5ac45e4
https://fusionauth.io/learn/expert-advice/tokens/pros-and-cons-of-jwts/
https://fusionauth.io/learn/expert-advice/tokens/pros-and-cons-of-jwts/
https://fusionauth.io/learn/expert-advice/tokens/pros-and-cons-of-jwts/
https://www.codenow.com/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://www.n-ix.com/microservices-vs-monolith-which-architecture-best-choice-your-business/
https://nodejs.org/en/

.................................6.2. Further improvements

[31] ——, About. [Online]. Available: https://nodejs.org/en/about/.
[32] F. Copes, The NodeJS handbook.
[33] Express - node.js web application framework. [Online]. Available: https:

//expressjs.com/.
[34] ——, The Express handbook.
[35] Sql vs orms vs query builders | compare. [Online]. Available: https:

//www.prisma.io/dataguide/types/relational/comparing-sql-
query-builders-and-orms.

[36] R. Porsager, porsager/postgres-benchmarks. Apr. 2021. [Online]. Avail-
able: https://github.com/porsager/postgres-benchmarks.

[37] What is ssl, tls and https? | digicert. [Online]. Available: https://www.
websecurity.digicert.com/security-topics/what-is-ssl-tls-
https.

[38] T. Lowdermilk, User-centered design: a developer’s guide to building
user-friendly applications, First edition. O’Reilly, 2013, isbn: 9781449359805.

[39] E. Canziba, Hands-on UX design for developers: design, prototype, and
implement compelling user experiences from scratch. Packt Publishing,
2018, isbn: 9781788626699.

[40] J. T. Mark Otto and B. contributors, About. [Online]. Available: https:
//getbootstrap.com/docs/4.1/about/overview/.

[41] S. Sorhus, sindresorhus/ky. May 2021. [Online]. Available: https://
github.com/sindresorhus/ky.

[42] Docker Inc., Orientation and setup, May 2021. [Online]. Available:
https://docs.docker.com/get-started/.

[43] ——, Overview of docker compose, May 2021. [Online]. Available: https:
//docs.docker.com/compose/.

[44] Hotjar, What is hotjar? [Online]. Available: https://www.hotjar.com/
blog/what-is-hotjar/.

[45] ——, Customer stories and case studies. [Online]. Available: https:
//www.hotjar.com/customers/.

[46] Smartlook, Free website analytics tool. [Online]. Available: https://
www.smartlook.com/website-analytics/.

[47] ——, Customer stories archives. [Online]. Available: https://www.
smartlook.com/blog/category/customer-stories/.

[48] J. Nielsen, Why you only need to test with 5 users. [Online]. Available:
https://www.nngroup.com/articles/why- you- only- need- to-
test-with-5-users/.

[49] Unit testing, Feb. 2011. [Online]. Available: https://softwaretestin
gfundamentals.com/unit-testing/.

67

https://nodejs.org/en/about/
https://expressjs.com/
https://expressjs.com/
https://www.prisma.io/dataguide/types/relational/comparing-sql-query-builders-and-orms
https://www.prisma.io/dataguide/types/relational/comparing-sql-query-builders-and-orms
https://www.prisma.io/dataguide/types/relational/comparing-sql-query-builders-and-orms
https://github.com/porsager/postgres-benchmarks
https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
https://www.websecurity.digicert.com/security-topics/what-is-ssl-tls-https
https://getbootstrap.com/docs/4.1/about/overview/
https://getbootstrap.com/docs/4.1/about/overview/
https://github.com/sindresorhus/ky
https://github.com/sindresorhus/ky
https://docs.docker.com/get-started/
https://docs.docker.com/compose/
https://docs.docker.com/compose/
https://www.hotjar.com/blog/what-is-hotjar/
https://www.hotjar.com/blog/what-is-hotjar/
https://www.hotjar.com/customers/
https://www.hotjar.com/customers/
https://www.smartlook.com/website-analytics/
https://www.smartlook.com/website-analytics/
https://www.smartlook.com/blog/category/customer-stories/
https://www.smartlook.com/blog/category/customer-stories/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
https://softwaretestingfundamentals.com/unit-testing/
https://softwaretestingfundamentals.com/unit-testing/

6. Conclusion......................................
[50] umer, Unit, integration and end-to-end tests - finding the right balance,

Jul. 2016. [Online]. Available: https://codeahoy.com/2016/07/05/
unit-integration-and-end-to-end-tests-finding-the-right-
balance/.

[51] Integration testing, Mar. 2011. [Online]. Available: https://software
testingfundamentals.com/integration-testing/.

[52] Just say no to more end-to-end tests. [Online]. Available: https://
testing.googleblog.com/2015/04/just-say-no-to-more-end-to-
end-tests.html.

[53] J.-R. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing”, in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
doi: 10.1145/2642937.2642982. [Online]. Available: http://doi.acm.
org/10.1145/2642937.2642982.

68

https://codeahoy.com/2016/07/05/unit-integration-and-end-to-end-tests-finding-the-right-balance/
https://codeahoy.com/2016/07/05/unit-integration-and-end-to-end-tests-finding-the-right-balance/
https://codeahoy.com/2016/07/05/unit-integration-and-end-to-end-tests-finding-the-right-balance/
https://softwaretestingfundamentals.com/integration-testing/
https://softwaretestingfundamentals.com/integration-testing/
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982

Appendix A

CD

The attached CD contains:

. This document in the PDF file format. The application source codes. The backend folder contains the API microservice. The frontend folder contains the React frontend. The render folder contains the MXD render microservice. The api.yaml file contains the API endpoint documentation. The docker-compose.yml contains configuration for running the
application locally using docker-compose. The modified markdown-diff library

The source codes of the main application are also available at
https://github.com/Pryx/git-md-diff and of the modified markdown-
diff library at https://github.com/Pryx/markdown-diff.

Not included are the modifications made to the Gitbeaker library, which
are already present upstream.

69

https://github.com/Pryx/git-md-diff
https://github.com/Pryx/markdown-diff

	Introduction
	Motivation
	Goals
	Thesis structure

	Analysis
	Requirements analysis
	Functional requirements
	Non-functional requirements

	Use cases & processes
	Use cases
	Documentation management
	Proofreading process

	Available technology
	Technology used in current setup
	Markdown

	Alternative markdown parsers
	Remark
	Marked
	markdown-to-jsx

	React
	Javascript
	React and JSX
	Comparison of React to other frameworks

	Redux
	Diff libraries
	Plain text diff libraries
	Markdown diff libraries

	Markdown editors
	Application access to GIT
	Credentials
	Local access vs API
	Authentication

	Other related software
	StackEdit
	CodeNow platform

	Design
	Architecture
	Monolithic architecture
	Microservice architecture

	Markdown diff and render
	Final architecture
	NodeJS & Express

	Database
	Database model
	Database access

	OAuth2 login process
	User Interface
	User interface design
	Early wireframe prototyping
	Final product wireframe prototyping

	Implementation
	Prototyping
	Final product
	API server
	Frontend

	Problems
	Diff quality
	Gitbeaker
	Gitlab issues
	Deployment

	Testing
	User testing
	User behaviour tracking
	Methodology
	Results
	Implementation changes after user testing

	Automated tests
	Static analysis
	Dynamic testing
	Implementation

	Conclusion
	Achieved results
	Further improvements
	Diff algorithm
	Various UI and UX improvements
	Better test coverage
	Database migration

	Bibliography
	CD

