Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer science

Survey of ML Model Serving Solutions and
criteria for selection thereof

Petr Poliak

Field of study: Open informatics
Subfield: Software Engineering

Supervisor: Ing. Martin Ledvinka

May 2021

ii

cvuT ZADANI DIPLOMOVE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

(PFijmeni: Poliak Jméno: Petr Osobni Eislo: 439562
Fakulta/ustav: Fakulta elektrotechnicka
Zadavajici katedra/ustav: Katedra pocitactl
Studijni program: Oteviena informatika

L Specializace: Softwarové inzenyrstvi

Il. UDAJE K DIPLOMOVE PRACI

Nazev diplomové prace:

Srovnani pristupll nasazeni modelti strojového uceni
Nazev diplomové prace anglicky:
Survey of ML Model Serving Solutions and criteria for selection thereof

Pokyny pro vypracovani:

1) Familiarize yourself with the problem of Machine learning model deployment.
2) Compare at least three different approaches of deploying Machine learning
models.

3) Define a framework for evaluating the suitability of specific Machine learning
model deployment approaches in different scenarios.

4) Evaluate the framework with respect to the problems described in literature.
5) Use the evaluation framework on a set of at least three industry-based use
cases of various levels of complexity. Compare your findings with the

decisions made by experts.

Seznam doporucené literatury:

1. Andrei Paleyes, Raoul-Gabriel Urma, Neil D. Lawrence et al. - Challenges in
Deploying Machine Learning: a Survey of Case Studies, NIPS 2020

2. Sculley et al. - Hidden Technical Debt in Machine Learning Systems, NIPS 2015

3. Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, Liang Zhang - LASER: A
Scalable Response Prediction Platform For Online Advertising, WSDM 2014

Jméno a pracovisté vedouci(ho) diplomové prace:

Ing. Martin Ledvinka, skupina znalostnich softwarovych systéma FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) diplomové prace:

Datum zadani diplomové prace: 12.02.2021 Termin odevzdani diplomové prace: 21.05.2021

Platnost zadani diplomové prace: 30.09.2022

Ing. Martin Ledvinka podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

NG

Ill. PREVZETIi ZADANI

Diplomant bere na védomi, Ze je povinen vypracovat diplomovou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramentl a jmen konzultantu je tfeba uvést v diplomové praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

iv

Acknowledgements

First, I want to thank my supervisor for
his guidance and for his courage to explore
an unfamiliar topic. Further, I want to
thank Vojta for his domain expertise &
leadership and everyone in my team at
Avast, thanks to whom I could explore
MLOps more than a single person in a
year could.

Big thanks to Radek, Jodao Da Silva
(Avast), and Alex Hagerf (Socialbakers)
for the help, patience, and information
used in the case studies.

And lastly, to my friends Petr and
Marek for mutually motivating each other
to grind till the end.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within accordance with the methodical
instructions for observing the ethical prin-
ciples in the preparation of university the-
ses.
In Prague, 20. May 2021

Abstract

Machine learning operations is an emerg-
ing field in software engineering. It aims
to streamline the machine learning devel-
opment process from the model’s concept
to its application. In this thesis, we fo-
cus on machine learning model serving
approaches for online inference use cases.

First, we provide a brief background
for machine learning operations and de-
lineate the situations we consider in this
thesis. Then, we propose four criteria
used to describe and evaluate the deploy-
ment approaches. Next, we identify five
different schemes to deploy machine learn-
ing models and assess them with regard
to the defined criteria. We provide the
architectures of the solutions and the use
case where they fit along with example
implementations.

Further, we propose a framework to
guide selecting the approach that best
fits the use case. Lastly, we provide two
industry case studies describing the archi-
tecture, implementation, and reasoning
behind those decisions.

Keywords: Machine Learning
Operations, Machine Learning, MLOps,
Online inference

Supervisor: Ing. Martin Ledvinka

vi

Abstrakt

Machine learning operations (provoz stro-
jového uceni) je zacinajici obor softwa-
rového inzenyrstvi. Ma za cil zefektivnit
proces vyvoje strojového uceni od kon-
ceptu modelu po jeho nasazeni. V této
diplomové préci se zamérime na architek-
tury nasazovani modelu strojového uceni
pro online klasifikaci.

Nejprve je Ctenari kratce predstaven
obor machine learning operations a vy-
mezime zaméreni této prace. Poté navrh-
neme a vysvétlime ctyfi kritéria, kterd
jsou pozdéji pouzitd k popisu a vyhodno-
ceni jednotlivych pristupt nasazovani mo-
deli. Déle popiseme pét ruznych schémat
pro nasazovani modelt strojového uceni a
u kazdého rozebereme jednotliva kritéria.
Kazdé schéma méa popsanou architekturu
a priklad situace, kde by se dalo pouzit,
véetné ukazkové implementace.

Déle navrhneme framework pro vybér
schématu, které nejlépe vyhovuje situaci
pro nasazovani modelti. Nakonec poskyt-
neme dvé detailni studie z primyslu popi-
sujici architekturu, implementaci a argu-
mentaci za rozhodnutimi, které k danému
vysledku vedly.

Kli¢ova slova: Machine Learning
Operations, Provoz strojového uceni,
MLOps, Strojové uceni

Pteklad nazvu: Srovnéani pristupt
nasazeni modelu strojového uceni

Contents

1 Introduction

1.1 Notation......................

2 Scope delimitation and context

2.1 Machine Learning lifecycle

2.2 Running inference

2.3 Machine learning operations.

3 Schema evaluation criteria

31Scale...........

3.2 Simplicity

3.3 Completeness
3.4 Extensibility

4 Deployment scheme definitions
4.1 Native serving
411 Context...................
412 8Scale
4.1.3 Simplicity
4.1.4 Completeness..............
4.1.5 Extensibility
4.2 Software stack integration
4.2.1Context...................
422 8Scale
4.2.3 Simplicity
4.2.4 Completeness..............
4.2.5 Extensibility
4.3 E2E/cloud solution
4.3.1 Context........ooovin...
4328cale
4.3.3 Simplicity
4.3.4 Completeness..............
4.3.5 Extensibility
4.4 Tech stack integration
441 Context.....covvvuvnnon...
442 Scale
4.4.3 Simplicity
4.4.4 Completeness..............
4.4.5 Extensibility
4.5 In-house custom solution
4.5.1 Context....oovvenn. ..
452 Scale oL
4.5.3 Simplicity
4.5.4 Completeness..............
4.5.5 Extensibility

5 Deployment scheme selection
5.1 Minimize (initial) investment . . .
5.1.1 First option

1l

3

7

i

9
11]
13
116l
17
18
21]
21]
23|
24]
27

5.1.2 Second option
5.1.3 Discouraged
5.2 Providing self-service platform . .
5.2.1 Completeness first
5.2.2 Extensibility first
5.2.3 Special use case............
5.3 When to switch framework
selection

6 Case studies
6.1 Avast
6.1.1 Initial Solution
6.1.2 Transition.................
6.1.3 Current MLOps platform ...
6.2 Socialbakers..................
6.2.1 Initial state of ML serving ..
6.2.2 Motivation for change
6.2.3 Present MLOps initiative ...
6.3 5urvey ...
6.3.1 Survey sections
6.3.2 Survey results

7 Conclusion

A Tech glossary
A1 TeamCity
A2 MLFlow
A3 Airflow L.
A.4 Kubernetes
Ad41Helm
AbSeldon
A6 GitOps ...

B Large figures and originals
C Attachment
D Bibliography

Figures
1.1 Diagram demonstrating the
conventions used in this thesis.
Component A calls the Service’s API,

which uses Component B to produce
the Stored Object.

2.1 Four stages of Machine Learning
lifecycle — Data Management, Model
Learning, Model Verification, and
Model Deployment. Source: Assuring
the Machine Learning Lifecycle:
Desiderata, Methods, and

Challenges [ACP19] Enlarged:
(Figure B.1])

4.1 Native serving architecture
diagram. The clients issue requests
to the API, which forwards the data
to the initialized model for inference.
The results are then returned to the
client.

4.2 Software stack integration
architecture diagram. Blue parts
belong to the library, and green are
implemented code. The clear
distinction for this scheme is the way
the consumer interacts with the
model. The model is exported to an
intermediate format, and the
inference happens in the actual
application instead of it happening
on a remote service.

4.3 Functionality offered by the
Amazon SageMaker. Note that AWS
changes its product offerings
frequently, and the same functionality
can be provided under a different

name in the future. Source:

//aws.amazon.com/sagemaker|

Enlarged: (Figure B.2)..........

12

viii

4.4 Architecture of Uber’s Machine
learning platform Michelangelo. At
the top of the diagram, there are
stages marked in orange, and we can
see how the individual components
interact. Source: Meet Michelangelo:
Uber’s Machine Learning Platform

[HB|] Enlarged: (Figure B.3)

6.1 Legacy architecture diagram for
the Device Identification service. The
ML Classification package is an
HTTP client calling the ML service’s
endpoint for inference............

6.2 Architecture diagram of the
Schnitzel (MLOps) platform at Avast.
The top part depicts the process and
user interaction. The bottom is the
component interaction. Source: Avast
Original: (Figure B.4))

6.3 Architecture of the new Device
identification service. The service
now embeds the model evaluation
using the ONNX [BLZT] and
retrieves the model from the MLFlow
model repository during
deployment.....................

6.4 Diagram of the MLOps serving
platform at Socialbakers. Maratonec
is an internal build/compute
platform, m1flow-serve is a GitLab
repository integrating MLFlow
serving and Maratonec, [MLProject]
symbolizes projects producing ML
models, the Model repository is
MLFlow backed by Amazon S3
object storage...................

https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker

6.5 Diagram of the sentiment pipeline
demonstrating an example usage of
the Message queue service model
deployment. Blue — input queues,
green — output queues, red — other
output queue. Orange — deployed
models. At the center is the
sentiment analysis application
connecting the queues implemented
with Akka streams. Source:
Socialbakers Original:

6.6 Histogram of the number of
employees.,

6.7 Histogram of ML operations team

A.1 Apache Airflow platform
architecture. Source:
https://airflow.apache.org/ |

| docs/apache-airflow/stable/ |

[concepts.html]................. 53|

A.2 Kubernetes components diagram.
Source: What is Kubernetes|leal . .

A.3 Seldon Core stack Source:
https://www.seldon.io/tech/ |

| products/core|.................

A .4 GitOps workflow diagram for
push-based deployment Source:
https://www.gitops.tech

B.1 Machine Learning Lifecycle

Diagram Source: Assuring the

Machine Learning Lifecycle:

Desiderata, Methods, and

Challenges [ACP19]
B.2 Functionality offered by the

Amazon SageMaker Source:
| //aws.amazon.com/sagemaker| ...
B.3 Architecture of Uber’s Machine

learning platform Michelangelo.

Source: Meet Michelangelo: Uber’s

Machine Learning Platform [HB| .
B.4 Avast Schnitzel original diagram.

Author: Jodo Da Silva, Avast
B.5 Sociabakers sentiment analysis

pipeline original diagram. Author:

Alex Hagerf, Socialbakers

ix

Tables

6.1 Contingency table showing the
relationship between company size
and MLOps adoption. We find no
significant difference between
different company size categories. .

6.2 Histogram of model deployment
schemes. We see the Tech stack
integration and Native serving are
the two most popular approaches. .

6.3 Table showing the relationship
between model deployment scheme

and number of production models. 46|

6.4 Relationship between the MLOps
adoption and used model deployment
approach. Notable is the usage of
E2E platform as a complex scheme
without a designated MLOps team to
maintain it.o Lo oLl

47

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://www.seldon.io/tech/products/core
https://www.seldon.io/tech/products/core
https://www.gitops.tech
https://aws.amazon.com/sagemaker
https://aws.amazon.com/sagemaker

Chapter 1

Introduction

Machine learning and artificial intelligence are being adopted by the industry
in ever-increasing trends[aim20] [ent19]. However, the rapid adoption tends
to neglect certain aspects that have been shown to be detrimental in the long
term. Technical debt, the concept that moving quickly accumulates costs
that need to be addressed later, has been shown|SHG™15] to be resurfacing
in machine learning solutions. The software engineering best practices are
being rediscovered in the context of systems working around/with machine
learning models.

This thesis focuses on deploying machine learning models in industry
settings. The goal is to identify different approaches and situations for
exposing and managing ML models. We describe the MLOps’ responsibilities
and background and present several schemas for serving machine learning
models.

The structure of this thesis is as follows. First, we provide a brief background
of machine learning operation in |chapter 2l We explain the Machine learning
lifecycle and which parts of it are important for this text.

In chapter 3| four criteria are defined that we use to evaluate the machine
learning model deployment schemas. The criteria are described by what they
encompass, how to understand them, and how they relate to each other.

Chapter [4] identifies five different schemas of deploying machine learning
models for serving with varying degrees of maturity and feature completeness.
The schemas are described using the previously defined criteria, and either
general use case or an example of specific implementation is given.

Chapter 5| provides the reader with a framework to help decide which
scheme from the previous chapter best fits their use case. Two views are
presented. The first is intended for the initial stages of machine learning
experimentation, where the focus is on having results fast; the second for
more mature use cases and more extensive scope. The framework was based
on personal experience and knowledge gathered while working on industry
case studies.

In [chapter 6| we analyze in-depth two industry case studies. We describe the
initial technical solution and the new architecture. Furthermore, we explain
the triggers that led to the change and the reasoning behind the decisions
extending on the previous chapter. Additionally, we look at a survey to

1. Introduction

analyze the machine learning operations trends in the industry.
The thesis is concluded in where we evaluate the findings of this
thesis.

. 1.1 Notation

We use two types of references in this thesis. One is the standard citation
reference (e.g., [ACP19]), the second is a footnote reference (e.g., this[l). We
use the former to point the reader to the relevant literature, be it an article
or a white paper. The latter is used to provide a concrete identification of a
resource being discussed.

Further, the figures created for this thesis use the following notation (see

Figure 1.1)):

solid line dependency or computation flow

dotted line inter-process/service communication

dashed line origin produces artefact at the end

cylinder stored object, most commonly a serialized model
rounded rectangle component

sharper rectangle container of components (app, service, ...)

However note, that not authored diagrams that were redrawn for clarity
preserve the original notation.

Container Service

[Component A] ---------------- »C API —»[Component B]

Stored
Object

Figure 1.1: Diagram demonstrating the conventions used in this thesis. Compo-
nent A calls the Service’s API, which uses Component B to produce the Stored
Object.

Lthis is a footnote reference

Chapter 2

Scope delimitation and context

This chapter provides the reader with some background information about
the MLOps (Machine Learning operations) field. It describes the Machine
Learning lifecycle that is at the MLOps’ core focus. Further points out the
specific parts of the ML lifecycle which are important for this thesis and lastly
explains the responsibility division of the interested parties.

Machine learning operations concept builds on top of the DevOps[DPL15]
movement. DevOps, shorthand for development and operations, is a con-
cept reaching back to the early 2000s. DevOps are practices combing the
development and the operations of the software development life cycle — the
loop of planning, analysis, design, implementation, and maintenance. The
core idea is to shorten the time from concept to release. MLOps extends this
idea by applying it to machine learning, where additional problems appear,
such as data management. Whereas DevOps is a blend of developers and
operators, MLOps combines ML researchers, engineers, and operators. It aims
to connect the development of machine learning with application/deployment.

B 2.1 Machine Learning lifecycle

Machine Learning lifecycle [ACP19|] describes the process of developing ma-
chine learning models and integrating them into the broader system. It
consists of four stages — Data Management, Model Learning, Model Verifica-
tion, and Model Deployment — depicted in |[Figure 2.1. Data management
is the first stage and considers all things data before it reaches the model.
In the Model learning stage, the model is designed and trained. Model
Verification validates the model indeed performs as it should also with the
data from the first stage. Lastly, the Model deployment in which the
trained model is released and used.

In this thesis, the main focus is on the fourth stage — Model deployment.
As part of the model deployment, we consider:

® Releasing/storing the model
® Integrating the model to the system (i.e., exposing it to be used)

® Running the inference on (managed) infrastructure

3

2. Scope delimitation and context

Model Learning

e

Model
Selection

d

Transfer
Learning

Data Management

Augmentation

v

Analysis

Model Verification

Formal Test-based

il

Requirement
Encoding

—> =

=
Performance
deficit report

s

Trained
Model

e

Training set

—
Verification
set

Collection

Result

—

Verified

Requirements

K
i[af<y

Hyperparameter
Selection

Preprocessing
Model

Operational }
data Model Deployment

Integration

(o]
A

)

E >— >
Environment

€

X

ML Understanding

=]

Traditional
Understanding

 S—

Efi“ﬂ

ML Deciding

Traditional
Deciding

Monitoring

| Monitor | | Updating

Analysis ‘ ‘ Plan ‘ [Execute |

Figure 2.1: Four stages of Machine Learning lifecycle — Data Management,
Model Learning, Model Verification, and Model Deployment.
Source: Assuring the Machine Learning Lifecycle: Desiderata, Methods, and

Challenges [ACP19)
Enlarged:

® Monitoring the model

These responsibilities are not solved directly in this thesis, but they are
considered for the different approaches described in Deployment scheme
definitions (chapter 4). However, some of the solutions described here reach
beyond the Model deployment stage, as they innately solve problems from
other stages as well (e.g., End-to-end also possibly contains tools
for model training and verification).

B 22 Running inference

There are two ways a model can be applied to data. The first is called offline
inference (also called static in some literature). The offline inference usually
happens in batch mode, where the data is already collected, and the model is
used to classify all the records.

The second way is called online inference (alternatively called dynamic
inference). The difference to offline inference is that the data is coming into
the system in real-time. This use case also benefits from micro batching for
performance, but the pressure is on the data being evaluated immediately
instead of being stored and classified later.

This thesis focuses on the latter — online inference. However, there are
many problems and technologies dealing with the respective issues that
overlap (e.g., model storage). The support for online inference can range
from exposing the model as a minimal service, not offering anything more,

4

2.3. Machine learning operations

to providing a self-service platform with automation for model release and
serving integrated with the training toolchain.

B 2.3 Machine learning operations

The machine learning development process can be described as having two
aspects — data science and engineering. Based on the two aspects, we assign
the responsibilities based on the person’s expertise. The steps in the process
are usually a combination of both, so the parties need to cooperate to reach
the goal.

In this thesis, we understand the ML researcher/data scientist role to be
responsible for the machine learning model. As the first step, they need to
explore and understand the data and the desired goal to be achieved. Based
on that, they design the data transformation pipeline, the model architecture
(including the feature engineering), and select the metrics for measuring
the model’s performance. They are responsible for the model’s output and
limitations.

On the other hand, the MLOps role (Machine Learning operations) com-
prises software engineers that are responsible for the engineering side of the
model development and assist the data scientists with engineering aspects of
the tasks. That includes the infrastructure where the model is trained, the
orchestration, and also the model deployment and how it is being served or
accessed. The role’s goal is to enable data scientists to do their work and
allow consumers to use the model.

A way to measure the cooperation of the roles is the MLOps Maturity
model. In this thesis, we use the definition authored by Microsoft [mlo], but
similar frameworks are described across the industry. In the Microsoft model,
five levels are introduced (numbered from 0) that subsequently improve the
level of automation and separation of concerns.

Level 0 — No MLOps Data scientists receive limited support and are
responsible for the model from idea to serving. The majority of the tasks
are done manually by the teams.

Level 1 — DevOps but no MLOps Data scientists receive some support.
The majority of the tasks are still done manually, but software engineers
assist or take responsibility for the model deployment.

Level 2 — Automated Training Automation is introduced for model
training and directly related tasks (e.g., data ingestion). That improves
the observability of the development stage through experiment tracking
and robustness.

Level 3 — Automated Model Deployment Brings automation to the
model release and improves the model integration.

Level 4 — Full MLOps Automated Operations The full process is au-
tomated, and a feedback loop is introduced to enhance the observability

2. Scope delimitation and context

of the model’s production experiments.

Chapter 3

Schema evaluation criteria

We chose the following criteria to evaluate the different deployment schemas:
scale, simplicity, completeness & extensibility. Each of them is described
in more detail in a separate section below. We explain what purpose the
criterion has, how to compare the deployment schema, and (when applicable)
what to expect on either side of the spectrum. For some criteria, it can be
easily said which "value" is better, but some describe the context best fit for
an approach or when to avoid it.

Some of the criteria correlate to a degree not in terms of their definition or
the informational value they provide, but that not all combinations would be
usable. For example, a system with close-to-none extensibility but missing
necessary functionality in completeness would not be usable in a production
setting.

. 3.1 Scale

The scale describes both the organizational scale as well as the use case scale.
It describes the context in the respective areas in which the deployment
schema would fit the best.

The use case scale considers the (possibly long-term) goals of the project.
Some questions answered in this context could be:

B is the system intended for internal use only?

® do we need to test a hypothesis quickly to estimate the total investment
in the project?

B is the system expected to grow in size soon?
® how robust do we need the system to be?

The organizational scale refers to the size of the team/company that
participates in the project and the available resources they hold. A larger
team can have a higher degree of freedom in selecting technology, as it has
the human resources to deal with problems. On the other hand, they need
the system to be operable by a more significant number of people, which
introduces functionality and cooperation requirements.

7

3. Schema evaluation criteria

This criterion links to the other criteria that it provides bounds to a certain
degree for the trade-offs that have to be made for the schema to be viable for
consideration. For example, on a smaller scale, the simplicity (section 3.2)) and
completeness (section 3.3) could be preferred for the cost of extensibility (secq
tion 3.4) as there are not enough resources (time or human resources) and it
is required the system is easy to use and offers all the required functionality
to reach the goal.

The scale criterion is important because it tries to prevent misuse of an
approach based on the available resources. If a deployment schema is selected
without the necessary resources, in the best-case scenario, they are only
wasted; in the worst case, the whole initiative will be struggling with delivery
deadlines and results. The second important value of the criterion is that it
evaluates the "scaling" capability of the solution to the number of customers
to balance the potential growth and the resources consumed.

N 3.2 Simplicity

Even though simplicity is intuitively understood, we do not aim to provide
only a "shallow" rating of a schema on a 3 point scale. The goal of the
criterion is to bring specific problems (or lack thereof) to attention that are
either baked into the core of the deployment schema or might be encountered
later when for example, reaching the end of the scale (section 3.1) bounds. It
aims to describe what to expect from both sides—the ML operations and the
user (data scientist) perspective.
The topics in this section might include:

® complexity of the schema itself
® ecase of operations/maintenance

® ease of use from the end user’s perspective

B 33 Completeness

Completeness provides a unified functionality overview of each of the ap-
proaches. Subsequently, it gives the reader an insight into how much extensi-
bility will be needed to make up for the missing functionality. Completeness
is hard to define explicitly and exhaustively, so in this criterion, we have a
set of desired functionality from the production system that is considered of
value as described in [ACP19].

® Integration
® Model lifecycle

® Monitoring

3.4. Extensibility

The integration describes how the trained model is integrated into the
schema and how a specific approach is integrated into the other components
of the machine learning pipeline. Partially relates to simplicity (section 3.2)
as better, more straightforward integration means introducing new models is
easier.

Model lifecycle is used to update the model’s trained parameters that are
being served. It can be as simple as manually redeploying the service with a
new exported model bundled with it. Or, as advanced as an automatic rollout
of several concurrent different versions of the model (e.g., release candidate,
production, archived, ...) to multiple environments (e.g., production, canary,
stable, ...).

Monitoring might be the most important out of the three listed function-
alities. The other two can be compensated by manual work in place of an
automated system. Monitoring, however, is used to collect metrics about
models (possibly multiple versions): their input distributions, outputs, per-
formance, availability, etc. More advanced systems can facilitate automatic
anomaly detection or even discover training/serving skew to validate the
model’s behavior in the deployed environment.

Additionally, similarly to simplicity (section 3.2)), we focus on negative
delimitation as well when certain nice to have features are missing. For this
criterion, we consider only the suite of functionality provided by the base
version of the deployment or using the most common modules provided with
it such that extensibility (section 3.4)) is considered but is not the main driver
of this criterion.

B 34 Extensibility

Extensibility is used to describe how easy or difficult it is to alter or extend
the system’s functionality.

The value provided by this criterion depends on the desired use of the
system. It can be evaluated in terms of the range of how one can modify the
system’s behavior and how easy it is to do so.

A system can provide an effortless way to make changes due to the tech
stack used. For example, with Python’s WSGI[wsg] framework, it allows you
to plug in any functionality, but you need to understand how to leverage that.
On the other hand, the system can give you a comprehensive API that’s hard
to learn, but then all the operations are as simple as a single function call.

The other side of the spectrum can be represented by a solution that is
entirely closed proprietary software where you are restricted only to the
functionality provided out of the box.

There are cases where the extensibility is at the cost of simplicity (sec
tion 3.2)) or completness (section 3.3)) (e.g., Tech stack integration (section 4.4))
vs. End-to-end (section 4.3))).

10

Chapter 4

Deployment scheme definitions

In this chapter, we describe individual deployment schemas. The sections
follow a similar structure where the scheme is first defined on a high level to
understand the core concept. Then a context is provided to argue for the use
cases where this scheme fits well, and subsequently, the scheme is evaluated
with the defined Critera (chapter 3).

We consider the following schemas:

8 Native serving

B Software stack integration

E2E/cloud solution

Tech stack integration
B In-house custom solution

Native serving (section 4.1)) is the baseline solution for serving a machine
learning model. It exposes the model as a (web) service with an API to query
it for inference.

Software stack integration (section 4.2) aims to embed a trained model
into a specific stack such that it is directly available as a function call instead
of evaluating the inference in a standalone service.

E2E/ cloud solution (section 4.3) deploys the models onto a (possibly
self-service) platform that contains all the components necessary to do so.
This platform is not developed or designed from the ground up, but a complete
solution is used (e.g., a cloud solution).

Tech stack integration (section 4.4) composes a custom platform for
serving the machine learning models from available components to satisfy
a functional requirement. Compared to the E2E approach, it selects the
components that are the best fit for the whole use case and potentially
leverages already deployed systems.

In-house custom solution (section 4.5)) designs and implements a custom
platform from the ground up tailored to the setting. It can leverage existing
systems but is mainly created from scratch.

11

4. Deployment scheme definitions
B 41 nNative serving

Native serving is the most straightforward machine learning model deployment
scheme on the list. It considers the situation where the model training is
done via the same software stack as the serving, and then it is exposed to be
used through an API for the final consumers. The architecture overview is
given in Native serving diagram . Commonly an HTTP interface
is used with a human-readable format (e.g., JSON) for simplicity, but more
performant alternatives exist such as gRPdH

The MLOps Maturity level (section 2.3) for this approach is mainly level 0,
but higher can be achieved with available tooling. This approach can be

handled manually at the bare minimum due to its simplicity (later described
in [subsection 4.1.3). However, nothing prevents this approach from being
used along with more advanced software development tools and practices
(i.e., level 1). Though later is described in Context (subsection 4.1.1) why
advancing further too much is discouraged.

/ \ Service

Inference \

Users

API >

ML Library

%‘:'?@

Services

Consumers

Serialized

Model

Figure 4.1: Native serving architecture diagram.
The clients issue requests to the API, which forwards the data to the initialized
model for inference. The results are then returned to the client.

An example could be the industry-wide baseline — a Python [Ros95] stack
where the model is developed using the Scikit learn [PVGT11]. The model

is stored as a pickle file and then served using a WSGI web application
framework like Flask|[flal.

1|h‘ctps ://grpc. io|

12

https://grpc.io

4.1. Native serving

B 4.1.1 Context

Native serving is the baseline of serving ML models in a production environ-
ment. It is usually the case where a decently performing model has been
developed, and the next step is to make it available with minimal investment.
This is achieved by introducing as little overhead in the deployment and
serving as possible. The same technologies are used for both the development
and serving as one can reasonably expect the libraries to have a format that
enables both export and import of the models.

The important thing to note here is that this approach is recommended
in such a restricted form because unless you need a specific implementation
of particular functionality, there is a high chance a system exists already
supporting it. Thus integrating it like in the Tech stack integration (section 4.4)
would be more efficient.

B 4.1.2 Scale

The scheme’s scale is small for both the organizational and use case scale.
The lower bound is not present in this case.

One could argue that just because the training and serving are done on the
same platform, it does not necessarily mean that the system will be small.
That is, however, not the specific case described by this approach. A clear
distinction to, for example, In-house custom solution (section 4.5) has to be
understood that this scheme is designed for the small scale.

The small use case scale is more of a soft bound. We do not recommend this
approach for more extensive operations. In many cases, it would constitute
reinventing the wheel of systems that would be easier to integrate with the
resources needed to implement it. Examples of such functionality can be
found in the Tech stack integration (section 4.4]).

The small organizational scale is considered more from the provider’s side,
less from the consumer’s. Even if the system were not the most performant,
it could easily be scaled horizontally behind a load balancer, as the inference
can be made stateless. However, having too many resources would be wasteful
because either there is no use for it, or we can pick a more complex solution
that gives access to a wider variety of features out of the box (e.g., End-to-
end (section 4.3)).

B 4.1.3 Simplicity

As mentioned in the general description, the crux of the scheme itself is very
simple.

Since this approach consists of building everything from the ground up and
mainly integrating existing libraries, the implementation simplicity directly
relates to what we expect from the system. At the bare minimum, we need
some API layer for the system to interact with the clients and instantiated
model for the inference.

13

4. Deployment scheme definitions

The more features we require (which depends on the maturity we expect),
the more complex the system gets. This would eventually collide with the scale
recommendation as the system would require more resources to be maintained,
in which case the project would have resources for a more complex scheme
or would not have enough human resources to satisfy the requirements in a
reasonable time.

Additionally, this scheme requires the ML researcher to either be responsible
for the serving or directly cooperate with the MLOps team representative.
Be it setting up automatization of the build such that the ML researcher can
provide the model in an automated way or handing it off manually for the
deployment.

B 4.1.4 Completeness

The completeness is very limited. As the base case described, it provides no
other functionality than the bare minimum to enable the data inference.

The integration is pretty elementary, consisting of only input/output over
an API. A client library (or an SDK — Software development kit) can be
provided to ease the integration, but a lot of glue code can be expected.

Model lifecycle and monitoring are restricted to features supported by
the software tooling available on/around the project. This means automatic
deployment, code (model) verification, and service monitoring are supported
to the same degree as any other software component but aren’t part of the
scheme itself.

B 4.1.5 Extensibility

Featurewise, the extensibility of this scheme is one of the best of the approaches
listed here. We can pick almost any features desirable from the production
serving system during the development of the platform. However, the problem
is with the number of them. As mentioned in the Scale (subsection 4.1.2)
expecting too many features from the system puts higher requirements on
the resources available for development and maintenance that could be spent
better if a more complete scheme was chosen.

Additionally, since the service is authored from the ground up, it can be
modified at almost any level, as the used libraries allow.

B 2.2 Software stack integration

The second scheme considers the rather specific case where serving the
model as a standalone, isolated service is not an option, and the training
and inference have different stacks. Using an intermediate format to which
the model is serialized after training the parameters can solve this. The
architecture overview is depicted in the Software stack integration architecture
diagram (Figure 4.2).

14

4.2. Software stack integration

Two components need to accompany the intermediate format. The first is
used to export a trained model to the format. This is specific for each ML
library used, and thus attention needs to be paid before selecting the library
such that it supports the ML library used for training. The second component
is a runtime/evaluator for the inference that needs to be compatible with the
target system (e.g., having a JVM implementation, Python bindings for a
c++ library, ...).

The MLOps Maturity level is closely related to that of Native
serving (section 4.1) — level 0 or higher, where advancing too much is
discouraged except for special cases.

Application

Inference '\

Compute stack : :
Engine/Runtime

ML Training
Trained
Model Exporter
STl ML Library

code

Figure 4.2: Software stack integration architecture diagram. Blue parts belong
to the library, and green are implemented code.

The clear distinction for this scheme is the way the consumer interacts with
the model. The model is exported to an intermediate format, and the inference
happens in the actual application instead of it happening on a remote service.

The format can be human-readable (for example, in the case of PMML [piim]
the model is serialized to XML, and for PFA [Gro| it is JSON) or binary (in
case of ONNX [BLZ¥| the model is stored using Protobuiﬂ).

2Ihttps ://developers.google. com/protocol-buffers|

15

https://developers.google.com/protocol-buffers

4. Deployment scheme definitions

B 4.2.1 Context

A business need can occur that prohibits using the service-oriented Native
serving (section 4.1) scheme while still requiring/expecting small-scale op-
erations. An example can be a system that needs to be isolated from the
internal network (running in a sandbox), an application that might not have
network access, or generally when microservice architecture is not an option.

Another use case for exporting a trained model to an intermediate format
and running the inference in an evaluation engine is runtime performance.
As noted in [Sta21] — ONNX runtime was used to speed up the inference of
a PyTorch®| model used in Natural language processing for detecting phishing
emails.

B 4.2.2 Scale

The scale this approach fits may be unbound. The simplest case of having a few
models integrated into their respective services can be handled manually and
individually, although this would be discouraged for longer-living products.

Even though the scheme scales well since the workload is distributed across
projects, at one point, there would be a lot of work repeated. This naturally
leads to improving the tooling around this approach to ease the integration
from the consumer’s perspective. However, serving the ML model from a
service provides benefits such as independent instance scaling, better resource
management, development isolation, etc.

B 4.2.3 Simplicity

The scheme itself is also trivial to understand as it is mainly dictated by the
use case.

The additional overhead of porting the model and integrating the runtime
increases this scheme’s implementation difficulty compared to the first ap-
proach. However, implementing it is still relatively simple. The integration
consists of selecting a library that supports both programming languages
(training and serving), and a generally good practice is to wrap the library
with a custom interface. The integration pain point is usually preparing the
data for the model to ingest as the format/type system needs to be generic
enough to support various data structures, or the types are omitted.

B 4.2.4 Completeness

A problem specific for this solution is the required feature completeness
compatibility of the training environment with the runtime. As those are
two different technologies, a specific operation (for example, the BIRCH
clustering algorithm in the case of ONNX and SciKit-learn [onn]) may be
offered differently in each of them without a compatible way to transform
between the two definitions or that an operation is missing entirely (for

3https://pytorch.org

16

https://pytorch.org

4.3. E2E/cloud solution

example, when a new version of the library used for training is released until
the runtime implements the operator as well).

The application evaluating the model is responsible for the model lifecycle
implementation. For example, it can load the model during startup, and
thus to update the model, we need to restart the whole service, or it can
implement a mechanism to provide a way to update the model during runtime.
However, this can lead to the problem of multiple trained versions of the
same model being live concurrently, as was identified in the Socialbakers case
study (section 6.2).

The model monitoring is problematic. Of course, it can be monitored along
with the service itself as part of the metrics that it produces or even deal
with the problems directly. However, any other form of monitoring poses
a problem since we lack any centralized access to the model. This makes
it hard to detect some problems easily detected in the other schemas, for
example, if the input distribution changes.

B 4.2.5 Extensibility

The extensibility of this approach closely matches that of the Native serv-
ing (section 4.1)). Because the system is customly implemented, anything can
be changed. The only limitation is the intermediate format and the engine to
evaluate it. However, many libraries (such as the mentioned ONNX [BLZ™|
or PMML [pmmi)) enable the user to implement custom functions/operators
that allow to make up for it to some degree.

N 43 E2E/cloud solution

End-to-end or potentially cloud solution leverages an existing full-fledged
platform for deploying and serving an ML model, possibly managing the
whole machine learning lifecycle.

The realization can take two approaches. First, using a managed system
that is provided by a vendor — cloud or as a service. Second, an end-to-end
platform is deployed and managed by the MLOps team.

The MLOps Maturity level (section 2.3) depends on the specific system
deployed/service provider chosen and the integration. However, having a
platform with maturity level 1 or less would not defend the added complexity
and cost over the, for example, Native serving (section 4.1)) approach.

B 4.3.1 Context

The end-to-end solution takes a holistic approach. It uses a platform pro-
viding all the desired functionality "out of the box" while also coupling the
individual components together. What remains is providing tooling (or even
just mediating it) to the users (ML researchers) and integrating the platform
to the wider system.

17

4. Deployment scheme definitions

The end goal is to make the system available to the users as a self-service.
Assisting when necessary, of course, but otherwise, the platform should allow
the user to manage their projects independently. A desired functionality is
having the means to monitor and restrict users’ resources for isolation and
budget overview.

B 43.2 Scale

The managed platform can be used on a small scale, both in terms of use case
as well as organizational. As it will be noted in Simplicity (subsection 4.3.3),
the managed platform can be set up by a single person, with an initially
restricted functionality, and the overhead is negligible, which enables using
this approach even for a smaller number of models.

On the other hand, deploying an end-to-end system like this is not trivial.
Other than the same setup as the managed platform, it is necessary to
configure and deploy the actual system. That can be pretty difficult because
the system encompasses a lot of features (and possibly components). Because
of that, the resource investment for setting it up is higher, and thus for it to
have value, the expected use case volume should be higher.

B 4.3.3 Simplicity

When using a managed platform, setting up an example project is simple.
However, this becomes more complex later based on the production qualities
required and expected to be integrated into the ecosystem, although the
features are usually "just a click" away from being operational.

As described in Scale (subsection 4.3.2), when manually deploying the
platform (to an on-premise cluster, for example), the simplicity of having
all the necessary components becomes a hurdle as all need to be correctly
configured and connected. After the system is running, the same setup as
with the managed platforms is required.

B 4.3.4 Completeness

Both managed and manually deployed approaches can be considered offering
a complete set of functionality as outlined in [section 3.3\ As of writing this
thesis, an example can be the Amazon SageMaker*, an ML platform from
AWS’(Amazon Web Services) with support for the full ML development
process (Figure 4.3).

The most significant advantage of the single platform approach is the
natural integration of the system to the other parts of the machine learning
pipeline. For example, in the case with TensorFlow Extended [MKEF™17], a
component named TensorFlow Pusher® integrates the training part of the

“https://aws.amazon.com/sagemaker,
https://aws.amazon. com
Shttps://www.tensorflow.org/tfx/guide/pusher

18

https://aws.amazon.com/sagemaker
https://aws.amazon.com
https://www.tensorflow.org/tfx/guide/pusher

Prepare —

SageMaker Ground Truth
Label training data for machine
learning

SageMaker Data Wrangler NEW
Aggregate and prepare data for
machine learning

SageMaker Processing
Built-in Python, BYO
R/Spark

SageMaker Feature Store NEW
Store, update, retrieve, and
share features

SageMaker Clarify NEW
Detect bias and understand
model predictions

Amazon SageMaker -

Build —

SageMaker Studio Notebooks
Jupyter notebooks with elastic
compute and sharing

Built-in and Bring-your-own Algorithms
Dozens of optimized algorithms or bring
your own

Local Mode
Test and prototype on your
local machine

SageMaker Autopilot
Automatically create machine
learning models with full visibility

SageMaker JumpStart NEW
Pre-built solutions for common
use cases

Train & tune —

One-click Training
Distributed infrastructure
management

SageMaker Experiments
Capture, organize, and compare
every step

Automatic Model Tuning
Hyperparameter
optimization

Distributed Trainin
Training for large d:
and models

SageMaker Debugger NEW
Debug and profile
training runs

4.3. E2E/cloud solution

Deploy & manage —>

One-click Deployment
Fully managed, ultra low latency,
high throughput

Kubernetes & Kubeflow Integration
Simplify Kubernetes-based machine
learning

Multi-Model Endpoints
Reduce cost by hosting multiple
models per instance

SageMaker Model Monitor
Maintain accuracy of deployed
models

SageMaker Edge Manager NEW
Manage and monitor models on
edge devices

Managed Spot Training SageMaker Pipelines NEW
Reduce training cost Workflow orchestration and
by 90% automation

SageMaker Studio
Integrated development environment (IDE) for ML *****

Figure 4.3: Functionality offered by the Amazon SageMaker. Note that AWS
changes its product offerings frequently, and the same functionality can be
provided under a different name in the future.

Source: https://aws.amazon.com/sagemaker

Enlarged: [Figure B.2

pipeline to the TensorFlow Serving’| component for the model to be available
for online inference.

One notable drawback of some of these solutions (e.g., TensorFlow Extended
or PyTorch Serving® and the surrounding ecosystem) is they are not universal.
Although they provide an excellent user experience because they are tailor-
made for a specific ML library, they do not support any other. This means that
it allows only users of those specific libraries to leverage that infrastructure. If
any other team requires a different ML library, they are either out of luck or
a whole another system has to be deployed and maintained. So it is a tradeoff
between the out-of-the-box integration and the generality of the platform.

B 4.3.5 Extensibility

For the managed platform, the customization is minimal, if possible at all.
Usually, cloud products are black boxes that can be configured to an extent,
if at all, but cannot be extended. This is even more the case when leveraging
a platform’s integration of its components, like in this case. The core part
where the modifications come into place is the built tooling surrounding it. It
can provide a completely custom interface, limit functionality, and apparently
extend the behavior by combining multiple services.

Modifying a custom deployment of an end-to-end platform is possible on
two levels but depends on the platform’s components. On the higher level,
some platforms allow the user to exchange the actual components that perform
certain functionality (but comes in with compatible solutions as compared to

"https://www.tensorflow.org/tfx/guide/serving
Shttps://pytorch.org/serve

19

https://aws.amazon.com/sagemaker
https://www.tensorflow.org/tfx/guide/serving
https://pytorch.org/serve

4. Deployment scheme definitions

the Tech stack integration (section 4.4) where the integration is implemented
independently). That can be compared to the degree of freedom of selecting
any MySQL compatible database for some service (e.g., Redis”). On the
lower level, the possible customization differs from component to component
how much it is open for extension.

B 24 Tech stack integration

Tech stack integration consists of building an (at the end potentially self-
service) platform composed of integrated (open-source) services/components.
Although not a requirement, it greatly benefits from such systems already
being used in the company or on the project as it decreases the additional
cost associated with creating the ML platform. The crux is to compose the
platform from the existing components and not implement them from scratch,
see In-house custom solution (section 4.5)). This also makes it, to some degree,
replicable in other companies.

Because the platform leverages the already present systems/services, it is
also beneficial to consider how are the other stages of the machine learning
pipeline implemented to ease the integration with them. Thus it needs to
consider scope outside of the deployment.

Compared to the End-to-end (section 4.3) approach, the components might
not have been designed to make a system of this kind. Thus, the components
are not directly integrated to work together and need to be connected to have
a well-fit system.

This scheme does not have any strict list of components needed for the final
platform. We take Uber’s Michelangelo [HB| as an example implementation of
such a platform depicted in [Figure 4.4, In this case, the notable components
are:

® Feature store - Apache Hive'’| and Cassandra'!

Model repository - Cassandra

Performance monitoring - Spark'?

® Data ingestion - Kafka'?

Prediction service - custom/unspecified

Depending on the use case, components chosen, and integration, the MLOps
Maturity level (section 2.3) can be expected to be at least level 2. If the
level would be 1 or less, the platform would either lack some core functional-
ity /requirement, or the components would be disconnected, and it would not
classify as a comprehensive platform.

%https://redis.io
O%https://hive.apache.org
"https://cassandra.apache.org
%https://spark.apache.org
13https://kafka.apache.org

20

https://redis.io
https://hive.apache.org
https://cassandra.apache.org
https://spark.apache.org
https://kafka.apache.org

4.4. Tech stack integration

GET DATA TRAIN MODELS EVAL MODELS DEPLOY, PREDICT & MONITOR
I —

(Kafka Prediction >>

ONLINE

Predictions To Hive
&Kafka

OFFLINE

Figure 4.4: Architecture of Uber’s Machine learning platform Michelangelo.
At the top of the diagram, there are stages marked in orange, and we can see
how the individual components interact.

Source: Meet Michelangelo: Uber’s Machine Learning Platform [HB]

Enlarged:

B 4.4.1 Context

An organization just expanding to use machine learning in production systems
presumably already has several technology platforms. This might make it
less desirable to invest in an End-to-end solution as it might
duplicate the functionality that is already provided and integrated into the
tooling and the surrounding ecosystem.

This deployment scheme uses the fact that the systems are maintained by
other teams and focuses on catering to a platform that eases the user’s ML
tasks. This means that the user is expected to take advantage of the present
tools to assist them with their goals supported by the MLOps team either
directly or indirectly by the implemented tools.

B 4.4.2 Scale

It follows from the scheme’s description at the beginning of this section that
the minimum recommended scale for this scheme is a dedicated MLOps team
with multiple members. However, as the result comprises multiple systems
cooperating and leveraging the current ecosystem and tooling present, a whole
organization is expected to be present behind it. That subsequently allows
the MLOps team to focus the resources on the actual platform instead of
maintaining the dependees. Otherwise, this approach would bring problems
that are innately solved by a managed FEnd-to-end platform
instead.

It naturally follows from the nonmarginal resources required to create the

21

4. Deployment scheme definitions

platform that the use case (either current or expected in the future) needs to
be big enough for it to pay off. However, the more extensive use of the system
is expected, the higher pressure it puts on the platform being self-service for
the users. On a smaller scale, a more hands-on approach can be chosen, where
the MLOps team assists the users in using the components to deploy the
model. That enables the MLOps team to modify the platform such that it fits
the expected use case well and satisfies the individual functional requirements.
Eventually, as the number of projects and models grows, a central view of the
platform should be incorporated to provide the users with a better experience
without the need for the MLOps team’s intervention.

B 4.4.3 Simplicity

Although the scheme’s core idea is straightforward, the architecture of a
specific implementation can be very complex. The architect has to choose
between the number of systems to use and the functionality required. They
also have to consider the systems already available and the complexity that
using them brings with it.

Until the platform is enabled to be self-serviced, the user (data scientist)
needs to consider the systems involved. Although there are benefits in the
user being knowledgeable of the underlying system’s structure, it takes a toll
on the MLOps team that needs to be involved more with the users for them
to be able to use it.

B 4.4.4 Completeness

The completeness of the platform depends on the selected components. After
the initial design is decided, it can be built step by step by deploying and
integrating individual components (including the systems already present at
the company), eventually providing all the requested functionality.

The open-source ecosystem is so extensive that the functionality described
in the Completeness criterion (section 3.3)) is satisfied with a plethora of
implementations. Of course, there can be a requirement specific to the use
case that would need to be implemented from scratch, but that fits into the
distributed architecture well.

B 4.45 Extensibility

The extensibility of this scheme is excellent. There are two levels at which the
platform can be modified — the individual components and their selection.

The selection of the components is the primary way how to alter or expand
the system. It is relevant not only during the platform’s design phase but
as a compatible system can completely replace the original component in
the future. These decisions may be, however, quite limited in practice. The
limitation is the benefit of selecting this approach — the already present
running systems in the company. Although it is not a requirement to have the
systems running before the platform’s construction, it is one of the benefits

22

4.5. In-house custom solution

that would be thrown away if all the individual systems would have to be
managed and deployed from scratch.

The other degree of modification is on the level of individual components
and between them. As the platform comprises multiple independent systems,
they are bound to have an interface between them where a proxy service can
be inserted, providing additional functionality. However, a more direct way
to interact with them can be expected.

. 4.5 In-house custom solution

As the name suggests, this approach comprises creating the machine learning
deployment platform from the ground up, with most of the components
implemented from scratch. Because this scheme describes an approach that
fits a specific use case or context, there is no general architecture that can be
presented here.

The significant difference to the Tech stack integration (section 4.4) is the
functional integration and the design of the components. A presumably large
part of the platform’s core services needs to be implemented because it either
does not exist or integrates with a specific selection of libraries would be as
demanding as implementing a better fit solution.

The difference to the End-to-end (section 4.3) is that the MLOps team does
not just deploy and maintain the platform but also authors it. For example,
the case of Google with the TensorFlow Extended [MKF™17] — although an
end-to-end platform, it was developed internally and later released for public
availability.

The MLOps Maturity level (section 2.3) depends on the design, implemen-
tation, and integration of the platform and its components. Levels 0 and 1
would, in this case, be closer to the Native serving (section 4.1) approach, so
it can be reasonably assumed that such platform is designed with the aim for
ML operations being level 2 or higher.

Beyond the examples mentioned above, another example can be the
LASER [ALTT14] system developed at Linkedin. The goal was to make
large-scale machine learning possible in terms of data and the number of
models (to support cold model parameters trained on the whole dataset and
hot parameters that are trained on the data specific to a user or a running ad
campaign). The solution was a restriction that only Logistic regression where
only specific input variables interactions are allowed. This restriction allowed
the system to be optimized for the specific use case in terms of performance
and was integrated into the local ecosystem.

B 4.5.1 Context

There are multiple situations where implementing a custom solution mainly
from scratch is a viable solution.

The first that comes to mind is when such solutions did not exist at all.
Of course, as mentioned several times in this thesis, there are a plethora

23

4. Deployment scheme definitions

of available implementations now. However, if we look at the years these
systems were published, we can see that they are very recent in their ori-
gin. Some examples are — TensorFlow Extended [MKET17] 2017, Amazon
SageMaker [sagl7] 2017.

Another case is when the use case requires it or dramatically benefits from
a custom approach. An example can be the aforementioned LASER from
LinkedIn that tailored the platform for a specific kind of models. Alternatively,
a platform in big corporations (such as Facebook) where the optimization for
the fit saves cost due to the large user and customer base.

B 45.2 Scale

It is expected that most components have to be developed from scratch
as otherwise the platform could be composed of them as in the Tech stack
integration (section 4.4) approach. The cost of creating a completely custom
platform for serving machine learning models is not trivial. It requires a large
group of people to develop and maintain. Thus, it makes sense to invest in
such a thing only when the scale demands and allows it.

As this solution can be considered a product on its own (for example, from
the point of view of End-to-end platform (section 4.3)) as a result as is the
case with TensorFlow Extended), it is expected to have multiple dedicated
teams from all areas of the software development process.

Both arguments imply that the scale is recommended not only for a larger
team but also for the whole organization. The problem with not enough
resources would mean that the platform’s development would take a long
time and thus hinder the whole project/cause as the other initiatives would
be blocked by it.

B 45.3 Simplicity

Intuitively this scheme is not simple, but indeed very complex. Not only does
the system as a whole have to be architected, but the individual components
need to be designed, implemented, and integrated such that it balances the
completeness and openness to extension in the future (or even from the other
users if it is expected to be released publicly). Another hurdle in the overall
design is the user experience that has to be considered during the design
phase, so the solution fits the desired use case well.

B 4.5.4 Completeness

None of the other approaches described here are as specifically complete as
this one. This naturally follows from the motivation of building a completely
custom solution. Further, even other functions that are not generally appli-
cable have to be considered here. One can reasonably assume that if the
implementations of the other schemas described here sufficed, there would
not be an incentive for developing a custom platform from scratch. However,

24

4.5. In-house custom solution

this also means that some features might be missing as the use case might
not require them.

Bl 4.5.5 Extensibility

The range to which the platform can be modified is unbound since it is
developed from scratch. On the other hand, the difficulty of the modifications
can be considered higher than the other approaches. This springs from the
size of the project and the available "degrees of freedom." It can be reasonably
assumed that any open-source component used in the other approaches is
designed with how and to what extent it can be modified by the user (MLOps
member in this case). This makes it a requirement of the design process to
include such a decision. It can be minimal or, on the other side, provide a
plugin API to introduce an arbitrary functionality. However, since the custom
system might not be designed to be deployed by other users, the changes
could very well be integrated into the core. This alleviates the complexity of
designing such a mechanism with the cost of dealing with the problems when
the situation occurs.

25

26

Chapter 5

Deployment scheme selection

In this chapter, we compare the deployment schemas described in the De-
ployment scheme definition and introduce a guide on picking the
best approach. Two frameworks are presented here, each having a different
end goal.

The first framework minimizes the cost (in terms of time and resources) it
takes to show results, which is helpful when either experimenting or the goal
is to have the model served as soon as possible. Its aim is not to provide a
mature self-service platform but rather to enable further steps.

The second view focuses on the case where the intent is to invest into a
platform with a longer-term commitment which is naturally accompanied by
more requirements on the platform itself.

Alternatively, the two somewhat orthogonal frameworks can be viewed as
another manifestation of the traditional software engineering dichotomy —
speeds vs. quality. The first one optimizes for speed at the expense of quality
represented as robustness and feature completeness. The second accepts
the resources it takes to build a mature platform that satisfies advanced
requirements.

B 5.1 Minimize (initial) investment

The first view aims to minimize the time and effort it takes from having a
trained machine learning model to serving it. It fits into the early development
stages, where the end goal might not be determined yet. We identified two
main scenarios where using this view is beneficial.

The first scenario is when serving the model is a necessity and not the
primary objective. This can happen when the aim is to develop the model
and not produce any specific system while still needing to interact with it.
The second scenario targets a situation where an engineer (or a team) needs
to enable the data scientist to deploy the model. In this case, the model is
indeed to be served as the end goal.

The criteria most important for this view are scale and
simplicity . It is required from the scheme that the scale enables
a small team or even just a single person to be deployed. If a scheme
is recommended for a bigger minimal scale, it increases the effort needed

27

5. Deployment scheme selection

to implement it both in terms of time and resources, which hinders the
goal of having results fast. The simplicity accompanies that with a similar
sentiment. The scheme is expected to be easily understood and operated as
well; otherwise, it might be a wasted effort because of the undetermined end
goals.

Bl 5.1.1 First option

With the goal being a short time to production at a low cost, the Native
serving (section 4.1)) dominates all other deployment schemas. Depending on
the solution’s required robustness, it can be a matter of a single afternoon
having an instance serving a model. The recommended upper bound for this
solution (when another scheme would be better suited for the case) depends
on the software tooling available. If methods enabling production qualities
such as service monitoring and deployment automation are available, it can
go a long way, and there can be cases when it suffices completely.

B 5.1.2 Second option

The other option that qualifies for this context is the End-to-end (section 4.3))
approach. Although with nontrivial initial time investment in learning the
system’s ins and outs, the basic functionality is easy to set up once one is
familiar with it. The benefit is the growth potential in supported functionality
once it is desired. A managed system (i.e., a cloud service like Amazon
SageMaker) would be easier to set up for prototyping than deploying a system
manually.

Of course, with the goal being a fast start, it will not be the self-serve
platform (described in subsection 4.3.1)) at first. That would require a more
significant initial investment of resources. This scenario focuses on enabling
the deployment of the models.

B 5.1.3 Discouraged

Except for Software stack integration (section 4.2) that could arise from
the project’s constraints, the rest of the deployment schemas described in
chapter 4] are not a good fit for the initial stage. The other schemas require
more considerable investment before reaching a usable state.

B 5.2 Providing self-service platform

The second view selects a deployment scheme that aims to be (or become
eventually) a self-service platform. The assumption is that there is a goal set
and available resources to be committed, which leads to the requirement that
schemas can not be upper bounded with a small scale lifted. This also creates
a circular requirement that the service should aim to at least eventually be
self-service as the scale can grow.

28

5.3. When to switch framework selection

As the scale is lower bounded, it enables us to tackle the scheme selection
without regard for simplicity as a significant criterion which leads to having

to balance between completeness (section 3.3) and extensibility (section 3.4).

B 5.2.1 Completeness first

The End-to-end is the most complete scheme out-of-the-box
from the schemas described in [chapter 4. There are platforms providing
all the functionality required from a self-served production platform. The
benefit over the Tech stack integration is the minimization of glue
code (which is regarded as a significant factor for technical debt [SHG15]
in machine learning systems) as the components come integrated, and the
resources for development can be focused on providing the tooling around it.

A wide range of available platforms are described in [Helb] and [Helal.

B 5.2.2 Extensibility first

As described in [subsection 4.3.5 even though the End-to-end approach can
be modified/extended to a certain degree, you are restricted in terms of the
location for the changes. The Tech stack integration allows you
to have modifications on a much finer level as you design the platform. Maybe
it is specific lifecycle management rules or a way to access the platform. Since
you pick the components and integrate them, you gain an additional level of
tuning for the platform.

As the solution consists of selecting and integrating components as the
use case demands, there is an infinite number of possible configurations. A
complete example can be the MATS stack from Avast (described more

in-depth in section 6.1) or, Michelangelo from Uber [HB].

B 5.2.3 Special use case

In the industry, there are several cases where a custom platform had to be
developed. An example of a general platform can be the aforementioned Ten-
sorFlow Extended from Google, which was motivated by the lack
of available offerings at that time. Another example is the LASER [ALT*14]
used at LinkedIn because of the requirements on the amount of data and
number of models.

This approach is usually chosen in corporations with enough resources
available for development and the need for such a system before open-source
projects were available/mature enough for their scale.

. 5.3 When to switch framework selection

From the Case studies (chapter 6) described later, we can observe a pattern
that usually the companies start with the Native serving (section 4.1) in some
form. It can be as simple as a service manually being deployed to a VM over

29

5. Deployment scheme selection

ssh or more advanced if the infrastructure allows it, leveraging automation
and DevOps practices.

Further, we see two situations that can trigger the pursuit of a more mature
platform. First is the planned future growth of online inference workloads, as
we can see in the Avast case study (section 6.1). Due to the history of software
engineering, we can expect the complexity to increase with it. Thus the aim
is to prevent the engineering from blocking the business growth. The second
case is when the technical debt accumulates during the slow workload increase
over time and makes further progress cumbersome; see the Socialbakers case
study (section 6.2]).

Supporting this, in Table 6.3| we can see that Native serving (section 4.1)
is preferable with lower number of models (five or less) while Tech stack
integration (section 4.4) and End-to-end (section 4.3) have preference with
increasing numbers of models.

30

Chapter 6

Case studies

In this chapter, we explore two industry use cases for machine learning
deployment platforms. The first case study describes ML operations at
Awast (section 6.1) where we observe the transition from the probing phase of
machine learning to establishing a dedicated MLOps team implementing the
Tech stack integration (section 4.4). Secondly, the Socialbakers (section 6.2])
case study explores another implementation of the Tech stack integration
with an asynchronous event-driven online inference design. As part of the
case studies, we conducted a survey presented in jsection 6.3|to observe general
trends in the industry.

Important components of the individual solutions are introduced more
in-depth in Tech glossary (Appendix A).

One of the case studies described the machine learning operations at Cisco
Cognitive Intelligence, the AI/ML organization inside Cisco. However, due
to creative differences, we haven’t received permission to publish it alongside
the other case studies presented here.

. 6.1 Avast

The first case study describes the Machine learning operations at Avast'.
Avast is a Czech cybersecurity company with over 30 years long heritage. Its
signature product is the Avast antivirus; however, over the years, through
acquisition and innovation, Avast expanded from local machine malware
detection into other fields and is a cybersecurity and privacy powerhouse.
Avast has recently increased its ML/AI focus which led to improvements
in Machine learning operations. We first describe the original state of the
matter. Follows a brief explanation of what changed the approach Avast took
towards ML. Lastly, the current architecture is described, including future
goals that are not yet implemented. Two examples are presented to show the
original architecture and the different integration in the new platform.
Along with the higher focus on ML/AI, a bigger budget to support the
larger scale and increased expectations for results came with it. Currently,
there are over 30 production models deployed from around ten projects. Out

"https://www.avast.com

31

https://www.avast.com

6. Case studies

of these models, approximately 20 are used in customer products, and the
rest is used for internal services.

B 6.1.1 Initial Solution

Before the focus shift towards machine learning happened, there were long-
running initiatives to determine what value machine learning could bring to
the existing products. They were bound by projects running at that time
and were aimed at whether it is possible to improve the functionality and not
provide a completely new feature. An example is given later in this section,
where an ML model was used to experiment by extending a rule-based system.

As it is usually the case with long-running (R&D) experiments — they
receive limited support from engineering/operations. Data scientists on ML
projects were expected to leverage already deployed software systems and
using the present infrastructure. Introducing new services supporting the
exploration was not in the current scope, which limited the options available
for the ML researchers.

Data scientists’ primary focus is producing well-performing models, which
means lower attention is paid to the engineering side of deploying them. From
that and the limited support they received for introducing new technologies,
it naturally follows that Native serving (section 4.1) approach for exposing
the models emerged (i.e., simple service manually run as a container), as the
serving was a hurdle, not an objective on its own.

The researcher’s workflow would usually consist of model development on
their local machine, including training and validation. Then the model would
be manually deployed to the service for serving, without any tracking of the
experiments. This would imply the MLOps Maturity (section 2.3)) level 0.

Even though software development tooling was available in the company,
there was no standardized way for machine learning projects to use that. It
was at the volition of the researcher and their incentive to do so. Thus the
Maturity level was 1 in some cases but dependent purely on the researcher’s
engineering predispositions.

B Device Identification service

The first example (Figure 6.1) is a project that identifies device class (e.g.,
smart TV, printer, ...) based on its network traffic. The high-level architec-
ture is a service that uses two inputs for the identification — a rule-based
decision system and an ML model. The rules are evaluated locally, and the
ML model is exposed as a simple web service (Native serving (section 4.1))).

B URL phishing detection

The second example is the project internally called Angler — a URL phishing
detection using TensorFlow. Compared to the DevicelD project, Angler would
classify as MLOps maturity level 1. The individual segments of the pipeline
were automated (training and deployment) using TeamClity (section A.1), but

32

6.1. Avast

’scala DevicelD service a ML service

(Tnference \
[API Identification

£ ’t Flask > | scikit-learn
Rule-based ML
identification classification ||

Figure 6.1: Legacy architecture diagram for the Device Identification service.
The ML Classification package is an HTTP client calling the ML service’s
endpoint for inference.

Device

the artifacts were handled manually, and when the production model changed,
first, the serving configuration needed a manual update, and then manually
trigger the serving deployment. It was using TensorFlowﬂ to implement the
ML model and TensorFlow Servingﬁ for exposing an HTTP API for inference.

The Angler project was a typical example of an ML pipeline in the original
setting. It was one of the core projects during the design phase of the new
platform. The MLOps team temporarily adopted the project. Based on its
requirements and architecture (but of course, also of other projects), the new
platform was designed.

B 6.1.2 Transition

The trigger of change for MLOps in Avast was a series of leadership changes.
Originally, machine learning was on a sidetrack from the other production
projects and was only explored for its potential. The changes in leadership
led to the increased focus on machine learning as a first-class tool to solve
current tasks.

The motivation for ML projects changed from experimentation and ex-
ploration to delivering production results. Production systems have higher
requirements than development projects. The systems are expected to be reli-
able, scalable, and with high-quality codebases, which meant more attention
needed to be paid to the engineering aspects.

The change brought a higher budget for the ML initiative, which led to
establishing a designated MLOps team. As with any new project, there is a
phase of experimentation at first, which naturally happened in Avast. Over
time, as experiments were underway and more knowledge was gathered, a
standardization emerged.

Zhttps://www.tensorflow. orgl

https://www.tensorflow. org/tfx/guide/servingl

33

https://www.tensorflow.org
https://www.tensorflow.org/tfx/guide/serving

6. Case studies

B 6.1.3 Current MLOps platform

The motivation for the new platform was to support data scientists in a
standardized and structured way. The structure eases the communication
between MLOps and ML researchers. Further, standard project structure
allows ML researchers (and MLOps also) to work on another project faster,
focusing on the issues at hand and not wildly browsing through the repository.
An example supporting why common project structure is beneficial can be
the Apache Maven project[MVMI10], which introduced the directory layout
for Java/JVM projects[mav] that is the de-facto industry standard as other
build systems adopted it as well[gra][sbt].

The standardization, however, also brings some restrictions. The major
limitation is that not all technologies are available. Using a new system
isn’t just deploying it, but it needs to be integrated into the ecosystem to
conform with the structure in place. Otherwise, the system would accumulate
technical debt and would eventually be more expensive to maintain than the
value it would bring.

The end goal of the initiative is to provide a self-service platform for the
whole machine learning lifecycle. This supports the standardization as before
everything was done on a per-project basis, but now common tooling will
be available to all projects. The ML researchers should be able to work
with the platform independently. The MLOps team should provide support,
maintenance, and drive the platform forward, but the researchers should not
need direct assistance for everyday tasks.

The created platform (named Schnitzel) fits the Tech stack integration (sec-
tion 4.4) approach. It comprises several open-source components and few
custom components that bind everything together to provide a single plat-
form experience for the ML researchers. The primary reason for selecting
this approach was the existing technical infrastructure. There were already
deployed systems supporting software development that can be leveraged for
MLOps development. Hence, the idea was to extend it to support machine
learning better. Furthermore, the present compute infrastructure also swayed
the decision from using a cloud solution to running the platform on the
on-premise servers.

B Architecture

The new architecture, displayed in [Figure 6.2, originated from the MATS
stack|[DSK]. There are two parts to the diagram — the top half describes the
user interaction with the platform, and the bottom half displays the systems
behind it.

Build automation for the platform is done via TeamCity (section A.l) as it
is generally used at Avast for build management and continuous integration.

34

6.1. Avast

Researcher workflow

)
schnitzel-cli

mlops-docker

——

update
workflow,

—>

(" build & valdiate)
Docker images
\ J

run tests

src, etc.

schnitzel-cli

-
_ | Airflow integration

o J

N

local build/test

schnitzel-cli
workflow
build/push

" Airflow repository

and test
. y,

push docker
images

e] ™
open GitHub PR to

| J

4[x Airfl ow}f

MLFlow
model registry

mlflow

[mlops-helm]4

E2E model serving

miflow-deployer

TeamCity
Deployment

mlopstcloud
v

deployed model

>| GitOps PR |

—{ @TeamCity J

0 (wops) (oo) (Ceu)

Figure 6.2: Architecture diagram of the Schnitzel (MLOps) platform at Avast.
The top part depicts the process and user interaction.
component interaction.

Source: Avast

Original:

35

The bottom is the

6. Case studies

The integration of the platform for the user (ML researcher) is implemented
via the schnitzel-cli — a command-line interface that shields the user
with a custom facade from the systems behind it. This utility unifies the
platform’s view — it is hidden behind tooling and isn’t exposed as a service.
However, the users are expected to work directly with the systems in some
cases (for example, with MLFlow (section A.2)) to track experiments).

In the center of the diagram, there is the Apache Airflow (section A.3).
Apache Airflow is used for cross-system orchestration of the workflows, for
example, the model training. The main reason to choose Airflow versus other
workflow managers is its support for running jobs on multiple clusters, which
was required since Avast has multiple computation clusters for use cases
outside of machine learning.

Next, there is the MLFlow (section A.2) component. The reason behind
choosing MLFlow is its simplicity in both the use for the ML researchers
and deployment. MLFlow has two uses in the Avast platform. The first is
experiment tracking during training. ML researchers can track experiments
(by producing graphs and metrics) and validate the models based on that.
The second is as a model repository for trained models. ML Researchers
can store the models and promote them to different phases of the model
development (e.g., dev, prod, archive ...). Further, it provides a standard
format for packaging models supported by various tools for model inference.

MLFlow Deployer is a custom service that monitors and deploys the models
stored in MLFlow based on their stage. It does so by periodically com-
paring the currently deployed state with the status in MLFlow. When a
model is promoted by the ML researcher in MLFlow (e.g., from dev to
prod) a TeamCity deployment is triggered. The serving is done on a Kuber-
netes (section A.4) cluster via several serving services, for example TensorFlow
Serving or Seldon (section A.5). The deployment uses a custom set of Helm
charts (subsection A.4.1) templates to deploy the model to cluster for it to
be served.

Although we can see the usage of TensorFlow in the Angler project, Tensor-
Flow Extended listed as an example of the End-to-end (section 4.3)) approach
is not considered in the new architecture. The reason behind it might be
the diverse nature of the running projects. TFX would provide an excellent
experience for a TensorFlow project; however, other projects would still
require a comprehensive platform to deploy models. That would lead to main-
taining and integrating multiple production systems and shows a significant
disadvantage of the end-to-end platforms created for a specific ML library.

B Device Identification service integration

In the new architecture, the Device identification service (architecture in
Figure 6.3) no longer has the manually deployed ML service. Because of
performance reasons, the model is being exported to the ONNX format and is
evaluated in the main Device identification service. The model is stored in the
MLFlow model repository. Once promoted to be the latest prod model, the
MLFlow Deployer changes the definition in the DevicelD repository to comply

36

6.2. Socialbakers

with the project’s bi-weekly release schedule. This practice is commonly called

GitOps (section A.6) — declarative environment/infrastructure definition

with automation through versioning system and continuous deployment tools.

$Scala DevicelD service

Device
E API Identification

‘ (Inference '\

Model Repository

Rule-based L] Deploy time
& o1 mlflow

Figure 6.3: Architecture of the new Device identification service.
The service now embeds the model evaluation using the ONNX and
retrieves the model from the MLFlow model repository during deployment.

B URL phishing detection integration

The Angler project was one of the core projects acting as a golden path
case study and the kickstarter during the design phase of the new platform
(documented in the MATS stack|[DSK]). The goal was to explore upgrading
MLOps maturity from level 1 to level 4. The project is integrated into the new
Schnitzel platform. It is automated end-to-end from training to deployment
with automatic metrics collecting.

The training pipeline is implemented in Airflow , storing met-
rics, statistics, and the trained model to MLFlow . In MLFlow,
the model, based on metrics and performance, is upgraded to prod stage.
From there, the MLFlow Deployer (subsubsection 6.1.3)) triggers the model
deployment. The model is then automatically deployed via Helm Charts
to the Seldon cluster using the TensorFlow Serving
flavor[mlfa]. Seldon then collects the metrics from serving and stores them in
Grafanaﬁ, an analytics visualization web application.

. 6.2 Socialbakers

The second case study describes the Machine learning operations at Social-
bakersﬂ Socialbakers is an Al-powered Czech company working in the field of
social media marketing analytics. They offer performance indicators of social
media outreach and benchmarks against competitors and industry standards.

4https://grafana. coml
https://www.socialbakers. coml

37

https://grafana.com
https://www.socialbakers.com

6. Case studies

B 6.2.1 Initial state of ML serving

Historically, there had been more offline inference workloads than online
inference use cases. Thus the focus was on enabling and improving offline
inference through tooling and infrastructure. Unfortunately, online infer-
ence projects were piggybacking off the present systems (intended for offline
inference) instead of redesigning the solutions to fit both use cases, which
introduced technical debt reaching over to the original systems.

There was a standard approach how to publish trained ML models. The
idea was to generalize the API for using all models at Socialbakers by creating
an Abstract base class|pyt] that all models would extend. The ML model is
then published as a versioned Python package. Whenever the model changed,
a new version needed to be published. The model’s trained weights were
commonly stored in Amazon S3°, a managed object store from AWS.

B Emerged problems

This abstraction brought with it multiple problems that became apparent
after the usage of this pattern increased. Because neither were the present
systems integrated nor the process automated, the ML researchers depended
on the engineers for the model release. The deployment was primarily done
manually and, due to this, very tedious and error-prone. When an ML model
was done training, the ML researcher needed to hand it over to the engineers.
Afterward, the model would get released as a new version of the appropriate
Python package. Lastly, all dependent systems would need to update the
version dependency on this model and release/deploy the version using the
latest model.

The above problem also led to multiple versions being used concurrently
at the same time on different projects leading to inconsistencies for the result
data. For example, one ML model could be served for online inference with
the latest version, but since the dependency needed to be updated manually,
some jobs using Spark’, a big data analytics engine, could still be using the
old version of the model.

Further, this approach of enforcing codebase sharing across several projects
and the design of extending the Abstract base class by each model led to issues
with transitive dependencies. Transitive dependency issues arise when the
dependencies of a project share common dependencies but different versions.
Imagine example project A depends on lib-a and lib-b. 1ib-a depends
on lib-c version v1.0 but 1ib-b depends on lib-c version v.2.0 where
the core API changed from v1.0 to v2.0. Since the versions of 1ib-c as a
transitive dependency are incompatible either the dependency system will
fail the resolution or the application might fail during runtime.

Shttps://aws.amazon.com/s3
"https://spark.apache.org

38

https://aws.amazon.com/s3
https://spark.apache.org

6.2. Socialbakers

B 6.2.2 Motivation for change

Problems such as different model versions for online and offline inference
have been overlooked because the reach of such issues was tolerable, and
the technical debt was localized primarily to these use cases. However, the
number of online inference workloads is increasing. Thus the previously
described problems were identified as potentially becoming significant issues
in sight of the current trends and determined to be resolved.

Similar to the Avast case study (subsection 6.1.2)) the transition was made
possible by higher focus and investment to innovation by the organization.
As the issues were identified to surpass a reasonable threshold, a designated
MLOps team has been established to deal with the accumulated technical
debt and design a new future-proof solution.

Other than bringing structure in place of the common base class, another
goal was to decouple the individual components in the online inference use
case. The looser coupling[Fow01] of the workflow components would lead
to establishing clear boundaries between individual steps. That would, in
turn, streamline the automation/integration while lowering the complexity of
each, thus removing the wall between ML researchers and engineers for the
deployment problems previously described.

Even though there was a typical pattern of how to design ML models,
although, with issues on its own as described above, there was no standard-
ization across the different projects otherwise. A project would frequently
spread across several repositories, i.e., one repository containing the model
definition, a separate repository responsible for the training pipeline, etc. The
Designated MLOps team was intended to consolidate this.

B 6.2.3 Present MLOps initiative

The new MLOps team defined three goals to deal with the identified problems
of the previous solution:

B single source of truth for inference workloads
B Joose coupling of participating components
B8 minimize MLOps intervention in the release process

Single source of truth requirement originated from the problem of a model
having multiple live versions being used concurrently. A unified way of
storing and accessing the models in a standardized format in a central model
repository solves that.

Loose coupling of the participating components, generally regarded as
a good practice[Fow01], means components/modules are separated with a
designed contract between them. It has two reasons behind it. The first
is reducing technical debt, as well-defined boundaries and proper module
separation support higher cohesion. Additionally, it improves the cooperation
of the teams as the components have better-defined boundaries and can be
improved internally independently.

39

6. Case studies

Further, loose coupling enables easier A/B testing of components, a desired
functionality of the platform, as the configuration level is finer. A/B testing is
the practice of using multiple concurrent live versions while collecting metrics
for the experiment’s evaluation. The difference is that multiple live versions
exist by design and are distinguished.

To minimize the MLOps intervention during the machine learning develop-
ment and model deployment, the designed platform needs to be self-serviced
for the ML researchers — easy to work with and simple to understand. That
is supported by leveraging present systems that everyone is familiar with and
automating tasks that previously needed manual intervention.

B Architecture

The new architecture is depicted in Figure 6.4/ and implements the Tech stack
integration (section 4.4). It integrates the internal build & compute platform
Maratonec with MLFlow (section A.2) backed by Amazon S3 as a model
repository.

Maratonec is the internal build & compute platform. It provides a CI/CD
platform for building projects residing in GitLah®l Further, it allows running
services as defined by Procfiles[pro] in the repositories. Finally, Maratonec
provides UI for tracking the build process and setting up run configurations for
the services (i.e., required CPU, memory, number of instances, environment
variables, ...).

Managed MLFlow from Databricks”| is used as a Model repository. The
reason for going with the managed service instead of deploying it locally to
Maratonec is the already present contract for Databricks'’, a managed Spark
platform, and also the company that created MLFlow.

The crux of the platform lies in the m1flow-serve repository. This project
integrates the compute platform Maratonec with the MLFlow model repository
to deploy models for online inference. Each model is deployed as a run
configuration of the mlflow-serve project. It contains a generic way to
serve the models by configuring the necessary parameters via environmental
variables.

There are currently two implemented modes of deployment for online
inference — an HTTP service and a message queue service. The HTTP
service exposes the model via an HT'TP API. This implementation leverages
the MLFlow Models local deployment[mlfb] option. Internally the model is
exposed using Gunicorn'!|and Flask[fla].

The message queue service processes the requests asynchronously. The
deployed model is wrapped in a service that feeds it messages from a source
queue and pushes results into possibly multiple result queues. The messaging
queues are not part of the model deployment. Thus, except for the specific
interaction when pulling messages, the queues and models can be scaled

Shttps://about.gitlab.com
%https://databricks.com/product/managed-mlflow
Ohttps://databricks.com/

"https://gunicorn.org

40

https://about.gitlab.com
https://databricks.com/product/managed-mlflow
https://databricks.com/
https://gunicorn.org

6.2. Socialbakers

Maratonec] Model Repositor
(build/compute platform) @
mlflow—

miflow-serve configuration Amazon
S3

\

[MLProject] service
configuration)

A Gitiao

mlflow-serve [

/
Ay

HTTP - .~ ‘Message :
Service(s) Qu_eue)
N miflow . Sewice(s) .’ [MLPFIOJECt]

-~

.

Figure 6.4: Diagram of the MLOps serving platform at Socialbakers.
Maratonec is an internal build/compute platform, ml1flow-serve is a GitLab
repository integrating MLFlow serving and Maratonec, [MLProject] symbolizes
projects producing ML models, the Model repository is MLFlow backed by
Amazon S3 object storage.

independently. Another benefit of this approach is that the service will never
get flooded with requests and won’t throw them away as it pulls messages
from the queue at its own pace.

Example usage of the Message queue service model deployment is depicted
in showing a possible Sentiment analysis application. The problem
it solves is pipelining multiple deployed models. First, it needs to detect the
language in the message. Based on that, it uses the correct queue for the
model trained for the detected language. The application is implemented
using Akka Stream@ as the library naturally supports the event-based use
case of IO via message queues. The messaging queues currently used are

RabbitMQ"3]

B Limitation of the new solution

There have been identified two issues with the current solution — lack of
access restrictions to the configurations and limited use case scale due to the
configurations all being at the same place. Both can be solved by forking
the GitLab repository|[gita] as an immediate fix until a permanent solution
is implemented into the system. However, forking the repository would not
be the best long-term solution as upgrading the ml1flow-serve might break
dependent projects without a central way of testing. Cumbersome upgrades
were one of the initially identified problems and a situation best be avoided.

The first problem is missing access restriction as Maratonec supports
permission management per project and not for each configuration. The
mlflow-serve Maratonec configuration contains parameters of all the de-
ployed models. It does not need to be a malicious intent but a simple mistake

2https://doc.akka.io/docs/akka/current/stream/index. htmll

https://www.rabbitmg. com|

[

41

https://doc.akka.io/docs/akka/current/stream/index.html
https://www.rabbitmq.com

6. Case studies

Language
Lgng“age »| detection
etector
general OS
\
Language
Language detection
detection IS sentiment
1 oS
Sentiment Analysis processor
! Other
Sentiment ‘(Language\ Sentiment] N Sentirrelent
input stream | Component ComponentJ -
\ b, v IS
English
- -
Sentiment (—Output Sentiment
output < IS
Stream Component kk
—
) Aa a
Sentiment v
EN Model
Sentiment | @;me”t
Model 0S [~ oher

Figure 6.5: Diagram of the sentiment pipeline demonstrating an example usage
of the Message queue service model deployment.

Blue - input queues, green — output queues, red — other output queue. Orange —
deployed models. At the center is the sentiment analysis application connecting
the queues implemented with Akka streams.

Source: Socialbakers

Original: [Figure B.5

that takes down a model from being served (perhaps replacing the language
model with the sentiment model breaking the pipelines depending on it).
Although this violates the principle of least privilege[pol], the localization
of the issue and safety boundaries in place, such as canary deployment and
monitoring, should quickly detect this. Thus it isn’t considered a significant
threat.

The second problem is limited scaling by having all the configurations
in the same project. The run configurations are defined via Maratonec Ul,
which means the more models are being served, the more cluttered it becomes
(amplified by multiple deployment environments for each model, i.e., dev,
prod, ...) — eventually crossing a threshold of usability. This issue can also
be resolved by forking the m1flow-serve project. Each model or team would
then have a fork with all the Maratonec configurations for relevant models.

42

6.3. Survey

N 63 Survey

As the last case study, we conducted a survey as quantitative analysis. The
survey was shared publicly on LinkedIn & other social media of the author
and Machine Learning Meetups '

B 6.3.1 Survey sections

The survey contained five multiple-choice questions to inspect the state of
MLOps in the industry and two optional questions identifying the respondent
— company/project name, contact to share the results.

Company size, number of employees bucketed into 5 categories:

=14

= 59

= 10-49

= 50-99

= 100+

Your role in the company determining the occupation of the respondent:
®m ML researcher/data scientist

® MLOps/data engineer

® Neither

How are the models used determining the deployment scheme used as
described in chapter 4 with the first option describing offline inference work-
loads (multiple answers possible) and the rest to the Deployment scheme
definitions (chapter 4)):

® Models are used in analytical workflows (the model isn’t deployed for
serving)

® Simple web service wrapper around the model (eg. Flask wrapping
pickled scikit model)

® Export to an intermediate format with evaluation engine (eg. ONNX,
PMML)

® E2E platform (eg. TFX, cloud solution like AWS SageMaker)
® Custom platform from open-source components (eg. Airflow + MLFlow)

® Other (with optional text field for more information)

Mhttps://www.brno.ai/Akce/MLMU-14-MLOps-Building-feature-stores

43

https://www.brno.ai/Akce/MLMU-14-MLOps-Building-feature-stores

6. Case studies

To what extent is the machine learning deployment in your company sup-
ported by the MLOps team to describe the cooperation model between ML
researchers and MLOps (if present):

® Teams do everything on their own (No MLOps team)

® Dedicated MLOps team

® Self service platform provided by the MLOps team

Volume of machine learning models bucketed into 4 categroies:
® None (0)

= Couple (1-4)

® Multiple (5-14)

= A lot (15+)

B 6.3.2 Survey results

The survey collected 45 responses in total. Out of those, 40 were valid. Figure
displays the histogram of the company size of the respondents to show
the background from where these answers were collected. The respondents
were predominantly from larger companies.

Company size

201

15 1

10 1

o B N o= ==
«9(:" ’]9,59 op‘-’ o_}39‘" "»"’ N B

Y

Figure 6.6: Histogram of the number of employees

In we can see that most companies have the responsibility
for deploying ML models in the hands of the individual teams. It shows
that MLOps is still in the very early stages of adoption in the industry.
This statistic is further separated in contingency by company size,
showing that dedicating a team for machine learning operations is not more
frequent for a specific size category. This might be contrary to the expectation
of larger companies having more resources and solving problems centrally.

In [Table 6.2 we can see that dominant is the Tech stack integration
tion 4.4) closely followed by Native serving (section 4.1)). It seems that

44

6.3. Survey

ML operations

251

201

15 4

10 4

Figure 6.7: Histogram of ML operations team

Company size No MLOps team MLOps team Self service platform

1-4 2 0 0
5-9 1 1 0
10 - 19 3 1 0
20-49 4 2 1
50-99 2 1 0
100+ 16 5 1
sum 28 (70%) 10 (25%) 2 (5%)

Table 6.1: Contingency table showing the relationship between company size and
MLOps adoption. We find no significant difference between different company
size categories.

companies choose the Native serving due to simplicity or lack of need for
more advanced features. Tech stack integration is expectably popular as it
provides an option to leverage present systems and thus alleviates some of
the tasks necessary for building such a platform ground up and thus supports
migration to/exploration of machine learning.

Surprisingly the End-to-end approach is not very favored across
companies. One reason behind this might relate to the previous argument for
Tech stack integration, that it is desirable to avoid duplicating functionality
by deploying multiple systems with the same responsibility (e.g., having
another workflow scheduler integrated into the E2E platform in addition to
the one used across the company). Another issue with the End-to-end solution
might be the tight coupling of components (less flexibility) and vendor lock-in.
Vendor lock-in prevents switching providers without substantial cost, which
might discourage some people from adopting a specific solution.

45

6. Case studies

Deployment scheme count
Tech stack integration 22
Native serving 19
Offline inference 16
Software stack integration 7
E2E platform 7
Other 7

Table 6.2: Histogram of model deployment schemes. We see the Tech stack
integration and Native serving are the two most popular approaches.

The [Table 6.3| shows the relationship between the number of production
models and the selected approach to serving them. There are 45% of Native
serving use cases for small workloads (less than four models). However, for
Tech stack integration and End-to-end approaches, almost 70% and 85% of
the responses, respectively, indicated workloads of five or more models. This
supports the natural expectation that full-fledged platforms are intended for
higher usage to be cost-efficient concerning the resources initially invested
and further required for maintenance. On the other hand, this can also
be caused by an opposite phenomenon. A more accessible and feature-rich
platform enables easier deployment, leading to more models being developed
and deployed.

Number of models Couple (1-4) Multiple (5-14) A lot (15+)
Tech stack integration 7 7 8
Native serving 9 5)
Software stack integration 3 1 3
E2E platform 1 3 3
other 0 3 4

Table 6.3: Table showing the relationship between model deployment scheme
and number of production models.

Lastly, in [Table 6.4 we have the contingency table of deployment scheme
and designated MLOps team. One exciting aspect shown in this table is
that advanced platforms (Tech stack integration and E2E) are adopted in
companies even without the MLOps team. This might indicate either natural
MLOps adoption or misunderstanding of the survey assignment.

46

6.3. Survey

How are the models used? No MLOps MLOps Self service

Tech stack integration 16
Native serving 14
E2E platform

Software stack integration
other

N O
U = = W Ot
OO O N

Table 6.4: Relationship between the MLOps adoption and used model deploy-
ment approach. Notable is the usage of E2E platform as a complex scheme
without a designated MLOps team to maintain it.

47

48

Chapter 7

Conclusion

This thesis explored the emerging field of Machine learning operations aim-
ing to streamline machine learning development by incorporating software
engineering best practices into the ML development process. We specifically
focused on deploying trained machine learning models for online inference

use cases.
First, we presented four criteria — scale (section 3.1|), simplicity (sec-
tion 3.2), completeness (section 3.3), and extensibility (section 3.4) — to

provide a unified way to describe and evaluate the deployment schemes.

Then, we identified five schemes to deploy ML models. Native serving (sec-
tion 4.1) as the baseline approach to exposing the model as a service. Software
stack integration (section 4.2)) embedding the model evaluation into the appli-
cation while possibly using an intermediate format with an accompanying
evaluation engine. Then we described three more extensive and mature
platforms. The End-to-end (section 4.3)) leverages solutions providing most of
the functionality out-of-the-box, and the Tech stack integration (section 4.4))
comprising designing and building the platform out of existing functional
components. The last approach, In-house custom solution (section 4.5), sup-
ports use cases where none of the previous solutions fit, and the available
resources allow to design the platform to the expected users.

Next, we proposed a framework for selecting the best approach out of the
identified deployment schemes depending on the intended use case. Two
views were described. The first fit for initial MLOps stages optimized for fast
results (section 5.1). The second (section 5.2), for situations where a more
mature platform is desired.

Lastly, we presented two case studies describing the ML operations at
Avast and Socialbakers. The case studies provided the architecture and
implementation of the MLOps approaches used in the companies and the
argumentation behind the decisions that led to them. We can see that simple
solutions were initially used until a more mature approach was required due
to the business development.

As part of the case studies, we conducted a survey (section 6.3|) where we ob-
served the Native serving (section 4.1) and Tech stack integration (section 4.4)
to be the most popular approaches of the respondents. We noticed that there
is no dedicated ML operations team in 70% of the companies participating in

49

7. Conclusion

the survey. The two in-depth case studies show that establishing an MLOps
team proves beneficial. We recommend companies to explore and invest in
MLOps as currently in 50% of organizations it takes up to 90 days to deploy
a single ML model to productionfentI9]; thus, unification and automation
might provide significant savings in the ML development.

Chapter [6] further shows that end-to-end approaches, which appear to be
excellent solutions at the first look, have limitations that are problematic for
the industry setting. Therefore, these kinds of solutions might be a better fit
for specific use cases rather than picking them in general settings as described
in [chapter 5.

Despite no existing historical data for machine learning operations, we can
take inspiration from the DevOps movement’s popularity and industry trends
and expect MLOps to take a similar path. As machine learning is becoming
even more prevalent in present software systems, MLOps adoption will soar
in the following years, and more companies will adopt a similar approach.

50

Appendix A
Tech glossary

The following sections contain brief descriptions of the systems used in the
case studies.

B a1 TeamCity

TeamCityIH is a build management and CI/CD (continuous integration and
continuous delivery) tool developed by JetBrains. It supports management via
web app or as a code so that the build definitions (and supporting tooling, e.g.,
build step uploading artifact to a repository) can be stored in a version control
system. For code definitions, it uses the Kotlinﬂ programming language (also
developed by JetBrains).

TeamCity’s web Ul can also be used to check the status of builds/pipelines.
It also provides integration with many systems around build and source code
management for an easier development process. For example, the build status
of a branch in a GitHub repository can be displayed in the PR (pull request).
If the build is failing, it can prevent the PR from being merged into the
master branch.

Although TeamCity integrates well with build systems (e.g., Maven, Gra-
dle, ...), it is not its only use. It is not tightly coupled with the build
intention and can be used for general automation workloads, as it can run
arbitrary code in a containerized environment, as is, for example, the case at
Avast (subsubsection 6.1.3)).

B A2 MLFlow

MLFIOWH is an open-source machine learning lifecycle platform developed in
Python to streamline ML development. It comprises four components that
each provide a different functionality and can be used independently:

Tracking — model development tracking

"https://www. jetbrains.com/teamcity

https://kotlinlang.org
https://mlflow.org

o1

https://www.jetbrains.com/teamcity
https://kotlinlang.org
https://mlflow.org

A. Tech glossary

Projects — code packaging format using Conda and Docker
Models — model packaging format and tools to deploy them
Model Registry — centralized model store

MLFlow fits at the center of machine learning development. The ML
researcher interacts with the platform through its REST API (with clients
implemented for Python, R, and Java) or a CLI.

Using the MLFlow Projects and MLFlow Tracking allows the user to run
machine learning experiments and model training flows in a standardized way.
Declaratively defining the environment to run the experiments and logging
the metrics, graphs, and other (meta)data about the model and experiment.
Further, it provides a web UI to display the collected data.

Then the MLFlow Models and MLFlow Model Registry can be used to
store and release the trained models. As with the other components, the
functionality is integrated into the web UI where it enables the user to
manage the state transitions of the models’ versions. Further, it allows the
user to deploy the model for serving on a local machine or few integrated
environments (Amazon SageMaker, AzureML, Spark UDF). It supports a lot
of the popular ML libraries[mlfa].

. A.3 Airflow

Apache Airflow?is an open-source workflow management platform. It contains
time-based scheduling of running the defined workflows or based on external
triggers. The basic Airflow project provides plethora of integrated services
for both on-premise services (e.g., Hadoop®, Redis%, ...) and managed/cloud
services (e.g., Slack’, AWS, ...).

Workflows are represented as DAGs (Directed Acyclic Graph). Each DAG
consists of Tasks (nodes in the graph) that should be run. The tasks are
connected by edges symbolizing the precedence of the tasks. Workflows
are implemented as standard Python files, with the tasks being instances of
Operators. Two base types of operators exist — one for flow control structures
(e.g., BranchPythonOperator) modifying the DAG, second for running tasks
(e.g., BashOperator).

In the Airflow’s architecture diagram (Figure A.1) there are two significant
components. The first is the Web server with Executor (depicted separately
but runs within the same context) that orchestrates the DAG’s evaluation.
The web server also provides the UI for the user to see the evaluation of
DAGs, their state, and schedules. The second is the Worker component —
processes that run individual tasks. Workers can be running on a different
machine, which is leveraged, for example, at Avast (subsubsection 6.1.3).

Yhttps://airflow.apache.org
https://hadoop.apache.org
Shttps://redis.io
"https://slack.com

52

https://airflow.apache.org
https://hadoop.apache.org
https://redis.io
https://slack.com

A.4. Kubernetes

[_ N Airflow.cfg

| User Interface

! o

r 1
= Web Server Scheduler | E;f;"::;énl't;:;;il | Warker(s)
i L._._T_._.d

Data Engineer A T Ty

-Authored DAGS--, I--------------------.:
I

‘ DAGs Metadata DB
(Postgres)

Figure A.1: Apache Airflow platform architecture.
Source: https://airflow.apache.org/docs/apache-airflow/stable/
concepts.html

. A.4 Kubernetes

Kubernetes®, commonly abbreviated to k8s, is an open-source container
orchestration platform. A Kubernetes cluster (Figure A.2) consists of a
control plane and worker nodes. The control plane manages the global state
of the cluster, while worker nodes host pods, the basic unit of deployment,
describing the containers and other resources. Worker nodes run a kubelet
service that manages the running containers, the container runtime, and a
kube-proxy that allows the networking of the containers.

Kubernetes uses the concept of Kubernetes objects through which the user
configures the platform. A Kubernetes object is a record of intent that
describes the desired state. Once the object is defined, Kubernetes manages
the cluster state to ensure the object exists.

The user interacts with the platform via an API or kubectl CLI.

B A41 Helm

Helm? is a package manager for Kubernetes. It uses a packaging format
called charts — a collection of files defining the Kubernetes objects, chart
dependencies, etc. Helm charts allow the user to define, package, and version
applications for Kubernetes instead of sharing the objects as files. Fur-
ther, charts allow defining templates to enable customizing the application
deployment.

8https://kubernetes.io
%https://helm.sh

53

https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://airflow.apache.org/docs/apache-airflow/stable/concepts.html
https://kubernetes.io
https://helm.sh

A. Tech glossary

Worker Node 1

www.learnitguide.net

KUBERNETES ARCHITECTURE

Pod 2 Pod 3

User Interface

Kubernetes Master
o APl Server

Scheduler

= I

Worker Node 2
Pod 2

Controller-Manager

@ eted

kubect!

Coataingr 1

I O

Figure A.2: Kubernetes components diagram.
Source: What is Kubernetes|lea]

B A5 Seldon

Seldoﬂ is a machine learning serving platform exposing models as REST or
gRPC services. It is built on Kubernetes which allows it to run
both on-premise and in the cloud. Seldon offers three components
— Core, Alibi, and Deploy. Seldon Core is an open-source platform for
serving ML models with features such as model routing, inference graphs, and
support for experiments. Seldon Deploy is a Ul component allowing testing,
monitoring, and deploying models. Seldon Alibi is an open-source Python
library for model inspection and interpretation.

B A6 GitOps

GitOps]gith], a term coined in 2017, is the idea of having a git repository,
although the same can be achieved with other versioning systems, containing
declarative definitions of the deployed systems & infrastructure. A required
component for this concept is having the automation to deploy this definition
to the environment. It is the practice of Infrastructure as Code extended with
the software engineering automation and tooling.

GitOps practices provide streamlined deployments. The requirements
for GitOps, having the environment defined declaratively, lead to easier
environment replication and self-documenting description, as everything
available in the deployment needs to be specified, strongly pushing away from
manual changes to the deployed environments.

10Ih‘ctps ://www.seldon. io|

o4

https://www.seldon.io

A.6. GitOps

Multi-arm bandits Outlier detection Explanation Bias detection

SELDON CORE

runtime ML graph engine

microservices

Istio service mesh (optional)

kubernetes

deploy anywhere

cloud services or on-prem

Figure A.3: Seldon Core stack
Source: https://www.seldon.io/tech/products/core|

I Image Registry

pushes
container images

triggers deploys
Application _— Build Pipeline Deployment Pipeline | =——————p Environment
Repository

updates triggers
Environment

Repository

Figure A.4: GitOps workflow diagram for push-based deployment
Source: https://www.gitops.tech|

In we can see an example development workflow. First, the
developer pushes changes to a repository. That triggers the build pipeline,
which releases a new version of the application and makes the appropriate
changes in the environment repository. That, in turn, triggers its deployment
pipeline leading to the update environment.

55

https://www.seldon.io/tech/products/core
https://www.gitops.tech

56

Appendix B

Large figures and originals

This chapter contains the original figures that were redrawn for print clarity
and illegible figures.

o7

B. Large figures and originals

=

Requirements

— e e e e e e e e e e e e S e - - — Machine Learning Workflow —' —e— - —— — e — - — — — — — —— -y
_ _
| [
| « I
| Data Management / Model Learning =0 Model Verification
— — |
| _ F = 1 |
| Performance —
| IIYE deficit report = |
T = Model Trainin Formal Test-based Verification |
| Collection Augmentalion Training set Selection 9 l@l’ Verification Verification Result |
| Trained = |
| processing >= alysis Verification Transfer ~ Hyperparameter > Requ _Eima Verified |
_ set Learning Selection Encoding Model |
|

_Il.iII..Il.l.ll.l.lll.ll.l.l.ll.ll.l.l.ll.lll.l.ll..l
Operational
data

O]
R

®

Environment

0

ML Understanding

I = R
A@ Traditional
Understanding
Monitor | Analysis

3

ML Deciding

=]

Traditional
Deciding

Plan

_ Execute

Model Deployment

Integration

(4]

Monitoring

Updating

Figure B.1: Machine Learning Lifecycle Diagram
Source: Assuring the Machine Learning Lifecycle: Desiderata, Methods, and

Challenges

o8

B. Large figures and originals

uopewolne
134353210 MOTPIOM
M3N saurjadid Jaxepabes

s221nap abpa
uo Ssjapouw Jojuow pue abeuey
M3N 136euely abp3 Jadjepyabes

s|apow
pakoydap jo Adeandde uiejuiely
1031UO | 13pPON 1jebeS

2dueysul Jad sjppow
91dimnw bunsoy Aq 1501 dnpay
sjutodpug 13po-1niy

buiuies)
aulydew paseq-sajauiagny Apdwis
uoneabaju] mojyaqn)y| 7 sazauIqN)

andybnoays ybiy
‘Aouaie) moy eaqn ‘pabeuew Ajng

juawholdaq }1pP-3uQ

<— abeuew 3 Aoydaqg

TN 104 (3@1) FudWwUoIAUB JuawdolaAap pajesbaul

olpms Jdjepabes

%06 Aq
3503 Bululesy anpay
1e4) jods pabeuepy

suni buiuiesy
9jyoud pue bngaqg
M3N 4266nqaq 1jewabes

sjapow pue
s1asejep abue) 1oy bujures)
M3N saueaqr] bulutel) painqusig

uonezjwnido
1919wesedsadAy
buiunj j2popy 2newWwoINy

da3s A1ana
aJedwod pue ‘dziuebio ‘ainyde)
syuawiiadx3y Jdjepwabes

wabeuew

ainjnusesyur panguisia
Bulurea] dip-auQ

<— 9un} R uieldj

Sosed asn
OWILWLO] 10J su njos }jing-ald
M3N easdwng sjepyabes

A 1NJ YyHM Sjapow Buiuies)
auiydew a1ea.d Ajjeanewoiny
jo)idoany Jadjepyabes

auiydew |exo)
anoA uo adAjojoud pue 3s9)
apoyy je20

umo JInok
buliq 1o swyiliobie paziwndo jo suszoq
swyo06)y umo-inoA-bulig pue ui-3jing

buneys pue andwod
J11se)9 Yum syooqaiou Ja3Adnf

$300g330N 01pNIS Jaxepabes

<— Pung

- Aepabes uozewy ----..-

suoidipaid japow
puelsiapun pue seiq 329312q
M3N Ajiie)d Jjepabes

sainjeay aleys
pue ‘anau3al ‘a3epdn ‘21015
M3N 31035 3injea djepwabes

>peds/y
0Ag 'uoyiAd ur-ning
Buissadoid 1adepabes

Buiuiea) auiysew

104 ejep asedaid pue a3e62166y

M3N J9)6ueip ejeq Jjepabes
buiuies)

auiydew Joj eyep buiuiesy 19qe

yanJy punoJo Jajepabes

<— aJedaid

Functionality offered by the Amazon SageMaker

Figure B.2
Source

.amazon.com/sagemaker

//aws

https:

99

https://aws.amazon.com/sagemaker

B. Large figures and originals

GET DATA

S

Cassandra
Feature Store

ONLINE

Hive

Data Prep Job Feature Store

Spark / /
Data Lake sQL

Outcomes
(Training Set)

Sampled
Predictions)

OFFLINE

TRAIN MODELS

4

Batch Training Job

Training
Algo

EVAL MODELS DEPLOY, PREDICT & MONITOR

] |

Realtime Predict
Service

Cassandra
Model Repo

Batch Pkedict Job
(Spark)

Tanes Predictions To Hive

Model & Kafka

Performance Metrics
Monitor Job

(Spark) System

To Monitor

Architecture of Uber’s Machine learning platform Michelangelo.

Source: Meet Michelangelo: Uber’s Machine Learning Platform [HB]

Figure B.3

60

B. Large figures and originals

19pol pakodag

Buinies japoi - 323 ‘T

UonensapI0 walss-ssoi ‘T

=

eoBpiEIUl BANEIEIRQ '€
oPRAISAY BinsNASELU| 2
SIUBLIUOIIAUS UBSISUOD T

oday mojuv-Sa8 0
©va i ¥d suedo

Ansibas ynjval o1
‘sabe Jo0p Usnd

sabew 40p.
ewpieA % ping

159pINg
MOIPLIOM [[2-]3ZYUyds

13UN23P000
1jo-jpznuyds
w

19zZ3uyo2s

Figure B.4: Avast Schnitzel original diagram. Author: Jodo Da Silva, Avast

61

B. Large figures and originals

Message
payload: | am a comment

outputStream: akka-sentiment
id: 012341

Input stream

Sentiment
Community output
stream

y
5/ Language |

.| Language detection
| Detector | \general output stream
\
v
2 Language detection
Sanlian i placlon sentiment output
input stream i
Sentiment English Sentiment Others
input stream input stream
P = 7-.“\ - A
ra Y ™
[Sentiment EN) o
model | Sentiment |
\ \Other Models |
— b, - A i
Sentiment model
output stream

Figure B.5: Sociabakers sentiment analysis pipeline original diagram. Author

Alex Hagerf, Socialbakers

62

Appendix C

Attachment

/

| _thesiscoiiiiii... the source files of this thesis in IXTEX
17 figures
DO it e content files
zav_prace.pdf il thesis assignment

| mlopsS_SUrvey.tsSVeeieiiiiiiniinn.... cleaned survey responses

| thesis.pdf ...ttt this thesis

63

64

Appendix D

Bibliography

[ACP19)]

[aim20)]

[ALT+14]

[BLZ]

[DPL15]

[DSK]

[ent19]

[fla]

Rob Ashmore, Radu Calinescu, and Colin Paterson. Assuring the
machine learning lifecycle: Desiderata, methods, and challenges.
2019.

Worldwide spending on artificial intelligence is expected to dou-
ble in four years, reaching $110 billion in 2024, according to
new idc spending guide. https://www.idc.com/getdoc.jsp?
\containerId=prUS46794720, Aug 2020. [Online; accessed May-
2021].

Deepak Agarwal, Bo Long, Jonathan Traupman, Doris Xin, and
Liang Zhang. Laser: A scalable response prediction platform
for online advertising. Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, page 173-182, 2014.

Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network
exchange. https://github.com/onnx/onnx. [Online; accessed
March-2021].

Andrej Dyck, Ralf Penners, and Horst Lichter. Towards definitions
for release engineering and devops. In 2015 IEEE/ACM S8rd
International Workshop on Release Engineering, pages 3—3, 2015.

Joao Da Silva and Yury Kasimov. Mats stack (mlflow, airflow, ten-
sorflow, spark) for cross-system orchestration of machine learning
pipelines. https://databricks.com/session_eu20/mats-stack-
mlflow-airflow-tensorflow-spark-for-cross-system-orchestration-
of-machine-learning-pipelines.

2020 state of enterprise machine learning: Cost re-
duction is the top priority. https://jaxenter.com/
[2020-state-of-enterprise-machine-learning-165649. |
html, Dec 2019. [Online; accessed May-2021].

Flask framework. |https://palletsprojects.com/p/flask!
[Online; accessed April-2021].

65

https://www.idc.com/getdoc.jsp?containerId=prUS46794720
https://www.idc.com/getdoc.jsp?containerId=prUS46794720
https://github.com/onnx/onnx
https://jaxenter.com/2020-state-of-enterprise-machine-learning-165649.html
https://jaxenter.com/2020-state-of-enterprise-machine-learning-165649.html
https://jaxenter.com/2020-state-of-enterprise-machine-learning-165649.html
https://palletsprojects.com/p/flask

D. Bibliography

[Fow01]

[gital

[gith]

gral

[Gro]

[HB]

[Hela]

[Helb]

[lea]

[mav]

[MKF+17]

[mlfa]

M. Fowler. Reducing coupling. IEEE Software, 18(4):102-104,
2001.

Gitlab project forking workflow. https://docs.gitlab.com/ee/
user/project/repository/forking_workflow.html. [Online;
accessed May-2021].

Gitops. https://www.gitops.tech. [Online; accessed May-
2021].

Organizing gradle projects. https://docs.gradle.org/
|current/userguide/organizing_gradle_projects.htmll [On-
line; accessed April-2021].

Data Mining Group — PFA Working Group. Pfa: Portable
format for analytics. http://dmg.org/pfa/index.html. [Online;
accessed March-2021].

Jeremy Hermann and Mike Del Balso. Meet michelangelo:
Uber’s machine learning platform. |https://eng.uber.com/
michelangelo-machine-learning-platform.

Ian (a.k.a. Christian) Hellstrém. Machine learning platforms in
2021. https://databaseline.tech/ml-platforms-in-2021,

Ian (a.k.a. Christian) Hellstrom. A tour of end-to-end ma-
chine learning platforms. https://www.kdnuggets.com/2020/
[07/tour-end-to-end-machine-learning-platforms.html|

learnitguide.net — what is kubernetes.
https://www.learnitguide.net/2018/08/ |
what-is-kubernetes-learn-kubernetes.html [Online;

accessed May-2021].

Maven standard directory layout.
///maven.apache.org/guides/introduction/ |
|introduction-to-the-standard-directory-layout.html|
[Online; accessed April-2021].

Akshay Naresh Modi, Chiu Yuen Koo, Chuan Yu Foo, Clemens
Mewald, Denis M. Baylor, Eric Breck, Heng-Tze Cheng, Jarek
Wilkiewicz, Levent Koc, Lukasz Lew, Martin A. Zinkevich, Martin
Wicke, Mustafa Ispir, Neoklis Polyzotis, Noah Fiedel, Salem Elie
Haykal, Steven Whang, Sudip Roy, Sukriti Ramesh, Vihan
Jain, Xin Zhang, and Zakaria Haque. Tfx: A tensorflow-based
production-scale machine learning platform. In KDD 2017, 2017.

Mlflow models supported libraries. https://www.mlflow,
lorg/docs/latest/python_api/mlflow.models.html# |
module-mlflow.models. [Online; accessed April-2021].

66

https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html
https://docs.gitlab.com/ee/user/project/repository/forking_workflow.html
https://www.gitops.tech
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
https://docs.gradle.org/current/userguide/organizing_gradle_projects.html
http://dmg.org/pfa/index.html
https://eng.uber.com/michelangelo-machine-learning-platform
https://eng.uber.com/michelangelo-machine-learning-platform
https://databaseline.tech/ml-platforms-in-2021
https://www.kdnuggets.com/2020/07/tour-end-to-end-machine-learning-platforms.html
https://www.kdnuggets.com/2020/07/tour-end-to-end-machine-learning-platforms.html
https://www.learnitguide.net/2018/08/what-is-kubernetes-learn-kubernetes.html
https://www.learnitguide.net/2018/08/what-is-kubernetes-learn-kubernetes.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
http://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://www.mlflow.org/docs/latest/python_api/mlflow.models.html#module-mlflow.models
https://www.mlflow.org/docs/latest/python_api/mlflow.models.html#module-mlflow.models
https://www.mlflow.org/docs/latest/python_api/mlflow.models.html#module-mlflow.models

D. Bibliography

[mlfb] Mlflow models serve. https://www.mlflow.org/docs/latest/
models.html#local-model-deployment, [Online; accessed
April-2021].

[mlo] Machine learning operations maturity model.
|//docs.microsoft.com/en-us/azure/architecture/ |
lexample-scenario/mlops/mlops-maturity-model. [Online;
accessed April-2021].

[MVM10] Frederic P Miller, Agnes F Vandome, and John McBrewster.
Apache Maven. Alpha Press, 2010.

[onn] Onnx support for scikit-learn models. |http://onnx.ai/
isklearn-onnx/supported.htmll [Online; accessed March-2021].

[pmm] Pmml: Predictive model markup language.

wikipedia.org/wiki/Predictive_Model_Markup_Language|
[Online; accessed March-2021].

[pol] Principle of least privilege. https://en.wikipedia.org/wiki/|
Principle_of_least_privilegel [Online; accessed May-2021].

[pro] The procfile heroku. https://devcenter.heroku.com/
articles/procfile, [Online; accessed May-2021].

[PVGT11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825-2830, 2011.

[pyt] Pep 3119 — introducing abstract base classes.

python.org/dev/peps/pep-3119/. [Online; accessed May-2021].

[Ros95] Guido Rossum. Python reference manual. Technical report,
Amsterdam, The Netherlands, The Netherlands, 1995.

[sagl7] Introducing amazon sagemaker.

[aws.amazon.com/about-aws/whats-new/2017/11/ |
[introducing-amazon-sagemaker| 2017.

[sbt] sbt directory structure. https://www.scala-sbt.org/1.x/
docs/Directories.htmll [Online; accessed April-2021].

[SHGT15] D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd
Phillips, Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-
Francois Crespo, and Dan Dennison. Hidden technical debt in
machine learning systems. In Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume
2, NIPS’15, page 2503-2511, Cambridge, MA, USA, 2015. MIT
Press.

67

https://www.mlflow.org/docs/latest/models.html#local-model-deployment
https://www.mlflow.org/docs/latest/models.html#local-model-deployment
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
https://docs.microsoft.com/en-us/azure/architecture/example-scenario/mlops/mlops-maturity-model
http://onnx.ai/sklearn-onnx/supported.html
http://onnx.ai/sklearn-onnx/supported.html
https://en.wikipedia.org/wiki/Predictive_Model_Markup_Language
https://en.wikipedia.org/wiki/Predictive_Model_Markup_Language
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://devcenter.heroku.com/articles/procfile
https://devcenter.heroku.com/articles/procfile
https://www.python.org/dev/peps/pep-3119/
https://www.python.org/dev/peps/pep-3119/
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-amazon-sagemaker
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-amazon-sagemaker
https://aws.amazon.com/about-aws/whats-new/2017/11/introducing-amazon-sagemaker
https://www.scala-sbt.org/1.x/docs/Directories.html
https://www.scala-sbt.org/1.x/docs/Directories.html

D. Bibliography

[Sta21] Radek Starosta. Phishing detection using natural language pro-
cessing. Master’s thesis, Czech Technical University in Prague,
Faculty of Electrical Engineering, 2021.

[wsg] Pep 3333 — python web server gateway interface v1.0.1.
[/ /www .python.org/dev/peps/pep-3333. [Online; accessed May-
2021].

68

https://www.python.org/dev/peps/pep-3333
https://www.python.org/dev/peps/pep-3333

	Introduction
	Notation

	Scope delimitation and context
	Machine Learning lifecycle
	Running inference
	Machine learning operations

	Schema evaluation criteria
	Scale
	Simplicity
	Completeness
	Extensibility

	Deployment scheme definitions
	Native serving
	Context
	Scale
	Simplicity
	Completeness
	Extensibility

	Software stack integration
	Context
	Scale
	Simplicity
	Completeness
	Extensibility

	E2E/cloud solution
	Context
	Scale
	Simplicity
	Completeness
	Extensibility

	Tech stack integration
	Context
	Scale
	Simplicity
	Completeness
	Extensibility

	In-house custom solution
	Context
	Scale
	Simplicity
	Completeness
	Extensibility

	Deployment scheme selection
	Minimize (initial) investment
	First option
	Second option
	Discouraged

	Providing self-service platform
	Completeness first
	Extensibility first
	Special use case

	When to switch framework selection

	Case studies
	Avast
	Initial Solution
	Transition
	Current MLOps platform

	Socialbakers
	Initial state of ML serving
	Motivation for change
	Present MLOps initiative

	Survey
	Survey sections
	Survey results

	Conclusion
	Tech glossary
	TeamCity
	MLFlow
	Airflow
	Kubernetes
	Helm

	Seldon
	GitOps

	Large figures and originals
	Attachment
	Bibliography

