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Abstract
Techniques of combinatorial interaction
testing with constraints have been widely
adopted by industries with the aim to
lover the time and labor costs of testing
of software while maintaining the desired
level of quality.

This work proposes another exploita-
tion of these techniques in the are of test-
ing of interactions of software applications
with complex dependencies on and inter-
actions with the underlying HW they are
being run on — such as operating systems,
anti-malware applications, device drivers,
virtualization tools and others.

Firstly an overview of current possibili-
ties in the area of combinatorial interac-
tion testing is given, Available systems for
combinatorial generation of test inputs
combinations (with constraints) are dis-
cussed together with algorithms used by
combinatorial generators.

Then we discuss the options and re-
quirements for creation of real-world us-
able optimization framework for genera-
tion of testing system combinations with
respect to restricted resources for building
of physical testing computer systems in
HW labs when testing the complete inter-
actions of the whole HW and SW system
stack.

The core of this work is in introduction
of a new SysCCIT framework implement-
ing a modular system for selecting the
best available HW configurations to be
built from an inventory of HW compo-
nents in testing laboratory, taking into
account requirements and dependencies
of tested application on given HW. Also
its performance and usability attributes
are measured and discussed in terms of
the required time to produce an output
for different hypothetical HW component
inventory sets and sizes.

Finally, we discuss possible extensions
to the implemented framework as well
as options and areas for performance im-

provements.

Keywords: ACTS, CIT, software
testing, combinatorial interaction testing,
optimization

Supervisor: Ing. Karel Frajták, Ph.D.
FEE CTU, Karlovo náměstí 13, Praha 2
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Abstrakt
Techniky kombinatorického testování s
podmínkami jsou široce adoptovány prů-
myslem s cílem snížit cenu a pracnost sys-
tematického testování software při součas-
ném zajištění úrovně kvality.

Tato práce navrhuje další použití těchto
technik v oblasti testování interakcí soft-
ware silně závislého na konfiguraci sys-
tému, na kterém daný software běží —
jako jsou operační systémy, anti-malware
aplikace, ovladače zařízení, virtualizační
nástroje a další.

Nejprve je uveden přehled současných
možností použití technik kombinatoric-
kého testování, dostupných systémů pro
kombinatorické generování testovacích
kombinací s podmínkami, společně s do-
stupnými algoritmy pro kombinatorické
generátory.

Následně jsou diskutovány možnosti a
požadavky na vytvoření reálně použitel-
ného optimalizačního systému pro genero-
vání testovacích kombinací s ohledem na
omezené testovací prostředky pro sesta-
vování fyzických testovacích systémů při
testování celých konfigurací HW a s ním
silně interagujícím SW.

Jádro práce tvoří představení imple-
mentace frameworku SysCCIT implemen-
tujícího modulární systém pro určení nej-
lepších dostupných HW konfigurací k se-
stavení z dostupného inventáře kompo-
nent testovací laboratoře beroucí v potaz
požadavky a závislosti testované aplikace
na daném HW. Také je změřena výkon-
nost představeného řešení z pohledu času
potřebného ke spracování vstupu a vy-
generování výsledků pro různě rozsáhlé
hypotetické inventáře HW komponent.

Nakonec jsou diskutovány možnosti roz-
šíření vytvořeného frameworku a možnosti
pro zlepšení jeho výkonnosti.

Klíčová slova: ACTS, CIT, testování
software, kombinatorické testování
interakcí, optimalizace

Překlad názvu: Framework pro
zkvalitnění testování softwaru silně
závislého na hardwarové konfiguraci a
konfiguraci OS
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Chapter 1
Introduction

1.1 Objectives and thesis organization

First a general motivation behind this work is given.
Then follows an overview of the current CCIT techniques landscape.
Thirdly we discuss options and requirements for creation of an automated

optimization framework for generation of test combinations using (constrained)
interaction testing techniques and algorithms while taking into considerations
the practical limits in real world test environments and resources available
for testing efforts.

Then in the fourth part an architecture and implementation of the imple-
mented framework is described, together with performance evaluation and
possible improvements. The benefits such a tool can bring to the modern
SDLC include better insight into test coverage, increased quality with given
resources and speed-up of the testing process.

Lastly, achieved goals and results of this work are discussed as well as
possible extensions and improvements.

1.2 Motivation

Nowadays the problem of software testing might seem largely as the issue
of ensuring the correct functioning of the project’s business logic. However,
despite the successful adoption of virtualization and containerization tech-
nology in the last two decades (as discussed i.e. by [28]), the problem of
software interaction with the underlying OS+HW stack has not received as
much attention as pure software or pure hardware testing.

Many applications today rely more than ever on the interaction of software
and hardware. Those interactions can facilitate benefits such as deeper
computation optimizations (usage of specialized instructions available in only
a subset of utilized platforms), power optimizations (to reduce operational
costs and or improve battery life of mobile devices), better security and
runtime isolation (through virtualization/containerization) and others.

Let’s consider Windows operating system ecosystem. Not only is Microsoft
dealing with the consequences of their well known pledge to keep backwards
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1. Introduction .....................................
compatibility — the Windows family of operating systems has been present
pretty much everywhere from consumer devices across key business operations
to world’s most critical infrastructure — they are also dealing with the
explosion of different device configurations they (together with vendors of
those devices) need to support.

Currently, Microsoft publishes updates for their ecosystem in rapid fashion.
Device drivers can be updated as soon as those become qualified under
numerous Microsoft programs, core products can receive updates weekly and
security updates no slower than monthly. [19]

The big players in the industry are switching to rapid release cycles (such
as monthly browser updates by Google/Mozilla, but bi-weekly or even weekly
releases are getting common). The industry members have created mecha-
nisms and APIs to shield the developers for their ecosystems from the issues
these trends bring to the SDLC (operating systems’ task is to abstract away
the work with HW and provide consistent usage patterns, and nowadays
we as a society are pushing that paradigm further by moving to virtualized
environments, effectively also abstracting away the HW details from the OS).
Yet many software projects cannot take advantage of those. Anti-malware
applications still need to do deep kernel hooks to provide their core shield-
ing and filtering functionality (often through kernel drivers and usage of
undocumented APIs due to the closed-source nature of Microsoft products).
High performance computation libraries need to take into account availability
of instruction set extensions or completely different architectures of CPUs.
Similar challenges apply to the usage of graphics, networking, virtualization,
storage and other subsystems and related device drivers provided by modern
platforms. These themselves need to handle new challenges coming from
security vulnerabilities being discovered. Inevitable bugs are present in the
underlying hardware, that cannot be easily fixed/replaced (such as the Mel-
down and Spectre vulnerabilities of today’s superscalar out-of-order executing
CPUs).

The challenges mentioned above lead to the need of rapid (re)testing of
new software on as many different hw+sw combinations as possible to assure
targeted levels of software quality and compliance. The need to use real
world hardware for these tests (i.e. virtualization drivers cannot be loaded
and tested in a virtual machine) results in large time and other engineering
costs associated with such testing effort. Also the combinatorial explosion
of the many parameters of the systems interacting with each other makes it
practically infeasible to perform anything close to exhaustive testing.

2



Chapter 2
About Combinatorial Interaction Testing

2.1 The basis of CIT

CIT — Combinatorial interaction testing, is a technique for testing complex
systems with many input and configuration parameters. As presented by
works of R. Kuhn et. al. ([16], [15]), it servers as a means to reduce the total
amount of test cases needed for ensuring a certain test coverage of system
under test, while reducing requirements for testing resources and therefore
making the testing effort feasible and reducing costs [20].

Also known as ıt-way testing, the technique relies on the empirical find-
ings that interaction between only a subset of input and/or configuration
parameters of given SUT — system under test — still carries a high chance
of exhibiting defects [13], [1]. These findings have also been experimentally
verified in pseudo-synthetic experiments on smaller software systems, by
systematically injecting defects into otherwise functional code and comparing
the defect discovery efficacy when subjected to test suites generated by CIT
approach with different t-strengths [6] (where ıt is the interaction strength,
meaning number of simultaneously interacting parameters).

2.2 The Concept of Covering Arrays

Generally credited to AT&T’s mathematician Sloane [25] and later refined in
[17], [26] a covering array CA is a mathematical object used to construct and
represent test cases. CA is defined as CA(N ; t; k; v), and it is constructed
as an N × k array on v values such that every N × t sub-array comprises all
ordered subsets from the v values of size t at least once.

2.3 Mixed CIT and the introduction of constraints

In practice, input parameters can have different number of values, so a so-
called Mixed Covering Array MCA can be used. A MCA(N ; t; v1, v2, . . . , vk)
is an N × k array on v values, where the rows cover each N × t sub-array and
all t interactions of values from the t columns occur at least once.

3



2. About Combinatorial Interaction Testing.........................
Further, constraints are introduced to suppress combinations of inputs

and/or configurations that are infeasible, make no sense or we are not inter-
ested in them (for example a combination calling for running a Windows-only
application on UNIX OS). Then we talk about Constrained CIT with the
usage of Constrained CA [9], [12].

2.4 Test suite generation strategies, algorithms

Several categories of algorithms are popular. In [14] the authors list the major
ones as:. algebraic techniques. greedy algorithms. heuristic searches. constraint satisfaction problem solvers

The different strategies are not exclusive. They can be mixed to leverage
trade-offs that need to be considered for the particular system under test,
with regards to the size and nature of inputs and constraints.

For some special situations, algebraic techniques and constraint satisfaction
solvers are known to provide optimal solutions in good time. Otherwise,
greedy algorithms can be reasonably accurate.

However, with increasing input sizes and additions of seeding/constraints,
heuristics are needed to find good enough solutions in reasonable time.

Research activities into better heuristic algorithms have produced the
following t-way test suite generation strategies (in no particular order):.General strategy [18]. Simulated annealing-based strategies [7]. Forbidden tuples-based searching [10].Genetic algorithms [24]. Ant colony-based algorithms [24]. Particle swarm optimization [2]. Harmony search [4]. Cuckoo search [1]. Bat-inspired algorithm [3]. Bees-inspired algorithm [21]. (Adaptive) teaching learning-based optimization [22], [30]. Fuzzy logic based meta-heuristics [30]

4



............................... 2.5. Available CIT generators

2.5 Available CIT generators

2.5.1 PICT

PICT is a primarily pair-wise (meaning interaction strength t = 2) test
generation tool and algorithm developed by Jacek Czerwonka, Microsoft. As
he describes in [8], the tool has been designed to bring the pair-wise testing
strategies to the level of real-world usefulness required by real-world projects
in the industry.

It supports mixed-strength generation and application of constraints, which
is basically a must for successfully generating usable test scenarios for any
bigger system.

PICT is publicly available both for Windows and Linux environments and
comes free of charge.

2.5.2 ACTS

Advanced Combinatorial Testing System (or ACTS) is a NIST-funded combi-
natorial test generation tool [29] based on multiple variants of the so called
IPOG algorithm [18]. It is implemented in Java and provides GUI, CLI and
Java API, making it possible to integrate the tool to more complex and/or
special-purpose projects.

The ACTS has been around for a while and has become a somewhat
standard baseline when benchmarking speed, resource requirements and
resulting test suite size of different combinatorial generation algorithms and
tools. For this reason, we opted to use this tool as the basis of this work.

ACTS is also publicly available, but is distributed only upon request to
the NIST organization, which made it available for us to use in this work.

2.5.3 Avocado framework CCIT plugin

In [23], [11] the authors implemented a CIT varianter with combination of
greedy and meta-heuristic techniques as follows. First the whole search space
is generated, then the forbidden tuples according to constraints are pruned.

Next, a Monte-Carlo style searching algorithm do derive new rules from
existing constraints and then simplify the working solution. By doing so,
the constraint satisfaction problem is elegantly side-stepped, in exchange for
steep memory requirements increases with the number of inputs.

On machine with 16 GB RAM, it was usable only for number of param-
eters roughly under 140 for 4 − way testing and much less with increased
combinatorial strength.

2.5.4 CAGEN

Very recent addition to combinatorial generation tools is CAGEN by M.
Wagner et al. [27]. It support some of the same CIT generation algorithms

5



2. About Combinatorial Interaction Testing.........................
and constraint handling techniques as ACTS does. It also aims to keep the
interoperability with ACTS and so supports ACTS style input and output
formats.

CAGEN authors claim its performance is superior to the ACTS and among
the carried out optimizations as a switch to compiled language — Rust.
Also, the implemented algorithms are templatized according to the desired
interaction strength t which allows them to instantiate different versions of
the algorithms at compile time and allow compiler to make optimizations
using the constant value of interaction strength, which results in significant
performance uplift compared to the Java based ACTS.

CLI is provided for integration with other projects upon request. Besides
that a Web application is provided as a GUI front end and also serves as
local browser-based generator, where the computations are done client-side
through the use of Rust code compiled to WebAssembly, which s a standard
format of binary executable code supported by all major Web browsers.

6



Chapter 3
Problem analysis and solution requirements

3.1 Problem statement

The problem at hand can be worded as follows:
Given a set of hw components, application inputs/configuration options and

dependencies, what kind of systems should be built from these so that best
possible coverage is achieved when testing the application on such systems?

3.2 Context

Testing on real-world hardware systems can achieve various states in today’s
organizations. Some undergo a lot of effort and planning and have testing
coverage well defined and testing environments well built. For such organiza-
tions, a lack of information about coverage of testing on hw is not really a
threat, but a solution to the problem stated in previous section could still
be used as a validation or micro-optimization tool. However, there are also
other organizations, where the testing of complete systems is not a first class
citizen in the full test and QA process of SDLC. For those organizations,
many reasons could exist, but one of the main is usually lack of resources both
in terms of available testing hw and lab space as well as in lack of engineering
time.

This work is trying to solve that problem in one such company, where hw
testing laboratory is being maintained mostly by enthusiast employees and
the available hw components mainly consist of old decommissioned systems
previously used by the company employees, plus small number of newer
generation components that are bought usually because of incidents.

3.3 Inputs

To know what components are available for building test systems, an inventory
is needed. Such inventories can be created and maintained by hand in case of
very small numbers of components, but usually can be collected automatically,
especially if some form of automated test running on hw systems is already

7



3. Problem analysis and solution requirements........................
in place. Having an inventory accessible programmatically means we can
design a solution that automatically pulls all required information about hw
components without any need to specify it manually.

For this work we will design the mechanism for pulling data about hw
components from simple local database, that stores available components by
type and relationships between them. It is crucial though to allow for easy
replacement of this input gathering method to facilitate reuse and extension
in other environments.

The second input is a list of application’s inputs and configuration parame-
ters and their values and inter-dependencies, as well as dependencies on the
underlying hw components. Again, these could be inferred from a formal
model of given application, or they could be automatically generated from
source code, documentation, or another artifact of SDLC. It is also common
that such inputs already exist from previous efforts to test the application
itself using CIT techniques.

As the focus for this work is mainly on the processing of hardware compo-
nents to build suitable systems, for software model input we will only operate
with an existing input format common for CIT tools, consisting of application
parameters, values and constraints stored in ACTS-style file format. Again
though we will keep in mind the need to provide easy way to extend our work
to accept and/or automatically generate this input differently.

The input data as a whole needs to contain information how to build a
system to run tests on. For that reason, the inputs are split to hw components
information that defines the base system, and the sw model. Together, single
permutation of possible parameter-value pairs forms one test configuration
and so one complete system under test.

3.4 Selecting best systems to assemble

Because generating of all possible configurations to select from would in
real world be impractical or impossible due to the sheer size of the search
space, we will employ CCIT technique to generate only combinations covering
all t − way interactions for the base systems and t′ − way interactions for
complete test systems.

The main procedure in the core of the solution consists of the following
steps:..1. from inventory of hw components construct set of parameters, values and

contraints modeling the base hw system (basically a working computer)
- aka "hw params" set..2. load and parse the application model and also construct a set of corre-
sponding parameters, their values and constraints..3. using CCIT generator backend, generate all base configurations with
t-way coverage from the hw param set

8



.......................................3.5. Outputs..4. for each of the base configuration generated, construct constraints such
only that base configuration would be generated, and merge the model
with the application model, then again using the CCIT generator backend
generate all complete test configurations with t′ − way coverage (t′ >= t)
applicable for the given base system and save it as a potential complete
test configuration associated with it’s base configuration..5. rate all base configurations by the associated potential complete test
configurations using provided rating implementation and sort them best
to worst, producing a list of rated systems..6. go through the ordered list of rated systems and for each one allocate
components to the computer build as described by the base configuration.
If a component from the base configuration is already used, given base
configuration cannot be realized, so it is skipped. This produces a list
of test systems, whose base configurations can all be assembled with
respect to the given hw inventory...7. submit the result to various results consumer components to be stored,
reported, to infer uncovered parameter values and to generate CI/CD
test invocation script.

To produce a rating of given complete test system configuration different
strategies could be designed. In this work we will simply count all unique
t′ − way combinations of parameters covered by it, as in general there is
more value in having more combinations covered. However it could be also
argued some particular combinations could be preferred or even required in
each complete test system configuration, base on various reasons, such as
being more prevalent in the user base, being something that is guaranteed by
the company as always tested and certified or being identified as common
area of problems. For that reason, a concept of rating service with defined
interface is used, where different organizations could implement their own
rating service taking into account the desired information when producing a
rating of one particular complete test system.

3.5 Outputs

Once it is established which systems should be built, we relay that information
to the output. In it’s simplest form we at least need to know which components
make up the particular base systems. It is also useful to know what are the
complete hw+sw configurations that are to be run given particular base
system.

On the other hand we would also like to know which particular parameter
values could not be covered either because of lack of resources or because
inter-dependencies and constraints on input parameter values do no allow us
to cover them (for example a particular operating system is not supported
by any of the selected base configurations, we are missing a motherboard
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3. Problem analysis and solution requirements........................
compatible with requested cpu architecture, particular inputs/configuration
variation requires specific device present, that is already used in higher ranking
base system, etc.).

It is also desired to produce a generated script that would invoke tests on
the selected base systems and produced complete system configurations using
available CI/CD server.

Using dependency injection, we can provide multiple different results con-
suming components that implement each of these needs, achieving modularity,
concern separation, future extensibility and reuse.

3.6 Expected usage patterns, other attributes

Because it takes some time to build once selected testing computer, it is
not expected the solution would have to be searched for too often, certainly
not more than once in single iteration of the SDLC. For that reason it is
also not expected single run of the solution routine would have too strict
performance requirements under the order of minutes for some real-world size
hw lab inventory.

However it is expected the requirements on access to the hw inventory, as
well as on the source and format of application model can change significantly.
Also different CCIT generator backend may be preferred for performance/fea-
tures/licensing/pricing reasons. As discussed already, organization might
have different ideas about what actually constitutes rating of particular test
system configuration and might have different requirements for the further
processing of solution results.

For all of these reasons, main focus during development will be to design
and implement a solution framework with suitably modular architecture to
enable future extensions and reuse. Less focus will be placed on performance,
while keeping the solution usable in real world scenarios.
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Chapter 4
SysCCIT framework

This chapter describes the architectural decisions and implementation of
optimization framework called SysCCIT that uses CCIT generator backend
ACTS for the actual generation of t-way covering test system configurations.

4.1 Architecture

4.1.1 Overview, architectural goals

As discussed in chapter 3, main focus when defining the architecture of
SysCCIT is placed on modularity due to the expected need to provide custom
modules to adapt the framework to target environment and input and output
requirements. A good way to achieve great modularity is to cautiously
separate different concerns to different parts of the system and use well-defined
interfaces to facilitate interoperability and easy component integration.

The complete architecture overview is depicted in figure 4.1.

Figure 4.1: SysCCIT framework architecture overview
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4. SysCCIT framework..................................
4.1.2 SysCCIT core

The core of the framework is the SysCCIT component implementing the
SysCCITBase interface. The interface defines all required components needed
to construct an implementing component to perform the core functionality of
the framework, and forces the use of dependency injection during instance
construction, so that any implementation of it, such us the SysCCIT com-
ponent, has to work with defined subsystems and makes the dependencies
explicit.

It is the job of the core of the framework implementing the SysCCITBase
interface to drive the solving process. In this case the SysCCIT component
implements the algorithm listed in chapter 3. If different algorithm is one
day proposed, a different core component implementing the SysCCITBase
interface would be needed, though only small changes (if any) would be
required for the injected dependencies.

4.1.3 CCIT Generator backend

To perform the generation of t-way combinations of base system and complete
test system configurations, a CCIT generator backend is needed. The general
requirements for this backend are defined by the CcitGenerator interface.

In general, all CCIT generators on input expect the desired interaction
strength value and some form of list of parameters, their possible values, and
constraints between them, plus options specific to particular CCIT generator
implementation. On output they provide some form of listing of generated
combinations covering the input with desired interaction strength.

It is the job of particular implementation of the CcitGenerator interface to
provide this functionality and expose it to the framework core.

In this work, we use the services of CCIT generator ACTS discussed in
chapter 2 among available CCIT tools. The component ActsRunner imple-
ments the CcitGenerator interface by wrapping the ACTS implementation
in acts.jar, which is a java based complete implementation of the ACTS
framework with CLI interface.

The obvious benefit is we do not need to implement our own CCIT generator,
which would be non-trivial amount of work outside of the scope of this thesis.
Next benefit is the tool has become quite popular and it’s input and output
formats have became de-facto standards among CCIT generators, so if better
tool is made available, it should not be too much of a work to replace the
backend.

Among negatives of this chosen approach is the fact we do not have
much control over how the generator operates and cannot really improve it’s
performance or other attributes. It also always only work on single input
model, so for our use case, where we iteratively generate complete test suite
configurations for different system base configurations, we need to invoke
the acts.jar separately. This brings some performance losses due to repeated
process (and java JVM) starts and exits.
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On top of the redundant process restarts, the CLI works with input and
output files only, which brings possible performance bottleneck in the form
of I/O operations and unwanted repeated writes to the underlying storage
medium.

4.1.4 Parameter providers

As the chosen CCIT technique relies on working with configuration/input
parameters and constraints, it is necessary to have a way of converting inputs
in the form of hw inventory and sw model into some common abstraction of
the CCIT input parameters.

It is expected the different parameter providers will be crated as an adap-
tation form the world of databases and file records to the world of SysCCIT
framework.

Parameter model

Common interfaces ParamLike and ConstraintLike are defined to facilitate
interoperability and common language to be used by different so called
Parameter Providers to feed the framework with data to operate on.

A given parameter provider implementation is responsible for loading the
data into the SysCCIT framework instance and parsing and decoding the
data plus internal relationships and dependencies into set of ParamLike
and ConstraintLike objects that represent the parameter name, values and
constraints used by CcitGenerator.

For the framework to be able to distinguish between parameters representing
the scarce resources whose usage we want to optimize and the parameters
coming from the sw model, combinations of which we can test as many of as
we want without the need for human intervention (in general, OS deployment
and application installation can be done fully automatically, but an engineer
needs to go an swap components by hand), implementations of two distinct
interfaces are required by the SysCCIT framework. GenericHwParamProvider
is implemented by component sourcing data about the limited hw inventory
and GenericSwParamProvider implementation is responsible for providing
the representation of model of the sw application under test.

Working with HW inventory

In this work we are using an SQLite relational database to represent the hw
component inventory. Each component type like central processing unit or
motherboard is represented by a table of particular component instances.
Some component types can have more attributes important for the complete
model of the base system, like a processor micro-architecture, chipset type of
network card and so on.

Dependencies and relationships between the components and attributes
are stored via association tables through many-to-one and many-to-many
relationships.
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4. SysCCIT framework..................................
It is then the responsibility of HwParamProvider component implementing

the GenericHwParamProvider interface to be able to connect to the database,
read the data and decode the relationships into set of parameters, values and
constraints in such a way, that CCIT generator produces for such input a set
of configurations, that are valid and can be built (we do want results that tell
us to use for example an Intel processor in it’s compatible motherboard, to
connect a Sata drive to a Sata controller and connector equipped motherboard
and so on).

To be able to do so, the HwParamProvider works with explicit abstractions
of computer components, that map to records in the database via SQLAlchemy
ORM. Also, each of these abstractions implements a ModelBase interface so
that a way to transform these to ParamLike and ConstaintLike implementing
objects is unified. This together with the usage of ORM mechanism makes
it very easy to add more component types to the database and make them
available to the HwParamProvider component.

Working with SW model

The GenericSwParamProvider interface is implemented by SwParamProvider
component. As was mentioned in the chapter about problem analysis and
solution requirements, in this work we use an ACTS-style file format to record
the sw application model and pass that as the sw model input to the SysCCIT
framework.

The SwParamProvider component uses an Acts file format parser compo-
nent to transform this input to internal representations implementing the
ParamLike and ConstraintLike interfaces. This ensures we can easily merge
the parameters and constraints for the hw configurations as well as the appli-
cation model when that is needed during the runtime of the core routine of
the framework.

4.1.5 Rating of configurations

To select best base hw configuration candidates, the core of the framework
needs to be able to evaluate how good each generated base configuration
is. To do so, we need to be able to measure that property in some way and
assign a Rating based on that.

To make it possible to define custom ratings, an interface Rating is defined.
The only attribute it enforces is that each pair of objects of the same type
implementing it are comparable via less-then-or-equal magic method used by
the python builtin sort() method.

It is then the job of another required component by the framework im-
plementing RatingService interface to know how to actually produce these
ratings given all generated System objects (base configurations and associated
complete system configurations).

In this work we implemented a TupleCoverageRatingSvc that exposes the
RatingService interface. It assigns IntRating to System objects making them
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..................................... 4.1. Architecture

into RatedSystem objects, based on the total number of unique t − tuples of
parameters covered by the complete system configurations in each System.

It is also possible to specify which particular parameters should be ignored
for this rating. That is useful when some parameters are needed to inform
the model about what constitutes valid base configuration that would make
up functioning system through specifying some constraints on parameters,
but the value of such parameter has in reality nothing to do with improving
system combinations coverage, and so we do not want it to influence the
rating.

4.1.6 Results processing and output

From the specification and problem analysis in chapter 3 the main outputs
we care about are:. list of base configurations representing actual base systems to be built

from available hw components inventory, together with associated com-
plete system test combinations to be run on given base system. report of which configuration options could not be covered. generated script to invoke testing process in CI/CD pipeline

As also discussed in the analysis, it is quite likely for the output requirements
to change to adapt to changes in environments where the tool is to be used
and also to respond to new requirements on further information extracted
from the solution process.

To help with that, the framework core accepts a list of different services all
implementing the ResultsConsumer interface. It describes how to pass found
results to further processing by each ResultsConsumer service to produce
desired output artifacts and again can be easily extended by implementing
new components bases on this interface. In this work three services were
implemented satisfying the output requirements.

Recommended HW configurations

The SimpleResultsReporter component is responsible for reporting the list of
base configurations representing actual base systems we should build using
the components in our hw inventory, plus the associated complete system
test combinations we shall run on each base system.

The inner workings are very simple. The service accepts list of RatedSystem
objects, transforms the data into json format and saves it to specified file as
the main output artifact.

Unused/Uncovered inputs

The UncoveredValuesReporter has the job of reporting which configuration
options are not covered by the solution result in the form of list of RatedSystem
objects. It does so by building an inventory of every parameter-name and
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4. SysCCIT framework..................................
value pair that is available from parameter providers to the framework, and
records all that are not present in the list of results from the original problem
solution.

It must be noted this component does not report t-way combinations, just
the parameter name and value pairs. The reason is to report all uncovered t-
way combinations we would first need to generate al of the t-way combinations
based on the parameters available, ignoring all the constraints. But that would
give us a lot of nonsensical results and not much useful information. The
way the component does it via reporting of the uncovered values gives us an
important and only useful information about the coverage gaps in our testing
possibilities. If for example we ask for testing on cpu with micro-architecture
x, but no motherboard supporting such cpu exists in our inventory, we will get
a listing of CpuUarch_x not covered. That is much more useful than getting
a listing of all t-way combinations including this cpu micro-architecture for
identifying what is the inventory gap and how to cover it.

CI/CD integration

Today’s CI/CD systems usually define some form of domain specific language
that can be used to configure build + test + release processes in unified and
documented fashion. It is the responsibility of component JenkinsDSLGener-
ator to generate so called declarative pipeline script for Jenkins CI/CD server
environment, that defines a Jenkins job to run tests using the generated test
configurations suites for each selected base configuration.

Sadly we have not been able to access the target environment to provide
tight integration for a particular organization. For that reason, as each
organization has unique CI/CD environment details, we were not able to
provide fully functional solution for the CI/CD script requirement. The Jenk-
insDSLGenerator component in its current form only generates a generalized
version of such DSL script from a template, that would need to be extended
with the organization’s particular CI/CD environment details to actually run
the tests.

Nevertheless, as it stands the resulting artifact creates a Jenkins matrix-
style job that takes among inputs a json file containing association of base
configuration id with the target complete test configurations to be run against
it and invokes each combination of the job matrix. To achieve fully functional
member of the CI/CD pipeline at the bare minimum a way to get actual tests
and application under test installed would need to be added, as well as some
management and claiming/unclaiming of particular hw base configuration
for test through a management interface of the laboratory, where built base
configurations are located.
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4.2 Implementation details

4.2.1 Runtime Environment and Dependencies

The SysCCIT framework is written predominantly in Python 3, targeting
release version 3.8 and higher due to extensive use of Python’s dataclasses
mechanism and type hinting.

To communicate with database ORM - object relational mapping is used,
through the Python package sqlalchemy, which enabled us to implicitly
support any kind of relational database engine and instance. Adding support
to new HW component types in HW component inventory is made very
straightforward - one only needs to subclass an sqlachelmy’s Base class,
then define which properties is the new component made up from, what
relationships do these properties have to the rest of the components (so that
we still can reason about what make a buildable system configuration) and
then define the ModelBase interface methods, so that CCIT parameters and
constraints can be constructed from instances of given component.

All python related requirements can be installed via Python’s packaging
system Pip using provided standard requirements.txt file.

As the CCIT generator backend is using tool called ACTS implemented
in Java and distributed as Java’s JAR runnable package, the SysCCIT
framework through the ActsRunner backend depends on Java environment
being available. The used acts.jar release is version 3.2 and it was used
through OpenJRE flavor of Java version 11.

The development was done on Linux operating system Debian, release code
name Buster. Thanks to the nature of Python and Java being interpreted
languages with runtime releases available for all major platform, there should
be nothing in the way of using it on other platforms like Windows, OpenBSD or
cloud environments, but only Linux Debian, Ubuntu and Gentoo distributions
have been tested so far.

4.2.2 The object model

The classes that actually implement the various framework functions adhere
to the architectural model described in section 4.1. The overview is given in
figure 4.2 and for more readable version refer to diagram in appendix C.

17



4. SysCCIT framework..................................

Figure 4.2: SysCCIT framework classes and relationships overview

4.2.3 Parameter and Constraint primitives

Aside from the implementations of various components, the framework relies
heavily on the representation of parameters and constraints implementing
the ParamLike and ConstraintLike interfaces.

To support interoperability between different CCIT generators we decided
to make use of an existing schema provided by the ACTS (which has gained
notoriety and became a sort of standard) and we implemented parameter
types ACTSParamEnum, ACTSParamIntListing and ACTSParamBoolean.
These types are responsible for representing the parameter name, values and
other details as prescribed by the common input format used by ACTS and
other generators to hold enumerated (read string) parameters, integers (or
number generally actually) and boolean flags.

The same goes for constraint type ACTSConstraint. We only needed
to work with a string representation of constraints so an ACTSConstraint
object is simply constructed from string value. A formal specification of the
constraint definition schema is provided by ACTS and it might be needed
to fully implement it in case of more advanced rating implementations to
provide further insight into quality of given parameter combination.

4.2.4 ACTS formats handling

The ACTSParam* and ACTSConstraint types map onto the acts-style input
file format. Not only do we need to be able to serialize the objects to this
format to provide it as an input to acts.jar generator in ActsRunner imple-
mentation, but we also need to be able to parse it as the SwParamProvider
expects the application model in this exact format.

Listing 4.1: ACTS style input file formatg
1 --- comments and ignored lines are prefixed with tripple -

dash
2 [ System ]
3 Name: <required system name >
4 [ Parameter ]
5 --- parameters and values listing section
6 OS (enum) : win_10 , win_8_1 , win_7 , win_xp , ubuntu_20_10
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7 Feature_A_Installed ( boolean ) : TRUE , FALSE
8 min_size_GB (int) : 8, 16, 64
9

10 [ Constraint ]
11 --- constraints listing section
12 --- boolean statements on single lines , a new -line

character signifies a logical "AND" relation
13 --- values of enum -type parameters always must be double

quoted
14 OS = " win_xp " => ( CpuUarch = " westmere " || CpuUarch = "

nehalem " )
15 Feature_B_Installed = TRUE => min_size_GB >= 64

The ActsInputParser class implements class method from_file() to facilitate
reading of this file format using ActsParamParser, which is a factory that
decides which particular type of ActsParam to instantiate for each parameter
line parsed, and an ActsConstraintParser. Writing of the ACTS style input
is done by implementation in ActsInputWriter implementation.

Then we also need to able to read the results from acts.jar invocations. It
outputs CSV files, so a customized wrapper around Python’s CSV handling
utilities is implemented in ActsCsvOutputParser.

4.2.5 Modeling HW components and their relationships

The implementation currently supports the following list of HW components:

. Processors

.Motherboards with single processor socket

. Network interface cards

. Storage devices

To be able to specify which components work together, we specify the
dependencies using shared details.

The processors and motherboards define which processor micro-architecture
they implement/support. A motherboard can support multiple processor
micro-architectures.

Motherboards and Storage devices define, which storage interfaces they
support/connect through.

Network interface cards are associated with particular networking chipsets
and can be integrated on motherboards.
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Figure 4.3: HW components inventory database schema

How these components and relationships are stored in the database can
be seen from the database schema on figure 4.3. Each component type and
component detail corresponds to one table. Each component/detail instance
then corresponds to records in respected tables, so each row in cpu table
represents particular cpu we have available in our inventory and vice versa
for other components.

To model one-to-many and many-to-many relationships, where for example
a particular cpu micro-architecture represented by a record in cpu_uarch
table is implemented by multiple processors (multiple records in the cpu
table) and supported by multiple motherboards, plus a motherboard can
support multiple cpu micro-architectures, we use so called association tables,
which basically map ids of records from one component type/detail to another
through foreign keys.

4.2.6 Usage of CCIT generator backend

The ActsRunner implementation of the CcitGenerator interface is thread-safe
and aware of available multiprocessing environment. As such, the framework
tries to schedule as much acts.jar invocations as there are logical processors

20



............................. 4.3. Deploying and using SysCCIT

available to take advantage of the perfect input-output partitioning of data.
The ActsRunner acts like a wrapper around acts.jar and transparently

handles serialization of given parameters and constraints to form the input
for acts.jar and parses the output csv file back to generated configurations
represented as key-value dictionaries.

It is also possible to specify the interaction strength and constraint solving
algorithm, though the SysCCIT framework implementation currently only
uses default constraint solving algorithm called forbiddentuples and also the
default CIT generation algorithm IPOG is used. Possibility to change the
CIT generation algorithm is not currently implemented, but such a change
would be trivial.

4.3 Deploying and using SysCCIT

We are not officially allowed to distribute the acts.jar tool, so the SysCCIT
framework is not immediately usable out of the box. However the authors of
the ACTS tool do distribute it free of charge upon email request.

As discussed in the subsection 4.2.1, Python 3 environment needs to be
installed and bootstrapped using provided standard requirements.txt file, and
Java Runtime Environments needs to be available to run acts.jar.

Once the user acquires the acts.jar backend, path to the file needs to
be specified on the command line to sysccit.py script together with the
inputs and outputs specifications. The script is a thin wrapper and CLI
implementation, that instantiates all the required components, assembles the
SysCCIT framework instance and drives the solving process.

4.4 Performance and usability

Because usually the biggest problem when working with combinations of
many parameters with many values is usually the inevitable combinatorial
explosion of the search space, we ran a simple benchmark to see whether the
current implementation of SysCCIT framework’s core algorithm using the
acts.jar CCIT generator is actually usable in real world.

4.4.1 Benchmarking methodology

We measured the run time of the whole procedure implemented by SysC-
CIT.run() and also the particular run times of the main components the
framework is composed of, against single application model as the sw input
side, and five synthetic HW inventories with increasing amount of components
and potential buildable base configurations as the hw input side.

This is the used application model in acts-style format:

Listing 4.2: SW model for benchmarking
1 [ System ]
2 Name: SampleSystem
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3
4 [ Parameter ]
5 OS (enum) : win_10 , win_8_1 , win_7 , win_xp , ubuntu_20_10
6 Feature_A_Installed ( boolean ) : TRUE , FALSE
7 Feature_B_Installed ( boolean ) : TRUE , FALSE
8 Feature_Win_Only_Installed ( boolean ) : TRUE , FALSE
9 Core_Win_Runtime_Installed ( boolean ): TRUE , FALSE
10 Core_Linux_Runtime_Installed ( boolean ): TRUE , FALSE
11 min_size_GB (int) : 8, 16, 64
12
13 [ Constraint ]
14 Feature_A_Installed = TRUE => ( OS = " win_10 " || OS = "

win_7" )
15 OS = " win_xp " => ( CpuUarch = " westmere " || CpuUarch = "

nehalem " )
16 Feature_Win_Only_Installed => Core_Win_Runtime_Installed

= TRUE
17 Core_Win_Runtime_Installed = TRUE =>

Core_Linux_Runtime_Installed = FALSE
18 Core_Linux_Runtime_Installed = TRUE =>

Core_Win_Runtime_Installed = FALSE
19 Core_Win_Runtime_Installed = TRUE => (OS = " win_10 " || OS

= " win_8_1 " || OS = "win_7" || OS = " win_xp ")
20 CpuUarch = "zen" || CpuUarch = " zenplus " || CpuUarch = "

zen2" || CpuUarch = "zen3" => ( OS = " ubuntu_20_10 " )
21 Storage_size_GB >= min_size_GB
22 Feature_B_Installed = TRUE => min_size_GB >= 64

The important properties of HW inventory inputs used are summarized in
table 4.1 and table 4.2. Note the input names as they are used to identify
these inputs later in tables and graphs of the benchmark results.

Input ID #CPUs #MBs #NICs #Disks

tiny 3 2 3 5
small 6 5 8 9

17_17_28_20 17 17 28 20
34_34_42_40 34 34 42 40
51_51_56_50 51 51 56 50

Table 4.1: HW inventory inputs for benchmarking

Using default settings for the framework and the acts.jar generator, the
different HW inventory inputs produce the following numbers of generated
systems to be evaluated and are selected eventually:

22



............................... 4.4. Performance and usability

Input ID #Generated Systems #Selected Systems

tiny 9 2
small 71 4

17_17_28_20 569 13
34_34_42_40 1597 23
51_51_56_50 3177 36

Table 4.2: Base configuration numbers and final system numbers produced by
HW inventory inputs for benchmarking

The important parameters are t = 2 for t − way generation of base config-
uration, t′ = 4 for t′ − way generation of complete configurations (systems),
both using acts.jar’s default IPOG algorithm for generation of combinations
and default forbiddentuples algorithm to apply the constraints.

The measurement was done on two test systems with mainly different number
of logical processors to enable us to investigate potential scaling with logical
processors available:

. CPU: Intel Core i5-4690K 4 cores/4 threads @4.0 GHz, RAM: 32 GB
DDR3, SSD storage; labeled in tables and graphs as haswell_4c4t

. CPU: AMD Ryzen 7 5800X 8 cores/16 threads @4.0 GHz, RAM: 64 GB
DDR4, SSD storage; labeled in tables and graphs as zen3_8c16t

For HW inventory inputs tiny, small, 17_17_28_20 and 34_34_42_40
we ran 3 iterations on each system and we list the average from the three
iterations for each input and system. For input 51_51_56_50 only single
iteration was run on each system because of how long it takes to process.
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4.4.2 Results

Figure 4.4: Time to complete whole SysCCIT.run() invocation for different hw
inventory inputs

Here depicted in figure 4.4 we start with the runtime required to complete
the whole procedure, from inputs ingress to having recommended base con-
figurations to be built with complete test configurations associated on the
output of the framework.

As we can see from the graph and as is expected for combinatorial problems,
the runtime required for completion grows drastically with the size of the
input. For the biggest input in the form of HW inventory 51_51_56_50 the
required time is almost 10 hours on 4 core 4 thread system and just a bit
under half of that for newer 8 core 16 thread system.

The HW inventory size represented by the 51_51_56_50 input could be
considered realistic. With respect to discussion in the analysis and require-
ments part, where we do not expect a need to run the computation on weekly
or daily basis, but less often, this is still usable performance, even if not
particularly great.

We explore the details of how the particular components contribute to the
total runtime in the next figures in this section.
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Figure 4.5: Time to load all input data for different hw inventory inputs

The data in figure 4.5 shows the time required to load and parse the inputs
to construct parameters and constraints for the CCIT generator do grow
with the size of the input, but not in any drastic fashion, actually the trend
resembles linearity with respect to total input size, and that is expected.

This shows we have not made any oversights when implementing the Sw-
ParamProvider and HwParamProvider components. Also, the total runtime
is so small in contrast to the complete runtime of the framework invocation,
that we can effectively neglect it’s presence when looking for areas of improve-
ment. It could be made faster by at least parallelizing the ingress of inputs
for sw model and hw components, but even that does not seem worth the
effort currently.

Figure 4.6: Time to generate base configurations for different hw inventory inputs
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In figure 4.6 we see the time needed to generate the base configurations

from the HW inventory available. Basically this encompasses the serialization
of parameters to acts-style text file to form the input to acts.jar, then single
invocation of acts.jar, and parsing of the output csv with generated base
configurations.

It should be noted that acts.jar in its current implementation is multi-
threaded and does try to use all available processors. However, from experience
gained from observations made during the development of the SysCCIT
framework we can say, it is not able to fully utilize the available computing
resources.

From the data we do not observe any actual scaling with available processors,
and even the slight general performance advantage of the more modern zen3
cpu micro-architecture does not demonstrate itself.

It could be that for the input sizes we are working with the single run of
acts.jar is not able to take advantage of the more resourceful system in terms
of available processors, because input parsing to form internal representation
of the data and producing the output csv could be non-trivial amount of work
in contrast to the work required to find the t-way combinations themselves.

Also we are certainly paying some price for the sub-process start and
serialization of data on persistent storage. We are basically starting a Java
virtual machine to do a bit of work and then shut it down immediately, but
in general that is a very expensive operation, Java applications can perform
much better if running for a while, allowing just in time compilation and
runtime optimizations to take place for long-running services, which is not
our case.

Again though as in the previous case with data ingress, the time spent
in this particular step can be very much neglected for the input sizes we
are working with in contrast to the total runtime of the whole framework.
What we need to keep in mind is, that if we were to significantly increase
the input sizes and try to employ even more processors, despite acts.jar
being multi-threaded implementation, it might not help, because we see no
evidence of performance scaling with number of processors available, so it
might become a problem in such case.
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............................... 4.4. Performance and usability

Figure 4.7: Time to generate complete configurations for different hw inventory
inputs

The generation of all complete configurations that we later rate and choose
from is the main workload the framework has to handle and as seen from the
data depicted in figure 4.7 it has by far the biggest impact on the total run
time.

The procedure consists of constructing more constraints for the HW in-
ventory model to select particular base configuration and merging it with
the parameters and constraints derived form application model inputs, thus
constructing new intermediate complete model of the system targeting specific
base configuration. Then that data is passed to acts.jar and output loaded
back into the framework.

For each base configuration this computation is independent and thus we
have perfectly data partitioned input and we should be seeing good scaling
with the number of processors available to the framework, which tries to
take advantage of all available processors for scheduling of acts.jar runs,
regardless of how well is each particular acts.jar invocation capable of using
the multiprocessing environment available to it.

We are seeing scaling factor of a bit over 2 between the two test systems,
which corresponds with the increase of physical cores of the zen3 processor.
That means horizontal scaling with number of processing cores is a viable
strategy for getting faster run times, but there also seems some performance
to be left untapped, as we would rather expect scaling factor of around 3 (the
simultaneous multi-processing implementation on zen3 cpu micro-architecture
is generally thought to make two logical cores equivalent to about 1 and a
half of physical core). This suggests more tuning could be done to the way
how the framework schedules acts.jar jobs.

Also the other points about acts.jar process re-spawning and nature of the
Java based implementation discussed above for data in figure 4.6 apply here
as well.
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4. SysCCIT framework..................................

Figure 4.8: Time to rate generated complete configurations for different hw
inventory inputs

Figure 4.9: Time to select final systems to build from rated complete configura-
tions for different hw inventory inputs

The data depicted in figures 4.8, 4.9 and 4.10 shows a very similar behavior
of the rating service component, the final systems selection process and the
results processing as is discussed for the data for data ingress in figure 4.5.

All of these parts of the computation are single-threaded and their impact
on the total runtime is minuscule for the input sizes used, it could even be
argued we do not expect their current implementations to become problem
for some significantly larger inputs.
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Figure 4.10: Time to process results for different hw inventory inputs

4.5 Possible future expansion and improvements

Integrations

The future of SysCCIT framework certainly lies in integrations with the target
environments, without that it is just another single-purpose tool.

The integration with a HW inventory database is already available through
the HwParamProvider and a similar integration could be done for getting the
application model to the framework, especially for projects that can make
use of intelligent software testing mechanisms such as generated application
inputs/configuration parameters from source code or model/specification.

On the output side also more integrations to different CI/CD environments
and servers such as TeamCity, Github/Gitlab CI and others would be benefi-
cial, as well as integration with automatic test generation tools from provided
application model and tests combinations from the output of the framework.

On the part of rating and selection of the final base configurations to
be built, a more intelligent rating schema is probably desirable. Current
rating procedure cares about the number of covered tuples by the particular
combinations. That works quite well but has an inherent bias in preference
of systems with less constraints, so these, where more edge case scenarios
might be prevalent and we would probably prefer their coverage, may end up
underrepresented. In general the rating procedure would benefit from more
sophistication by taking into account also th actual relationships between
parameters.

The modular architecture enables these additions and so can become a good
basis or an integration point for different areas of testing using techniques of
combinatorial interaction with constraints.
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4. SysCCIT framework..................................
Performance and different CCIT backends

Having option to choose from different CCIT generator backends would
be desirable and possibly necessary for different organizations, for many
reasons starting with availability of the tools (ACTS is distributed on request,
but that is not guaranteed), through potential licensing issues, supported
environments and required features to the plain performance offered by
different implementations of different algorithms.

The used ACTS implementation has become a standard tool in the industry,
but we do not have much ways to tune its performance and behavior according
to the environment where it is used and with respect to the batch-of-jobs
nature of the workload in SysCCIT framework. An implementation, that
would work more like a service deployable to private or public clouds leveraging
horizontal compute resources scaling might be more desirable.

Another way to improve performance would be to consider different and
smarter algorithm for generating and selecting best configurations to build,
as the current implementation is quite naive. It is usable, but not stellar, and
there certainly are areas for more improvement.
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Chapter 5
Discussion and conclusion

In this work we’ve given an overview of the current possibilities in com-
binatorial interaction testing landscape and how it could be used to solve
a problem of selecting good HW component combinations for testing in a
resource constrained environments when dealing with software exhibiting
complex dependencies and interactions with the underlying HW.

We’ve designed and implemented SysCCIT framework to make decisions
about what configurations of lab computers should we build from given com-
ponent inventory while taking into account different combinations coverage
on different potential HW combinations for a software application under test.

Using the approach of combinations generation with the help of constrained
combinatorial interaction testing generator ACTS we were able to avoid
an exponential explosion of combinations stemming from the number of
parameters defining the base HW configurations as well as the application
model.

Although not stellar, the performance of SysCCIT framework implementa-
tion brought by this work can be considered usable in real world. Its modular
architecture also makes it a good starting point for future development, capa-
bilities and integration extensions as well as performance improvement from
better CCIT generators and smarter rating procedures.

We’ve also shown that the performance of the main workload for the
core solving routine does positively scale with more processing cores, so
for even bigger instance inputs then we have tested, horizontal scaling of
the available computing resources (read adding more processors) is a viable
strategy to tackle high run times. As that part of the SysCCIT framework run
time has the majority of contribution to total run time, future performance
improvement efforts should be concentrated specifically into faster work with
combinations and CCIT generators in general.
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Appendix A
List of acronyms

. ACTS — Advanced Combinatorial Testing System. API — Application Programming Interface. CA — Covering Array. CCIT — Constrained Combinatorial Interaction Testing. CI/CD — Continuous Integration / Continuous Delivery. CIT — Combinatorial Interaction Testing. CLI — Command Line Interface. CPU — Central Processing Unit. CSV — Comma Separated Values. DB — Database. DSL — Domain Specific Language.GB — Giga Bytes.GUI — Graphical User Interface. HW — Hardware. IPOG — In Parameter Order Generation. JAR — Java Archive. JVM — Java Virtual Machine.MB — Motherboard. NIC — Network Interface Card. NIST — The National Institute of Standards an Technology.ORM — Object Relational Mapping
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A. List of acronyms ...................................
.OS — Operating System.QA — Quality Assurance. RAM — Random Access Memory. SDLC — Software Development Life Cycle. SSD — Solid State Drive. SUT — System Under Test. SW — Software
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Appendix B
SysCCIT framework complete component
diagram
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B. SysCCIT framework complete component diagram ....................

Figure B.1: Complete SysCCIT framework implementation component diagram
in bigger more readable edition
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Appendix C
SysCCIT framework complete class
hierarchy diagram
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C. SysCCIT framework complete class hierarchy diagram ...................

Figure C.1: Complete SysCCIT framework implementation class diagram in
bigger more readable edition pt. 1/2
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................... C. SysCCIT framework complete class hierarchy diagram

Figure C.2: Complete SysCCIT framework implementation class diagram in
bigger more readable edition pt. 2/2
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