The Italian Association of Chemical Engineering Online at www.cetjournal.it

A publication of

VOL. 86, 2021

Guest Editors: Sauro Pierucci, Jiří Jaromír Klemeš Copyright © 2021, AIDIC Servizi S.r.l. ISBN 978-88-95608-84-6; ISSN 2283-9216

DOI: 10.3303/CET2186027

Selection of a Separation Method Used for Harvesting of Microalgae from Aqueous Solutions

Martina Hladíková*, Radek Šulc

Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Process Engineering, Technicka 4, 160 00, Prague 6, Czech Republic Martina.Hladikova@fs.cvut.cz

Harvesting of microalgae from aqueous solutions is still a bottleneck for biotechnologies using microalgae as a source of metabolites. The aim of the article is to provide an overview of four microalgae separation methods and highlight their core advantages, disadvantages, efficiencies and energy and economy requirements for various concentrations of microalgae suspensions and different microalgae strains. These four separation methods are centrifugation, coagulation/flocculation, flotation and membrane technologies. Possible optimizations of the separation methods inducing more effective harvesting are proposed as well. Based on the data included in the article, final conclusions are presented and the separation methods are compared. Flotation harvesting efficiency is more than 75 % when chemicals enhancing the process are applied. Harvesting efficiency of coagulation and flocculation achieves more than 80 %. Harvesting efficiency of membrane technologies and centrifugation is more than 90 %. The energy requirements are in the range of 0.07 to 11.1 kWh m⁻³ of the permeate or microalgal suspension volume and 0.09 to 9.5 kWh kg⁻¹ of the dry weight of harvested biomass, depending on the separation method.

1. Introduction

Existing separation methods can be applied to harvest microalgae but they need further research attention and optimization to fulfil the industry demand for high-concentrated biomass slurries at competitive price. Around 20 to 30 % of the total cost of the biomass production is the harvesting of microalgae (Molina Grima et al., 2003). Muradov et al. (2015) reports, 50 % of the total cost of the biodiesel produced by microalgae is attributed to the harvesting process. According to Fasaei et al. (2018), the operational costs of harvesting are in the range of 0.5 to $2 \in \text{kg}^{-1}$ of the microalgae biomass and the energy consumption varies between 0.2 to 5 kWh kg⁻¹ of the microalgae biomass.

In the following paragraphs, an overview of core parameters of four separation methods is given. The information presented can serve as a starting point before a more in-depth insight into the field of microalgae harvesting. More detailed articles about the topic are, for example, those by Barros et al. (2015), Yin et al. (2020) and Brennan and Owende (2010).

2. Centrifugation

Centrifugation is the most applied separation method for microalgae harvesting due to its high harvesting efficiency (Zhao et al., 2020) which is more than 90 % (Dassey and Theegala, 2013). One of the major disadvantages of this method is its high energy consumption. A different separation method can be applied prior to centrifugation to pre-separate most of the water from the microalgae suspension at lower costs. Centrifugation also exposes microalgae cells to high shear forces which can damage the microalgae cells and cause the leakage of intracellular polymeric substances into the microalgal suspension. Centrifugation used for microalgae harvesting was studied in detail by Belohlav and Jirout (2019).

3. Flotation

Harvesting by flotation is suitable for small and unicellular microalgae (Pragya et al., 2013). Advantages of flotation separation methods are small space requirements and short operating time (Kurniawati et al., 2014). The disadvantage of dissolved air flotation and dispersed air flotation is the requirement for chemical additions to induce and enhance the entire separation process. These chemicals might contaminate the final microalgae biomass. Harvesting efficiencies are summarized in Table 1. In Table 1, these abbreviations are used: (BBF) buoy-bead flotation, (BDAF) ballasted dissolved air flotation, (DAF) dissolved air flotation, (DiAF) dispersed air flotation, (EF) electrolytic flotation.

Table 1: Flotation efficiencies.

Microalgae	Conditions (mg L ⁻¹)	рН	Time (s) Efficiency (%)	Reference
Chlorella vulgaris	microspheres: 700		180	96.16	Xu et al. (2018)
Chlorella vulgaris	microspheres: 700	9	180	98.43	Xu et al. (2018)
Scenedesmus obliquus	microspheres: 550	7.5	120	75.38	Zou et al. (2018)
	ferric chloride: 50				
Scenedesmus obliquus	microspheres: 550	7.5	120	88.52	Zou et al. (2018)
	chitosan: 30				
Chlorella vulgaris	microspheres: 550	7.5	120	83.77	Zou et al. (2018)
	ferric chloride: 50				
Chlorella vulgaris	microspheres: 550	7.5	120	92.47	Zou et al.(2018)
	chitosan: 20				
Scenedesmus obliquus	Al ₂ (SO ₄) ₃ : 30	5, 7, 9	600	≥99	Ometto et al. (2014)
	glass beads: 300				
Chlorella vulgaris	$Al_2(SO_4)_3$: 6	5, 7, 9	600	≥99	Ometto et al.(2014)
	-				
Arthrospira maxima		5, 7, 9	600		Ometto et al. (2014)
011 11 1 :		0	000		0
<u> </u>					Ometto et al.(2014)
•					Ometto et al. (2014)
•					
•	•				Kurniawati et al.(2014)
Scenedesmus obliquus	saponin: 100	alkaline	1,200	22.5	Kurniawati et al.
					(2014)
Chlorella vulgaris		neutral	1,200	>93	Kurniawati et al.
	•				(2014)
Scenedesmus obliquus		alkaline	1,200	>93	Kurniawati et al.(2014)
•			_		Wei et. al. (2020)
•	5 V		78		Wei et. al. (2020)
Chlorella vulgaris	6 V		78	95.7	Wei et. al. (2020)
Chlorella vulgaris	7 V		78	~95.7	Wei et. al. (2020)
Chlorella vulgaris	4 V		282	95	Wei et. al. (2020)
Chlorella vulgaris	5 V		162	95	Wei et. al. (2020)
Chlorella vulgaris	6 V		78	95	Wei et. al. (2020)
Chlorella vulgaris	7 V		78	95	Wei et. al. (2020)
	Chlorella vulgaris Chlorella vulgaris Scenedesmus obliquus Scenedesmus obliquus Chlorella vulgaris Chlorella vulgaris Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris Arthrospira maxima Chlorella vulgaris Arthrospira maxima Scenedesmus obliquus Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris	Chlorella vulgaris Chlorella vulgaris Scenedesmus obliquus Scenedesmus obliquus Scenedesmus obliquus Chlorella vulgaris Scenedesmus obliquus Scenedesmus obliquus Chlorella vulgaris Chlorella vulgaris Chlorella vulgaris Chlorella vulgaris Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris Al2(SO4)3: 30 Glass beads: 300 Al2(SO4)3: 77 Glass beads: 300 Al2(SO4)3: 77 Glass beads: 300 Al2(SO4)3: 10 Arthrospira maxima Al2(SO4)3: 10 Arthrospira maxima Al2(SO4)3: 10 Arthrospira maxima Al2(SO4)3: 10 Arthrospira maxima Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris Scenedesmus obliquus Chlorella vulgaris Chitosan: 5 saponin: 100 Chlorella vulgaris Chitosan: 5 saponin: 20 Chlorella vulgaris SV Chlorella vulgaris TV	Chlorella vulgarismicrospheres: 700Chlorella vulgarismicrospheres: 700Scenedesmus obliquusmicrospheres: 550Scenedesmus obliquusmicrospheres: 550Ferric chloride: 507.5Scenedesmus obliquusmicrospheres: 550Chlorella vulgarismicrospheres: 550Chlorella vulgarismicrospheres: 550Chlorella vulgarisAl2(SO4)3: 305, 7, 9Glass beads: 3005, 7, 9Chlorella vulgarisAl2(SO4)3: 65, 7, 9Arthrospira maximaAl2(SO4)3: 775, 7, 9Arthrospira maximaAl2(SO4)3: 105, 7, 9Arthrospira maximaAl2(SO4)3: 1345, 7, 9Scenedesmus obliquusAl2(SO4)3: 405, 7, 9Chlorella vulgarissaponin: 100neutralScenedesmus obliquussaponin: 100alkalineChlorella vulgarischitosan: 5neutralScenedesmus obliquuschitosan: 5alkalineChlorella vulgaris5 VChlorella vulgaris5 VChlorella vulgaris7 VChlorella vulgaris5 VChlorella vulgaris6 V	Chlorella vulgaris microspheres: 700 180 Chlorella vulgaris microspheres: 700 9 180 Scenedesmus obliquus microspheres: 550 7.5 120 Scenedesmus obliquus microspheres: 550 7.5 120 Chlorella vulgaris microspheres: 550 7.5 120 Chlorella vulgaris microspheres: 550 7.5 120 Chlorella vulgaris Microspheres: 550 7.5 120 Scenedesmus obliquus Al2(SO ₄)3: 30 5, 7, 9 600 Glass beads: 300 Al2(SO ₄)3: 6 5, 7, 9 600 Arthrospira maxima Al2(SO ₄)3: 77 5, 7, 9 600 Arthrospira maxima Al2(SO ₄)3: 10 5, 7, 9 600 Arthrospira maxima Al2(SO ₄)3: 10 5, 7, 9 600 Arthrospira maxima Al2(SO ₄)3: 10 5, 7, 9 600 Scenedesmus obliquus Al2(SO ₄)3: 134 5, 7, 9 600 Chlorella vulgaris chitosan: 5 7, 7, 9 600 Chlorella vulgaris chitosan: 5<	Chlorella vulgaris microspheres: 700 180 96.16 Chlorella vulgaris microspheres: 700 9 180 98.43 Scenedesmus obliquus microspheres: 550 7.5 120 75.38 ferric chloride: 50 microspheres: 550 7.5 120 88.52 Chlorella vulgaris microspheres: 550 7.5 120 83.77 ferric chloride: 50 microspheres: 550 7.5 120 92.47 Chlorella vulgaris microspheres: 550 7.5 120 92.47 Chlorella vulgaris Al₂(SO₄)3: 30 5,7,9 600 ≥99 Genedesmus obliquus Al₂(SO₄)3: 77 5,7,9 600 ≥99 Arthrospira maxima Al₂(SO₄)3: 134 5,7,9 600 ≥99 Scenedesmus obliquus

4. Coagulation and flocculation

The term coagulation is considered when salts are applied to destabilize the microalgal suspension, whereas the term flocculation is considered when polymers are applied. According to their origin, flocculants are divided into two groups: inorganic and organic. Various coagulants and flocculants for microalgae harvesting have been researched. Some coagulants and flocculants referred in the literature are summarized in Table 2. Coagulation and flocculation (CF) have been applied in wastewater treatment for many years and their properties are well-known and understood. CF applied for wastewater treatment can provide a good model to study interactions between coagulants or flocculants and microalgae cells. Considering the microalgae harvesting, microalgae biomass is the desired product and water is the waste product while the opposite is true for wastewater treatment.

CF provide a simple and fast separation and achieve high harvesting efficiencies. CF also require low energy input, mainly for agitation of microalgae suspensions and coagulants/flocculants. Coagulants and flocculants combined with the agitation induce the destabilization of microalgal suspensions and the formation of coagula or flocs. The disadvantages of CF are the possibility of contamination of final biomass by coagulants or inorganic flocculants. These separation methods are also sensitive to pH and suitable chemicals might be required to set the proper pH for CF. The chemicals can also contaminate final biomass. Organic flocculants are more environmentally friendly and more biodegradable than coagulants and inorganic flocculants. However, organic flocculants have to be charged before flocculation to become cationic and to be able to destabilize microalgal suspensions (Anthony and Sims, 2013).

Table 2: Coagulation and flocculation efficiencies.

Coagulant/Flocculant	Dosage of	Microalgae	Con.	Eff.	Reference
(C/F)	C/F (g L ⁻¹)	· ·	(g L ⁻¹)	(%)	
AICI ₃	0.5	Chlorella minutissima	N/A	>80	Papazi et al. (2010)
$Al_2(SO_4)_3$	0.1	Scenedesmus. sp.	0.54	>90	Chen et al. (2013)
Ca(OH) ₂	0.4	Scenedesmus sp.	0.54	90	Chen et al. (2013)
FeCl ₃	0.15	Scenedesmus sp.	0.54	97.32	Chen et al. (2013)
$Fe_2(SO_4)_3$	0.75	Chlorella minutissima	N/A	>80	Papazi et al. (2010)
PDADMAC	0.005	Chlorella vulgaris	0.3	90	Gerchman et al. (2017)
Zetag 7650 + Al ₂ (SO ₄) ₃	0.05	Tetraselmis suecica	0.42	>99	Danquah et al. (2009)
	$Al_2(SO_4)_3$				
	0.005 Zetag				
cationic guar gum	0.1	Chlorella sp.	0.89	92.15	Banerjee et al. (2013)
cationic guar gum	0.04	Chlorella sp.	0.78	94.5	Banerjee et al. (2013)
cationic inulin	0.06	Botryococcus sp.	N/A	88.61	Rahul et al. (2015)
cationic locust bean gum	0.055	Chlorella sp.	1.32	96.98	Kumar et al. (2019)
cationic locust bean gum	0.040	Muriellopsis sp.	0.86	96.64	Kumar et al. (2019)
cationic locust bean gum	0.030	Scenedesmus sp.	0.79	97.42	Kumar et al. (2019)
cationic nanocellulose	0.07	Chlorella vulgaris	0.35	89	Vandamme et al.
					(2015)
cationic starch	0.04	Chlorella protothecoides	0.44	84	Letelier-Gordo et al.
					(2014)
cationic starch	0.04	Chlorella protothecoides	0.56	89	Letelier-Gordo et al.
					(2014)
cationic starch	0.04	Chlorella protothecoides	0.77	90	Letelier-Gordo et al.
					(2014)
chitosan	0.08	Scenedesmus sp.	0.54	>95	Chen et al. (2013)
chitosan	0.005	Chlorella sorokiniana	0.48	>99	Xu et al. (2013)
chitosan	0.03	Nannochloropsis gaditana	N/A	>80	Şirin et al. (2013)
chitosan	0.04	Phaeodactylum tricornutum		>90	Şirin et al. (2012)
Moringa oleifera seed	1	Chlorella vulgaris	N/A	89	Teixeira et al. (2012)
flour					
poly γ-glutamic acid	0.02	Chlorella vulgaris	1.2	>80	Zhang and Hu (2012)
poly γ-glutamic acid	0.02	Chlorella protothecoides	1.2	~90	Zhang and Hu (2012)
poly γ-glutamic acid	N/A	Nannochloropsis oculata	N/A	>90	Zhang and Hu (2012)

Note: Con.- concentration of the microalgal suspension, Eff.- harvesting efficiency.

5. Membrane technologies

Membrane technologies (MT) are less sensitive to pH than coagulation or flocculation and no pH adjustments of microalgae suspensions are required. Separation by MT is not induced by chemicals and produced biomass is free of any chemical contamination. MT are gentler to microalgae cells in comparison with centrifugation. MT are mainly affected by fouling. Fouling must be removed regularly and membranes destroyed by fouling must be replaced. In general, higher fluxes induce higher fouling rates. A crucial parameter is critical flux above which fouling occurs. Below the value of critical flux, flow through the membrane remains constant in time. High pressure drops were applied to overcome fouling and membranes were rapidly destroyed by fouling. Nowadays, MT are generally applied in large scales due to new materials, enhanced manufacturing technologies and decreased costs of membranes.

Considering the microalgae harvesting, fouling is caused by the accumulation of intracellular polymeric substances produced by microalgae cells and extracellular polymeric substances present in microalgal suspensions. The fouling formation might be influenced by the membrane charge (Rossi et al., 2004). Neutral polyacrylonitrile membranes are more fouling resistant than charged polyacrylonitrile membranes (Rossi et al., 2004). The appropriate choice of membrane materials also influences the formation of fouling. For example, polyvinylidene fluoride (PVDF) membranes induce the fouling formation (Zhao et al., 2020).

One of the options to reduce fouling might be the application of vibrated modules, submerged aerated systems, stirrers or agitators. These solutions cause shear stress along the surface of membranes. As a consequence of the shear stress, fouling is removed from the surfaces. In general, the shear stress along the membranes can be induced hydraulically, pneumatically or mechanically. Another approach mitigating or eliminating fouling is to apply relaxation or backwashing.

For adsorption-based fouling, chemical cleaning is needed (Rossi et al., 2004). The origin of the adsorption-based fouling is organic or inorganic. The complete removing of organic adsorption-based fouling is difficult because it is probably caused by the connection of organics with a membrane polymeric matrix via cationic bonds (Bilad et al., 2013). The inorganic adsorption-based fouling can be eliminated from the membranes surface by the application of citric acid but this approach still needs further research (Bilad et al., 2013).

The achieved harvesting recovery might be expressed by the concentration factor (COF), the harvesting efficiency (HE) or by the retentate concentration (REC). The following values of harvesting recovery were achieved: HE of 90 to 95 % for hollow fiber membranes and *Nannochloropsis* sp. (Bhave et al., 2012), REC of 46.6 g L⁻¹ for tangential flow filtration, *Tetraselmis suecica*, initial concentration of 0.6 g L⁻¹ (Danquah et al., 2009), COF in the range of 50 to 245 for pressure filters (Molina Grima et al., 2003), COF in the range of 2 to 180 for vacuum filters (Molina Grima et al., 2003), HE of 99 to 100 % for submerged filtration, PVDF, and *Chlorella vulgaris* (Bilad et al., 2012) and HE of 98 to 99 % for submerged filtration, PVDF, and *Phaeodactylum tricornutum* (Bilad et al., 2012).

6. Economy and energy requirements

The energy evaluation of selected separation methods is summarized in Table 3. In Table 3, the following abbreviations are used: (C) coagulation, (CEN) centrifugation, (EC) electro-coagulation-flocclation, (FIL) filtration, (FLOT) flotation, (HW) hollow fibers, (MMV) magnetically induced membrane vibration, (MT) membrane technologies, (PVDF) polyvinylidene fluoride, (TFF) tangential flow filtration, (TM) tubular membranes.

Table 3: Energy evaluation.

	0,			
Method	Specifications	Microalgae	Energy	Reference
			requirements	
CEN	·	N/A	8 kWh m ⁻³	Danquah et al. (2009)
С	Zetag 7650 + Al ₂ (SO ₄) ₃	Tetraselmis suecica	0.07 kWh m ⁻³	Danquah et al. (2009)
ECF		Chlorella vulgaris	1.3 to 9.5 kWh kg ⁻¹	¹ Vandamme et al. (2011)
ECF		Phaeodactylum	0.2 to 0.4 kWh kg	Vandamme et al. (2011)
		tricornutum		
FIL	pressure filters	N/A	0.88 kWh m ⁻³	Danquah et al. (2009)
FIL	vacuum filters	N/A	5.9 kWh m ⁻³	Danquah et al. (2009)
FLOT	electrolytic, 4 V	Chlorella vulgaris	0.1 kWh kg ⁻¹	Zou et al. (2018)
FLOT	electrolytic, 6 V	Chlorella vulgaris	0.09 kWh kg ⁻¹	Wei et al. (2018)
FLOT	electrolytic, 7 V	Chlorella vulgaris	0.15 kWh kg ⁻¹	Wei et al. (2020)
MT	PVDF, MMV, 4 modules	Dictyosphaerium sp.	2.9 kWh m ⁻³	Zhao et al. (2020)
MT	PVDF, MMV, 1 module	Dictyosphaerium sp.	11.1 kWh m ⁻³	Zhao et al. (2020)
MT	HF plus TM	Nannochloropsis sp.	0.3 to 0.7 kWh m ⁻³	Drexler and Yeh (2014)
MT+CEN	PVDF membrane	Chlorella vulgaris	0.84 kWh m ⁻³	Bilad et al. (2012)
MT+CEN	MMV	Chlorella vulgaris	0.77 kWh m ⁻³	Bilad et al. (2013)
TFF		Tetraselmis suecica	2.06 kWh m ⁻³	Danquah et al. (2009)

In general, the estimation of operational costs is scale-dependent and the real cost can be significantly different for pilot- and full-scale systems. Based on the data by Ometto et al. (2014), the following operational costs were estimated. For dissolved air flotation, the operational costs are: 0.2 £ m⁻³ d⁻¹ (*Scenedesmus obliquus*), 0.06 £ m⁻³ d⁻¹ (*Chlorella vulgaris*), 0.7 £ m⁻³ d⁻¹ (*Arthrospira maxima*). For ballasted dissolved air flotation, the operational costs are 0.2 £ m⁻³ d⁻¹ (*Scenedesmus obliquus*), 0.07 £ m⁻³ d⁻¹ (*Chlorella vulgaris*),

 $0.4 \pm m^{-3} d^{-1}$ (*Arthrospira maxima*). The following items, energy, coagulant aluminum sulphate and beads, were considered for the estimation of the operational costs.

7. Conclusions

Selection of a suitable separation method is complex and depends on many factors. If separated microalgae are unicellular and small, flotation may be applied. Flotation is usually induced by the addition of chemicals. In this case, the final biomass may be contaminated by these chemicals. Flotation harvesting efficiency is more than 75 % when chemicals enhancing the process are applied. Harvesting efficiency of coagulation and flocculation (CF) achieves more than 80 % but final biomass is contaminated when inorganic flocculants and coagulants are applied. Organic flocculants are more biodegradable than inorganic flocculants and coagulants but they have to be charged before they are applied. CF are also sensitive to pH. Membrane technologies and centrifugation are not sensitive to pH and are not induced by chemicals. Harvesting efficiency of membrane technologies and centrifugation is more than 90 %. Membrane technologies are gentler to microalgae cells in comparison with centrifugation. Energy consumption of centrifugation is high in comparison with CF. Membrane technologies are prone to fouling. Neutral polyacrylonitrile membranes are more fouling resistant than charged polyacrylonitrile membranes and polyvinylidene fluoride membranes.

The energy requirements are in the range of 0.07 to 11.1 kWh m⁻³ of permeate or microalgal suspension volume, and 0.09 to 9.5 kWh kg⁻¹ of dry weight of harvested biomass, depending on the separation method.

Acknowledgments

This research was supported by Student Grant Competition of CTU as part of grant no. SGS20/118/OHK2/2T/12 and by the Ministry of Education, Youth and Sports of the Czech Republic under OP RDE grant number CZ.02.1.01/0.0/0.0/16_019/0000753 "Research centre for low-carbon energy technologies".

References

- Anthony R., Sims R., 2013, Cationic Starch for Microalgae and Total Phosphorus Removal from Wastewater, Journal of Applied Polymer Science. 130, 2572–2578.
- Banerjee C., Ghosh S., Sen G., Mishra S., Shukla P., Bandopadhyay R., 2013, Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant, Carbohydrate Polymers, 92, 675–681.
- Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M., 2015, Harvesting techniques applied to microalgae: A review, Renewable and Sustainable Energy Reviews, 41, 1489–1500.
- Belohlav V., Jirout T., 2019, Design Methodology of Industrial Equipment for Microalgae Biomass Primary Harvesting and Dewatering, Chemical Engineering Transactions, 76, 919–924.
- Bhave R., Kuritz T., Powell L., Adcock D., 2012, Membrane-Based Energy Efficient Dewatering of Microalgae in Biofuels Production and Recovery of Value Added Co-Products, Environmental Science and Technology, 46, 5599–5606.
- Bilad M.R., Discart V., Vandamme D., Foubert I., Muylaert K., Vankelecom I.F.J., 2013, Harvesting microalgal biomass using a magnetically induced membrane vibration (MMV) system: Filtration performance and energy consumption, Bioresource Technology, 138, 329–338.
- Bilad M.R., Vandamme D., Foubert I., Muylaert K., Vankelecom I.F.J., 2012, Harvesting microalgal biomass using submerged microfiltration membranes, Bioresource Technology, 111, 343–352.
- Brennan L., Owende P., 2010, Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products, Renewable and Sustainable Energy Reviews, 14, 557–577.
- Chen L., Wang C., Wang W., Wei J., 2013, Optimal conditions of different flocculation methods for harvesting Scenedesmus sp. cultivated in an open-pond system, Bioresource Technology, 133, 9–15.
- Danquah M.K., Gladman B., Moheimani N., Forde G.M., 2009, Microalgal growth characteristics and subsequent influence on dewatering efficiency, Chemical Engineering Journal, 151, 73–78.
- Dassey A.J., Theegala C.S., 2013, Harvesting economics and strategies using centrifugation for cost effective separation of microalgae cells for biodiesel applications, Bioresource Technology, 128, 241–245.
- Drexler I.L.C., Yeh D.H., 2014, Membrane applications for microalgae cultivation and harvesting: a review, Reviews in Environmental Science and Bio/Technology, 13, 487–504.
- Fasaei F., Bitter J.H., Slegers P.M., van Boxtel A.J.B., 2018, Techno-economic evaluation of microalgae harvesting and dewatering systems, Algal Research, 31, 347–362.
- Gerchman Y., Vasker B., Tavasi M., Mishael Y., Kinel-Tahan Y., Yehoshua Y., 2017, Effective harvesting of microalgae: Comparison of different polymeric flocculants, Bioresource Technology, 228, 141–146.

- Kumar Niwas., Banerjee C., Kumar Niraj, Jagadevan S., 2019, A novel non-starch based cationic polymer as flocculant for harvesting microalgae, Bioresource Technology, 271, 383–390.
- Kurniawati H.A., Ismadji S., Liu J.C., 2014, Microalgae harvesting by flotation using natural saponin and chitosan, Bioresource Technology, 166, 429–434.
- Letelier-Gordo C.O., Holdt S.L., De Francisci D., Karakashev D.B., Angelidaki I., 2014, Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch, Bioresource Technology, 167, 214–218.
- Molina Grima E., Belarbi E.-H., Acién Fernández F.G., Robles Medina A., Chisti Y., 2003, Recovery of microalgal biomass and metabolites: process options and economics, Biotechnology Advances, 20, 491–515.
- Muradov N., Taha M., Miranda A.F., Wrede D., Kadali K., Gujar A., Stevenson T., Ball A.S., Mouradov A., 2015, Fungal-assisted algal flocculation: application in wastewater treatment and biofuel production, Biotechnology for Biofuels, 8, 24.
- Ometto F., Pozza C., Whitton R., Smyth B., Torres A.G., Henderson R.K., Jarvis P., Jefferson B., Villa R., 2014, The impacts of replacing air bubbles with microspheres for the clarification of algae from low celldensity culture, Water Research, 53, 168–179.
- Papazi A., Makridis P., Divanach P., 2010, Harvesting Chlorella minutissima using cell coagulants, Journal of Applied Phycology, 22, 349–355.
- Pragya N., Pandey K.K., Sahoo P.K., 2013, A review on harvesting, oil extraction and biofuels production technologies from microalgae, Renewable and Sustainable Energy Reviews, 24, 159–171.
- Rahul R., Kumar S., Jha U., Sen G., 2015, Cationic inulin: A plant based natural biopolymer for algal biomass harvesting, International Journal of Biological Macromolecules, 72, 868–874.
- Rossi N., Jaouen P., Legentilhomme P., Petit I., 2004, Harvesting of Cyanobacterium Arthrospira Platensis Using Organic Filtration Membranes, Food and Bioproducts Processing, 82, 244–250.
- Şirin S., Clavero E., Salvadó J., 2013, Potential pre-concentration methods for Nannochloropsis gaditana and a comparative study of pre-concentrated sample properties, Bioresource Technology, 132, 293–304.
- Şirin S., Trobajo R., Ibanez C., Salvadó J., 2012, Harvesting the microalgae Phaeodactylum tricornutum with polyaluminum chloride, aluminium sulphate, chitosan and alkalinity-induced flocculation. Journal of Applied Phycology, 24, 1067–1080.
- Teixeira C.M.L.L., Kirsten F.V., Teixeira P.C.N., 2012, Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae, Journal of Applied Phycology, 24, 557–563.
- Vandamme D., Pohl P.I., Beuckels A., Foubert I., Brady P.V., Hewson J.C., Muylaert K., 2015, Alkaline flocculation of Phaeodactylum tricornutum induced by brucite and calcite, Bioresource Technology, 196, 656–661.
- Vandamme D., Pontes S.C.V., Goiris K., Foubert I., Pinoy L.J.J., Muylaert K., 2011, Evaluation of Electro-Coagulation-Flocculation for Harvesting Marine and Freshwater Microalgae, Biotechnology Bioengineering, 108, 2320–2329.
- Wei C., Huang Y., Liao Q., Fu Q., Xia A., Sun Y., 2018, The kinetics of the polyacrylic superabsorbent polymers swelling in microalgae suspension to concentrate cells density, Bioresource Technology, 249, 713–719.
- Wei C., Huang Y., Liao Q., Zhu Xun, Xia A., Zhu Xianqing, 2020, Application of bubble carrying to Chlorella vulgaris flocculation with branched cationic starch: An efficient and economical harvesting method for biofuel production, Energy Conversion and Management, 213, 112833.
- Xu K., Zou X., Wen H., Xue Y., Zhao S., Li Y., 2018, Buoy-bead flotation harvesting of the microalgae Chlorella vulgaris using surface-layered polymeric microspheres: A novel approach, Bioresource Technology, 267, 341–346.
- Xu Y., Purton S., Baganz F., 2013, Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana, Bioresource Technology, 129, 296–301.
- Yin Z., Zhu L., Li S., Hu T., Chu R., Mo F., Hu D., Liu C., Li B., 2020, A comprehensive review on cultivation and harvesting of microalgae for biodiesel production: Environmental pollution control and future directions. Bioresource Technology, 301, 122804.
- Zhang J., Hu B., 2012, A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets, Bioresource Technology, 114, 529–535.
- Zhao Z., Mertens M., Li Y., Muylaert K., Vankelecom I.F.J., 2020. A highly efficient and energy-saving magnetically induced membrane vibration system for harvesting microalgae, Bioresource Technology, 300, 122688.
- Zou X., Li Y., Xu K., Wen H., Shen Z., Ren X., 2018, Microalgae harvesting by buoy-bead flotation process using Bioflocculant as alternative to chemical Flocculant, Algal Research, 32, 233–240.