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Abstrakt / Abstract

Cílem práce je navržení efektivních
heuristických a/nebo aproximačních al-
goritmů pro konstrukci relačních margi-
nálních polytopů. Ty jsou geometrickou
reprezentací množiny přípustných řešení
tzv. relačního marginálního problému,
což je konvexní optimalizační úloha hle-
dající pravděpodobnostní rozdělení nad
množinou možných světů, které splňuje
zadané marginální pravděpodobnosti
formulí v Markovské logické síti a do-
sahuje maximální entropie. Navržený
algoritmus je porovnán s naivním exakt-
ním doménově liftovatelným algoritmem
popsaným Kuželkou a Wangem v jejich
článku Domain-Liftability of Relational
Marginal Polytopes, 2020 [1].

Klíčová slova: Markovské logické sítě,
relační marginální polytopy

Překlad titulu: Efektivní algoritmy
pro konstrukci relačních marginálních
polytopů

The goal of the thesis is to design
efficient heuristic and/or approximation
algorithms for construction of relational
marginal polytopes, a geometrical repre-
sentation of the set of feasible solutions
of the relational marginal problem,
which is a convex optimization task
searching the max-entropy distribution
over possible worlds satisfying defined
marginal probabilities for formulas in
a Markov logic network. The designed
algorithm is compared to naive exact
domain-liftable algorithm described
by Kuželka and Wang in their arti-
cle Domain-Liftability of Relational
Marginal Polytopes, 2020 [1].

Keywords: Markov Logic Networks,
Relational Marginal Polytopes
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Chapter 1
Introduction

Markov logic networks (MLN) are relatively novel type of probabilistic logic — a broad
field of models and formalisms that combines methods of probability theory for handling
the uncertainty with methods of standard propositional or first-order logic to infer new
information from a knowledge bases of formulas. MLNs are formed by tuples of first-
order logic formulas and their weights and may be interpreted as a softened version
of the first-order logic. The main topic of the thesis — relational marginal polytopes
— emerge from so called called relational marginal problems in the MLNs. Goal of
these tasks is finding the max-entropy distribution over possible worlds of the MLN
satisfying defined marginal probabilities over the formulas. The relational marginal
polytope represents the set of feasible solutions to this task and is also important for
solving the dual problem of maximum-likelihood learning of the formula weights of the
MLN. Markov logic networks may be also considered a template for creation of Markov
random fields (also called Markov networks), which are — together with Bayesian
networks — one of the most commonly used probabilistic graphical models.

The thesis is structured in the following way:

. First, in Preliminaries chapter, the basic concepts related to the whole area of first-
order logic, probabilistic logic and probabilistic graphical models are defined and
explained,. in the next chapter Markov logic networks and its important properties will be defined
and described together with important algorithms,. finally in the Implementation chapter the approaches to constructing relational
marginal polytopes will be discussed and evaluated.

1



Chapter 2
Preliminaries

This chapter provides a basic background about mathemathical, logical and machine
learning concepts that are related to the topic of the thesis. First the first-order logic
(FOL) considered in the thesis is described, followed by description of probabilistic log-
ics which incorporate uncertainty into the standard first-order or propositonal logics.
Finally a notion of probabilistic graphical models is debated, focused on Bayesian net-
works and Markov random fields. The latter are integral part of Markov logic networks,
the key topic of the thesis.

2.1 First-Order Logic
The thesis considers a function-free first-order logic language L built from sets Const
(constants), V ars (variables) and Rel (predicates). The set of predicates Rel is parti-
tioned into subsets Reli each containing predicates of arity i, so Rel =

⋃
iReli. The

constants represent the domain objects (e.g. Alice, Bob, Prague) and the variable sym-
bols range over them. The predicates represent relations among objects (e.g. friends)
or their attributes (e.g. capital). These three sets together constitute non-logical
symbols and their actual meaning is specified by an interpretation. In addition to them
the language L is also built from a standard set of logical symbols:

. universal (∀) and existential (∃) quantifiers,. unary logical connective – negation (¬),. binary logical connectives – and (∧), or (∨), implication (⇒) and equivalence (⇔).

First-order logic theories about domains being modelled are formulated by means of
formulas. Following list summarizes terminology related to their creation.

. Term is a constant or a variable.. Atom or atomic formula is a k-ary predicate R(a1, a2, ..., ak) with arguments
a1, a2, ...ak ∈ Const ∪ V ars (i.e. terms).. Literal is an atom or its negation.. Formula is a literal or a logical connection of two formulas (may be also applied
recursively),

• set of variables appearing in formula α is denoted as V ars(α),
• formula α is called ground formula if its arguments are constants,
• formula α0 is called grounding of formula α if it can be obtained by substituting
all variables in V ars(α) with constants from Const,

• a variable in a formula is called free if it is not bound by any quantifier.

. Sentence is a formula with no free variables.

A special type of formula is a clause which is a disjunction of literals. Every formula in
FOL can be mechanically transformed to conjunction of clauses, so called clausal form
or conjuctive normal form (CNF). This form is convenient for automated processing

2



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

and due to beforementioned transformation we can consider all formulas to be in CNF
without loss of generality.

A possible world ω is an assignment of truth values to every possible ground atom.
A formula is satisfiable if there exists at least one possible world in which it holds true.
All formulas together form a knowledge base (KB). The knowledge base might be
considered a one big conjunction of all its formulas, as in basic setting it is expected
that all formulas in the KB are simultaneously true. A typical inference problem
involving usage of a knowledge base is to decide if the KB entails formula F (denoted
as KB |= F ), that is if F is true whenever KB holds. This is usually checked by
refutation – KB |= F holds iff KB ∪ ¬F is not satisfiable. Note however that this
yields a positive answer also in cases when KB contains a contradiction.

First-order logic used in the thesis is further restricted by following assumptions:

. unique names assumption – different constants refer to different objects,. injective substitution – different variables in a formula must be mapped to different
terms,. only domains of finite size are considered.

2.1.1 Probabilistic logic
Probabilistic logic is an extension of standard predicate (or propositional) logic which
aims to handle uncertainty about actual truth values of formulas. Most common ways
to achieve this goal are either specifying a probability that the formula is true or using
multi-valued logic. An example of the former approach is the probabilistic logic defined
in (Nilsson, 1986 [2]), which is the basis for formalism used in Markov Logic Networks,
the main topic of the thesis. The latter approach is usually described in terms of fuzzy
logic where the truth value of a formula may be any real number in interval [0,1].

The key difference between these two concepts is that in the (Nilsson’s) probabilistic
logic it is assumed the formula is true with some probability (let’s say 0.5), but in the
end the formula will eventually be evaluated as strictly true or false. The probability
just captures our belief about the actual truth value — we are not sure what the value
is at first, but once we are, there’s no room for any value between true and false and the
probabilistic logic becomes a standard 0–1 valued predicate logic. On the other hand
it is perfectly valid to state that a truth value of a formula is 0.5 in fuzzy logic as it is
built upon fuzzy set theory which extends the set membership function from bivalent
to multi-valued, usually being defined as real number in the unit interval (but fuzzy
theories with discrete values are also studied) [3].

With multi-valued logic it’s possible to formally capture vague or imprecise definitions
that naturally arise in everyday language, such as “Tom is a little old.” This may be
represented as a predicate old(Tom). In the standard predicate logic, we would have
to decide if a little old is enough to declare this predicate true (maybe after asking for
Tom’s exact age and comparing it with some threshold), but in fuzzy logic the truth
value of old(Tom) may be set to some appropriate value such as 0.3, indicating that
Tom is not “fully” old yet but he’s indeed a little old. With extending the range of
possible truth values we also need to redefine behaviour of logic connectives (usually
conjunction and implication) and it turns out there is not just one unique way how to
do it, but there are actually many well-behaved definitions, each one creating a slightly
different variant of fuzzy logic. Examples of some commonly used fuzzy conjunctions
are shown in Figure 2.1.

The probabilistic logic as defined by Nilsson introduces a probability of sentence and
possible worlds semantics to incorporate uncertainty about the truth values into the

3



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.1. Surface and contour plots of two fuzzy conjunction examples which are
also triangular norms (t-norms). Upper: Minimum t-norm >min = min{a, b}.

Lower: Łukasiewicz t-norm >Luk = max{0, a+ b− 1}.

first-order logic. If we consider only one sentence S, the sentence may be either true or
false. This induces two sets of possible worlds — W1 containing possible worlds where
S is true and W2 containing the worlds where S is false. Then we can reason about
the truth value of sentence S in terms of probabilities by specifiying probability p1 that
the actual world is in W1 (and S is therefore true) and probability p2 = 1− p1 that the
actual world is inW2. We can then say that the (probabilistic) truth value of sentence S
is p1.

When we incorporate more sentences, the number of sets of possible worlds rises as
every set of possible worlds Wi now represents a distinct combination of truth values
assigned to each sentence. For N sentences this may result in up to 2N sets of possible
worlds, but usually their total count is lower as some combinations are logically incon-
sistent and therefore define an impossible world (e.g. S1 true, S2 true but S3 = S1 ∧ S2
false). The set of consistent possible worlds is then considered a sample space over
which a probability distribution is defined. For every set of possible worlds Wi a prob-
ability pi specifies the probability that the actual world is inWi. As the sets of possible
worlds are exclusive and exhaustive, all pi sum to 1. The probabilistic truth value of a
sentence S is then simply defined as a sum of probabilities of all sets of possible worlds
where S is true. Analogically the logical entailment of sentence S from set of sentences
B (B ` S) is generalized as the probabilistic entailment which is the probability that S
is true given the probabilities of sentences in B (set of beliefs).

4



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

Now suppose there are N sentences S1, S2, ...SN which together specify K sets of
consistent possible worlds, denote the probabilistic truth values of sentences as a column
vector Π = [π1, π2, ..., πN ], denote the probability distribution over the possible worlds
as P = [p1, p2, ...pK ] and denote the actual truth values of sentences associated with
each possible world as matrix V of dimensions N ×K, where element vij represents the
truth value of sentence Si in set of possible worlds Wj . Note that each column of V
there represents one set of possible worlds. Calculation of the probabilistic truth values
of all sentences then may be concisely represented as a matrix equation

Π = V P (2.1)

As a concrete example consider a theory with three sentences (taken from Nilsson’s
original article [2])

. S1 = ∀x : P (x),. S2 = ∀x : P (x)⇒ Q(x),. S3 = ∀x : Q(x).

The sentences define 4 distinct sets of possible worlds with following combinations of
consistent truth values:

W1 W2 W3 W4

S1 = ∀x : P (x) true true false false
S2 = ∀x : P (x)⇒ Q(x) true false true true
S3 = ∀x : Q(x) true false true false

Table 2.1. Consistent combinations of truth values of sentences in possible worlds.

Translation of the table to matrix V is straightforward and omitted. Instead we’ll
focus on possible range of the truth values πi. As we see from Equation (2.1), the value
of Π depends on probabilities of possible worlds P . Now consider at first the extremal
case where exactly one possible world achieves probability 1 and the probability of the
rest is 0. This obviously results in Π being equal to the column of V corresponding
with the currently selected set of posible worlds. We can then proceed with modifying
probabilities pi which in turn changes the outcome of all πi. The probabilities pi are
however also constrained as their sum must be 1, so the actual attainable truth values
pii are convex combinations of those achieved for extremal distributions of pi. This
is visualized in Figure 2.2. In this geometrical interpretation the extremal values are
vertices of a polytope and all attainable truth values of the sentences lie inside or on
boundaries of the polytope.

Figure 2.2 also shows that it is not straightforward to just arbitrarily set values of
πi independently on each other, as their consistent combinations are restricted by the
polytope. This doesn’t pose a problem in case when the calculation proceeds exactly
in the direction of Equation (2.1) and the probability distribution of possible worlds is
already specified, because the equation guarantees the result Π will be consistent. In
practice however the reasoning often works the other way around — the probabilities of
some sentences are assigned first (e.g. as an input from some expert), the sentences then
form the knowledge base, and the goal is to find probabilities of the other sentences,
i.e. to evaluate a probabilistic entailment of the sentences with unspecified probabilities
from those in the knowledge base. In this setting actual probability values P of possible
worlds may not be even specified in advance as we’re just interested in the values of Π.

5



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.2. Polytope representing consistent truth values for a set of sentences S1 = ∀x :
P (x), S2 = ∀x : P (x)⇒ Q(x) and S3 = ∀x : Q(x) (the image is a rotated remake of Fig. 2

in (Nilsson, 1986 [2], p. 76))

As an example we will now consider sentences S1 and S2 as the knowledge base and
we will calculate the truth value of S3, i.e. perform probabilistic entailment

{∀x : P (x), ∀x : P (x)⇒ Q(x)} ` {∀x : Q(x)}.

In accordance with Figure 2.2 we’ll assign some consistent truth values to the formulas
in the knowledge base, for example π1 = π(S1) = 0.6 and π2 = π(S2) = 0.7. Then we
can use Equation (2.1) to solve for π3 as following:

1. Add vectors of 1 as the first row into V and Π. This may be interpreted as adding tau-
tology to the knowledge base, but it is also a way to enforce the constraint

∑
pi = 1.

[
1
Π

]
=
[

1
V

]
· P ⇒


1

0.6
0.7
π3

 =


1 1 1 1
1 1 0 0
1 0 1 1
1 0 1 0

 ·

p1
p2
p3
p4


2. Eliminate the last rows of V and Π and calculate P from the modified matrices V ′,Π′.

Generally the equation is under-determined (and this holds in our example) as the
number of possible worlds is usually higher than the number of sentences present in
the probabilistic entailment, therefore we should expect the solution for P will not
be unique.

Π′ = V ′P ⇒

 1
0.6
0.7

 =

 1 1 1 1
1 1 0 0
1 0 1 1

 ·

p1
p2
p3
p4


6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 First-Order Logic

Formally we could proceed with multiplying the equation with left pseudo-inverse of
V ′ but in this trivial case we can caluclate P by solving the system of linear equations:

0.6 = p1 + p2

p1 = 0.6− p2

p1 = 0.3

0.7 = p1 + p3 + p4

0.7 = 0.6− p2 + p3 + p4

p2 = −0.1 + p3 + p4

p2 = 0.3

1 = p1 + p2 + p3 + p4

1 = 0.7− p2

0.3 = −0.1 + p3 + p4

p3 + p4 = 0.4
3. Enforce non-negativity constraint pi ≥ 0 on possible values of P and check that P

may actually represent a probability distribution — this may not hold if the initial
truth values for sentences in knowledge base were assigned inconsistently. In our
example the check passes and we find boundaries for p3 and p4 as:

p3 ∈ [0.0, 0.4], p4 ∈ [0.0, 0.4] , p3 + p4 = 0.4

4. Denote the last row of V (the one eliminated in step 2) as S. Target probability π3
then may be calculated as:

π3 = SP

π3 = [ 1 0 1 0 ] · [ 0.3 0.3 p3 p4 ]T

π3 = 0.3 + p3

π3 ∈ [0.3, 0.7]

As we can see, the result of the probabilistic entailment is not unique, but gives us
only possible bounds on the values of π3. More intuitive picture of the situation is
shown in Figure 2.3, where the calculation is described in a geometric way as finding
intersection of the polytope of consistent values with planes π1 = 0.6 and π2 = 0.7.

If we need to select only one solution, we may calculate π3 from the probability
distribution over the possible worlds with the largest entropy, as this is the one about
which we know least prior information [4]. Entropy H of probability distribution p is
defined as [5]:

H = −
∑

pi log pi
Maximization ofH could be solved using the method of Lagrange multipliers, however

in our example where p1 and p2 are already set and the only constraint on p3 and p4 is
p3 +p4 = 0.4 we may conclude that the maximal entropy will be reached when p3 = p4,
i.e. p3 = 0.2 and p4 = 0.2. The probabilistic truth value of sentence S3 for this solution
is π3 = 0.3 + 0.2 = 0.5.

Following list summarizes the facts about Nilsson’s probabilistic logic that were de-
scribed in this section:. Calculation of probabilistic truth values may be performed in a form of matrix equa-

tions, however as the first step all consistent truth values assignments in the possible
worlds must be enumareted, and the complexity of the enumeration grows exponen-
tialy in the nubmer of sentences N .. Assignment of initial probabilistic truth values πi to the sentences in the knowl-
edge base must be performed carefully because a random assignment may also be
inconsistent.. Even if the initial assignment of πi is consistent, the probabilistic entailment usually
doesn’t provide a unique solution to probability of entailed sentences. In this case
we may choose the solution associated with the distribution over possible worlds P
having the largest entropy.

7



2. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 2.3. Intersection of the polytope from Figure 2.2 with planes π1 = 0.6 (blue) and
π2 = 0.7 (orange). The red segment is the intersection of the planes and the polytope and

represents admissible values for π3 (interval [0.3, 0.7]).

2.2 Probabilistic Graphical Models
This section describes two most commonly employed probabilistic statistical models —
the first is a Bayesian network and the other one is a Markov random field (MRF),
sometimes called analogically with the first model a Markov network. The models were
devised as an approach to encode dependency relations between random variables as
a graph and then exploiting this knowledge for an efficient evaluation of random fields
and their underlying joint probability distributions, also utilizing methods of the graph
theory.

The models are based on the chain rule for calculation of joint probability distribu-
tions of multiple random variables. The chain rule is a generalization of an observation
that the joint probability distribution of two random variables X,Y may be expressed
as a product of the marginal probability of one variable and the conditional probability
of the other given the first one:

P(X,Y ) = P(X | Y ) · P(Y )

In order to generalize this observation for multiple random variables we only need
to apply the rule for one variable at time, always conditioning on the rest of not-yet
entered variables, until the last one is reached:

P(X1, X2, ..., Xn) = P(X1 | X2, ..., Xn) · P(X2, ..., Xn) (2.2)
= P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · P(X3, ..., Xn) (2.3)
= ...

= P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · ... · P(Xn) (2.4)

Actual order of the variables may be of course different as long as the intention of the
chain rule is followed. In the thesis we will also use a shorthand notation p(x1, x2, ...xn)

8
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for probability of actual assignment of values to random varibles (analogically also for
conditional probabilities):

p(x1, x2, ...xn) = P(X1 = x1, X2 = x2, ..., Xn = xn)

Equation (2.4) is a good insight into splitting the calculation of the full joint proba-
bility distribution into the number of more tractable factors which could be represented
by smaller probability tables or functions with less variables than the ones for the full
joint probability. However applying the chain rule exactly in the form of Equation (2.4)
doesn’t actually considerably reduce the complexity. If we consider discrete random
variables and denote the size of the largest domain of values for any Xi as K, eval-
uation of the left hand side requires construction of a probability table with O(KN )
elements, while evaluating first expression on the right hand side requires construction
of a conditional probability table for (up to) K possible values of X1 conditioned on
O(KN−1) values for the rest of variables, i.e. the time complexity generally remains
the same O(KN ).

The key problem in evaluating the Equation (2.4) is that each variable is conditioned
on all remaining variables, while in practice most of the remaining variables influence
the value of the conditional probability only negligible or not at all. This is captured
in the concept of conditional independence [6].
Definition 2.1. (Conditional independence) Two random variables A, B are condition-
ally independent given a random variable C (denoted A ⊥⊥ B | C) if and only if they are
independent in their conditional probability distribution given C for all possible values
of A,B,C:

P(A,B | C) = P(A | C) · P(B | C) (2.5)

The defition of conditional independence may be equivalently rephrased as follows
— if we’re given conditional probability P(A | C) and know A ⊥⊥ B, observing B has
no effect on the value of the conditional probability, that is:

A ⊥⊥ B | C ⇔ P(A | B,C) = P(A | C) (2.6)

Conditional independence may be also generalized for sets of random variables —
actually it is more or less sufficient just to interpret random variables A,B,C in Def-
inition 2.1 as sets of random variables. Equation (2.6) then may be used to simplify
factors of the joint probability distribution if we can efficiently represent conditional
(in)dependencies between variables, because as the equation suggests, all conditionally
independent variables then may be ignored and the conditional probability tables may
be calculated only w.r.t. conditioning variables. As an example, we may simplify cal-
culation of the probability of X1 in Equation (2.4) if we know that X1 is conditionally
independent on all other variables given X2, X5 as

P(X1, X2, ..., Xn) = P(X1 | X2, ..., Xn) · P(X2 | X3, ..., Xn) · ... · P(Xn)
= P(X1 | X2, X5) · P(X2 | X3, ..., Xn) · ... · P(Xn)

The process then may be similarly repeated for conditional probability of X2 and an-
other random variables present in the equation.

As a last point before proceeding to the description of two most common proba-
bilistic graphical models — Bayesian networks and Markov networks — we should note
that conditional independence of random variables is not related to their standard inde-
pendence. Two random variables may be independent on each other but conditionally
dependent given another variable, and vice versa.
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Figure 2.4. Graph of Bayesian network of 5 variables.

For example of two independent variables that become conditionally dependent let’s
consider rolling two fair six-sided dice, denote the result of the first die A and the
result of the other B. As usually in such a case we expect that results of each roll are
independent so P(A,B) = P(A)·P(B). However, when we also observe variable C which
checks if sum of rolls is even or odd, A and B become conditionally dependent given
C — knowing that the sum of rolls is even doesn’t provide any additional information
without also knowing the result of the other die, so the conditional probability is equal
to the marginal (same applies to P(B | C)):

P(A = a | C = c) = P(A = a) = 1
6 .

However if we know that C = even and A = 3, then we see that B must be also odd,
so if we take even value B = 2, Equation (2.5) doesn’t hold and therefore A 6⊥⊥ B | C:

P(A = 3 | C = even) · P(B = 2 | C = even) = 1
6 ·

1
6 = 1

36 6=

6= P(A = 3, B = 2, C = even) = 0

2.2.1 Bayesian Networks
Bayesian network is a directed acyclic graph (DAG) where vertices represent variables of
interest (random variables, parameter models, hypotheses) and oriented edges represent
conditional dependencies between the variables; oriented edge Xu → Xv specifies that
Xv is conditionally dependent on Xu. Edge direction however primarily captures the
real causal connections and not the actual direction used for computations, because the
information necessary for reasoning can still be propagated in both ways [7].

The most important property of Bayesian networks is that every vertex X is inde-
pendent from its non-descendants given set of its parent vertices PaX . Computation
of the marginal probability of variable X is then conditioned on the parent nodes and
only requires knowledge of their probabilities:

P(X) = P(X | PaX) (2.7)
Probabilities of parent nodes are usually stored in the child node in a form of condi-

tional probability table. Provided the number of parents for each node is bounded, the
number of required conditional distributions for each node grows only linearly in the
size of the Bayesian net, which is a considerable improvement over exponential growth
for Equation (2.2).

Computation of full joint probability distribution in the Bayesian net is factorized
into product of conditional distributions conditioned on parent nodes:

P(X1, X2, ..., Xn) =
n∏
i=1

P(Xi | PaXi)

10
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Figure 2.5. Illustration of Bayesian net described in the calcualtion example. R represents
raining, S sprinkler and W a wet pavement. Initial situation is captured in the left graph, in
the central graph we observe the pavement is wet which influences marginal probabilities
of both R and S. In the right graph we find out that it was actually raining, but this
information also affects our knowledge about S, because they become dependent after

observing W.

Let’s take as an example the Bayesian network presented in Figure 2.4. The joint
probability distribution of the network may be expressed as:

P(A,B,C,D,E) = P(A) · P(B | A) · P(C | A) · P(D | B,C) · P(E | D)

More illustrative example which will also point to a not so obvious property of
Bayesian networks is illustrated in Figure 2.5. In the morning, we may observe that the
pavement in front of the house is wet. There are two possible causes for this — it may
have been raining during the night or early in the morning the sprinkler on the grass
was on. The sprinkler should be watering the grass every morning, but it is faulty and
works more or less randomly. It also doesn’t have any detector to check whether the
grass is already wet, so it may also turn on even if it was raining. We have these prior
probabilities for the sprinkler (S) and the raining (R):

P(S = on) = 0.5
P(R = true) = 0.2

The conditional probabilities for observing wet pavement (W) given the other two events
are stated as follows:

P(W = wet | S = on, R = true) = 0.9
P(W = wet | S = on, R = false) = 0.7
P(W = wet | S = off , R = true) = 0.6
P(W = wet | S = off , R = false) = 0.01

Now in the morning we actually observe the pavement is wet and we may want to
evaluate the posterior probability that the sprinkler was on. This may be done using
Bayes’ theorem:

P(S |W ) = P(W | S) · P(S)
P(W ) (2.8)

The denominator is evaluated by marginalizing over R, S:

P(W = wet) =
∑

s∈{on,off }

∑
r∈{true,false}

P(W = wet | S = s,R = r) · P(S = s) · P(R = r)

= 0.434

11
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Similarly for conditional probability P(W | S):

P(W = wet | S = on) =
∑

r∈{true,false}

P(W = wet | S = on, R = r) · P(R = r) = 0.74

So plugging all the numbers into Equation (2.8) we get:

P(S = on |W = wet) = 0.74 · 0.5
0.434 =̇ 0.853

We see that P(S = on | W = wet) > P(S = on) so observing that the pavement
is wet makes it more likely that it the sprinkler was on, which is something we would
intuitively expect. Now let’s see if something changes when we find out that it was
raining in the night (e.g. from a weather report). The posterior probability for the
sprinkler changes to:

P(S |W,R) = P(W | S,R) · P(S) · P(R)∑
s∈S P(W | S,R) · P(S) · P(R)

P(S = on |W = wet, R = true) = P(W = wet | S = on, R = true) · P(S = on)∑
s P(W = wet | S = s,R = true) · P(S = s) = 0.6

After observing that it was raining the probibility that sprinkler was on drops, even
though initially these two variables were independent. They however became coupled
when we observed the actual value of their common child.

As we can see from the previous example, even though the Bayesian network is a di-
rected graphical model, the information may still flow in any direction when reasoning
and evidence provided in the descendant node actually influenced the marginal proba-
bility of the parent node. Earlier in the beginning of the section it was declared that
a node is conditionally independent from its non-descendants given its parents. This is
indeed true, but we may be actually also interested in which nodes actually separate
the node from the rest of the network, so we know which nodes may influence reasoning
about the node and which are irrelevant.

Identification of separating set of nodes may be defined in terms of d-separation,
which is based on a notion of active paths. First we should consider what configuration
of nodes w.r.t. directed edges may be observed over triplets of nodes [8]:

1. Cascade: A→ B → C or A← B ← C
If B is observed, then A ⊥⊥ C | B, because we can determine output of C solely on
B and A doesn’t influence it. If B is unobserved, then A 6⊥⊥ C, because observing A
provides information about B and in turn we may also reason about C.

2. Common parent: A← B → C
Reasoning is actually the same as above — if B is observed, A ⊥⊥ C | B, otherwise
A 6⊥⊥ C.

3. V-structure: A→ B ← C
The results in this case are opposite to previous ones — if the common descendant
B is unobserved, then parents are independent — A ⊥⊥ C. But when B is observed,
then A 6⊥⊥ C | B. This is also called explaining away.

These checks may be recursively applied on larger sets of variables in the graph,
leading to a notion of active paths in Bayesian network. An undirected path in the
Bayesian network is active given a set of observed variables O if for every consecutive
triple of variables X,Y, Z one of the following holds:

12
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B

A

C

D E

Figure 2.6. Graph of Markov random field of 5 variables with two 3-cliques {A,B,C} and
{B,C,D} and one 2-clique {D,E}.

. X → Y → Z and Y is unobserved (Y /∈ O),. X ← Y ← Z and Y is unobserved,. X ← Y → Z and Y is unobserved,. X → Y ← Z and Y is or any of its descendants is observed.

The independence of sets in Bayesian networks is then specified using d-separation.
Two sets of variables A,B are d-separated given set O if there is no active path connect-
ing A and B given O. Then set O is also a separating set of sets A,B. Separating set
is not actually unique — adding a variable which is not in A or B into the separating
set still yields a separating set. The minimal separating set is a separating set from
which no variable can be removed without violating d-separation property. In Bayesian
networks, the minimal separating set for a variable from the rest of graph consists
of variable’s parents, its immediate children and all other parents of these immediate
children.

2.2.2 Markov Random Fields
Markov random field (MRF) or Markov network is a graphical probabilistic model that
represents dependencies between variables as an undirected graph. An MRF may be
also cyclic, therefore it may, unlike Bayesian networks, conveniently represent cyclic
dependencies. Also the notion of separating set for a node is simpler in MRFs as it
consists only from all neighbours of the node in question [9].

If graph G = (V,E) represents an MRF, it must satisfy following three Markov
properties, ordered from the weakest to the strongest (variable represented by vertex v
is denoted as Xv) [10]:

1. Pairwise Markov property:
Any two non-adjacent variables are conditionally independent given all other vari-
ables:

Xv ⊥⊥ Xu | XV \ {u,v}

2. Local Markov property:
A variable is conditionally independent of all other variables given its neighbors:

Xv ⊥⊥ XV \N [v] | XV \N(v)

where N(v) is the set of neighbors of v and N [v] = v ∪N(v) is the closed neighbour-
hood of v.

3. Global Markov property:
Any two subsets of variables are conditionally independent given a separating subset:

XA ⊥⊥ XB | XS

13
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Figure 2.7. Moralization of a Bayesian network (left) into a Markov random field (right).

where XA, XB are sets of vertices and XS is their separating subset (i.e. all paths
between a node from XA to a node in XB pass through a node in XS).

All three Markov properties are actually equivalent if the underlying probability
distribution induced by variables in the graph is strictly positive.

Computation of the full joint probability distribution in MRFs can be factorized
similarly to Bayesian networks as a product of quantities over sets of variables. Unlike
the Bayesian networks the quantity is not represented in a form of probability tables,
but as a potential function. The factorization is then performed over maximal cliques
of a graph (graph clique is a fully-connected subgraph of the graph1):

p(x1, x2, ..., xn) = 1
Z

∏
C ∈ cl(G)

φ(C),

where cl(G) is the set of maximal cliques of graph G, φ(C) is a potential function
associated with assignments to all variables (vertices) in clique C, and Z is the partition
function. This function ensures that the result is actually a probability distribution by
summing potential functions for all possible configurations of MRF:

Z =
∑

x1,x2...xn

∏
C ∈ cl(G)

φ(C)

As an actual example we present factorization of MRF from Figure 2.6, the set of
maximal cliques is cl(G) = {{A,B,C}, {B,C,D}, {D,E}} (note that if there was an
edge connecting A,D the 3-cliques would be replaced with a 4-clique {A,B,C,D}) and
the probability of the configuration factorizes into:

p(a, b, c, d, e) = 1
Z
· φ(a, b, c) · φ(b, c, d) · φ(d, e)

Two problems however arise when we try to perform exact inference in MRFs. The
first one is that listing all maximal cliques in the graph is NP-complete (problem of
detection of any clique of size k is actually listed in Karp’s 21 NP-complete problems[11]).
This may be resolved due to the fact that in practice structures of MRFs are usually
not random, but they are designed intentionally, so the structure of maximal cliques is
known in advance and it is therefore unnecessary to detect them algorithmically. The
second problem is the evalution of the partition function which requires summation
over all possible assignments, which is in general NP-hard. This problem may not be
resolved as easily as the first one and exact inference in MRFs remains intractable in
general, even though in some MRF classes this calculation may be performed efficiently.
1 We may prepend a clique with a number of vertices present in it, i.e. 3-clique, 4-clique etc. 2-clique is
an edge and 1-clique is just a vertex
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There are also procedures transforming Bayesian network into MRF and vice versa.
As a first step in transformation of Bayesian network into MRF we only need to triv-
ially substitute every directed edge with an undirected one. As a second step we need
to add an edge between all vertices, which share a direct descendant and are discon-
nected in the Bayesian network. This is called moralization as it enforces a relation
between parent nodes (a “marriage”, though it may easily result in a polygamy if the
node has more than 2 parents). If the second step is omitted, we lose information that
the value of the child node is actually dependent on values of all its parents simulta-
neously. The procedure is illustrated in Figure 2.7. Potential functions for each clique
then correspond with joint probability of all variables in the clique, which may be in
turn computed from the conditional probability table associated with the leaf node of
the clique by Equation (2.7). The partition function of such a transformed net is triv-
ially 1 (all probabilities in Bayesian networks must sum to 1). The converse process of
transforming an MRF into a Bayesian net is called triangulation, but it is rarely used,
because it is usually intractable (it often results in an almost fully connected DAG).
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Chapter 3
Markov Logic Networks

This chapter describes Markov logic networks (MLN), a probabilistic logic framework
used in the statistical relational learning (SRL). Markov logic networks encode statis-
tical regularities in a from of weighted logical formulas. The following section provides
definitions of MLNs and related concepts, then their basic properties, means of infer-
ence and standard learning tasks in MLNs are discussed. Finally we’ll focus on the key
concept of the thesis — relational marginal polytope which originates from relational
marginal problem — a task concerned with finding the maximum-entropy probability
distribution satisfying specified marginal probabilities.

3.1 Definition
The concept of Markov logic networks first appeared in the paper of Richardson and
Domingos in 2006 [12]. The rationale behind their proposal is that when we model a
problem using first-order logic formulas (these form a knowledge base), the formulas
are actually hard-constraints and any potential world that violates just one of them
is consequently impossible. This behaviour however may not be always desirable as
often a formula that doesn’t hold in all cases may still capture useful information about
modelled relationships. In order to soften the constraint checking a weight is associated
with each formula. The weight should represent how important the constraint is in
the model — the higher the weight, the higher the importance of the constraint. In
this setting the world violating a constraint doesn’t become instantly impossible, only
less probable. If the world violates higher number of constraints or if it violates more
important ones, the world’s probability decreases proportionally.
Definition 3.1. (Markov logic network): A Markov logic network (MLN) is a set of
weighted first-order logic formulas (α,w) where w ∈ R and α is function-free and
quantifier-free first-order logic formula.

MLN Φ induces a probability distribution over a set of possible worlds Ω:

for ω ∈ Ω : pΦ(ω) = 1
Z

exp

 ∑
(α,w)∈Φ

w · N(α, ω)

 (3.1)

In this equation pΦ(ω) denotes probability of observing possible world ω, N(α, ω)
is total number of groundings of formula α that are satisfied in ω relative to a finite
set of constants ∆ (called the domain) and Z is the partition function that normalizes
the result so it forms a probability distribution similarly as in MRFs. Presence of the
normalizing term Z draws exact inference in MLNs generally intractable in the same
way as in MRFs, as its evaluation requires summation over all possible worlds and the
count of these possible worlds is exponential in the size of the domain.

An MLN can be created from a first-order logic knowledge base just by assigning
arbitrary weights to each formula in the KB. The first-order logic is actually a special
case of MLN where all weights are infinite, i.e. any violation of a formula renders

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Inference

the associated world impossible. The probability distribution over satisfiable possible
worlds in this case is uniform. The weight of the formula can be interpreted as a log-
odd between observing a world where the formula holds and a world where it doesn’t,
assuming all remaining weights are equal.

3.1.1 Relation to MRF
Markov logic networks are closely related to Markov random fields — grounding an
MLN with respect to a domain creates an instance of a MRF and in this sense MLNs
may be considered templates for a variety of MRFs. The resulting MRFs may vary
significantly in size but they will share common structures. The procedure for grounding
MLN into MRF was described in the initial paper by Richardson and Domingos [12]).
An instance of MRF MΦ,∆ may be created from MLN Φ with respect to the domain ∆
in following steps:

1. Create one binary node in MΦ,∆ for each possible grounding of each predicate ap-
pearing in MLN Φ. The value of the node is 1 if the ground atom is true, and 0
otherwise.

2. For each possible grounding of each formula αi in MLN Φ create one feature in MΦ,∆.
The value of this feature is 1 if the ground formula is true, and 0 otherwise. The
weight of the feature is weight wi associated with formula αi in MLN Φ.

3.2 Inference
Exact inference in MLNs is in general intractable for similar reasons as in MRFs — the
partition function Z is calculated as a sum of terms over all possible worlds, and the
number of all possible worlds in general grows exponentially w.r.t the size of domain |∆|.

3.2.1 Weighted Model Counting
Calculation of the partition function may be converted to the weighted first-order model
count problem (WFOMC)[13]:
Definition 3.2. (WFOMC): Let w(P ) and w(P ) be functions from predicates to real
numbers (w and w are called weight functions) and let Φ be a first-order theory. Then

WFOMC(Φ, w, w) =
∑

ω∈Ω:ω|=Φ

∏
a∈P(ω)

w(Pred(a))
∏

a∈N (ω)

w(Pred(a))(3.2)

where P(ω) and N (ω) denote the positive literals that are true and false in ω, re-
spectively, and Pred(a) denotes the predicate of a (e.g. Pred(friends(Alice, Bob)) =
friends).

The evaluation of WFOMC then proceeds with addition of a formula ξi for every
weighted formula (αi, wi) in Φ whose free variables are exactly x1, x2, ...xk :

∀x1, ..., xk : ξi(x1, ..., xk)⇔ αi(x1, ..., xk)

Then we set w(ξi) = exp(wi), w(ξi) = 1 for all new predicates and w(αi) = 1 and
w(αi) = 1 for the original predicates. If we denote the resulting set of predicates Γ,
it will turn out that actually WFOMC(Γ, w, w) = Z. WFOMC may be also used for
evaluation of the marginal probability of query q under Γ:

PΦ,Ω(q) = WFOMC(Γ ∪ {q}, w, w)
WFOMC(Γ, w, w)
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The WFOMC however doesn’t change asymptotical complexity of computation of

the partition function w.r.t. the domain (it remains exponential). However there are
classes of MLNs where inference may be performed more efficiently, in polynomial time
w.r.t. to the size of the domain. These problems are called domain liftable.
Definition 3.3. (Domain liftability) An algorithm for computing WFOMC is said to be
domain-liftable if it runs in time polynomial in the size of the domain.

Example of domain-liftable MLN instances are MLNs where each predicate contains
at most two variables [14].

WFOMC is a generalization of weighted model counting (WMC), which is in turn
generalization of model count for propositional formulas. The model counting task
simply counts number of distinct satisfying assignments to boolean variables in the
formula, WMC extends the task by also associating weights to variables. Distinct
weights might be associated in case when the boolean value of the variable is true and
when it is false, formula for WMC(F,w,w) is then analogical to Equation (3.2) [15]:

WMC(F,w,w) =
∑

θ:θ(F )=1

 ∏
i:θ(Xi)=1

w(Xi) ·
∏

i:θ(Xi)=0

w(Xi)


(F is propositional formula with variables Xi, w(Xi) and w(Xi) are weight functions
for positive, resp. negative occurence of the variable and θ is an assignment of variables
to {0, 1}).

WFOMC for formula Φ is then defined as WMC over FΦ,n — the proposi-
tional grounding of the formula Φ over domain n — and the weight functions
w,w : Tup(n) → R (Tup(n) denotes set of all possible groundigs of Φ over n) and
WFOMC is defined as WFOMC(Φ,n,w,w) = WMC(FΦ,n,w,w).

WFOMC as defined in this section is so called symmetric WFOMC, as the weight
for every element of Tup(n) depends only on the name of the predicate, so for example
all groundings of predicate edge(X,Y) share the same weights w, resp. w (but w and w
may be different). This definition is generally used in the literature related to MLNs.
Just as a side note we remark that there is also class of asymmetric WFOMC where
the weights may depend even on the actual domain elements present in the grounding
of the predicate, e.g. it may hold that w(foo(John,Mary)) 6= w(foo(Peter,Kate)).

3.3 Relational marginal polytopes
This section introduces relational marginal polytopes (RMP) with which calculation the
thesis is mainly concerned. RMPs emerge as a set of feasible solutions to the relational
marginal problems which try to find weights for a maximum-entropy distribution over
the possible worlds w.r.t. statistical marginal probabilities of formulas in the MLN.

3.3.1 Polytopes
Polytope is a geometric object generalizing three-dimensional polyhedrons into arbitrary
number of dimensions. Polytope with dimension n is denoted as n-polytope and its
sides consist of (arbitrary number of) (n − 1)-polytopes that may share a common
(n − 2)-polytope (and so on). Standard terminology for elements of n-polytope with
specific dimensions are vertex (0-dimensional — point), edge (1-dimension) and facet
((n− 1)-dimension).

The thesis considers only bounded convex polytopes. There are two common repre-
sentations (and also definitions) of convex polytope:
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. V-representation (vertex) — bounded convex polytope is defined as the convex hull
of a finite set of points. The minimal V-representation of the polytope is given by
the set of its vertices.. H-representation (half-space) — bounded convex polytope is defined as an inter-
section of a finite number of half-spaces. Half-space may be written as a linear
inequality:

a1x1 + a2x2 + ...+ anxn ≤ b
The minimal H-representation of the polytope consists of the set of inequalities defin-
ing its facets.

3.3.2 Relational marginal problem
The total number of satisfiable formula groundings N(α, ω) in Equation (3.1) presents
the absolute number of admissible groundings. It may be however more convenient to
express this quantity relatively to the size of the number of possible groundings. This
quantity is called formula statistic w.r.t. the possible world ω:
Definition 3.4. (Formula statistic) Let α be a quantifier-free first-order logic formula
with k variables {x1, ...xk}. Its formula statistic w.r.t. a possible world ω is defined as:

Qω(α) =
(
|∆|
k

)−1
· (k!)−1 · N(α, ω) (3.3)

There |∆| denotes size of the domain and k denotes arity of predicate α. Intuitively
the formula statistic represents the probability that a random injective substitution of
variables that ground formula α will be satisfied in the possible world ω if we draw the
substitution randomly from the uniform distribution.

With notion of formula statistics, we may continue to the definition of the relational
marginal problem.
Definition 3.5. (Relational marginal problem): The relational marginal problem is a
convex optimization task with the following formulation:

min
∑

Pω :ω∈Ω
Pω log Pω s.t. (3.4)

∀i : 1, ..., l :
∑
ω∈Ω

Pω · Qω(αi) = θi (3.5)

∀ω ∈ Ω : Pω ≥ 0,
∑
ω∈Ω

Pω = 1 (3.6)

where Pω denotes the probability of possible world ω, Qω(αi) is formula statistic
associated with formula αi in the particular possible world, and θ1, ... θk are the target
expected values for each formula statistics, also called the relational marginals (hence
the name of the task).

To provide a more thorough analysis of the formulation — Equation (3.4) minimizes
negative entropy of the probability distribution over the possible worlds, Equation (3.5)
represents constraints specified by the relational marginals and the last Equation (3.6)
ensures the result of the task is a probability distribution. Assuming there exists a
strictly positive feasible solution to the task, the optimal solution is an MLN

Pω = pΦ(ω) = 1
Z

exp

 ∑
(αi,λi)∈Φ

λi · Qω(α)
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where λi are obtained by maximizing dual criterion which is incidentally MLN’s

log-likelihood w.r.t. some training example with statistics for each formula equal to
expected ones:

L(λ) =
∑
αi

λi · θi − log
∑
ω∈Ω

e
∑
αi
λi·Qω(αi) (3.7)

Note that the second term in Equation (3.7) is a logarithm of the partition function Z
for an MLN with formula weights λ. Due to the duality if we are able to efficiently
solve relational marginal problems, we can also efficiently solve maximum likelihood
estimation of MLN. For optimization of L(λ) using gradient-based methods we also
need to calculate partial derivates:

∂L

∂λi
= θi −

∑
ω∈ΩQω(αi) · e

∑
αi
λi·Qω(αi)∑

ω∈Ω e
∑
αj
λj ·Qω(αj)

(3.8)

The denominator of the second term is again the partition function Z, while each term
in the numerator consists of a formula statistic of the formula αi associated with the
weight λi in the possible world and an exponential which actually represents the possible
world’s potential. As the ratio of the world’s potential and the partition function is
equal to the actual probability of the possible world, second term as a whole represents
the expected value of the formula αi statistics over all possible worlds, i.e. we can also
write

∂L

∂λi
= θi − E [Qω(αi)]

Evaluation of both L(λ) and the gradient therefore involves computation of the
partition function Z. This may be translated to WFOMC(Φ, w, w) of MLN Φ
corresponding to current weights assignment using the procedure described in Sec-
tion 3.2.1. Computation of the numerator in Equation (3.8) then proceeds similarly
using WFOMC(Φ ∪ {αiϑ}, w, w) where αiϑ is an injective grounding substitution
of αi. Solving the relational marginal problem in general is therefore as hard as
evaluation of the partition function, which is #P-hard problem, but as was mentioned
earlier, polynomial time algorithms exist for special cases.

3.3.3 RMP Definitions

During solution of relational marginal problems it is possible to encounter a relational
marginals that define expected values of formula statistics which are actually not real-
izable on the domain of the specified size (or on a domain of any size at all). Consider
following example, which describes edges and triangles present in a graph in terms of
propositional logic [14]:
Example 3.6. : Consider an MLN Φ consisting of following formulas (weights omitted):

. φ : edge(x1, x2),. ψ : edge(x1, x2) ∧ edge(x2, x3) ∧ (x1, x3).. ∆ = {c1, c2...c100}

Now when considering expected values of formula statistics E[(Qω(φ))] = 0 and
E[(Qω(ψ))] = 0.5, we can easily see that no possible world can conform to this distri-
bution as there simply cannot be even one triangle in a graph without edges. Values
of statistics corresponding to some actual probability distributions form so called rela-
tional marginal polytope [1]:

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Relational marginal polytopes

Figure 3.1. Examples of RMP w.r.t. domain of size 3 for two MLNs (both under unique
names assumption). Blue area represents RMP, red points denote actual formula statistics
Q that can be achieved in the MLN. Left A = a(X,Y ), φ = a(X,Y ) ∨ ¬ a(Y,X).

Right B = b(X,Y ), ψ = b(X,Y ) ∧ b(Y,X).

Definition 3.7. (Relational marginal polytope): Let Ω be the set of possible worlds on
domain ∆ and Φ = (α1, ..., αm) be a list of formulas. The relational marginal polytope
RMP(Φ,∆) w.r.t. Φ is defined as:

RMP(Φ,∆) = {(x1, ..., xm) | ∃ distribution on Ω s.t.
E[Q(α1, ω)] = x1 ∧ ... ∧ E[Q(αm, ω)] = xm}.

Relational marginal polytope w.r.t. list of formulas (α1, ..., αl) forms a convex hull
of a set:

{(Qω(α1), ..., Qω(αl)) | ω ∈ Ω}.
Important property of RMPs is that RMPs associated with larger domains are subsets

of RMPs associated with domains which contain less elements. Furthermore, using a
notion of η-interiority a bound can be provided on the maximal difference between any
points in these polytopes.
Definition 3.8. (η-interiority [1]): Let η > 0, P be a polytope and A=x = c be the
maximal linearly independent system of linear equations that hold for the vertices of P.
A point θ is said to be in the η-interior of P if {θ′|A=θ′ = c, ‖θ′ − θ‖2 ≤ η} ⊆ P.

Equivalently point y is contained in η-interior of RMP P if a ball with radius η
with center y is subset of the polytope. Regardless on the definition we use, detecting
whether a point is in η-interior of RMP is NP problem.

We may also analogically define an integral counterpart to RMP, the integer relational
marginal polytope (IRMP), which is a convex hull of all realizable grounding counts:

IRMP(Φ,∆) = {N(α1, ω), ..., N(αm, ω) : ω ∈ Ω} (3.9)
Both types of marginal polytopes are interchangeable as they are equivalent up to

scaling — as mentioned in previous sections, there is a straightforward mapping between
number of groundings N(αi, ω) and the formula statistics Q(αi, ω):

Q(αi, ω) = |∆|−|vars(αi)| ·N(αi, ω)
Due to this relation, we may switch between RMP and IRMP almost freely and

choose the formulation which is more convenient for particular task.
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3.3.4 Lifted reduction algorithm

This section describes an algorithm for calculation of IRMP for domain-liftable MLN
based on reduction of the task to calculation of partition functions of (other) MLNs
devised by Kuželka and Wang [1]. The algorithm runs in polynomial time as calculation
of partition functions in auxiliary MLNs is also domain-liftable. The algorithm uses
the hyperplane-representation (H-representation) where the polytope is represented as
an intersection of half-spaces corresponding to a set of linear inequalities of the form
~a · ~x ≤ b. Each facet of the polytope corresponds to one of the inequalities.

Before the actual algorithm description we should also note that the maximal size of
the resulting IRMP is polynomially bounded by the maximal number of formula ground-
ings. Let i-th coordinate of vector ~x correspond to formula αi and let ri = max N(αi, ω)
denote the maximal number of groundings of αi among all possible worlds. The value
of xi can take only values in {0, 1, ..., ri} and since value of each ri is polynomially
bounded in the size of the domain |∆| (ri ∈ O(|∆||vars(αi)|)), so is the maximal size of
IRMP. The algorithm proceeds in the following steps:

1. Enumerate all possible normal vectors ~a for hyperplanes that could be present in the
H-representation by iterating over all linearly independentm-tuples of points in the
bounding polytope. A vector ~v perpenducilar to the set of points may be computed
for example from their generalized cross product. Both ~v and −~v must be taken into
account so the enumeration of possible normal vectors is exhaustive.

2. Construct a new MLN for each normal vector ~a. The MLN contains same predicates
Pi as the MLN in question but with modified weights {(αi, 2 ·a · ln |Ω|) : 1 ≤ i ≤ m}.

3. Calculate value of the partition function Z of the new MLN. The value of b for
the hyperplane is then obtained in this way: if for every possible world ω holds∑

i ai ·N(αi, ω) ≤ b, then Z ≤ |Ω|2b+1. If the latter inequality doesn’t hold, then the
partition function is greater than |Ω|2b+2. Select b as the smallest integer such that
there doesn’t exist any possible world for which

∑
i ai ·N(αi, ω) > b.

4. The previous steps yield a set of linear inequalities describing the IRMP. The set may
be further reduced to minimal subset of constraints, and this step may be performed
in polynomial time w.r.t the size of the domain.

The number of points in the IRMP is polynomially bounded w.r.t. |∆| and so is the
number of m-tuples and normal vectors generated in step 1. Calculation of the partition
function in step 3 is domain-lifted too , so the whole algorithm is also polynomial in |∆|,
yet we can easily see that the number of tuples in step 1 will be enormous. Therefore
we should not expect that the algorithm as stated will be efficient in practice.

3.3.5 RMP role in MLN weight learning

Knowledge of (I)RMP of MLN Φ is beneficiary for solution of maximum-likelihood
MLN weight learning task. As was already discussed in Section 3.3.2, the dual to the
relational marginal problem involves optimization of function L(λ) which happens to
be equivalent to log-likelihood of the MLN. The article of Kuželka, Kungurtsev [14]
further describes how to solve the weight learning problem and also proves that the
task is domain-liftable for MLNs over two-variable fragment of the first-order logic.

The article identifies three important steps towards solution of the task:

1. we need to be able to evaluate the function L(λ) and its gradient,
2. we need to efficiently calculate the (I)RMP,
3. we need to establish a method for optimization of weights.
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For point 2 we may employ the algorithm described in the previous section or its
more efficient alternatives described later in the thesis.

Point 1 — evaluation of likelihood function and its gradient — was also already
covered in Section 3.3.2. The task may be converted to WFOMC using the conversion
process described in Section 3.2.1, that is for every weighted formula (αi, λi) ∈ Φ a new
equivalent formula is added, the new formula contains a new predicate ξi. By setting
the weights of predicates to w(ξi) = eλi , w(ξi) = 1 and all remaining weights to 1,
WFOMC of this augmented set of formulas is then equal to the partition function of
MLN Φ. The numerator of the gradient for each αi is then calculated in similar fashion
as WFOMC(Φ ∪ αiϑ, w, w) for injective grounding substitutions ϑ of the formula αi.

The relation between RMP and optimal solution to the weight learning problem is
established in Lemma 16 in the article of Kuželka, Kungurtsev:

Lemma 16 from [14]: “Let Φ be a set of quantifier-free first-order logic formulas, let
Ω be a set of possible worlds and A=x = c be a maximal system of linearly independent
equations satisfied by the vertices of the relational marginal polytope PR = RMP(Φ,Ω).
Let θ be a point in the η-interior of PR . Then there is an optimal solution λ∗ of the dual
problem (3.7)1 such that A=λ∗ = 0 and any such solution satisfies ‖λ∗‖ ≤ log |Ω|/η.”

The lemma provides two reasons why the knowledge of the relational marginal poly-
tope is important for solving the weight-learning task:

1. the optimal solution satisfies equality A=λ∗ = 0 and the matrix A= may be obtained
from equations that describe the RMP,

2. the upper bound for magnitude of the learned weights is inversely proportional to
the interiority of the target marginal probabilities vector θ in the RMP.

The point 3 — optimization of the weights — is a constrained convex optimization
problem. Ellipsoid algorithm is considered in the proofs provided in the article due
to its favourable theoretical complexity properties, but for practical purposes authors
recommend using projected gradient descent method.

Algorithm for weight learning in MLN then may be summarized in high-level as:

1. Calculate the RMP PR
2. Obtain matrix A= from PR
3. Using selected method for constrained convex optimization, maximize the dual cri-

terion:
max

∑
αi

λi · θi − log
∑
ω∈Ω

e
∑
αi
λi·Qω(αi) s.t.

A= · λ = 0

1 Reference to the equation in this thesis plugged
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Chapter 4
Implementation

This section describes programmatical implementation of the thesis and experiments
performed on different versions of designed (I)RMP solvers — naive implementation of
the domain lifted AISTATS algorithm, implementation of the algorithm with a tweaked
WFOMC oracle and finally integer linear programming (ILP) based solvers. All mod-
ules are implemented in Python 3.6.9 if not stated otherwise.

4.1 Domain-lifted algorithm
The algorithm presented in Section 3.3.4 was implemented as a baseline for comparison
with other implemented algorithms. The script is executable from file aistats.py
in polytopes module. In order to implement the algorithm we need to resolve three
problems:
1. calculation of a perpendicular vector to a m-tuple in higher dimensions,
2. calculation of the partition function,
3. enumeration (and an efficient enumeration) of normal vectors to be checked.

Calculation of normal vector from m-tuple of points consists of two steps. At first
step one of the points is arbitrarily selected and subtracted from the others, so there are
(m−1) possibly linearly independent points remaining. Finding a perpendicular vector
to these points in 2 and 3 dimensions (i.e. for MLNs containing 2, resp. 3 formulas) is
performed by standard means — in 2D case the elements of the only remaining vector
are simply swapped and one of them is negated, in 3D case the perpendicular vector is
computed as a cross product of the two remaining points/vectors. In higher dimensions
the following definition of generalized vector cross product based on calculation of
subdeterminants is used, i.e. for (n− 1) (linearly independent) vectors in n dimensions
we get:

×(~a1, . . . , ~an−1) ≡ det


~i1 ~i2 ... ~in
a1,1 a1,2 ... a1,n
...

... . . . ...
an−1,1 an−1,2 ... an−1,n


Elements in the first row of the matrix are vectors of the standard basis. Somewhat

interesting fact is that even Python scipy library lacks a method for generalized cross
product1, so in order to perform experiments a naive implementation was created which
calculates the product exactly as in the definition.
Example 4.1. (4D cross-product calculation) As a validation example let’s calculate
normal vector to plane defined by 3 points in 4 dimensions according to generalized
cross product definition

~a1 = (1, 2, 3, 4), ~a2 = (0,−1,−2,−3), ~a3 = (−1, 0, 2, 3)
1 Probably because there is no universally accepted definition. Wikipedia article lists 8 different gener-
alizations of cross product.
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×(~a1, ~a2, ~a3) = det


~i1 ~i2 ~i3 ~i4
1 2 3 4
0 −1 −2 −3
−1 0 2 3

 = ~i1 · det

 2 3 4
−1 −2 −3
0 2 3

−

− ~i2 · det

 1 3 4
0 −2 −3
−1 2 3

+ ~i3 · det

 1 2 4
0 −1 −3
−1 0 3

− ~i4 · det

 1 2 3
0 −1 −2
−1 0 2

 =

= (1, 0, 0, 0) · 1− (0, 1, 0, 0) · 1 + (0, 0, 1, 0) · (−1)− (0, 0, 0, 1) · (−1) = (1,−1,−1, 1)

Indeed we may easily check that the result is perependicular to each of the input vectors,
so it is a normal vector to the hyperplane defined by these three points. We may also
observe that all elements of the result are integers, which will hold in general as all
input vectors considered in the algorithm are integers too. As noted in the description
of the algorithm, in addition to an auxiliary MLN constructed from vector (1,−1,−1, 1)
we also have to consider an MLN constructed from the opposite vector so the bounds
of IRMP from the other half-space defined by the hyperplane are not omitted. The
implementation also divides all elements of the vector by their greatest common divisor
so they may be easily stored and retrieved from a lookup table. This way we may avoid
unnecessary repeated calculations for integral multiples of the same vector.

Calculation of the partition function is converted to the WFOMC problem. For-
clift [16][17] program for first-order knowledge compilation was employed as a WFOMC
oracle inside the domain-lifted algorithm. The program internally compiles formulas
into FO d-DNNF (First Order determenistic Decomposable Normal Form) circuit. In-
ference in the circuit takes polynomial time in relative to its size. This property enables
Forclift to perform relatively fast inference, calculation of marginal probabilities for for-
mulas and first of all calculation of the partition function partition functions especially
for domain-lifted instances, where the size of the circuit remains polynomial w.r.t. the
size of the domain. Forclift is implemented in Scala and its CLI provides option for
querying the value of partition function for a first-order theory specified in a file. Un-
fortunately the program is designed to process only one file and terminate, so when
using the vanilla version a new process must be created for each call to the oracle.

The essential key to the performance of the domain-lifted algorithm is the number
of calls to the oracle as this is the most time consuming operation. The algorithm
as stated checks every possible normal vector for points located inside the maximal
bounding polytope. The baseline implementation that was used in experiments follows
the same scheme, only keeping also a set of already checked vectors to avoid unnecessary
repetitive evaluations on the same input.

4.1.1 Forclift wrapper

Executing a new Forclift process for each call to WFOMC oracle proved to be a per-
formance limiting factor. Forclift is executed in Java Virtual Machine (JVM) and in
order to fully utilize runtime optimization capabilities of JVM, a Java wrapper around
Forclift was implemented. The utility is found in forclift-wrapper subdirectory of
the source folder. It is implemented as a server over Netty [18] framework. The wrapper
keeps JVM running and accepts name of files to be processed by Forclift, which are
then passed directly into Forclift internal classes instead of its CLI.

In Python, the client side was implemented with standard socket library. The inter-
process communication may be further improved by implementing asynchronous calls
on client side, as server side is already prepared for handling multiple requests, allowing
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parallelization of calculations, and finding another way of passing the models to Forclift
than by standard files.

Forclift server may be started directly from the command line or implicitly by ex-
ecuting the main file of Python domain-lifted algorithm implementation ai main.py.
For starting the Forclift server directly, use command

java -jar forclift-rmp-wrapper-1.0.jar [PORT]
PORT - optional specification of port (default 8080)

Python file ai main.py starts the server implictly on a random port as default if
user doesn’t specify otherwise. Such instance of the server is shut down when the
program terminates. If user specifies a port number, Python assumes that the server
is running on the specified port and tries to connect there. If the attempt fails, the
process terminates (i.e. it doesn’t even try to start the server again).

4.2 Integer linear programming solvers
This section describes another class of implemented RMP solvers based on integer
linear programs checking realizibality of marginals of an MLN. As solving ILP is NP-
hard task in general, these solvers cannot provide polynomial running time guarantees,
but in practice – as will be shown in Experiments section – their performance proved
to be superior over AISTATS algorithm.

4.2.1 Realizability of statistics
As the first step towards designing more efficient algorithms, an ILP for checking re-
alizability of formula groundings number vector N = (n1, n2, ..., nk) for MLN Φ and
specified domain size |∆| was formulated. The program decides if there exists a pos-
sible world ω with number of groundings N(αi, ω) = ni and in positive case it also
provides variable assignment for the world found. Input to the program is the domain
size |∆|, a list of function-free quantifier-free first-order formulas Φ in CNF, and the
vector of expected number of grounding for the formulas.

In the formulation we will use following symbols (sets and functions):

. IV ars — IRMP model variables. Pred — set of grounded predicates (i.e. every variable is substituted by an element
of ∆). Cl — set of unique clauses among all formulas, clauses are considered equivalent if
it is possible to establish a one-to-one injective mapping between variable names. Clk,ϑ — set of all possible variable substitutions ϑ of clause ck ∈ Cl. CP : Clk,ϑ → IV ars — map from grounded clause to model variables associated
with literals of the grounded clause. Θ(αi) — set of all variable substitutions αiϑ of formula αi. FC : Θ(αi) → IV ars — map from grounded formula to model variables associated
with clauses of the grounded formula

ILP 4.1. (Realizability checking ILP) Using these sets we may define the ILP:

max 0 s.t. (4.1)

∀ p ∈ Pred : vp + vp = 1, vp ∈ {0, 1}, vp ∈ {0, 1} (4.2)
∀ ck,ϑ ∈ Clk,ϑ : Ck,ϑ = max{CP (ck,ϑ)} (4.3)
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∀αiϑ ∈ Θ(αi) : Ai,ϑ = min{FC(αiϑ)} (4.4)

∀ni ∈ N :
∑
ϑ

Ai,ϑ = ni (4.5)

Such definition looks a little bit complicated, but the following description of each
equation hopefully makes it clearer:

1. The optimization criterion (4.1) is just a constant function as the ILP only checks
feasibility of constraints.

2. On line (4.2) two binary variables are created for every possible ground atom in Φ,
variable vp indicates if the grounding is true in current interpretation and variable vp
is its negation. The condition vp + vp = 1 simply ensures that only one of these
variables is true at time. The negated variable is just added for implementation
convenience and we could use term (1− vp) instead as well.

3. Equation (4.3) calculates boolean value of clause under variable substitution ϑ.
Clause is disjunction of literals therefore the boolean value is equal to maximum
of all variables representing the literals. As an example let’s consider clause
smokes(X) ∨ ¬ friends(X,Y ) and a substitution ϑ : {X → John, Y → Paul}. The
constraint then achieves a form:

Ci,ϑ = max{vsmokes(John), vfriends(John,Paul)}

4. Analogically Equation (4.4) calculates boolean value of the whole formula αi under
variable substituion ϑ. The formula is represented as conjunction of clauses so its
boolean value is equal to the minimum among all the variables representing values of
the clauses (under substitution ϑ). Using the clause and substitution from previous
point and by adding another clause smokes(Y ) ∨ ¬ friends(X,Y ) we get:

αi : (smokes(X) ∨ ¬friends(X,Y )) ∧ (smokes(Y ) ∨ ¬friends(X,Y ))

Cj,ϑ = max{vsmokes(John), vfriends(John,Paul)}
Ck,ϑ = max{vsmokes(Paul), vfriends(John,Paul)}
Ai,ϑ = min{Cj,ϑ, Ck,ϑ}

5. Finally in (4.5) the total number of satisfied groundings per each formula is set equal
to corresponding value of the input vector.

An example of full definition of IRMP for statistics feasibility checking over two
formulas on the domain of size two is provided in Appendix C.

Gurobi [19]) is used as ILP solver in the implementation. When the solver checks
feasibility of generated model and finds no violation of constraints, it also returns an
assignment of all variables which in turn represent one of possible worlds with specified
formula groundings vector N — we should note that the assignment isn’t necessarily
unique and there may be substantially more possible worlds satisfying the same set
of constraints. We should also stress that this program doesn’t perform containment
test, i.e. it doesn’t decide whether the point corresponding to specified number of
groundings is inside the IRMP for the MLN Φ. The IRMP (Equation (3.9)) is defined
as a convex hull of all feasible formula grounding counts, therefore even if the ILP model
is evaluated as infeasible by the solver, the point may be still contained in the IRMP.
But the negative result still provides us at least some information — in such case we
can conclude the point is definitely not a vertex of the IRMP.
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The model generally creates O(|∆|k) ground atom variables (where k represents

maximum number of variables in any predicate, i.e. k = max{|vars(Predi)|}) for
every possible ground substitution and similar asymptotic bounds based on maximum
number of varibales in a clause/formulas hold for number of model variables associated
with clauses and formulas. The number and size of constraints is also polynomially
bounded by the domain size and maximum number of variables present in respective
conditions. However, even though the size of the model is polynomial in |∆|, it grows
rather steadily. In addition solving ILP is an NP-hard problem, so from theoretical
point of view algorithms based on ILP cannot provide more favourable guarantees even
for domain-liftable MLNs to the algorithm based on WFOMC reduction.

Python implementation of this ILP is stored in file possible world.py in polytopes
module. It actually provides slightly more features, which are documented in the code
or described in the following sections.

4.2.2 Improvements to ILP definition
The definition of ILP presented in previous section provides a tool for checking real-
izability of arbitrary formula groundings count vector, but it is not really helpful for
constructing the IRMP. We may actually construct the IRMP by solving the ILP for
each of O(|∆|

∏
|vars(αi)|) points in the maximal bounding polytope, which will output a

list of all possible worlds, but the number of calls will obviously be enormous. In this
subsection modifications of the ILP definition leading to more efficient calculation of
IRMP will be discussed.

The first modification is related to Equation (4.5). We may easily see that we don’t
have to restrict the constraints just to equalities, but we may also include inequalities.
By this generalization we may answer more questions related to the formula grounding
vector just by changing the last set of constraints, for example:. given the vector N = (n1, ...nk) and keeping all but one element ni fixed, is there a

possible world for such formula grounding count?

∀nj ∈ N, ni 6= nj :
∑
ϑ

Aj,ϑ = nj

ni =
∑
ϑ

Aj,ϑ

(here nj are integers and ni is variable, if the model is feasible we may retrieve its
value from the solver in the same way as with boolean values for predicate assignment
substitution),. or given the vector N, we may split its elements into two disjunct sets N= and N≤
and check feasibility of the model with equality constraints for elements in N= and
inequality constraints for elements in N≤:

∀ni ∈ N= :
∑
ϑ

Ai,ϑ = ni

∀nk ∈ N≤ :
∑
ϑ

Ak,ϑ ≤ nk

. and any possible combination of equalities and non-strict inequalities for each element
of N independently, or even introducing interval checks on ni (i.e. is there a possible
world with number of groundings for formula αi in interval [li,ui]?):

∀ni ∈ N : li ≤
∑
ϑ

Ai,ϑ ≤ ui
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Figure 4.1. Left Illustration of execution of the “cutting” ILP algorithm based on fixing
all but one coordinates for the IRMP in 2D case (i.e. for two formulas). Orange lines
represent each cut and we may imagine as proceeding in order from line 1, red points
represent the extramal coordinates for possible world in each cut. Note that the extremal
points found in a cut may not necessarily be vertices nor even lie on the boundary of the
polytope (line 3) and there may be even gap (line 4), i.e. a cut where no possible world
is found. Right After running the algorithm for all cuts, we may construct the IRMP as a
convex hull of all discovered extremal points. In this case, only one more vertex was found.

ILP 4.2. (“Cutting” ILP) The first point in the previous listing actually leads to another
possible modification of the ILP. If we consider all but one element of N to be fixed
(again denoting the free element as ni), we may also search not only an arbitrary
possible world with admissible value for ni but also possible worlds with maximal or
minimal value for ni just by adding the variable to the optimization criterion function
and set the goal to maximize/minimize it:

max/min ni

This modification of the ILP leads to another — slightly less naive — algorithm for
calculation of the IRMP. Instead of execution for every possible point in the maximal
bounding polytope we may just iterate over all posible values for vector (x1, ..., xn−1)
from fixed subset of n − 1 coordinates and for every such cut find the maximal and
minimal value for the n-th coordinate by executing the ILP twice for each optimization
sense separately. Illustration of this procedure for 2D case is shown in Figure 4.1.
To minimize the number of calls we should leave out the dimension with the highest
maximal possible number of groundings. Nevertheless this algorithm doesn’t provide
any substantial improvement in execution speed. There also exists a possibility that
no feasible solution is found for the current cut even when the cut actually intersects
the IRMP, so in order to exactly compute the whole IRMP we cannot perform some
sort of fast-circuit logic and cancel the execution when such a cut is visited (this is also
illustrated in Figure 4.1). On the other hand, if we don’t need to calculate the IRMP
exactly, we may easily change this algorithm to heuristic one just by skipping some
cuts during the execution either randomly or by application of some rule (e.g. skip odd
values or check only values divisible by some integer).

4.3 Convex hull algorithm
This section proposes an algorithm based on ILP calculation constructing the IRMP
by iteratively searching a new point belonging to the polytope which achieves maximal
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Figure 4.2. Illustration of execution of the ILP–convex hull algorithm on 2D case (i.e.
for an MLN with two formulas). a. Initial vertex search identified corner vertices B, C
as members of the IRMP. Edge BC (facet in higher dimensions) is pushed to the queue,
immediately popped and the point with the maximal distance from the edge in the direction
indicated by the grey arrow is calculated by ILP. The new point A is added to the convex
hull and the two new edges are pushed to the queue. b. Edge AC is popped from the queue
and the ILP is executed again to find next IRMP vertex D. c. The algorithm continues
with processing edge AB. d. Finally (with many steps skipped) when the queue is empty,

we may conclude that the whole IRMP was found.

distance from a facet of the current polytope. In this sense the algorithm proceeds in
opposite direction to AISTATS algorithm described in Section 3.3.4 — while AISTATS
algorithm starts from the maximal bounding polytope and iteratively restricts its size
until no more conditions may be created (i.e. until all normal vectors are enumerated
and checked in the naive implementation), the proposed algorithm builds the IRMP
bottom-up. The polytope state in each step of the algorithm represents current lower
bound on the actual IRMP range and the algorithm gradually tightens the gap until
no more vertices could be found.

The algorithm internally stores current set of discovered vertices of the polytope and
for searching a new vertex it uses hyperplane representation of polytope’s facets, so
we need to switch between both V- and H-representation of the polytope. Qhull [20]
library, resp. its Python port in scipy library, is used for manipulating the polytopes.

The algorithm also requires calculation of distance between a point and a facet of the
current polytope. H-representation of the polytope comes handy in this case as we can
then easily retrieve the equation of the hyperplane defining the facet. The equation in
Qhull is stored as ~a ·~x+b ≤ 0. Using standard formula for point-to-hyperplane distance
we can calculate the distance between point ~y and its nearest point in the facet ~x as:
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‖~x− ~y‖2 = |~y · ~a+ d|
‖~a‖2

In the defintion of ILP which follows immediately we may actually omit the denom-
inator as we consider only one facet at time, so the norm of vector ~a remains constant
and selection of the furthest point depends only on the value of the numerator.
ILP 4.3. (ILP finding possible world furthest from a hyperplane) The task of finding
a point representing a possible world with maximal distance from a facet of polytope
represented by the hyperplane ~a ·~x+ b ≤ 0 for MLN Φ is solved by ILP (using notation
from the listing on the page 26):

max d s.t. (4.6)

∀ p ∈ Pred : vp + vp = 1, vp ∈ {0, 1}, vp ∈ {0, 1} (4.7)
∀ ck,ϑ ∈ Clk,ϑ : Ck,ϑ = max{CP (ck,ϑ)} (4.8)
∀αiϑ ∈ Θ(αi) : Ai,ϑ = min{FC(αiϑ)} (4.9)

∀αi ∈ Φ : xi =
∑
ϑ

Ai,ϑ (4.10)

b+
∑
i

ai · xi ≥ 0 (4.11)

d = | b+
∑
i

ai · xi | (4.12)

In the criterion function (Equation (4.6)) we maximize variable d which is propor-
tional to distance of a point to the facet of the current polytope, calculation of this
variable is captured in the last Equation (4.12). Equations (4.7) through (4.9) rep-
resent the theory Φ and are actually same as equations (4.2)–(4.4) from the ILP for
feasibility checking. Equation (4.10) stores current number of true groundings for for-
mula αi into variable xi and Equation (4.11) ensures the search is performed in the
half-space complementary to the one defined by the hyper-plane inequality. The as-
signment to varibles xi for the optimal value of d then corresponds to coordinates of
the possible world which is furthest from the facet.

The penultimate equation (4.11) should formally be a strict inequality so the ILP
doesn’t consider points located exactly on the facet, but gurobi solver supports non-
strict inequalities only. If the coefficients describing the hyperplane are integers, the
constraint can be substituted by inequality

b+
∑
i

ai · xi ≥ 1

as then both b and the scalar product 〈a, x〉 are integers. However Qhull library in-
ternally normalizes the normal vectors of H-representation to unit length, so the co-
efficients are floating point numbers and such fix is unapplicable in this case. On the
other hand, due to the normalization the value of d in the implementation is actually
real distance between the point and the facet, even though the denominator is omitted
in the ILP formulation. A constraint enforcing that d is greater than some threshold
then may be added to the model to exclude points on the facet. The threshold may be
chosen either arbitrarily or calculated. The calculation requires reconstructed vector ~a′
of integer coefficients of the hyperplane’s normal vector from the normalized vector ~a
(the greatest common divisor of the reconstructed coefficients must be equal to 1). The
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maximal value of the threshold is then equal to the minimal non-zero distance between
a hyperplane with normal vector ~a′ and an integer point. This distance is proportional
to inverse of vector’s norm [21] and limits on the threshold ε are:

0 < ε <
1
‖~a′‖2

(≤ d)

The last step that must be resolved before the actual description of the algorithm
is creation of initial polytope, because Qhull requires as an input definition of at
least (n + 1) non-colinear points for specification of a polytope in the space of di-
mension n. The points may be generated in multiple ways:

1. the previously specified ILP 4.3 may still be employed using facets of the maximal
bounding polytope instead (i.e. hyperplanes with equations xi = 0 or xi = ri, where
ri is number of possible injective groundings of formula αi), it may however happen
that the furthest point for multiple facets will be the same,

2. the ILP 4.2 for detecting the maximum/minimum coordinates for specified cut may
be used until (n+ 1) required points are found,

3. or we may check satisfiability in vertices (“corners”) of the maximal bounding poly-
tope

The implementation uses process described in the last point. For this task we could
employ the very first ILP 4.1 for checking realizability of formula statistics at the se-
lected point, but we may also exploit the fact that the vertices of the maximal bounding
polytope actually represent extremal statistics for achievable number of groundings. In-
stead of calling ILP over grounding of original the first-order theory, we may check satis-
fiability of derivated propositional theory which uses only predicate names, e.g. instead
of predicate formula α : edge(X,Y ) ∨ ¬edge(Y,X) ∨ foo(X) we create propositional
formula edge ∨ ¬edge ∨ foo (formula with multiple occurences of the same predicate
name with different order of variables is selected intentionally to show that the variables
are irrelevant in this particular problem). This trivial transformation can be performed
because MLN formulas are both function- and quantifier-free. Assigning boolean value
to the proposition edge may be interpreted as assigning the same boolean value to all
possible groundings of predicate edge(X,Y ). When the propositional formula is satis-
fiable, so are all groundings in its predicate counterpart and therefore N(αi, ω) = ri,
conversely when it is unsatisfiable then none grounding may be true and N(αi, ω) = 0.

A SAT-solver can be employed for checking whether a corner vertex of the maximal
bounding polytope is also a vertex of the IRMP, but in the implementation an ILP
formulation is used again. The ILP model size in this case depends only on the number
of formulas and distinct predicate names, so it is independent of the domain size.
ILP 4.4. (Corner checking ILP) The following ILP checks if vertex V = (v1, ..., vn),
vi ∈ {0, ri} (here ri again denotes the maximum number of possible groundings of
formula αi) of the maximal bounding polytope represents a possible world by checking
propositional theory Φ′ created from predicate theory Φ:

max 0 s.t.

for each atom p : vp + vp = 1, vp ∈ {0, 1}, vp ∈ {0, 1}
for each clause c : x+

c = max{vp if p in c} (4.13)
for each clause c : x−c = max{vp if ¬ p in c} (4.14)
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for each clause c : xc = max{x+
c , x

−
c } (4.15)

for each formula αi : Ai = min{xc if c in αi} (4.16)
for each vi = 0 : Ai = 0 (4.17)
for each vi > 0 : Ai ≥ 1 (4.18)

The definition is indeed very similar to the realizability checking ILP 4.1, differences
arise due to the fact that a propositional theory is used in this case so we don’t need to
evaluate assignments to all possible variable substitutions. Equations (4.13) to (4.15)
describe truth value of each clause, equation (4.16) is again a boolean value of the
whole formula αi. Last two equations connect the truth value of formula with expected
number of groundings — it should be zero for vertex coordinates equal to zero and
non-zero for the others (i.e. coordinates equal to ri). If the constraints of the ILP are
feasible, the vertex in question is actually also a vertex of the IRMP.

In order to find the initial polytope for n formulas we just need to iterate over corners
of the maximal bounding polytope until (n + 1) points satisfying the ILP are found.
If all corners 2n are exhausted and the number of vertices for the initial polytope still
didn’t reach (n+1), we have to resort to another methods — our implementation then
uses algorithm based upon “cutting” ILP 4.2 until the required number of initial points
is detected.

Finally we can describe the algorithm for calculation of IRMP for MLN Φ using
following two methods:

. GET INITIAL HULL — method for creating the initial polytope (by combination of
ILP 4.4 and ILP 4.2 if necessary). FURTHEST FROM FACET — method for finding coordinates of possible world not in-
cluded in the current polytope with the greatest distance from the selected facet of
the current polytope (by ILP 4.3)

The algorithm then proceeds in following steps:

Algorithm for calculation of IRMP
input: (MLN Φ, domain size |∆|)
1 queue = ∅
2 IRMP ← GET INITIAL HULL(Φ)
3 queue = {facets of IRMP}
4 until queue is empty ; do
5 F ← queue.pop()
6 P ← FURTHEST FROM FACET(F)
7 IRMP ← IRMP ∪ {P}
8 F ′ ← {new facets of IRMP}
9 queue.push(F ′)
10 done
11 return IRMP

If it is not necessary to calculate the IRMP exactly, the algorithm may be easily
changed to heuristic one. One possible way how to achieve this is to introduce some
randomization parameter ρ which will decide whether to execute calculation for current
facet retrieved from the queue or to skip it. Although we are not able to provide
rigorous guarantees about such approximation, Figure 4.3 illustrates that given the
approximation of the IRMP and a list of facets that were skipped and not further
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0 1

1

Figure 4.3. Illustration of the extent of maximal error for the heuristic version of the main
algorithm that. The IRMP (or more precisely its approximation) is highlighted in blue,
edges which were skipped are marked red and the area of possibly unexplored vertices of

the IRMP may is highlighted in pink.

explored during the execution we may actually bound the maximal extent of the area
where an unexplored vertices could be present. The area is bounded by hyperplanes of
the unskipped facets, so it is another convex polytope. While the result returned by the
randomized algorithm represents the lower bound of the IRMP, the polytope obtained
from the unskipped facets is actually the upper bound. In other words — execution
of the algorithm that is intended to provide lower bound for the IRMP simultaneously
yields also the upper bound (if we store list of (un)skipped facets). It is also somewhat
interesting that while the lower bounding polytope is stored in V-representation as
a convex hull of potential vertices, the upper bounding polytope is retrieved from H-
representation of all closed facets (i.e. facets that were already processed and no possible
world in the complementary half-space was found), indicating some sort of duality
between these representations.

4.4 Experiments
This section evaluates performance of the implemented algorithms for calculation of
the RMPs over some MLNs. Experiments were executed on a laptop with 4GB RAM,
4 × Intel i3 2,2 GHz CPU running on Ubuntu 18. Some figures and tables generated
from experiments are located in Appendix D in order to not filling the following pages
by an unnecessary amount of images.

As a first case we will use two-formula MLN knows and likes:

. 1 likes(X,Y ) ∨ ¬ knows(X,Y ). 3 ¬ knows(X,Y ) ∨ ¬ likes(X,Y ) ∨ friends(X,Y )

This optimistic example could be interpreted as a representation of the world where
1. everyone likes all people they know and if they do not like someone, it’s just because
they do not know them, 2. if you know and like someone, the you are a friend with
them.

Images in Figure 4.4 show that ILP is indeed faster than the naive algorithm by an
order of one or two magnitudes (the time scale in the Top image is logarithmic). We may
also see that execution of Forclift oracle in server mode also substantially improves run-
time. Bottom image shows the output of the naive algorithm and we may see it is not
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Figure 4.4. Top Running times of likes and knows MLN according to the domain size.
Note the time scale is logarithmic. Data in tabular form may be found in Table D.1.
Bottom Inaccurate representation of IRMP for |∆| = 8 calculated by the implementation
of the naive algorithm. The true IRMP should be just a triangle with vertices [0,64], [64,64]

and [64,0] (in this particular execution the constraint X 6= Y was omitted).

right, as the actual RMP should be actually a triangle connecting all but one corners.
This is probably due to the fact that partition function of the auxiliary polytopes is too
high and calculation of coefficient b becomes too imprecise. The ILP implementation
returns the polytope correctly in significantly shorter time (see Figure D.1).

As a second test example following friends MLN was considered:

. 1 friends(X,Y ). 1.2 ¬ friends(X,Y ) ∨ friends(X,Z) ∨ friends(Y, Z)

As the second formula contains three free variables, it is not domain liftable so only
the ILP algorithm was tested.
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Figure 4.5. Execution time for friends MLN for domain sizes 3–7.

0 1

1

Figure 4.6. RMP for friends MLN and domain size 7 (purple), 5 (red) and 3 (black). We
can see that the convex hull is gradually becoming more complex and also that RMP for
larger domains are indeed subsets of those for smaller one. RMPs for sizes 4 and 6 are in

Appendix D.

In Figure 4.5 we see that execution time rises sharply for the domain size of 7.
Domain sizes greater than 7 couldn’t be assessed as the number of variables in the ILP
exceeds the maximum of the gurobi license.

Figure 4.6 confirms that RMP over the same set of formulas for larger domains
are subsets of RMPs for the smaller domains, i.e. in the figure the largest polytope
corresponds to domain size 3 and volume of RMP then gradually shrinks.
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Chapter 5
Conclusion

The main goal of the thesis was designing efficient algorithms for construction of rela-
tional marginal polytopes (or their integer counterparts, which are — as was established
in the work — equivalent). The introductory part of the work described basic terminol-
ogy and principles related to the first-order (predicate) logic and also discussed possible
extensions of ordinary bivalent logic for capturing uncertainty or probabilistic informa-
tion. As an addendum to this, two classes of commonly used probabilistic graphical
models were also briefly described — Bayesian networks and Markov networks. The
latter model is directly related to the main topic of the thesis, Markov logic networks
(MLN). On the other hand the former may be considered highly unrelated to MLNs,
but its description was incorporated into the thesis due to the fact that it receives
significantly more space in the curriculum of the study programme, so it was rather
natural to describe Markov networks by comparison to the Bayesian ones.

Chapter 3 formally introduced Markov logic network, which is a probabilistic logic
based on ideas of Markov networks applied into first-order logic. As was remarked, the
MLN may be considered a template for creating Markov networks which are different in
size but share similar structures. The chapter followed with definition of the relational
marginal problem, the task of finding the maximum entropy probability distribution
over the possible world of the MLN satisfying requirements on marginal probabilities
for formulas in the MLN. The main topic of the thesis — relational marginal poly-
topes (RMP)— stems from the relational marginal problem as it represents the set of
feasible marginal probabilities. An algorithm for constructing the RMP for domain-
liftable MLNs is described and finally a relation between solution of the maximal-
likelihood weight learning task and the RMP is described.

In chapter 4 (Implementation) a number of algorithms for construction of relational
marginal polytopes was described and two of them — a baseline domain-lifted algorithm
based on calls to WFOMC oracle and an algorithm based on ILP for finding coordinites
of a possible world with maximal distance relative to a hyperplane — were compared. As
was anticipated, the baseline algorithm based was overperformed by ILP based exact
solver. In respect to the goal of designing efficient heuristics, two possible heuristic
criterions for deciding whether to process or skip a facet were described. However, no
rigorous guarantees were provided for the heuristics so neither of them were proved to
be a proper approximation algorithm, but a method how to assess the limits of possible
error was described. This is due to the fact that during the IRMP vertex search the
V-representation of potential vertices happens to be a lower boundary of the IRMP
and the H-representation of all processed and closed facets (closed in a sense that it
was proved no possible world exists in the complementary hyperspace) is actually the
upper boundary of the IRMP.

The last goal of the thesis — incorporating the IRMP construction into algorithm
for maximum-likelihood weight learning of MLN or finding a way how to detect when
the polytope is not fully-dimensional — was not fullfiled as of the date of submission.
The main goal of the thesis was however satisfied.
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In the ultimate paragraph we propose a few possible improvements to the work or

future tasks. First, it would definitely be beneficiary to test the designed algorithms
on a set of more challenging MLNs instances than those used in the experiments sec-
tion. Author expects that if the experiments were performed on a more modern and
powerful machine, the difference between the naive algorithm and the ILP algorithm
would be even bigger, as the ILP solver should be probably able to benefit more from
improvements in available resources. With respect to the naive domain-liftable algo-
rithm, a more reasonable method for selection of normal vectors to be processed could
be implemented, however it is rather questionable if it is worth the effort as the results
of experiments show that the algorithm based on Forclift as a WFOMC oracle becomes
inaccurate rather quickly even for relatively small instances. Another oracle — for
example based on Sententical Decision Diagrams (SDD) [22] calculating the WFOMC
as WMC of its the formula groundings — could be used instead, but it doesn’t utilize
domain-liftability properties of WFOMCs. And as the last remark it seems that the
ILP algorithm could be also parallelized rather easily, as there are probably only three
probably trivial race-conditions — pushing/popping facet from the queue and maybe
update to the Qhull object which captures current state of the polytope.
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Appendix A
List of abbreviations

CLI command line interface
CNF conjuctive normal form
FOL first-order logic (also predicate logic)
ILP integer linear programming

IRMP integerrelational marginal polytope
JVM Java Virtual Machine

KB knowledge base
MLN Markov logic network
MRF Markov random field (also Markov network)
RMP relational marginal polytope
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Appendix B
Supplementary data and documentation

B.1 Source code
Source code of the thesis is publicly available at https://github.com/kozakja4/
m_thesis

B.2 Content of the repository
root
|_ Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . source code folder
| |_ python . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . source codes of python modules
| |_ java . . . . . . . . . . . . . . . . . . . . . . . . . . . source code of java module forclift-wrapper
|_ img . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . figures including their TikZ or Python definitions
|_ text.pdf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . text of the thesis
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Appendix C
Feasibility IRMP example

Check feasibility for statistics vector N = (1, 2) over domain ∆ = {Peter, John} for
formulas Φ:

. α1 : edge(X,Y ) ∧ (edge(Y,X) ∨ friends(Y,X)). α2 : ¬ friends(X,Y ) ∨ ¬ smokes(X) ∨ smokes(Y )

We’re checking feasibility, so we formally optimize w.r.t. constant function.

max 0 s.t.

Create two binary variables (i.e. their value is either 0 or 1) for every possible
grounding of predicates in Φ and set their sum to be equal to 1. The variables represent
whether the predicate is true (no overline) in current interpretation or not (denoted by
overline), thus this condition enforces that exactly one of them is true at given time.
We’ll denote Paul as P and John as J.

edge(P, J) + edge(P, J) = 1
edge(J, P ) + edge(J, P ) = 1

friends(J, P ) + friends(J, P ) = 1
friends(P, J) + friends(P, J) = 1
smokes(P ) + smokes(P ) = 1
smokes(J) + smokes(J) = 1

Create indicator binary variable for all variable substitutions of each unique clause
(i.e. if the clause is present in multiple formulas, do not create a new variable). There
follows list of unique clauses with their shortened name:

e := edge(X,Y )
ef := edge(Y,X) ∨ friends(Y,X),
fss := ¬ friends(X,Y ) ∨ ¬ smokes(X) ∨ smokes(Y )

Clauses are disjunctions of variables, therefore we define the corresponding variables
to be the maximum of all predicate variables present in the clause.

e(P, J) = max{edge(P, J), 0}
e(J, P ) = max{edge(J, P ), 0}
ef(P, J) = max{edge(P, J), friends(P, J), 0}
ef(J, P ) = max{edge(J, P ), friends(J, P ), 0}
fss(P, J) = max{friends(P, J), smokes(P ), smokes(J), 0}
fss(J, P ) = max{friends(J, P ), smokes(J), smokes(P ), 0}
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C Feasibility IRMP example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now we define binary indicatory variables representing truth value of the whole for-

mula as a minumum of all clauses variables defined in previous paragraph for particular
variable substitution (i.e. we represent boolean value of their conjunction).

A1(P, J) = min{e(P, J), ef(P, J), 1}
A1(J, P ) = min{e(J, P ), ef(J, P ), 1}
A2(P, J) = min{fss(P, J), 1}
A2(J, P ) = min{fss(J, P ), 1}

Finally we add constraint which sets total number of groundings for each formula
equal to corresponding elements of the vector N:

A1(P, J) +A1(J, P ) = n1 = 1
A2(P, J) +A2(P, J) = n2 = 2

If the model is feasible, we may retrieve truth values assigned to each predicate by
querying their corresponding variables.
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Appendix D
Images from experiments

This appendix contains images generated or created from the results of experiments
which were not included directly into Section 4.4.

domain size Forclift Client2D ILP
2 53 1.5 0.1
3 250 3.8 0.2
5 - 21 1.0
8 - 120 5
10 - - 12

Table D.1. Runtime of implemented algorithms on knows and likes MLN. Forclift – naive
implementation, Client – Forclift running in Java server, ILP – ILP solver.

Figure D.1. RMP for knows and likes example on the domain size 8 as output by the ILP
algorithm.
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D Images from experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure D.2. RMP for friends example for the domain sizes 7 (left) and 6 (right).

Figure D.3. RMP for friends example for the domain sizes 5 (left) and 4 (right).
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