
MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

461438Personal ID number:Prysiazhniuk YevaStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Medical Electronics and BioinformaticsStudy program:

BioinformaticsSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Measuring Arterial spin labeling MRI - calibration from M0-scans with background suppression

Master’s thesis title in Czech:

Vyhodnocení Arterial spin labeling MRI – kalibrace z dat s potlačením pozadí

Guidelines:
Arterial spin labeling MRI is a non-invasive method for measuring brain perfusion using magnetically labeled water. To
obtain absolute quantification, use of a so-called M0 calibration scan is necessary to establish the equilibrium blood
magnetizaion. Under certain circumstances, this calibration M0-scan is acquired with reduced tissue signal called
background suppression. Traditionally, such scans are used for relative quantification only or discarded. The goal of the
project is to correct for the signal loss to allow full quantitative use of the data. Correction of the background suppression
is, in theory, straightforward as the correction can be reconstructed from the timings and intensity of the background
suppression pulses used in the acquisition. This kind of correction is part of the quantification routines implemented in the
pipeline for processing ASL data called ExploreASL (Mutsaerts et al. 2020) . In practice, such a simple solution does not
deliver satisfactory result as many other parameters comes to play such as efficiency of the suppression pulses, individual
relaxation times, or the type of brain tissue. The goal of this project will be to establish the accuracy of the correction in
different scenarios and propose a robust solution that takes into account the spatial position in the brain, To test and
validate
this approach, a dataset of thirty volunteers of different ages will be used containing both standard calibration scans as
well as scans with background suppresion, thus allowing a comparison with a gold-standard quantification. The student
will
establish the accuracy of the calibration under different scenarios in different scan types – 2D EPI and 3D GRASE – with
a different range of parameters, and propose a tailored solution for each of the scenarios to allow to choose the best
approach
in clinical practice, where the standard calibration scans are not available.
The student is expected to perform a literature search on articles about background suppresion in ASL, analyze the
currently used methods for background suppressed acquisition and summarize them in the thesis. Subsequently, the
student will propose an optimal way for solving the problem and define a set of goals and requirements for the
developed metho, and quantitative measures used to evaluate its performances.
The outcome of the project will be a report summarizing the usability of the method for different scanners, sequences, and
brain regions as well as an implementation of the extension of the ExploreASL pipeline for use in clinical research.
The project will be supervised by Dr. J. Petr (Helmholtz-Zentrum Dresden-Rossendorf) and co-supervised by Dr. H.
Mutsaerts (Amsterdam UMC) who will provide the access to data. The student will work with the ExploreASL software for
the ASL data analysis and write custom Matlab scripts for the data evaluation.

Bibliography / sources:
[1] Alsop, David C., John A. Detre, Xavier Golay, Matthias Günther, Jeroen Hendrikse, Luis Hernandez-Garcia, Hanzhang
Lu, et al. 2015. “Recommended Implementation of Arterial Spin-Labeled PerfusionMRI for Clinical Applications: A Consensus
of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia.” Magnetic Resonance in
Medicine: Official Journal of the Society of Magnetic Resonance in Medicine
/ Society of Magnetic Resonance in Medicine 73 (1): 102–16
[2] Garcia, Dairon M., Guillaume Duhamel, and David C. Alsop. 2005. “Efficiency of Inversion Pulses for Background
Suppressed Arterial Spin Labeling.” Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance
in Medicine / Society of Magnetic Resonance in Medicine 54 (2): 366–72
[3] Heijtel, D. F. R., H. J. M. M. Mutsaerts, E. Bakker, P. Schober, M. F. Stevens, E. T. Petersen, B. N. M. van Berckel, et
al. 2014. “Accuracy and Precision of Pseudo-Continuous Arterial Spin Labeling Perfusion during Baseline and Hypercapnia:
A Head-to-Head Comparison with 15O H2O Positron Emission Tomography.”NeuroImage 92 (-): 182–92

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1



[4] Hernandez-Garcia, Luis, Anish Lahiri, and Jonas Schollenberger. 2018. “Recent Progress in ASL.” NeuroImage, no.
December 2017 (January): 1–14
[5] Mutsaerts, Henk J. M. M., Jan Petr, Paul Groot, Pieter Vandemaele, Silvia Ingala, Andrew D. Robertson, Lena Václavů,
et al. 2020. “ExploreASL: An Image Processing Pipeline for Multi-Center ASL Perfusion MRI Studies.” NeuroImage, June,
117031
[6] Williams, D. S., J. A. Detre, J. S. Leigh, and A. P. Koretsky. 1992. “Magnetic Resonance Imaging of Perfusion Using
Spin Inversion of Arterial Water.” Proceedings of the National Academy of Sciences of the United States of America 89
(1): 212–16

Name and workplace of master’s thesis supervisor:

Mgr. Jan Petr, Ph.D., Helmholtz-Zentrum Dresden-Rossendorf

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 11.02.2021

Assignment valid until: 30.09.2022

_________________________________________________________________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureMgr. Jan Petr, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 2 from 2CVUT-CZ-ZDP-2015.1



Czech Technical University
Faculty of Electrical Engineering
Department of Computer Science

Measuring Arterial spin labeling MRI - calibration from M0-scans
with background suppression

Yeva Prysiazhniuk

Master’s program: Medical Electronics and Bioinformatics
Specialization: Bioinformatics

Supervisor: Mgr. Jan Petr, Ph.D.

Prague, May 2021



Supervisor:
Mgr. Jan Petr, Ph.D.
Institute of Radiopharmaceutical Cancer Research
Helmholtz-Zentrum Dresden-Rossendorf
Bautzner Landstrasse 400
01328 Dresden
Germany

Copyright © 2021 Yeva Prysiazhniuk

ii



Declaration

I hereby declare I have written this master thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles for
writing an academic thesis. Moreover, I state that this thesis has neither been submitted
nor accepted for any other degree.

Prague, 2021

............................................
Yeva Prysiazhniuk

iii





Abstract

Keywords:
ASL MRI, perfusion imaging, brain imaging, ExploreASL, M0 calibration.

Arterial spin labeling (ASL) is a method for magnetic resonance imaging (MRI) that
allows to measure brain perfusion non-invasively using magnetically labeled water instead
of using radioactive tracers or contrast agents. To obtain absolute quantification, the value
of equilibrium magnetization in arterial blood needs to be obtained in every patient. This is
usually done with the use of a so-called M0 scan that can be rapidly obtained along with the
ASL measurement. Despite the acquisition of an M0-scan is recommended in the majority
of literature, it is not always available in practice. This work proposes a novel approach
of M0-scan estimation from the ASL scans despite that the static-tissue signal is actively
suppressed there. Two different approaches are implemented and tested - a simple single-
tissue model, and an advanced model that assumes mixing of signal of multiple tissues with
different relaxation properties. The methods were tested on real MRI data (2D EPI and 3D
GraSE readouts) acquired in five healthy volunteer in terms of accuracy and inter-session
intra-subject reproducibility in M0 estimation and subsequent perfusion quantification.
This work lays ground for potential use in clinical practice, though further testing in larger
population is needed to establish the performance in a wider spectrum in image acquisitions
settings.
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Kĺıčová slova:
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Arterial spin labeling (ASL) je metoda pro zobrazováńı magnetickou rezonanćı (MRI),
která umožňuje měřit prokrveńı mozku neinvazivně pomoćı magneticky označené vody
namı́sto použit́ı radioaktivńıch indikátor̊u nebo kontrastńıch látek. K źıskáńı absolutńı
kvantifikace je třeba u každého pacienta źıskat hodnotu rovnovážné magnetizace v ar-
teriálńı krvi. To se obvykle provád́ı pomoćı takzvaného M0 skenu, které lze rychle źıskat
spolu s měřeńım ASL. Navzdory tomu, že je použit́ı M0 skenu doporučeno ve většině
literatury, neńı M0 sken v praxi vždy k dispozici. Tato práce navrhuje nový př́ıstup k
rekonstrukci M0 sken̊u z ASL sken̊u, přestože v nich je statický signál z tkáńı aktivně
potlačen. Byly naimplementovány a otestovány dvě r̊uzné metody - jednoduchý model
pracuj́ıćı s jedńım typem tkáně a pokročilý model, který předpokládá směs signálu z v́ıce
r̊uzných typ̊u tkáńı s r̊uznými relaxačńımi vlastnostmi. Obě metody byly otestovány na
reálných MRI datech (ze sekvenćı 2D EPI a 3D GraSE) naměřených v pěti zdravých do-
brovolńıćıch a porovnány z hlediska přesnosti a reprodukovatelnosti opakovaných měřeńıch
jak při odhadu M0-skenu, tak při jeho zapojeńı do kvantifikace prokrveńı. Tato práce
připravuje základy pro potenciálńı použit́ı v klinické praxi, ačkoli k prokázáńı efektivity
algoritmu při použit́ı v širš́ım spektru r̊uzně nastavených MRI sekvenćı je zapotřeb́ı daľśıho
testováńı ve větš́ı populaci.
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Chapter 1

Introduction

1.1 Perfusion imaging

Perfusion refers to fluid passage, blood in this work, through the circulatory or lymphatic
system to an organ or tissue. Poor perfusion can lead to serious clinical conditions, such as
angina pectoris or ischemic stroke, whereas increased perfusion can signify inflammatory
processes or generation of new tissue as in cancer. Perfusion imaging of blood passage
through organs and tissues is currently gaining attention in clinical diagnostics and re-
search applications. Perfusion imaging can identify issues with the decreased blood supply,
restricted blood flow due to the changes in the blood vessels, physiological changes, and
abnormalities; it is closely correlated with the metabolism in the tissues and electrical ac-
tivity in the brain [1] [2]. The organs of the highest interest for perfusion imaging are the
brain and the heart [3], though renal [4], liver [5], human eye [6], and prostate [7] perfusion
imaging techniques are currently under active research and development. Particularly,
cerebral perfusion imaging commonly focuses on measuring cerebral blood flow (CBF).
Alterations in CBF are closely related to many brain disorders [8] and, therefore, they
are of particular interest in neuroscience. Perfusion is an important parameter in studies
and diagnostics of age-related changes in the brain [9], neurodegenerative diseases [10] [11]
[12], neurovascular diseases [13], multiple sclerosis [14], brain tumors [15], traumatic brain
injury [16], psychiatric disorders [17] [18] [19], etc.

There are multiple ways to image perfusion, including methods of computed tomog-
raphy (CT), positron emission tomography (PET), single-photon emission computerized
tomography (SPECT), ultrasound, and magnetic resonance imaging (MRI). MRI have sev-
eral advantages compared to the other modalities. Unlike CT, SPECT, and PET, MRI
does not lead to radiation exposure. Also, MRI provides more extensive application than
ultrasound with its tissue and depth limitations.

There are two different approaches for measuring perfusion with MRI: based on the
administration of a contrast-enhancing agent and without it. The first category includes
dynamic susceptibility contrast (DSC) MRI and dynamic contrast-enhanced (DCE) MRI.
Both DSC and DCE rely on the intravascular administration of the contrast-enhancing
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1. Introduction

agent, most commonly a gadolinium-based compound (GBCA). The penetration of these
agents to the tissue is proportional to the blood flow rate, whereas their accumulation
might indicate barrier disruption or tissue damage. DSC perfusion MR signal measures
signal drops due to the shortening of T2* time caused by increased magnetic susceptibility
of the passing GBCA. DCE measures signal increase due to the shortening of the T1-time
due to the presence of GBCA. The major disadvantage of the GBCA-based techniques
is the potential toxicity of gadolinium in patients with impaired renal function and in
children. Also, linear-chelated GBCAs are known to accumulate in the brain after repeated
administration and are a potential source of neural toxicity [21].

A completely non-invasive alternative is arterial spin labeling (ASL) MRI. ASL is based
on the endogenous labeling of arterial blood without a need for externally administered
contrast-enhancing agents. Its key principle lies in the magnetic labeling of the blood by
the inversing the longitudinal magnetization. Then, the labeled blood travels through the
macrovasculature and enters an organ or tissue. Consequently, the labeled blood exchanges
with the tissue and thus decreases its longitudinal magnetization. This affects the measured
signal in an image, called labeled image, which is taken after such labeling. A second image,
called control image, is then obtained without such prior labeling. The difference between
the control and the labeled images is then proportional to the amount of inflowing labeled
blood and can be used for perfusion imaging. ASL MRI is the only non-invasive and cost-
effective method that provides whole brain perfusion imaging in high resolution [22]. This
makes this technique of high interest in both research and clinical practice.

ASL has a further advantage of being able to provide an absolute quantification of blood
perfusion. For that purpose, the equilibrium blood magnetization has to be estimated to
calibrate the measurement. Blood equilibrium magnetization is typically obtained from a
so-called M0-calibration scan. This M0 scan is acquired with the same readout sequence

Figure 1.1: Time attenuation curve for the perfusion CT
The graph shows the time attenuation curve for the perfusion CT imaging [20]. Here we can see

well-defined TTP and CBV. CBF is estimated as the maximum slope of the curve. MMT is
equal to the ratio of CBV to CBF.
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1.2. Structure of the Thesis

as labeled and control images with two main approaches: a long repetition time (TR)
calibration scan, which provides signal closer to the true equilibrium magnetization, or
a short TR calibration scan, which reduces the contrast between white and gray matter
[23]. However, to improve the signal-to-noise ratio (SNR), ASL is now routinely acquired
with background suppression (BS) pulses that suppress the signal from static tissue and
related noise, effectively prohibiting the estimation of blood M0 from the control scans
with background suppression. For this reason, M0-scan acquisition should be an integral
part of all ASL protocols. However, in practice, many clinical studies do not acquire the
necessary M0 scan because it was not implemented in the current version of software,
was omitted in the protocol, or lost during data handling. Such studies have important
issues with absolute CBF quantification if background suppression was used in the ASL
data. In theory, the background suppression can be reverted in post-processing, thus
opening the way for use of control images for the estimation of blood M0 and correct CBF
quantification. However, currently, there is no established method to deal with this issue,
and the limitations, reproducibility, and accuracy of such M0 estimation from the control
scans with BS are not known.

The goal of this thesis is to correct for the signal loss in control images with BS to allow
its use as an M0 scan. First of all, this work comprises the literature research on background
suppression in ASL and the currently used methods for background suppressed acquisition.
The experimental part of the thesis includes the implementation of the methods to estimate
M0 scans from control images. The accuracy of the method is established for two different
readout sequences – 2D EPI and 3D GraSE. Also, the performance of the method for CBF
quantification is tested and compared with a reference approach using a measured M0-scan,
and the accuracy and reproducibility of the proposed methods across scanning sessions is
assessed. Finally, the optimal way for solving the issue with CBF quantification without
M0-image is proposed.

1.2 Structure of the Thesis

The thesis is organized into 5 chapters as follows:

1. Introduction: Here, the basic definitions of perfusion imaging and goals of the thesis
are given

2. Background Knowledge: This chapter gets the reader into the topic of ASL MRI
imaging from the theoretical perspective and explains relevant concepts in MRI image
acquisition. A specific focus is put on the labeling and readout sequences, background
suppression, and image processing.

3. Methods : This part describes the experimental part of the thesis; specifically, it
outlines the data, the methods, and the evaluation done in the scope of this work.

4. Results : The chapter reports the outcomes of the experimental part.

3



1. Introduction

5. Discussion: The chapter gives an overview of the work conducted within the thesis,
interprets the findings, defines future work, and concludes the work.

4



Chapter 2

Background Knowledge

2.1 Arterial Spin Labeling MRI

ASL MRI provides quantitative measurement of CBF using a selective radiofrequency (RF)
pulse to excite a bolus of blood inside an artery before entering an organ or tissue. The
blood is labeled by inverting the magnetization of hydrogen atoms in blood water by a
180° pulse. The labeled atoms are then used as endogenous diffusible tracers. After a
certain time interval, called post-labeling delay (PLD), the labeled particles arrive in the
region of interest (ROI) and exchange with the tissue, thus decreasing its magnetization.
At this moment, an image of the ROI is acquired with its intensity affected by the amount
of labeled blood that perfused the tissue. The exact location of labeling pulse and the
duration of the time interval between labeling and scanning depend on the choice of the
labeling approach described in the Section 2.2. A second image, called the control image,
is then acquired without prior labeling, which does not contain labeled particles. Multiple
pairs of control-labeled images are acquired and are consequently substracted to produce
the perfusion-weighted image. The intensities in the perfusion-weighted image reflect the
amount of labeled blood in each voxel and are directly proportional to the perfusion.
However, to quantify the perfusion, the equilibrium magnetization of blood needs to be
obtained for calibration. This is usually done using an M0-image that is acquired without
prior labeling and has signal directly proportional to the voxel water content [24].

The produced ASL perfusion signal in a single control-label difference image is around
1% of the signal in the original control images [25], [26]. Since the signal is so low, the
SNR of a single difference is very low and repeated measurements are required to reach
reasonable quality of CBF maps. Since the initial introduction of the technique, important
modifications of the methodology and hardware were established, such as prolonging the
post-labeling delay [27], background suppression [28] [29], and new labeling techniques (as
pseudo-continuous labeling [30]), to suppress the noise and induce the signal [31]. Labeling
approaches and background suppression (BS) are described in more detail in the following
Sections 2.2 and 2.4. Stronger magnetic field of 3T is recommended for ASL imaging, but
usable results can also be retrieved at the strength of 1.5T [32]. Another major advantage
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Figure 2.1: CASL and PASL sequences
The diagram depicts the process behind the two main labeling sequences - pulsed labeling and

continuous labeling. Courtesy of Yuriko Suzuki and OSIPI TF4.1.
(https://www.osipi.org/task-force-4-1/)

is the usage of phased array coils, which enable parallel imaging [33] and provide with
shortened imaging duration.

There is also a solid base in the literature showing that ASL has reached a reasonable
reproduciblity in multi-center studies [34], comparable quantitative accuracy with the gold-
standard for perfusion image 15O− H2O-PET imaging [35], and that ASL has a wide range
of clinical applications [36]. All these advancements taken together show that ASL is ready
for its translation to clinical practice.

2.2 Labeling sequences

There are two basic labeling strategies commonly used for ASL: pulsed labeling and pseudo-
continuous labeling. The diagrams visualizing the process of pulsed and pseudo-continuous
labeling are shown in the Figure 2.1.

Pulsed arterial spin labeling (PASL) technique consists of a single RF impulse that
inverts magnetization in a large slab (15-20 cm) of tissue [37]. The inverted slab includes
arteries, therefore the blood is also inverted and then flows to the region of interest. A
small gap between the labeling slab and the imaging volume should be present to exclude
the unwanted magnetization of the static tissue. For the PASL techniques, the usage of
adiabatic inversion pulses is the recommended to suppress the influence of B1 inhomo-
geneities that change the RF pulse’s efficiency. The significant disadvantage of PASL is a
relatively small (compared with CASL or pCASL) temporal width of the bolus [38]. More-
over, the labeled blood from the distal side of the inversed slab needs longer time to reach
the imaging plane, during which the labeling efficiency decreases. This together leads to a
notably lower SNR of PASL compared with CASL or pCASL.
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Pseudo-continuous labeling (pCASL) is implemented by a long train of many RF
pulses on a thin section that produces the longitudinal magnetization inversion of the
proximal blood flow to the imaging region [39], [40]. The method originally started as
continuous labeling (CASL) approach with a continuous RF pulse [30], however, pCASL
has become a preferable method nowadays due to lower unwanted magnetization-transfer
effects. Furthermore, a continuous application of RF power is needed for CASL, which
leads to a higher specific absorption rate than that of a long train of RF pulses in the
pCASL sequence. Unlike in PASL, the pCASL labeling is not instantaneous but takes 1-2
seconds. A similar post-labeling delay (PLD) as for PASL is then applied, making the TR
of a single pCASL measurement longer than for the PASL measurement. The choice of
optimal PLD is strongly dependent on the relaxation time (T1) of the water molecules in
the blood and the time needed for a bolus of blood to arrive at the ROI. The longer is PLD,
the more labeled water molecules will arrive at the target tissue, which generates a valuable
perfusion signal. With too short PLD, the label does not reach the tissue and stays in the
vessels producing macrovascular artifacts [41]. On the contrary, too long PLD leads to the
reduction of perfusion signal at the time of imaging. Furthermore, long labeling duration
and PLD lead to a longer overall TR and thus a smaller number of averages obtained in
the limited acquisition time. Therefore, the optimal PLD is chosen in the interval from
1500 ms (in children) to 2000 ms (in neonates and older people) [32].

2.3 Signal readout

Since magnetic labeling and signal readout are separate processes, multiple combinations
of the labeling and readout techniques are possible in ASL. There is only a limited time for
the acquisition as the label first needs to arrive to the tissue while quickly relaxing, giving
only a short time window for acquisition of signal with reasonable amplitude. Given this
condition, fast readout sequences are needed to capture the relevant signal in the brain.
There are multiple fast acquisition methods suitable for this task - 2D EPI, 2D multiband
(MB), 3D GraSE, or 3D stack-of-spirals. The scope of this work covers data acquired with
2D EPI and 3D GraSE, though similar principles would also apply to 2D MB and 3D
stack-of-spirals.

2D Echo-Planar Imaging (EPI) is an MRI signal acquisition technique that enables
a fast readout of 2D planes (typically around 20-100ms per slice) [42] [43]. For this, a series
of frequency-encoding gradients and a series of intermediary phase-encoding gradients are
applied to read the signal from the whole k-space of a single slice in a line-by-line manner
after a single excitation pulse. For the means of ASL imaging, multiple 2D slices are
obtained that compose a 3D image. The consequences of 2D EPI acquisition for ASL
imaging is that slices are acquired in a serial manner and each slice is effectively acquired
at a different value of post-labeling delay.

3D Gradient Spin Echo (GraSE) is a hybrid technique that is based on the combina-
tion of spin-echo and gradient-echo sequences. GraSE applies an initial 90° RF pulse that
is then followed by a series of several 180° refocusing pulses creating several spin echos [44].
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The spin-echo technique is further combined with the gradient echo method that creates a
series of gradient echoes between each two spin-echoes by rapid switching of the direction
of gradients in the readout-direction. The negative frequency-encoding gradient is used to
induce transverse dephasing of the spinning protons, and then it is reversed to be used
for the readout as spins refocus. This combination enables a rapid signal acquisition of a
3D volume with only one excitation pulse. The technique was at first underestimated due
to lower SNR compared to 2D EPI but is getting more recognized nowadays, as stronger
magnetic fields (e.g., 3 tesla) are available. Furthermore, 3D GraSE is finding its applica-
bility specifically in the ASL MRI image acquisition due to its rapid readout, whole-brain
coverage, and higher SNR. Moreover, a single excitation for the whole volume has two
advantages for ASL. The whole volume is acquired with the same PLD, and also with the
same amount of background-suppression [45]. It is thus easier to optimize the readout both
in terms of perfect static tissue suppression and homogeneous PLD in the whole volume.

To summarize, a 2D EPI image is generated with multiple excitation pulses to acquire
the image in a slice-wise manner. In contrast, 3D image acquisition relies on a single
excitation pulse. Thus, in the case of 2D EPI, the image slices are effectively acquired at
different time points after the labeling; for 3D GraSE, the whole image is excited using
a single pulse and thus the image intensities reflect the state of label arrival at a single
moment in time. In the context of this work, this difference is worth a special notice because
it impacts the amount of background suppression and thus also the signal correction in the
control scans.

2.4 Background suppression

Considering that ASL signal intensity is only a few percent of the control image intensity,
noise in the static tissue plays a major role in the imaging quality. To improve SNR in
ASL MRI, it is essential to suppress the signal from the static tissue and thus reduce the
related source of noise caused by thermal and nonthermal fluctuations (e.g., spontaneous
neuronal activity, heartbeat, and breathing) [46]. A combination of additional spatially-
selective saturation pulses in the imaging volume followed by several spatially non-selective
inversion pulses is applied to the tissue to suppress the static tissue signal. An even number
of inversion pulses is applied to ensure that the labeled blood is only minimally affected
[47]. By use of several inversion pulses and fine-tuned timing of their application at specific
background suppression times, an effective suppression of signal with several T1-times can
be achieved.

The majority of BS sequences starts with a spatially selective 90° saturation of the
imaging field of view, which is followed by multiple spatially non-selective inversion pulses
(affecting both the labeling and the imaging areas) as shown in Figure 2.2. There are
several inversion pulse designs - the hyperbolic secant, hyperbolic tangent, WURST pulse
(wideband, uniform rate, smooth truncation), and broadband inversion pulse. The highest
efficiency is typically achieved for the pulses that are barely adiabatic because if it sweeps
for a too long time, it introduces T2 decay during the inversion, while if the sweeping is
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too fast, the adiabatic condition is not met. The inversion pulses are timed so that at the
moment of acquisition, the longitudinal magnetization of selected tissues (based on their
T1-time and background suppression timing) is equal or close to zero (example for 2D EPI
sequence shown in the Figure 2.2).

The signal changes in the static tissue follow the spin-lattice relaxation (chracterized
by T1 time). After the initial 90° pulse, the net longitudinal magnetization is equal to zero
and grows back following the spin-lattice relaxation equation (2.1). The 180° background
suppression pulses cause further inversion of the longitudinal magnetization vector and the
signal changes can be modeled with the Equation (2.2).

Mt = M0(1− e−t/T1), t ∈ [0, t1) (2.1)

Mt = MtN (1− 2e−t/T1), t ≥ tN (2.2)

Mt = magnetization at time t
M0 = magnetization just before the 90° pulse
T1 = relaxation time of the tissue.
tN = time of the N-th 180° inversion pulse

The inversion can be also described by the Equation (2.3)

Mti = −αBS ·Mti−ε (2.3)

αBS = inversion pulse efficiency
ε = inversion duration

For simplicity, the inversion is assumed to be instantaneous (ε = 0).
The inversion pulses do not cause a perfect inversion while affecting the signal inversion

in the static tissue and causing attenuation of ASL signal through multiple background
suppression pulses as well. Typical efficiency of the inversion pulse αBS is around 95%
for each pulse [32]. Noteworthy, the longitudinal magnetization of the selected tissue(s) is
perfectly nulled out only at a certain moment in time, after which it continues to grow back
to the equilibrium with T1-relaxation. This is why the 3D GraSE readout sequence, with a
single excitation, can provide a perfect suppression in the whole-brain. While the 2D EPI
readout with sequential signal excitation for each slice has a different level of background
suppression in each slice, see Section 2.2 [48].

2.5 Partial volume correction

The resolution of ASL imaging is lower compared with most other MRI imaging methods
and lower to that of most cortical structure. This leads to a so-called partial volume effect
(PVE). PVE is characterized by the fact that most individual voxels typically contain a
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Figure 2.2: The model of background suppression sequence in 2D EPI
The plot shows the difference between the background suppression efficiency for white (shown in
blue) and gray (shown in orange) matter in the context of ASL imaging with pCASL 2D EPI

sequence. The green vertical line indicates the start of the readout, with the following red lines
indicating the scanning times of the succeeding slices.

mixture of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) that have
different magnetization properties (Figure 2.2). CBF in GM is around 2-3 times higher
than in WM and no CBF is expected in CSF. This makes the voxel-wise CBF strongly
dependent on the tissue composition [49]. Many clinical applications of ASL imaging focus
on measuring CBF in gray matter. Since gray matter can be as thin as 2 mm in normal
adults, PVE can lead to serious errors in the estimation of GM CBF when measured with
ASL [50].

Multiple methods dealing with PVEs in CBF quantification have been proposed [51].
The most common method is based on evaluating CBF only in voxels that have a GM
content higher than a given threshold (usually a threshold of 0.8 or 0.7 are used). GM
thresholding can, however, lead to uneven distribution of evaluated voxels in space, and
does not remove the effect of CBF underestimation completely. An alternative is to use
partial volume correction (PVC) through linear regression. This PVC method assumes
constant true tissue perfusion CBFGM and CBFWM in a local neighborhood, and with the
knowledge of the tissue distribution in each voxel, it can obtain the true perfusion values
through solving a system of linear equations [50].
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2.6 CBF Quantification

The most important parameter that is obtained from ASL MRI data through quantification
is CBF. The CBF quantification is based on further assumptions that might differ depend-
ing on the choice of the labeling or readout sequence [32] [52]. The CBF quantification
follows following assumptions:

1. The labeled bolus has to arrive completely to the target tissue. For pCASL, this is the
case when post labeling delay is longer than the arterial transit time; for PASL, the
difference between the inversion time and bolus duration (analogous to post labeling
delay) has to be larger than the arterial transit time;

2. No outflow of labeled blood water, since the tissue has a large water pool and there
is a fast exchange of particles between tissue and blood;

3. The relaxation of the labeled particles depends on blood T1.

With these assumptions, the CBF for pCASL is calculated as

CBF =
6000 · λ ·∆M · e

PLD
T1b

2 · α · T1b ·M0t · (1− e
−τ
T1b )

[ml/100g/min]

λ = brain-blood partition coefficient in mL/g
∆M = difference in longitudinal magnetization
T1b = T1 relaxation time of blood in ms
α = labeling efficiency
M0t = equilibrium magnetization of tissue
τ = label duration
PLD = post-labeling delay

Note that for 2D imaging, the effective PLD value has to be adjusted by adding the
slice-timing value per every slice. A separately acquired M0 image is used to obtain the
values of M0t and to also indirectly reduce the effect of coil inhomogeneity. The blood-brain
partition coefficient λ is used to convert the tissue magnetization M0t to that of blood M0b.
Ideally, λ should be adjusted voxel-wise to tissue type, since water density varies across
brain tissues. The M0-scan is usually spatially smoothed with subsequent division by the
brain average brain-blood water partition coefficient λ [23].

Even though this model is simplified, it is still recommended for its robustness and
lower requirements on data and parameters (e.g., there is no need to calculate arterial
transit time) [53].
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2.7 Toolboxes for ASL MRI Processing

The current trend is to use a robust pipeline for processing MRI data instead of writing
ad-hoc in-house script for each clinical study. There are multiple pipelines available for
ASL image processing, as for example ASL-MRICloud [54], ENABLE [55], or Quantiphyse
[56]. However, the focus of this work is on the ExplroeASL - another up-to-date toolbox
that comprises all functionality needed for ASL image processing.

Most of the work presented in the thesis was implemented in the ExploreASL pipeline
for processing ASL MRI data [31], which is available on the website www.ExploreASL.org.
It is developed in MATLAB (Mathworks, Nattick, US) and uses Statistical Parametric
Mapping (SPM) [57]. This toolbox provides multiple useful features, e.g., flexible data im-
port and management (anonymization, compression of image files, and optional defacing),
modular design (which allows easier iteration through multiple subjects’ scans), specifi-
cally optimized image processing procedures, extensive quality control, etc. The pipeline
consists of 4 modules: import, structural, ASL, and population.

2.8 BS correction for M0 calculation - current develop-
ments

While several approaches for estimation of blood M0 are available [32], [58], only minimal
attention was dedicated to different processing strategies for M0 images. One of the studies
that focuses on the processing of M0 images is by Pinto et al. [23], which demonstrates
the importance of the M0 estimation as one of the two most important factors in CBF
quantification and provides an extensive overview of various M0 calibration post-processing
approaches. This study covers the comparison of three M0t estimation methods: long TR
calibration scan, control image averaging, and control saturation recovery. The results
emphasize the importance of the incomplete T1 magnetization correction and correction
for RF field inhomogeneities. For the course of the given work, it is important to notice
that the T1 correction plays a major goal in the method sensitivity.

This and other research works have been focusing on M0 quantification from a dedicated
M0 scan. Nonetheless, the inconspicuous challenge that appears in practice is that M0 scans
can be lost during data acquisition or data transferring, or simply not acquired at all. This
creates an obstacle for clinical studies that aim for absolute CBF quantification without
having M0 images readily available, while having obtained control images with BS. This is
especially problematic in multi-center datasets that use different sequences and scanners
where relative differences in CBF values between datasets can occur if use of an M0 scan
is omitted in the quantification.

Correction of signal from control images with BS is done only rarely and not in the
context of CBF quantification but rather that of artifact correction. An example is the
study by Suzuki et al. [59], which focuses on the motion correction in MB acquisition
with BS. Unlike in standard 2D images with smooth increase of slice-time and BS-level
over slices, in 2D MB, the slice time and BS efficiencies change sharply between slices
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from two different groups. This is an important issue in combination with motion as
even with correct realignment, these sharp contrast transitions are not removed in motion
correction resulting in motion artifacts. Modeling the BS effect is used to homogenize the
signal in control images over different slices to reduce the contrast changes between slices.
Subsequently, the amount of artifacts is reduced after motion correction compared with
the non-BS corrected approach.

In conclusion, the challenge of blood M0 estimation from the control scans with back-
ground suppression has not been addressed before, even though publications exist address-
ing the relevant individual components of this issue. In this work, we present a solution to
this challenge and validate its accuracy and reproducibility in examples with both 2D and
3D readouts.
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Chapter 3

Methods

The main goals of the thesis were to assess and quantitatively compare different approaches
of M0 image estimation from control scans acquired with BS to derive the optimal approach
that would result in an accurate CBF quantification. All M0 images were estimated from
control scans with BS with the correction for the effects of BS. The main challenge laid in
the fact that different tissue types (WM, GM, and CSF) are present in each voxel and that
these tissues have different T1 values, thus being differently affected by the BS. This issue
was addressed with partial volume (PV) effect correction to derive the accurate tissue-
dependent signal and to run dedicated tissue-specific BS correction in the separate voxels
according to their PV content. The central hypothesis of this work was that by correcting
for the BS signal changes and the PV effect, M0 scans could be estimated from control
images with BS leading to CBF quantification with sufficient accuracy and repeatability
and comparable to the CBF derived from real M0 scans.

The course of the following work comprised the experiments to test these hypotheses.
In order to get better acquainted with the properties of the input data, an initial analysis
was done that included the comparison of signal intensities in the regions of interest and
given different readout sequences and labeling schemes acquired in healthy volunteers. The
dataset consisted of both 2D EPI and 3D GraSE readout scans that included labeled scans
with BS, control scans with BS, and reference M0 scans (Table 3.1). Afterwards, a series
of experiments was conducted to estimate M0 image based on the BS correction in the
control scans and to assess the accuracy of the estimation. This part consisted of testing
two different approaches:

1. Applying BS correction assuming a single tissue type with a single T1 value over the
whole brain,

2. Assuming a mixture of tissue in every voxel and applying BS correction with prior
PV correction.

The accuracy of the methods was evaluated using reference M0 scans. Additionally, the
stability of the methods was assessed in the within-subject comparisons to display the re-
sults reproducibility. Consequently, the M0 estimation methods were incorporated into the
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ExploreASL pipeline, and the accuracy and the stability of resulting CBF were calculated.
Finally, the results were interpreted, and the optimal approach was defined that answered
the initial hypothesis and laid the ground for future work.

3.1 Subject information

The image acquisition was conducted following the Declaration of Helsinki guidelines and
under a waiver of institutional review board approval by the Medical Research Ethics
Committees United (Nieuwegein, the Netherlands) [60]. All participants provided written
informed consent and received remuneration for their participation. The participants were
used to stay still during the MR scanning and were instructed to abstain from caffeine and
smoking during the whole experiment. More detailed information about the subjects is
provided in Table 3.1. Evidently, the data were acquired in healthy volunteers, with some
of them being of older age and having representatives of both sexes.

Subject Label Age Sex Weight

V04S02 46 M 95
V05S01 63 M 74
V06S02 67 F 60
V08S02 74 M 71
V09S01 80 M 78

Table 3.1: Subjects information

3.2 Data acquisition

The data were acquired on the Ingenia scanner at 3T magnetic field strength at Philips
Healthcare headquarters in Best, the Netherlands [60]. For brain image acquisition, the
15-channel head coil was used with the scanner software version R5.4.

The experimental sessions were conducted in the following order:

1. 3D T1-weighted scan, which was used in the processing of the ASL image as the
anatomical reference.

2. Two identical pCASL scans with 3D GraSE readout sequence with the standard PLD
of 1800 ms. Every scan included 2 M0 images, 7 control scans with BS, and 7 labeled
scans with BS.

3. Two identical pCASL scans with 2D EPI readout sequence with the standard PLD
of 1800 ms. Every scan included 2 M0 images, 29 control scans with BS, and 29
labeled scans with BS.
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To simplify the further description of the acquired data, every given scan was given a
separate name. More info on the the pCASL scans and their names is listed in the Table
3.2. Both for 3D GraSE and 2D EPI, 4 BS pulses were applied with following timings: 716
ms, 1949 ms, 2875 ms, 3391 ms.

Readout TR (s) TE (s)
PLD
(s)

Labeling
dura-
tion
(s)

Repeats
Voxel
size
(mm)

Matrix Names

3D
GraSE

4.2 0.012 1.8 1.8 7
3.75 x
3.75 x 6

64 x 64
x 14

3D-1-1800,
3D-2-1800

2D EPI 4.2 0.0112 1.8 1.8 29
3.75 x
3.75 x 6

64 x 64
x 16

2D-1-1800,
2D-2-1800

Table 3.2: Scan info and names

Image acquisition was conducted in agreement with the consensus recommendation on
ASL implementation [32]. The labeling plane was positioned 9 cm below the bicommissural
line. To verify the position of the labeling plane, a phase-contrast angiography survey scan
was conducted. In some cases, the distance was adapted to avoid the overlap between the
labeling slab and carotid siphon to provide with homogeneous labeling and to avoid the
overlap between labeling and imaging planes.

The examples of the M0 image, control scan with BS, and the resulting CBF image are
shown in Figure 3.1.

3.3 Data pre-processing

Throughout the work on the thesis, the data were processed using the ExploreASL pipeline
[31]. Firstly, the T1-weighted images were spatially normalized and segmented into WM,
GM, CSF using CAT12 toolbox [61]. The generated spatial maps had values ranging
between 0 and 1 and denoted a relative tissue content in each voxel. Then, ASL, T1-
weighted, and M0 images were co-registered. Afterwards, the GM and WM maps were
transformed to the ASL space and subsampled to the same resolution.

To perform M0 image estimation, the pipeline was paused before M0 processing. To
calculate the resulting CBF, the ASL module was altered to include the implemented M0
estimation methods. Therefore, all the data preprocessing steps, processing of M0 image
(e.g., masking and smoothing), and CBF quantification steps were maintained the same
for real M0 image and estimated M0 image.

The GM and WM maps were then used to define masks of the ROIs. These regions
include deep WM, GM, and CSF. Since these maps have the same resolution as ASL image,
a single voxel can contain a mixture of GM and WM (with different relative content), the
thresholding was defined to derive masks of voxels with predominately GM or WM content.
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Figure 3.1: M0 image, control scan with BS, labeled scan with BS, and resulting CBF
CBF image was calculated with ExploreASL (Subject: V04S02, sequence: 3D-1-1800).

For a general overview of the WM, GM, and CSF, the threshold value of 0.5 was used.
These masks are contaminated with the presence of other tissue, but cover a larger number
of voxels, which is beneficial to study a common trend in the tissue. The examples of these
thresholded masks for WM and GM are visualized in Figure 3.2. These masks are references
as GM-mask-50, WM-mask-50, CSF-mask-50 in the further text.

To restrict the experiments on the deep WM, two different deep WM masks were
estimated by thresholding the PV map with furhter erosion [62]. First, the PV in the WM
map was thresholded (dWM-mask-50-2: threshold = 50%; dWM-mask-80-1: threshold =
80%). Consequently, the Euclidean distance from the mask edge in 3D was calculated using
the Borgefors Chamfers equation. The outer layer of voxels was removed (dWM-mask-50-
2: distance = 2; dWM-mask-80-1: distance = 1) and only the inside of the mask was kept.
As a result, the first mask (dWM-mask-50-2, Figure 3.3) had less GM contamination, but
the second mask (dWM-mask-80-1, Figure 3.4) had more voxels.

To restrict the experiments on GM, we used a GM mask - GM-mask-65 (Figure 3.5).
Unlike the experiments with the WM mask, thinning was not included because the GM is
a few voxels thin in general and thinning would thus not make sense. To obtain the GM
mask, the GM map was thresholded with a value of 65%.
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Figure 3.2: Thresholded WM and GM maps
The white matter map (WM-mask-50) is on the left, the gray matter map (GM-mask-50) - on

the right.

Figure 3.3: Visualization of dWM-mask-50-2
The mask is shown in red dots over a slice of WM map visualized in grayscale. Sequence:

3D-1-1800, slices 7 and 9.

Figure 3.4: Visualization of dWM-mask-80-1
The mask is shown in red dots over the slice of WM map visualized in grayscale. Sequence:

3D-1-1800, slices 7 and 9.
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Figure 3.5: Visualization of GM-mask-65
The mask is shown in blue dots over the slices of gray matter spatial map visualized in

grayscale. Experiment: 3D-1-1800, subject: V04S02, slices 7 and 9.

Figure 3.6: Visualization of WMGM-mask-80
The mask is shown in magenta dots over the slices of GM and WM maps visualized in

grayscale. Sequence: 3D-1-1800, slices 7 and 9.

Finally, the whole brain mask was calculated (WMGM-mask-80) by calculating the
sum of WM and GM maps and thresholding it at 80% (Figure 3.6).

The deep WM (dWM-mask-50-2, dWM-mask-80-1) and GM (GM-mask-65) masks were
used to evaluate M0 estimation with tissue differentiation, whereas whole brain mask
(WMGM-mask-80) was used to evaluate M0 estimation without tissue differentiation.
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3.4 Description of the conducted experiments

In order to test the hypothesis of accurate M0 image estimation from the control scans,
the following experiments were covered in the course of this work:

1. Initial analysis of the acquired data to study the differences in signal distribution
in true M0 images among subjects and spatial location, depending on the readout
sequence.

2. M0 estimation using BS correction from the control scans, where the correction
was done with a single T1-time value in all voxels assuming a single tissue type.

3. Use of PV effect correction and mixed-tissue model for the M0 image esti-
mation. The signal contribution for different tissue types was separated using PV
correction. BS correction was then done separately for each tissue type using the
respective T1-time to obtain the estimated M0 in a mixed-tissue model.

4. Comparing resulting CBF between quantification using the estimated and refer-
ence M0 scans.

3.4.1 Error calculation

To quantitatively assess the difference between the estimated M0 scan and the reference
scan, to compare the resulting CBF maps derived using the estimated M0 scan, and to
test the reproducibility of the M0 estimation, we defined the following parameters.

The mean relative error (MRE) was defined as

MREslice =

∑
x∈mask

Imest(x)−Imref (x)
Imref (x)

Nslice

(3.1)

where slice refers to the slice of the given mask, Imest(x) indicates the estimated value
in voxel x, Imref is the reference value, and Nslice is a number of voxels in the given slice.
In the context of the thesis, the MRE was calculated for images Im being M0 or CBF.

To estimate the within-subject inter-session repeatability, a within-subject root-mean-
square error (WS RMSE) was used:

WS RMSEslice =

√√√√∑
x∈mask(

ImAest(x)−ImAref (x)
ImAref (x)

− ImBest(x)−ImBref (x)
ImBref (x)

)2

Nslice

(3.2)

where slice refers to the slice of the given mask, ImA
est and ImB

est refers to the estimated
value in the first and the second dataset, respectively (e.g., 2D-1-1800 and 2D-2-1800),
Imref is the reference value in the given dataset, and Nslice is a number of voxels in the
given slice.
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To assess the MRE variation across slices, a standard deviation in across slices was
calculated for subject-averaged MRE stdMRE

slices .
To assess how MRE variability in the population, a standard deviation across subjects

was calculated on slice-averaged MRE stdMRE
subjects.

In both cases, the most superior and inferior slices were excluded due to a minimal
number of voxels on the masks, leaving slices 3-12 for 2D EPI, and 2-12 for 3D GraSE.

3.4.2 Initial analysis

Signal distribution in 2D EPI and 3D GraSE. To better understand the input data,
the mean signal intensities in control scans and M0 images were calculated for each slice.
This is important to show the signal distribution in M0 images across slices, the level
of BS in the control images, and the level of BS in the WM and GM using the masks
WM-mask-50 and GM-mask-50, respectively.

Signals distribution in M0 images. Here, the signal intensities in M0 images in
subjects in WM, GM, and CSF were calculated using WM-mask-50, GM-mask-50, and
CSF-mask-50.

3.4.3 M0 estimation using BS correction

These experiments focused on the signal corrections in the control scans. The known BS
timings were used to estimate the factor of BS correction in each slice based on the T1
value. The correction also accounted for 95% efficiency of the BS inversion pulse (Section
2.4). Afterwards, the signal in the controls was divided by this factor to compensate for
BS and to estimate the M0 image without BS. Due to lower resolution of ASL, most voxels
contain a mixture of tissues with different T1 values. Therefore, we have tested different
T1 values relevant to a selected ROI to find values that provide an optimal correction
for BS. The results were compared with the reference M0 scan, and their accuracy and
stability were assessed.

The estimated M0 image was calculated with the given equation

M est
0 =

Mcontrol

BScoef
, (3.3)

where Mcontrol indicates the signal intensity in the control scan with the BS correction
and BScoef is the background suppression coefficient, which corrects the control image
according to the timings of the BS pulses. Next, the accuracy of the M0-estimation was
assessed with MRE calculation in estimated M0, M est

0 , and true M0. The number of
voxels in the mask and the amount of GM and WM content was calculated for each
slice to investigate the effect of noise and the effect of mixed tissue content on estimation
assuming a single-tissue model. Next, the stability of M0 estimation was assessed using
the WS RMSE in M0 scans.

To restrict the experiments on the deep WM, dWM-mask-50-2 and dWM-mask-80-1
were used to mask the images (Section 3.3). For the experiments on the deep WM masks,
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3.4. Description of the conducted experiments

a range of T1 values from 750 up to 1200 ms was tested. Experiments continued with the
calculations in GM using GM-mask-65. T1 values for the BS correction in GM were chosen
in the range from 1050 ms to 1500 ms. Finally, the experiments in the whole brain were
conducted using WMGM-mask-80 with T1 values in the range from 1000 ms up to 1400
ms (values in between those suitable for deep WM and GM, since the whole brain mask
consists of both). In all the ranges, the increment of 50 ms was used.

3.4.4 Experiments with partial volume correction

The PVC (mixed-tissue) approach was applied to the control scans to compensate the BS
correction difference in both WM and GM, which have different T1 values. The correc-
tion was done using prior GM- and WM-partial volume maps according to the regression
algorithm correcting for partial volume effects in ASL MRI described by Asllani et al.
[50]. Generally, the WM and GM tissue contribution to the signal was estimated using the
following equation

Mcontrol(x) = PWM(x) ·Mcontrol,WM(x) + PGM(x) ·Mcontrol,GM(x), (3.4)

where Mcontrol(x) denotes signal intensity in a voxel of the control scan, PGM(x) and
PWM(x) denote tissue partial volume in GM and WM, respectively, in a voxel x and
Mcontrol(x) denotes tissue longitudinal magnetization contribution to the signal intensity
in a given voxel. In each voxel x, a system of linear equations was created from equation
3.4 by assuming that Mcontrol,WM(y) and Mcontrol,GM(y) are constant in voxels y in the
neighborhood of x, this system was then solved in the least squares sense. Unlike in the
original work by Asllani, a Gaussian kernel with FWHM 5×5×5 voxels was used instead of
a flat kernel. Moreover, the calculation was restricted to WMGM-mask-80 to accommodate
the fact that the signal contribution of CSF to M0 is, contrary to CBF, nonzero.

After the Mcontrol,GM and Mcontrol,WM were estimated, they were further used to sepa-
rately correct the background-suppressed signal in tissue to achieve estimation of the M0
image using the following equation:

M est
0 (x) = (PWM(x) · Mcontrol,WM(x)

BScoef,WM

) + (PGM(x) · Mcontrol,GM(x)

BScoef,GM
), (3.5)

where BScoef,GM and BScoef,WM denote the BS coefficient (Eq. 3.3) using the WM
and GM specific T1-time values, respectively. This approach aimed at decreasing the error
caused by differing T1 values. The T1 values used for BS correction in GM and WM
were derived from the experiments on M0 estimation describes in section 3.4.3: for GM,
T1 was chosen based on the experiments in GM-mask-65, for WM - from experiments in
dWM-mask-50-2 and dWM-mask-80-1.

3.4.5 Comparing resulting CBF

The most common goal of ASL imaging is quantification of CBF using the calibration M0-
scan. To test the validity of M0 image estimation in practice, the resulting CBF values were
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3. Methods

compared for different approaches of M0-scan estimation from control images as described
in previous parts.

Two main M0-estimation approaches were compared in this part: the application of BS
correction using a single T1 value for the whole brain and the application of BS correction
using PV-corrected tissue-specific T1 values. Both methods were incorporated within the
ASL module of the ExploreASL pipeline, and the estimated M0 image was then conven-
tionally processed (with consequent masking and smoothing). The optimal T1 values used
for the final assessment were derived from the previous experiments. The T1 value for the
whole brain BS correction was derived from the experiments in WMGM-mask-80, whereas
the T1 values for the PV correction approaches were derived from the experiments in GM-
mask-65, dWM-mask-50-2, and dWM-mask-80-1. Again, the MRE of the resulting CBF
values was calculated for the ROI compared to the reference CBF values. Furthermore,
the WS RMSE was estimated for the assessment of the reproducibility. To also assess the
perseverance of the error in slices and subjects, stdMRE

slices and stdMRE
subjects were also calculated.
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Chapter 4

Results

This chapter covers the results obtained in the course of the thesis. The results address
the main hypothesis and answer the question if it is possible to estimate M0 scan from
control images with BS with both sufficient accuracy and reproducibility.

4.1 Initial Analysis

Mean signal distribution. The distribution of mean signal intensities over the slices
in control scans with BS acquired with 2D EPI and 3D GraSE readouts are visualized in
Figure 4.1.

Figure 4.1 shows that the signal intensity increases almost six fold towards the superior
part of the brain in control scans for 2D EPI, while a slight decrease of around 50% between
the first and last slice is noticeable in controls for 3D GraSE. On average, GM has a lower
signal intensity comparing to WM in control scans, and higher signal intensity in M0 scans.

The comparison of mean signal intensity (MSI) in tissue is shown in Figure 4.2. The
signal distribution in M0 images is more stable in tissue across subjects in 2D EPI (stdMSI

WM

- 67.71, stdMSI
GM - 54.5, stdMSI

CSF - 174.28) with the highest signal intensity in gray matter
and the lowest in CSF. In 3D GraSE, the signal distribution differs more among subjects
(stdMSI

WM - 116.13, stdMSI
GM - 118.79, stdMSI

CSF - 135.97).

4.2 Testing T1 values for M0 image estimation

This section of the Results focuses on the results of estimating M0 from the control scans
assuming uniform tissue with a single T1 value in the given ROI. The section is further
divided per region of interest. Every following subsection describes both the accuracy and
reproducibility of the results.
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4. Results

Figure 4.1: Mean signal intensities in controls and M0 scans in 2D EPI and 3D GraSE
sequences

Sequence: 2D-1-1800, 3D-1-1800

4.2.1 Deep white matter

The efficiency of M0 image estimation in deep WM using various T1 values in 2D EPI and
2D GraSE data are visualized in the Figures 4.3 and 4.4.

As described in Section 3.3, dWM-mask-50-2 is more conservative with fewer voxels
but insignificant content of GM. For dWM-mask-50-2, using lower WM T1-values reduced
MRE between reference and estimated M0. Also, due to the smaller number of voxels in
the first map, there was a higher variation in MRE among subjects. Both masks depicted
that there was a need to decrease the estimated signal intensity in the lower slices. The
differences in voxel counts grew towards the higher slices. The results also show that the
estimation for both most inferior and superior slices was less reliable and was prone to
higher values. For both readouts, the slices with smaller number of active voxels in the
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4.2. Testing T1 values for M0 image estimation

Figure 4.2: Signal intensities in different tissue in M0 image in 2D EPI and 3D GraSE
Sequence: 2D-1-1800, 3D-1-1800

maps were prone to higher variation of error.

When comparing the M0 estimation between 2D EPI and 3D GraSE readout sequences,
using lower values of T1 in deep WM matter was preferable for 3D GraSE readout. For 2D
EPI, the optimal T1 value for deep WM was 1050 ms: for dWM-mask-50-2, its absolute
mean relative error was below 5.5% for slices 3-13; for dWM-mask-80-1, its absolute mean
relative error was below 2% for slices 3-15. For 3D GraSE, the optimal T1 value for deep
WM was 950 ms: for dWM-mask-50-2, its absolute mean relative error was below 5.5% for
slices 2-12; for dWM-mask-80-1, it absolute mean relative error was below 5.5% for slices
2-11.

However, the stability of the efficiency across slices was better in 2D EPI compared to
3D GraSE. For 2D EPI, the stdMRE

slices in central slices was 1.2% for dWM-mask-50-2 and
0.57% for dWM-mask-80-1. For 3D GraSE, the stdMRE

slices was 3.5% for dWM-mask-50-2,
and 4.1% for dWM-mask-80-1.

Within-subject experiments are visualized in the Figure 4.5 for 2D EPI and 3D GraSE

27



4. Results

readouts. The stability of the MRE estimation was better in the dWM-mask-50-2 in both
readout sequences, which was expected, since this region is more homogeneous. When
comparing 2D EPI and 3D GraSE in terms of stability, 2D EPI had lower values of WS
RMSE. For both readouts, the variance was higher in the inferior slices, which also have a
lower number of active voxels in both masks, leading to lower statistical power. For both
readouts, higher values of T1 led to the higher WS variation in MRE. For both of the
optimal T1 values (in 2D EPI, T1 = 1050 ms; in 3D GraSE, T1 = 950 ms), the WS RMSE
is below 5% for the slices.

4.3 Gray matter

The results estimating the accuracy of signal correction in the gray matter are displayed
in the Figures 4.6 and 4.7 for 2D EPI and 3D GraSE readouts respectively. The optimal
T1 values for the BS correction in GM mask were higher for 2D EPI than in 3D GraSE.
For 2D EPI, the optimal T1 value of GM was 1500 ms: its absolute mean relative error
was below 8% for slices 3-12. For 3D GraSE, the optimal value of T1 in GM was 1200 ms,
its absolute mean relative error was below 12% for slices 2-12.

As seen on the graphs, the MRE distribution across slices was not homogeneous com-
paring to the previous experiments in deep WM. For 2D EPI, the stdMRE

slices was 3.91%; for
3D GraSE, it was 6.34%.

Using such low threshold of the GM mask allowed a comparatively high mean voxel
content of WM in the slices, evident from the graph of relative content in GM mask. For
the most superior slices, the GM content was lower, which leads to lower statistical power.

When looking at the within-subject stability of the estimations (Figure 4.8), it was
evident that the most inferior slices were more unstable in the GM mask with higher
variation of voxel counts and content. For the most superior slices, the variation in voxel
number was smaller, but the voxel content variation was higher. Compared to deep WM,
the WS RMSE was higher, leading to lower stability of the estimation in GM. For both of
the optimal T1 values (in 2D EPI, T1 = 1500 ms; in 3D GraSE, T1 = 1200 ms), the WS
RMSE was below 10% for slices excluding the most inferior.

4.4 Whole brain experiments

Next, the results visualizing the accuracy of M0 estimation in the WMGM-mask-80 are
provided in the Figures 4.9 and 4.10 for 2D EPI and 3D GraSE. The voxel number in this
map was large, so the statistical power of estimated MRE was also larger. The lowest
MRE corresponded to a T1 value 1200 ms for 2D EPI: its absolute mean relative error was
below 5% for slices 3-12. For 3D GraSE, the optimal T1 value for the whole brain was
1050 ms: its absolute mean relative error was below 5% for slices 2-12.

The curves of RME distribution across slices were flat compared do experiments in GM
and deep WM. For 2D EPI, the stdMRE

slices was 1.11%. For 3D GraSE, stdMRE
slices was 1.27%.
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4.4. Whole brain experiments

Figure 4.3: Efficiency of M0 estimation in deep WM for different T1 values in 2D EPI in
deep white matter

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for both dWM-mask-50-2 (left column) and dWM-mask-80-1 (right
column) described in Section 3.3. Sequence: 2D-1-1800
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4. Results

Figure 4.4: Efficiency of M0 estimation in deep WM for different T1 values in 3D GraSE
in deep white matter

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for both dWM-mask-50-2 (left column) and dWM-mask-80-1 (right
column) described in Section 3.3. Sequence: 3D-1-1800
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4.4. Whole brain experiments

Figure 4.5: Within-subject differences in M0 estimation from controls in 2D EPI and 3D
GraSE in deep WM

Mean WS RMSE (across subjects) for different T1 values are shown for both dWM-mask-50-2
(left column) and dWM-mask-80-1 (right columns) described in Section 3.3 in 2D EPI (top row)

and 3D GraSE (bottom row). Sequence: 2D-1-1800, 2D-2-1800, 3D-1-1800, 3D-2-1800
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4. Results

Figure 4.6: Efficiency of M0 estimation in gray matter for different T1 values in 2D EPI
in gray matter

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for 2D EPI for GM-mask-65 described in Section 3.3. Sequence:
2D-1-1800
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4.4. Whole brain experiments

Figure 4.7: Efficiency of M0 estimation in GM for different T1 values in 3D GraSE in
gray matter

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for 3D GraSE for GM-mask-65 described in Section 3.3. Sequence:
3D-1-1800

33



4. Results

Figure 4.8: Within-subject differences in M0 estimation from controls in 2D EPI and 3D
GraSE in gray matter

Mean WS RMSE (across subjects) for different T1 values are shown for GM-mask-65 described
in Section 3.3 in 2D EPI (top row) and 3D GraSE (bottom row). Sequence: 2D-1-1800,

2D-2-1800, 3D-1-1800, 3D-2-1800

34



4.5. PV Correction

Using a single T1 value for BS suppression was only suboptimal for separate white and
gray matters. In 2D EPI data, higher mean content of WM compared to GM led to the
slightly arched curve in RME in slices 6-12, but the effect was minimal and proved our
previous observations of lower optimal T1 value of white matter.

Figure 4.11 depicts the WS variance of RME estimation in the WMGM-mask-80. The
WS RMSE values were higher due to the presence of both WM and GM. The higher dif-
ference of voxel number was explained by the overall greater number of voxels in WMGM-
mask-80. Evidently, the WS variation in the voxel content was higher for 2D EPI. In 2D
EPI, WS RMSE values for the optimal T1 = 1200 ms were below 7% across all slices. In
3D GraSE, WS RMSE values for the optimal T1 = 1050 ms were below 10% across all
slices.

To better study the spatial error distribution across the slices when applying a signal
BS scheme over the whole brain, the MRE distribution in 2D EPI and 3D GraSE is shown
in Figures 4.12 and 4.13 respectively. In 2D EPI, compared to 3D GraSE, the MRE scores
were spatially tissue-specific.

4.5 PV Correction

The accuracy of the M0 estimation with PV correction is visualized in Figures 4.14 and
4.15 for 2D EPI and 3D GraSE respectively. The T1 values used for PV correction for
separate WM and GM signal correction were chosen based on the lowest MRE in the
previous experiments in deep WM and GM. In 2D EPI, WM T1 value used was 1050 ms,
for GM - 1500 ms; for 3D GraSE, WM T1 used was 950 ms, for GM - 1200.

For 2D EPI, the average absolute MRE across subjects in slices 4-13 was below 8%
in GM with stdMRE

slices of 3.05%. In deep WM, the average absolute MRE across subjects
in slices 4-13 was below 8% with stdMRE

slices of 4.17%. In whole brain, the average absolute
MRE across subjects in slices 4-13 was below 4.3% with stdMRE

slices of 2.19%.

For 3D GraSE, the average absolute MRE across subjects in slices 2-12 was below 17%
in GM with stdMRE

slices of 10.23%. In deep WM, the average absolute MRE across subjects
in slices 2-12 was below 6% with stdMRE

slices of 4.35%. In whole brain, the average absolute
MRE across subjects in slices 4-13 was below 12% with stdMRE

slices of 6.28%.

The slice-wise comparison in 2D EPI (Figure 4.16) and 3D GraSE (Figure 4.19) revealed
that with PV approach (assuming different T1 values of GM and WM), the effect of
the tissue differentiation of the error distribution decreased. The accuracy of the PV
approach was better seen in the central slices in the Figures 4.18 and 4.19. Evidently, the
method failed in the most inferior slices, but better eliminated the effect of tissue-specific
longitudinal magnetization in the central slices.

35



4. Results

Figure 4.9: Efficiency of M0 estimation for different T1 values in 2D EPI in
WMGM-mask-80

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for WMGM-mask-80 described in Section 3.3. Sequence: 2D-1-1800
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4.5. PV Correction

Figure 4.10: Efficiency of M0 estimation for different T1 values in 3D GraSE in
WMGM-mask-80

Mean and standard deviation of relative errors (across subjects) for different T1 values (top
row), mean voxel counts and outliers (middle row), and mean relative voxel content and outliers

(bottom row) are shown for WMGM-mask-80 described in Section 3.3. Sequence: 3D-1-1800
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4. Results

Figure 4.11: Within-subject differences in M0 estimation from controls in 2D EPI and 3D
GraSE in WMGM-mask-80

Mean WS RMSE (across subjects) for different T1 values are shown for WMGM-mask-80
described in Section 3.3 in 2D EPI (top row) and 3D GraSE (bottom row). Sequence:

2D-1-1800, 2D-2-1800, 3D-1-1800, 3D-2-1800
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4.5. PV Correction

Figure 4.12: Spatial error distribution of M0 estimation with single-tissue model for T1 =
1200 ms in WMGM-mask-80 in 2D EPI )

Sequence: 2D-1-1800, Subject: V04S02

39



4. Results

Figure 4.13: Spatial error distribution of M0 estimation with single-tissue model for T1 =
1050 ms in WMGM-mask-80 in 3D GraSE

Sequence: 3D-1-1800, Subject V04S02
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4.5. PV Correction

Figure 4.14: Accuracy of M0 estimation using PV correction in 2D EPI data
Sequence: 2D-1-1800, T1(WM) = 1050 ms, T1(GM) = 1500 ms
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4. Results

Figure 4.15: Accuracy of M0 estimation using PV correction in 3D GraSE data
Sequence: 3D-1-1800, T1(WM) = 950 ms, T1(GM) = 1200 ms
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4.5. PV Correction

Figure 4.16: Comparison of M0 estimation assuming different T1 values for GM and WM
(PVC) and assuming single T1 value for the whole brain (without PVC) in 2D EPI

Sequence: 2D-1-1800, Subject: V04S02, Slice: 7

Figure 4.17: Comparison of M0 estimation assuming different T1 values for GM and WM
(PVC) and assuming single T1 value for the whole brain (without PVC) in 3D GraSE

Sequence: 3D-1-1800, Subject: V04S02, Slice: 7
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4. Results

Figure 4.18: Spatial distribution of errors in M0 estimation with PVC in 2D EPI
Sequence: 2D-1-1800, Subject: V04S02
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4.5. PV Correction

Figure 4.19: Spatial distribution of errors in M0 estimation with PVC in 3D GraSE
Sequence: 3D-1-1800, Subject: V04S02
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4. Results

4.6 Validation in CBF quantification

Results for the quantified CBF from the estimated M0 images with and without PV ap-
proach in 2D EPI and 3D GraSE are visualized in the Figures 4.20 - 4.23. With PV
correction, absolute MRE was below 10% in slices 4-11 for the whole brain, in slices 4-12
in GM, and in slice 5-11 in deep WM for all subjects. The WS RMSE in PV method fell
below expected 6.7% in slices 4-14 in the whole brain, in slices 4-16 in GM, and in slices
1-13 in deep WM [60]. The stdMRE

slices and stdMRE
subjects are reported in Table 4.1.

The accuracy of estimated CBF in 2D EPI without PVC was lower compared to the
accuracy of estimated CBF with PVC method. The absolute MRE fell below 10% only for
some subjects in whole brain and WM. The absolute MRE in GM was more than 10% for
all subjects and slices. Moreover, WS RMSE values were higher than the expected CBF
CoV in whole brain (slices 1-6), GM (slices 1-4, 7-8), and WM (slices 3-5). The results for
stability in slices and subjects are reported in the Table 4.2. The variation in MRE among
slices was lower or comparable to the results of the PV approach, but between-subject
variation was higher.

ROI stdMRE
slices stdMRE

subjects

Whole brain 5.12% 1.61%
Gray matter 3.66% 2.3%
Deep white matter 5.95% 2.44%

Table 4.1: Stability of MRE in estimated CBF with PV approach in 2D EPI

ROI stdMRE
slices stdMRE

subjects

Whole brain 3.44% 6.9%
Gray matter 1.85% 5.64%
Deep white matter 6.71% 8.26%

Table 4.2: Stability of MRE in estimated CBF without PV approach in 2D EPI

For 3D GraSE, the PV approach led to the average MRE below 10% for slices 2-10 in
whole brain, for slices 2-11 in GM, and for all slices in deep WM (Figure 4.22). Values of
WS RMSE were below the expected CBF CoV in slices 2-7 in whole brain, in slices 2-14
in GM, and slices 2-5, 9-12 in deep WM.

The results for calculated CBF without the PV approach were comparable in values to
those derived from the PV method. The mean absolute MRE values were below 10% in
slices 1-9 in whole brain, in slices 1-6 in GM, and 1-10 in deep WM.

Finally, t-tests revealed a significant difference between the true and quantified CBF
using M0 image in all subjects in 2D EPI without PV correction, in 3 subjects in 2D EPI
with PV correction, in 4 subjects in 3D GraSE without PV correction, and in 3 subjects
with the PV correction (Table 4.5).
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4.6. Validation in CBF quantification

ROI stdMRE
slices stdMRE

subjects

Whole brain 7.7% 4.24%
Gray matter 5.59% 4.22%
Deep white matter 4.26% 3.59%

Table 4.3: Stability of MRE in estimated CBF with PV approach in 3D GraSE

ROI stdMRE
slices stdMRE

subjects

Whole brain 6.34% 5.23%
Gray matter 5.09% 5.23%
Deep white matter 3.19% 2.49%

Table 4.4: Stability of MRE in estimated CBF without PV approach in 3D GraSE

Subject
2D EPI 3D GraSE

CBFref VS
CBF PV

est

CBFref VS
CBF nonPV

est

CBFref VS
CBF PV

est

CBFref VS
CBF nonPV

est

V04S02 5.1e-6 0 0.26 7.1e-10
V05S01 0.46 1.1e-13 1.1e-6 0.12
V06S02 0.053 8.5e-17 0.59 6.9e-19
V08S02 0.017 1.6e-15 4.4e-8 6.3e-20
V09S01 2.4e-6 0 1.1e-4 1.9e-14

Table 4.5: p-values obtained from t-tests comparing reference and estimated CBF
Estimated CBF was calculated from the estimated M0 with and without PVC
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Chapter 5

Discussion

Arterial spin labeling (ASL) is a method for magnetic resonance imaging (MRI) that
allows to measure brain perfusion non-invasively using magnetically labeled water instead
of using radioactive tracers or contrast agents. Its main advantages are fast measurement
time suitable for clinical use, ability to provide stable absolute quantification of perfusion,
and a complete non-invasivness. To obtain absolute quantification, the value of equilibrium
magnetization in arterial blood needs to be obtained in every patient. This is usually done
with the use of a so-called M0 scan that can be rapidly obtained along with the ASL
measurement. Despite the acquisition of an M0-scan is recommended in the majority of
literature, it is not always available in practice. There is an important base of clinical
studies that either omitted the M0-scan acquisition, acquired it with incorrect parameters,
or lost the data during data curation. This work aims to provide the necessary tools for
absolute perfusion quantification also in these cases by using the signal from ASL images
with background suppression (BS).

The modeling of signal changes caused by the background suppression in ASL has been
previously investigated in the literature, however, background-suppression correction was
not yet employed to M0-image estimation for the purpose of ASL quantification. The
idea proposed in this thesis is to model the background suppression scheme to derive
the M0 image. Since static tissue in the brain consists of GM and WM with different
magnetization properties, the background suppression correction was also adjusted to the
tissue differentiation for the partial volume effect. Two main approaches were tested in this
work to estimate the M0 image from the control scans with background suppression. The
simpler approach estimates the M0 image assuming a single T1 value for the whole brain
(single tissue approach). A more complex solution is to correct for BS and reconstruct an
M0 image while assuming different T1 values in WM and GM and possible mixing of the
GM and WM signals in each voxel (mixed tissue approach). Performance of both methods
was evaluated by comparing the estimated M0 images with a real acquired reference M0
scan. The difference between the estimated and reference M0 was evaluated in terms of
accuracy (using MRE parameter) and within-subject and between-session reproducibility
(using WS RMSE parameter). Validation of the methods was done by quantifying CBF
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5. Discussion

using the estimated M0 images (both with single tissue and mixed tissue approaches) and
comparing it with reference CBF calculated from the true acquired M0 scan.

The initial data exploration (Section 4.1) showed the discrepancies in signals between
2D EPI and 3D GraSE readoutes both in the control images and in the M0 images (Fig-
ure 4.1). In 2D EPI control scans, the signal rises towards the superior slices, which is
an expected behavior for this type of imaging given the loss of BS efficiency due to T1
relaxation in time for 2D multi-slice sequences (Figure 2.2). Control scans of 3D GraSE
showed a different trend with only a slight decrease of the signal in the superior slices. This
is due to the fact that the BS efficiency is homogeneous for the whole 3D volume in the
single-excitation 3D readouts. The slight signal decrease across slices can be explained by
structural changes in tissue composition in the brain and is visible in the M0 scans without
BS as well. Another difference between 2D EPI and 3D GraSE is the signal variation in
GM and WM. 2D EPI showed visible contrast between signal in WM and GM both in
control with BS, whereas GM and WM difference was only minimal in 3D GraSE. This
is partly because the perfect BS in 3D sequences and partly because of higher blurring
typical for 3D GraSE readouts [63]. Taken together, due to higher contrast between GM
and WM, PVC is expected to yield higher benefit in the 2D EPI readout.

Afterwards, the optimal T1 values were investigated for the single-tissue model. This
was studied in four different ROI to take into account the spatial distribution of different
tissues: two masks for deep WM, one mask for GM, and a whole brain mask. Two masks for
WM were used to elicit the challenge of creating a mask that is large enough to guarantee
stability with noisy data while decreasing the influence of signal contamination from other
tissues - even though WM structure is relatively thick, correct masking is still an issue
given the low resolution of ASL images. dWM-mask-50-2 contained voxels with almost
unique content of WM and thus more favorable accuracy in estimation, however, it had
a low number of voxels, which complicated its usage in practice in extremal slices 4.3.
dWM-mask-80-1 had a larger number of voxels at a cost of 10% GM contamination, which
potentially biases the M0 image estimation towards GM. In the case of GM-mask-65 and
WMGM-mask-80, a reasonable tradeoff was difficult to achieve and to avoid contamination
by signal from different tissue showing the need to use of PVC and mixed-tissue model 4.6.

The optimal derived T1 values for WM and GM were 1050 ms (absolute MRE below
6% for central slices in M0-image estimation) and 1500 ms (absolute MRE below 8% in
central slices) in 2D EPI and 950 ms (absolute MRE below 6% for central slices) and 1200
ms (absolute MRE below 12% in central slices) in 3D GraSE. The results differ from the
literature T1 values for GM (1445 ms) and for WM (791 ms) [64], probably due to the
possible PVE in the maps and low resolution. The derived optimal T1 values were lower
for 3D GraSE supposedly due fact that the resolution is slightly lower than in the 2D
EPI readout due to the higher T2* contrast and blurring in the in-place phase-enconding
direction [65]. The absolute MRE values were higher for GM because GM mask was less
homogeneous when it comes to tissue distribution and had more important tissue mixing.

In WMGM-mask-80, the single-tissue model of the brain showed optimal T1 values
1200 ms and 1050 ms in 2D EPI and 3D GraSE respectively (for both, absolute MRE
values were below 5% for both readouts). However, the visualization of the spatial error
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distribution in the Figures 4.12 and 4.13 shows tissue differentiation - positive errors were
located in WM areas, whereas negative errors were located in the GM, which was further
addressed by the mixed-tissue model. With the PVC method, absolute MRE values were
below 5% for WMGM-mask-80 and below 12% for 2D EPI and 3D GraSE respectively.
The visualizations of the spatial error distribution (Figures 4.18, 4.19) show that there is
a smaller effect of tissue location. The estimation error in 3D GraSE was higher probably
due to the smaller signal differentiation per tissue in the control scans, which is supported
by the previous observations.

Both methods for M0-image estimation were incorporated into the ExploreASL pipeline
to show their performance in CBF quantification and to compare them with CBF estima-
tion using the true acuqired M0 scan. For 2D EPI data, mixed-tissue model improved the
CBF calculation comparing to the single-tissue model both in terms of accuracy and repro-
ducibility of the results. The best results were achieved in the central slices (absolute MRE
below 8% with WS RMSE below 10%). The accuracy and reproducibility were worse in
most inferior and superior slices probably due to the structure of the brain - lower amount
of voxels in the masks lead to inaccurate BS correction. In mixed-tissue model, absolute
MRE was within 10% for central slices for all subjects in all ROI, whereas in single-tissue
model, the absolute MRE was above 10% in some subjects and ROI (in GM, MRE was
above 10% in all slices and subjects). Comparing to single-tissue model, the mixed-tissue
method improved the between-subject variation of CBF accuracy (1.61-2.44% in mixed-
tissue method and 5.64-8.26% in single-tissue method) with comparable variation in slices
(3.66-5.95% with PVC compared to 1.85-6.71% without PVC). Such a difference can be
explained by the loss of BS efficiency in higher slices, leading to higher signal difference in
WM and GM due to different T1 values. The accuracy and reproducibility are comparable
to within-subject CoV of this type of imaging, described in the study by Baas et al. [60].
The mixed-tissue approach has proven to improve M0 estimation that led to CBF results
with sufficient accuracy and reproducibility comparing to the reported WS CoV of 6.7%
for 2D EPI.

The difference between the mixed- and single-tissue approaches was less evident in 3D
GraSE than in 2D EPI data due to the difference in image acquisition explained above.
Mean absolute MRE values were below 10% for the central slices for both single tissue
and mixed tissue approach approach, but the CBF accuracy was better in WM and GM
with using PVC (absolute MRE within 10% for all subjects) comparing to the estimation
without PVC (MRE above 10% for selected subjects in GM and WM). Both MRE variation
in slices (4.26-7.7% for mixed tissue approach and 3.59-4.24% for single tissue approach)
and in subjects (3.19-6.34% for mixed tissue approach and 2.49-5.23% for single tissue
approach) are comparable for both methods. In 3D GraSE, both PVC and non-PVC
approaches showed sufficient accuracy and reproducibility in both estimation of M0 and
resulting CBF comparing to the reported WS CoV of 4.7% [60].
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5. Discussion

5.1 Limitations and future perspectives

CBF quantification directly uses equilibrium magnetization of blood (M00b). This is com-
monly derived from the equilibrium magnetization of tissue (M0t), which can be extracted
from an M0 scan. The conversion from M0t to M00b is conventionally done using brain-
blood partition coefficient, which differs in GM and WM. However, for simplification, a
GM model is assumed in the whole brain as the usual focus is on CBF quantification in
GM. In this work, we have tested several methods for M0t estimation from control images
with BS and we have taken into account the differences in GM and WM. However, our
main focus was the restoration of the M0-scan (M0t) and for the final quantification step
of M0b and CBF calculation, we used the standard way of using a GM model only. While
this has no influence on our results and conclusions concerning M0-scan estimation, using
a two tissue model also for the last step of CBF quantification can lead to a better CBF
quantification and should be studied in the future following the method by Pinto et al.
[23].

Second limitation is a relatively small sample size. While the data allowed us to study
these effects in two typical readout sequences and also establish the repeatability of this
approach, using the full population from the study by Baas et al. [60] should be done in the
future. While higher statistical power will be gained, we do not expect that the conclusions
or results will be affected. The current subsample of the study population included only
participants from the age range of 46-80y. The performance of the method thus needs to be
ascertained also in the rest of the population containing younger subjects. Final limitation
related to the study population is that fact that data were obtained in healthy volunteers
only. While presence of pathology will influence the T1 times and the quality of the BS
correction, adverse effects on the CBF quantification are not expected as the calculation
of blood M0 has to be done anyway in healthy tissue only and a presence of pathologies
is a complication for the whole calibration process, irrespective of the source of M0 scans.
Lastly, the dataset was acquired in Philips scanner with 4 given BS pulses, the methods’
accuracy has to be additionally tested in other scanners with different readouts, different
number of BS pulses and different BS pulse timings.

A further limitation lies in the process of selecting optimal T1 values. The WM masks
were selected in mostly pure WM, however, there was a large contamination of WM signal
on the GM mask. The derived optimal T1-values were thus optimal in the sense of working
with the given amount of tissue signal contamination. However, it effectively prevented
us from confirming the performance with literature T1-values or finding out the correct
individual values. This probably had a negative effect on the mixed-model estimation of
the M0-scan as true tissue T1 values are supposed to be used for the mixed-model.

All the aforementioned issues are planned to be addressed in future work. We plan to
use the full dataset provided by Baas et al. [60] to study the performance of the method
in both young and older subjects of a sufficiently large population. We will investigate the
accuracy also in several other datasets with different readout type and readout parameters.
We will study the effect of M0b estimation from M0-scan M0t to gain the complex picture
of use of control images with BS on CBF quantification. Lastly, we will investigate in
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5.2. Conclusion

more details the effect of optimal T1-time for each tissue. We will directly optimize the
PV approach for BS correction in order to find the optimal set of T1-times rather than
probing optimizing it on potentially contaminated masks. We will study further sequence
details that might have an effect on the optimal T1-times and modeling of BS correction
as specific BS efficiency and B1-field inhomogeneities.

5.2 Conclusion

This work proposes a novel approach to M0 scan estimation from the background-suppressed
control scans acquired during ASL imaging. It shows that such an approach is theoretically
possible with a reasonable error in final CBF quantification compared with the use of true
acquired M0 scans and that the between-session reproducibility of this approach is very
high both in 2D EPI and 3D GraSE sequences. Moreover, the results show that the use
of a PVC-based approach (assuming a mixed-tissue model) further improves the M0-scan
estimation and offers a suitable solution for practical use in quantification of CBF data
from ASL acquisition with background suppression and without a dedicated M0-scan, thus
opening the possibility to re-analyze several large clinical studies.
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