
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Tracking of real objects in VR

Filip Suchý

Supervisor: Ing. David Sedláček, Ph.D.
Field of study: Open Informatics
Subfield: Human-Computer Interaction
May 2021

ii

Acknowledgements
I would like to thank my supervisor Ing.
David Sedláček, Ph.D. for all his support
and patience during the creation of this
Master’s thesis. I think it was his belief
that allowed me to finish this Master’s
thesis in time.

I would like to thank CTU in Prague for
providing me the best possible study fa-
cilities.

Also, I would like to give a huge thanks to
my parents who gave me the possibility
and all support necessary to study and
make my dreams come true.

Last but not least thanks to my friends
who lead me through my life and support
me in my crazy ideas.

Declaration
I hereby declare that the presented thesis
is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an cademic
final thesis.

In Prague, 21. May 2021

...
author’s signature

iii

Abstract
The goal of this Master’s thesis is to pro-
vide easy to use real-time tracking system
for casual objects in the real world such
as pen and ruler. This tracking system
has to be integrable into VR applications
created in the Unity game engine. The
performance and precision of the tracking
system should be suitable for VR appli-
cations. Users should feel real objects in
positions where they see them in VR.

Keywords: VR, Tracking, Depth
camera, Unity

Supervisor: Ing. David Sedláček, Ph.D.
Praha 2, Karlovo náměstí 13, E-425

Abstrakt
Hlavním cílem této diplomové práce je
poskytnout snadno použitelný trackovací
systém pro běžné objekty v reálném světě
jako jsou pero a pravítko. Tento tracko-
vací systém musí být integrovatelný do
VR aplikací vytvořených v herním enginu
Unity. Výkon a přesnost trackovacího sys-
tému by měly být vhodné pro VR aplikace.
Uživatelé by měli cítit objekty reálného
světa na pozicích, kde je vidí ve VR.

Klíčová slova: VR, Trackování,
Hloubková kamera, Unity

Překlad názvu: Sledování reálných
objektů ve VR

iv

Contents

Contents v
Figures vii
Tables
Project Specification 1
Introduction 3
1 Analysis 5
1.1 Requirements . 5
1.1.1 Real-time processing . 6
1.1.2 Precision . 6
1.1.3 Real objects without adjustments . 6
1.1.4 Compatibility with Unity . 7

1.2 Depth Camera . 7
1.2.1 Microsoft Azure Kinect . 8

1.3 Similar works . 10
1.3.1 Tangible VR Book . 11
1.3.2 EfficientPose . 11

1.4 Summary of Lazarek’s work . 12
1.5 Neural Networks . 14
1.5.1 PointVoteNet . 15

1.6 Iterative Closest Points . 16
1.7 VRPN and WebSockets . 17
1.7.1 VRPN . 18
1.7.2 WebSockets . 18

2 Suggested solution 21
2.1 Tracking system . 23
2.1.1 Segmentation . 23
2.1.2 6DoF pose estimation . 25

2.2 VR Application . 27
2.3 Communication between Unity and Tracking system 28
2.3.1 Tracker . 29

v

vi CONTENTS

2.3.2 Consumer . 29
3 Implementation 31
3.1 Tracking system . 31
3.1.1 Program overview . 31
3.1.2 Segmentation . 33
3.1.3 6DoF pose estimation . 34
3.1.4 Networking . 35

3.2 VR Application . 36
3.2.1 TrackingManager script . 37

3.3 Communication server . 39
4 Testing 43
4.1 The scene . 43
4.2 Performance of Tracking system . 45
4.3 User experiance . 46
4.3.1 Developing VR application . 47
4.3.2 Experience with VR and Tracking . 49

4.4 Stability . 52
5 Conclusion 53
A Contents of enclosed SD card 55

Figures

1.1 Example of outputs from RGB and Depth cameras 7
1.2 Example of Point Cloud output from Depth camera 8
1.3 Schema of Microsoft Azure Kinect . 8
1.4 FOV schema of Kinect cameras . 10
1.5 FOV of Kinect cameras at distance of 2 meters 10
1.6 Prototypes in Tangible VR Book paper . 11
1.7 Example of prediction from EfficientPose . 12
1.8 The photo of tracked objects from Lazarek’s work 13
1.9 Visualization of the pose estimation process . 15
1.10 Object model and resulting segments for each point 16
1.11 Example of ICP from Open3D library [7] . 17

2.1 Created models of Pen (left) and Ruler (right) 22
2.2 3D printed Pen (left) and Ruler (right) . 22
2.3 RGB color space as 3D cube . 24
2.4 HSV color space . 24
2.5 Example of segmented points in point cloud . 25
2.6 Very bad segmentation of detected object with outliers 26
2.7 Server-Client communication schema . 29

3.1 Morphological closing operation . 33
3.2 Morphological transformation using dilate operator 34
3.3 Example of the Scene hierarchy . 37
3.4 Properties of TrackingManager . 38
3.5 Communication between Tracker and Server . 40
3.6 Communication between Consumer and Server 41

4.1 Photos of the scene setup . 44
4.2 Another photos of the scene setup . 44
4.3 Screenshot from the Tracking system . 45
4.4 The scene in VR application . 48
4.5 The calibration point in VR application . 48
4.6 Screenshots from the VR application scene . 49

vii

viii FIGURES

4.7 Photos from testing of VR application . 49
4.8 Photos from testing of VR application . 50
4.9 Drawings in VR application . 50
4.10 Drawings in VR application . 51
4.11 Drawings in VR application . 51
4.12 Drawings in VR application . 51

Tables

1.1 Available modes for RGB camera in Kinect . 9
1.2 Available modes for Depth camera in Kinect . 9

4.1 Measured average FPS . 46
4.2 Measured deviations in position and rotation . 52

Introduction

Nowadays VR (Virtual Reality) is growing and we can see it more often than
before. It’s visible mainly game/entertainment industry, but we can see VR
used for training, education, health therapy, and much more. But to make
VR successful technology used in many areas we need to pull users into the
VR world without disturbing their experience. There are many aspects that
influent the VR experience and one of them is interaction - how can users
interact with objects in VR, how they can move, etc.

To provide basic interaction in VR we usually use controllers. They are
specialized devices with a tracking system, buttons, joystick, and motors for
haptic feedback. We can use these controllers in VR to track the position
of hands and provide interaction like grabbing for example. With haptic
feedback, we can feel if we hit something in VR or if we grab some object.
This kind of interaction is good enough, but you can’t feel actual objects in
your hands, their weight, surface, etc. Also, you need to have these controllers
still in your hands. In some areas, this kind of interaction can be limiting
and cause problems with adaptation VR in these areas. One example can be
the training of surgeons, where we need precise work with a scalpel, we need
to have a real scalpel in our hands, feel it, and get used to it.

One way how to push the VR experience further is to add a possibility to
interact with objects in the real world and bringing them into the virtual
world, so you can naturally interact with objects in your real world and see
them in the virtual world.

The goal of this Master’s thesis is to try to find the solution to this type of
interaction - natural interaction with real objects and bring them into VR.
The biggest challenge in this interaction is to track the position and rotation
of these objects without any special tracking things on them. Moreover, we
need to track these objects in real-time so users can manipulate and see them
naturally.

3

4

Chapter 1

Analysis

The goal of this Master’s thesis is tracking of objects in real world and estimate
6DoF pose (position/translation and rotation) of them. These information
will be used in Unity [13] game engine to render virtual objects in VR at
correct position and rotation. Because we want to use this tracking in VR
application, one of the constraint will be real-time processing. The same
problem was solving in Bachelor’s thesis by Bc. Jan Lazarek [10] and this
project will continue from his work.

For our tracking system, we will need to obtain some kind of information
about the scene - a space where real objects and users are located. Because
we want to track these objects without any adjustments or with just some
small color/shape adjustments, there is probably only one solution on how to
obtain necessary information - the visual image of the scene. We will use a
camera to obtain a visual image of the scene, but estimating full 6DoF pose
from just visual image could be challenging. Because of that, we will also use
a depth camera to obtain information about distances of points in the visual
image from the camera. With depth information, we can obtain 3D point
cloud of the scene.

The whole process of obtaining 6DoF pose from visual image and depth image
can be divided into two main parts:..1. Recognize required object in visual and depth data..2. Estimation of 6DoF pose from these data

1.1 Requirements

Because this project will be used in a real application, we have also some
requirements. The most important and most challenging requirement is
real-time processing. There are also other requirements but they aren’t so
important.

5

1. Analysis
1.1.1 Real-time processing

What does real-time processing mean in this context? It depends on experi-
ments.

We simply use the term FPS (Frames Per Second) to define how many times
in a second we obtain 6DoF pose about an object. For example, 3FPS will
mean that we obtained 3 times 6DoF pose about object in one second. This
allows us to measure performance in terms of real-time processing. More
FPS will give us smoother movement of objects so more FPS means better
performance in our case.

Many VR headsets such as Oculus Rift S [18] have a refresh rate of around
90Hz. If we have enough computing performance, we will render our VR
application in 90FPS to match this refresh rate and make the user experience
smooth enough. From this fact we can say that 90FPS will be real-time
processing because for every rendered frame we will have correct 6DoF pose.
But this number of FPS is very hard to achieve.

In this project, we will use a depth camera that has a 30FPS output, so we
know, that our maximal performance (from point of view of FPS) will be
30FPS due to the limitation of depth camera sampling rate.

What’s important is the user. We want for users a smooth feeling of moving
with real objects in VR. So to verify if we satisfy real-time processing require-
ments, we need to test it with users. From experience, we can tell that less
than 10FPS can’t satisfy the real-time requirements.

1.1.2 Precision

Another important requirement is precision. Because we will use this tracking
in VR application, our main goal for precision is feeling of a user that object is
at position where he feel the object might be at. Another aspect of precision
is stability - if there are some vibrance of objects or some driftring of position
over time. This type of precision will be tested as an experience of user in
VR application with tracking of the objects.

Less important is absolute precision. If we will know correct position and
rotation of the object, we can measure how precisely we can estimate these
information. This is what I called absolute precision and if we can achieve
just small errors in this type of precision, previous precision based on user’s
feeling will be satisfied.

1.1.3 Real objects without adjustments

This requirement isn’t as important as others. We need objects without any
adjustments such as marks, because of the simplicity of using them in a real

6

.................................... 1.2. Depth Camera

application. But if this will means that we can’t achieve sufficient real-time
performance, than some color coding or marks will be possible.

1.1.4 Compatibility with Unity

VR application which will use this tracking system will be make in Unity
[13] game engine. This means that we need somehow connect output of our
tracking system into Unity and also make sure, that we can correctly setup
what will be needed to correctly use 6DoF pose from tracking system in Unity.
It’s possible that tracking of real objects will run on different machine than
VR application, so we need to handle this case.

Also there can be more than just one instance (client) of running VR applica-
tion and we will need 6DoF pose of tracking objects in all running client, so
we also need to satisfy communication of tracking system with more clients.

1.2 Depth Camera

Because we want to track real objects, we need to see them in scene. There
are probrably only one way how to do that - using camera. Camera gives us
2D picture of our scene - this will be very useful for detecting real objects
in scene. To calculate 6DoF pose about detected object in scene, we need
probably more information than just 2D picture. For this purpose depth
camera gets handy. In short, depth camera is special device, which gives us
information about distance between camera and object in font of this camera.
We can imagine output from this type of camera as 2D picture, but instead
of colors (like normal RGB camera has) we get distances. Example of output
from normal RGB camera and Depth camera is shown on pictures (1.1).

(a) : RGB Camera (b) : Depth Camera

Figure 1.1: Example of outputs from RGB and Depth cameras

Each color in picture (1.1b) represents distance of this point from depth
camera. This type of information helps us to calculate 6DoF pose of given
object. Depth camera can give as also output in form of Point Cloud. It’s
a set of points in 3D space which camera can see. Positions of these points

7

1. Analysis
are relative to the camera and it’s another type of information which we can
get from this type of camera and it can help us in calculation of 6DoF pose.
Example of point cloud given from depth camera is shown on picture (1.2)

Figure 1.2: Example of Point Cloud output from Depth camera

Because this Master’s thesis continues on work of Bc. Jan Lazarek, I will use
the same depth camera as He did - Microsoft Azure Kinect [22].

1.2.1 Microsoft Azure Kinect

Microsoft Azure Kinect (hereinafter referred to as Kinect) is complete solution
for developers with RGB camera, Depth camera, System of microphones,
and IMU (Internal Measurement Unit - used to track movement of device).
Also one advantage of Kinect is that we can choose between several modes of
cameras, so we can find mode that fits our requirements best. Simple schema
of Kinect device is in the picture (1.3).

Figure 1.3: Schema of Microsoft Azure Kinect

For our purpose we will use only RGB and Depth camera. Depth camera in
Kinect is based on ToF (Time-of-Flight) technology. This technology measure
the time of flight of light signal to calculate distance. We can simply imagine
it as light ray send from the camera. This ray will flight to the nearest surface

8

.................................... 1.2. Depth Camera

where it will be reflected back to the camera. When camera detect this ray, it
calculates time from sending ray to detecting ray and then calculate distance
using simple equation d = (t ∗ c)/2, where d is calculated distance in meters,
t is time from sending ray to detecting ray in seconds, and c is constant of
light speed in meters per second. We need divide it by 2 because ray travel
to the object and back, so it’s double the distance.

In table (1.1) we can see which modes of RGB camera we have available in
Kinect.

Resolution Aspect Ratio FOV FPS
3840 x 2160 16:9 90◦x 59◦ 0, 5, 15, 30
2560 × 1440 16:9 90◦× 59◦ 0, 5, 15, 30
1920 × 1080 16:9 90◦× 59◦ 0, 5, 15, 30
1280 × 720 16:9 90◦× 59◦ 0, 5, 15, 30
4096 × 3072 4:3 90◦× 74,3◦ 0, 5, 15
2048 × 1536 4:3 90◦× 74,3◦ 0, 5, 15, 30

Table 1.1: Available modes for RGB camera in Kinect

We can see that there are lots of options for RGB camera. Because we need
real-time processing, modes with very high resolution such as 3840 x 2160
will be unusable for us. In table (1.2) we can see available modes of Depth
camera in Kinect.

Mode Resolution FoI FPS
NFOV unbinned 640 x 576 75◦x 65◦ 0, 5, 15, 30
NFOV 2x2 binned (SW) 320 x 288 75◦x 65◦ 0, 5, 15, 30
WFOV 2x2 binned 512 x 512 120◦x 120◦ 0, 5, 15, 30
WFOV unbinned 1024 x 1024 120◦x 120◦ 0, 5, 15

Table 1.2: Available modes for Depth camera in Kinect

In tables (1.1) and (1.2) we can see some unknown terms, so let me explain
them:.NFOV - Narrow f ield-of-view depth mode.WFOV - Wide f ield-of-view depth mode. FOV - Field-of-view. FoI - Field of Interest

How we can see in table (1.2) we can choose between 2 modes (NFOV, WFOV)
with different FoI. This possibility is very handy and we can decide which
mode will be better for our purpose on-the-fly without changing the actual
camera.

In the picture (1.4) we can get better idea of different FOV/FoI settings and

9

1. Analysis
how they compare.

Figure 1.4: FOV schema of Kinect cameras

Another useful picture (1.5) demonstrates the camera’s FOV as seen from
the front at a distance of 2 meters.

Figure 1.5: FOV of Kinect cameras at distance of 2 meters

Another features like microphones or IMU of Microsoft Azure Kinect aren’t
important, because we will not use them.

1.3 Similar works

Tracking of real objects for using them in VR applications is nothing new.
There were many works before that aims similar goals as this project. Because
I’m continuing on work of Bc. Jan Lazarek I do not mention lots of other
works in this thesis. I will detail describe Lazarek’s work and also one paper
that I found very interesting because of how close it is to my case and it’s
one of the state-of-the-art methods.

I also want to mention some other works and very briefly describe why I do

10

.................................... 1.3. Similar works

not analyze them more in this thesis and why I have no more similar works
there.

1.3.1 Tangible VR Book

One interesting paper is Tangible VR Book [12]. In this work authors also
try to track real objects and they were prototyping the whole TUI (Tangible
User Interface) framework. They created elements such as buttons, sliders,
or books and also tries some objects like boxes. It was just prototyping, but
it works well and pictures from their work are below.

(a) : boxes at the top, bottle in the
bottom

(b) : button at the top, gestural slider
in the bottom

(c) : book

Figure 1.6: Prototypes in Tangible VR Book paper

The reason why I didn’t describe details of this works is because of used
technologies. They were using a smartphone camera and special markers
to detect these objects. In our case, we want to detect objects without any
special markers and be able to detect the 6DoF pose even with a partially
covered object. We want to try to estimate the 6DoF pose from a depth
camera where markers are no needed.

1.3.2 EfficientPose

EfficientPose [9] is a great example of the state-of-the-art 6DoF pose estima-
tion. Their work is based on EfficientDet [11] which is the state-of-the-art
neural-network-based detection of objects in RGB images. In their work, they
extend EfficientDet by their own neural networks which can also determine
3D rotation and translation from a detected object from RGB image. Details
of this work are beyond this thesis and for details of these neural networks, I
rather recommend reading the original paper of EfficientPose [9].

11

1. Analysis
With their neural networks they was able to precisely estimate 6DoF pose
from two different datasets and also they achived performance around 26
FPS. Example of output from their algorithm is shown in the picture (1.7).

Figure 1.7: Example of prediction from EfficientPose

In the picture (1.7), green boxes represent ground truth and colored boxes
represent the output of the EfficientPose algorithm. As we can see their
results are impressive. The reason why I’m not describing works similar to
this is that they are using only RGB images to directly estimate the 6DoF
pose. Moreover, EfficientPose is based on neural networks, and to estimate
the 6DoF pose of some object we need to train this algorithm to it. This
means that we need lots of labeled data (images with 6DoF pose of required
objects).

Compare to this approach we are trying to estimate the 6DoF pose of objects
without learning, directly from depth data. This is the reason why we are
using a depth camera.

1.4 Summary of Lazarek’s work

Bc. Jan Lazarek did a great job in analyzing appropriate technologies for
this task. You can learn more about depth cameras, why he choose Microsoft
Azure Kinect and much more about image processing. More important for
us is his solution to this task.

He describes how he prepare the scene. In his setup there was one depth

12

.............................. 1.4. Summary of Lazarek’s work

camera Microsoft Azure Kinect and for VR he uses HTC Vive headset. Also
he added LeapMotion on headset so he can track hands in VR application.
To get correct position of depth camera in VR (and to properly calculate
6DoF pose about objects for VR application) he add HTC Vive tracker to
the depth camera, so his VR headset can track depth camera position such
as position of controllers for example. This was setup to track and run VR
application and now what about tracked objects.

His task was to track objects like pen and triangle ruler. For his scene he
prepared models of these object from colored paper. Colors on objects had
an important role - color coding for detection in images using filtering pixels
with the same color. This allows him to quickly detect objects in scene and
filter depth data to area, where objects are located. In picture (1.8) you can
see how these objects looks. The picture is from his work.

Figure 1.8: The photo of tracked objects from Lazarek’s work

In his work, he used proved Open Source libraries for Image Processing and
Point Cloud processing. These libraries allowes him quickly verify functionality
of his algorithm without writting code which was already written by someone.
These libraries (OpenCV [3] for example) are very handy and will be propably
used also in this project.

The Lazarek’s algorithm itself can be divided into two parts:..1. Find object in the scene

The first step is to find our tracked object in the scene. He can use
the fact, that he knows exactly the color of the object, so he used
color information to filter depth data to only those, which fits the color.
Because of light conditions color in the picture can be slightly different
from the defined color. For this purpose, he used HSV color space to
define the color range which will be accepted as the defined color of the
object...2. Fit object into depth data

The second step is to fit object into filtered point cloud from the previous
part. For this purpose he used Point Cloud Library and RANSAC
algorithm. Point Cloud Library has predefined simple objects like cylinder
and plane. Cylinder was used for pen and plane was used for triangle
ruler. RANSAC algorithm can fit these objects into point cloud and

13

1. Analysis
specify, which points represents the objects and which are outliers. After
RANSAC algorithm, he calculate center of gravity for those points, which
was marked using RANSAC algorithm as points of given object. This
center of gravity was used as position of the object. Rotation was used
from RANSAC algorithm. For the triangle ruler, there was a problem of
detecting which side is on top. For this purpose he has different color
code for each side, so after the first part he knows which side of the
triangle ruler is on top. In the picture (1.8) you can see two different
triangle rulers - each one represents colors for each side. With this
information and rotation from RANSAC algorithm he can calculate final
rotation of the triangle ruler.

This algorithm gives him very good results, but also he mentions problems
with calibration. Because he uses colors to find objects in the scene, there
have to be good light conditions and colors have to be calibrated.

1.5 Neural Networks

In past years neural networks get very popular and show us their power. They
are often used for image processing/recognition, data prediction, and so on.
The task of estimating 6DoF pose of objects isn’t an exception. One example
that I found is PointVoteNet [8].

It’s learning-based method so it’s trained on some set of data. There are also
many others learning-based methods that estimate 6DoF pose of objects in
the scene, but they use only RGB images without depth information. Some
of them use depth information to refine estimated position from RGB image.
PointVoteNet aims to find object in the scene and estimate its 6DoF pose
directly from depth data (point cloud) even without RGB information. If
there is also RGB information it’s used at the end to extend depth information
and estimate 6DoF pose more precisely.

How I wrote above, there are others learning-based methods for estimation
6DoF pose, but I do not describe them in this work, because they estimate
6DoF pose directly from RGB image without using depth information. One
example of such algorithm is EfficientPose [9] described above. In our case
we will be using depth infromation as primary source to estimate 6DoF pose
of objects, so it looks unnecessary to describe different approach. I found
PointVoteNet interesting to describe how it works, because it’s algorithm,
which uses depth information to estimate 6DoF pose.

1.5.1 PointVoteNet

The best way to understand how PointVoteNet works is to explain each steps
of estimation process. In the picture (1.9) we can see process of estimating
6DoF pose in 6 pictures.

14

................................... 1.5. Neural Networks

(a) : Input Point Cloud (b) : Voxel Grid (c) : Classification Net-
work

(d) : Sorting (e) : Segment Prediction (f) : Pose Voting

Figure 1.9: Visualization of the pose estimation process

In picture (1.9a) we can see how input data looks like. It’s unsorted point
cloud (in this case also with RGB information) propably from some depth
camera. To limit number of points, the scene is uniformly downsampled
using voxel grid in PCL (Point Cloud Library). This downsampling limits
number of points to approximately 3000-5000 anchor points (It’s showen in
the picture (1.9b)).

In the next step they find the object using PointNet [5]. They sample 2048
points in the spherical neighborhood around each anchor point from the
previous step and pass them into PointNet with only a single logistic output
neuron. This gives him probability of the presence of the object. This is
shown in the picture (1.9c) where green points shows presence of the object.
In this point they found the object in the scene.

Next they sort anchor points by probability from the previous step and
uses only the 16 highest scored. They use these 16 anchor points and their
neighborhood and pass them into Neural Network inspired by PointNet to
associate them to either background or to the corresponding point on the
given object surface. After this step they have segmentetion of points. These
segments correspond to segments on the input object shown in the picture
(1.10).

15

1. Analysis

Figure 1.10: Object model and resulting segments for each point

Segmentation is shown in the picture (1.9e). After this step the problem is
reduce to estimation of relative pose between the two point sets. For this
purpose they use the rotational subgroup voting algorithm [6] to calculate
full 6DoF transformation between object and the scene. After that the 16
poses for each of the processed anchors are refined using a coarse-to-fine ICP
[1].

At the end of the whole process the final position of the object is estimated
from these 16 poses of anchor points from the previous step. At first they
transform object into the scene using estimated pose. After that they cut
off points lying behind the scene data relative to the camera viewing axis
and remaining points are paired with the closest points in the scene. They
compute geometric and color (if RGB data are available) loss and then they
find transformation which minimize this loss. Details are in PointVoteNet [8].

1.6 Iterative Closest Points

Iterative Closest Points (ICP) is widely used algorithm of rigid registration.
We have two point clouds, one is called source and the second is called target
and we want to estimate transformation (translation and rotation) from
source to target such that if we apply this transformation on the source point
cloud it will match the target point cloud. ICP solves this problem and it is
guaranteed that it will converge. Moreover one big advantage of ICP is that
we don’t need to know correspondences between points in source and target
point clouds.

In the picture (1.11) we can see two point clouds before using ICP and after
using ICP to find transfromation between two point clouds.

16

................................ 1.7. VRPN and WebSockets

Figure 1.11: Example of ICP from Open3D library [7]

How ICP algorithm works can be described in two simple steps:..1. Find correspondences

First step of iteration is to find correspondences between source and
target point clouds, whereas source point cloud is transformed using
current transformation matrix. This step give use set of correspondence
points between two point clouds...2. Update transformation

Using set of correspondence points from previous step update transfor-
mation matrix in the way that updated transformation matrix minimizes
given objective function defined over set of correspondence points.

These two steps described above are repeated until convergence or some
constraints are satisfied. Constraints could be for example maximal number
of iterations or minimal difference between two point clouds. Difference
between two point clouds can be defined using RMSE (Root Mean Square
Error). There are many variants of ICP algorithm, which can differ between
each other using different objective function. Two common ICP variants are
Point-to-Point ICP [1] and Point-to-Plane ICP [2].

ICP is very powerful algorithm that’s reason why it is used in so many cases.
But ICP is only local optimization algorithm. This means that if you have
two point clouds, you have to find rough alignment of them before using ICP.
From the description above, in the first step of ICP it’s trying to find set
of correspondence points on two point clouds using current transformation
matrix, so some initial transformation matrix have to be given.

1.7 VRPN and WebSockets

One of a requirement for this project is compatibility with Unity game engine.
Because of character of this requirement there have to be probably some
network based communication between tracking system and VR application
created in Unity.

17

1. Analysis
There are many possibilities how to solve this communication, but from
my point of view there are two simple-enough options - VRPN [23] and
WebSockets [4].

1.7.1 VRPN

VirtualRealityPeripheralNetwork (VRPN) is a device-independent, network-
based interface for communication with peripherals for virtual reality in VR
applications and games. Purpose of VRPN is to provide unified interface for
input devices like trackers and controllers with these features:..1. Time-stamping of data..2. Multiple simultaneous access to peripheral devices..3. Automatic re-connectin of failed servers..4. Storage and playback of sessions

VRPN consist of server which communicates with devices and clients which
communicates with server to get information about devices. VRPN is written
in C++ programming language, but has also wappers in C#, Python and
Java.

One advantage of VRPN is that it’s supported by Unity game engine out-of-
box and no 3rd party plugins are needed. Unity provides access to VRPN
devices using interface called Cluster Input and it’s very easy to use. On
the other hand, one disadvantage is that for our tracking system, we have to
extend VRPN server by writing device driver in C++ to communicate with
our tracking system and obtain data in correct format.

1.7.2 WebSockets

WebSocket is communications protocol providing full-duplex communication
over TCP connection. WebSocket protocol is supported by web browsers, but
can be used in any client-server application. Libraries for WebSocket can be
found in many different programming languages such as C/C++, Python,
JavaScript, C#, Java, etc. For our purpose and simplicity, there is library
called Socket.IO [14] which uses WebSocket protocol as a transport, but gives
us more simple approach than WebSocket.

Socket.IO is event-based communication which allows us create custom events
(you can imagine these events as messages of different type) and use JSON
as payload of these events. For example in plain WebSocket protocol, we can
send message/data. If we want to send two different messages like position
and rotation, we have to somehow encode this into one general message, which
will be send over WebSocket. On the other side we have to decode this general
message and decide if it’s position or rotation message. Socket.IO library

18

................................ 1.7. VRPN and WebSockets

solved this for us, so we can emit message position and rotation and on the
other side we simply add event listeners for position message and rotation
message separatly.

19

20

Chapter 2

Suggested solution

This Master’s thesis continues on work of Bc. Jan Lazarek so I wanted to
improve his solution using some inspiration from other works, mentioned in
chapter 1. Some papers mentioned in chapter 1 uses neural networks, which
are complicated and requires lots of training data. For example PointVoteNet
also uses neural networks, but these are used for recognition of object in 3D
scene and not for final 6DoF pose estimation. This brought me an idea, that
for this project I want to try find some simple solution just for 6DoF pose
estimation - simple solution, which could be fast because of simplicity. One
solution which was used in many other works is using ICP. So I decided to
use core idea of Bc. Jan Lazarek’s work but with ICP at the end of 6DoF
pose estimation.

One assumption which I could used in this project was that I will be tracking
two different objects - Pen and Ruler. Because ICP is used to align two
point clouds, I wanted to have accurate 3D models of pen and ruler which I
will be tracking, so I can align 3D model (represented as a point cloud) to
real corresponding object. Bc. Jan Lazarek uses approximation of cylinder
for pen and plane for ruler.

Picture (2.1) shows created models of Pen (left) and Ruler (right) which will
be used in this project as objects which we will be tracking. These models are
simple, but also have some details which can help us correctly align 3D model
with point cloud. For example pen has no body in shape of cylinder but has
slightly triangular shape, so rotation in axis of pen cannot be arbitrary. In
case of ruler, one side is completely flat, but the other side has some shape
on borders to distinguish what is top side and what is bottom side of ruler.

21

2. Suggested solution

Figure 2.1: Created models of Pen (left) and Ruler (right)

Because we need accurate 3D models to real objects which we will be tracking,
I used these created models from picture (2.1) and print them on 3D printer
from plastic material. This method gives us very accurate real objects to
3D models. Also because we use 3D printing to create real objects, we can
use different materials (filaments) with different color to help detect these
objects in the scene based on color. I choose blue color for pen and green
color for ruler. 3D printed objects of pen and ruler are shown in the picture
(2.2). As we can see colors of these objects are specific and could be pretty
well detected based on their colors.

Figure 2.2: 3D printed Pen (left) and Ruler (right)

I can divide whole solution of this project into 3 main pieces:..1. Tracking system..2. VR Application..3. Communication between Unity and Tracking system

Tracking system and VR Application are independent parts which are con-
nected together with Communication between Unity and Tracking system.
There are some reasons for having Tracking system independent from VR
Application. One of this reason performance. Processing depth data to
estimate 6DoF pose could use lots of processing power. To get stable and
high performance of Tracking system, we could run it separate machine dedi-
cated just for this purpose. Another reason is multi-client desing described
in requirements in chapter 1. If we will have more instances of the same
VR Application (multiplayer) we want only one tracking system which will
be common for all instances. Last but not least reason to having Tracking
system independent is possibility to use different technologies/programming
languages. We can use Unity and C# for creating VR Application while using

22

................................... 2.1. Tracking system

different technologies for Tracking system which will suites given problem
better.

2.1 Tracking system

Whole tracking system can be split into two main parts:..1. Segmentation..2. 6DoF pose estimation

2.1.1 Segmentation

For the next part of Tracking system (6DoF pose estimation) we need only
depth data which correspond to the real object which we are tracking. This
is problem of segmentation where we split data into multiple segments. In
our case we want to segment data into 3 main segments - Pen, Ruler and
Uninteresting. For this purpose I will use RGB image from camera to find
objects (pen and ruler) and then use information about segmentation in RGB
image to segment also depth data - point cloud.

Segmentation is process-intensive algorithm which I’ll simplify as much as I
can to save some processing power for 6DoF pose estimation. So in my case I
will use only segmentation based on color. Because I can create objects which
I will be tracking, I can create them in some specific color. Then I’ll use this
information about color to filter only pixels in RGB image which correspond
to color of tracking objects.

Image in RGB color space is not good for color segmentation. We can imagine
RGB color space as cube where each axis correspond to one color (red, green,
blue). Figure (2.3) shows how RGB color space looks like. Problem with
RGB color space is how colors are represented. If we want to select only
one color (for example green) in image representing object in a real world,
this color will be in some range (green object will be represented with some
shades of green). Problem is that if you simply select color by range on each
color axis in RGB color space, you will select sub-cube of whole color space,
but this sub-cube will contains also colors, which are far from required color
range.

23

2. Suggested solution

Figure 2.3: RGB color space as 3D cube

For this purpose HSV (Hue SaturationValue) color space was created. In this
color space, each color is represented by color hue (red, blue, etc), saturation
of this color, where lower saturation means more "grayness" color, and value
which represents brightness of the color. How HSV color spaces looks like is
shown in the picture (2.4).

Figure 2.4: HSV color space

This color space is much more suitable for color segmentation, because we
can use simple ranges in each color axis and it will give us exactly color range,
which we want. So for segmentation of objects in image I will convert this
image into HSV color space and then I will use simple range in HSV to select
colors coresponding to pen or ruler.

This type of image segmentation is not so process-intensive and to save even
more processing power I will downscale image to smaller resolution. In our
purpose it’s not necessary to have segmentation in high resolution and it can

24

................................... 2.1. Tracking system

save some processing time. After segmentation in RGB image I can calculate
corresponding 3D points in point cloud and use only these corresponding
points in the next part of Tracking system - 6DoF pose estimation.

2.1.2 6DoF pose estimation

From the previous part we obtain point cloud, which correspond to detected
object. Segmentation in the previous part is not good enough to obtain only
3D points of required object. There are some outliers which causes problems
in 6DoF pose estimation. A good example of such segmentation is in the
picture (2.5). Blue points represents segmented point cloud and red points
represents model of detected object. In the picture (2.5a) we can see pretty
good segmentation, but in the picture (2.5b) we can see very bad example of
segmentation. How I wrote in chapter 1, very popular algorithm for point
cloud alignment is ICP, but this algorithm is only for local optimization. If
we look at picture (2.5a), we can immediately see, that center of segmented
point cloud will represent center of model which we want to align, so we can
align centers of two point clouds and we have initial transformation necessary
for ICP algorithm. But if we look at picture (2.5b), we can see that this
method will not work correctly, because center of the blue point cloud is
actualy outside of required object.

(a) : Good segmentation

(b) : Segmentation with outliers

Figure 2.5: Example of segmented points in point cloud

In the picture (2.6) we can see very bad segmentation where there is lots of
outliers and these outliers are far away from required object. In this picture
we can also see that model represented by red points is not correctly aligned.

25

2. Suggested solution

Figure 2.6: Very bad segmentation of detected object with outliers

This type of bad segmentation is very often if we use only segmentation from
RGB image for segmentation of point cloud data. Bc. Jan Lazarek used in
his work RANSAC algorithm, which can detect outliers and not use them.
Problem with RANSAC is time to process such 6DoF pose estimation.

Because of character of our usage of Tracking system, we can put some
assumptions to solve this issue in a simple way. Here are two assumptions
which I’ll use:..1. Shape of tracking objects..2. Continuous movement

We will be tracking Pen and Ruler. These objects are very simple, small
in size and we can minimize area of interest (AoI) to sphere with radius of
half of the maximum dimension of this object. AoI is an area where we know
that object is in. If we use such AoI as described before, we can minimize
outliers in such way, that center of points in AoI will be close to center of
required object. This is very simple way how to improve our segmentation in
point cloud.

Another assumption is in movement of objects. We know that these objects
will be used on table to draw pictures, so we can say that speed of movement
of these objects will be limited to some small value and also it is very unlikely
that objects will disappear in some position and shows up on a different
position. So we can use estimeted 6DoF pose from previous frame to obtain
AoI in the current frame using sphere around previous center of estimated
object position.

If we combine segmentation from RGB image with AoI obtained from previous
frame, we get pretty good segmentation of tracking objects in point cloud.
How I describe above, if we have good segmentation and simple objects like
pen and ruler, we can calculate initial transformation for ICP algorithm just by
align centers of two point clouds. This type of initial transformation is missing
rotation, it’s just translation. To obtain even better initial transformation

26

....................................2.2. VR Application

we can use rotation from previous estimated 6DoF pose of tracking object.
After obtaining such initial transformation we can simply use ICP algorithm
to fine-tune 6DoF pose of detected object.

2.2 VR Application

The subject of this work is not VR application itself, but we need to integrate
our tracking system into VR application and make it work correctly. To get
data from tracking system we will use some type of communication, in our
case it will be simple communication based on Socket.IO library. Using this
communication we will get information about which objects our tracking
system see and what is 6DoF pose of these objects. One problem is that this
6DoF pose information is relative to the camera.

I want to allow more tracking systems (for example because of performance)
in one VR application and make them work very simple for developer of VR
application. For this purpose I will create some type of Tracking manager in
Unity which will handle all necessary things for the developer. This manager
will automatically create objects which are detected from trackers and also
update their position. To handle relative 6DoF pose information, for each
tracking system manager will create empty object which will be representing
tracking camera. All tracked objects will be then placed relative to this
"virtual" tracking camera, so we can use directly 6DoF pose from tracking
system.

One problem to solve is position and rotation of "virtual" tracking camera
in the scene. For this purpose I will define one point (calibration point) in
the scene, which I will use for calculating position of "virtual" camera. This
point is defined by 3D position and normal vector. In the tracking system, I
will define this point in a real world and then use it to calculate position and
rotation of "virtual" camera in the scene. To obtain calibration point from a
real world, I will use the fact, that I want to track objects on the table. I can
grap 3 points on the table from depth camera to calculate normal vector of
the plane which represents top of the table. Then I can grap point form depth
camera which is our "calibration" point and use normal vector of calculated
plane as a normal vector of the calibration point. This calibration point
will be send from tracking system into our VR application and then we will
position "virtual" camera to match calibration points from tracking system
and VR application. This is a very simple way how to correctly position
objects from tracking system without using another device, such as tracking
device of VR headset.

Another problem to solve is position of VR headset. We can now correctly
place tracking objects from our tracking system into the scene in a place
where we want to have them. But we also need to place user to the correct
place in the scene in such way, that he can feel real objects in a place where

27

2. Suggested solution
he see it in the scene. Fortunately this can be solved very easily. We can
use one of controllers of VR headset, place it in real world on our calibration
point and then match position of controller with calibration point in our
scene. For this purpose we can place whole scene into one empty object and
then move this object to align whole scene even with our tracking system.
This is a simple way how to align scene with VR headset and how to align
tracking system into scene.

2.3 Communication between Unity and Tracking
system

Communication between Unity and Tracking system will be solved using
Socket.IO library. This library gives us very simple, event based, bidirectional
network communication and we can only focus on messages which we want to
send. How I wrote before I want to enable multi-client communication and
also enable more than one tracking system. For this purpose I will create
standalone server, which will accept connection from both - tracking system
and VR application. VR application will be called consumer, because it
only consumes data from tracking systems. Tracking system will be called
tracker. So our server will recognize two type of clients (meaning Socket.IO
clients) - consumers and trackers. Each client, after connection to server will
send message where he specify which type of client he is.

Advantage of scheme of one server and multiple clients is that we can handle
lost connections of clients and also very easily synchornize data between more
trackers and consumers, because everything goes over one point - server.

In the picture (2.7) we can see simple schema of communication. Tracker
will be our tracking system and consumers will be VR applications using
information from tracker. We can see that clients communicate only over
server, so if some clients lost connection, other clients doesn’t need to handle
it and it will not cause crash of them.

28

................... 2.3. Communication between Unity and Tracking system

Figure 2.7: Server-Client communication schema

2.3.1 Tracker

Communication of Tracker is very simple. After connection to the server,
Tracker register itself as tracker client and then it will sends data about
itself to the server. No information about consumers or other trackers is
needed, so communication with server is simply informing about current state
of tracker itself.

One information which tracker can send to the server is calibration point.
After tracker setup or change calibration point, sends message about this point
(position and normal vector) to the server. Server will save this information
so if some consumer will need this information, server sends it.

Tracker will send to the server another two types of information. The first
type is registration of object which tracker will be tracking. This object is
called trackable and for example in our case, tracking system can inform
server about two trackables - pen and ruler. Each trackable has unique ID and
some name, which will be used in VR application to assing some prefab for
objects of given name. The second type of information is update of trackable.
Whenever tracking system obtain some update for given object, it will send
this information to the server. It could be update of translation and rotaion,
but also information that trackable was lost and it’s no longer tracked.

2.3.2 Consumer

Communication of Consumer is more bidirectional than in case of Tracker.
After connection to the server, Consumer register itself as consumer client.
After that, consumer will ask for trackables which server know about and
also for calibration points from trackers. Server will reply to consumer with
list of trackables and calibration points. This is initial "conversation" between

29

2. Suggested solution
server and consumer. After this point, just updates from server will be send
to consumer. If consumer losts some information like list of trackables or
calibration points, it can again asks server for sending these information.

After initial "conversation", if server receives some kind of information from
trackers, automatically inform all consumers about this information. So all
consumers will be receiving updates of 6DoF pose of trackables, information
about lost trackables, etc. It’s up to consumer, which information he want to
use and which he will be ignoring.

30

Chapter 3

Implementation

As I describe in chapter 2 whole solution of this Master’s thesis is divided
into 3 pieces and each of them is implemented separately, so in this chapter I
will describe implementation of these pieces separately.

3.1 Tracking system

For implementation of Tracking system, I choose the Python programming
language. It’s a high-level language, which allows me to focus on the algorithm
itself instead of the implementation of structures, memory management, etc.
Price for that is performance, but in Python, there are lots of very powerful
libraries, which are written in C/C++ and has only bindings to Python. So
if I use functions from these libraries instead of implementing everything by
myself in Python, I can obtain very good performance.

For general array manipulation and calculation, I used Numpy [24] and
PyTorch [15] libraries. For image processing, some visualization, and image
segmentation I used the OpenCV library [3], which was also used in Lazarek’s
work. Finally, for point cloud processing, I used the Open3D [7] library.

Because of using libraries in Python, I will not describe some details of used
algorithms/calculations. It’s beyond the scope of this work and some details
can be found in the documentation of these libraries. Also, my goal is to
continue on work of Bc. Jan Lazarek and try to improve performance in a
simple way and no to dive into mathematical/algorithmic details.

3.1.1 Program overview

Whole tracking program is divided into 8 Python files: hsv_calibration.py,
main.py, network.py, player .py, pose.py, recorder.py, segmentation.py and utils
.py. In files pose.py and segmentation.py there are classes for pose estimation
and for image segmentation. In file network.py we can find class for communi-

31

3. Implementation....................................
cation with Communication server. File hsv_calibration.py is a simple util
program which allows you to find correct range values for color segmentation
using real-time visualization of results.

Files player .py and recorder.py are simple util programs for recording and
playing data from depth camera. This could be used to record some situation
and use it as an example. Tracking system can also use player instead of real
depth camera, so you can use this for showcase with recorded scene or for
measurement of performance on different machines with same input.

Important file is main.py, where you can find the whole implementation of
this project. In this file, you can find method main, which is the entry point of
the program. There are also another methods which are used in main method
to simplify reading of this method. Some utility methods are placed in file
utils .py.

At the beginning of main method, there is initialization of Network communi-
cation, Microsoft Azure Kinect camera, visualization, also models which will
be tracked are loaded and some constants are defined here. After some initial-
ization program shows image from camera and try to obtain calibration point
by clicking using mouse into this image. After calibration point is gathered,
program will send it to the server. Important part of main method is while
loop. In each cycle of this loop one frame from camera is processed. At the
beginning of this loop we capture one frame from the camera. There are RGB
and Depth data in this frame. After capturing frame, we downscaled RGB
image, convert it to the HSV color space and call method for image segmen-
tation. This is done for each tracked object separately - so for pen and ruler
there are 2 segmentations. In pseudo-code (3.1) this is represented by meth-
ods downscale_frame_and_convert_to_hsv and get_segmentation_from_image.
After segmentation we use it to obtain depth data from frame and then try to
estimate 6DoF pose from these data. This is represented by pose_estimation
method in pseudo-code (3.1). This process also use filtering in depth data
using previous pose of object and sprehe how it was described in chapter 2.
After 6DoF pose is estimated, we calculate translation and rotation and send
them as update information to the server. There is also detection of losing
object from the scene. If object is lost, then information about lost object
is send to the server instead of new translation and rotation. At the end of
while loop there are visualization of estimated pose and check for pressing
Esc key on keyboard to break while loop and end the program. After while
loop, there are some cleaning code such as disconnecting from server, closing
camera session, etc.

Whole program pseudo-code is shown in code (3.1).

def main () :
i n i t i a l i z a t i o n ()
obta in_ca l ib rat ion_po int ()
send_ca l ibrat ion_point ()

while True :

32

................................... 3.1. Tracking system

frame = capture_frame_from_camera ()
downscaled = downscale_frame_and_convert_to_hsv (frame)

segmentat ion = get_segmentation_from_image (downscaled)
pose = pose_est imat ion (frame , segmentat ion)

t r a n s l a t i o n = ge t_t rans l a t i on (pose)
r o t a t i on = get_rotat ion (pose)
send_to_server (t r an s l a t i on , r o t a t i on)

v i s u a l i z a t i o n ()
i f e x i t :
break

cleanup_work ()
Listing 3.1: Pseudo-code of whole program

3.1.2 Segmentation

Segmentation of required object from image in HSV color space is implemented
in class Segmentation in file segmentation.py. Implementation is very easy
thanks to OpenCV library which was used for this purpose. Class Segmentation
has only two methods. The first method is constructor of this class where you
specify range of HSV segmentation. This range can be obtained using program
in hsv_calibration.py. The second method is process which expects image in
HSV color space as input and returns image with the same resolution as input
image called mask, where black pixels represents pixels not corresponding to
detected object and white pixels represents pixels corresponding to detected
object.

To obtain such mask from image, inRange method from OpenCV library is
used. Because there can be some noise in picture, I apply morphological
transformation using closing operator. In short, this operation removes noise
and make segmented objects nice and closed, which is necessary for our
purpose. In figure (3.1) we can see example of this operation.

Figure 3.1: Morphological closing operation

Because detected area could be smaller due to noise and light conditions than

33

3. Implementation....................................
area which correspond to the detected object, I use also dilate morphological
transformation to dilate this area to make sure, that edges of detected object
will be present in our final mask. In figure (3.2) we can see example of dilate
morphological transformation.

(a) : before dilate (b) : after dilate

Figure 3.2: Morphological transformation using dilate operator

3.1.3 6DoF pose estimation

6DoF pose estimation of detected object from depth data is implemented in
class PoseEstimation in file pose.py. In this class I’m using Open3D library to
manipulate with point clouds and run ICP algorithm to estimate 6DoF pose.
In this class we can find 5 methods. The first method is constructor of this
class where you specify parameters for pose estimation:..1. voxel_size

This parameter is used to resample point cloud to the same voxel size as
models (which we trying to align with obtained point cloud) and ideally
to reduce amount of points in point cloud by using large voxel_size, but
also small enough to keep necessary detail of models. This parameter
depend on model size and detail...2. icp_threshold

This parameter is used to define maximal distance between correspon-
dence points in ICP algorithm. ICP algorithm tries to find correspon-
decne points and then minimize some objective function between these
points using transformation...3. icp_max_iterations

This parameter represents maximum iterations of ICP algorithm. If algo-
rithm do not converge in icp_max_iterations it will end after icp_max_iterations
and return current transformation...4. filter_radius

This parameter is used to define radius of sphere with center in previous
detected pose which will be used to filter points in point cloud which are
outside of this sphere.

34

................................... 3.1. Tracking system

There are also two simple methods get_target which returns current point
cloud used to 6DoF pose estimation and is_lost method which returns True
if object is lost for tracking (and estimating of 6DoF pose) or False if
estimated 6DoF pose is correct and object is visible. Another simple method
is filter_points_around_center which is used by process method to filter points
in point cloud around sphere defined by previous 6DoF pose and filter_radius .

The main method of this class is process which expects two input parameters:..1. source

Which is Open3D’s Point Cloud instance representing model of tracked
object. This model will be aligned with given point cloud...2. points

Which is array of points from depth camera representing point cloud of
detected object.

First step of process method is filtering points in point cloud if there is previous
estimation of 6DoF pose to remove outliers from point cloud. After this we use
Open3D library to create Open3D’s Point Cloud from these points and initial
transformation using previous pose is created. If distance between previous
pose and current center of point cloud is too large, we set flag representing
that object is lost to True. This is simple detection of losing object.

After these steps ICP algorithm (Point-to-Point variant of ICP) from Open3D
library is called and found transformation is returned.

3.1.4 Networking

Communication with server is implemented in class Network in file network.py.
This class is using Socket.IO library and implement a few simple method.
First method is constructor of this class, where you specify host and port
of running server. To connect or disconnect from server, there are simple
methods connect and disconnect.

Three other methods are present in class Network:..1. add_object

This method expects id and name as input parameters and its purpose
is to inform server about object which will be tracked with this tracking
system...2. update_object

This methods expects name of object, which pose we want to update,
position which is 3D vector of current position, rotation which is Quater-
nion of current rotation and lost which is flag if tracked object is currently
lost or not.

35

3. Implementation......................................3. send_calibration

This method is used to send calibration point to server which will be used
to correctly place tracked objects into the scene. Method expects 3 input
parameters n which is normal vector to the plane on which calibration
point is placed, r0 which is one point used to calculate normal vector of
the plane and c which is our calibration point on the plane.

3.2 VR Application

As I mentioned many times before, I will be using Unity [13] game engine
for creating VR application and also my goal is to make Tracking system
compatible with Unity game engine. No other engines are supported/tested.
To create VR application in Unity I will be using SteamVR [17] library.
Because I need to "synchronize" position of the scene, VR headset and Tracking
system, I will be using controller and so implementation of using controller is
fit to SteamVR library. With another library for VR my implementation will
not work.

Another library which I will be using is Socket.IO for C# [20]. This library
is available using NuGet packaget manager [21] and I will use it for network
communication with Communication server.

Whole implementation of integration with Unity is written in single C# script
TrackingManager.cs. There are also two prefabs connected with this script -
TrackingManager and TrackingCamera. Both of these prefabs are empty
objects. TrackingManager prefab has TrackingManager script bind on it
and it’s the most important prefab for developers. If you want to integrate
Tracking system into your scene in Unity, you just add TrackingManager
prefab into the scene. The second prefab - TrackingCamera - is used by
TrackingManager script to create "virtual" camera of tracking system. All
tracked objects of this tracking system will be under TrackingCamera
object as childs and positions and rotations from tracking system will be
updated relative to this TrackingCamera. Position of TrackingCamera
in the scene is determined using calibration point from tracking system and
given origin in the scene - it is point in the scene which is represented by
calibration point in the real world.

Because we need to synchronize positions of the scene, VR headset and
Tracking system, we have one requirement for the scene hierarchy. Whole
scene has to be under one object called Room (it’s not necessary to name
it Room in scene hierarchy). This room will be moved to correct. Prefab
TrackingManager has to be at root of hierarchy. In the picture (3.3) we
can see how such a scene hierarchy could looks like.

36

....................................3.2. VR Application

Figure 3.3: Example of the Scene hierarchy

3.2.1 TrackingManager script

TrackingManager script has a few properties which are configured in an In-
spector window in Unity editor. If you put TrackingManager prefab
into the scene, you will find these properties in an Inspector window under
TrackingManager and it’s necessary to configure these properties correctly to
make Tracking system works.

All properties and their description is in the list below..1. host

This is host (IP address) where Communication server is running. Default
is http://localhost..2. port

This is port of the Communication server. Default value is 3000..3. trackingCameraPrefab

This is prefab used to create "virtual" camera of the tracking system.
Defaul prefab is TrackingCamera which is empty object, but you can
use you own prefab if you want (for example with some camera object
in it to show where camera is placed in the scene)...4. sceneOrigin

This is important property. This property is a Transform object of
the calibration point in the scene. This point will be aligned with the
calibration point given by tracking system. You can use some empty
object placed and rotate in a correct position in the scene...5. trackableDefinition

This is another very important property. It’s a list of trackable objects.
For example lets assume, that our tracking system will track Pen and

37

3. Implementation....................................
Ruler. Our tracking system will register this objects under names pen
and ruler . If we want to show these objects in our VR application, we
add two elements into trackableDefinition property. Each element has
another two properties - name and prefab. name is the same name as
tracking system used to determine type of tracked object - in our example
it’s pen or ruler. prefab is Prefab representing this object in our VR
application. If tracking system sends information about pen or ruler
object, TrackingManager automatically instantiate prefab for given object
and place it into correct position...6. vrCalibrationHand

This is object of SteamVR hand. It will be used to determine current
position of the controller to properly move Room object into correct
place...7. room

This is Room object which contains all scene objects as childs. This
object will be moved to align scene with VR headset (in other words to
move player exactly to the place, where he can feel objects from tracking
system in the place where he see it in the scene).

In the picture (3.4) we can see example of configured TrackingManager using
Inspector window in Unity editor.

Figure 3.4: Properties of TrackingManager

There are also some important methods in the TrackingManager script - Awake,
OnUpdate and OnDestroy. Method OnDestroy simple disconnects from con-
nected server - nothing special here. Method Awake will setup communication
with server. It will connect to the server and bind all events (messages types)
to handle responses from server. After connection to the server, this method
register itself as consumer client for server and ask for list of trackables
from server and calibration point. Last important method is OnUpdate.

38

................................ 3.3. Communication server

At the beginning of this method, I check VR controller if user press button
to "align" scene with calibration point. After alignment is done, user has to
reset it with another button to make possible a new alignment. Button for
align scene is GrabPinch and button for reseting is GrabGrip.

After checking of alignment of the scene, there are three important sections
of update..1. Remove trackables

If tracking system stop tracking some trackable or if tracking system
is shutdown, server will inform consumer about trackables that was
removed. These trackables are marked as to be removed and in OnUpdate
method they are removed. In each update cycle I check if there are some
objects to remove...2. Create trackables

If tracking system start tracking some trackable or tracking system starts,
server will inform consumer about new trackables which are tracked.
These trackables are marked as to be created and in OnUpdate method
they are created if we have prefab for given type of trackable. In each
update cycle I check if there are some new objects to create...3. Update trackables

Last section is update of trackables. In each cycle of update I check
if there is some update from server for trackables and new updates
(position, rotation and infromation about lost trackables) are applied to
instantiated objects assigned to these trackables.

At the end of the OnUpdate method I check information about calibration
point. If there is new information from server about calibration point, I
instantiate new "virtual" camera for it and position it to the correct place
using sceneOrigin property specified in TrackingManager script. If "virtual"
camera for given calibration is already exists I just update position of already
instantiated "virtual" camera.

In TrackingManager there are also other methods which are binded to messages
from the Communication server and just process these messages. Details of
these methods are not important.

3.3 Communication server

For implementation of Communication server I choosed TypeScript program-
ming language and NodeJS [19]. Combination of these two technologies is
perfect for creating such servers and it’s very fast and easy to implement it.
Used library Socket.IO is primarily developed for NodeJS.

Implementation of whole server is divided into two files: main.ts and server . ts.

39

3. Implementation....................................
File main.ts is an entry point of server and only define port on which server
will be listening and then create instance of Server class from server . ts file
with defined port and then just start listen on defined port.

Important implementation of server is under Server class in server . ts file. In
the constructor of this class I setup Socket.IO server and bind connection
event. This event is fired when new client is connected to the server. Setup
of newly connected client is done in addClient method.

In addClient method I push new client into array of clients and then I bind
all events for this client. There are 3 types of events:..1. Common events

These events are commond for both clients (trackers and consumers).
Only two events are here: disconnect and register . disconnect event handle
disconnection of client and inform about this change others if necessary
(for example if tracker will disconnect, than we remove all trackables of
this tracker). register event is to specify if client is consumer or tracker...2. Events for trackers

These events are specific for trackers. Event register_object is to inform
about trackable which will be tracked by tracker. update_object is to send
updated infromation (position, rotation and lost flag) about trackable to
the server. And last event is calibration which is used to send calibration
point to the server...3. Events for consumers

Consumers has only two specific events: get_trackables which is request to
obtain all trackables which are registered in this server and get_calibration
to obtain calibration point of given tracker.

Communication between tracker and server is shown in the picture (3.5). We
can see that only tracker sends messages to the server, because tracker itself
doesn’t need any infromation about other trackers or consumers.

Figure 3.5: Communication between Tracker and Server

Communication between consumer and server is shown in the picture (3.6).

40

................................ 3.3. Communication server

Unlike tracker to server communication we can see that consumer and
server have bidirectional communication where consumer asks for information
and server sends these information to the consumer. Also messages like
update_object are send without request. Message like update_object is send
after tracker send update.

Figure 3.6: Communication between Consumer and Server

41

42

Chapter 4

Testing

In the beginning I want to say that my primary goal of testing wasn’t to
measure precision of estimated 6DoF pose from the Tracking system. I had
no device to measure precisely the distances or positions (and rotations) of
objects in the scene to measure such precision of estimated 6DoF pose. How
I wrote before in my case precision is subjective feeling of user. If user feels
position of tracked object in position where he see it in VR application, than
it’s precise enough for our case.

Whole testing in this work can be divided into two main directions. The
first direction is ease of use of this Tracking system. How difficult is to setup
the scene and how difficult is to develop VR application using this Tracking
system. The second direction is user experience in VR application. For this
purpose I prepared simple VR application with room where table is placed
and on top of this table there is white paper. With the pen tracked using
my Tracking system you can draw something on this paper. It’s very simple
scene, but drawing on paper is task dificult enough to see if precision of
tracking system is usable.

Also because we are using this tracking system with VR application I will
be using some VR headsets. For this project I choosed HTC Vive headset.
How I will be mentioning later in testing chapter I also used Oculus Quest
connected to the PC. The reason why I choose HTC Vive is very simple -
because this Master’s thesis continues on Bc. Jan Lazarek’s work and he also
choosed HTC Vive.

4.1 The scene

The scene setup was very easy. How I wrote above I want to also test how
easy is to setup the scene, so I setup whole scene in my workplace. Because
I’m using color segmentation for detecting position of objects I was thinking
about black textile covering the scene to make it easy for tracking system
to segment objects. But I wanted to test simplicity, so I just put small box

43

4. Testing
on floor in the room and then position depth camera on stative to look at
this box. This box was representing table in VR application room. Also I
connected depth camera to the laptop and then just run Communication
server and Tracking system on it. Very simple setup done in a few minutes.

In the picture (4.1) you can see how this setup was looking. Messy room with
simple box and camera in "middle".

Figure 4.1: Photos of the scene setup

In the picture (4.2) you can see scene setup from more angles of view to make
better idea of how setup of the scene was done.

Figure 4.2: Another photos of the scene setup

Also you can see in the pictures (4.1) and (4.1) that on the box there are our
tracked objects - pen and ruler. Detail of these objects si in te picture (2.2).
How you can see this setup is very easy and everybody can do it in a few
minutes. It’s probably simplier to setup then HTC Vive headset which was
used for testing as VR headset.

After you run the Tracking system on a laptop, you will see two windows.
The first window shows what camera see in 3D and also add tracked objects
(they have brown color). So you can see if estimated 6DoF pose of objects are
correct. The second window shows RGB image of what camera see and adds
red circles around detected objects. In the picture (4.3) we can see screenshot
form Tracking system of our scene. The big window is showing 3D scene and

44

............................ 4.2. Performance of Tracking system

the small one in the right bottom corner shows RGB image. I also added 3
green points to show, where I clicked to specify 3 points of the plane, which
is used for calibration point. Between these 3 green points I also added the
red point which represents the fourth point which I clicked in the image and
this point is our calibration point. After you run the Tracking system, these
four points has to be specified by clicking with mouse into RGB image. After
this whole tracking system is setup.

Figure 4.3: Screenshot from the Tracking system

I also setup HTC Vive headset, but it’s not subject of this testing so I do not
describe how to setup VR headset.

4.2 Performance of Tracking system

I tested this tracking system on two mechines - desktop and laptop. Specifi-
cations of both mechines are listed below.

Desktop specification. CPU: Intel Core i5 6600K @ 3.9GHz. RAM: 16GB DDR4 3000MHz CL17.GPU: nVidia GeForce RTX 2070 SUPER.OS: Arch Linux, Kernel version: 5.12.5

Laptop specification. CPU: Intel Core i7 6700HQ @ 2.6GHz. RAM: 16GB DDR4 2400MHz CL17

45

4. Testing
.GPU: nVidia GeForce GTX 960M.OS: Arch Linux, Kernel version: 5.11.16

How I wrote in chapter 1 I will be measuring performance of this tracking
system using FPS. I obtained FPS by simply calculating in the program by
measure running time and counting frames that were processed. In the end,
FPS was simply calculated by formula (4.1).

fps(f, t) = f

t
(4.1)

where f is a count of frames and t is the elapsed time in seconds to process
f frames. Table (4.1) shows the average FPS in different situations and on
different machines.

Situation FPS on laptop FPS on desktop
Only reading from camera 30 30
Tracking only pen 15 19
Tracking only ruler 18 26.5
Tracking pen and ruler 13 14.5

Table 4.1: Measured average FPS

As we can see in the table (4.1), desktop has better performance than laptop.
It’s nothing suprising. What is suprising is that if we are tracking only
ruler object, we have much higher FPS than if we are tracking only pen.
Performance of the Tracking system on desktop when tracking only ruler is
realy good. If we are tracking both objects FPS will drop, but in case of
desktop we get 14.5 FPS which is not bad.

4.3 User experiance

The first part of user experience is developing VR application with using
Tracking system. Because I needed some VR application for testing of user
experience of using VR application with Tracking system, I have also my own
experience with Tracking system as a developer of VR application.

Another part of user experience is VR experience itself, where user is trans-
ferred to the virtual world using VR headset and interacts with real objects
to control virtual objects which he can see. In my case user will be drawing
with a pen on a paper.

46

................................... 4.3. User experiance

4.3.1 Developing VR application

There is no much to say. Developing VR application for testing purpose
with Tracking system was very easy. It’s similar to developing classic VR
application. To enable tracking system in this VR application you have to do
3 steps:..1. Add tracking package

To add tracking package you install Socket.IO library, add two prefabs
and one script. That’s all...2. Add tracking manager into scene

After you have tracking package in you project, you just add Track-
ingManager prefav into the scene and setup correctly properties of
TrackingManager script which is add on this prefab...3. Add room object and calibration point

Last step is to move all object of the scene (visible objects, no objects
like some event managers or similar) under one "root" object which I
named Room. After that I just put empty object into the scene in place
where I want to have mapped calibration point from tracking system. In
my case it is a place where is a paper.

After these 3 steps tracking system was integrated in VR application and
when I run it, it just worked. From my point of view it’s very simple to
integrate tracking system and it represents no overhead.

In pictures (3.3) and (3.4) in chapter 3 you can see how scene hierarchy and
TrackingManager properties looks in my VR application.

How the scene in VR application looks is shown in the picture (4.4). We can
see white paper on the table. We want to align this table and paper on it
with a box from the real world which was used in the scene setup described
early in this chapter.

47

4. Testing

Figure 4.4: The scene in VR application

In the picture (4.3) I mentioned the red point representing calibration point
of the tracking system. We want to have this point in the middle of white
paper in our scene in VR application. In the picture (4.5) we can see point
roughly in the middle of paper representing calibration point. This is way
how we align tracking system into our scene where we want.

Figure 4.5: The calibration point in VR application

I also add two more screenshots from the scene to show how the scene in VR
application looks. These screenshots are in the pictures (4.6).

48

................................... 4.3. User experiance

Figure 4.6: Screenshots from the VR application scene

4.3.2 Experience with VR and Tracking

There was total of 3 participants testing VR experience including me. Tests
was performed on the tracking setup described early in this chapter. VR
application was running on different machine than tracking system. So
network communication was also tested that it’s working. Moreover in one
test there was runing two separate clients of VR application to see if we
can run multiplayer VR application and still get correct information from
Communication server and all clients of multiplayer will see tracked objects.
This was working without any problems.

One of participants agreed with capturing some photos of testing so I’m
including a few photos of using VR application with tracking system. In
pictures (4.7) and (4.8) we can see how participant sits at the box representing
table in VR application.

Figure 4.7: Photos from testing of VR application

49

4. Testing

Figure 4.8: Photos from testing of VR application

Using of pen in real VR application was not so good as I expected. Perfor-
mance of tracking system in term of FPS is probably no problem at this
point. Any of participants was feeling no big problems with speed of tracking.
One problem with using this tracking system in real VR application is overall
usability. It tooks some time to used to using pen, mainly because of some
unstable vibrations of object. Another problem was that pen sometimes
lost from tracking. This could happen if camera can’t see pen, but it was
happening when pen was visible by camera.

Another big problem was with HTC Vive itself. Experience with this headset
was bad. It was drifting sometimes from position, sometimes it has lags and
sometimes image was flashing (like if you lost tracking and headset shows
you blank screen). With longer time of using VR application users felt that
pen is shifted in position. Over time pen was slowly shifting position.

But one good news is that using of this tracking system was not totally usable
at all. If you accepted that it’s not perfect and tried a little bit, you was able
to draw something on paper. In pictures (4.9) and (4.10) we can see some
drawing which can demonstrate how precise and usable tracking system was.

Figure 4.9: Drawings in VR application

50

................................... 4.3. User experiance

Figure 4.10: Drawings in VR application

Pictures above was done by one participant. Implementation of drawing line
on paper in VR application was not good and you can see some weird artefacts.
Line was represented as segments of sprites. So with better implementation
of drawing lines it will be look better, but some curves in lines are caused by
vibrations of pen. This could be probably solved by some type of filtering.

In the picture (4.11) we can see another drawing done by another participant.

Figure 4.11: Drawings in VR application

The last participant was trying to draw flower. The last participant was also
looking at text on the pen. Screenshots from this are shown in the picture
(4.12).

Figure 4.12: Drawings in VR application

After these tests I was trying to test VR application also with another headset.
This test was done with the last participant and for this test we was using

51

4. Testing
Oculus Quest connected to the PC using Oculus Link. In this setup Oculus
Quest can be used with SteamVR as HTC Vive. This last test was very
surprising.

Oculus Quest uses inside-out tracking and have no base stations like HTC Vive
has. When we turned off HTC Vive and use only Oculus Quest, experience
with VR application was immediately better.

Whole experience was much more stable. Tracking of headset was precise
and stable, no drifting of position was present as well as flashing caused by
lost tracking. In subjective feeling also tracking of pen was more stable. No
lost of tracking was present and vibrations of object was smaller. Drawing
was little bit easier and lines looked more fluent.

After the last test I realized that IR lights used in depth camera (in my case
Microsoft Azure Kincet) and tracking of HTC Vive headset are interference
together somehow. This was probably causing lost of tracking of HTC Vive
as well as some unstable behiever in tracking system.

4.4 Stability

In VR application it felt that the pen was vibrating/trembling. This could
be a problem in cases like drawing lines. For this purpose, I tried to measure
how much is pen vibrating/trembling by simply leaving the pen in a stable
position and then capturing position and rotation for some time. On the
captured data I then calculated mean, standard deviation, and maximal
deviation.

Results of this measuring is shown in the table (4.2)

Position X [mm] Y [mm] Z [mm]
Max 2.5883 1.4377 0.9513
Std 0.8355 0.3790 0.3324

Rotation X [deg] Y [deg] Z [deg]
Max 1.7491 9.6340 2.5302
Std 0.5397 3.6054 0.8499

Table 4.2: Measured deviations in position and rotation

As we can see a maximum deviation in position is 2.5mm. It’s not bad at
all, it’s usable even for drawing lines. But the rotation is another story. A
maximum deviation in the rotation is 9.6 degrees and a maximal standard
deviation is 3.6 degrees. These values are too high for stable drawing lines.

52

Chapter 5

Conclusion

The project overall revealed some problems and possibilities connected with
tracking of real objects in VR. In this Master’s thesis I showed that solution
for 6DoF pose estimation could be done in pretty simple way and get at least
usable tracking system although it’s not good enough for industry use.

I get reasonable performance of tracking especially if we are tracking only
single object. Tracking system, Communication server and Unity integration
with single script and two prefabs shows how easy is to setup Tracking
system. This is very important for real usage and it was done well in this
work. Developers of VR applications can integrate this tracking system
with almost no overhead. What’s also very good property of this tracking
system is possibility to connect more tracking systems and clients together
and make them work seamlessly. You just plug them together and it works.
Precision and usability of tracking of object is questionable, but for tasks
where precision is not needed it’s probably usable.

Very unpleasant are problems with using HTC Vive and Microsoft Azure
Kinect together. Interference of IR lights causes problem to tracking system
as well as to VR headset and experience with it is not good. Another problem
especially in case of drawing lines with pen is vibrating/trembling of tracked
object. Because of I’m using segmentation of object based on color it could
causes problems of losing tracked objects in bad light conditions or if there
is "color noise". The last problem which was mentioned by participants in
testing is connected with loosing of tracked objects. Because I’m using last
known position of object to estimate new position, sometimes is problematic
to restore tracking after object was lost.

There are lots of possibilities for future work on this project. First of all
it will be good to try another depth cameras like Intel RealSense [16] for
example and also another VR headset. Also with objects like pen, which are
symetric around some axis, it will be good to add also difference in color
into objective function of ICP algorithm. This could also stabilize 6DoF
pose estimation and make it more precise even with some covering of objects.
Another posible improvement is to move calculations to GPU. In this project

53

5. Conclusion......................................
there are calculations which could be massively parallelized and GPU can
brings much more processing power than CPU. But it have to be tested if
there will not be a big overhead caused by moving data between GPU and
CPU.

54

Appendix A

Bibliography

[1] P. J. Besl and N. D. McKay. “A method for registration of 3-D shapes”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence
14.2 (1992), pp. 239–256. doi: 10.1109/34.121791.

[2] Yang Chen and Gérard G. Medioni. “Object modelling by registration
of multiple range images.” In: Image Vis. Comput. 10.3 (1992), pp. 145–
155. url: http://dblp.uni-trier.de/db/journals/ivc/ivc10.
html#ChenM92.

[3] G. Bradski. “The OpenCV Library”. In: Dr. Dobb’s Journal of Software
Tools (2000).

[4] Alexey Melnikov and Ian Fette. The WebSocket Protocol. RFC 6455.
Dec. 2011. doi: 10.17487/RFC6455. url: https://rfc-editor.org/
rfc/rfc6455.txt.

[5] Charles R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation”. In: arXiv e-prints, arXiv:1612.00593
(Dec. 2016), arXiv:1612.00593. arXiv: 1612.00593 [cs.CV].

[6] Anders Glent Buch, Lilita Kiforenko, and Dirk Kraft. “Rotational Sub-
group Voting and Pose Clustering for Robust 3D Object Recognition”.
In: arXiv e-prints, arXiv:1709.02142 (Sept. 2017), arXiv:1709.02142.
arXiv: 1709.02142 [cs.CV].

[7] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A Modern
Library for 3D Data Processing”. In: arXiv:1801.09847 (2018).

[8] Frederik Hagelskjær and Anders Glent Buch. “PointVoteNet: Accurate
Object Detection and 6 DoF Pose Estimation in Point Clouds”. In:
arXiv e-prints, arXiv:1912.09057 (Dec. 2019), arXiv:1912.09057. arXiv:
1912.09057 [cs.CV].

[9] Yannick Bukschat and Marcus Vetter. “EfficientPose: An efficient, accu-
rate and scalable end-to-end 6D multi object pose estimation approach”.
In: arXiv e-prints, arXiv:2011.04307 (Nov. 2020), arXiv:2011.04307.
arXiv: 2011.04307 [cs.CV].

[10] Jan Lazarek. “Sledování reálných objektů ve virtuální realitě”. Bache-
lor’s thesis. České vysoké učení technické v Praze, May 2020.

55

https://doi.org/10.1109/34.121791
http://dblp.uni-trier.de/db/journals/ivc/ivc10.html#ChenM92
http://dblp.uni-trier.de/db/journals/ivc/ivc10.html#ChenM92
https://doi.org/10.17487/RFC6455
https://rfc-editor.org/rfc/rfc6455.txt
https://rfc-editor.org/rfc/rfc6455.txt
https://arxiv.org/abs/1612.00593
https://arxiv.org/abs/1709.02142
https://arxiv.org/abs/1912.09057
https://arxiv.org/abs/2011.04307

A. Bibliography.....................................
[11] Mingxing Tan, Ruoming Pang, and Quoc V. Le. “EfficientDet: Scalable

and Efficient Object Detection”. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).
June 2020.

[12] Jorge C. S. Cardoso and Jorge M. Ribeiro. “Tangible VR Book: Ex-
ploring the Design Space of Marker-Based Tangible Interfaces for
Virtual Reality”. In: Applied Sciences 11.4 (2021). issn: 2076-3417.
doi: 10.3390/app11041367. url: https://www.mdpi.com/2076-
3417/11/4/1367.

[13] Unity Technologies 2020. Unity. url: https://unity3d.com (visited
on 01/09/2021).

[14] Damien Arrachequesne. Socket.IO. url: https://socket.io/ (visited
on 05/18/2021).

[15] Torch Contributors. PyTorch. url: https://pytorch.org/ (visited
on 05/19/2021).

[16] Intel Corporation. Intel® RealSense™ Computer Vision - Depth and
Tracking cameras. url: https://www.intelrealsense.com/ (visited
on 05/21/2021).

[17] Valve Corporation. SteamVR Unity Plugin | SteamVR Unity Plugin.
url: https://valvesoftware.github.io/steamvr_unity_plugin/
(visited on 05/20/2021).

[18] LLC. Facebook Technologies. Oculus Rift S: VR headset pro počítače
připravené na VR | Oculus. url: https://www.oculus.com/rift-s/
(visited on 01/10/2021).

[19] OpenJS Foundation. Node.js. url: https://nodejs.org/ (visited on
05/20/2021).

[20] HeroWong. doghappy/socket.io-client-csharp. url: https://github.
com/doghappy/socket.io-client-csharp (visited on 05/20/2021).

[21] Patrick McCarthy. GlitchEnzo/NuGetForUnity. url: https://github.
com/GlitchEnzo/NuGetForUnity (visited on 05/20/2021).

[22] Microsoft. Azure Kinect DK – vývoj modelů AI | Microsoft Azure. url:
https : / / azure . microsoft . com / cs - cz / services / kinect - dk/
(visited on 01/10/2021).

[23] Virtual Reality Peripheral Network. vrpn. url: https://github.com/
vrpn/vrpn (visited on 05/18/2021).

[24] NumPy. NumPy. url: https://numpy.org/ (visited on 05/19/2021).

56

https://doi.org/10.3390/app11041367
https://www.mdpi.com/2076-3417/11/4/1367
https://www.mdpi.com/2076-3417/11/4/1367
https://unity3d.com
https://socket.io/
https://pytorch.org/
https://www.intelrealsense.com/
https://valvesoftware.github.io/steamvr_unity_plugin/
https://www.oculus.com/rift-s/
https://nodejs.org/
https://github.com/doghappy/socket.io-client-csharp
https://github.com/doghappy/socket.io-client-csharp
https://github.com/GlitchEnzo/NuGetForUnity
https://github.com/GlitchEnzo/NuGetForUnity
https://azure.microsoft.com/cs-cz/services/kinect-dk/
https://github.com/vrpn/vrpn
https://github.com/vrpn/vrpn
https://numpy.org/

Appendix B

Contents of enclosed SD card

/
models/............................models for tracked objects

3d_print/...........................models for 3D printing
vr_models/ models for VR application

server/ code for Communication server
thesis/........directory of LATEX source code of this thesis

master-thesis.pdf pdf version of this thesis
master-thesis.tex...........main file of LATEX source code

tracking/.......................directory of tracking system
code/ source code of tracking system
models/....................models used in tracking system
environment.yml..................environment for anaconda

unity/.............................directory of Unity project
Build/.................build of Unity project for Windows
TrackingVR/

Assets/
Scripts/

Tracking/............scripts for tracking system
TrackingManager.cs

Prefabs/ prefabs for tracking system
TrackingCamera.prefab
TrackingManager.prefab

NuGetForUnity.3.0.2.unitypackage...........NuGet package
socket.io-client-csharp-2.2.0.zip SocketIO package

README.md/.......file with basic information about project

57

	Contents
	Figures
	Tables
	Project Specification
	Introduction
	Analysis
	Requirements
	Real-time processing
	Precision
	Real objects without adjustments
	Compatibility with Unity

	Depth Camera
	Microsoft Azure Kinect

	Similar works
	Tangible VR Book
	EfficientPose

	Summary of Lazarek's work
	Neural Networks
	PointVoteNet

	Iterative Closest Points
	VRPN and WebSockets
	VRPN
	WebSockets

	Suggested solution
	Tracking system
	Segmentation
	6DoF pose estimation

	VR Application
	Communication between Unity and Tracking system
	Tracker
	Consumer

	Implementation
	Tracking system
	Program overview
	Segmentation
	6DoF pose estimation
	Networking

	VR Application
	TrackingManager script

	Communication server

	Testing
	The scene
	Performance of Tracking system
	User experiance
	Developing VR application
	Experience with VR and Tracking

	Stability

	Conclusion
	Contents of enclosed SD card

