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Abstract

The goal of the thesis was to perform a dynamic malware analysis of portable executable
files and create a dataset of analysis reports. Furthermore, we aimed at statistical mod-
elling of the collected data and evaluation of models. Lastly, we intended to explain the
model’s predictions using statistical methods and discuss the results. The whole process was
motivated by model interpretability to achieve greater compliance of machine learning and
cybersecurity. We used CAPEv2 sandbox for malware analysis and implemented a pipeline
that downloads malware samples, distributes them among multiple sandbox instances, and
finally collects results. The Hierarchical Multiple Instance Learning (HMill) framework was
used to model the dependence of malware signatures on behavioural features like API calls,
dropped files and processes, both presented in analysis JSON report. The HMill framework
uses a tree-structured neural net to model the structure of the input document. Trained
models were explained using Banzhaf values and minimal subtree selection. We analyzed
80,000 publicly accessible malware samples and collected results, from which signatures
and behavioural features were extracted. A binary classifier was trained for each extracted
signature. Nine out of twelve signatures resulted in a balanced accuracy above 90%, which
was sufficient for model explanation experiments. Even though there might be hundreds
of entries in the original behavioural report, the explainer only provided 3–5 entries as an
explanation for each model. To evaluate the explanation, Python implementation of the sig-
natures was examined to get their true cause. It is evident from our observations that some
models are intensely associated with the original signature’s cause. It is worth noting that
there are cases where the model used different behavioural features with high accuracy.

Keywords: Multilple instance learning, cybersecurity, malware
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Abstrakt

Cílem této práce bylo provést dynamickou analýzu spustitelných souborů a vytvořit datovou
sadu reportů. Dále jsme se zaměřili na statistické modelování shromážděných dat a vy-
hodnocení přesnosti těchto modelů. Nakonec jsme použili statistické metody pro vysvětlení
predikcí a diskutovali výsledky. Motivace experimentu byla převážně kvalita interpretace
modelu a její přínos k dosažení spolupráce strojového učení a kybernetické bezpečnosti. Pro
analýzu malwaru jsme použili sandbox CAPEv2 a implementovali jsme celý proces od stažení
vzorků až po sběr výsledků analýz. Modelování bylo realizováno pomoci frameworku hier-
archického multi-instančního učení (HMill). Vstupními vektory pro model byly záznamy
o chování (např. volání API, uložené soubory, procesy) a výstupními ťrídami byly deteko-
vané znaky chování (tzv. signature), obojí k dispozici v získaných /emphJSON reportech.
HMill používá pro modelování vstupního dokumentu stromově strukturovanou neuronovou
sít’. Natrénované modely byly vysvětleny pomocí Banzhafových hodnot a metody výběru
minimálního podstromu. Zanalyzovali jsme 80,000 veřejně přístupných vzorků malwaru
a shromáždili výsledky, ze kterých byly získány vstupní vektory a výstupní ťrídy pro náš
model. Pro každý signature byl natrénován binární klasifikátor. U devíti z celkových dvanácti
modelů jsme pozorovali přesnost nad 90%, což bylo dostatečné pro následující experi-
menty s vysvětlováním modelu. Přestože původní report může obsahovat i stovky položek,
vysvětlení pro každý model obsahovalo pouze 3–5 položek. Abychom byli schopni lépe vy-
hodnotit vysvětlení modelů, prozkoumali jsme Python implementaci každého signature a
nalezli jeho skutečnou příčinu. Z našich pozorování je zřejmé, že některé modely do svých
predikcí zapojují původní příčiny. Zároveň stojí za zmínku, že některé modely s vysokou
přesností použili i jiné části původního vstupního vektoru.

Keywords: Multiinstanční hierarchické učení, kyberbezpečnost, malware

x



Contents

1 Introduction 1

I Theory and prior 5

2 Malware analysis 7
2.1 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 File formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Portable Executable . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Malware analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 CAPEv2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.3 Analysis flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.4 Network setup options . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 Other features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 Produced data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.6.1 Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 Prior arts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Malware classification 20
3.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.2 Machine learning tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Loss functions for classification . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Tree-structured data classification . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.5.1 Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.2 Flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.3 Graph neural networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5.4 HMill framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

xi



xii CONTENTS

4 Hierarchical Multiple Instance learning 29
4.1 Multiple instance learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Mill problem solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Instance-Space paradigm . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.1.1 Standard assumption . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1.2 Collective assumption . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Bag-Space paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.3 Embedded-Space paradigm . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.3.1 Vocabulary-based methods . . . . . . . . . . . . . . . . . . . 32
4.2.3.2 Histogram-based methods . . . . . . . . . . . . . . . . . . . . 32

4.3 HMill framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Abstract data nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3.1.1 Array node . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1.2 Bag node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.1.3 Product node . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3.2 HMill schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.3 HMill model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3.3.1 Array model — am(f) . . . . . . . . . . . . . . . . . . . . . . 35
4.3.3.2 Bag model — bm(f, g, F ) . . . . . . . . . . . . . . . . . . . . 36
4.3.3.3 Product model — pm(f1, . . . , fl, fp) . . . . . . . . . . . . . . 36

4.3.4 Modelling JSON documents using HMill framework . . . . . . . . . . . 36
4.4 CAPEv2 classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 Behavioural features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4.2 Signature classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.4.2.1 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5 Model explaining 40
5.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.2 Categorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 Explanability desiderata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Trust . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.2 Causality X Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3.3 Transferability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.4 Informativness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.3.5 Fair and ethical decision making . . . . . . . . . . . . . . . . . . . . . 43

5.4 Interpretable model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.1 Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4.2 Post-hoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.5 Explaining HMill models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.1 Explainer steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.5.2 Subset selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.3 Minimal subtree adaptation . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5.4 Subtree ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5.4.1 Model gradient ranking . . . . . . . . . . . . . . . . . . . . . 46
5.5.4.2 GNN explainer mask ranking . . . . . . . . . . . . . . . . . . 47



CONTENTS xiii

5.5.4.3 Banzhaf values . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.6 Other methods for structured data . . . . . . . . . . . . . . . . . . . . . . . . 47
5.7 CAPEv2 explaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.7.1 Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

II Experiments 49

6 Infrastucture and data collection 51
6.1 Host machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Guest machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Network setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.3.1 None . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.2 Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.4 Data collection pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4.1 Abuse.ch MalwareBazaar . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4.2 File filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.3 Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.4 Distributed sandbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.5 Result postprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 Collected dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Results 57
7.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.1.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.1.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.1.3 Technicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.2 Explainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8 Conclusions 64

A Classifier evaluation metrics 66

B CAPEv2 sandbox details 68

C Network architecture for distributed sandbox 71

D Signatures description 73

E Model metrics 76



xiv CONTENTS

F Explaining details 81

G Technology 82

H Attachments 84



List of Figures

2.1 PE file structure [39] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Official image of sandbox architecture [15] . . . . . . . . . . . . . . . . . . . 14
2.3 CAPEv2 components and analysis flow [99] . . . . . . . . . . . . . . . . . . . 17

3.1 Neural net example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Hierarchical Mill model by [83] (image inspired by [68]) . . . . . . . . . . . . 33
4.3 Representation of a plant specimen in HMill framework [68] . . . . . . . . . . 34
4.4 Translation of JSON document into HMill data nodes [68] . . . . . . . . . . . 37

C.1 None network setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C.2 Internet network setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

E.1 antidebug setunhandledexceptionfilter plots . . . . . . . . . . . . . . . . . . . 77
E.2 copiesself plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
E.3 deletesself plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
E.4 enumerates running processes plots . . . . . . . . . . . . . . . . . . . . . . . . 78
E.5 stealthtimeout plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.6 uses windows utilities plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
E.7 removeszoneidads plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.8 antisandboxsleep plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.9 dropper plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.10 invalid authenticode signature plots . . . . . . . . . . . . . . . . . . . . . . . 80
E.11 packer entropy plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
E.12 stealth network plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

xv



List of Tables

2.1 CAPEv2 Sandbox output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Confusion matrix for binary classifier . . . . . . . . . . . . . . . . . . . . . . . 24

7.1 Hyperparameters of HMill model . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Model performance (values are rounded off to three decimal digits, P denotes

positive examples ratio in our dataset) . . . . . . . . . . . . . . . . . . . . . . 59

A.1 Classifier evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B.1 Parts of report.json . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.2 Behaviour parts of report.json . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

D.1 Used signatures and their details . . . . . . . . . . . . . . . . . . . . . . . . . 75

E.1 Additional classifier results for particular signatures (rounded off to 3 decimal
digits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

F.1 Details for each signature’s model explanation . . . . . . . . . . . . . . . . . . 81

xvi



Chapter 1

Introduction

Motivation

In this day and age, we face an intense explosion of machine learning applications in various
branches of human efforts such as biology, chemistry, physics, and others. These technolo-
gies widely influence our daily lives and make them immensely more convenient, faster, and
more enjoyable. On the other hand, there are many cases where algorithms (especially in
machine learning) can control our decisions, reasoning, and life.
If we use these computer science tools appropriately, we can often create something that
may serve our protection. We can take the detection of threats and frauds in cybersecurity
as a perfect example, research and applications in this particular field are fascinating for
multiple reasons, and one of them is our motivation. We have to know which side we are
standing on and what the interests of our clients are. In the case of fraud detection, we know
that the investment is profitable only if the fraud has a significant financial impact. Not all
frauds are interesting from a financial point of view because solving them also costs much
money. However, from an ethical point of view, every fraud should be punished. Similarly,
network security, single device security, and access control are often disregarded. Small
businesses targeting a specific market are not interested in costly services whose impact is
mainly preventive. The primary objective of such business is cost reduction and financial
profit. Nevertheless, it cannot be denied that loss of privacy and data is undesirable. We
have to start analyzing costs, benefits, risks, probability, and impact (potential damage).
That is not so evident in a technical branch as cybersecurity is.
An inseparable character of this play is malware. Let us motivate this thesis by listing several
examples.
Firstly, one of the most prevalent malicious software is ransomware. Its overall damage is
estimated to be $20 billion, increasing every year [85]. Though the social impact might be
arguably even more significant than the financial side as there have been attacks targetting
even healthcare organizations, which is further exacerbated by the fact that the first death
following a ransomware attack was reported in 2020 [21].
We can conclude that IoT malware is becoming more common, supported by Sonic Wall’s
2019 report. That is caused by the insufficient protection of these small devices, for which
we cannot provide complete malware protection. However, 127 new IoT devices are being
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CHAPTER 1. INTRODUCTION

connected to the internet every second, which leads us to an estimation that by the end of
2021, there will be 35 billion IoT devices connected to the internet [67]. This risk can not
be mitigated easily, and malware elimination will play an even more significant role as it
has so far.

Another convenient trend for malware is widespread encryption, which has become a stan-
dard in web traffic. Its main goal is the security of information. Considering this fact, the
creators of malware have a lot to hide and secure from the protectors as well. The en-
cryption might inform us that the source has something that nobody else should see. A
long-lasting trend of such behaviour might be suspicious. We can check if there is a justi-
fied reason to encrypt the data, or we can at least make some conclusions about the source
of the encrypted data. Nevertheless, that is not possible in the world where everything is
encrypted.

In 2020, 94% of malware was delivered by email [33], and therefore the importance of
phishing emails with malicious attachments and other social engineering techniques grows.
It is cheaper to produce one sophisticated, convincing email to retrieve some information
than an attempt to attack a highly protected network perimeter. It also might be used to
distribute malware or other threats.

In 2020 AV-atlas [98] recorded over 750 million malware samples, and moreover, at the
end of April 2021, this number has increased to over 820 million malware samples. The
majority of them are executable files attacking Windows devices.

Malware research continues, and it will undoubtedly do so until we can introduce a suffi-
ciently universal and flexible solution that will be able to detect zero-day threats (unseen).
We might find a solution among machine learning models, which are often involved. How-
ever, its challenge is interpretability and explainability, not only in cybersecurity. We face
the problem that a model’s performance is often significant, but we are not sure about the
reason, and it is risky to deploy such a model to a situation where it can meet unseen data.
High-quality security engineers do not have to be high-quality machine learning engineers.
If we want to involve machine learning methods increasingly, we need to interpret and ex-
plain its predictions to combine cybersecurity knowledge with the results of the models and
gain a better understanding.

Goal

The main objective of this thesis is to design a pipeline that has a malware file dataset as
the input and a machine learning model and its explanation as the output. We want to
go through the whole process, document each step, and report results. Our acquisition
is the process itself, so it is described in detail for the reader to identify the problems we
experienced and replicate or extend our setup.

From the assignment of this thesis, we can extract the following steps:

1. Run several instances of CAPEv2 [76] sandbox and solve their orchestration for this
experiment

2. Capture the behaviour of selected malware samples and store the results
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3. Learn the hierarchical multiple instance learning (HMill) framework

4. Analyze the captured data. Report the basic statistics and choose appropriate features
and hidden states for further modelling

5. Using HMill, create models and identify the artefacts corresponding to different mal-
ware behaviour, and report the results

6. Investigate which parts of the CAPEv2 log are important to different malware be-
haviour

In detail

The first step implies using dynamic malware analysis to retrieve the input for our machine
learning model. This intention originated after we downloaded a couple of thousands of
sandbox JSON reports from the internet and examined them. We observed that this use
case might be challenging for our method and might demonstrate its capabilities.

The initial task is data collection. We are about to use MalwareBazaar1 as a public data
source of malware samples. We chose it because of its free access with no claims for usage
and a reasonable amount of samples. We aim at Portable Executable (PE), which does not
require any additional software running on the target machine. The sandbox we want to
use is CAPEv2 [76] because the first reports were also produced by this tool, and they are
sufficient for analysis purposes. It is a fork of a popular Cuckoo sandbox which is no longer
maintained. The sandbox has to be run in multiple instances to collect a sufficient number
of samples.

The model we want to use is a hierarchical multiple instance learning model. In [68], the
authors showed that this model has good performance modelling JSON documents. After
further research, we decided to model the dependence of malware signatures on behavioural
features, both included in JSON report. Signatures are the essential input for the original
classification techniques used by the sandbox, and we want to see how well the model
predicts them based on malware behaviour.

Finally, we will attempt to explain the predictions by choosing a minimal subset of features
that contributes to the model’s prediction the most. The explanation will be performed
using the existing HMill explainer. We can study the implementation of signatures and their
true cause, which might help us with results evaluation. We expect that explanation of the
model, the cause of which is in the report, should be a set containing this cause. As an
example, we expect that if the original signature’s cause is a specific API call, it should be
presented in the explanation of the binary classifier for this signature. As authors of HMill
explainer mentioned, we hope that the explanation contains even something new. In other
words, we expect that we could observe explanations that contain entries that are not the
original cause. However, they might reasonably substitute it — they are connected to the
same effects. It is also possible to identify new signatures because all samples are malicious
and the model might generalize based on different similarities in the training set.

1https://bazaar.abuse.ch/
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CHAPTER 1. INTRODUCTION

Thesis structure

The thesis is divided into two main parts. In the first part, we focus on the theoretical
background of our method. In the second part, we present a specific setup, our results, and
their discussion. More complex structures (images, tables) are part of the appendices. The
attachments containing additional material are described in H.
The theoretical part starts with the malware analysis theory in chapter 2 where we break
down the malware itself, the types of its analyses, and its output. We continue in the chapter
3 which describes the machine learning formalism, cybersecurity context, and structured
data (JSON document) usage in machine learning. Finally, the chapters 4 and 5 describe
the particular methods used in our modelling and explaining experiments.
The second part consists of two chapters. Chapter 6 includes a description of the infras-
tructure and the data collection process. Chapter 7 presents the model and explainer setup,
results, and their discussion.
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Theory and prior
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Chapter 2

Malware analysis

A particular goal of this thesis is to create a dataset of dynamic malware analysis samples.
In this chapter, we define the basic notions of malware, PE file and malware analysis. We
describe CAPEv2 sandbox and its output.

2.1 Malware

Malicious code (also called Malware) is intended to disrupt a computer, network, or its parts
from functioning. The form or format may vary. It could be a JAVA application, Microsoft
Office macro or even a PDF file. Malware detection, classification and overall research is part
of the Intrusion detection [23]. Attackers use malware to steal data, use target computer (in
C2 or DDOS attacks) or even spy on the owner. Malware often gets into the target computer
via usual communication channels: email, flash drive, downloaded. [53]. Malware may
contain more parts that have a different role, and we call these parts components. The
software which is not malicious (benign) is often called cleanware.

Firstly, let us clarify several terms. Malware type denotes a group of malware samples or
their components that show the same behaviour. Malware family is a collection of malware
that has the same code base (uses same code components). An example of such a family
might be Emotet, a banking trojan family, or CryptoWall, a ransomware family. Malware
variant/strain/version is malware that belongs to some existing family but includes new
parts which were not earlier detected in this family [22].

Based on the specific behaviour, we can distinguish several fundamental types of malware.
Each malware sample may have multiple components, and each component may have a
different type. The most usual malware types follow (their source is [23, 53, 41, 93]).

• Worm is malware capable of copying itself in a variety of ways and spreading on
multiple devices.

• Virus is capable of infecting other executable files by injecting its payload. The user
then executes the infected files.

• Trojan disguises itself as a regular program. After installation, they can steal the data,
control the target machine, etc.
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• Backdoor allow the attacker to access the target machine. The attacker can use multi-
ple machines as a botnet controlled by a command and control server.

• Adware presents unwanted advertisements to a user of the target machine. They are
usually downloaded from the internet.

• Information stealer aims at the user’s data. Examples are sniffers, grabbers, spyware,
and key loggers.

• Ransomware locks users out of their computer or encrypts their data. It usually threat-
ens the user by not decrypting it before they pay some money.

• Rootkit allows a malware presence concealment.

• Dropper downloads a malicious code or its update from the internet. The dropper
itself is often harmless.

• Launcher is responsible for running malicious code, usually stealthy.

According to [98], the most seen types on Windows operating system are trojans and back-
doors.

2.2 File formats

Malware is defined very generally, and it is not limited to a specific file format. We can
find various file types — Portable executable, Portable Document Format, Microsoft office
formats, HTML, Archives and many others. According to [98] Portable Executable (PE) files
are the most seen on Windows machines, and therefore this thesis exclusively focuses on it.

2.2.1 Portable Executable

The portable executable is a file format mainly for executables, object code and data-link
libraries (DLLs). It is specific for Windows operation system. For the 32-bit version, we
use the format PE32 and for the 64-bit version is PE32+. Microsoft provides its complete
description in [70]. Description of the essential parts follows.

The PE file includes information necessary for Windows operating system (specifically the
dynamic linker) to map the file into memory [39]. Usual file extensions are .exe, .dll, .sys. It
consists of two main parts — Header and Sections (see 2.1).

Header contains technical details about the executable. The most important parts are:

• DOS header — presented for backward compatibility with older versions of Windows

• PE header — executable info such as number of sections, file signature

• Optional header — additional info such as the base of data, base of code, address of
entry point

• Sections table — definition of the loading process

• Import/export address table (IAT) — lookup table (pointers) for imported or exported
structures
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Sections contain mainly the data and code of the executable file. The most important parts
are:

• Code — actual program code (.text)

• Imports/exports — .idata, .edata

• Data — static constants (.data), variables(.bss), other resources (.rsrc), debug data
(.rdata)

The loading process of a PE file starts by parsing and validity checking of the headers and
sections table. The file is mapped into memory according to the information in specific
header parts. Additional DLLs are loaded into memory based on IAT. Finally, the file is
executed at a specified entry point. 1

Figure 2.1: PE file structure [39]

2.3 Malware analysis

Malware analysis is a process leading to a deeper understanding of malware features, be-
haviour, and goals. We can use several techniques to analyze a malware sample, and not all
of them require its execution.
Malware analysis is the most relevant if we do not have the source code of the malware
binary because its examination would often give us much more information. We see the
sample as a black box [93].

1https://github.com/corkami/pics/blob/master/binary/pe101/pe101.png
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The goal of the security threats research and description is to find a proper response —
prevent or detect future attacks, identify the attacker, etc. Authors of [53] summarize our
motives in malware analysis as follows. We want to find malware components, their role,
and address their goals. For example, we can identify malware consisting of the dropper
part, which checks the running environment and downloading payload from the internet,
and from the launcher part, which is responsible for the payload stealth execution.

Another reason might be to understand the malware’s impact. It is hiding each step, and
if we do not monitor our system (for example, using integrity checks), we might not re-
alize the threat. We want to observe and report its behaviour in the target computer (file
names, registries, etc.). We also need to detect network intrusion, which might be critical
for preventing the malware from spreading across a local and global network.

Finally, we want to classify the threat and investigate who the attackers are and what are
their motives.

The analysis might be followed by a response, which often includes an antivirus update —
creating new signatures, updating existing ones, etc. The notion of signature refers to an
indicator that can detect malicious code on victim machines or even in the network traffic
[93]. The signature detection is based on examining the outputs of malware analysis and
checking specific parts.

We distinguish two basic types of malware analysis — static and dynamic. In the following
sections, we address each of these and describe their techniques.

2.3.1 Static analysis

By performing static analysis, we can examine the target file without its execution. Its usage
is limited, but it can narrow the scope of our interest [53]. Performing the static analysis is
usually easier and faster [93].

Determining file type

Earlier in this chapter, we listed several file types frequently used by malware. One of the
initial steps in static analysis is file type determination. The file type might correlate with
the file extension, e.g., .exe, .sys, .docx, but reliable technique of its determination is file
signature examination. This signature is a sequence of bytes that is unique across different
file types. File signature might be examined manually in some hex editor2 or automatically
using some programming language libraries or tools3 [53].

Fingerprinting, comparison

Fingerprinting means generating a cryptographic hash value for the examined file, e.g.,
MD5, SHA1. This hash should give us a unique file identifier that might be used to retrieve
known information about the malware sample from online sources4, where we can find

2https://mh-nexus.de/en/hxd/
3https://man7.org/linux/man-pages/man1/file.1.html
4https://www.virustotal.com/gui/
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multi-antivirus scans and other helpful information. On the other hand, we can use a special
kind of ’hashes’ to identify similar malware samples. Those could be fuzzy hashes, import
hashes, or section hashes [53].

String extraction

Strings are placed in the PE file encoded by ASCII or another encoding. Their extraction
from the original binary is a valuable tool of static analysis. The strings might include IP
addresses, domain names, file names and others. There are specialized tools for this task 5.

However, attackers know all these detection techniques, including string extraction. That
leads us to the file obfuscation, a technique used by an attacker to secure strings from ex-
traction, which is often done by packers using compression or by cryptors using encryption.
Even such techniques are detectable and vincible using specialized tools.

Code analysis

The techniques listed above are picking specific features, and by connecting them, we might
get a valuable summary for an initial hypothesis. However, even without the knowledge
of the code, we can examine its low-level steps. That is called code analysis, and we can
distinguish static and dynamic code analysis (CA).

In static CA we use disassembler 6 which translates machine code back to assembly code
which might be further analysed. Another option might be decompilation which translates
machine code into a higher-level programming language such as C or Python 7.

In dynamic CA, we use debugger to examine the translated code during the run [53] (this
technique is part of dynamic analysis, we mention it here for completeness).

There are even other techniques, e.g., PE header inspection where we can see imported
and exported libraries and functions [93] or Yara rules, which allow researchers to create
indication rules based on the textual and binary information of the malware sample [53].

2.3.2 Dynamic analysis

Dynamic analyses techniques allow us to examine a running malware sample. The isolated
environment for malware execution is often called Sandbox. Sometimes we call Sandbox the
application, which allows us to orchestrate the dynamic analysis and all its parts. During the
run, we observe the details about the malware behaviour and even the system’s reaction. In
the following list, we can see different subjects which are often monitored.

• Processes — process activity, subprocesses, etc.

• File system — dropped files, removed files, etc.

5http://split-code.com/strings2.html
6https://binary.ninja/
7https://github.com/avast/retdec
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• Registry keys — read/write operations with Windows registry keys, including read
and written data

• Network activity monitoring — outgoing and incoming traffic

• API calls — external library of an operating system which is called by the malware
sample, essentially everything what the malware performs should be expressed in the
list of API calls

• Mutexes — flags which are usually created by a thread to avoid another thread from
writing to a specific resource at the same time, they are also used by malware for in-
terprocess communication, e.g., the indication of the malware presence on the victim
machine

Sandbox realization is precise work. We need to minimize the risk of malware breaking
the border of a safe environment. It is usually implemented using a virtual machine, and
air-gapped networks (isolated networks) [93]. Using virtual machines is better for overall
security, but there are some significant pitfalls as well. The crucial drawback is that malware
might identify the suspiciously clean and safe environment and shut down itself before
any action. The sandbox setup has to be conscientious to imitate the natural environment
faithfully. We should also let some intentional traces of everyday usage as mentioned in
[15]. Despite mentioned facts, virtual machine setup is still more frequent than running
malware on a physical machine. There is various virtualization software8 that provides
virtual machine management tools. Using a sophisticated network setup (bridged network
adapters, NAT, VPN), we may provide even a controlled internet connection (or simulation).

Examples of existing solutions for sandbox environment orchestration are:

• CAPEv2 — https://www.capesandbox.com/ (earlier cuckoo sandbox)

• ANY.RUN — https://app.any.run/

• Hybrid analysis — https://www.hybrid-analysis.com/

• Joe Sandbox — https://www.joesandbox.com/

Sandbox evasion techniques

As we mentioned earlier, the creators of malware know how it is examined, and they might
utilize evasion techniques to detect the sandbox. Malware might delay its execution to
overcome the timeout of most sandboxes (usually up to half an hour). It often checks the
unlikely storage size, version, and other information overlooked during the virtual machine
setup. It might detect a low number of CPU cores and other environment details before
dropping a payload. If the sandbox runs on a device with GUI, malware can try user inter-
action detection [87]. A comprehensive description of sandbox evasion techniques can be
found in [3] and this blog post [19] describes how we can defeat them.

8https://www.virtualbox.org/, https://www.linux-kvm.org/
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2.4 CAPEv2

An open-source project called Cuckoo sandbox was firstly published in 2011. It started as
the Google Summer of Code project in 2010 within the Honeynet Project. This project is
no more actively developed but in 2019, community developers forked the original project
and updated its implementation to be compatible with python 39. This project is called
CAPEv2, and it is distributed under GPL-3.0 License. There is one publication about original
Cuckoo sandbox [74], which is a partial source of the following description together with
documentation of CAPEv2 [15]. Other sources are referred to in the text.
CAPEv2 is used to automatically run malicious files, collect results, and perform further anal-
ysis. It has a modular design which allows its integration into a more complex infrastructure.
Other developers can customize and extend many of its functions.
It can analyze various file types, which can be uploaded using CLI or the web interface. We
can see the results in the file system or the web application 10. A list of file types that can be
analyzed using CAPEv2 can be found in B.

2.4.1 Architecture

CAPE’s architecture is demonstrated in figure 2.2. It consists of one or more host devices.
Each host might manage multiple guests — virtual machines.
Host is the environment for sandbox application usually running Linux distribution11. It
allows us to upload a new sample, retrieve results, configure the sandbox, and many other
functions.
Guests are virtual machines where particular samples usually run under Windows 7 OS. By
default, guests are in the isolated virtual network where they can not access each other, only
the host.

2.4.2 Components

The sandbox consists internally of several components. They can be seen in figure 2.3 and
their description follows.

Scheduler

This component runs on host machine. It checks configured limits and proper setup. It
manages machinery modules and starts a new task if there is a pending guest. A new task is
forwarded to the analysis manager.

Analysis manager

Analysis manager is responsible for the whole flow of a single task. It starts other modules
which are part of the analysis and starts/stops the machine through machinery modules.

9https://github.com/kevoreilly/CAPEv2
10public instance https://capesandbox.com/
11recommended https://releases.ubuntu.com/20.04/
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Figure 2.2: Official image of sandbox architecture [15]

Machinary modules

These modules are used by sandbox to manage virtual machines — start, stop, restore.
They are initialized during sandbox startup. Recommended software for virtual machine
management in CAPEv2 is KVM.

Guest manager

This component communicates with the agent. It uploads the sample, checks the state of
the analysis and the machine, shutdowns the machine in case of timeout.

Cape agent

Agent is an HTTP server running inside the guest machine to report its state and allow
sample upload and related actions. It has to start simultaneously with the machine startup
(it has to be added to the Windows Startup directory).

Analyzer

It is a platform-dependent software running in guest machine that controls the flow in the
machine. It is started by agent and its configuration is provided per analysis. It runs the
sample using a chosen package (specific for each type of uploaded file). If the package
is not provided, it might be determined automatically. After running the target sample,
analyzer injects it with the cape monitor.
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Cape monitor

A DLL which is injected into the running sample. It logs any captured behaviour using
several techniques like hooking functions, following processes, and PE dumping. It also
sends results to the result server. Cape monitor is maintained in separate repository12.

Auxiliary modules

These are additional modules that run before or during the analysis in the guest machine.
An example of such a module is the network traffic sniffer or the screenshot capture tool.

Result server

It collects the analysis results and stores them. It runs on the host machine.

Processing modules

Processing consists of the following parts - raw data processing, signature matching, and
reporting. The first part transforms the raw output to a readable/searchable format, per-
forms static analysis, and extracts network streams. There is a structured output at the end.
The second part is running particular signatures and collecting their results. Signatures are
stored in a special repository13. Their interface accepts the processed structured data and
generates results indicating that the current signature matches (true or false) and related
data. Signature results are added to the structured output. The final part of the analysis is
reporting. In this part, all results are stored in JSON report and also in the database (other
reporting modules might be added).

The list of raw data processing modules:

• AnalysisInfo — parses basic information about analysis

• BehaviorAnalysis — parses the raw behavioural logs and performs some initial trans-
formations and interpretations, including the complete processes tracing, behavioural
summary and process tree

• Debug — parses errors and analysis.log generated by the analyzer

• Dropped — parses information on the dropped files by the malware and dumped by
CAPE

• Memory — executes Volatility analysis on a full memory dump

• NetworkAnalysis — parses the PCAP file and extracts some network information, such
as DNS traffic, domains, IPs, HTTP requests, IRC and SMTP traffic

• ProcMemory — performs analysis of process memory dump

• StaticAnalysis — performs static analysis of PE files

12https://github.com/kevoreilly/capemon
13https://github.com/kevoreilly/community
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• Strings — extracts strings from the analyzed binary

A Signature might isolate some unique behaviour, identify some malware family or type,
and spot significant modifications performed in the system. The signature report consists of
an identifier, description, severity, category, and other related information.

2.4.3 Analysis flow

A target file upload might be performed using the CLI utility of CAPEv2, using the Web
interface, Python API, or REST API.

If a file is uploaded, CAPEv2 saves it to the database. Multiple options can be configured
for each analysis — used package, machine to run on, network setup, timeout, priority, and
multiple additional options. We can run only network analysis or only static analysis. The
scheduler keeps track of pending tasks and runs them. The process of execution is managed
by analysis manager. In case of running a new analysis, analysis manager informs the result
server. When the analysis is running, the analyzer, monitor, configuration and the sample
file are uploaded to the guest using the agent. The agent starts the analyzer, run the sample
and injects the monitor to that. The analyzer and the monitor sends results to the result
server. After the analysis stops or timeout passes, the analysis manager stops the machine.
The collected analysis results are forwarded to the processing modules. Results are stored in
the chosen formats and saved to the database [99]. The whole flow can be seen in figure
2.3.

2.4.4 Network setup options

CAPEv2 provides multiple possibilities for the guest network setup which could be configured
per analysis.

In the case of None routing, the machine is isolated, and the only connection is the one with
the result server. Additionally, there is Drop routing when all the traffic is actively dropped
(a more aggressive option).

Other options provide internet connection (in some sense). Internet routing is full inter-
net access through a specified interface. We can also forward the traffic through another
gateway, i.e. VPN, SOCKS5 proxy14 or Tor15. Last option is to use network simulation like
InetSim16.

2.4.5 Other features

One of the crucial features of CAPEv2 is the debugger, so we can also perform non-interactive
dynamic code analysis. It allows dynamic anti-evasion bypasses such as the one used by
Guloader, Ursnif or Zloader.

14example tool https://github.com/RicoVZ/socks5man
15https://www.torproject.org/
16https://www.inetsim.org/

16



2.4. CAPEV2

Figure 2.3: CAPEv2 components and analysis flow [99]

CAPE means Config And Payload Extraction. The main motivation behind its creation was
malware payload extraction, for which it uses techniques like Process injection, Decom-
pression of executable modules in memory or extraction of executable modules. CAPEv2
automatically creates a process dump for each process that effectively detects the basic
packers.

It can detect various malware families such as Emotet, QakBot, Dridex, and many others. It
also uses Yara rules.

2.4.6 Produced data

The whole ouput of CAPEv2 is listed in the table 2.1.

Output

2.4.6.1 Report

As we stated in the thesis introduction, our goal is to use behavioural features and signatures
from the JSON report, which is the most comprehensive report produced by CAPEv2. We
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Table 2.1: CAPEv2 Sandbox output

Output Description

pcap report network traffic record (packet se-
quences)

memory
dump

dump of RAM (its analysis results
could be also presented)

bingraph mechanism that discovers metamor-
phic malware [61]

behavioral
log

raw logs of api calls and other (usu-
ally in BSON format)

dropped
files

all dropped files unchanged in sep-
arate directory

CAPE, proc-
dump

other extracted payload in separate
directory

reports JSON report and possibly other re-
ports

screenshots taken during analysis

will use its format as a direct input for our model. Let us define this format 17 and the
content of the report.
JSON (JavaScript Object Notation) is the most frequently used lightweight data interchange
format. It consists of two essential structures — collections of key-value pairs (sometimes
called objects) and ordered lists.
Object is an unordered list of key-value pairs, curly brackets surround it, pairs are coma-
separated, and a colon separates keys from values. Keys have to be double-quoted Unicode
strings. Values might be strings, numbers, objects, arrays, boolean or null. Lists are sur-
rounded by square brackets and contain comma-separated values.
Usually, a single .json file contains one object, but there are also cases where a list of objects
is presented.
The CAPEv2 report usually has tens of megabytes but sometimes even gigabytes. Complete
schema of the report is in B.1. In the thesis attachment, we can see an example of a real
report (H). In the modelling part, we will concentrate on signatures and the behaviour parts,
its structure is described in B.2.

2.5 Prior arts

Below we list relevant publications where the authors applied a machine learning algorithm
to the data produced by malware analysis tools.

17documentation https://www.json.org/json-en.html
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Static features

• Strings — [64]

• N-grams (analysis of byte subsequences of length N from the original binary) — [34]

• Entropy of a malware file — [101]

• Statically extracted API function calls — [4]

Dynamic features

• Registry — [38]

• CPU instruction traces — [17]

• Network traffic — [14]

• API call traces — [35]

Other related resources might be [95, 91, 1, 39].
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Chapter 3

Malware classification

In this chapter, we describe the machine learning background, which is important for further
model description. We cover basic terms in machine learning, cybersecurity context, and
models for hierarchically structured data (JSON documents).

3.1 Machine learning

“Learning is a search through the space of possible hypotheses for one that will perform well,
even on new examples beyond the training set. To measure the accuracy of a hypothesis,
we give it a test set of distinct examples from the training set.” [89]
As we can see in the quote, the essentials of machine learning can be described concisely
and elegantly. On the other hand, the crux is its mathematical base. The most considerable
challenge in machine learning theory is the formal framework and point of view, which the
authors consider. Firstly, we would like to put our method into context.
After a brief look into several sources, we can find varied kinds of machine learning or just
learning [89]. It is easy to mix perspectives and make one extensive taxonomy. However,
we start with statistical machine learning as the most general notion in this chapter.
In statistical machine learning, we aim to optimize the predictive function to fit our training
data and perform sufficiently on testing data. It is done using statistical tools such as maxi-
mum likelihood estimation and many others. On the opposite, we can see symbolic learning
where we are more interested in symbolic knowledge representation, often human-readable.
This approach is older and sometimes called GOFAI — Good Old-Fashioned Artificial Intel-
ligence [43]. This kind of learning is not going through such a massive upswing as the
statistical branch nowadays. Let us define the basic terms based on [31].

3.1.1 Definitions

Sample — independent variable set

By sample, we mean a collection of features which tends to be represented as x ∈ Rn,
where xi is often called feature and x is called sample or feature vector [40]. We can also
generalize this definition for tensors.
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3.1. MACHINE LEARNING

Generally, we can see object features as x ∈ X , where X could be a set of categorical vari-
ables, scalars, real-valued vectors, sequences, images, graphs, structured formats (JSON)
and much more. We might involve a feature extraction process to get to the real-valued
vectors mentioned above.

States, classes — dependent variable set

By state, we mean the subject of our prediction, often represented as y ∈ Y, where Y is
often called state space. That could be whatever we enumerated by X (images, documents,
vectors. . . ). They also tend to be represented as real-valued or discrete vectors. States are
sometimes also called labels or targets. We focus on classification tasks, so we call them
classes.

Prediction strategy, hypothesis

A prediction strategy is defined as h : Y → X . The output of prediction strategy we denote
as h(x) = ŷ, where h ∈ H (often called hypothesis class). On the contrary, the real state we
denote by y.

Example

Assume the usual situation that before learning, we receive a set of examples to learn from.
Based on what we receive, we can distinguish between several types of learning. This thesis
works with supervised case.

1. Supervised learning — example denotes pair (x, y), where x ∈ X and y ∈ Y
2. Unsupervised learning — example denotes x ∈ X
3. Semi-supervised learning — each example could be one of the possibilities above

We are usually working with the set of examples that we later divide into different subsets,
e.g., training, testing, and validation sets.

The crucial assumption is that X,Y are random variables related by unknown joint p.d.f1

p(x, y). This assumption makes the whole learning process reasonable because we assume
the relationship between the variables. We also assume that we can draw i.i.d.2 examples
from this p.d.f.

Loss function

Loss function denotes the objective of our optimization task during learning, ` : Y × Y →
R+. Usually, we compute its value for each particular example `(y, h(x)) and use some
aggregation, e.g., mean, to get one value for the whole set of examples.

1Probability Density Function
2identically independently distributed
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CHAPTER 3. MALWARE CLASSIFICATION

Learning

Main consequence of the assumption about randomness ofX and Y is that h(x) and `(Y, h(X))
are also random variables. This fact allows us definition of expected risk (3.1).

R(h) = E(x,y)∼p`(Y, h(X)) =
∑
x∈X

∑
y∈Y

p(x, y)`(y, h(x)) (3.1)

h∗(x) = argmin
y′∈Y

∑
y∈Y

p(y|x)`(y, y′) (3.2)

If p(x, y) is known, optimal prediction strategy would be denoted by (3.2). In practise, it
is unknown and we have to involve an approximation (learning algorithm) to find the best
attainable strategy using drawn data.

Assume T m is a set of examples for supervised learning. We can distinguish two basic
learning approaches — Discriminative learning, Generative learning.

In Discriminative learning we assume h∗ ∈ H and we approximate expected risk with empiri-
cal risk ((3.3)).

RT (h) =
1

|T |
∑

(x,y)∈T

`(y, h(x)) (3.3)

Optimal strategy is denoted by h∗T (x) = argminh′∈HRT (h). Models trained using this ap-
proach are, for instance, linear regression, support vector machine, and neural networks.

Generative learning assumes that true p.d.f. p(x, y) is part of some parametrized family of
distributions. The task for our algorithm is to localize the point estimate of parameters θ
based on T .

In our work, we are using discriminative models, namely neural networks.

We distinguish two types of error. Approximation error R(hH) − R∗ is caused by the choice
of H (choice of model), R(hH) denotes best attainable risk using only hypotheses from H.
Estimation error R(hm) − R(hH) where R(hm) denotes the risk learned from the training
data.

3.1.2 Machine learning tasks

Regression

States y ∈ Y are continuous-valued tensor in this case, most often y ∈ Rn. For example,
features might be the outputs of static and dynamic detectors and network traffic records,
and the state is a risk score represented as a real value ([51]).

22



3.2. LOSS FUNCTIONS FOR CLASSIFICATION

Classification

In this case, y ∈ Y is categorical vector, in most cases y ∈ {1, . . . , C}, where {1, . . . , C}
is encoding for real world values like man and woman. If C is 2, than we call the task
binary classification and if C > 2 we call it multiclass classification. We can classify to not
mutually exclusive classes at once, that is called multi-label classification or multiple output
model [72]. Classification could be even more complicated, e.g., we can classify into a class
hierarchy [107].
Given x classifier outputs ŷ which is an encoded class or probability distribution over classes
[40]. An example of such a distribution might be the output of the softmax activation
function in a neural network. This distribution might be later interpreted and used during
evaluation and further analysis. We have to determine predictions of such classifier because
we have real values instead of discrete classes. In binary classification, the discretization
is often done by setting a treshold. If the result is above the specified threshold, it is in a
positive class and vice versa.
An example of a classification task could be malware classification using the well-known
SVM algorithm [59].
Classification and regression are not the only variants. There are others like transcription
[40] or anomaly detection [20] and many other problems mentioned in [40] or [107].
Anomaly detection is a frequent problem in cybersecurity, where we are interested in de-
tecting what is not matching the usual pattern. That might be related to an unsupervised
learning task where we can use algorithms like Expectation Maximization [24]. For exam-
ple, in this paper [48], we can see the anomaly detection of network traffic data.
Examples of discriminative classification learning algorithms are — Support vector machine,
Decision trees, Logistic regression, and neural nets.
Our intention is in classification, we focus on it further.

3.2 Loss functions for classification

The learning process builds on function optimization. Our criterion is the chosen loss func-
tion. Every loss function has its interpretation, and we choose it based on our goals (domain-
specific). We mention two standard functions which are often involved in classification
tasks.

Multinomial logistic loss

We assume that the outputs of our model are conditional probabilites p(c|x; θ) for each class
c ∈ C and each of n examples. The model’s parameters are denoted by θ. Multiclass cross
entropy is defined in (3.4). This loss function is sometimes called multiclass cross entropy.

`(θ) = − 1

n

n∑
i=1

∑
c∈C

1{c == ci} log p(c|x; θ) (3.4)

Its idea is to minimize values representing the average logarithm of the probability of the
actual class (denoted by ci) across examples, correctly predicted by the model.
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CHAPTER 3. MALWARE CLASSIFICATION

Hinge loss

This loss was introduced in [37] and its well-known usage we can find in the Support vector
machine algorithm. The formula could be seen in the figure (3.5), where y ∈ Y = {±1}
denotes truth label and ŷ denotes the classifier’s score.

`(y) = max(0, 1− ŷ · y) (3.5)

3.3 Model Evaluation

Based on our domain and goal, we have to choose proper classifier evaluation metrics. The
majority of such techniques do not depend on the type of model we have. The classifier
itself is just a black box, and we evaluate its predictions.

Learning is often divided into two or three phases — training, testing (sometimes valida-
tion). Metrics are connected to the data, e.g., accuracy on the training set is different from
accuracy on the testing set.

Evaluation metrics are most often used to measure the quality of the model. It also might
be used to compare the results of different approaches. If we tune the model’s hyperparam-
eters, we often monitor accuracy on the validation set.

Loss function

The loss function is the objective with its meaning and possible interpretation (described
above). Its value is often monitored directly during the learning process. We might observe
the loss function value difference between the training set and the validation set as a possible
overfitting indicator.

Confusion matrix

The most significant metrics are derived from the concept of Confusion matrix (table 3.1.
For our convenience, we define a confusion matrix for a binary classifier. Its generalization
for the multiclass case is just larger, but the idea is the same. Common problems in binary
classification are formulated in a way that y ∈ {positive, negative}. As an example, we can
introduce the classification that a patient has cancer or not. All (x, y) where y = positive
we call positive examples and the opposite examples are negative.

Table 3.1: Confusion matrix for binary classifier

Ground truth
Positive Negative

Classified
Positive True positive (TP ) False positive(FP )
Negative False negative (FN) True negative (TN)
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3.4. NEURAL NETWORKS

Before deriving basic metrics, we have to emphasize that they have to be treated in a partic-
ular context. The most important condition is the overall balance of the dataset — the ratio
of positive and negative examples. List of important metrics is in A.1.

Very often, we can see also curves which are plotted along reported metrics. These plots fit in
situation when we are trying to compare multiple classifiers. Most seen are ROC (described
in [29]) and PRC (described in [30]). Data points for these two curves are collected by
iterating over possible treshold values and for each we calculate specific metric. In case of
ROC metrics are FPR on x-axis and TPR on y-axis. In case of PRC metrics are TPR (sometimes
recall) on x-axis and precision on y-axis.

The PRC is better in the case of an imbalanced dataset where we have a larger number of
negative examples, and we especially care about positive examples and their predictions.

If we need to have a single number as a performance metric, including multiple thresholds,
we can use the area under the ROC or PRC.

Cyber Security context

Some metrics are more critical than others in cybersecurity. It is crucial to think about
domain-specific facts choosing appropriate metric to measure our model’s performance.

The class imbalance is one of the challenges in cybersecurity. If the dataset consists of 80 %
of positive examples, then a classifier predicting only positive class has accuracy = 0.8. In
[45], we can see the usage of geometrical mean to deal with this issue. We can also use
balanced accuracy to cover the dataset’s imbalance in the metric calculation.

During Intrusion Detection in cybersecurity, false negative examples can be a potential se-
curity risk for the target subject (person, company, state etc.), so it is often the priority
number one. On the other hand, False positive classification means false alarm, which costs
employee time and trust [75]. The frequency of software creation is significant, so even a
relatively low false positive rate can cause the security team to solve something harmless
instead of a real risk [8]. In malware detection, that could also be reinforced by the fact
that the protection is too aggressive. Such results can lead us to recurring expenses [60]. In
such a case, we can use ROC curve with logarithm scale on the x-axis to observe even a low
false positive rate. Note that our dataset has to be sufficiently large to observe a statistically
significant estimate of a low positive rate.

To sum up, we have to find an optimal point where the model predicts attacks successfully,
but still with a low number of false alarms.

In the thesis, we will work with imbalanced datasets (more negative examples). We use
several metrics mentioned above especially balanced accuracy, ROC curve with logarithm
scale on x-axis, and PR curve.

3.4 Neural Networks

A neural net is a discriminative model which is based on Empirical Risk minimization (3.3).
The neural network is a parametric function created by composing simple functions. Specif-
ically, nn(x) = g1(g2(g3(. . . (gn(x, θn), . . . ; θ1), where each gn has the form σ(Wx + b) and
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Figure 3.1: Neural net example

θ denotes parameters (W, b). Functions, their input and output are often demonstrated as
layers of a neural net. An example of a general neural net could be seen in 3.1. The input
layer represents items of the feature vector. A multilayer perceptron described in [89] with a
nonlinear activation function might realize hidden layers. The output layer represents a pre-
dicted state. Many functions are used in neural nets, e.g., before the output layer is often a
softmax or sigmoid activation function to normalize the input into a probability distribution
(score). The overall goal is to optimize ` with respect to the parameters of the net. Usually,
we use gradient descent optimization technique.

Usage of the gradient descent puts no extra demands on the data we are using. We also do
not insist on the strict convexity of the function we are optimizing (the function does not
have to have one global minimum). The assumption about all functions is that they have to
be (at least piecewise) differentiable with respect to their inputs and parameters.

Backpropagation algorithm is used for the effective gradient computation [88]. This algo-
rithm allows us computation of the derivative of ` with respect to all network parameters.
The main idea builds on computing derivatives of every function’s output with respect to its
input. Then by applying the chain rule, we can propagate the information from the following
layers to the previous ones.

The optimization is most often done by stochastic gradient descent [56]. This variant of the
gradient descent algorithm is usable even in huge datasets or online learning. Usually, we
divide the original training dataset into subsets (we call them batches or minibatches), and
we use them to compute the gradient rather than the whole dataset. That is done for a
specified number of iterations. Batch is randomly subsampled from the training set, which
is the reason for ’stochastic’ in the method name. The batch size and the number of iterations
are hyperparameters of the neural net.

3.5 Tree-structured data classification

Real-world use cases often provide more complex datasets than just fixed dimension ma-
trices or images. As we mentioned, malware analysis data are stored as JSON files, and
modelling such data is our goal. Those files could be formally seen as tree-structured in-
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3.5. TREE-STRUCTURED DATA CLASSIFICATION

puts (more generally graphs). In the following section, we describe two straightforward
approaches of data classification and two more sophisticated.

3.5.1 Rules

An example of a rule might be that if we observe a specific value in a specific key part in the
document, e.g., {" api_calls ": "DeleteFileA"}, we classify the current document to a specific
class, e.g., dropper. The logic might be more complex. We can count a score aggregating
more information about the current document and classify the document according to the
score. As an example of such a rule-based approach, we can see malware signatures men-
tioned in the previous chapter. Their implementation deterministically checks some part
of the original JSON report and performs binary classification (positive — the signature is
added to the report, negative — the signature is not added to the report). The rules are
usually defined manually.

3.5.2 Flattening

This approach deals with the data structure itself, which has no fixed dimensions. It is more
a feature engineering technique than a learning approach. Each document might contain
a different number of keys in a different order, and the size of arrays may vary. Using flat-
tening, we find a mapping/procedure which allows vectorization of each document. The
target learning algorithm is used on the flattened dataset. An advantage of this approach is
that we can use a plethora of off-the-shelf algorithms, but on the other hand, we reduce the
hypothesis class.
The motivation of more complex techniques is that the data structure also keeps some in-
formation, and it is worth trying to model even the structure, not only the data.

3.5.3 Graph neural networks

Let us firstly define a graph G = (V, E), where V denotes a finite set of vertices and E ⊆
(V
2

)
for indirected graphs or E ⊆ V × V for directed graph denotes a finite set of edges.
Graph neural network (GNN) was introduced in [90], and it is a suitable model for prob-
lems represented by a graph (directed or undirected). Initial setup is that the problem
representation is G(V, E) where each vertex is associated with its embedded value vi, where
i ∈ {1, . . . , |V|} denotes index of vertex in graph. By an embedded value, we usually mean
representation of vertex information in Rm. The output of a GNN is typically the same
structured graph (same edges and vertices) with optimized vi. The output graph might be
used in various ways — calculate the loss for the next iteration, calculate an aggregation of
all values, interpretation of particular vi. The usual task for GNN is node selection, node
classification, or graph classification. The most prevalent method for GNN optimization is
based on message passing. Each iteration of such GNN consists of three steps:

• Compute a message for each of the chosen pairs (vi, vj) of vertices (might be all pairs,
just neighbouring or other) using values from the previous iteration

• Aggregate messages for each vertex i by an aggregation function
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• Update vi using aggregated message for i ∈ {1, . . . , |V|}

Assuming that all functions in the net are at least piecewise differentiable with respect to
their parameters, we can use the stochastic gradient descent optimization approach.
The natural structure of JSON document is a tree which is a less general example of a graph.
Thus, in theory, GNNs can be used to classify JSON documents, yet the approach might be
unnecessary computationally expensive [78].

3.5.4 HMill framework

In our experiments, we aim specifically at the hierarchical multiple instance learning (HMill)
framework defined in [68] because it was designed specifically for tree-structured data and
it uses the structure of the input for the model optimization. The authors proposed a use
case of JSON modelling with good results, and we would like to demonstrate the frame-
work’s performance on more complex data. In comparison to the GNNs approach, HMill
model has better scalability, and it is computationally efficient since a single pass over the
data is sufficient (unlike in GNN where you need multiple passes) [68]. Authors adopted
and proved the universal approximation theorem [46] in the HMill situation which shows
that HMill can approximate any continuous (measurable) function from the space of JSON
documents to Rn. Concerning mentioned facts, we believe HMill is more suited for our
problem. We will describe this framework in the next chapter.

Another example of structured data modelling motivated by recurrent and recursive neural
networks is in [102]. More generally, graph-structured data modelling is part of [44] or
[13].
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Chapter 4

Hierarchical Multiple Instance
learning

The previous chapter summarized machine learning formalism and ended with structured
data modelling. We want to model specific parts of JSON report produced by the CAPEv2
sandbox, as we stated in the introduction. There is a vast amount of information in the
behavioural part of the report. Sometimes we can find the same values in different parts
of JSON document, which shows that the document’s structure also keeps some semantics
that might contribute to the prediction. This chapter describes multiple instance learning
and the HMill framework. At the very end, we describe our modelling case in detail.

4.1 Multiple instance learning

At first, let us describe and define the problem of Multiple instance learning (Mill), its ori-
gin, and formalism. This term firstly appeared in [25]. However, it is not the very first
formulation of such a problem, that is in [54].

The motivation example in the original paper [25] is formulated in the following way. Imag-
ine we have multiple keys and one door, and some of the keys unlock the door, and some
do not. Note that we cannot access the door, we only get the keys with labels. In standard
learning, our goal is to learn a classification model, which consumes a key and outputs if
it can open the door. However, in multiple instance learning setting, we receive whole key
chains with various keys. Each chain is assigned with a label showing if it contains a key
opening the door or not. Our goal is to learn a classification model, which consumes a key
chain and outputs if it can open the door.

In the figure 4.1 we can see the basic idea behind Mill problem (Ii denote instance). The
only significant difference regarding the previous chapter is the definition of an Example.

Example

We assume a supervised learning setting. Our examples consist of two parts — bag b and
label y. A label was defined earlier and its meaning is the same, but it is related to a bag and
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Figure 4.1: Supervised learning

sometimes called bag label. Bag b is a set of feature vectors xi ∈ X , these vectors are called
instances and usually lives in the standard feature space Rd. The cardinality of each bag is
|b| ∈ N and can be even zero. We assume b ∈ B which denotes a bag space. Bag space might
also be seen as B = 2X which denotes all finite multisets of X (repetition of item within a
set is allowed). We can see a standard learning situation described in chapter 3 corresponds
to a Mill problem where holds |b| = 1.

For the thesis we assume Mill classification problem so |Y| is finite (typically binary classifi-
cation Y ∈ {positive, negative}).

4.2 Mill problem solution

The goal of the multiple instance learning process is identical to that in the standard setting.
This section describes three general approaches (paradigms) of solving a Mill problem. They
are formulated in [6] as Instance-Space, Bag-Space and Embedded-Space paradigm.

4.2.1 Instance-Space paradigm

An algorithm in this group infers an instance-based classifier f(x) ∈ {1, 0} that classifies
each instance x in the training set. Bag-based classifier is constructed in the way shown
in (4.1), where xi are instances in the bag b, ◦ denotes an algorithm-specific aggregation
operator and Z denotes an optional normalization factor. As we stated earlier, bag labels
are part of the training set but instance labels are not. We have to make some assumptions
about the relation between bag and instance labels, if we want to use the method building
on Instance-space paradigm.

F (b) =
f(x1) ◦ f(x2) ◦ · · · ◦ f(xN )

Z
(4.1)
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4.2.1.1 Standard assumption

We assume that each negative bag consists of negative instances only, and each positive bag
includes at least one positive instance. The algorithm in this setup aims at instances that
make bags positive (we know that at least one in each bag does that).
There are several methods that follow this assumption. The first is Axis-Parallel Rectangle
used in [25] in drug discovery use case, where F (b) = maxx∈b f(x). Other methods are
Diverse Density [69] or MI-SVM [7].

4.2.1.2 Collective assumption

Previous methods tend to look over the fact that the bag label might be influenced by the
interaction of features from different instances. Some of them might consider only several
instances (or even one) from the whole bag.
Collective assumption states that “all instances in a bag contribute equally to the bag’s label”
[103]. Methods usually use a training set of instances which is constructed such that each
instance inherits its bag’s label.
This training set might be used to get an instance-level classifier. A basic approach is to use
the SIL algorithm [16], which train the mentioned instance-level classifier using SVM, and
the bag-level classifier is obtained by (4.2). Another method is Wrapper MI [32].

F (b) =
1

|b|
∑
x∈b

f(x) (4.2)

4.2.2 Bag-Space paradigm

In this setup, we treat the whole bag to learn the classifier. The discriminant learning process
is performed in bag space directly in contrast to the previous paradigm where we assumed
instance-level classifiers.
Bag space is non-vectorial, but we are able to define a distance function D(b1, b2), where b1,
b2 are bags and the result is representing a measure of their similarity (or distance). Then
we can use standard distance-based classifiers such as K-NN.
Assume instances live in d-dimensional space such as Rd. We can see them as points, so a bag
is a set of points. The problem of computing the distance between two sets of points is well
studied. An example of distance function is the minimal Hausdorff distance (4.3), which
denotes the distance between the closest points of bags b1 and b2 [100]. We can also use
kernel functions K(b1, b2), which provide similarity measure between bags. An example of
such kernel might be (4.4), where k(x, y) denotes instance-level kernel (linear, polynomial
etc.) and p is related to the size of the largest bag (in practise found by cross-validation)
[36].

D(b1, b2) = min
x1∈b1,x2∈b2

||x1 − x2|| (4.3)

K(b1, b2) =
∑

x1∈b1,x2∈b2

k(x1 − x2)p (4.4)

31



CHAPTER 4. HIERARCHICAL MULTIPLE INSTANCE LEARNING

4.2.3 Embedded-Space paradigm

In the Bag-Space paradigm, the goal was to extract global information from bags. That is
achieved by defining a distance function allowing implicit bag comparison. In the Embedded-
Space paradigm, we extract the information by defining explicit mappingM : b 7→ v from
the bag space to a custom feature space which summarizes bag characteristics, whereM is
called embedding. Based on the choice ofM, we may distinguish two approaches — without
vocabulary and vocabulary-based methods.

Without vocabulary approaches make no differentiation among instances in a bag and aggre-
gate overall statistics from each instance of the bag. An example of such an algorithm might
be Simple MI where the feature vector for a bag is attained by averaging over all instances
in it: M(b) = 1

|b|
∑

x∈b x [26].

4.2.3.1 Vocabulary-based methods

These methods are in the embedded-space category, and their main idea is to find an em-
bedding based on an instance-level classification. However, instance labels are assumed in a
different sense than in the instance-space paradigm. We often involve an unsupervised way
to derive the instance-level classifier, so the semantics of an instance label is missing here.
Bag embedding is then determined according to the instance labels.

There are three usual components of a vocalbulary-based method [6]. Vocabulary V storing
instance-level labels (sometimes rather called concepts). Each concept is defined by an
identifier and a set of parameters. These concepts are most often created from clusters of K-
means algorithm. Second component is a mapping functionM(b,V) = v (embedding) which
maps from the bag space to a k-dimensional feature space, where k denotes the number
of concepts. The final component of a vocabulary-based method is a standard supervised
classifier G(v)in{1, 0} which classifies feature vectors in embedded space. Final bag-level
classifier results in F (b) = G(M(b,V)).

We may distinguish several approaches for vocabulary-based methods. As an example, we
describe histogram-based methods. Remaining approaches are distance-based and attribute-
based, for more info we refer to [6].

4.2.3.2 Histogram-based methods

V denotes resulting clusters of chosen clustering algorithm which outputsK classesC1, . . . CK .
M denotes a histogram of classes for instances in a particular bag:M(b,V) = (v1, v2 . . . , vK),
where vj = 1

Z

∑
x∈b fj(x), j = 1, . . . ,K, where fj(x) ∈ {1, 0} is likelihood that the instance

x belongs to the class Cj and Z is a normalization factor. An example of such an algorithm
is Bag-of-Words [73].

A generalization of all listed paradigms is provided in [68]. The authors stated that all
approaches require three essential components — function operation at the instance level
f , e. g., class classifier, a form of aggregation or pooling g and bag-level classifier F . That
leads us to the last method we want to describe.
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All three functions are composed together to retrieve a prediction. The idea is to optimize
everything together. If all functions f ,g and F are (at least piecewise) differentiable with
respect to their parameters, we can use gradient descent optimization (neural net). [83, 27]
This approach is very flexible as the whole composition is optimized together in contrast to
the previous cases where they are designed separately and later connected. Furthermore, no
instance labels are required because they are treated implicitly in an unsupervised manner.
An example of such a neural network architecture is demonstrated in 4.2. Note that there is
one f with shared parameters Θf over all instances, the pooling function g might be mean
or maximum and final layer F after the pooling gets a fixed dimension bag representation
as input.

x1 ∈ Rd f(x1,Θf ) x′1 ∈ Rm

x2 ∈ Rd f(x2,Θf ) x′2 ∈ Rm

...
...

x|b| ∈ Rd f(x|b|,Θf ) x′|b| ∈ Rm

g(x′1, x
′
2, . . . , x|b|; Θg) x′ ∈ Rn F (x′,ΘF )

One vector for instance xi ∈ b

One vector for bag b

Figure 4.2: Hierarchical Mill model by [83] (image inspired by [68])

Demonstration of this approach and its results can be found in [83, 84, 79, 68, 52, 80]. The
same idea was published independently as Deep sets in [105].

In [68] we can see an application of this approach in the introduced HMill framework.
Description of this framework follows.

4.3 HMill framework

The neural net architecture defined in [83] was followed by [68] which led to the formula-
tion of HMill framework referring to the Hierarchical Multiple Instance Learning framework.
This framework provides general tools for tree-structured data modelling. Both sample
and model consist of various type nodes which are structured as a rooted directed tree.
The crucial publication for HMill framework is [68] where authors firstly formulated it and
demonstrated its use. In this section, we summarize the essential facts. Should the reader
wish to learn more, we recommend the original publication [68].

4.3.1 Abstract data nodes

Firstly, let us summarize the basic data nodes in HMill framework. The data nodes are used
to represent samples. Demonstration of their usage can be seen in figure 4.3.

4.3.1.1 Array node

Our data consist of some low level observations, e.g., strings, booleans, vectors, enums, etc.
Authors call these raw observations — fragments and F denotes the space where they are
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living. Examples of F might be Euclidean space Rk, linear space Z2 or even all strings over
finite alphabet. The only requirement for F is that there must be a mapping F h−→ Rn.
The array node an is responsible for storing fragments α ∈ F in following form: an(α,F , h).
Sometimes the notation is an(x), where x = h(α) means that the transformation was already
made.

4.3.1.2 Bag node

Bag node denotes analogy to the bag in multipliple instance learning bn(b), where b =
{a1, . . . , a|b|}. From the structural point of view, a bag node can be created from a graph
node that has:

1. multiple children, which are an with matching F
2. multiple subtrees bni with matching structure1 (nested)

As the instances have to be of the same structure, they form an unordered set in a bag node.

4.3.1.3 Product node

Final node type of HMill tree representation of a sample is a product node. That is defined
as pn(a1, . . . , al), where l ≥ 1 and ai is representation of some HMill tree/subtree — an,bn
or ps. The order of ai is arbitrary but fixed because each abstract node in it might have
different dimensions.

Figure 4.3: Representation of a plant specimen in HMill framework [68]

4.3.2 HMill schema

In the bag node definition we mentioned that instances in it have to follow the same struc-
ture. That is why we define HMill schema. Schemas are trees which are mirroring sample
trees and for each abstract data node there is a corresponding schema node in the schema
structure.

1follows the same schema which is defined later
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• Array schema node (as(F ′, h′)) — defines fragments space instance F ′ and mapping h′

• Bag schema node (bs(s′)) — defines subschema (subtree) of instances s′ specifying
structure of instance in bag node

• Product schema node (ps(s1, . . . , sl)) — defines one or more subschemata si of subtrees
in the product node

Definition (Schema matching according to [68]). We say that a sample tree t follows a
schema s, or matches a schema s, provided the following conditions hold:

• If t = an(α,F , h) for any α ∈ F , then t is matching s if and only if s = as(F , h)

• If t = bn({a1, . . . , ak}), then t is matching s if and only if s = bs(s′) and ∀i ∈
{1, . . . , k} : ti matches s′

• If t = pn(t1, . . . , tl), then t is matching s if and only if s = ps(s1, . . . , sk),l = k and
∀i ∈ {1, . . . , l} : ti matches si

Note that an empty bag node matches every schema with a bag node in root. If we observe
two samples following the same structure and one of them has instances in a specific bag
and the second does not, they still might match the same schema.

4.3.3 HMill model

After we defined the nodes and schema, we can take a training set, derive a schema match-
ing all examples, and create a HMill samples ready for learning.

Following the idea of the tree structure mirroring in the case of schema definition, we de-
fine HMill model in the same manner. The goal is to create a model based on the schema
extracted from our data, which would accept each sample matching the schema on input.
Models consist of model nodes. The model nodes are hierarchically nested functions, each
of which outputs one vector given one abstract data node. If we want to perform a predic-
tion for a particular sample, we evaluate the functions in subtrees first and then parents.
The root provides the model’s output. All nodes are piecewise differentiable with respect to
their parameters, which allows us to adopt training methods known from feedforward/con-
volutional neural networks without any change.

4.3.3.1 Array model — am(f)

This model transforms the leaves of the sample tree — fragments. We assume that the
mapping h is already applied for the original fragment, so they are in Rm. This model is
denoted by f : Rm → Rn. We might use any piecewise differentiable mapping, but the
authors refer to dense feedforward neural networks.
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4.3.3.2 Bag model — bm(f, g, F )

A Bag model is motivated by the solution of a multiple instance learning problem provided
in [83]. Each bag model can be seen as a multiple instance learning solver for the prob-
lem defined by the corresponding bag node and its instances. There are three composed
functions — f denotes instance model, g denotes aggregation and F denotes bag mapping.
We apply f for each instance/subtree ai in bn(a1, . . . , ak) . All results are input for one or
more aggregation functions g, and its output is a single vector. Finally, the bag mapping F
is applied. The output lives in Rd, where d is the output dimension of a particular multiple
instance model. If the bag model is in the root of the tree, d is the overall output dimension
of the model. We often use d = |C| as a number of classes. The output is then interpreted
as logits of the probabilities of classes.

f might be an arbitrarily complex HMill model. Note that all nodes in a bag node have to
follow the same schema, so f is the same for all instances (subtrees), and the output space
is of fixed dimension for all subtrees. We might use max or mean as an aggregation function
g. Authors of the framework use one or more layers of a feedforward neural network as F .

4.3.3.3 Product model — pm(f1, . . . , fl, fp)

A product model consists of l submodels and one more final mapping fp. Each of the sub-
models processes one child of a corresponding product data node. Each product data node
can follow a different schema, so each fi might differ (not like in the bag model). By apply-
ing submodels on the corresponding product nodes, we get l vectors with possibly different
dimensions. The product model concatenates all vectors, and the result is transformed one
or more times by fp.

As all functions in the tree-structured model are at least piecewise differentiable with respect
to all parameters, the backpropagation algorithm is adopted in the overall model optimiza-
tion. We can find its adaptation in [68].

4.3.4 Modelling JSON documents using HMill framework

In the previous chapter, we described several approaches for JSON document modelling,
here we move on with how the HMill framework deals with this problem. In [68], the
authors presented experimental results for the IoT device identification use case, where the
data was JSON documents.

Assuming that we have a set of JSON documents as a dataset T we require one condition to
hold. All documents in our dataset have to follow the same structure (same schema), which
means the following:

• Given a fixed position in the tree, we know which keys can be found in this particular
position in all documents d ∈ T .

• Values of the same key at the same position in all documents d ∈ T must follow the
same structure.
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• Arrays at the same position in all documents d ∈ T must be empty or contain the same
structured objects.

Note that a document can follow the same schema even if it is missing some keys. The
matching schema might seem too restrictive, but it is widespread that documents used for a
single use case follow the same schema, especially machine-generated documents.
The JSON to HMill sample translation is defined on three basic abstract node types. Each leaf
of the tree (JSON primitive data type) is transformed into an array data node an(h(. . . )), h
denotes mapping to Rn. The mapping h is identical for all leaves at the same position in the
tree across the dataset, and it might be different for different positions. The product data
node is used to model JSON object. Because the product node accepts an ordered set, the
keys in the JSON object have to be ordered. Finally, JSON arrays are modelled as bag data
nodes. The translation is demonstrated in the figure 4.4.

Figure 4.4: Translation of JSON document into HMill data nodes [68]

The authors of the framework stated that the model takes into account even the document’s
structure which exceeds the flattening approach. Compared to the rule-based approaches,
the framework can learn more complex hypotheses because chosen aggregation can substi-
tute various hand-defined rules. The HMill framework was used in the IoT device identi-
fication use case [68], which was a dataset of JSON documents modelled for multinomial
classification. Reported accuracy is 96%. Authors experimented even in different setup for
a general graph inference to demonstrate the generality of the HMill framework.

4.4 CAPEv2 classification

The thesis aims to create a classifier that classifies signatures based on behavioural features
observed during the dynamic analysis.

4.4.1 Behavioural features

After a further look at the behaviour part of the original report, we decided to use summary
and enhanced subtrees for our purpose. The reason is that other parts are pretty compre-
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hensive, and we would not be able to train the model with the hardware resources we have.
Those two are sufficient for a complete overview of malware behaviour as they include the
essential features mentioned in chapter 2 (API calls, commands. . . ). In summary part, we
have unordered lists of these features, and, in enhanced part, there are sequences of actions
with a timestamp.
If the model is still too complex to train under our conditions, we omit the enhanced, which
is much sparser and longer than summary. We would lose the information about the order
of events.

4.4.2 Signature classes

The signatures are usually assigned by the sandbox based on some atomic fact, such as API
calls in the report. Let us call that true cause of signature, as it is considered ground truth,
in this thesis. It can be one or more patterns seen in the behavioural report. The imple-
mentation of a signature is deterministically detecting its cause. If the cause is detected, the
signature is added to the JSON report (see the whole process in 2.
We can consider the copies self signature example. If the same file as the analyzed one is
among dropped files in the report, we will find copies self signature in the report.
An example of a signature entry in original JSON report could be seen in D. The most
important aside from the name and description is the field data which sometimes contains
the true cause.

4.4.2.1 Categorization

For modelling and model explaining, we categorize the signatures according to two fac-
tors. The first is the cause, which creates groups such as API calls, processes, dropped files,
etc. The cause is determined according to the signature’s implementation (in Python). In
D we can see a simple example of implementation of antidebugsetunhandledexceptionfilter
signature, which is just checking the presence of a specific API call.
The second categorization factor is the fact if the cause is directly presented among our
features. For instance, if the signature implementation uses API calls, the API call list is
directly in the log. If it uses the entropy of dropped files, it is not directly in the output.
The categorization may help us with the structure of the result, discussion, and further
reasoning. We expect that models for different categories might have different accuracy.
Specific signatures for modelling will be chosen according to their frequency in the dataset.
All details about the chosen signatures and even the mentioned groups will be described in
the next part of the thesis.

4.4.3 Model

We want to train a binary classifier that predicts the presence of a particular signature
according to behavioural features.
Hmill framework API is designed generally, so it is not accepting JSON documents directly.
For this purpose JsonGrinder library might be used. It accepts an array of JSON documents
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and produces HMill schema. The schema is then used to create HMill abstract data node
tree and model tree. Example of a schema, and implied HMill model for our data is in the
attachment (H).
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Chapter 5

Model explaining

In the following chapter, we describe the model explainability definition and techniques
used in practice. Finally, we give details on HMill explainer, which we use in our experi-
ments. At the very end, we describe our use case of signature’s binary classifier explanation.
In the case of complex models, we often want to explain their predictions to be sure about
their reliability. The model explainability is crucial in critical systems, e.g., health, transport.
If we want to use our models and want people to believe them, we should explain their
predictions and demonstrate that they are not based on random correlations in the training
data. For example, in [78], authors identified that their model classifies mainly according to
the timestamp field in the original sample, which was different for malware and cleanware
samples. That was an obvious mistake because this detail is not the difference between
malware and cleanware but between analysis conditions.
In May 2018, General Data Protection Regulation (GDPR) became law. It has innovative
clauses on automated decision-making and, to some extent, even the right of its explanation.
All individuals might enforce to obtain “meaningful explanations of the logic involved” when
automated decision making takes place [42]. That is a significant scientific challenge in the
field where we face such a great boom regarding the statistical model’s performance and
a disproportionately weak understanding of its behaviour. As an example, we can see the
neural net generalization, which is still very challenging for us [108].
Techniques of interpretation and explaining are growing in popularity as a tool for further
statistical model analysis. It might lead us to better model understanding or shed some
more light on the examined domain (extract new knowledge) [71].

5.1 Definition

Based on [71] we define two essential terms.

Definition 1 An iterpretation is the mapping Y → D, where Y is a state space (defined in
3, e.g., real-valued vectors or sequences, D denotes a domain which is human-readable and
understandable (image, heatmap, sequence of words, etc.).

Definition 2 An explanation e ∈ X is a subset e of sample x that contributed for the predicted
state h(x) = ŷ ∈ Y, or contributed significantly more than other members of x.
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We often express the explanation as the original feature vector with a relevance score vector,
e.g., real-valued vector of the same dimension as the input, where positive items indicate
relevant features and zeros indicate irrelevant ones [71].
This definition of the interpretation is quite vague because human readability and under-
standability is not something to measure or observe precisely. On the other hand, the ex-
planation is a little bit more specific. For example, we can see the task where we aim to
select part of the original feature vector responsible for most probability accumulated in the
output, e.g., softmax output. This output might be interpretable by human, or we have to
find another mapping to an interpretable domain, e.g., Rn → X . For instance, if we get an
explanation of network classifying images, we might get a real-valued matrix. However, we
translate it back to the image with highlighted pixels to be better understood. [63, 94, 62].
If our subject would be natural language processing, the explanation might be a highlighted
text [9, 65].
A different perspective of understandability is looking at the available time that the user
(human) is available or allowed to spend on the explanation understanding [42]. Then
we can check the complexity or quality of the explanation by measuring the time to under-
stand the explanation. However, we have to control the person’s background knowledge
performing the interpretation [42].
Authors of [71] address that the primary bias in interpretability is that the majority of the
model evaluation metrics works with the model as with a black box. Sufficient information
for the evaluation is just a set of predicted labels (or class probabilities) and ground-truth
labels. Often, we do not observe model parameters, hyperparameters, model hypothesis
space, etc.
Another problem is that some situations are not easily transferable to a numerical form,
e.g., real-valued vectors. Examples we can find in ethics or legality. Interpretability of such
concepts is ambiguous even in the world without machine learning.

5.2 Categorization

Based on [42], and [66], there are several aspects according to which we can categorize the
model explaining.
If we know the model we are explaining and investigate its functioning, parameters, and
other details during the learning process, we speak about the white box explaining — often
called transparency. In this case, the goal of explanation might be to answer the question
How does the model work?. On the other hand, if we examine the model’s output without
considering what model is used and how it works, we speak about black box explaining —
often called post-hoc explanation. In this case, the question is What else can the model tell
us?.
Based on the scope of interpretation, we may distinguish two categories. Global inter-
pretability means that we can interpret all predictions. We know interpretation f : ∀y ∈ Y,
∃i ∈ D f : y 7→ i. In other words, the interpretation is mapping (or relation), and if the
model is globally interpretable, this mapping is serial (also called left-total). On the other
hand, local interpretability means that we can interpret only some predictions, so the rela-
tion is not serial.
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5.3 Explanability desiderata

In [66], authors present a comprehensive insight into interpretability research and inter-
pretable model properties. We list some of them below.

5.3.1 Trust

Trust is the first term which is very complicated even due to its own interpretation. We might
build trust in the model’s performance, so the better the model is, the more trustworthy.
However, the accuracy of the model is not the only metric we should consider. The situation
is more complex in the sense that we need to examine the whole context. By context, we
mean the accuracy on specific examples, e.g., unseen examples or examples where people
can classify with high precision. We should also evaluate the accuracy repeatedly in time.

5.3.2 Causality X Correlation

Correlation of two random variables X,Y is defined in (5.1), where cov(X,Y ) denotes
covariance and σ standard deviation. On the other hand, causality is defined as the relation
between X (a cause), which contributes to the production of Y (an effect), X,Y might be
events, processes, states, objects or generally random variables.

ρX,Y =
cov(X,Y )

σXσY
(5.1)

Every statistician was instructed about situations where the data show us the results we
want to see. That might be demonstrated in examples that should be so absurd that nobody
can take it seriously. For example, the divorce rate in Maine correlates with the per capita
consumption of margarine between 2000 and 2009 1. Those correlations are often called
spurious. However, we have to remember that the underlying process generating the data
is assumed to be random no matter how complex it can be. We must not forget that the
researcher is making assumptions and choosing what data are modelled. The statistical
model itself should not serve as an argument for the cause and effect relation between
modelled variables. If we want to conclude causality, we should involve other experiments
and research in the particular domain to uncover the generating process itself. On the other
hand, the correlation is easily measurable, and a conclusion about it is based only on its
calculation. More on this topic can be found in [55].

Even if we observe the correlation and know that the relationship is not random, it is difficult
to conclude the cause and effect. One of the possible reasons might be a confounding
variable. It is a variable influencing both features and states of our model. If such a variable
exists, we might falsely conclude causality, although the confounder causes the correlation.
More on this topic can be found in [96].

1http://www.tylervigen.com/spurious-correlations
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5.3.3 Transferability

In a usual setup, we split our data randomly and create a training and testing set. Then we
estimate the generalization error by observing the difference between training and testing
error. However, regarding the model deployment, we should observe its behaviour in prac-
tice. It might face different situations or, even worse, its deployment might influence the
domain itself. The difference between training and real data might be caused by the solid
assumptions we make but cannot meet. This trend refers to the robust statistics field where
we face the problem of assumption violation [28].

5.3.4 Informativness

This point is about the model’s ability to extend human intuition and knowledge by point-
ing out the most important parts of comprehensive inputs. It can also provide a stronger
overview of the space we are examining, e.g., provide some similarity measure on our ex-
amples, which might be essential for gaining labelled data using unsupervised or semisu-
pervised learning.

5.3.5 Fair and ethical decision making

If we want algorithms making autonomous decisions under our control and being of our
interest, we need to interpret its decisions. That is a very significant issue because we need
to deal with the fact that artificial intelligence is much more capable of making fast and
precise decisions than humans. It is not clear if we do not degrade artificial intelligence
capabilities by trying to understand it. However, it is necessary because we have already
used it against each other, e.g., [12]. By adopting GDPR, we face this challenge even for
legal reasons. The field of ethics in AI [92] is an inexhaustible well of challenges beginning
with autonomous driving and ending with absolute manipulation of a mass of people.

5.4 Interpretable model

As we mentioned, we can distinguish two basic types of explanation according to our goal
— transparency and post-hoc.

5.4.1 Transparency

Authors in [66] refer to several attributes which can be treated during a particular model’s
transparency research — simulatability, decomposability and algorithmic transparency.

By simulatability is meant that the model prediction can be simulated by a human in a
reasonable amount of time given the model parameters and input example. This capability
is closely connected with the model complexity. That might seem like it is about the type
of model such that we can say that, e.g., decision trees are better interpretable than neural
nets. The truth is that simpler models like linear regression or decision trees tend to be better
interpretable, but it is because they are usually involved in straightforward use cases. On the

43



CHAPTER 5. MODEL EXPLAINING

other hand, simulatability is strictly determined by a limited amount of human cognition.
That leads us to conclude that a very complex decision tree is not more transparent than a
lightweight neural net.

Decomposability stands for the ability that each input, parameter and calculation admits an
intuitive explanation. The input interpretability throws out the game majority of models
where dimensionality reduction and other feature engineering techniques are involved. The
interpretation of parameters and calculations might be a human-readable description of
decision tree nodes, and the opposite might be a large number of weights and biases in a
neural net.

The last notion of algorithmic transparency is about observing the learning algorithm and
its mathematical background. The algorithm has to be fully explorable using mathematical
tools. For example, in the linear model, the shape of the error surface can be understood,
and we can prove that the training process will converge to a unique solution. On the other
hand, heuristic algorithms used in deep models like stochastic gradient descent can not be
fully observed, and we cannot be sure about its adaptation in a new use case.

Examples of a model with a significant level of transparency are linear/logistic regression,
decision trees, KNN, Rule-based learners, and generative additive models. More on this
topic can be found in [10].

5.4.2 Post-hoc

Post-hoc interpretability has a different goal than the previous approach. It can extract more
information from the model and help us gain new overall knowledge or understand what is
in the input that causes such a prediction. This technique can be used to interpret opaque
(not transparent) models without examining their complex logic.

There are several techniques for post-hoc interpretation. Their list follows.

• Text explanation — We still assume that we cannot assign textual interpretation by
hand because that might mean that our model is transparent. However, we might
automate the inference of a textual form. We can train another model which maps
the prediction of the original model to its textual explanation. An example of such
an approach is in [58], where authors trained a reinforcement model to perform a
particular task and a second model to explain its decisions.

• Visualization — Images and other visual outputs are considered very straightforward
for human understanding. We often involve dimensionality reduction and other tech-
niques to display the situation in two or three dimensions, such as [77]. An example
of a visualization of neural net explanation using heatmap can be found in [106].

• Local explanations — This approach explains specific parts of the training set, e.g.,
specific samples. It might find the parts of a sample that contribute to the prediction
the most. An example might be the saliency map used for neural nets [94]. It is
important to emphasize that the explanation has to be treated in a specific context,
i.e., the saliency map might change drastically even if the example was changed only
slightly.
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• Explanations by example — Usually, if the teacher explains the theory with a running
example, especially in mathematics, there is a much greater chance that many students
would understand. The principle is the same in the model explanation by example.
The model can provide such an explanation along with predictions, e.g., prediction
and a set of examples which are similar [18]. We might involve a clustering algorithm.

• Explanations by simplification — This approach aims at model simplification while
maintaining its performance.

• Feature relevance explanation — We aim at scoring the input variables, which are later
compared based on their scores, and we can conclude which variables are the most
important for a particular prediction.

This kind of explaining is used with SVM, where we can see model simplification or local
explanations. Other significant models are neural nets and their variations, where we see
feature relevance and visualization techniques. Examples can be found in [10].

Another example of a general model explaining is in [5], where authors focus on self-
explaining models. Other sources might be [97, 86, 71].

5.5 Explaining HMill models

Our model can model tree-structured data — JSON documents, as stated in the previous
chapter. This section describes an explanation method for HMill models proposed and
demonstrated in [78]. Introduced explainer attempts to explain structured HMill model.
It uses a post-hoc approach with feature relevance explanation. So far, it is the only known
approach of HMill model explanation.

The goal of HMill explainer is to find a minimal subset of the input sample (JSON subtree),
which is classified to the same class as the original sample. We can identify what parts of
the original JSON are the most relevant. It might also improve our understanding of the
domain-specific knowledge, as the authors state.

In the following text, we assume an HMill binary classification model being a black box
decomposed only to two function h and f . The first function is h(d) = v where d is JSON
document or its subtree and the output v ∈ Rm represents the embedded sample (all ab-
stract model nodes are evaluated but the root). The embedded sample is then classified by
f(h(d)) = c, where f denotes final abstract model node evaluation function and c confi-
dence that d belongs to the positive class.

5.5.1 Explainer steps

The basic idea builds on top of the subtree selection problem solution. Our problem is a
specific case of subtree selection. It can be formulated such that for a given tree T , an
expensive evaluation function r(t) = q (q ∈ R) and a threshold τ ∈ R, we want to find
subtree t with minimal number of nodes such that r(t) ≥ τ .

In the case of HMill explainer, the input tree is a JSON document, and the evaluation func-
tion is f , which outputs the confidence that the document belongs to a positive class. The
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authors introduced several subset selection methods, which is a less general case of subtree
problem. It is not possible to adopt subset selection methods in subtree problems directly.
Firstly, we have to decide if we need to maintain the tree structure of the result or not. The
authors mention two solutions to deal with this problem: first, ignoring the structure and
the second, exploiting it.

5.5.2 Subset selection

Greedy addition starts with an empty subset and in each step adds a new item until the
threshold is achieved. Each new item is chosen such that the gain in the evaluation function
is maximal across all elements which are not in the subset.

Heuristic addition sorts the elements in the set by heuristic ranking (see below) and adds
elements to the subset starting from the largest ranking until the threshold is achieved.

Random removal might follow any of the previous methods. It starts with the initial subset,
which has already achieved the threshold. It permutes all items in the subset and removes
items from the beginning until the evaluation drops below the threshold. If it drops, the
lastly removed item is added back, and the algorithm continues with a new permutation.

5.5.3 Minimal subtree adaptation

Flat search performs subset selection on isolated nodes of the tree. The root is added to the
explanation by default. After subset selection is made, all nodes which are not reachable
from the root are removed from the explanation. That can be done because they do not
impact classification based on the definition of the HMill model tree structure.

Level-by-level search performs subset selection on each level of the tree. It takes into account
only nodes whose parents are in the explanation so far.

5.5.4 Subtree ranking

5.5.4.1 Model gradient ranking

This approach is based on the absolute value of gradients for the parts of the input. That is
adopted even in the case of a saliency map of image processing neural net. The crucial idea
is to compute the gradient vector ((5.2)) of the model with respect to the embedding of a
particular subtree c of a particular sample d. Alternatively, we want to examine how much
a slight change in the embedding of a specific subtree influences the model’s prediction.
Computation of the gradient ranking of a particular subtree is the absolute value of the sum
of items in the resulting gradient vector. Note that h(d) is originally a function of h(c), which
is not obvious from (5.2). However, if it was not, the derivative would be zero.

∂f(h(d))

∂h(c)
∈ Rm (5.2)
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5.5.4.2 GNN explainer mask ranking

This method is originally designed to explain GNN models [104]. The main idea is to use
this explainer for the graph created by JSON subtrees and edges between them. Explainer
uses a mask m = R|E|, where |E| denotes all edges between the subtrees and their prede-
cessors in a JSON document and mi ∈ [0, 1]. This mask represents how much information is
passed along each edge during the update step of GNNs. Suppose the explainer is asked to
explain a classification decision on a particular subtree. In that case, the mask is optimized
using stochastic gradient descent to maximize the probability of correct classification on that
subtree. After the optimization, the explainer suggests k edges with the largest values as
an explanation. The value of k should be properly tuned because the explanation does not
have to be classified to the same class as the original sample if k is fixed in advance. The
values of the mask might be used as ranking in HMill explainer.

5.5.4.3 Banzhaf values

Game theoretical approaches in feature extraction which uses Shapley values and Banhaf
values can be found in [2]. Both come from the cooperative game theory. They are related
to the metric of how much a certain player contributes to various coalitions on average. In
feature extraction, the Banzhaf value might describe interdependency among the extracted
features and their relevancy to the target class. On the other hand, shapley value might be
used to show the contribution of a particular feature in improving the classification accuracy
when all possible coalitions of features are considered. In the case of HMill explainer, the
authors used Bazhaf values.

A sampling algorithm is used to approximate Banzhaf values [11]. There are two values
stored for each subtree in the JSON document – the classifier’s average confidence in coali-
tions which includes the subtree and the average confidence of coalitions that do not. Coali-
tions are generated randomly. After running more iterations, the approximation of Banzhaf
values for each subtree is the difference between the two values stored in it. Banzhaf values
approximation is used as the subtree ranking in HMill explainer. If we do not fix the seed,
the explanation is stochastic and might be unstable regarding the number of iterations and
the output.

5.5.5 Results

Authors in [78] present qualitative and quantitative analysis for different HMill explainer
setups. The best result regarding the computational time and size of explanation was re-
ported for the Banzhaf values-based heuristic addition approach combined with Level-by-
level search. We will use this setup.

5.6 Other methods for structured data

We mentioned three alternative techniques for JSON modelling in the previous chapters —
rules, flattening, and GNNs. Flattening is a technique of feature engineering more than

47



CHAPTER 5. MODEL EXPLAINING

modelling. It might be challenging to explain its predictions, as a general explanation algo-
rithm stops at the flattened features and cannot explain the flattening functions. That refers
to the weak decomposability of such methods mentioned earlier.
Rules are usually transparent, so their interpretability is straightforward. Finally, examples
of graph neural net explaining can be found in [104, 47]

5.7 CAPEv2 explaining

In the chapter 3, we introduced two factors according to which we categorize signatures.
We expect that explanation of the model, the cause of which is in the report, should be a
set containing this cause. As an example, we expect that if the original signature’s cause is
a specific API call, it should be presented in the explanation of the binary classifier for this
signature. As authors of HMill explainer mentioned, we hope that the explanation contains
even something new. In other words, we expect that we could observe explanations that
contain entries that are not the original cause. However, they might reasonably substitute
it — they are connected to the same effects. It is also possible to identify new signatures
because all samples are malicious and the model might generalize based on different simi-
larities in the training set.
We want to explain at least one hundred samples for each classifier to observe repeatedly
seen parts. We choose positive samples because we want to explain the positive class pre-
dictions.

5.7.1 Additions

Since HMill explainer usually process sample by sample, one hundred explanations mean
one hundred JSON files. This quantity is still hard to interpret, and that is why we involved
three additional ideas.
We merged all explanations for one signature into a one JSON file and for each entry com-
puted a number of occurrences across explanations. We assume that the most general for-
mulation of an explanation should be seen repeatedly.
We also counted the frequency of each particular key (name of the field in JSON file, e.g.,
read files, resolved apis) in explanations such that for each signature, we see how often the
explainer detects a particular key. We can compare the original signature’s cause with the
most seen key.
The last idea is that we compute the frequencies of entries seen across different signatures.
We assume that in such a way, we could partially identify the bias that is caused by the
entries that we see in multiple explanations across signatures. In such a case, it should be
considered too general.
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Chapter 6

Infrastucture and data collection

This chapter describes the realization of the data collection process using CAPEv2 sandbox.
The sandbox is described in the chapter 2, here we focus on the specific setup, problems we
experienced and their solution. We have a data source of malware samples MalwareBazaar
mentioned in the thesis introduction. The output of this task is a dataset of dynamic malware
analyses. It includes behavioural features and signatures, both input for our HMill model.

Although this chapter is shorter than the previous ones, we spent the most significant time
on this task. All scripts and other outcomes are part of the attachment (H), and the most
important tools are listed in G.

6.1 Host machine

The host machine is where the sandbox environment and virtualization software is running.
We know that an analysis of one malware sample takes up to five minutes, and we want
to have as many samples as possible. That is why we want to run several distributed host
machines.

The whole process of a host machine initialization is automated to be able to set it up
multiple times. The initialization consists of several steps:

• Install host operating system — recommended Ubuntu

• Enable SSH to be able to access it remotely

• Enable basic security — firewall and supporting tools

• Install virtualization software — recommended KVM QEMU

• Copy virtual machine images to the host

• Sandbox initialization and configuration

• Data collection script initialization

To run all steps on multiple machines at once, we used Ansible, a network orchestration
tool. We also added some usual management functions, e.g., to copy new configurations
from the server or clean up the sandbox data.
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Hardware resources on host machines are 256GB SSD and 16GB RAM, which means that a
sufficient number of virtual machines per one host is four. We experimented with more, but
there was an overload which might lead to biased analysis results.

Various issues accompanied the automation of the whole process. Such a process often
needs manual steps, and their automation is very challenging. Issues were caused mainly
by our low experience, and sometimes poor documentation was involved. Especially the
process of virtual machine images creation and copying was connected with issues. Overall,
we have configured seven host machines.

6.2 Guest machine

Guest denotes the virtual machine where the malware sample runs and where the CAPEv2
monitor operates. We used Windows 7 as an operating system. The crucial goal of the guest
machine is to look like an ordinary computer that is in regular use. Due to the virtualization
usage, we had to care about the sandbox evasion techniques mentioned in 2.

There are two options for anti-evasion setup in CAPEv2 sandbox. Firstly, we experimented
with vmcloak1. We were able to run and use this tool. However, it supports only VirtualBox,
which is not recommended by CAPEv2 because of its performance. The project is also no
longer maintained, and some functions did not work, e.g., taking snapshots. The second
option is to use a script recommended by sandbox contributors2 and perform manual steps
in the virtual machine configuration3. After several unsuccessful attempts with low-level
virtual machine misconfigurations, we were able to create four working images.

The sandbox requires disabling the firewall and running Python on the guest machine. We
added the most popular applications like Google Chrome, Firefox, Adobe reader, Spotify.
We added one private key to C://Users/Administrator/.ssh and one password to the Google
Chrome password database. We downloaded random images and documents from the in-
ternet.

6.3 Network setup

The network setup is a crucial point in the dynamic analysis. The guest machine has to
reach the host machine to stay in touch with the result server. Secondly, there is an internet
connection for the guest, which might be necessary for some malware types. As an example,
we can see dropper, which is responsible for downloading a payload.

We decided to collect the data under two different conditions — with an internet connection
(denoted by internet) and without (denoted by none). We engaged both because the internet
is much more difficult to set up and secure, and we wanted to start data collection as soon
as possible. Both architectures are figured in the appendix C.

1https://github.com/hatching/vmcloak
2https://github.com/doomedraven/Tools/blob/master/Virtualization/kvm-qemu.sh
3https://www.doomedraven.com/2016/05/kvm.html#modifying-kvm-qemu-kvm-settings-for-malware-

analysis
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6.3.1 None

None setup is a straightforward option for an isolated network between host and guest. This
approach requires a host-only interface created in KVM virtualization tool. Host and guest
are assigned with IP addresses from the same range. From a security point of view, we have
to set up a firewall on the host machine. It should accept connections from the isolated
network only on the result server’s port.

6.3.2 Internet

We want to provide internet access to the guest machine during the analysis run. For this
purpose, we prepared a VPN connection to the secured network through which the com-
munication should be forwarded. That is considered a good practice to observe what the
samples are doing and be able to stop it fastly. We call this network dirty lab.

CAPEv2 supports VPN connection setup for each guest machine separately. We knew that it
would be better to have a central gateway for all local traffic than connecting each particular
guest machines to the dirty lab. However, we decided to use native sandbox functions at
first. After experiencing some issues with CAPEv2 VPN configuration and an unsuccessful
issue reporting, we decided to find another custom way.

The main requirement is to centralize the traffic from the local network (malicious) to dirty
lab. The exit point we call router. The surrounding university network has to be secured
and isolated from malicious traffic. We also need to monitor host machines because of a
potential intrusion and centralize logs from host machines.

In the following text we use l2 and l3 as a designation referring to ISO/OSI model of network
communication [109]. By l2 we mean communication on the data link layer. Specifically,
we mean ethernet/802.11 local networks where MAC (Media access address) is used for
device identification. By l3 we mean IP communication on the network layer. IP addresses
are used for device identification on l3.

An expert recommended the designed network architecture after a consultation. Its basic
idea is to avoid l3 communication on the local network such that IP address from one range
is assigned only to the guest machine and then to the router device. This idea was supported
mainly by the l2 VPN on the local network.

The role of the router is to receive the traffic going out of the local network and forward it to
the dirty lab. It can also monitor and capture the traffic. In dirty lab, we were provided with
the ipv4 interface only, so the router performs network address translation (NAT). Router
machine is running Ubuntu operating system. It is configured to connect to dirty lab using
l3 VPN and to the guest machines using l2 VPN. In l2 VPN, router is a server and in l3 VPN,
it is a client (server is running in the dirty lab). Router is realized as a virtual machine with
fast recovery capability. All logs from the server are sent to the central machine.

The host machine has to be configured as a client in communication with router using l2
VPN to forward the guest’s traffic through it. The idea of this setup is that all the traffic
leaving this device is encapsulated in packets with university network IP addresses. This
network is unknown to the guest device where malware is running. From the guest’s point
of view, the connection between the router and a guest is on l2.
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On the host, the interface for l2 VPN communication (TAP) is bridged with the original in-
terface, which allows communication with the guest virtual machine (originally host-only).

A connection to the internet from the guest machine goes through the host machine, the
router, and the dirty lab to the internet.

There has to be an additional setup on the host machine besides that listed in the case of
none. Each host machine in the distributed cluster has to send all sandbox logs to the central
Syslog server. All machines have to be set up with a monitoring tool to detect intrusion4.

6.4 Data collection pipeline

During the distributed data collection, we used the following terminology. Master is a ma-
chine responsible for sample distribution, and it has access to a NAS, where it stores analysis
results. Worker is another name for host machine in the context of distribution.

This section describes the whole process of data collection, beginning with a malware sam-
ple going over its dynamic analysis and ending with the behavioural features and signatures
extracted from the JSON report. All programs implemented to solve the mentioned prob-
lems are part of the attachment (H). Particular steps are automated, and their description
follows.

1. Download samples from the malwareBazaar

2. Filter PE files only

3. Retrieve additional metadata

4. Add hashes to database

5. Distribute samples to workers

6. Analyze samples and send results back

7. Store results

8. Extract JSON reports

9. Prune unnecessary parts

6.4.1 Abuse.ch MalwareBazaar

The place where we downloaded malware samples was abuse.ch5 specifically part called
Malwarebazaar. The reason for its usage is free access without any claims. MalwareBazaar
is a database of malicious (no benign files or adware) samples that anybody can share
and download. In May of 2021, it contains over 325 000 samples. Malware samples are
downloaded in the compressed form — one archive for every day since the start of the
MalwareBazaar project.

4example https://aide.github.io/
5https://abuse.ch/
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6.4.2 File filtering

Our project aims only at PE files described in 2. After decompression of the original archives,
we filter the files based on the file extension and file headers. We also filter the compressed
files, decompress them, and again filter PE files only.

6.4.3 Metadata

The secondary intention was to obtain some basic metadata about each file to have basic
information. We were able to gain academic access to the VirusTotal API6. We downloaded
a metadata report for each of our samples. The report contains basic static information
like hashes and fuzzy hashes, extracted strings, detection of various antiviruses, and even a
summary of reports of used sandboxes.

6.4.4 Distributed sandbox

After dealing with issues in the host initialization part and even in the VPN setup part, we
also encountered issues while setting up the distributed sandbox. CAPEv2 can orchestrate
multiple host machines. It uses distributed mongo database7 combined with a script that is
run on the master machine to check the connection to the registered worker devices. We
spent with the configuration of distributed CAPEv2 large amount of time trying multiple
different ways and following several pieces of advice but unsuccessfully. We decided to
implement our lightweight solution for time reasons.
Hashes of our files are stored in a database (in our case JSON file) with additional attributes.
A script runs on the master machine that distributes samples among worker machines using
their REST API. After the analysis is done, another script on the worker machine compresses
the result and sends it back to the master. The last script manages the coming results and
saves them to the NAS. Everything is recorded in the database.

6.4.5 Result postprocessing

We need only part of the JSON report, specifically behavioural features and signatures,
for further modelling. Its extraction was done in two steps. Firstly, we decompressed the
analysis result and extracted the JSON report only. Secondly, we extracted the mentioned
parts and saved the shrank output. The whole report might have even gigabytes. However,
the shrank variant has usually tens of megabytes. We could transfer the output to the
metacentre where the model computation and explanation took place.

6.5 Collected dataset

When we start modelling experiments, we have a dataset consisting of 80,000 different sam-
ples in none network setup. The internet configuration took us several weeks to deal with,

6https://developers.virustotal.com/v3.0/reference
7https://www.mongodb.com/
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and the data collection started later and was slower. The internet data will be investigated
in future work as its collection continues.
The complete dataset has approximately 2,5 TB in compressed form. Extracted features and
signatures are much smaller (tens of gigabytes).
Not all outputs of the sandbox described in 2 are presented in each analysis result because
the configuration and other conditions influence it.
After examining the histogram of seen signatures, we chose a subset based on their fre-
quency in the training set. We prefered signatures that are implemented in Python for
convenient investigation of the original cause. In D, our candidates can be seen — their
frequencies in the dataset, and additional information, including even the groups described
in the chapter 3.
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Chapter 7

Results

In this chapter, we cover our experiments in HMill modelling and explaining, their setup,
results and discussion. We have a dataset of JSON reports containing behaviour part and
signatures.

7.1 Model

We described our motivation in the first part of the thesis. Details about modelling are
mainly at the end of chapter 4. Here we summarize only experiments.

7.1.1 Details

7.1.1.1 Hyperparameters

We build on previous experiments in [68] where the authors published even used hyperpa-
rameters in the device identification example, which we used as our initial setup.

In the table 7.1, we can see the model’s hyperparameters and other training-independent
facts that we used.

Table 7.1: Hyperparameters of HMill model

Parameter Value

samples 80000 (1:1 testing and training)

minibatch size 1000

hidden units (neurons) 20

iterations 120

optimizer ADAM [57]

loss function logit cross entropy (3)
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The difference of our parameters from [68] is minibatch size and number of iterations. Data
used in their case were of a much smaller scale which could be the reason for the larger mini-
batch size. The smaller number of iterations is caused by resource and time limitations. We
checked overfitting by monitoring the difference between accuracy on training and testing
data. They did not differ significantly.

7.1.1.2 Experiments

We performed experiments with different feature sets. The first experiment used both en-
hanced and summary parts as an input vector for the model. Due to the input size, the
model was too large to converge to some significant accuracy. We were not able to train it
on hardware and with thread limitations in a feasible time. This reality led us to skip the
larger part of the feature vector — enhanced part. This part contains a series of events with
many redundancies and additional data, e.g., function parameters. Each event has its own
object, so the information is much sparser than in the summary part.

The resulting model is working with summary part only. We expected that could happen as
we described in 4. The tighter feature vector was an advantage for the training time.

For evaluation, we chose the metrics following the chapter 3 where we mentioned classifiers
in the cybersecurity field and their pitfalls.

7.1.1.3 Technicalities

In the G, we describe the technical background for HMill model training and evaluation,
such as libraries and programming languages. We unsuccessfully experimented with multi-
threaded gradient computation. The resulting model was trained on one CPU, which shrank
our possibilities a little. However, basic linear algebra subprograms (BLAS) were involved
in the matrix multiplication and were multi-threaded.

The code of the model is in the thesis attachment H.

7.1.2 Results

Results of the experiment could be seen in 7.2. The table is divided into two groups based
on the categories presented in 4. In the table, we also include a percentage of positive
examples for the reader to see the balance of the dataset and assess the FNR and FPR.

There are also some other metrics and visualizations in E.

7.1.3 Discussion

Signature with the cause in report

In the first category of signatures, we observe quite consistent balanced accuracy above
95 %. Signature copiesself has 92 %, which is still sufficient for explanation. This deviation
could be caused by the fact that the original signature is examining dropped files and check-
ing if the analyzed file is among them. Nevertheless, the filename varies, so the entropy
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Table 7.2: Model performance (values are rounded off to three decimal digits, P denotes
positive examples ratio in our dataset)

Signature Bal. acc. FNR FPR P [%]

antidebug setunhandledexceptionfilter 0.9801 0.0289 0.0109 45

copiesself 0.924 0.125 0.0279 18

deletesself 0.997 0.005 0.002 27

enumeratesrunningprocesses 0.972 0.050 0.007 16

stealthtimeout 0.701 0.064 0.331 21

useswindowsutilities 0.958 0.078 0.006 18

removeszoneidads 0.999 0.000 0.000 28

antisandboxsleep 0.969 0.037 0.026 39

dropper 0.911 0.147 0.032 15

invalidauthenticodesignature 0.607 0.668 0.113 36

packerentropy 0.605 0.748 0.043 22

stealthnetwork 0.942 0.008 0.109 66

might be very high and might cause big FNR. Signature deletesself might have similar issues,
but it is determined according to API calls and not dropped files which could cause that its
accuracy is better than the previous. The only significant outlier in this group is stealth-
timeout signature which examines a sequence of API calls that could be quite complicated.
After going through some files where this signature was presented, we could not identify
the particular API calls in the original log even by hand. Its prediction might be more tricky.
The main cause of low balanced accuracy is, in this case, FPR.
Despite a single anomaly, this signature group shows reasonable accuracy, as we expected.

Signature without the cause in report

The second group behaves more unexpectedly because the accuracy in three of five cases is
above 90 %. Signature antisandboxsleep uses API calls in a more complex way, so the orig-
inal classifier may involve these. Dropper has significantly larger FNR. However, its overall
accuracy is still high. Stealthnetwork should look at the network activity, which is not among
the features. The excellent accuracy of these models arouses our interest in the explaining
part. In cases of invalidauthenticodesignature and packerentropy, the accuracy is significantly
lower than in other cases, as we expected. Overall, the first group has statistically better
accuracy than the second one, as we expected.
We also performed several experiments with a more general multilabel classifier, but we did
not observe convergence with our computational resources.
This part concludes that we can train HMill classifier to classify the presence of a particu-
lar signature based on the summary part of the behavioural report from CAPEv2 sandbox.
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This classifier has a significant accuracy of more than 90% as balanced accuracy for most se-
lected signatures, which is sufficient for further explaining experiments because such models
should have strong confidence.

7.2 Explainer

7.2.1 Details

The motivation and expectations regarding the model explaining are described in 5.

We performed two explaining experiments using ExplainMill.jl (described in G). We ex-
plained all models with a balanced accuracy above 70 %. The rest is not relevant due to its
low overall confidence.

We used Banzhaf values as a subtree ranking method followed by the Heuristic addition
subset selection. Level-by-level search was used as an adaptation for the minimal subtree
problem. Random removal was also involved.

Explainer code is in attachments (H). We used a similar setup as authors of the tool [78].
We extracted several examples from the testing set in each run. We attempted to explain
only positive examples, which were truly classified into the positive class with confidence
above the specified threshold. The confidence threshold we used is 0.99 for the first run and
0.9 for the second run. We decreased it by 0.1 if no results were found in the data subset.
We run the explainer on each of the chosen examples separately. We also used our additions
described in chapter 5.

The number of explanations may vary because of the difference between the confidence
levels of models. In the second run, we attempted to normalize the number of explanations
to be 100 per signature, but we still were not successful in some cases. In F, we can see the
number of explanations for both runs and other details.

7.2.2 Results

All original outputs and additional aggregations are in attachments (H) — merged explana-
tions are in merged directory, frequencies of keys are in freq.json and merged keys across the
signatures are in overall.json. Some statistics about the explanations can be found in F.

7.2.3 Discussion

The size of the original JSON file with only the behavioural part can be hundreds but even
thousands of entries (average is around 3000 but included even the signature part). The
average size of the explanation is 3–5 entries.

We formulated the following discussion of the results after presenting them to an expert.
We formulate assumptions or hypotheses because we have to anticipate the risks mentioned
in the chapter 5, especially the causality X correlation problem and the confounding variable
existence. We are aiming at the observation description more than concluding.
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antidebug setunhandledexceptionfilter

The most seen keys are read keys, resolved APIs, executed commands. It includes even API
calls, which are the signature cause. Among entries, the most seen are kernel32.dll.IsProcessor
FeaturePresent (153/377) API and DisableUserModeCallbackFilter (34/377) registry key. Those
are presented in other explanations once and twice, so it does not look like something too
general but also not unique. The registry key is related to exceptions, and the original API
call is also related to them.

copies self

The most seen keys in explanations are write files, executed commands, delete files and the
first is seen in all explanations, and it also coincides with the original cause, which might
be a clue that the model uses what is expected, and its generalization goes the right way.
Among entries the most seen are ikkzowxr.exe (13/100) file, WerFault.exe (13/100) file and
StikyNot yakuza mutex. The first file is prevalent across different signatures. The mutex is
also seen more than one time in explanations.

deletes self

The most seen keys in explanations are deleted files, write files, executed commands. The
first is seen in all explanations. Here we can see some generalization because the original
signature does not check the deleted files directly. It uses the API call to detect the file
removal. However, the model uses deleted files with high accuracy. We also checked if
this trend is not seen in more cases, but this is unique that all explanations include deleted
files. This example is unique because the causal relation is straightforward, i.e., the API call
causes that the file is deleted, and it appears among the deleted files.

enumerates running processes

The most seen keys in explanations are executed commands, mutexes, read keys. These do
not include the original cause, which was the API call. Among entries, the most seen is
"IESQMMUTEX0208" (17/84) mutex, but this mutex is quite common. The accuracy of
this classifier is significant, but we cannot generalize to a more specific subset using our
explanations.

stealth timeout

The most seen keys in explanations are executed commands, files which does not include the
original cause — API call. The most seen entry is DisableUserModeCallbackFilter (11/78)
registry. Nevertheless, the situation is the same as in the previous case. We are not able to
generalize more.
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uses windows utilities

The most seen key in explanations is executed commands which is included in each expla-
nation, and it coincides with the original cause. The most frequent commands are netsh,
schtasks.exe. This case is another clue that the model uses what is expected, and its gener-
alization might go the right way.

removes zoneid ads

The most seen keys are delete files, keys. The first is seen in each explanation, but the
original signature is using API calls. We are not able to identify specific redundant entries,
but we identified one great conformity. The original signature implementation includes
following .endswith(":Zone.Identifier") so it is detecting end of API call argument and even
.startswith("DeleteFile") is detecting the name of API starting with a specific string. These two
facts perfectly correlate with our explanations, where the majority of deleted files includes
:Zone.Identifier suffix.

antisandbox sleep

The most seen keys in explanations are write keys, keys, read keys which does not correspond
to the original cause. The most seen entry is HKEY CURRENT USER/. . . (63/100) registry
key. We see this registry key in the case of two signatures. We do not see a direct relation
between this key and the original cause.

dropper

The most seen keys in explanations are write files, executed commands, mutexes. The first
is presented in all explanations. The second is not only in negligible fraction. The original
cause is not trivial but dropped files are there, which corresponds to the first key. Among
entries, the most seen is IESQMMUTEX0208 (28/71) mutex, but this mutex was mentioned
earlier as too general.

stealth network

The most seen keys in explanations are keys, files. The original cause (network) is not
presented in the input at all. It looks like registry keys play a significant role. However,
neither in the case of registry keys we can not find specific redundant entries.

In particular cases, we can see several situations. Sometimes the model explanations cor-
respond to the original cause. That is a clue that the model uses what we expected, and
its generalization might go the right way (e.g., copies self). There is even a particular case
where the original cause does not fit, but the explanations logically correlate with it. In
the case of deletes self, we see key deleted files in all cases. However, the original signature
is detecting the same thing, but according to api calls. This example is unique because the
causality is straightforward. The API call causes that the file is deleted, and it appears among
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deleted files. However, the model generalized to that which should not be overlooked. A
different case is stealth network where we do not see a direct cause of the fact that registry
keys are often used in the explanation, even though they are not the original cause.
Choosing the most used key is one way, but the second is investigating particular entries
(specific calls, files, mutexes. . . ). It is challenging to interpret them and connect them to
specific causes because their variance is enormous, as we expected. The most significant
observation is in removes zoneid ads. We can see that the model mainly uses the same
entries as the original signature (with the same suffix). That should also be considered as a
clue that the model generalizes the right way.
Using our method, we were able to identify too general parts of explanations. We can see
mutexes that are presented very often across different model’s explanations. They might be
considered confounding variables, as well as some files that are repeatedly seen in reports.
Both play a significant role in detecting a particular family or classifying malware/clean-
ware, but they should not be used to identify particular behaviour.
In several cases, we cannot identify any direct cause of the model’s high accuracy (e.g.,
antisandbox sleep) because the explanation is ambiguous. The reason might be a spurious
correlation mentioned in the chapter 5. Without a more extensive dataset or some methods
for causality detection, this might be impossible to discover.

After organizing theory in 5, we are cautious. Explaining is a complicated field with many
challenges. We can not be sure about the output, especially using post hoc explanation
per sample. The computation of Banzhaf values and randomness of the input causes the
explanation to be a random variable as well.
Nevertheless, our observations indicate that some models strongly involve original causes in
their predictions. That leads us to future work where the main interest should be improving
the aggregation of particular explanations, detecting too general concepts (across classes),
and confounding variable detection. It is noteworthy that our post hoc explanation should
perform better with more extensive datasets. However, also the transparency approaches
should be taken into account.
Suppose we can make the explanation more accessible to the client, e.g., a security engineer.
In that case, there is a significant chance for HMill models to be used during malware
analysis in real-world applications. The main reason is their high accuracy and their ability
to process standard data formats like JSON document and provide an explanation in the
same form. Of course, more complex examples, broader datasets, and further testing have
to be involved.
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Chapter 8

Conclusions

The main objective of this thesis was to design a pipeline that has a malware dataset as the
input and a machine learning model and its explanation as the output. The whole process
was motivated by high accuracy model interpretability to achieve greater compliance of
machine learning and cybersecurity. Theory background and methods are summarized in
the first part of the thesis. The setup, experienced problems, results, and their discussion
are in the second part.
We set up eight physical machines with the CAPEv2 sandbox in two different setups —
with internet and without internet connection. Using the open source sandbox and our
programs, we collected dynamic malware analyses for 80,000 malware samples retrieved
from MalwareBazaar1. We reported the problems experienced during the data collection
process and the description of the whole setup, including our code.
We used JSON reports of the sandbox as an input for Hierarchical multiple instance learning
framework [68], the choice of this technology was justified by its ability to model JSON doc-
uments and better scalability in comparison with other methods. The classification model
features are behavioural parts, and predicted classes are malware signatures, both included
in the original JSON report. To evaluate our models better, we investigated the original
signature’s implementation and found out their true cause. We created a binary classifier
for each of the chosen signatures (overall 12). We observed how each model performs in
the context of the true signature’s cause. Nine classifiers had a balanced accuracy of more
than 90%. We reported and discussed individual results.
Finally, we experimented with the model explaining. Even though there might be hundreds
of entries from the original behavioural report used as a feature set, the explainer only pro-
vides 3–5 entries as an explanation for each of the nine explained models. It is evident from
our observations that some models were intensely associated with the original signature’s
cause. It is worth noting that there were cases where the model used different behavioural
features with high accuracy. We reported and discussed all results.
Despite the significant amount of work we faced during the sandboxing, we managed to
meet the goals of this thesis. We wanted our experiments to be repeatable, and therefore
the source code and other technicalities are in the attachment of the thesis. In addition, we
mentioned specific issues faced during the work, along with ideas for future work.

1https://bazaar.abuse.ch/
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Future work

The sandbox CAPEv2 does not include native support for extensive data collection since it
is designed as a tool for malware analysis more than for machine learning experiments.
Because our solution consists of many manual steps, it is worth adding some out-of-box
solution for the clustered sandbox run to collect larger datasets. This solution might be
based on the existing parts of the sandbox, which did not work for us. It can also be built
on top of our lightweight tools. The main objective is to make it more user friendly for
everyday use in machine learning.
HMill models showed good accuracy, and the framework should be part of other experi-
ments with complex data like ours. There should also be larger datasets of dynamic analysis
reports with different signatures and malware samples, such as the one with the internet
data which we did not use eventually. Multilabel classification might be involved in the
signature prediction as well.
The data quality in the cybersecurity domain should not be overlooked, e.g., an additional
effort in redundancy/noise reduction in reports. That is also related to precisely controlled
conditions during the malware analysis.
The framework creates the model directly from the JSON data which is very convenient for
the model explanation. We can retrieve the explanation directly as a human-readable JSON
document. This capability should be examined in different situations, emphasizing practical
applications, e.g., new signatures extraction, zero-days, and interpretability for cyberse-
curity professionals. Addressed challenges like causality detection or spurious correlation
should also be taken into account.
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Appendix A

Classifier evaluation metrics
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Table A.1: Classifier evaluation metrics

Metric Formula Description

accuracy TP+TN
TP+TN+FN+FP the ratio of correctly classified

examples to all examples (im-
balanced dataset may bias its
interpretation)

false positive rate (FPR) FP
FP+TN the ratio of misclassified posi-

tive examples to all examples
classified positive

false negative rate (FNR) FN
FN+TP the ratio of misclassified neg-

ative examples to all exam-
ples classified negative

true positive rate or recall (TPR) TP
TP+FN the ratio of truly classified

positive examples to all posi-
tive examples

true negative rate (TNR) TN
TN+FP the ratio of truly classified

negative examples to all neg-
ative examples

precision TP
TP+FP the ratio of truly classified

positive examples to all exam-
ples classified as positive

balanced accuracy TNR+TPR
2 shows average accuracy bal-

anced for both classes, better
for imbalanced datasets

f1 score 2 · precisionṙecall
precision+recall good measure if we seek for

a trade-of between precision
and recall, we migh compare
more classifiers using it
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Appendix B

CAPEv2 sandbox details

List of file types

• PE files

• DLL files

• PDF documents

• Microsoft Office documents

• URLs and HTML files (even internet explorer behaviour after opening some URL)

• PHP scripts

• CPL files

• Visual Basic scripts

• ZIP files

• Java JAR or applets

• Python files

• PowerShell scripts

• Microsoft windows installer

• Generic binary data such as shellcodes
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Table B.1: Parts of report.json

Entry Note

statistics time statistics for particular part of malware analysis

info sandbox details (machine, category, used module, timeout
etc.)

debug sandbox debug log

target info about examined sample

CAPE extracted payload info

behaviour processes, mutexes, commands and other behavioural at-
tributes

deduplicated shots screenshot summary

network network traffic report (domains, tcp, udp etc.)

static analysis results per file

strings extracted strings

suricata output of suricata network detection tool

malfamily tag malware family detection result

malscore malicious score

signatures list of signatures detected by sandbox
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APPENDIX B. CAPEV2 SANDBOX DETAILS

Table B.2: Behaviour parts of report.json

Entry Meaning

processes list of processes related to malware execution with details (API names,
arguments)

process tree structure of process execution

summary list of occured files, registry keys, mutexes, executed commands, API
calls

enhanced comprehensive log of events during malware execution including pa-
rameters, timestamps etc.
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Appendix C

Network architecture for distributed
sandbox

Figure C.1: None network setup
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APPENDIX C. NETWORK ARCHITECTURE FOR DISTRIBUTED SANDBOX

Figure C.2: Internet network setup
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Appendix D

Signatures description

The split in the table D.1 denotes two groups of signatures described at the end of chapter
4. Signature entry in the original report can be seen in D.1. Implementation of signatures
could be seen on https://github.com/kevoreilly/community and an example is in D.2.
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APPENDIX D. SIGNATURES DESCRIPTION

{
"name": "dead_connect",
"description": "Attempts to connect to a dead IP:Port (1

unique times)",
"severity": 1,
"weight": 0,
"confidence": 100,
"references": [],
"data": [

{
"IP": "23.238.43.43:80"

}
],
"new_data": [],
"alert": false,
"families": []

},

Listing D.1: Example of signature part entry in report.json

class antidebug_setunhandledexceptionfilter(Signature):
name = "antidebug_setunhandledexceptionfilter"
description = "SetUnhandledExceptionFilter detected (possible

anti -debug)"
severity = 1
categories = ["anti -debug"]
authors = ["redsand"]
minimum = "1.3"
evented = True

def __init__(self, *args, ** kwargs):
Signature.__init__(self, *args, ** kwargs)

filter_apinames = set(["SetUnhandledExceptionFilter"])

def on_call(self, call, process):
if call["api"] == "SetUnhandledExceptionFilter":

return True

Listing D.2: Example of signature implementation
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Table D.1: Used signatures and their details

Signature Description Cause P [%]a

antidebug setunhan-
dledexceptionfilter

filters api call SetUnhandledEx-
ceptionFilter, which enables an
application to supersede the
top-level exception handler of
each thread of a process (source
https://docs.microsoft.com/)

API CALLS 45

copiesself detects that currently analysed file
copies itself

DROPPED FILES 18

deletesself detects that currently analysed file
deletes/move itself or directory
where placed, examining parame-
ters of the call

API CALLS, basic
file attributes

27

enumerates running
processes

detects more than five process detail
listings, saves pids in the data part

API CALLS 16

stealthtimeout detects a sequence of API calls
which seems like expiration check
and premature exit

API CALLS 21

useswindowsutilities detects usage of usual windows util-
ities (attrib, copy, dir, echo, erase. . . )

COMMANDS 18

removeszoneidads detects attempts to remove an evi-
dence of file downloaded from the
internet by examining parameters
of API calls

API CALLS 28

antisandboxsleep detects attempts to delay the analy-
sis task, saves pids and time to data
part

TIME, API CALLS 39

dropper detects dropping of a binary and its
execution

PROCESSES,
DROPPED FILES

15

invalid authenticode
signature

detects that the authenticode signa-
ture is invalid

STATIC,
DROPPED FILES

36

packerentropy detects encrypted or compressed
data using entropy calculation

STATIC 22

stealthnetwork detects network activity which is
not expressed in API calls

NETWORK 66

apositive examples ratio in our dataset (80000 samples)
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Appendix E

Model metrics

Table E.1: Additional classifier results for particular signatures (rounded off to 3 decimal
digits)

signature f1 AUROC AUPRC test lossa

antidebug setunhandledexceptionfilter 0.979 0.998 0.871 0.054

copiesself 0.874 0.983 0.920 0.132

deletesself 0.995 0.999 0.9997 0.008

enumerates running processes 0.957 0.996 0.989 0.041

stealthtimeout 0.802 0.794 0.929 0.263

useswindowsutilities 0.945 0.996 0.987 0.057

removeszoneidads 1.00 1.00 1.00 0.00

antisandboxsleep 0.962 0.993 0.986 0.087

dropper 0.840 0.982 0.902 0.125

invalid authenticode signature 0.433 0.714 0.608 0.569

packerentropy 0.359 0.776 0.518 0.436

stealthnetwork 0.969 0.978 0.987 0.138

alogit binary cross entropy
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Figure E.1: antidebug setunhandledexceptionfilter plots
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Figure E.2: copiesself plots
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Figure E.3: deletesself plots
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APPENDIX E. MODEL METRICS
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Figure E.4: enumerates running processes plots
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Figure E.5: stealthtimeout plots
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Figure E.6: uses windows utilities plots
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Figure E.7: removeszoneidads plots
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Figure E.8: antisandboxsleep plots
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Figure E.9: dropper plots
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Figure E.10: invalid authenticode signature plots
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Figure E.11: packer entropy plots
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Figure E.12: stealth network plots
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Appendix F

Explaining details

Explanations themselves are in the attachment H. We add some details about the results of
explanation in the table F.1, where N denotes the number of explanations, and AS denotes
the average size of the explanation. Results are not available where NaN is presented —
in the first run, we do not have two signatures because their models were not trained at
the time we created this explanation, two models were not explained because of their low
overall confidence.

Table F.1: Details for each signature’s model explanation

signature N1 AS1 N2 AS2

antidebug setunhandledexceptionfilter 64 3.00 377 3.14

copiesself 4 3.00 100 2.74

deletesself 50 3.22 100 3.08

enumerates running processes 16 4.75 84 3.33

stealthtimeout NaN NaN 78 3.17

useswindowsutilities NaN NaN 67 1.86

removeszoneidads 56 3.14 100 3.05

antisandboxsleep 21 4.52 100 3.32

dropper 9 3.33 71 4.30

invalid authenticode signature NaN NaN NaN NaN

packerentropy NaN NaN NaN NaN

stealthnetwork 44 2.95 100 2.72
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Appendix G

Technology

Our technology stack is quite broad, in the lists below, we divide the tools into two groups
based on what we did use it for. We do not mention standard Linux tools like shell scripts,
ssh etc. We mention only those which had a significant impact on our work.

Sandboxing and infrastructure

Capev2 with community signatures

There are several relevant sources, here are the most important:

• Public instance — https://capesandbox.com/

• Opensource project — https://github.com/kevoreilly/CAPEv2 (under GNU General
Public License v3.0)

• Community extensions — https://github.com/kevoreilly/community

• Documentation — https://capev2.readthedocs.io/en/latest/

Virtualization

Virtualization of sandbox machines, router machine, and other related stuff was ensured by
the following tools:

• Kernel-based Virtual Machine — https://www.linux-kvm.org

• VirtualBox — https://www.virtualbox.org/

• Windows 7 — operating system running on sandbox virtual machines

• Ubuntu server — operating system running on VPN lab edge router

• Other tools and sources — https://github.com/doomedraven
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Networking

• Ansible — https://www.ansible.com/

• OpenVPN — https://openvpn.net/

• brctl — https://linux.die.net/man/8/brctl

• rsyslog — https://www.rsyslog.com/

• fail2ban — https://www.fail2ban.org/

• aide — https://aide.github.io/

• ufw — https://help.ubuntu.com/community/UFW

Programming

For programming tasks in the infrastructure part we used Python 3 (see in H).

Others

We are really pleased that we could use pafish (https://github.com/a0rtega/pafish) as a
testing malware sample, we used it many times.

Data and machine learning

Julia

For programming tasks in this part we used Julia language — https://julialang.org/. Julia
has many advantages regarding maily performance compared to Python which could be
considered as alternative. But we do not aspire to advocate this language, programming
environment was mainly determined by the HMill framework which is implemented in this
language by [68]. List of the most important used libraries and their versions:

• JsonGrinder.jl — [82] (v2.1.4)

• Mill.jl — [81] (v2.4.1)

• Flux.jl — [49, 50] (v0.11.6)

• EvalMetrics.jl — https://github.com/VaclavMacha/EvalMetrics.jL (v0.2.1)

Computing grid system

For resource-demanding computation we used CESNET metacenter (mentioned in acknowl-
edgements) — https://www.metacentrum.cz/en/Sluzby/Grid/index.html.
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Appendix H

Attachments

Code

INFRASTRUCTURE

init_cape_machine.sh set up a new machine with Ubuntu 20.04 with the sandbox
and all requirements like KVM, network security

ansible_init_cape.yml set up multiple machines at one time using ansible

fetch_samples.py fetch malware samples from defined sources (abuse.ch)

fetch_metadata.py fetch metadata for already retrieved samples from defined
sources (VirusTotal)

filter_samples.py filter retrieved samples by filetype

distribute_samples.py distribute samples on multiple instances of CAPEv2 sandbox

collect_results.py collect results of analyses

aggregate_results.py aggregate results of analyses on master machine

dbutils.py create new samples in database and other tools for database
maintenance

dbs/filedb.json example of json database of files

dbs/machinedb.json example of json database of physical machines in cluster
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DATA

data_prune.jl prune json files using lazy json loading

binary.jl binary classifier

explain_binary.jl explainer of binary classification model

grid_submit.sh script used to schedule job on grid cluster

merge_explanations.py merge multiple explanations into one aggregated json file

plots.jl generate plots for classifier (ROC, PRC)

Results

Explanations:

• original explanations (2 runs) as json file which includes list of jsons representing
explanation for each signature

• merged explanations where jsons are aggregated into one and for each entry we have
frequency in the original explanation list, in second run we have even mergedtop where
we have only frequencies of ten most seen entries

• frequencies of keys in explanations

• overall explanation report to see the intersection of entries across signatures

Data

In attachment we can also find an example of many time referenced report.json and an
example of HMill schemata, extractor and model in text form.
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Acronyms

HMill Hierarchical Multiple Instance Learning

RAM Random Access Memory

JSON Javascript Object Notation

API Application Programming Interface

FNR False Negative Rate

FPR False Positive Rate

ROC Receiver Operating Characteristic

PRC Precision Recall Curve

AUC Area Under the Curve

p.d.f. Probability Density Function

i.i.d. Independent and Identically Distributed

MLE Maximum Likelihood Estimation

IoT Internet of Things

DDOS Distributed Denial of Service

C2 Command and Control

HTML Hypertext Markup Language

IAT Import Address Table

CLI Command Line Interface

GUI Graphical User Interface

NAT Network Address Translation

VPN Virtual Private Network

PDF Portable Document Format

PE Portable Executable

DLL Dynamic-link Library

URL Uniform Resource Locator
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CPL Control Panel

JAR Java Archive

OS Operating System

KVM Kernel-based Virtual Machine

HTTP Hypertext Transfer Protocol

REST Representational State Transfer

KNN K-Nearest Neighbors

SVM Support Vector Machine

GDPR General Data Protection Regulation

AI Artificial Intelligence

SSH Secure Shell

SSD Solid State Drive

IP Internet Protocol

MAC Media Access Control

NAS Network Attached Storage

IRC Internet Relay Chat

SMTP Simple Mail Transfer Protocol

BLAS Basic Linear Algebra Subprograms

CPU Central Processing Unit
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