
CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

F3 Faculty of Electrical Engineering
Department of Computer Science

Master’s Thesis

Engine for pattern detection
in graph database used
as metadata storage for data
lineage

Bc. Lukáš Jarrah
Open Informatics - Data Science

May 2021
Supervisor: Ing. Michal Valenta, Ph.D.

Acknowledgement / Declaration

I want to thank my supervisor Michal
Valenta, PhD., for his valuable sugges-
tions and my Manta colleagues for their
provided insights and expertise that
greatly assisted the research. Besides,
I wish to thank RNDr. Petr Olšák for
sharing the TEX template and advice.

I hereby declare that I have authored
this thesis independently, and that all
sources used are declared in accordance
with the “Guideline for adhering to eth-
ical principles when elaborating an aca-
demic final thesis”.

I acknowledge that my thesis (work)
is subject to the rights and obligations
arising from Act No. 121/2000 Coll., on
Copyright and Rights Related to Copy-
right and on Amendments to Certain
Laws (the Copyright Act), as amended,
(hereinafter as the “Copyright Act”), in
particular § 35, and § 60 of the Copy-
right Act governing the school work.

With respect to the computer pro-
grams that are part of my thesis (work)
and with respect to all documenta-
tion related to the computer programs
(“software”), in accordance with Article
2373 of the Act No. 89/2012 Coll., the
Civil Code, I hereby grant a nonex-
clusive and irrevocable authorisation
(license) to use this software, to any
and all persons that wish to use the
software. Such persons are entitled to
use the software in any way without
any limitations (including use for-profit
purposes). This license is not limited in
terms of time, location and quantity, is
granted free of charge, and also covers
the right to alter or modify the software,
combine it with another work, and/or
include the software in a collective work.

In Prague on May 14, 2021

. .

iii

Abstrakt / Abstract

Datové toky jsou tradičně zkoumány
prostřednictvím zobrazení data lineage
v grafickém uživatelském prostředí.
Tato práce navrhuje inovativní přístup
založený na automatické analýze vzorů
datových toků za pomoci vyvinutého
nástroje rules engine. V publikaci je
předložen průzkum grafových databází
se zaměřením na technologii Neo4j,
která v Manta platformě slouží jako
úložiště metadat. Práce nabízí detail
konkrétních obchodních příležitostí pro
obhájení přidané hodnoty vyvíjeného
projektu. Dále je v práci navržen a im-
plementován prototyp vyhodnocovacího
nástroje. Jeho hlavní část zodpovídající
za spuštění pěti vybraných pravidel je
popsána detailněji se zaměřením na její
výstupy, které jsou v podobě reportů
následně srovnávány s manuálním zkou-
máním v uživatelském prostředí Manty.
Celý prototyp je na závěr vhodně
otestován a ověřen s ohledem na jeho
relevanci vůči různým typům zákaz-
níků. Speciální pozornost je věnována
výkonnosti konkrétních databázových
dotazů napsaných v jazyce Cypher.
Práce také kalkuluje s eventuálními
možnostmi rozšíření a navrhuje další
vylepšení, která by mohla být do tohoto
nástroje v budoucnu implementována.

Klíčová slova: Data lineage, Datové
toky, Grafová databáze, Neo4j, Cypher

Překlad titulu: Nástroj pro detekci
vzorů v grafové databázi sloužící jako
úložiště metadat pro zpracování data
lineage

The traditional way of data flows
inspection is a visual representation of
data lineage in the graphical user inter-
face. This work proposes an innovative
approach to automatically analyzing
data flows patterns by the developed
rules engine tool. The thesis contains
research of graph databases, aiming
mainly on Neo4j, which is used as un-
derlying storage in the Manta platform.
To justify the project’s business value,
the work also includes a detailed list
of specific use-cases. On this basis,
the prototype of the rules engine is
designed and implemented. The core
part responsible for the execution of
five selected rules is described, and
the result reports are demonstrated and
compared with manual inspection in the
Manta user interface. Subsequently, the
project is appropriately tested, focusing
on performance testing of particular
graph queries implemented in Cypher
language. Eventually, the provided
value of the rules engine for various
types of customers is verified. Besides,
the thesis introduces suggestions for
future extensions and enhancements.

Keywords: Data lineage, Data flows,
Graph database, Neo4j, Cypher

iv

/ Contents

Introduction .1
Objectives .2
Structure .2

1 Theory of graph databases3
1.1 Outline of databases3
1.2 Graph databases5

2 Data lineage .9
2.1 Data lineage .9
2.2 Manta product 11
2.3 Metadata storage structure. . . . 13

3 Requirements . 17
3.1 Motivation and ways of lin-

eage interpretation 17
3.2 Requirements analysis 20
3.3 Objectives . 23
3.4 Use cases of business rules. 23

4 Analysis and design 29
4.1 Neo4j . 29
4.2 Rules engine tools 34
4.3 Design . 37

5 Implementation 40
5.1 Process . 40
5.2 Rules . 42
5.3 Summary . 53

6 Evaluation. 54
6.1 Testing . 54
6.2 Rules . 56
6.3 Rules evaluation 66

7 Enhancements . 67
7.1 Enhancements. 67
7.2 Deployment plan 70

Conclusion . 71
References . 73

A Specification . 79
B Glossary . 80
C Attachments . 81
C.1 List of files . 81

v

Tables / Figures

1.1. Comparison of complexity of
graph data structures7

3.1. Comparison of current ways
of metadata extraction from
Manta’s repository 19

3.2. An example of detected iso-
lated objects . 26

4.1. Summary of entity types and
their attributes in Neo4j 33

5.1. Common input parameters
of all rules . 42

5.2. Input parameters of Cen-
troids rule . 43

5.3. Output parameters of Cen-
troids rule . 43

5.4. Input parameters of Restrict-
ed flows rule . 45

5.5. Output parameters of Re-
stricted flows rule 45

5.6. Input parameters of Isolated
components rule 47

5.7. Output parameters of Isolat-
ed components rule 47

5.8. Input parameters of The
longest chains rule 49

5.9. Output parameters of The
longest chains rule 49

5.10. Input parameters of Indepen-
dent flows rule 51

5.11. Output parameters of Inde-
pendent flows rule 51

6.1. Number of nodes and edges
in the testing graph 57

6.2. Comparison of database hits
and average duration time of
the main database queries of
every rule. 58

6.3. Number of database hits of
the main Centroid rule query
and its decomposition 60

6.4. Number of database hits of
the main Isolated compo-
nents rule query and its de-
composition. 62

1.1. An example of a social net-
work graph .6

2.1. An example of a data lineage9
2.2. Architecture diagram of

Manta Flow . 12
2.3. Simplified example of the

main graph hierarchy. 16
3.1. A simple data lineage visual-

ization in the Manta UI. 17
3.2. The Swagger documentation

of Manta’s REST API inter-
face . 19

3.3. An example of the restricted
flows rule entry 25

3.4. An example of two dependent
workflows with the same tar-
get dependency. 28

3.5. An example of dependent
workflows with the process
dependency. 28

4.1. Components of the Neo4j
platform . 32

4.2. Example of Drools rules in
excel . 36

4.3. UML diagram of Centroid
rule with the dependent
repository interfaces. 38

4.4. UML diagram of Centroid
rule with the interface and
dependent parameters and
result classes. 39

5.1. Centroids rule results in
Manta UI . 44

5.2. Restricted flows rule results
in Manta UI . 46

5.3. Isolated components rule re-
sults in Manta UI with Iso-
lated Mode=NO-INGOING
configuration 48

5.4. Isolated components rule re-
sults in Manta UI with Iso-
lated Mode=COMPLETE
configuration 48

5.5. The longest chains rule result
in Manta UI . 50

vi

6.5. Number of database hits of
the main Longest chains rule
query and its decomposition . . . 63

6.6. Number of database hits of
the main Independent flows
rule query and its decompo-
sition . 65

7.2. Summary of non-functional
requirements and their real-
ization . 67

7.1. Summary of functional re-
quirements and their realiza-
tion . 68

5.6. Independents flows rule re-
sults in Manta UI 52

6.1. Profiler tool in Neo4j Browser . 57

vii

Introduction

The constantly growing amount of produced data from various sources led to the in-
evitable discovery of ways to save and organize data effectively. Database systems,
which allow persistent storage and simple data access, are categorized into relational
and NoSQL databases. The latter group example are graph databases, which provide a
way to represent connected data based on graph theory.

Data lineage, which uses graph databases as an underlying storage, represents the
map of data flows in a specific environment. In recent decades, large companies have
recognized the importance of data possession, thus they have been collecting the ma-
jority of produced and controlled data. This often leads enterprises to the gradual
expansion of their data warehouse consisting of many unmaintained systems, in which
ensuring data reliability or security becomes unfeasible. Data lineage tools help enter-
prises to monitor their systems and create a visual representation of their end-to-end
data journeys.

Although having a detailed description of data flows boosts confidence in own data,
examining the lineage map in a graphical user interface has two main drawbacks. Firstly,
it still requires a lot of manual effort because the production graphs typically consist
of tens of thousands of objects, and secondly, human errors do happen from time to
time. These reasons brought the idea of building a tool, further called a rules engine,
that would automatically analyze the data lineage and create a report with detected
graph patterns. The input to the engine is a set of user-defined rules, which deliver
information leading to business value growth in terms of data reliance, security issues,
and last but not least, recommendations for simplification of systems and processes.

A Gartner study describes a recent trend of ensuring user-friendly access for business
leaders to valuable data [1]. The rules engine can transform the passive data lineage
system into the active tool, which may help end-users discover important patterns in
their data flows with minimal effort and less technical knowledge required. Eventually,
it results in an efficiency increase and better resource planning for the entire company.

1

Introduction .

Objectives
The thesis’s first objective is to research current practices of data storage in graph
databases and describe the data lineage functionality in the Manta Tools project. Next,
it is essential to collect customer requirements of rules with lineage patterns and analyze
the business use-cases. The key aim of this work is to design and implement a rules
engine prototype consisting of configurable rules detecting the selected graph patterns
in a data lineage. Finally, the author should analyze the effectiveness of implemented
algorithms and propose methods for more efficient evaluation.

Structure
To achieve the goals, the thesis is structured as follows. The theoretical part starts
with an introduction to databases, focusing on NoSQL systems, particularly graph
databases. On that account, the general graph theory is presented. In the next chapter,
the data lineage concept and use-cases are explained. One of the popular data lineage
products is Manta, therefore its platform architecture and metadata storage structure
are discussed.

The practical part of the thesis begins by collecting functional and non-functional
requirements of the application from the perspective of integration with the current
Manta platform. At this stage, the author introduces the intended objectives to achieve.
This section also contains detailed descriptions of particular rules with graph patterns
and how they can increase business value.

The subsequent chapter contains a research of the selected graph database, Neo4j in
particular, with data querying and implementation details. Besides, the rules engine
representatives are analyzed, and the author considers the potential usage of available
tools for the implementation part of the thesis. Then the architecture for the module
containing the planned prototype is designed.

During the implementation stage, the author discusses the entire development process
of the application prototype. The focus is put into the explanation of the logic of single
rules and flexibility achieved by input parameters configuration.

The evaluation chapter presents the ways of software testing with the main emphasis
on Neo4j testing tools. Primarily this section contains the evaluation of the performance
of implemented rules. Besides, it includes an in-depth description of particular database
queries implemented in Cypher language and proposed improvements leading to higher
efficiency.

Finally, the author summarizes the fulfillment of all gathered requirements. He also
suggests general ways to enhance the application in terms of architecture and perfor-
mance, leading to simplifying future development.

2

Chapter 1
Theory of graph databases

This chapter should provide an introduction to the theory of graph databases. First
of all, the ways of data storage into databases of several types are explained. The
subsequent section focuses on graph databases, in particular. Primarily the graph
model comprised of nodes and edges is presented. Then there are described methods of
physically storing the graph model in graph databases and how to benefit from database
indexes.

1.1 Outline of databases
With the growing amount of produced data from various computer systems, it has been
called for ways to organize and store data persistently, effectively, and easily accessible.
During the 1970s, it became popular to save data into relational databases. Although
relational databases are still widely used, it was realized that they might not be optimal
for specific tasks. Around the 2000s, people started to use new emerged modern NoSQL
databases, which became popular. Specifically, it was discovered that for navigating
connected data, it is convenient to use the concept of from graph theory and store the
data into newly arisen graph databases [2].

1.1.1 Data storage
A database (DB) is a logically organized collection of related data typically stored
electronically in a computer system. Data may have metadata stored together with
them and should be self-describing. A software system enabling access to a database is
called Database management systems (DBMS), whose core functionality is the storage,
retrieval, and update of data. Database systems are responsible for data sharing, relia-
bility, integrity, reusability, unified interface, security, administration, and maintenance
[3].

There are mainly three layers of data models, and each one has a different purpose
and is meant for a specific audience target. The data models define how the data are
stored in the database and set relationships between data items. Moreover, data layers
ensure consistency in naming conventions and help communicate within organizations
[4–5].

. Conceptual model – Describes high-level real-world entities and relationships be-
tween them. The purpose is to organize, scope, and define business concepts and
rules. It models information gathered from business requirements, what the system
should do.. Logical model – Specifies how conceptual components are represented in data struc-
tures but are independent of technology (DBMS). It includes entities, attributes, and
relationships between them.. Physical model – Describes how logical structures are implemented using a specific
technology, so the conventions and restrictions of the used (DBMS) must be consid-
ered. The model is typically created by developers.

3

1. Theory of graph databases .
Databases may be categorized based on many different features. Modern database

systems can be classified into two types – relational and NoSQL databases.

1.1.2 Relational databases
Relational databases are based on the relational data model and typically use SQL for
querying and maintaining the database. They use structure, allowing us to identify
and access data in relation to other data items in the database. Data in a relational
database are often organized into tables. Tables have columns defining attributes and
rows containing data records representing instances of that type of entity. Every row has
a unique primary key used for identification. Understanding the relationships between
the data is achieved by joining tables.

Transaction management must satisfy a few properties to guarantee data validity
despite errors, power failures, and other problems that may happen during database
transactions. These four properties created the acronym ACID [3, 6].

. Atomicity – Either all tasks within a transaction are performed, or none of them are,
which means that partial executions are not allowed.. Consistency – Any transaction will bring the database from one consistent state to
another, therefore half-completed transactions are not allowed.. Isolation – Transactions are independent, so the resulting state is the same whether
the transactions are executed sequentially or in parallel.. Durability – Once the transaction has been committed, the database will remain in
the resulting state, even in the system failure, power loss, and other types of system
breakdowns.

1.1.3 NoSQL databases
NoSQL databases use different ways of data storage other than the tabular relational
database approach. They aim to provide features such as data distribution, simple
horizontal scaling, design simplicity, replication support, simple API, eventual consis-
tency, high availability, and more. In contrast to the traditional ACID properties, some
NoSQL databases have loosened the requirements for strong consistency and data ac-
curacy to achieve other benefits. The new acronym BASE consists of the following
properties [6–7]:

. Basic availability – The system guarantees availability at all times, so there will be
an immediate response to any request. However, the requested data may be in an
inconsistent or changing state.. Soft state – Because consistency is not guaranteed, the system state could change
over time even without the new input, thus the state of the system is always soft.
After some time, we only have some probability of knowing the state, but not assur-
ance.. Eventual consistency – Once the system stops receiving input, it will eventually
become consistent. The data will propagate to every database machine sooner or
later, but the system will continue to receive input and is not checking the consistency
of every transaction before it moves onto the next one.

4

. 1.2 Graph databases

The particular suitability of a specific NoSQL database depends on the actual prob-
lem. NoSQL databases may be classified by a data model into a few main categories:

. Key-value stores work as a simple hash table using key-value pairs. Key is the unique
identifier, and value can be any object. Therefore the values may only be accessed
via keys, so they are not appropriate for complex data nor complex queries.

Examples of representatives are Redis1 and Amazon DynamoDB2.. Wide column stores use tables, rows, and columns, but columns’ names and format
may not be strictly the same for every record. Multiple columns may be grouped
into column families that are used and stored together for more efficient querying.

Examples of representatives are Apache Cassanda3 and Apache HBase4.. Document stores use hierarchical tree structures such as JSON, XML, or YAML.
Every document has a unique key, and documents are organized into collections.
They are suitable for structured documents with a similar schema.

Examples of representatives are MongoDB5 and OrientDB6.. Graph databases store the data in the form of nodes and edges with various properties
attached to them. The section 1.2 will provide a more in-depth description of graph
databases.

Examples of representatives are Neo4j (explained in detail in section 4.1), Mem-
graph7, and JanusGraph8.

1.2 Graph databases
A graph database (GDB) is a type of NoSQL database designed for convenient rep-
resentation and effective querying of connected data. A key concept of the system is
based on graph structure. This section consists of a brief overview of graph theory,
ways of graph database representation, and methods of indexing those structures.

1.2.1 Graph
A graph is an ordered triple

G = (V, E, ε) (1)

where

. V – a set of nodes, also called vertices. E – a set of edges, also called relationships. ε – the mapping function

ε : E → {{x, y}|x, y ∈ V, x 6= y} (2)

that maps every edge to:
. an unordered pair of vertices for an undirected graph
. an ordered pair of vertices for a directed graph

1 https://redis.io/
2 https://aws.amazon.com/dynamodb/
3 https://cassandra.apache.org/
4 https://hbase.apache.org/
5 https://www.mongodb.com/
6 https://www.orientdb.org/
7 https://redis.io/
8 https://janusgraph.org/

5

https://redis.io/
https://aws.amazon.com/dynamodb/
https://cassandra.apache.org/
https://hbase.apache.org/
https://www.mongodb.com/
https://www.orientdb.org/
https://redis.io/
https://janusgraph.org/

1. Theory of graph databases .
If the graph contains two different edges e1, e2, for which equation (3) holds, both
edges e1 and e2 are called parallel.

ε(e1) = ε(e2) (3)

A graph containing parallel edges is called a multigraph [8].

1.2.2 Data model
A GDBs are based on graph theory and uses nodes, edges, and properties to repre-
sent and store connected data. This data have valuable information in relationships of
particular entities, which may be more important than the discrete information about
single entities. Those relationships, which may include information about direction, la-
bels, and properties, are then used for effective traversals. This is preferred to complex
querying over linked tables in relational databases, which can be difficult to understand
and hard to optimize [2, 9]. A graph is called a property-graph if its edges carry la-
bels information and optional properties [10]. This general-purpose structure allows
us to model many scenarios, such as fraud detection, recommendation engines, social
networks, supply chain mapping, and many more.

Figure 1.1 shows the example of a simple social network. The graph consists of:

. nodes representing six entities:
. labeled PERSON with properties name and age
. labeled BOOK with property title

. directed edges representing seven relationships representing connections between
those entities:
. labeled KNOWS, LOVES, HAS READ and HAS WRITTEN, some of them also

containing relationship properties since

Figure 1.1. An example of a social network graph

A graph representation like this may contain millions of nodes and relationships and
is convenient for database queries using relations, for example:

“Find the name of all persons that have written at least two books.”
“Find the average age of people that have read any book from the person named Arthur

Hailey.”

6

. 1.2 Graph databases

1.2.3 Physical storage

Methods of physical storage differ among particular GDB. They are usually imple-
mented as an extra layer over another NoSQL database type, a key-value, or a docu-
ment store. Below there can be found the basic data structures for graph representations
[11–12].

. Adjacency list – Nodes are stored as an array of records or objects, and every vertex
stores a list of adjacent vertices. To improve access time to vertices, hash lists or
hash tables are used instead of linked lists.. Adjacency matrix – A square matrix in which the rows represent source nodes and
columns represent destination nodes. If there exists an edge from node m to node
n, then the matrix element at position (m,n) will have the value true, otherwise
false. Instead of using boolean values with simple edge existence information in the
adjacency matrix, it is possible to store other information, e.g., cost or number of
edges.. Incidence matrix – A rectangular matrix in which the rows represent the vertices
and columns represent the edges. Every edge has value -1 at the source node, +1 at
the target node, and zeros elsewhere.

Table 1.1 compares those graph representations in terms of the computational com-
plexity of basic graph operations. Symbol |V | represents number of nodes and |E| rep-
resents number of edges in a graph. Obviously, different operations may benefit from
various representations. Therefore GDBs use more ways of data storage representation
for efficient execution of various tasks.

Graph operation Adjacency list Adjacency matrix Incidence matrix
Storage size O(|V |+ |E|) O(|V |2) O(|V | · |E|)
Add node O(1) O(|V |2) O(|V | · |E|)
Add edge O(1) O(1) O(|V | · |E|)
Remove node O(|E|) O(|V |2) O(|V | · |E|)
Remove edge O(|V |) O(1) O(|V | · |E|)
Are nodes m and n adjacent? O(|V |) O(1) O(|E|)
Find all neighbors of node m O(|V |) O(1) O(|E|)

Table 1.1. Comparison of graph data structures in terms of time complexity of basic graph
operations [11]

1.2.4 Indexing

GDBs, just as relational databases, typically use indexes allowing faster database query-
ing to allow more efficient data searching. Graph indexes are of two kinds – value-based
and structure-based.

The first category, value-based index, allows efficient retrieval of nodes or edges by
their properties. Those are used especially when finding the starting nodes of a given
query. The indexes may be implemented by data structures such as binary trees or hash
tables for every indexed property [9, 13]. When querying multiple properties, the results
from more indexes may be combined. A typical index hash table contains key-value
pairs consisting of:

. Key – particular property value

. Value – pointers to the graph nodes having given property value

7

1. Theory of graph databases .
The second kind, structure-based index, aims to extract and index structural prop-

erties of graphs in a database and allow fast querying of database patterns regardless
of node and edge properties. A simple example may be finding all triangles in a graph,
which means all triples of nodes having edges connecting all of them. Note that it is
impossible to create a set of ideal structure indexes allowing efficient querying of any
chosen pattern. However, a useful feature set improves the filtering power by reducing
the number of candidate graphs. Unlike value-based indexes, structure-based indexes
nowadays are not so developed and are yet rather the subject of research [9, 14].

8

Chapter 2
Data lineage

This chapter presents the term data lineage and illustrates how businesses may benefit
from detailed knowledge of their data flows through presented use cases. The following
section describes the architecture and components of a Manta product, one of the
representatives of data lineage tools allowing the creation and visualization of data
flows. In the last section, the metadata storage structure in the Manta ecosystem is
explained in detail.

2.1 Data lineage
In recent decades, companies have discovered the importance of collecting and storing
produced data because it can help them better understand their internal processes,
customer behavior, demands, etc. Therefore keeping historical data may serve as a
competitor’s advantage. Companies typically store as much data as possible to avoid
losing critical information because it may be difficult to distinguish between useless
and potentially important data. With a constant increase in produced data in any
organization, it becomes harder for companies to maintain all data in their ownership
and monitor data flows within the company. Data lineage tools can help companies
understand their data and data journeys in depth.

2.1.1 Description
Data lineage is an end-to-end map of the data flows, stating where data are coming
from, where it ends, and what data transformations are applied as it flows through
multiple processes and systems [15]. It allows understanding where the specific piece of
data starts and when and where it separates and merges with other data. Often, this
data manipulation process is not transparently documented but is kept in the minds
of professionals or, in the best-case scenario, on local computers in the form of Word
or Excel documents [16]. Although there are several ways of representing data lineage,
visual representation in the form of a map is the most common as it allows a simple
overview of the data flows [17–18].

Figure 2.1. An example of a data lineage

Figure 2.1 shows a simple example of data lineage. There are two input database
tables at /db/sales and /db/purchases. In the next step, both tables are transformed

9

2. Data lineage .
and joined into a single table /db/products. This table is transformed by the script
compute-margin resulting in a table /db/summary. From there, the data are exported
into the report-margin output file.

Up to date, there are many data lineage tools on the market. Examples of rep-
resentatives are Talend Data Catalog1, Octopai2, Collibra Data Linage3, SentryOne
Document4, Ovaledge5, and last but not least, Manta, which will be discussed in detail
in section 2.2.

2.1.2 Use cases

Even though understanding a data flow can help companies in many ways, there is still a
significant number of enterprises that do not have their data lineage under control [19].
Without a deep understanding of data pipelines and agile development requirements,
every change to the environment carries a high risk of broken releases [18]. Moreover,
data in any company are tied by data protection laws, and lineage allows improvement
of their data governance and fulfills compliance regulations [20]. In general, there are
two most common concepts of information provided by data lineage.

The first type of question is to know the data’s origin or provenance – the earliest
instance of the data [17]. Imagine a manager in a large company that needs to make
an important decision. Hence, he asks for a very important number, e.g., the main
product’s total margin. Before presenting this final number to stakeholders, he would
like to ensure that this value is accurate, so he needs to know how exactly the number
was calculated. He needs information on the origin of the number and how this number
transformed during the chain through the systems [21]. In the end, the manager or BI
team no longer needs to fear having to prove data accuracy in their reports [22].

The second type of question is how and why data has changed since the last time
[17]. Imagine a customer coming to a bank with the intention of getting a mortgage.
After filling in the necessary documents and waiting for a few minutes, the banker tells
the customer that he cannot get a mortgage. Still, the reason why his application was
rejected is unknown to both him and the banker. After a few months, the customer
submits a mortgage application form again, and now he gets the mortgage. But the
banker has no idea what has changed since the last time. All input information did not
change, but the evaluating “black-box” engine probably used different transformations
resulting in a different credit score. With access to the complete data lineage, any
authorized person in a bank can see customer data flow through the company systems
and understand the whole process in detail.

Nevertheless, it does not end up with only these two types of acquired knowledge.
The companies may use the lineage to satisfy data governance, identify any issues in
their particular data solution, find and secure the most crucial data object in the data
warehouse, plan a parallelization of internal processes, and many more [18]. The con-
crete examples of how to extract valuable information from a data lineage is discussed
in section 3.4.

1 https://www.talend.com/products/data-catalog/
2 https://www.octopai.com/
3 https://www.collibra.com/data-lineage
4 https://www.sentryone.com/products/sentryone-document
5 https://www.ovaledge.com/

10

https://www.talend.com/products/data-catalog/
https://www.octopai.com/
https://www.collibra.com/data-lineage
https://www.sentryone.com/products/sentryone-document
https://www.ovaledge.com/

. 2.2 Manta product

2.2 Manta product
One of the popular tools for data lineage is the Manta1 platform (also called Manta
Flow) developed by American-Czech company Manta Software, Inc. that was estab-
lished in 2016. At the first stage, the data lineage is constructed by using scanners
to connect to various parts of the environment, automatically gather all metadata by
semantics analysis, and reconstruct complete lineage. Currently, many technologies are
supported – databases (e.g., Oracle or Microsoft SQL), data integration technologies
(e.g., Talend or Apache Pig), programming languages (e.g., Java or C#), and reporting
tools (e.g., Tableau or Cognos). The lineage and all parsed metadata are saved in the
graph database and versioned. In the next step, the customer may visually discover
data lineage, adjust the level of detail as he needs and start exploring data flows in his
entire system. A typical Manta customer is a large enterprise having a vast amount of
data in a data warehouse (DWH) consisted of many resources [19, 23].

2.2.1 Platform architecture
Manta Flow is a client-server based application made up of three main components:

. Manta Flow CLI – Client command-line Java application performing extraction of
metadata from databases, DDL scripts, storage files, and other sources. All metadata
are analyzed, transformed into the representation of nodes and edges, and uploaded
to the Manta Flow Server.. Manta Flow Server – Server Java application processing metadata received from the
client and storing them into the internal metadata repository. The server’s data
may be visualized by Manta UI, exported into supported systems, or consumed by
third-party applications via API.. Manta Admin UI – Server Java application providing a graphical interface for instal-
lation, configuration, updating, viewing logs, or process monitoring. This component
allows easier maintenance of Manta Flow, so the end-user may perform most of the
basic tasks from GUI instead of running specific shell or batch scripts.

1 https://getmanta.com/

11

https://getmanta.com/

2. Data lineage .

Figure 2.2. Architecture diagram of Manta Flow, components, and interactions with third-
party resources (2021, February)

12

. 2.3 Metadata storage structure

2.2.2 Components of Manta Flow Server
Figure 2.2 illustrates current Manta Flow’s architecture, components, and interactions
with third-party resources. In the figure, there can be seen data export to various
technologies – Collibra DGC, IBM IGC, Informatica EDC, and Alation. The purpose
of this section is to describe the main components of the Manta Flow Server.

. Graph database – A graph database is the storage of metadata received from Manta
Flow CLI. At the time of writing this thesis, the underlying graph database is Ti-
tanDB1, although the migration of unmaintained TitanDB to Neo4j is currently going
on. A detailed description of the new Neo4j database may be found in section 4.1.. Connector – The connector allows connection to the graph database and performs
database queries. The module provides a set of basic database operations and flows
traversals; below there are a few examples:
. get adjacent nodes and edges
. get the path to the root
. get the subtree
. traverse the data lineage

. Merger – The purpose of the merger is to save received metadata from Manta Flow
CLI into the metadata storage. During the complex transactional process, new
database objects are created and controlled to avoid duplications and inconsisten-
cies. Furthermore, the merger keeps track of different versions of his data throughout
different flow analysis runs [24].. Viewer – The viewer provides data from a graph database to the graphical client
interface implemented in JavaScript. The typical task is to provide the data lineage
from objects selected by the end-user.. Exporter – Exporter’s responsibility is to extract the stored metadata and enrich
them based on the particular third-party tool. The format of exported data may be
technology-specific or a simple CSV file.. Pubic API – Public API, also called Repository API, is an HTTP-based interface for
Manta Flow Server. It allows the customer to call provided operations with custom
parameters on their lineage using REST API. A few examples of allowed operations:
. find node by the name or path
. import CSV
. traverse the data lineage
. get number of nodes and edges in the database
. get nodes with the most or fewest edges

The purpose is to allow customers to directly query stored metadata by HTTP
requests, which let them create new use-cases and enhance their processes. The API
provides a way for advanced customers to work programmatically with data lineage
within their environment and either analyze it for particular development cases or
directly integrate with other solutions [25].

2.3 Metadata storage structure
The logical data model of the Manta repository is a property graph. Entity and rela-
tionship properties have a form of key-value pairs attached to nodes and edges. Edges
1 https://github.com/thinkaurelius/titan

13

https://github.com/thinkaurelius/titan

2. Data lineage .
in the graph are always directed, and parallel edges are allowed. The Manta Flow
repository defines the specific structure of nodes and edges, explained in this section.
Because of the ongoing process of migrating to the Neo4j database, it is possible that
in the near future, the logical model may change a bit to profit from all features that
the new GDB offers.

2.3.1 Graph

No matter what system is extracted and processed, in the end metadata are always
stored in a graph in the form of nodes and edges. Although the Manta Flow can
analyze various resources, every system consists of data sources and targets, such as
tables or files, and data transformations, such as ETL jobs, procedures, scripts, or
macros [24]. All those are entities represented as nodes. Both nodes and edges have
unique database IDs and allow an arbitrary number of properties attached to them,
which are used, e.g., for metadata versioning.

2.3.2 Nodes

The nodes in the graph are of 9 types, which are described below. Because TitanDB
does not allow node labeling, one node property named vertexType was reserved for
defining the node type. It is very likely that after the transition to Neo4j, node types
will be intuitively stored as the node labels.

. SUPER ROOT – The node serves as an artificial root of all nodes of type NODE,
and has edges to all nodes of RESOURCE type. There is only one SUPER ROOT
node in the database.. RESOURCE – Representation of source systems technologies analyzed by Manta
Flow, such as Oracle, PostgreSQL, Cognos, or just a Filesystem.. LAYER – Representation of metadata model layers. The purpose of the layer is to
distinguish between different model reality views. Therefore, customers may view
their stored metadata from different perspectives based on the level of required tech-
nical details [26]. During initial analysis, the objects are stored in a physical layer.
Later on, it is possible to enrich the metadata and create more abstract layers of mod-
eled reality. An example may be a business layer representing the flows between the
corresponding entities from a physical layer, but more understandable for business
people.. NODE – Nodes of type NODE represents real objects of source systems. An example
may be a particular database, table column, script, folder, ETL job, or any other
user-defined object in the data flow graph.. ATTRIBUTE – Representation of supplementary information of nodes of NODE
type. This information may be data type of column, description of database objects,
etc.. SOURCE NODE – Representation of a source code file. The example is a database
script performing transformations on data flows.. SOURCE ROOT – The node serves as an artificial root of all nodes having
SOURCE NODE type. There is only one SOURCE ROOT node in the database.. REVISION NODE – Representation of revisions, which are used for metadata ver-
sioning.. REVISION ROOT – The node serves as an artificial root of all nodes of REVI-
SION NODE type. There is only one REVISION ROOT node in the database.

14

. 2.3 Metadata storage structure

2.3.3 Edges
The nodes are connected by edges of 10 different labels. In contrast to nodes, edges in
TitanDB may have at most one label. If there is a need to have an edge with more labels
between specific nodes, it is possible to create two distinct edges with different labels.
In Neo4j, the label is called edge type. There are 8 labels representing the hierarchical
structure of stored metadata listed below:

. HAS PARENT – Edge between two nodes of NODE type creating basic hierarchical
structure. Every node has at most one predecessor. An example HAS PARENT
edge starts in a particular table and ends in the database object.. HAS RESOURCE – Edge connecting NODE to the RESOURCE node, defining
that given NODE belongs to a specific resource. Besides, this edge label is used to
connect all RESOURCE nodes to the SUPER ROOT. Every NODE has at most one
HAS RESOURCE edge.. IN LAYER – Edge connecting RESOURCE node to a LAYER node, which specifies
that the particular resource belongs to a specific metadata layer.. HAS ATTRIBUTE – Edge starting in NODE with a target in ATTRIBUTE
node assigning attribute values to a given NODE. Typically a NODE has many
HAS ATTRIBUTE edges.. HAS SOURCE – Edge connecting SOURCE NODE node to the SOURCE ROOT.
The purpose is to keep SOURCE NODE nodes accessible from the SOURCE ROOT.. HAS REVISION – Edge connecting REVISION node to the REVISION ROOT. The
purpose is to keep REVISION NODE nodes accessible from the REVISION ROOT.. MAPS TO – Edge representing the connection of nodes of NODE type from different
layers. An example MAPS TO edge starts in a column named “NAME FIRST” (in
the physical layer) and ends in the attribute “First name” (in the business layer).. PERSPECTIVE – Edge starting in NODE from the physical layer with a target in
a NODE from a different perspective layer, representing the alternative parent of
the source for an aggregate lineage. Aggregate lineage term is used to describe the
capability of building simplified data lineage to display in Manta UI.

Furthermore, two edge labels are representing real flows in a data lineage. Those
edges always connect nodes of NODE type on the lowest hierarchy level. In some cases,
the flow edges may create directed cycles. The existing flow edge starting at column A
with the target in column B means that column A’s value somehow affects the value in
column B.

. DIRECT FLOW – Edge representing a direct data flow from the source node to the
target node.. FILTER FLOW – Edge representing an indirect data flow from the source node to
the target node. Unlike the DIRECT FLOW edge, the FILTER FLOW edge affects
target of a different DIRECT FLOW edge.

Figure 2.3 shows a simplified example of the main graph hierarchy. The hierarchy
edges are displayed by dashed lines, while solid lines indicate data flows. There is
one DIRECT FLOW edge from Party.LastName to the Customer.Name based on a
filtering condition in the Party.DIC represented by the FILTER FLOW edge.

15

2. Data lineage .

Figure 2.3. Simplified example of the main graph hierarchy.

2.3.4 Indexes
To allow effective querying of the graph, Manta storage uses various types of indexes.
These are discussed very briefly in this section because it is very likely that they will be
replaced to suit the needs of the new Neo4j database during the proceeding migration
process. The types of currently used indexes are:

. Root indexes – Indexes pointing to the particular root nodes of the model, which are
SUPER ROOT, SOURCE ROOT, and REVISION ROOT.. Node childName indexes – Indexes allowing faster access to a NODE child with a
given nodeName property.. Edge property indexes – Indexes allowing faster traversal of edges based on their
label and properties, such as revision versions.. Fulltext nodeName index – Indexes allowing a search of NODE given by the node-
Name property.

16

Chapter 3
Requirements

The previous chapter focused on the data lineage and how the metadata is repre-
sented in a graph database. Yet, no explanation of how to consume stored metadata
from the repository was given. The present-day approach is to inspect lineage man-
ually, specifically, in the GUI. On the contrary, it would be helpful to provide some
additional tool, called the rules engine, that would automatically examine data with
almost no effort by the end-user. This chapter aims to gather and analyze business,
user, functional and non-functional requirements about the new rules engine. The
requirements will form the basis for the process of design a core component of the
implemented prototype.

First of all, the general motivation behind the rules engine and the potential impact
on customers is discussed. Also, the retrieval methods of data lineage information
in the current Manta environment are summarized. The next section collects both
functional and non-functional requirements gathered during the initial project phase.
After that, the general objectives of this project are explained. The final and most
extensive section of the requirements stage presents use cases of specific business
rules with detailed descriptions.

3.1 Motivation and ways of lineage interpretation
When the metadata is loaded to the Manta Flow Server into GDB according to the
storage structure outlined in section 2.3, the end-user can inspect the constructed
data lineage map. One way, which is the most common, is to depict the lineage in the
Manta UI visualization tool, as shown in figure 3.1. Although graphical visualization
may dramatically simplify dataflow inspection compared to the traditional approach
without data lineage tool, for customers with many systems, even this task may turn
into a very time-consuming job with no room for mistakes. Moreover, the end-user
may not be confident about the patterns, data flows, or structures he is searching for
because many corporate departments may have various demands, and every division
may seek different lineage information.

Figure 3.1. A simple data lineage visualization in the Manta UI [27]

17

3. Requirements .
Currently, the Manta ecosystem provides three general methods of data lineage

ingestion from the database. Metadata can be graphically represented in the Manta
UI, integrated with third-party applications, or requested by Public API, and those
methods are described below.

3.1.1 Manta UI
As mentioned in the previous section, the fundamental approach is a visualization of
the map of data flows in the Manta UI, where the end-user can display chosen parts
of the lineage, focus on particular data resources, filter flow types, node types, etc.
Moreover, he can intuitively extract or contract selected objects to examine the flows
in more detail or see a global overview. However, this process still requires a lot of
manual effort because if the user wants to perform a profound data inspection of the
whole resource, he has to go through each lineage object separately.

3.1.2 Third-party tools
Besides, it is possible to integrate third-party applications and add new information
to those applications’ storage. The integrated tool, e.g., Alation Data Catalog1, auto-
matically connects to the Manta repository and enriches its data with the knowledge
of data flows. Then the particular tool provides combined data from both sources
in one system, which may bring a new added value to the customers [28]. When
writing this thesis, Manta supports integration with eight various tools, and more
direct integrations are expected to come.

3.1.3 Public API
A third way to consume metadata from the Manta repository is by the Public API
server component, which provides a public REST API. Therefore the customer can
use the information provided by Manta from any custom tool he is already famil-
iar with, which communicates with the Manta server by HTTP/HTTPS requests.
Consequently, it can be utilized to optimize the customer’s environment to enhance
processes, resulting in higher efficiency [25, 29].

To provide documentation of API and graphical interface for interactive creation
of HTTP requests, Manta’s customers may use the Swagger2 framework that follows
OpenAPI specification, as shown in the image 3.2 [30]. Moreover, advanced users
may also call Public API methods from Groovy-based DSL scripts.

The API provides a set of functions executed by sending a request to the Manta
server. Those functions may be parameterized, e.g., specify starting nodes, the re-
vision number, or define specific node attribute constraints. Below there are a few
examples of operations with a brief description:

. Find nodes by the name – Finds nodes matching the given name.. Find node by the path – Finds the node with the given path.. Get node attributes – Get the attributes of the given node.. Get all resources – Get all the resources in the repository.. Import CSV – Imports data in CSV format into the database.. Get nodes with the most or fewest edge – Finds nodes with the most or fewest
edges.. Traverse – Traverses the graph and returns information about the nodes and edges
visited.

1 https://www.alation.com/
2 https://swagger.io/

18

https://www.alation.com/
https://swagger.io/

. 3.1 Motivation and ways of lineage interpretation

Figure 3.2. The Swagger documentation of Manta’s REST API interface

3.1.4 Rules engine
Although the three discussed approaches offer different ways of consuming reposi-
tory metadata, they may not suffice for all business cases. Table 3.1 compares those
three methods in terms of intuitiveness of user interface and interpretation of results
(so that the end-user intuitively understands the output), ability to customize pa-
rameters, and automation running with no user’s involvement. As can be seen, no
approach offers sufficient parameters flexibility allowing full customization. More-
over, all methods can still be considered passive systems due to the incapability to
be fully automatic.

Manta UI Third-party tool Public API
Intuitiveness of UI High Medium Small
Simplicity of output High Medium Small
Parameters flexibility Small – Medium Small – Medium Medium
Automation Manual Semi-automatic Semi-automatic

Table 3.1. Comparison of current ways of metadata extraction from Manta’s repository

On the grounds of the presented reasons, Manta’s ecosystem demands a new way of
metadata extraction and interpretation to solve discussed problems. The entirely new
tool, called rules engine, will serve these purposes and provide a mechanism allowing
the customers to automatically scan their data lineage and search for particular
patterns customized by preconfigured conditions.

What should primarily differentiate the rules engine from the Public API is the
usage simplicity. In the Public API, the customer has to create his own program
if he desires complex scenarios benefiting from requests chaining in a way that the
result of one operation is input into another one. On the contrary, the rules engine
will provide a set of predefined rule templates targeting the common use cases. The
user will not have to code anything by himself but will get a full solution completely
prepared by Manta with convenient access. Examples of detected lineage patterns
may be data leaks from one source system to another, duplicated objects, redundant
tables or whole databases, too complex objects in the data lineage, or assurance of
a safe shutdown of a given system. The reader may find more use case examples in
section 3.4.

19

3. Requirements .

3.2 Requirements analysis
This section describes the requirements of the planned rules engine application. Al-
though it is not assumed that the implemented prototype will offer all required func-
tionalities, it is crucial to consider long-vision requirements when designing the soft-
ware architecture allowing sufficient flexibility and space for scalability for future
development.

3.2.1 General

The rules engine’s general purpose is to allow customers to discover patterns in their
data lineage and take specified actions with the minimum involvement from the
end-user. The engine should ease the development and maintenance by separating
business logic from the source code. Every provided rule should focus on a single
type of pattern in the metadata storage.

The rules engine should allow users to select the particular rules, configure them
to their own needs, and immediately run the rules or save them for repeated usage.
When the rules with specific patterns are evaluated, the engine tool will create a
report or alert the user to take action or focus on the detected parts of his system
and quickly inspect the flow in the UI. With this new feature, it is much easier for
customers to make important decisions, and the whole process becomes streamlined
[25].

Software system requirements may be categorized into a few groups based on var-
ious metrics. At this place, the author divided the requirements into functional and
non-functional requirements. The first category, functional requirements, describes
the system’s real functions and capabilities, simply put – what the system should do.
The other class, non-functional requirements, specifies how the system should behave,
under which condition, the system’s limit, etc. Besides, non-functional requirements
may also put constraints on system performance, expected maintainability, flexibility,
security, or documentation quality [31–32]. In section 7.1.1 the author will evaluate
how the implementation managed to fulfill initial requirements.

3.2.2 Functional requirements

The following list shows numbered functional requirements with their description
that will be used for future reference.

(i) The server repository will use Neo4j – Due to parallel activities regarding the
complete migration of all Manta repositories from TitanDB to Neo4j, the rules
engine project will also be integrated with the Neo4j database. More arguments
are supporting this decision:

. Unlike the TitanDB with TinkerPop1 framework, which is in Manta in unmain-
tained version 2.6 and queried without a query language, Neo4j offers very dif-
ferent ways of building graph queries, especially by using the Cypher language.
More will be discussed in the Neo4j section 4.1. Hence it will not be necessary
to completely rewrite the rules engine project after the migration process is fully
completed.

. It brings the opportunity to get a more hands-on experience with Neo4j, such
as exploring Neo4j Java APIs, testing libraries, using stored procedures from

1 https://tinkerpop.apache.org/

20

https://tinkerpop.apache.org/

. 3.2 Requirements analysis

remote libraries, or sharing custom stored procedures across more concurrent
projects.

(ii) Flexibility and simplicity when parametrizing rules – The rules should be imple-
mented to allow flexible configuration by optional input parameters. On the one
hand, the rules should provide default configuration options allowing the user ini-
tial running of a rule with almost no starting effort. On the other hand, when the
user gets more familiar with a particular rule, he must have options to configure it
to his specific needs by replacing the default parameters with custom ones. More-
over, the manta storage model may change in the future, so the engine should be
easily expandable.

(iii) Well-tested code – Likely, rules will not be fully locked up once implemented
because the queries may be tuned up in the future or new rule parameters may be
added. Therefore, it is necessary to provide enough unit and integration tests to
verify the function of rules and the whole rules engine when making implementation
changes of rules and allow future refactoring of the application.

(iv) Integration into the current Manta ecosystem – Where possible, try to reuse the
present Manta component and features and avoid reinventing the wheel. For ex-
ample, if the rules engine will provide its REST API, integrate the new one into
the current Public API component.

(v) Exception parameters for every rule – For various reasons, every rule should have
optional parameters allowing to skip evaluation for a specific resource, server,
folder, etc. With some paths defined as ignored, the performance may be im-
proved (only a smaller part of the graph is traversed), and also the result may be
more readable. Moreover, the exception definitions may be defined by the regular
expression patterns, such as, “don’t evaluate this rule for all tables having prefix
‘TEMP ’.”

(vi) Provide input validation mechanism – It is expected that the rule engine should be
error-prone as much as possible and have instant evaluation functionality. Apply-
ing or modification of an existing rule or creating a new rule should be intuitive and
should not generate confusing errors that would force the user to contact Manta
support to help him. Suppose there is no way to avoid creating an invalid rule in
the given customer context (missing coma, invalid query, etc.). In that case, the
error messages should be intuitive enough so that the user can correct the input
parameter syntax on his own.

(vii) Triggering – Although the primary function is to run the engine on demand, the
end-user should also be able to customize the way of rules triggering:
. On-demand – The main functionality.
. Time-scheduled – The user would schedule the time or periodic intervals.
. Action-triggered: – Triggered by a specific action, such as after each scan, com-

mitting major or minor metadata revision, or when a scan of a selected resource
is finished.

(viii) Results reporting – When the rule is executed, a few suggested ways of report
form are suggested. Primarily, there should be provided a simple report file with
a standardized structure (e.g., JSON file) containing important information, such
as permalinks or node paths to the affected objects. Later on, action message
notifications or alerting reports may be implemented in various configurable ways:
. Write to the document – Simple approach stored persistently.
. REST API – Requests into customer’s existing endpoints.

21

3. Requirements .
. Invocation of a shell script – E.g., when the rule report has a non-empty result,

run the predefined script enriched with information from the report.
. Kafka message – Send an instant message into the Apache Kafka1 customer’s

client.
. Alerts into the current Manta UI – Alert immediately or after the next login.
. Email message – Send a message to the selected group of affected people.
. Slack message – Send an instant message into the customer’s Slack2 channel.
. Creation of Jira ticket – Create a ticket in the Jira Atlassian3.
. Update of nodes attributes – Update a custom node attribute in the repository.

3.2.3 Non-functional requirements

The following list shows numbered non-functional requirements with their description
that will be used for future reference.

(i) Diverse technical skills of end-users – It is expected that end-users will have var-
ious degrees of technical skills; therefore, it is important to design the system
intuitively, that all target users are capable of running the rules engine and inter-
pret the results with the provided documentation.

Business users or data analysts should be able to run simple rules with prede-
fined parameters and appropriately interpret the output, data scientists with little
coding skills may modify attached templates or create simple rule workflows, and
the most advanced developers may adjust the rule parameters in a very detail by
an API or configuration file with standardized format (e.g., JSON or YAML).

(ii) Scaling flexibility – The rules and particular components should be implemented
in a generally independent way so the engine may be scaled up in the future – it
should be possible to add new features, such as new options of launching the engine
or reporting technology, combine the rules to create more complex ones or change
the ways of scheduling. This should be achieved by a well-designed architecture,
where the components communicate through suitable interfaces.

(iii) Documentation – The entire rules engine should be well-documented. The user’s
documentation should be detailed and informative, and every rule should be pro-
vided with at least five demonstrative templates of parameter settings. The cus-
tomer may simply open the template, copy and paste the content, and run the rule
with 1–2 parameter values changed to his needs, enabling him to adapt quickly.
In addition, it is crucial to provide explanatory code documentation in the form
of Javadoc, allowing easier maintenance, bug fixing, and code refactoring in the
future. Finally, it’s necessary to include a descriptive README file.

(iv) Performance – Rules should make use of well-tuned database queries. The ma-
jority of rules should be finished promptly on average database size so that the
end-user may see the result immediately after launching the rule. If that is not pos-
sible for various reasons (e.g., too complex query, enormous customer’s database),
the end-user should be warned about the delay of results.

(v) Localization – The code, documentation, and templates should be provided in
English.

1 https://kafka.apache.org/
2 https://slack.com/
3 https://www.atlassian.com/software/jira

22

https://kafka.apache.org/
https://slack.com/
https://www.atlassian.com/software/jira

. 3.3 Objectives

3.3 Objectives
As mentioned in the previous section, the list of functional requirements and long-
term visions is extensive, and complete implementation with all functionalities is out
of this thesis’s scope. Nevertheless, the author aims to achieve the following goals in
this project:

. In collaboration with Manta colleagues from various departments, especially from
presales, products, and marketing sections, precisely define at least five business
rules for the rules engine project. Explain how the customers may benefit from par-
ticular rules and how they may encourage existing and future partners to develop
their added-value solutions based on the Manta platform.. Analyze the popular business rules engine tools and discuss whether they may be
used in this project.. Get familiar with tools integrating Neo4j – with the database itself, ways of con-
structing queries (e.g., Cypher language or traversal frameworks), provided devel-
opers tools (e.g., Neo4j Browser or profiler), Java libraries, and ways of automated
testing.. Design and implement the core part of the rules engine – the component responsible
for connecting to the database and evaluating database operations.. Implement five selected rules with configurable parameters allowing basic cus-
tomization to the user needs. Besides, it is required to implement an interface
with basic graph operations. The rules queries should be implemented mainly in
the Cypher, but more ways of querying, such as stored procedures, may be also
provided.. Validate developed rules on testing datasets provided by Manta. Furthermore,
check the outputs, verify whether the results are faithful, and inspect potential
false positives.. Analyze the implemented algorithms’ effectiveness, discuss and propose methods
for more efficient detection of patterns in graphs for further research.. Discuss encountered difficulties when implementing the particular rules.. Summarize the complete process of creating a rule and discuss the eventual pos-
sibility of the end-user creating an entirely new rule from scratch by himself with
no Manta employees’ involvement.

3.4 Use cases of business rules
This section describes particular rules discovering lineage patterns and how those
rules could improve customers’ data storage environment and simplify their internal
processes. The regular Manta’s client is a corporation storing data in a large DWH
consisting of many technologies. The typical problems are that some of those re-
sources are unmaintained, data flows are not documented, some ETL procedures are
redundant, etc. Users also use Manta to monitor data flow in their source codes or
want assistance with an increase in particular workflow tasks’ effectiveness. To sum
up, the users seek to simplify their storage systems, and for privacy reasons, they
also need to be assured that their data does not leak out of secured systems.

As discussed in the previous section, it is expected that the rules engine will
be implemented with preconfigured rules. Therefore it is necessary to find several
universal use cases to target the majority of customers. The concept and reason for

23

3. Requirements .
specific rules usually come from customer’s business divisions; thus, the following
list of rules resulted from fruitful discussions of the thesis author with the presales,
products, and marketing Manta representatives who assess the user’s needs on a daily
basis.

The intended end-user of the rules engine may not be only a software developer
but also a less technical user with just basic knowledge of the Manta ecosystem. To
enable customers with various technical skills to understand the use cases and be
able to configure parameters, it is essential to choose an expression language that all
kinds of users understand.

This section contains a list of five rules that were collected during the requirements
stage. Note that those are not the only possible uses of the rules engine, and the
users may find another by customizing the provided ones by parameters. What
is more, by chaining particular rules so that the output of one rule is an input
into another, the end-user can create a pipeline resulting in entirely new business
information. Nevertheless, chaining is not the only way to combine more rules into
complex ones. It may also be possible to run one rule with different arguments, e.g.,
two different revisions, and report the difference of both outputs. The customer may
immediately see what has changed between the two revisions and whether his data
lineage modification did not break any protected lineage entities.

Below there is the list of rules in arbitrary order. Every rule is explained with
a description of business value. Most of the rules may offer a few modes of oper-
ation suitable for different uses. Apart from rule-specific parameters, three input
parameters are mandatory for all rules:

. Revision intervals – Historical version of metadata.. Edge labels – Edge labels with information on whether the flow traverses only
direct edges or filter edges as well.. Ignored paths – List of ignored resources or parts of the lineage graph because the
user may want to skip some sources from rule evaluation for various reasons.

3.4.1 Centroids rule

Centroids objects are important parts of data flow with the most flow edges in the
incoming, outgoing, or both directions. These objects may be critical points of data
lineage, such as database tables containing a mapping from username to customer’s
name, from which many other procedures read. Therefore, the owner or administrator
should guarantee that this table contains verified data. Otherwise, the incorrect
values would leak into other lineage parts. Also, the user may find out which database
procedures are used the most and carefully inspect them to guarantee their accuracy
with no bugs.

The information about centroids objects can also be used in Manta UI. For exam-
ple, during the initial lineage visualization, the centroids may be displayed in detail
with unfolded columns, while non-centroids may be visualized contracted, given by
end-user filters. With this information, the user can detect unused columns, which
should be removed to reduce the table’s overall complexity.

Also, for performance reasons, the administrator may duplicate the centroid table
to allow load balancing and achieve better efficiency of reading database transactions.
Load balancing is the process of redistributing the workload among more sources to
improve resource utilization and job response time while also avoiding a situation
where some sources are heavily loaded while others are idle or doing little work [33].

24

. 3.4 Use cases of business rules

Last but not least, the output of this rule in the form of centroids objects might
be a valuable input to other rules, allowing a more complex rules pipeline creating
brand new use cases.

3.4.2 Restricted flows rule
The restricted flows rule detects lineage flows that are outside of a set of restrictions.
A user provides a list of restrictions by himself. Each restriction entry is created by
the definition of sources (e.g., a path to the particular database or the entire selected
resource) and parts of the lineage that are permitted or forbidden. Afterward, if there
exists any data flow from source objects outside of permitted or to the forbidden
objects, the conflicting edge from allowed nodes to the forbidden objects is reported.

An example restriction input may be the following: “The data flows from the
table named empl wages are only processed by the Informatica resource and nothing
else. In addition, the data from this table must not appear in the database called
public, also stored in the Informatica.” This case is depicted in figure 3.3, and there
can be seen two conflicting edges (red colored) that the rule will report. Note that
the graph is only illustrative because, in the real repository, the flow edges are not
directly connecting particular table nodes but their children columns, which are not
depicted in the diagram for simplicity.

Figure 3.3. An example of the restricted flows rule entry [27]

This rule is expected to be crucial for data governance since it is easy to once
configure some watched parts of the lineage and their corresponding forbidden or
permitted paths. Then, the rules engine can run this rule in scheduled intervals
guaranteeing up-to-date meeting of all regulatory compliances, such as GDPR.

Besides, the rule may be used to reduce dependencies between different data sys-
tems. If the resources in a large DWH are excessively interconnected, in case of fail
in one system, the whole DWH might crash, resulting in a demanding recovery of all
resources. Thus the user can declare, e.g., “Any data starting in the Oracle system
must not leak outside of Oracle or Oracle scripts.” If this condition is violated, the
particular flow edge from Oracle to a different resource is reported.

The restricted flows rule should also benefit from multi-revision scenarios. The
rule may run on two different revisions. The outputs are compared, and the engine

25

3. Requirements .
detects new objects that didn’t exist in the flow before but were added in a particular
revision, e.g., a new file with customer information.

3.4.3 Isolated components rule
Throughout development time, it is often the case that an environment has objects
in their data environment that are just not used. For instance, for various reasons,
the data are only within legacy systems that are not utilized anymore. Or it may
be the case that the development of a particular application was scratched, but its
remnants are still within the environment.

The isolated components rule detects objects having no outside flow edges in the
following directions:

. Ingoing direction – A component with no ingoing flow edges is expected to be an
input system. However, sometimes the object without external ingoing edges is
not an input system, therefore the data in this component are static. Although
this object should be externally updated, it is not. Hence it should be investigated
further to find the cause.. Outgoing direction – A component with no outgoing flow edges may be a reporting
system or a dead object. The term dead is in this context used for a component
that has no outgoing flow edges and is not reporting a system. Data from dead
objects are not populated and, hence, should not be used anymore.. Both directions – A fully isolated object is completely independent, which may
signal either a good storage architecture or the uselessness of a given object. If
it is redundant, the user knows that he can safely remove the whole part of the
system without affecting the other systems.

Let’s take the graph in figure 3.3 as an example. The end-user might want to an-
alyze isolated components of two given types, Resource and Database. The following
table 3.2 depicts the expected rule result with the names of reported objects. The
data lineage does not contain any completely isolated Resource or Database objects.
Input resource in incoming direction is Informatica with the particular database
called DWH, and the reporting resource in outgoing direction is Oracle with the
database named prod. Moreover, there is also another reporting database Informat-
ica/public.

Resource type Database type
Ingoing Informatica Informatica/DWH
Outgoing Oracle Informatica/public, Oracle/prod
Both – –

Table 3.2. The detected isolated objects from graph 3.3 with various settings of directions
and types.

After running this rule, the user looks over the report and inspects the results.
This rule will typically provide a list of isolated components, and the user should
verify if the results are expected. If the report contains isolated objects, but the user
knows that they are not isolated in reality, no matter in which direction, he knows
that some part of the lineage is missing. This may happen if he uses some technology
that Manta does not support, he may not have a proper license, or during the first
extraction phase of the Manta scanner, some parts have not been scanned and parsed
correctly. Then the user can manually add all missing relationships and data flows

26

. 3.4 Use cases of business rules

by himself in the custom metadata import module, which can be used to ingest any
technology that is not formally supported yet. What is more, this process should be
simplified in the future by a new Manta tool Custom Metadata UI, which is currently
under development.

To sum up, this rule should primarily help the administrators to decide which
systems can be safely shut down or simplified without affecting the others. This
leads to the increase of performance of the entire environment to reduce the company
expenses. What is more, the end-user may use particular isolated components found
in this rule as an input into other rules and create more complex patterns such
as “Detect all input database tables and files, which contains data flows into the
Oracle resource.” The multi-revision scenario may be used to list isolated objects
that were not isolated in the previous revisions, which signals that the data lineage
had probably been simplified. Therefore the newly isolated object is also a candidate
for deletion.

3.4.4 The longest chains rule

The longest chain rule should detect the longest data flows, i.e., sequences of flow
edges, in the lineage. The information about the longest chains is helpful for a few
reasons. Primarily, it indicates that the flow may be too complicated, and the admin-
istrator should consider the environment simplification into smaller pieces. Typically
a long chain of edges traverses many resources, and if any system fails, the entire
flow is hard to fix and restart. Moreover, long flow often goes through particular
nodes repeatedly, bringing attention to the entire environment’s overall complicated
architecture.

Note that the storage model of the Manta repository allows cycles in data flows.
Because the task of finding the longest paths in a directed cyclic graph is an NP-
hard problem, this rule is expected to be a problematic one. On that account, the
implementation of the main rule query might require some approximation techniques
for running on large datasets [34].

3.4.5 Independent flows rule

While the previous rule detects the longest flows, this rule aims to find the dependen-
cies between particular groups of data flows. If the user understands the dataflows
in his environment, he can plan logical schedules and parallelize some parts of the
DWH load, achieving higher effectiveness.

Because it does not make sense to compare all possible data flows of the lineage
(there are many), it is important to define what flows are supposed to be analyzed.
The specification of one flow could be a single ETL job, also called workflow in this
context. One job is typically a set of ordered commands and transformations, which
takes data from one component (e.g., table in database) to another component and
performs some data manipulation on the way. With the growing environment’s size,
more ETL jobs are defined. Besides, an increasing amount of data causes a more
extensive execution time of every workflow. It is often the case that the jobs are
unmaintained and insufficiently documented. Thus everybody is afraid to perform
any workflow modification or rescheduling of those processes, even if the loading
times are long and data are not coming into the target component on time [25].

Having this rule, the user may safely reschedule the independent ETL workflows to
run in parallel. However, some ETL jobs may have mutual dependencies. The figure
3.4 shows two separate workflows named ETL-job-A and ETL-job-B, that both write

27

3. Requirements .
to the same target table /db/products. The concurrent write into one table is often
not possible in many databases, e.g., because the database system locks the writing
tables during transactions.

Figure 3.4. An example of two dependent workflows with the same target dependency.

Another example is a process dependency depicted in figure 3.5, where ETL-job-A
writes to the specific table /db/products, while ETL-job-B reads from the same table.
Therefore, ETL-job-B cannot run before ETL-job-A is finished [25]. Knowing these
dependencies, the user may safely sequentially run dependent flows while running
all independent flows in parallel. Last but not least, on the independent flows, it is
possible to do parallel development.

Figure 3.5. An example of dependent workflows with the process dependency.

3.4.6 Use cases summary
In this section, the author described particular rules together with their business use
cases. As can be seen, there are many opportunities to use them and profit from
the added value. Beyond those uses, it is believed that customers themselves could
come up with ideas of new rules, which may be implemented later as the plugins into
the rules engine. Besides, with the functions of rules chaining and the comparison of
outputs launched with different revisions, the rules engine component’s possibilities
are enormous.

28

Chapter 4
Analysis and design

Before moving to the implementation part of the software process, it is crucial to
analyze the problem with the inputs from the requirements stage. This chapter aims
to explore the used technologies and development environment. At first, the selected
graph database, Neo4j, is examined in detail, as it is essential to fully understand how
the particular database works to profit from its features. In the following section, the
author explores the currently used rules engine tools and discusses their usefulness for
this project. The next part focuses on Manta’s environment and the current state of
the migration process to Neo4j. Finally, the author describes the architecture design
of the application implemented in the practical part.

4.1 Neo4j
This rules engine project will use the Neo4j engine because it was the primary func-
tional requirement. The first version of Neo4j was released in 2007, and over time,
it has significantly grown up and became the leader in the graph databases segment
[35–36]. In this project, the author uses the recent version 4.1. This section aims to
provide a description of this technology and discuss the ways of querying.

4.1.1 Overview
Neo4j uses the property graph for data storage, as required by Manta’s architecture
discussed in section 2.3. It is an open-source tool, written in Java1. Nowadays, the
project is already very mature, with detailed documentation and effective support.
Neo4j offers two basic licenses – Community and Enterprise Editions. The Com-
munity Edition is completely free and fully functional, suitable for single-instance
deployments. The Enterprise Edition extends Community Edition’s functionality
and includes additional features, such as a clustering architecture, online backup
functionality, advanced monitoring, or more security settings [37].

Nowadays, most databases run as a server that is accessed through a client library.
Therefore Neo4j can be run in a server mode, but also it supports the embedded
mode. No matter what mode is used, based on general architecture choice, the way
of querying and working with the database is the same.

Neo4j Server can be deployed as a standalone server with meeting all ACID prop-
erties or across multiple machines in a scalable fault-tolerant cluster for production
environments [37]. Server mode compared to embedded one is easier to monitor and
more robust because potential crashes in the client, e.g., unexpected garbage collec-
tor behavior, do not affect the server [38]. The communication between server and
client is through an exposed REST API, thus it is independent on a particular used
platform.

On the contrary, the embedded mode runs in the same process as the client appli-
cation storing data. Because there is no network overhead, the latency is minimal.

1 https://github.com/neo4j

29

https://github.com/neo4j

4. Analysis and design .
Using the Core Java API, the transactional life cycle can be completely controlled,
and there can be executed an arbitrary complex sequence of commands in a single
transaction. However, that means that the application is fully responsible for the
safe starting and closing of the database lifecycle and must deal with garbage col-
lector actions. Note that Neo4j is not an in-memory database, although in-memory
databases may also be embedded databases [2].

In addition, Neo4j contributors provide and maintains official Docker1 images for
both Community and Enterprise editions. With Docker containers, the user can
create independent throw-away Neo4j instances of many versions and configurations
for user-friendly testing and running of applications [39].

To enable a convenient way to approach the database, Neo4j contains drivers for
the most popular programming languages owing to the Neo4j contributor community.
Even though some of the drivers use the HTTP API under the hood, drivers make
them available in a more convenient way than by building the traditional REST API
requests. Although language drivers are intended to be used mainly by developers,
with the provided demonstrative example projects on the Github repositories2, even
people with little programming skills, such as data scientists or analysts, can create
simple applications on top of the Neo4j engine.

4.1.2 Querying the database
So far, we’ve discussed how Neo4j works with different operation modes. However,
the crucial feature of databases is data querying. The following paragraphs contain
a description of the ways of graph traversal in Neo4j. Neo4j has historically provided
a few methods of data querying and retrieval.

Initially, Neo4j was queried by Java Traversal API. In the traversal framework,
the user must create a traversal object that performs the traversal operation in a
callback-based, lazily-executed way. This object specifies how to query a graph, where
to start, and how to behave when visiting the nodes and relationships found during
the traversal. This procedural approach is very powerful, but a slight configuration
change requires rethinking the traversal and rebuilding the whole project. Besides,
the code might quickly become unreadable, especially for non-developers [38]. Due
to these reasons, since version 4.0, the traversal framework became deprecated, thus
unmaintained.

On the contrary, in 2011, Neo4j introduced declarative language Cypher, which
has become a preferred way to query Neo4j graphs [40]. Moreover, operations written
in Cypher may be further extended by the user-defined procedures. The following
code shows the same query implemented in both the traversal framework and Cypher.
Without a doubt, the Cypher statement is more straightforward and better readable.
Both queries should “Find names of all actors that played in the movie with title
pulp-fiction.”

// Cypher language

MATCH (m:MOVIE)<-[:PLAY_IN]-(a)
WHERE m.title = "pulp-fiction"
RETURN a.name

1 https://hub.docker.com/
2 https://github.com/neo4j-examples?query=movies

30

https://hub.docker.com/
https://github.com/neo4j-examples?query=movies

. 4.1 Neo4j

// Traversal API

TraversalDescription td = db.traversalDescription()
.relationships(Types.PLAY_IN, Direction.INGOING)
.evaluator(Evaluators.atDepth(1));

Node s = db.findNode(Label.label("MOVIE"), "title", "pulp-fiction");
Traverser t = td.traverse(s);

for (Path p : t) {
Node n = p.endNode();
System.out.println(n.getProperty("name"));

}

4.1.3 Cypher
Cypher is an expressive graph database query language, which is used in more
database technologies apart from Neo4j. Cypher is designed to be readable and
understandable not only by developers but also by less technical people, e.g., busi-
ness stakeholders or analysts. Its simplicity comes from the fact that it resembles the
way people intuitively describe graphs using diagrams [2]. Cypher uses declarative
syntax that is convenient not only for essential graph operations, such as “get the age
of a person having the name Vincent Vega,” but also for finding complicated paths
or whole subgraphs. An example of a rich pattern is “find all nodes and relationships
creating triangle pattern in the graph.” The term declarative means that the language
itself focuses on the result’s aspects rather than methods or ways to get the result
[38]. Owing to universality and expressiveness, it became one of the most popular
graph querying languages.

4.1.4 Stored procedures
Typically there comes a time, where the developer realizes that for his specific task
there is not possible to create a Cypher statement, or the query is just too compli-
cated and highly algorithmically inefficient. Then the user may use stored procedures,
also called user-defined procedures, which are invoked directly from Cypher language
and provide additional functionalities. Instead of constructing long chaotic Cypher
queries with too many lines, the stored procedures take arguments, perform opera-
tions on the database, and return results [39]. Stored procedures may allow a user
to create entirely imperative queries if he needs to control the traversal’s complete
process. What is more, they are often very fast and can be further tuned to achieve
a massive performance [41].

A few stored functions are bundled with the initial installation of Neo4j, but often
the end-user wants to use more complex ones. On the one hand, he can create a
brand new procedure by himself, programmed in Java. This is an excellent option
for companies already having Java developers; therefore, they may quickly implement
custom functions in their familiar environment [42]. For this, Neo4j offers a simple
API. On the other hand, the user might use utility libraries providing convenient
user-defined functions which aren’t implemented in Neo4j yet. In both approaches,
the end-user just copies the file in .jar format with functions and procedures into
the Neo4j install directory, restarts the server, and quickly benefits from the new
features.

One of the largest and most widely used extension libraries for Neo4j is APOC,
which stands for Awesome Procedures on Cypher, and has open-source code1. This

1 https://github.com/neo4j-contrib/neo4j-apoc-procedures

31

https://github.com/neo4j-contrib/neo4j-apoc-procedures

4. Analysis and design .
library provides functionalities for utilities, conversions, graph updates, natural lan-
guage processing, and many more [39]. Apart from that, APOC contains functions
for advanced graph querying, however, they are still not fully flexible in terms of
configuration. To allow complex query traversals, APOC offers path-expand proce-
dures, particularly popular apoc.path.expandConfig(). Although this traverser allows
detailed configuration settings, in the implementation of the current version, the
traversal of relationships based on the property value is not supported [43]. However,
this is crucial functionality for Manta because most of the relationships own property
values representing the revision numbers necessary for proper graph querying. Hence
this powerful traverser is not an option for querying the Manta repository.

4.1.5 Platform

Neo4j aims to become a tool that people from different technical backgrounds quickly
adopt. Therefore it allows diverse ways of interaction with stored data. Figure
4.1 presents the architecture of the whole Neo4j ecosystem. As can be seen, every
component is designed to suit different kinds of people with various job positions
[44].

Figure 4.1. Components of the Neo4j platform [44]

Neo4j itself provides many applications or tools built on top of the Neo4 engine, and
independent contributors create many more innovative integration tools, libraries, or
connectors. In the following list, the author of the thesis would like to briefly discuss
some of those tools that might be useful for the practical part and future development
[44–45].

. Neo4j Browser – It is a web-based client allowing real-time interaction with the
Neo4j Server database without configuring or programming anything other than
Cypher. It provides a simple interface to query and view the database’s data,
which is useful especially for prototyping and debugging. The Cypher queries may
be written directly to the shell prompt, and they are executed in real-time. The
results are typically rendered either as a visual graph, a table format, or JSON,
and the user may frequently switch between those representations to his needs [38].
Besides, the Browser offers a profiler tool enabling a convenient way to monitor a
particular Cypher query’s performance.

32

. 4.1 Neo4j

. Neo4j Desktop – Application managing local instances of Neo4j in the GUI. The
user can create many independent projects and databases, configure them, extend
with particular plugins or libraries, etc. Therefore for many basic tasks, there is
no need to use Java or the command line.. Java APIs – To work with Neo4j from Java applications, there are a few convenient
APIs available on the Maven Central Repository1:

. neo4j-java-driver – The API with the main Java driver interacting with Neo4j
servers. Typically the application constructs a driver object on startup, which
handles connection and transactions with the database, and is destroyed on ap-
plication shutdown. Besides, the driver is responsible for proper authentication
and security configuration [46].

. neo4j – The API for Community Edition of Neo4j provides an interface for
embedded servers. It is also used for the creation of custom stored procedures
and functions.

. neo4j-enterprise – The API for Enterprise Edition of Neo4j extending the pre-
vious neo4j API with additional functionalities, as discussed in section 4.1.1
[47].

. neo4j-harness – The library provides an interface for testing Neo4j. It is a
special variant of an embedded Neo4j server instance with the capability of
adding custom procedures and extensions [48].

. spring-data-neo4j – Spring Data Neo4j2 provides easy configuration and access
to Neo4j from Spring application; therefore, it uses familiar Spring concepts and
annotation-based programming model [49]. Spring Data Neo4j equivalently uses
template classes with the Spring Data project, allowing convenient data access
for NoSQL databases [50].

. Graph Data Science library – The library3 offers Cypher procedures for even more
complex and customizable tasks than the APOC library. It efficiently implements
parallelized versions of standard graph algorithms in areas such as pathfinding,
centrality, clustering, link prediction, or similarity.

4.1.6 Storage

Firstly, the Neo4j storage model follows a few principles, which are summarized in
table 4.1. Although node labels are optional, every relationship must have exactly
one node type. Every node and relationship have also automatically generated IDs.

Graph entity Compulsory Optional

Node • ID (automatically generated) • Labels
• Properties

Relationship • Direction • Properties
• Type (exactly one)
• ID (automatically generated)

Table 4.1. Summary of entity types and their attributes in Neo4j

1 https://mvnrepository.com/repos/central
2 https://spring.io/projects/spring-data-neo4j
3 https://github.com/neo4j/graph-data-science

33

https://mvnrepository.com/repos/central
https://spring.io/projects/spring-data-neo4j
https://github.com/neo4j/graph-data-science

4. Analysis and design .
Graph data in Neo4j are kept in its store files, each of which serves a different

purpose. Therefore there are separate files for nodes, relationships, relationship types,
labels, and properties, and the data from different files are mutually referenced by
ids. This storage method is also called native graph storage and is very efficient for
graph operations [51].

Indexes help optimize the process of finding specific nodes. However, index-free
adjacency, which Neo4j provides, means that each node directly references its ad-
jacent nodes and relationships. It ensures fast graph traversal without reliance on
user-defined indexes during query processing [52]. Native graph queries, such as find-
ing the node properties or neighbors, perform at a constant rate regardless of the
size of the stored data. On the contrary, non-native graph processing requires the
user to create those indexes by themselves, and querying through a large number of
indexes may slow down the whole execution [51].

Graph data stored on a disk is all double-linked lists. Properties are stored as a
linked list of property records, each holding a key and value and pointing to the next
property. Each node and relationship points to its first property record. The nodes
also reference the first relationship in its relationship chain. Each relationship has
pointers to its start and end nodes [9, 45].

In Neo4j, the node ids and labels are indexed automatically. However, sometimes
the user wants to start the traversal in a specific node given by a pattern composed
of one or more properties. This can be optimized by custom indexes defined on a
particular node type and property. Neo4j allows the creation of indexes per any label
and property combinations. Moreover, the user can also specify constraints ensuring
property values’ uniqueness, such as “assure that all nodes of Person label have a
unique property value national identification number.” Then, suppose the user wants
to create another node satisfying the same combination of label and given property.
In that case, the write operation is aborted with a warning message [2].

4.2 Rules engine tools
This section introduces the term rules engine and general ideas behind this concept.
After getting familiar with rules engine theory, there are a few representative tools
discussed. In the last part, the author considers the possibility of using any current
rules engine application for this project.

4.2.1 General
A rules engine is a system used in applications to manage some of the business logic.
An engine should be used in applications where the business logic changes frequently
or it is required to allow end-users to create and modify the business rules parameters.
Those changes should be done quickly in a runtime production environment with no
source code changes so that business logic remains separated from the code [53].

Every rule consists mainly of two parts, condition and action. An action can be,
e.g., sending an email to a responsible person or changing the data in a database.
Firstly, the user creates a set of rules. Then the engine runs through all the rules, picks
the ones for which the condition is satisfied, and then evaluates the corresponding
actions. The engine can also be responsible for the rule scheduling. Then the user
does not need to constantly monitor all operations in order to react to an event.
Instead, a rule specified by the user is monitored and executed by the active rule
engine system [54]. Article [55] proposes a few typical examples of business rules
listed below:

34

. 4.2 Rules engine tools

IF car.owner.hasCellPhone THEN premium += 100;
IF car.model.theftRating > 4 THEN premium += 200;
IF car.owner.livesInDodgyArea AND car.model.theftRating > 2 THEN premium += 300;

Although the rules must be flexible enough to allow modifications and the creation
of various cases, they should also be simple enough to be created and maintained
without involving programmers. This also requires some convenient system for rules
management. Examples of such interfaces can be pre-configured excel spreadsheet,
GUI, or simple DSL. Storing rules together in one place can also serve as up-to-date
documentation. Then the business analysts or non-technical stakeholders can easily
read and verify a set of rules because these are the typical people responsible for
defining the rules [56].

Most of the rules engine Java libraries implement the ancient JSR 94 standard
published in 2005 [57]. This standard, also called Java Rule Engine API, should have
solved the previous lack of standards. JSR 94 attempted to standardize the rule
engine implementations, as it provides Java API for rules register and unregister,
parsing, execution, result retrieval, and filtering [53]. However, some of the rules
engines do not allow the creation of business logic outside the Java code, which is
entirely against the initial concept of separating logic from the code.

4.2.2 Representatives

This section shows a few examples of currently the most widely used open-source
rules engine tools.

Drools1 is a business rule management system, which provides a core engine and
a rules management application [58]. The Drools solution’s main aim is to centralize
the business logic to make changes fast and cheap without the need for rule coding.
The preferred way of creating rules is in their DSL .drl format. Moreover, using
Excel decision trees is supported as well, which should be the simplest way of rule
definition by the least technical people [59]. Figure 4.2 shows the example of an Excel
spreadsheet with three implemented rules in lines 9–11. Although this approach may
look like a convenient one, it isn’t easy to maintain many excel spreadsheets. It is also
necessary to provide a sophisticated mechanism for rule validation. For elementary
rules, this can be sufficient. Still, for rules with more complex conditions, as is
expected in this project, it may be almost impossible to ensure that the input data
are validated and behave as desired. The solution could be to provide a locked
spreadsheet with only a few writable cells so that the developer can control what
parameters of rules can be edited without exposing the rules directly. However, this
would cause a significant decrease in rules flexibility.

Another actively maintained rules engine is Easy Rules2. This library provides a
lightweight API containing valuable abstractions to define business rules and apply
them easily with Java. This may be a drawback for some cases because the business
logic has to be coded in Java language [57]. However, the user can define rules in
four ways – declaratively using annotations, with a fluent API, using an expression
language, or loading the YAML file with expression language [60]. Although this
project is maintained mainly by a single developer, it provides a smart design, doc-
umentation, and convenient API. Hence the library may serve as an inspiration for
the practical part of this thesis.

1 https://github.com/kiegroup/drools
2 https://github.com/j-easy/easy-rules

35

https://github.com/kiegroup/drools
https://github.com/j-easy/easy-rules

4. Analysis and design .

Figure 4.2. Example of Drools rules in excel [61]

OpenL Tablets1 is a rules engine that targets the gap between business users and
development because the rules are defined in Excel files containing decision tables.
However, this may be a limiting factor because rule definitions in excel files decrease
particular rules’ overall configuration flexibility. OpenL Tablets also provide a web
interface, called WebStudio, which should enable rules management in a GUI [62].
Nevertheless, the GUI offers almost similar functionality as traditional excel files.
Moreover, the entire project excessively focuses on examining tabular data, which
does not provide much use for this thesis.

4.2.3 Summary

Current rules engine tools are great for using a lot of simple rules that have only a
few conditions, differ in the parameters, and operate over simple tables in relational
databases. They are also suitable when the rule parameters sometimes change so
that people can update them easily without any code modification. Although the
concept of rules engines has existed for more than 15 years, no tool has become a
widely-used and became a general leader in this area. What is more, there is no
standard language for writing the rules themselves. It seems that companies prefer
the development of their custom tools because their requirements are too specific,
and one rules engine tool cannot satisfy all their different use cases.

As ideas behind rules engines sound promising, it isn’t easy to implement them in
practice, as discussed at various internet sites [54–55, 63–65]. The user creating the
rules should be experienced at the domain, grasp at least general knowledge about
the data model, consider all edge cases, etc. Moreover, he is forced to learn a new
syntax for defining particular rules.

For the reasons listed above, the author and Manta colleagues decided not to use
any current rules engine tool for this project. Specific business use cases collected
during the requirements stage (discussed in section 3.4) have shown to be too complex
to be entirely defined by the end-user himself. To implement the requested behavior of
various rules, the person creating rules must have a deep knowledge about the graph
storage structure in Manta, how the traversals work, etc. Besides, he would have to
permanently maintain the functionality and promptly change the business logic if the
storage model changes or a new conflicting Manta functionality is added. Creating a
new rules engine for this project with predefined rules should be advantageous and
thus is a preferred way of implementation.

1 https://github.com/openl-tablets/openl-tablets

36

https://github.com/openl-tablets/openl-tablets

. 4.3 Design

4.3 Design
The purpose of a software design is to transform functional requirements into a form
implementable using a programming language. This includes both low-level and
high-level component overviews [66]. During the design process, the developer must
consider many aspects, such as reusability, extensibility, robustness, security, and last
but not least, security. The target is to divide software into multiple parts, which
should be decoupled as much as possible to achieve loose coupling. This term is
used for components that are mutually integrated in an almost independent manner,
which results in easy testing, consistency, documentation, scalability, maintainability,
and many more. One of the primary methods for describing and visualizing software
architecture and design is Unified Modelling Language (UML).

4.3.1 Overview
As discovered in the previous section, no present-day rules engine tool provides suffi-
cient functionalities for this project. Thus, it was decided to develop a custom rules
engine application from scratch, suiting the project needs. Having collected enough
use cases during the requirements stage justifies investing a considerable amount of
time into the brand new implementation.

The rules engine application will be implemented as a new module called rules-
engine. Beyond the necessary usage of classes declaring the current storage Manta
model, the module will have no other Manta dependencies. Therefore anyone can un-
zip the provided rules-engine.zip file, load the dependencies defined in pom.xml, and
instantly run the test scenarios. Because the ongoing migration process from Titan
to Neo4j is not finished yet, the current Manta implementation, heavily depending
on the Titan database, is unusable for this project.

The general business cases from requirement section 3.4 will be represented as rules
configured by various input parameters. At this stage of the project, it was decided
to implement five distinct rules that should target different types of users. After the
rules are developed, they can be trialed with the most eager customers and verified
whether the rules increase the business value.

A relevant note is that the metadata from various Manta storage resources is not
fully standardized up to date. Unfortunately, this means that the semantics of various
objects in different input systems are not entirely unified. For example, although
many systems may have lineage systems representing one ETL job, this information
about being an ETL job is not standardized over various systems. Although this
may pose minor problems for rules creation, mainly it might confuse the end-user,
who wants to list all ETL jobs but does not want to deal with a different notation
of ETL jobs in all distinct systems in the user’s DWH.

4.3.2 Module design
One of the main objectives of this thesis is to implement a rules engine prototype. It is
not expected that the application will be production-ready, but it might demonstrate
the possible benefits of the tool. Moreover, it should be developed in a way allowing
quick time to a market, future scaling, and future use in production environments.

For these reasons, the major focus is put on the module core part. Beyond the
small component responsible for saving data from the Manta dump to the Neo4j,
the rules engine’s core part is the only component interacting with the database and
performing graph operations. This component contains all the business logic of the
specific rules.

37

4. Analysis and design .
To achieve loose coupling and cohesion, there are only two places in the entire

module from which the database is accessed and stores the logic of executed queries.
These are two interfaces called Rule and GraphOperationRepository.

Two following figures describe the design of rule classes and their dependencies.
To ilustrate, the CentroidsRule class was selected, but other rules classes are imple-
mented in the same manner. Figure 4.3 contains the implementation of a Centroid-
sRule class colored in blue, which implements the main method evaluate() containing
the major rule query.

Figure 4.3. Simplified UML diagram of Centroid rule with the dependent repository inter-
faces and implementations

As all rules require some preprocessing of input parameters, the CentroidsRule
class also uses a few methods with atomic graph operations from GraphOpera-
tionRepository. As can be seen, this interface is implemented by CypherGraphOpera-
tionRepository, which performs these operations declaratively in Cypher and returns
the Neo4j node objects. Likely in the future, another GraphOperationRepository
can be easily added, e.g., a class implementing the graph operations by stored
procedures only. There can be seen dependency of the CentroidsRule class on
the SessionRepository interface on the right side of the diagram. This interface is
responsible for creation and handling of connection with the database. As discussed
in chapter 4.1.1, the Neo4j database can be of server mode or embedded mode,
implemented by ServerSessionRepository and EmbeddedSessionRepository, respec-
tively. The EmbeddedSessionRepository is primarily used for unit and integration
testing because it does not require a running Neo4j instance, as will be explained
in-depth in chapter 6.1.2 on page 55. Note that the rules engine core performs
read-only transactions because the rules do not write any data into the database.
Therefore, the rules’ order is arbitrary, and the engine can run them in parallel if
required.

Figure 4.4 shows other dependencies of the CentroidsRule class. Firstly there is
a Rule interface ensuring that all implemented rules follow the same structure and
generally simplify testing rules. Beyond the CentroidsRule with the main business
logic, the rule also requires classes CentroidRuleParameters and CentroidResult. The
first one represents an object containing all input parameters, their default values,
and the validator of inserted parameter values. The CentroidResult object represents
one result item of the Centroid rule.

38

. 4.3 Design

Figure 4.4. Simplified UML diagram of Centroid rule with the interface and dependent
parameters and result classes

For now, it was decided not to focus on reporting methods, which were discussed
as a functional requirement (viii) in section 3.2.2. Therefore, the engine’s current
implementation simply writes output in the form of a textual report into the logger.
Then the end-user can inspect the report in the terminal or decide to automatically
write the output into a file by editing the logger configuration file log4j2.xml. It
is expected that an interface for the convenient registration of new output ways of
notification and alerting will be implemented in the future.

39

Chapter 5
Implementation

This chapter discusses the rules engine’s implementation stage based on requirements,
analysis, and design information from previous chapters. At first, the development
process of the entire application is described. The subsequent section focuses on
implementing particular rules chosen during the requirements stage, their description,
flexibility of configuration, and interpretation of rule reports.

5.1 Process
This section describes the development process of the prototype of the rules engine
application. This task involves selecting tools used for implementation and testing,
model preparation, connecting to the database, and selecting APIs and libraries.

The author also discusses the issues he has to deal with, mainly because the mi-
gration process of the whole Manta ecosystem to the new Neo4j has not been finished
yet at the time of rules engine prototype development.

Then the overall process of creating a single rule is explained with all necessary
steps leading to the successful integration of a new rule into the rules engine appli-
cation.

5.1.1 General

The rules engine module is developed in Java, uses Apache Maven1 for dependency
management, and is versioned by Git2, needed for the functional requirement (iv).
The author uses Neo4j Server in Enterprise edition, in particular 4.1.6 version. How-
ever, the Community edition would also be sufficient for the prototype because no
specific functionality from the Enterprise edition was required during the develop-
ment process.

The author had to collaborate with other developers and participate in the con-
current migration process from Titan to Neo4j, which involved a few tasks.

Primarily, it was necessary to implement a layer maintaining connection between
the application and the Neo4j instance. The application typically connects to the
local server, but embedded database mode was also required for testing. To appro-
priately simulate behavior on data from production environments, it was necessary
to implement an importer that would take a database dump from a current Manta
instance and import it into Neo4j.

It was also needed to make minor adjustments regarding the storage model for
indexing of selected properties. Data loaded into Neo4j are further inspected by the
Neo4j Browser, which also serves as the primary runner of database queries for easy
prototyping. The graph is traversed purely by Cypher queries with the occasional
help of stored procedures from the APOC package.

1 https://maven.apache.org/
2 https://git-scm.com/

40

https://maven.apache.org/
https://git-scm.com/

. 5.1 Process

5.1.2 Graph operations
The Connector module, which is part of Manta Flow Server, provides a set of basic
graph operations assessing databases, with example functions discussed in section
2.2.2, which other components may internally use from the Manta ecosystem. The
Connector also offers crucial data flow graph traversal and manipulation methods
with metadata storage by a combination of visitors and traversals. The traversal
object declares how to traverse the whole graph, e.g., where to start (typically root
node) and method to use (e.g., BFS or DFS). Subsequently, the visitor object, in-
spired by the visitor design pattern [67] declares what operation to execute when
approaching a specified node [24]. This is an entirely different way of traversal than
recommended for Neo4j. All these graph operation methods are currently working
merely with the Titan database. On top of that, in an imperative way, thus the
author has to implement many of those in Cypher and benefit from its declarative
approach.

5.1.3 Libraries and APIs
The following list contains public libraries and APIs with their versions used in
this project. A more detailed description of the libraries may be found in section
4.1.5. Note that it is crucial to use the same version of the Neo4j server and libraries,
otherwise the compatibility is not guaranteed. Thus all Neo4j libraries are of versions
4.1x.. neo4j (4.1) – Although the server uses Enterprise edition, this Community Edition

of the library was sufficient for the purpose of this work.. neo4j-java-driver (4.1). neo4j-harness (4.1) – The library has only a test scope.. apoc (4.1) – APOC package contains stored functions and procedures.. junit1 (4.13) – Framework used for unit and integration testing.. hamcrest2 (2.2) – Testing framework extending junit functionalities.

5.1.4 Rules integration
The end-users will not be allowed to create entirely new rules, but they will be
encouraged to use the existing ones with detailed configuration suiting their needs.
However, the current set of provided implemented rules is, without doubt, not final.
With the feedback from customers, the developers in Manta will implement new rules
enabling other use cases. This section describes this integration process.

To create a new rule from the ground up, the developer has to:
1. Implement the evaluation function containing the main business logic of the rule.

The main database query uses Cypher, which may also call stored procedures.
Before the query runs, there are always a few steps of input preprocessing required,
e.g., to find starting nodes given by full path in the database. Presently, the aim is
to implement most of the logic into one or two main Cypher queries to benefit from
the Neo4j potential of effective query planning. On the contrary, the previous Titan
database approach was to perform a large number of small database transactions.

2. Come up with meaningful and easily adoptable input parameters with reasonable
default values. However, one minor adjustment of a single parameter may result
in a very different Cypher query.

1 https://junit.org/junit4/
2 http://hamcrest.org/JavaHamcrest/

41

https://junit.org/junit4/
http://hamcrest.org/JavaHamcrest/

5. Implementation .
3. Create an appropriate model and comprehensive textual representation of the rule

result. End-users will typically seek different output information in various rules.

5.2 Rules
This chapter focuses on each rule’s implementation details and discusses potential
user adaptability, as this is the primary aspect of this rules engine project. In some
cases, the rule instructions gathered in the requirements stage seemed simple and
straightforward at first. However, during the implementation stage, many new prob-
lems and ambiguities emerged.

Initially, the implementation summary of each rule is described. This is followed
by the tables of input and output parameters. The first table contains a name, type,
and description of input parameters with allowed values to demonstrate a specific
rule’s flexibility. Also, output rule parameters of every detected object are shown and
explained. Note that the most detailed description may be found directly in the Java
documentation of the implemented code, needed for the non-functional requirement
(iii). The next part presents an example of a report in the textual form. To provide
a simple readability for the user, the found nodes are represented by paths and
ids. After that, the author explains the rule report results and detected objects are
also visualized in Manta UI. During the implementation, a lot of ideas in terms of
user-friendliness and other configurations have shown up. Therefore ways of further
improvements are proposed in the last enhancement part of every rule.

Every rule is implemented in a way that specification of all parameters is required.
Still, the user usually might just use the default input parameter values to allow the
initial running of a rule with almost no starting effort, as this is part of the non-
functional requirement (i). The main goal is to have a few input parameters allowing
flexibility when running the rules, but not to make them too complex, needed for the
functional requirement (ii). The following table shows three input parameters that
are common for all rules.

Field Type Description

Edge Labels List<String> Labels of traversed edges, typically direct-
Flow or filterFlow

Revision
Interval

<double,
double>

Revision interval of traversing

Ignored Paths List<String> Paths to the ignored objects or groups of
objects, such as tables, resources, etc. Nodes
and their hierarchical subtrees will not be
evaluated in the result. This parameter is
needed for the functional requirement (v).

Table 5.1. Common input parameters of all rules

5.2.1 Centroids rule
The centroids rule detects objects with the most flow edges from their children in the
selected direction (or in both directions) and sorts them from the largest. The objects
are evaluated on the second-lowest hierarchy level, e.g., tables, files, or database
procedures.

42

. 5.2 Rules

Input and output parameters

Field Type Description

Edge Direction The direction of counted flow edges:
Direction • BOTH

• OUTGOING
• INCOMING

Count Mode CountMode For every centroid candidate, the count
value is computed. This parameter speci-
fies the conditions:
• CHILDREN COLUMN – For all chil-
dren nodes, count the number of columns
(or other types on a similar hierarchy level)
the flow goes to.
• CHILDREN TABLE – For all children
nodes, count the number of unique tables
(or other types on a similar hierarchy level)
the flow goes to.

Number of
items to
collect

integer The number of largest centroids to return

Table 5.2. Input parameters of Centroids rule

Field Type Description

Count long Count value (number of edges to the other
objects), which is used for sorting

Node Node Centroid node, typically table

Table 5.3. Output parameters of Centroids rule

Sample report

Count: 10 -- /Oracle/ORCL/DWH/PARTY (id: 5290)
Count: 9 -- /Oracle/ORCL/DWH/IMPORT_LOAN (id: 5145)
Count: 9 -- /Oracle DDL/IMPORT_BODY//<13,5>MERGE/ (id: 5165)

The result shows three objects that are important components of the flow based
on the large number of flow edges connecting their children to other tables. Two
nodes are a table type, and one is a type script. Therefore the user should ensure
that data in those critical objects are always accurate and adequately maintained.
In the center of figure 5.1, there can be seen the largest centroid table called PARTY
with ten connections to other components in both directions.

43

5. Implementation .

Figure 5.1. Centroids rule results in Manta UI

The validation and proposed methods for further enhancements:

. Simplification of input field Count Mode – Maybe there is no need to have two
Count Modes. Both behave a little differently, but the end-user may not un-
derstand and notice the difference between them, so one of the modes could be
removed in the future.. Creating a new field Minimal Value – Instead of defining the exact number of
centroids to return, the user could specify the minimal count value threshold. It
could be convenient for the end-user to set up the threshold once and report if some
table counts exceed the selected threshold value. Then, the user could define the
rule such as “Show me at most 15 largest centroids having more than ten edges.”. Addition of filtering condition functionality – Every result could provide informa-
tion about its most used children, e.g., column, with most of the flow edges, to let
the user know which columns contain the most requested information.

5.2.2 Restricted flows rule
The rule detects all flows beginning in start nodes and traversing to any of rejected
nodes or outside of permitted nodes. When the conflicting/rejected flow edge is
detected, all start nodes that are affected are reported as well. Any RestrInput must
have defined startPaths, and at least one of rejectedPaths and permittedPaths must
not be empty. When the restricted edge is detected, the user can easily find the node
in the Manta UI and inspect the dataflow in more detail.

44

. 5.2 Rules

Input and output parameters

Field Type Description

Restricted List One RestrInput object consists of:
Inputs <RestrInput> • startPaths – Paths of watched objects

• rejectedPaths – Paths to objects to where
the flow shouldn’t go
• permittedPaths – Paths to the only al-
lowed objects

Report Mode ReportMode • REPORT COLUMN – Restricted data
flows are reported on the lowest hierarchy
level (e.g., columns)
• REPORT TABLE – Restricted data flows
are reported and grouped on a second-
lowest hierarchy level (e.g., tables or files)

Maximum
flow depth

integer The flow is evaluated to the maximum num-
ber of relationships from start nodes.

Table 5.4. Input parameters of Restricted flows rule

Field Type Description

Start Nodes List<Node> List of affected nodes where the restricted
flow starts in.

Rejected Flow RejectedFlow Rejected flow object has two fields:
• startNode – The start node of the rejected
flow edge. Also, the last node of the flow
that is permitted.
• endNode – The end node of the rejected
flow edge. Also, the first node of the flow
that is rejected.

Description String Additional description

Table 5.5. Output parameters of Restricted flows rule

Sample report

Restricted flow:
|- From: /Hive/demo/dwh/party/gender_key (id: 48520)
|- To: /Hive HiveQL/demo/dwh/HISTORIZATION/<1,13>INSERT/13 gender_key (id: 48611)
|- Affected start nodes:
|-- /Hive/demo/dwh/cd_gender/gender_key (id: 48468)
Restricted flow:
|- From: /Teradata/PROD_DB2/CONTRCT_SALDO_DAY_INC (id: 6335)
|- To: /IFPC/INFA_REP/SQ_CONTRCT_SALDO_DAY_INC (id: 4142)
|- Affected start nodes:
|-- /Teradata/PROD_DB2/CONTRCT_SALDO_DAY_INC (id: 6335)
|-- /Teradata/PROD_DB3/SYSTEM1_Balances (id: 6341)
|-- /Teradata/PROD_DB3/SYSTEM1_msisdn (id: 6350)
|-- /Teradata/PROD_DB3/SYSTEM2_Contracts (id: 6359)
|-- /Teradata/PROD_DB4/OPER_CONTRCT_KEY (id: 6372)

45

5. Implementation .
The report shows two rejected flow edges that were found. The first case

is depicted in figure 5.2. The user configured to find any flow starting in
the table /Hive/demo/dwh/cd gender and going to any transformation from
/Hive HiveQL/demo/dwh/HISTORIZATION/. Therefore, the rule detected
the flow edge between columns /Hive/demo/dwh/party/gender key and /Hive
HiveQL/demo/dwh/HISTORIZATION/<1,13>INSERT/13 gender key, colored by
blue and red colors, respectively. Also, the rule notified the user that this re-
jected relationship influenced the start node in /Hive/demo/dwh/party/gender key,
highlighted by the green color.

The second detected flow edge is between Teradata and IFPC resources, with the
complete list of affected starting tables.

Figure 5.2. Restricted flows rule results in Manta UI

With this information, the end-user may quickly find the conflicting data flows and
either fix them or make them ignored for further rule evaluation rounds. However, he
is not forced to visually inspect the entire data lineage, trying to find any undesired
breaches from one system to another. Once he sets up his set of rules, he can be
notified about any lineage changes resulting in unintentional data leaks.

The proposed method for further enhancements:

. Simplification of input field Restricted Input – Before initial running the rule,
the user must provide restrictive conditions as the parameter Restricted Input,
which may not be easy for the average user. It would be great to give the users
some mechanism that would interactively help with the configuration; however,
the prototype will not implement this.

5.2.3 Isolated components rule
Isolated components are objects at various levels of hierarchy, e.g., tables, databases,
or directories. Isolated object’s subtree nodes may have data flows to other nodes in
the current subtree but no ingoing or outgoing flow edges (with direction specified by
the Isolated Mode parameter) to or from nodes outside the currently isolated subtree.
So, e.g., an isolated object of table type is such a table that may have flow between
its own columns but does not have any flows from or to columns in other tables.

46

. 5.2 Rules

Input and output parameters

Field Type Description

Isolated Mode isolatedMode The direction of isolation configuration:
• NO INGOING – Object is isolated if there
does not exist any incoming flow to nodes in
its subtree.
• NO OUTGOING – Object is isolated if
there does not exist any outgoing flow from
nodes in its subtree.
• COMPLETE – Object is isolated if there
does not exist any incoming or outgoing
flow to and from nodes in its subtree.

Node Types List<String> List of node types that are isolated ob-
ject candidates. Example values are table,
database, or server.

Table 5.6. Input parameters of Isolated components rule

Field Type Description

Node Node The isolated node
Type Node Type The node type of isolated node

Table 5.7. Output parameters of Isolated components rule

Sample report

Number of isolated objects: 3
-- /Teradata/DBC (type: Database, id: 6161)
-- /Netezza/xnz/DEMO (type: Database, id: 4934)
-- /Netezza/xnz (type: Server, id: 49478)

The rule was evaluated with the NO INGOING mode option, so the report shows
two databases and one server, for which there doesn’t exist any incoming flow from
other sources. That means that those all are input systems. Figure 5.3 shows the
database named DBC highlighted by black color. This database consists only of three
tables called ROLEMEMBERSV, ALLROLERIGHTSV, and TABLESV. Although
these tables have many outgoing flows to the other database (called Manta in this
case), there are no ingoing flow edges to those tables from other databases; thus, the
database DBC is reported as isolated in the ingoing direction.

When visually inspecting the second database called DEMO, the user can see
that no flow edges are going in or out of this database, as illustrated in figure 5.4.
Therefore, this database is reported as completely isolated, thus the user may consider
shutting down this database if it is really not used.

47

5. Implementation .

Figure 5.3. Isolated components rule results in Manta UI with Isolated Mode =
NO INGOING configuration

Figure 5.4. Isolated components rule results in Manta UI with Isolated Mode = COM-
PLETE configuration

The proposed method for further enhancements:

. Create a functionality of groups of isolated objects – Instead of reporting only
particular isolated components, the rule could report entire groups of isolated
objects. The input parameter would be the maximal size of the group. Then the
rule could detect all islands of objects with a size smaller than the given threshold.

5.2.4 The longest chains rule
Report longest chains, i.e., sequences of relationships in the dataflow, in the graph
and sort them by a length in descending order. Skip chains that are subchains, i.e.,
parts of longer ones, because it is useless to report the longest chain and it’s parts
separately. The user can define the number of longest chains to report and their
minimal length, condition such as “do not report the chains having length lower than
eight.”

48

. 5.2 Rules

Input and output parameters

Field Type Description

Resource
Mode

ResourceMode Finding of longest chains in the entire graph
or limited by boundaries of resources.
• MULTI RESOURCE – Detect longest
chains in the entire graph. The detected
chains may traverse multiple resources.
• SINGLE RESOURCE – All nodes of the
detected chain are located in the same re-
source, although the flow may further con-
tinue to (or start in) other resources.

Cycle Mode CycleMode When detecting a cycle in the graph, this
parameter affects if the cycle should be tra-
versed or avoided.
• CYCLE TRAVERSE – Traverse the found
cycle and add the cycle flow edges to the
total flow length. That means that every
node in the path may be visited more than
once. However, every edge is traversed just
once.
• CYCLE AVOID – Avoid the found cycle
such that the resulting flow traverses every
node on the path only once.

Minimal
length

integer Minimal length of the detected chains,
a minimal number of flow edges during
traversal.

Number of
items to
collect

integer The number of longest chains to report.

Table 5.8. Input parameters of The longest chains rule

Field Type Description

Length integer Length of the found chain, number of tra-
versed flow relationships

Traversed
nodes

List<Node> List of chain nodes in the traversed order

Table 5.9. Output parameters of The longest chains rule

49

5. Implementation .
Sample report

Length: 16
Nodes in the chain:
|-- /StreamSets/test/test0345/Dev Data Generator 1//address (id: 20483)
|-- /StreamSets/test/test0345/Schema Generator 1//address (id: 20476)
|-- /StreamSets/test/test0345/Field Splitter 1//address (id: 20469)
|-- /StreamSets/test/test0345/Field Splitter 1//address1 (id: 20467)
|-- /StreamSets/test/test0345/Field Replacer 1//address1 (id: 20456)
|-- /StreamSets/test/test0345/Field Masker 1//address1 (id: 20415)
|-- /StreamSets/test/test0345/Field Hasher 1//address1 (id: 20403)
|-- /StreamSets/test/test0345/Field Hasher 1//hashed_address (id: 20408)
|-- /StreamSets/test/test0345/Field Hasher 1//newtesthashentirefield (id: 20405)
|-- /StreamSets/test/test0345/Eval 1/INPUT//newtesthashentirefield (id: 20393)
|-- /StreamSets/test/test0345/Eval 1/EXPRES 1//newtesthashentirefield (id: 20371)
|-- /StreamSets/test/test0345/Eval 2/INPUT//newtesthashentirefield (id: 20348)
|-- /StreamSets/test/test0345/Eval 2/EXPRES 1//newtesthashentirefield (id: 20325)
|-- /StreamSets/test/test0345/Renamer 2/INPUT//newtesthashentirefield (id: 20254)
|-- /StreamSets/test/test0345/Renamer 2/OUTPUT //newtesthashentirefield (id: 20231)
|-- /StreamSets/test/test0345/Type Converter 1//newtesthashentirefield (id: 20207)
|-- /StreamSets/test/test0345/Trash 1//newtesthashentirefield (id: 20184)

The rule reported the single longest chain in the graph. Figure 5.5 shows the
starting part of the whole workflow with a total length of 16 flow edges. The starting
stage called Dev Data Generator 1 can be seen on the left side, and the flow further
continues through many transforming filters into the final stage called newtesthashen-
tirefield.

With this information, the user can consider simplifying the whole workflow as it
looks too complex with many redundant steps.

Figure 5.5. Starting part of the longest chains rule result in Manta UI

The validation and proposed methods for further enhancements:

. Removal of the field Resource Mode – The parameter Resource Mode = SIN-
GLE RESOURCE is used to optionally limit the chains by the boundaries of the
resources, with the idea of increasing overall performance. That means that the
flow edges between various resources are considered non-existing. However, it
didn’t bring a significant improvement in query performance but only created new
implementation problems.. Removal of the field Cycle Mode – Currently, the input parameter Cycle Mode
determines whether the cycles should be traversed or avoided. If the cycles may be
traversed (CYCLE TRAVERSE mode), the report contains many almost identical
chains traversing the same nodes but just in a different order, so the report becomes
confusing.

Moreover, the Cycle Mode = CYCLE AVOID uses the APOC package’s stored
function that ensures avoidance of cycles. With rewriting this rule completely into
custom procedure, this dependency could also be removed.

50

. 5.2 Rules

5.2.5 Independent flows rule

The independent flows rule detects ETL jobs with required dependencies. The rule
can find pairs of jobs mutually dependent by certain conditions, specified by partic-
ular use cases, but also it can list all jobs that are entirely independent to others.

Input and output parameters

Field Type Description

Dependency
Mode

Dependency
Mode

Mode of dependency configuration between
particular ETL jobs:
• WRITE DEPENDENCY – The jobs are
reported if they write to the same target
object.
• READ DEPENDENCY – The jobs are
reported if they read from the same source
object.
• PROCESS DEPENDENCY – The jobs
are reported if one writes to the target ob-
ject from which the other reads.
• READ DEPENDENCY – Evaluate all
three previous dependencies and combines
results.
• PROCESS DEPENDENCY – The jobs
are reported if they are entirely independent
of any others.

Job Node
Types

List<String> List of node types representing a sin-
gle ETL job object. Example values are
IFPC WORKFLOW, TALEND JOB, or
SSIS DATA FLOW TASK.

Dependency
hierarchy level

integer Defines at what hierarchy level the depen-
dence is evaluated on. Typical values are:
• 0 – column, etc.
• 1 – table, file, etc.
• 2 – database, schema, directory, etc.

Table 5.10. Input parameters of Independent flows rule

Field Type Description

Dependency
Mode

Dependency
Mode

Mode of dependency between particular
ETL jobs

Start job node Node The first node of a given dependency
Dependent job

nodes
List<Node> List of dependent ETL jobs influenced by

the start job node. It may be empty in case
of independence of ETL job.

Table 5.11. Output parameters of Independent flows rule

51

5. Implementation .
Sample report

NO_DEPENDENCY
|- Job: /Talend/talend/Daily/LoadingWF_1 (id: 68302)
NO_DEPENDENCY
|- Job: /Talend/talend/Daily/LoadingWF_2 (id: 68343)
PROCESS_DEPENDENCY
|- Job: /SSIS/Party/DWH_Load/DWH_Load/Import LOAN (id: 50297)
|-- Dependent job: /SSIS/Party/DWH_Load/DWH_Load/Stage to Core (id: 50297)
PROCESS_DEPENDENCY
|- Job: /SSIS/Party/DWH_Load/DWH_Load/Import CRM (id: 50262)
|-- Dependent job: /SSIS/Party/DWH_Load/DWH_Load/Stage to Core (id: 50262)

This report presents four dependency records of ETL jobs. The first two jobs
called LoadingWF 1 and LoadingWF 2 are entirely independent of any other jobs,
thus they can be scheduled in parallel.

Figure 5.6. Independents flows rule results in Manta UI

Figure 5.6 illustrates two pairs of detected ETL jobs with mutual process depen-
dencies in a small part of an extensive data lineage. The green and blue rectangles
highlight the final tasks of start jobs, the directly affected ETL process is in the
black-shaped area, and red arrows indicate data flows between those jobs.

It can be seen that the last task of the first green workflow (called Import LOAN)
writes into the target table LOAN CUSTOMER PERSON in the center of the di-
agram. From there, the following job called Stage to Core reads the data and pro-
cesses them further. Therefore, this pair of two ETL jobs is reported as a process
dependency, so the Stage to Core job must be run after the previous Import LOAN
workflow is already finished.

The same goes for the second source job called Import CRM, which is highlighted
in blue color. In the last step, data are written into the CRM CLIENT table at the
bottom, from where the Stage to Core job reads. So this pair of workflows is reported
as well, and the user is informed that before running the Stage to Core job, he has
to schedule workflows Import LOAN and Import CRM first.

52

. 5.3 Summary

This example demonstrates that even with Manta UI, it may be difficult to inter-
pret the dependencies between all ETL jobs correctly, especially for complex lineages
with lots of workflows.

The proposed method for further enhancements:

. Creation of metadata standardization – Currently, the user has two options to define
a single ETL job. Either he manually specifies node type (or list of node types)
representing a single job, or he uses the default set of node types. However, every
technology is different, and in the current storage structure, it is not possible to easily
define “list all ETL jobs from any technology” because the information about being an
ETL job is not unified through different technologies. The metadata standardization
process would allow the setting of common property values for various node types
from diverse resources with the same semantics functions.

5.3 Summary
This chapter has described the entire development process of the rules engine. In the
first part, the author presented tools and libraries which have been used for implemen-
tation. All steps leading to the creation and integration of a new rule were discussed
as well.

It was shown that the results of particular rules might provide a lot of added value
for users. Having those rules, the user can automatically scan his lineage by the im-
plemented rules for desired patterns and then inspect those in the Manta UI, which
should decrease the total time of manual lineage inspection and therefore dramatically
step up the efficiency of people involved.

The rules were implemented in a way that customers should run them with almost
no effort from the start. However, every rule provides a few configurable options, which
may be helpful for more advanced customers. By selecting various combinations of
input parameters, the user may create more complex rules scenarios suited to their own
use cases. This is needed by the non-functional requirement (ii) and should generally
increase the whole Manta platform’s capability.

53

Chapter 6
Evaluation

This chapter aims to describe the evaluation process of the project. The first section
explains the importance of software testing and focuses on the testing methods used
throughout the development. The main emphasis was put on the performance testing,
particularly measuring of database hits of database queries. Therefore the following
section provides a detailed performance analysis of the specific implemented rules and
proposes future improvements of efficiency database queries. Finally, the overall pat-
terns for creating effective Cypher queries and their suitability for the current storage
model are discussed.

6.1 Testing
Even though the validation of rule results for customers was evaluated in the previous
chapter, it is also important to test the software from the developer’s point of view,
needed for the functional requirement (iii). Testing is a crucial part of a software process
for many reasons. Not only it helps to verify that the application behaves correctly,
but it also serves as up-to-date documentation, enhances software design, and simplifies
future refactoring. Moreover, having a complete test set also speeds up the onboarding
process of new team members. Having enough automatic tests encourages newcomers
not to be scared of changing anything in the current implementation because they can
be sure that the good test suite will let them know almost immediately about the broken
functionality in case of any mistake.

Software testing may be categorized into many types and approaches. The next
sections explain the main methods that were used throughout the entire development
process.

6.1.1 Unit tests
Unit tests are essential for implementing any software project. A unit test typically tests
a single method or functionality of one class. Unit tests help developers implement new
functions, quickly test them for positive and negative cases and ensure the desired
behavior in potential future code changes.

During this project’s development process, the author had employed the test-driven
development (TDD) approach, primarily for the implementation of single rules. This
paradigm is based on the idea of the creation of test cases before the actual imple-
mentation of particular functionality. A key benefit is that the developer focuses on
essential requirements rather than coding the functions which are actually not needed.
The following list shows the sequence of steps of the TDD cycle for implementation of
a new feature [68]:

(i) Create one or more tests, typically unit or integration tests.
(ii) Run all tests and let them fail.
(iii) Write elementary code which is required to pass the tests. During this stage, the

developer should not write more code than needed for tested functionality.

54

. 6.1 Testing

(iv) Pass the tests and possibly refactor the application if needed while still passing all
tests.

(v) Add new tests and repeat all steps, which leads to the accumulation of tests over
time.

6.1.2 Integration tests
Integration tests aggregate the individual units and verify the functionality of whole
groups. This ensures that all small methods, which were already tested by unit tests,
work correctly when connected to each other and run together.

In this work, integration testing was primarily used for the validation of the behavior
of particular rules. To achieve that, the author had to create a few testing graphs in
Neo4j. The graphs use the simplified structure of the Manta repository and aim to be
small enough for readability but also complex to test various configurations of different
rules.

The following code shows an example of a simple test method using the embedded
server mode provided by the neo4j-harness library, which is a convenient way for testing
purposes. By using an in-memory database, there is no need to clear up store files on
disk after each test [2].

import org.junit.jupiter.api.Test;
import org.neo4j.driver.AuthTokens;
import org.neo4j.driver.Driver;
import org.neo4j.driver.GraphDatabase;
import org.neo4j.harness.Neo4j;
import org.neo4j.harness.Neo4jBuilders;
import static org.junit.jupiter.api.Assertions.assertEquals;

public class TestSingle {
@Test
public void testEmbeddedServer(){

// given
final Neo4j neo4j = Neo4jBuilders.newInProcessBuilder()

.withDisabledServer()

.withFixture(
"CREATE (p1:Person)-[:knows]->(p2:Person)-[:knows]->(p3:Person)")

.build();
final Driver driver = GraphDatabase.driver(neo4j.boltURI(), AuthTokens.none());
// when
final String query = "MATCH (p:Person) RETURN count(n)";
final int numOfPersons = driver.session().beginTransaction()

.run("MATCH (p:Person) RETURN count(p) AS numOfPersons")

.single()

.get("numOfPersons")

.asInt();
// then
assertEquals(3, numOfPersons);

}
}

When combining unit and integration tests, there are altogether 72 test methods
covering 88 % of lines of the classes with database operations. Because it is likely that
other developers will completely redesign the dump importer and session services with
different particular functionalities, these services are currently missing any tests.

6.1.3 Performance tests
Unlike unit and integration tests, performance tests are part of non-functional software
validation, focusing on how the application behaves under a particular load. Queries
that work fast against a small dataset may not have to scale well for large repositories.

55

6. Evaluation .
Performance tests should give developers the diagnostic information they need to elim-
inate system bottlenecks [69]. Also, it is important to run those tests frequently during
the development because we want to avoid a situation in which a lot of time is invested
into adjustments of a particular query, which is too computationally expensive for large
graphs, and therefore useless.

For this project’s purpose, the author uses a database loaded with an amount of data
similar to average customer graphs. This should simulate behavior in expected produc-
tion environments. For in-depth performance testing, ideally, the application would be
tested with different configuration settings of a particular Neo4j server instance, loaded
with an exceptionally high number of database elements, modified heap size, etc. How-
ever, these tasks are beyond this thesis’s scope, as the project’s primary aim is to verify
rule validity and behavior in typical customer environments. The author explains the
performance testing in detail in the following section because it was needed for the
non-functional requirement (iv).

6.2 Rules
This section aims to present the main Cypher queries of each rule, discuss performance,
and propose methods for more efficient evaluation. Firstly the metrics of performance
testing are summarized, followed by an explanation of the testing environment. Next,
a few frequently occurring patterns are illustrated because they can be observed in
many particular database queries. There are also separate sections explaining every
rule and proposals for query or model enhancements, leading to the potential increase
in evaluation efficiency.

6.2.1 General
In this work, there are two matrices used for the rules’ performance testing – time and
number of database hits. A database hit, further referenced as db hit, is an abstract
working unit of the Neo4j engine. Most of the typical database operations, such as find-
ing a node or traversal of neighboring edges, trigger database hits [44]. An exemplary
query searching for a node based on a supplied id triggers one hit. However, searching
for a node referenced by an unindexed property value requires an equal number of hits
with nodes in the database. The reason is that the engine must retrieve all nodes and
evaluate their property values one by one.

With the PROFILE command provided by Neo4j Browser, the user can observe the
total number of query database hits together with the map of executed operations and
their computational expensiveness in terms of database hits and used memory. Figure
6.1 shows the profiling interface with a highlighted total number of db hits. This
example triggers only eight database hits because the query performs a simple MATCH
operation given by the indexed property matching eight graph nodes. Although the
resulting map may appear confusing for an inexperienced user, it gives the basic idea
of the most demanding operations of a given query. Some operations, e.g., aggregating
functions such as COUNT, DISTINCT, or ORDER BY, do not generate any hits but
may use a significant amount of computer memory.

During the work on the thesis, it was realized that the validation of rules based on
the running time should not be the critical evaluation aspect for this project. Time per-
formance is influenced by various conditions, such as the warmup state of the database
instance, actual cache volume, server settings regarding cache, memory allocation, query
replan intervals, rule configuration, and many more.

56

. 6.2 Rules

Figure 6.1. Profiler tool in Neo4j Browser

However, the purpose of this work is not to create exceptionally optimized queries
but to provide rule queries that finish in a reasonable time, i.e., units of seconds on an
average production graph, and do not grow into an enormous complexity. Therefore,
the measured time intervals may be used for a brief comparison of various rules against
each other in terms of general algorithmic complexity, but the time information is
not much informative by itself under given conditions. Nevertheless, if the rules will be
evaluated by end-users and proved valuable, the performance of queries will be inspected
in more-depth and further optimized.

Entity Total number (-)
Node 43471
Edge 78550

Table 6.1. Number of nodes and edges in the testing graph

The performance was evaluated on the testing graph created from the testing
database dump from Manta, thus the graph structure is very similar to production en-
vironments. Table 6.1 shows the graph size in terms of the number of particular graph
entities. Table 6.2 summarizes the average duration of the primary database queries of
all rules. Every query was evaluated on a freshly started Neo4j server instance, with
no warm-up queries, averaged by ten performed measurements. Although the number
of database hits may be dramatically diverse among different rules, the average query
times of particular rules do not show such variance. The cause is probably the required
internal warm-up time and initial precaching. For more comparable results, the author
suggests using larger testing graphs and perform systematic warm-up database queries.
Moreover, The longest chains rule has no recorded time because, for unknown reasons,

57

6. Evaluation .
Rule Db hits

(thousand)
Time
(ms)

Conditions

Centroids 1439 928 Count Mode = CHILDREN TABLE, Di-
rection = BOTH

Centroids 1352 1030 Count Mode = CHILDREN COLUMN,
Direction = BOTH

Restricted
flows

0.2 638 Not informative value, because it is com-
pletely determined by the selected input
restrictions

Isolated
components

75 728 Isolated Mode = NO INGOING, two
node types with 23 candidates for isolated
components

The longest
chains

2669 - Resource Mode = MULTI RESOURCE,
Cycle Mode = CYCLE AVOID

Independent
flows

11 844 Dependency Mode = WRITE DEPEN-
DENCY, one type with 7 starting nodes

Independent
flows

26 945 Dependency Mode = NO DEPEN-
DENCY, one type with 7 starting nodes

Table 6.2. Comparison of database hits and average duration time of the main database
queries of every rule.

the query sometimes did not finish at all and had to be run repeatedly to successfully
complete.

This section also presents the code of main Cypher queries of single rules. The most
detailed description of queries may be found in the Java documentation of implemented
code. Nevertheless, a reader should be aware of a few repetitive patterns in these queries
to understand the semantics.

Firstly, the operator $ represents a place in the query for the input parameter inserted
into a given place of the query dynamically. This syntax should be heavily used for
two reasons. Firstly, it is used to write readable and maintainable code. The second
purpose is to boost the performance of queries that are executed many times. The
engine builds one execution plan, cache it, and uses the plan repeatedly with different
parameters. Therefore, there is no need to create a new execution plan for separate
queries [38].

In the following query that returns all nodes in a graph that are not present in
the input list of ignored ids, the $ignoredIds holder expects an input parameter called
ignoredIds (list of id numbers) injected from the application into that particular place
of a query.

MATCH (n)
WHERE NOT id(n) IN $ignoredIds
RETURN n

However, only a few basic types of input parameters and composites, in particular
lists and maps, are currently supported in Cypher [47]. Moreover, it is not possible
to parse input parameters at an arbitrary place of the query string. Thus for some
particular cases, the query was customized by a basic Java method String.format() by
using the operators %s and %d. This method is also used to select edge directions
by injecting symbols < and > next to the relationship operator. The following ex-
ample returns the start node’s neighbors in the INCOMING, OUTGOING, or BOTH

58

. 6.2 Rules

directions, implemented in a single query and configured only by the input parameter
direction.

String.format(
“MATCH (s)%s-[r]-%s(e)
WHERE id(s) = $startId
RETURN e“,
Direction.INCOMING.equals(direction) ? "<" : "",
Direction.OUTGOING.equals(direction) ? ">" : ""

)

Secondly, because in Manta storage, the traversal algorithm unconditionally depends
on the relationships properties, the following code block ensures that the path traversal
is performed only in a given revision interval and specified relationship types (typically
either DIRECT FLOW or both DIRECT FLOW and FILTER FLOW). This sample
query will return all nodes achievable from the start nodes parametrized by the startIds
input argument, which satisfies traversal conditions given by arguments revisionEnd,
revisionStart, and flowTypes.

MATCH p = (s)-[*]->(e)
WHERE id(s) IN $startIds
AND all (rel IN relationships(p)

WHERE rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart
AND type(rel) IN $flowTypes

)
RETURN e

59

6. Evaluation .
6.2.2 Centroids rule

The query for the Centroids rule with Count Mode = CHILDREN TABLE settings:
MATCH (s)<-[:hasParent]-()%s-[r]-%s()-[:hasParent]->(e)
WHERE NOT id(s) IN $ignoredIds
AND type(r) IN $flowTypes
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart
AND NOT s = e
RETURN s, COUNT (DISTINCT e) AS num
ORDER BY num DESC
LIMIT $limit

The query for the Centroids rule with Count Mode = CHILDREN COLUMN set-
tings:

MATCH (s)<-[:hasParent]-()%s-[r]-%s(e)-[:hasParent]->(eParent)
WHERE NOT id(s) IN $ignoredIds
AND type(r) IN $flowTypes
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart
AND NOT s = eParent
RETURN s, COUNT (e) AS num
ORDER BY num DESC
LIMIT $limit

Operation Db hits (thousand)

Total 1439
Find the children neighbors parents 555
Traverse children edges 538
Find centroid candidates 146
Other 200

Table 6.3. Number of database hits of the main Centroid rule query and its decomposition

Table 6.3 shows the number of database hits for the following configuration:

. Count Mode: CHILDREN TABLE. Direction: BOTH

The rule finds all centroid candidates, traverses its children, and inspects all their flow
relationships. Most of the database hits are caused by the inefficient repeating traversal
of flow edges and requests for their revisions property, which cannot be indexed in Neo4j.
Operations such as DISTINCT, COUNT, and ORDER BY do not generate any db hits
because they are entirely performed in memory.

The proposed method for improvement is to create a custom stored procedure that
would traverse all relationships in a given revision interval and flow type and then
increment counters for their hierarchical node parents.

60

. 6.2 Rules

6.2.3 Restricted flows rule
The main query for the Restricted flows rule with Report Mode = REPORT COLUMN
settings:

MATCH allowedPath=(s)-[r*0..%d]->(l)
MATCH (l)-[rejectedRel]->(e)
WHERE id(s) IN $startIds
AND id(l) IN $allowedIds
AND NOT id(e) IN $allowedIds
AND all (n IN NODES(allowedPath) WHERE id(n) IN $allowedIds)
AND type(rejectedRel) IN $flowTypes
AND rejectedRel.revisionStart <= $revisionEnd
AND rejectedRel.revisionEnd >= $revisionStart
AND all (rel IN r

WHERE type(rel) IN $flowTypes
AND rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart

)
RETURN l AS startNode, e AS endNode, collect(DISTINCT(s)) AS startNodes

The main query for the Restricted flows rule with Report Mode = REPORT TABLE
settings:

MATCH allowedPath=(s)-[r*0..%d]->(l)
MATCH (l)-[rejectedRel]->(e)
WHERE id(s) IN $startIds
AND id(l) IN $allowedIds
AND NOT id(e) IN $allowedIds
AND all (n IN NODES(allowedPath) WHERE id(n) IN $allowedIds)
AND type(rejectedRel) IN $flowTypes
AND rejectedRel.revisionStart <= $revisionEnd
AND rejectedRel.revisionEnd >= $revisionStart
AND all (rel IN r

WHERE type(rel) IN $flowTypes
AND rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart

)
MATCH (s)-[:hasParent]->(sParent)
MATCH (l)-[:hasParent]->(lParent)
MATCH (e)-[:hasParent]->(eParent)
RETURN lParent AS startNode, eParent AS endNode, collect(DISTINCT(sParent))

It is useless to evaluate this rule in terms of database hits because it is almost entirely
dependent on the complexity and a number of input restrictions. Restrictions such as
“Detect data flows from table A to table B” are very fast. On the contrary, more complex
scenarios such as “Detect data flows going from resource Oracle to resource Teradata”
may become very computationally expensive, because the engine starts his traversals
in all nodes under the Oracle resource (and there can be many), and evaluates all paths
from these into the maximum depth repetitively.

Moreover, the REPORT TABLE mode is even more complex, because it has to find
hierarchical parents of every detected restricted flows and aggregate those correctly.

6.2.4 Isolated components rule
To avoid keeping too much information in memory, the rule business logic is imple-
mented by two separate queries. The first query finds all candidates for isolated objects,
which means all nodes of one of the configured node types.

MATCH (p:Node)-[r:hasParent|hasResource]->()
WHERE p.type IN $types
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart
RETURN id(p)

61

6. Evaluation .
Afterwards the list of ids of those candidates called pIds is inserted into the main

query and evaluated as follows:
UNWIND $pIds AS pId
// (e) are all nodes in the (p) subtree
MATCH (p)<-[:hasParent|hasResource*0..]-(e)
WHERE NOT pId IN $ignoredIds
AND id(p) = pId
WITH p, collect(id(e)) AS eIds
MATCH (p)
WHERE NOT EXISTS {

(s)%s-[r]-%s(e)
WHERE type(r) IN $flowTypes
AND id(e) IN eIds
AND NOT id(s) IN eIds
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart

}
RETURN p AS node, p.type AS nodeType

Operation Db hits (thousand)

Total 75
Find descendants in candidates subtrees 58
Inspect flow edges from those subtrees 15
Other 2

Table 6.4. Number of database hits of the main Isolated components rule query and its
decomposition

Table 6.4 shows the number of database hits with the following configuration:

. Isolated Mode: NO INGOING. Node Types: Database, Server

In the first query, all nodes given by indexed type property are almost immediately
collected. During the main query, the engine firstly finds all descendants in the subtrees
of those isolated candidates. This operation triggers most db hits because the engine
has to traverse a lot of relationships with non-indexed revision properties. Then all
flow edges in the ingoing direction are inspected.

For this rule, there are not proposed further improvements because it seems efficient
enough. To improve readability for developers, it would be helpful to decompose the
queries into custom stored procedures.

62

. 6.2 Rules

6.2.5 The longest chains rule

The main difficulty with the Longest chains rule is that the problem is NP-hard, as
discussed in section 3.4.4 on the page 27. Therefore the Neo4j engine does not have a
method for efficient evaluation. The query finds all possible paths of flow edges match-
ing given properties, removes the subpaths of longer ones, removes paths containing
duplicated nodes (hence cycles), and sorts them from the longest paths.

The main query for the Longest chains rule with configuration Resource Mode =
MULTI RESOURCE and Cycle Mode = CYCLE AVOID:

MATCH path=(s)-[*%d..]->(e)
WHERE all (node IN nodes(path)

WHERE NOT id(node) IN $ignoredIds)
AND all (rel IN relationships(path)

WHERE type(rel) IN $flowTypes
AND rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart

)
// Get rid of subchains
AND NOT EXISTS {

()-[r]->(s)
WHERE type(r) IN $flowTypes
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart

}
AND NOT EXISTS {

(e)-[r]->()
WHERE type(r) IN $flowTypes
AND r.revisionStart <= $revisionEnd AND r.revisionEnd >= $revisionStart

}
// Avoid flow cycles if required
AND NOT apoc.coll.containsDuplicates(NODES(path))
RETURN length(path) AS pathLength, nodes(path) AS nodes
ORDER BY pathLength DESC
LIMIT $limit

Operation Db hits (thousand)

Total 2669
Traversal of allowed relationships 1708
Detection and removal of shorter sub paths 575
Removal of cycles 325
Finding of all potential start nodes 48
Other 2

Table 6.5. Number of database hits of the main Longest chains rule query and its decom-
position

Table 6.5 shows the number of database hits for the following configuration:

. Resource Mode: MULTI RESOURCE. Cycle Mode: CYCLE AVOID. Minimal length = 12 (the longest chains in this graph has length = 16)

This rule has no recorded time in table 6.2 on the page 58 because the query some-
times had not finished successfully for unknown reasons. Usually, it helped to run the
query repeatedly or perform other graph operations. Moreover, the engine occasionally
decided to run the same query with different operations orders, resulting in the change
of the total number of database hits. However, this rule’s non-deterministic behavior is

63

6. Evaluation .
bothersome and probably would require in-depth insights into how the Neo4j internal
cache works.

The removal of cycles (configured by parameter Cycle Mode = CYCLE AVOID)
was performed by the stored procedure apoc.coll.containsDuplicates(). The author also
implemented this function in Cypher without dependency on the APOC library, but the
performance has degraded significantly. Although it looks like that this configuration
caused 325 thousand additional database hits, it improves the overall rule performance
because it dramatically reduces the number of traversed relationships by around 50 %.

Another important configuration to adjust when running this rule is the minimal
length parameter. Currently, the best approach is first to run the rule initially with the
larger minimalLength value, and if no results are to be found, repeat running the rule
with decreasing value of the argument. The engine firstly finds all possible paths over
a given length and other properties and then sorts them at the end.

However, suppose the minimal length parameter is set to a small value. In that case,
the engine has to keep all found paths in the memory, resulting in a very computationally
expensive ordering at the end or even complete memory overflow. With the user-
defined procedure implementing the entire rule, the evaluator could dynamically drop
short unpromising paths during the traversal, so the problem with memory overflow
and demanding order would be solved. Nevertheless, this is probably not possible to
implement entirely in the Cypher language.

To summarize, this rule is an exemplary candidate for implementation in the form
of a custom stored procedure instead of using Cypher query. This should improve
functionality, code clarity, but most importantly, the performance and deterministic
behavior with complete control of evaluation. However, even after that, the performance
may still not be sufficient enough and may require the introduction of some heuristics.
The source code of procedure expandConfig() from the APOC library might serve as an
example for the implementation, although this method is not sufficient because it does
not allow traversal based on the relationship properties, as discussed in section 4.1.5 at
the page 32.

64

. 6.2 Rules

6.2.6 Independent flows rule

The main query for the Independent flows rule rule with configuration Depen-
dency Modes = WRITE DEPENDENCY, READ DEPENDENCY and PRO-
CESS DEPENDENCY.

MATCH (cs)-[:hasParent*%d]->(cp)<-[:hasParent*%d]-(ce)
MATCH p_s_cs = (s)%s-[]-%s(cs)
MATCH p_e_ce = (e)%s-[]-%s(ce)
MATCH p_s_jobS = (s)-[:hasParent*]->(jobS:Node)
MATCH p_e_jobE = (e)-[:hasParent*]->(jobE:Node)
WHERE jobS.type IN $jobTypes
AND jobE.type IN $jobTypes
AND NOT id(jobS) IN $ignoredIds
AND NOT id(jobE) IN $ignoredIds
AND NOT jobS = jobE
AND all (rel IN relationships(p_s_cs)

WHERE rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart
AND type(rel) IN $flowTypes

)
AND all (relIN relationships(p_e_ce)

WHERE rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart
AND type(rel) IN $flowTypes

)
AND all (rel IN relationships(p_s_jobS)

WHERE rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart
)
AND all (rel IN relationships(p_e_jobE)

WHERE rel.revisionStart <= $revisionEnd AND rel.revisionEnd >= $revisionStart
)
RETURN jobS, COLLECT(distinct(jobE)) AS jobsElist

When running the rule with Dependency Mode = ANY DEPENDENCY, the previous
query is run three times with all three mode settings, and results are combined.

The query for the rule with settings Dependency Mode = NO DEPENDENCY puts
into a list all job nodes in the graph and then removes the ones found in the previous
query with ANY DEPENDENCY settings.

Operation Db hits (thousand)

Total 11
Inspect visited nodes 3.7
Traverse the path patterns 3.5
Find descendants of job nodes 3.1
Other 0.6

Table 6.6. Number of database hits of the main Independent flows rule query and its
decomposition

Table 6.6 shows the number of database hits for the following configuration:

. Dependency Mode: WRITE DEPENDENCY. Node Types: Talend

As expected, the engine starts evaluating the anchored start job nodes and then
continues by the specified concatenated paths while evaluating relationship revision
properties. At the end of the entire path, the end nodes are evaluated whether they
are also of a particular node type.

65

6. Evaluation .
Same as in the isolated components rule, although the author does not propose any

further improvements, it would be helpful to decompose the queries into custom stored
procedures to improve overall readability.

6.3 Rules evaluation
The previous section explained particular issues of single rules. At this place, the author
discusses common discoveries and problems from analyzing rules performance.

The following list shows the order in which the Cypher queries are generally eval-
uated. The first items are the most accessible, requiring a little processing, while the
last items require the most computing power [45].

1. Anchor node labels and their indexed properties
2. Relationships types
3. Anchor node non-indexed properties
4. Node labels of traversed nodes
5. Properties of traversed nodes and relationships

In general, the engine firstly tries to start the evaluation paths in anchor nodes, which
are the nodes that can be quickly found by defined labels or indexed properties. From
these nodes, it is easy to follow relationships of a given type, as discussed in section
4.1.6. On the contrary, the most demanding operation is to query by the properties of
traversed nodes and relationships. Thus for efficient traversal, these should be reduced
as much as possible.

As shown in table 6.2 on the page 58, the rule queries with anchored start nodes have
proved the best performance and required the least processing in terms of database hits.
Hence the developer creating own rules should aim to design the rules in a way allowing
efficient retrieval of start nodes of the traversed paths in a graph.

Unfortunately, traversal in the Manta storage model heavily depends on revision
information stored as a relationship property, which currently cannot be indexed in
Neo4j. This is one of the main drawbacks of Manta integration with Neo4j.

66

Chapter 7
Enhancements

The previous chapters described the process of development and testing of a working
prototype. It was verified that the rules engine project might become helpful for various
types of end-users. In this chapter, the author proposes additional improvements and
plans for future development. Since the application is not in a fully production-ready
version, the author also discusses the suggested launch plan enabling a short time to
market to receive quick feedback from customers.

7.1 Enhancements
This section summarizes the initial functional and non-functional requirements and
evaluates how they were fulfilled. The project has allowed examining the general rules
engine concept in detail. A few ideas and difficulties have emerged during the process;
hence this section also discusses those thoughts with proposed solutions for further
enhancements in terms of maintainability and overall performance.

7.1.1 Requirements summary
Two following tables contain descriptions of collected functional and non-functional
requirements from sections 3.2.2 and 3.2.3 with their realization in the project.

Number Description Realization

i Diverse tech-
nical skills of
end-users

The rules provide default parameter values but also
offer detailed customization by making use of more
complex input parameters.

ii Scaling
flexibility

The engine allows the creation of new rules and new
functionalities, with almost no internal dependencies
on other Manta modules. This leads to potentially
simple application scaling in the future.

iii Documentation The project contains a file readme.md with the how-
to-run description. Implemented classes include Java
documentation, and the rules functionality with input
and output parameters are described in this thesis in
the implementation section 5.2. However, the specific
rules are not equipped with sample templates of in-
put parameterization files, which must be completed
before a launch in the production environment.

iv Performance The rules performance was evaluated in detail in sec-
tion 6.2 and will be further discussed in section 7.1.3.

v Localization As required, the entire project and source code are in
English.

Table 7.2. Summary of non-functional requirements and their realization in the project

67

7. Enhancements .
Number Description Realization

i The server
repository
will use Neo4j

Neo4j database was examined in depth. The imple-
mented prototype is wholly implemented in Neo4j
and contains the dump importer that stores Manta
data in the Neo4j server.

ii Flexibility
and sim-
plicity when
parametrizing
rules

All implemented rules provide enough flexibility of
input parameters and can be extended by new pa-
rameters allowing even more customization. The rules
provide default parameter values (where possible), al-
lowing initial running with almost no starting effort.
Presently the engine does not allow rule chaining or
simple automatic comparison of results of one rule
ran with modified parameters, but this will undoubt-
edly be the subject of further research as it could
bring many new use cases.

iii Well-tested
code

The chapter 6 proved that the code contains a suf-
ficient amount of unit and integration tests. In ad-
dition, the project was tested for performance, and
when applicable, the author proposed suggestions for
increasing efficiency.

iv Integration
into the cur-
rent Manta
ecosystem

The project uses the developer tools from the Manta
ecosystem and reuses the current storage model. Al-
though the project is currently separated from the
Manta ecosystem, it will be possible to incorporate
the project into the platform to integrate with Public
API or Manta Admin UI components.

v Exception
parameters
for every rule

All implemented rules offer ignorePaths input pa-
rameter that allow skipping of a graph part for rule
evaluation.

vi Provide input
validation
mechanism

Currently, the prototype does not offer any sophisti-
cated validation mechanism but only throws an ex-
ception at appropriate places with a detailed descrip-
tion. When the application is ready for the user’s in-
put by configurable files, a validation functionality
must be implemented.

vii Triggering It was decided that the core component will not be
responsible for the advanced scheduling of the rules
engine. In the future, some external mechanism,
such as the cron tool in Linux, can be used for rule
scheduling [70].

viii Results
reporting

Presently, the only way to report output is to write to
the logger console or redirect the output to the exter-
nal file. However, it is expected that the application
will provide an interface for the registration of addi-
tional methods for message export or notification in
the future.

Table 7.1. Summary of functional requirements and their realization in the project

68

. 7.1 Enhancements

To summarize, although, for complexity reasons, some of the requirements were not
completely fulfilled in the prototype implementation, the project architecture allows
future completion of all requirements. On top of that, the rules engine should be scalable
enough to allow the addition of new requirements from the business departments and
the creation of new use cases by the development of new rules.

7.1.2 Maintenance and simplification

As seen from the source code of particular rule queries in Cypher in the previous
chapter, some patterns are frequently repeated. Therefore, it would help separate those
fragments into specific user-defined functions, which would be callable from the main
Cypher queries. It would lead to more readable, testable, maintainable, and scalable
code for future changes in Manta storage architecture. The stored functions could also
serve as typical building blocks simplifying the future implementation of new rules. The
following list proposes a few example candidates for user-defined functions:

. “Find all leaves in subtrees of given nodes for a specific revision.”. “Find nodes of a given type for a specific revision.”. “Traverse the lineage flow from the starting nodes for a specific revision.”

It is expected that in the future, the rules engine will have a validation mechanism
that would help users with the configuration of input parameters and instant error
handling. This is an important feature as the current parametrization methods may
not be intuitive enough for kind of all users.

As discussed on pages 37 and 53, the standardized metadata model for data from
various resources is not implemented in Manta up-to-date. The model should allow end-
users quicker adaptation of Manta repository structure and fully benefit from collected
metadata with less effort when parametrizing rules, e.g., when defining node properties.

7.1.3 Performance

So far, the rules were not perfectly optimized. After the specific rules are proved to
be useful for customers, they should be further tuned to increase the efficiency for fast
evaluation, even on large datasets. Beyond the suggestions related to particular rules
described in the previous chapter, there are a few general approaches to achieving better
performance.

Firstly, it would be valuable also to create the rules entirely implemented as stored
procedures and compare the time performance. Specific stored procedures could use not
only imperative Cypher querying but also the declarative approach offered by neo4j API
to inspect the efficiency of having one rule implemented in totally different ways. Ideally,
the performance would be evaluated on enormous data size exceeding the current largest
customer graphs.

With the current approach of using one main rule query, a significant disadvantage
has appeared. The complex Cypher queries are hard to debug, as they do not provide
any logging mechanism controlling the way and order how the nodes and relationships
are visited. The traditional declarative approach usage allows users to log all traversal
steps resulting in simpler query debugging.

Neo4j contributors suggest warming up the cache before the complex queries to
achieve better performance for the freshly started Neo4j instances [71]. One of the
options is to use apoc.warmup.run() function from the APOC library, but the optimal
configuration settings and real effect on the rules engine’s performance were not eval-
uated yet. However, the warm-up queries should be implemented in a deterministic

69

7. Enhancements .
way. This should avoid the situations in which the same query launched in the same
conditions takes a very different time to finish every run.

Last but not least, the rules engine should benefit from the indexing features of Neo4j.
A significant decrease of total database hits for the rule queries could be achieved by
creating indexes on appropriate particular node properties. So far, only the value-
based indexes were discussed. On the contrary, structure-based indexes could also
dramatically improve the performance [9, 14]. Nevertheless, this would require extensive
research of common patterns in rule queries and appropriate definitions of particular
structures to index.

7.2 Deployment plan
The author also proposes a plan for turning the rules engine from the current prototype
to the production version. The aim is to distribute the project to the most eager
customers to receive feedback as early as possible. Having the reactions from end users
provides valuable information for developers to decide which part of the application
should receive the most focus. Primarily, it is essential to find out whether the rules
output report and input parameters are understandable, documentation is intuitive, if
customers are not missing any critical functionality, etc. The author proposes three
subsequent approaches of how to distribute the application to the customers.

The initial version can be distributed to selected customers in the form of a single
package in the JAR format, which would contain the dump importer into an embedded
Neo4j database, implemented rules, and a few configuration templates for each rule.
The end-user would provide a path to his Manta dump file and specify the rules to
run with input parameters on the command line or by the prepared scripts. The result
would be written into a JSON file. Using the embedded database, the user would
not need to install Neo4j before; therefore, this evaluation could be done even before
completing the migration process from Titan to Neo4j.

The second version of the rules engine would be using REST API, and likely it would
be integrated into the current Public API component. This would be the first produc-
tion deployment, and any customer could run the rules easily from their applications
by HTTP requests. Moreover, the REST API provides an intuitive interface for con-
figuration. On top of that, customers could also incorporate the rules engine tasks into
their custom schedulers to run the engine in periodic intervals or triggered by specific
actions, as discussed as the functional requirement (vii).

The subsequent and most user-oriented distribution of the rules engine would be full
integration into Manta UI. The GUI could contain a new section that would become
the central place for orchestrating all rules engine features. This involves selecting rules
to run, interactive parameters configuration, creation of complex rules workflows, and
potential configuration of notifications and messages to various systems.

Although the rules engine’s current prototype does not seem close to a mature appli-
cation with interactive GUI, it is essential to have visions of where the project should
aim in the future. Having long-term plans helps design the entire architecture and
ensures that the decisions made throughout the process will not stand against the fun-
damental requirements and future targets. The author believes that the implementation
fulfilled the required objective of the prototype.

70

Conclusion

Data lineage is a map of data flows that provide valuable information for companies
storing a large amount of data. Traditionally, a constructed data lineage has been visu-
alized in the graphical user interface to understand data journeys in data warehouses.
On the contrary, the rules engine tool would automatically detect the lineage patterns
without manual monitoring of extensive data flows graphs. It leads to higher efficiency
and increased confidence in own data. On this account, this work’s main goal was to
design and implement a module with an engine consisting of rules detecting the selected
graph patterns in a data lineage.

At first, the author describes the theory behind graph databases and data storage
methods in those systems. Data lineage concepts with real use-cases are then intro-
duced, with the main focus on the Manta product and its detailed architecture.

In the next chapter, the author explained the entire requirements gathering process.
Firstly, the motivation behind rules engine application and the main benefits over the
previous situation were discussed. In collaboration with colleagues from presales, prod-
ucts, and marketing departments, there were collected functional and non-functional
requirements. On top of that, this chapter summarized the practical objectives to
achieve and compiled business rules examples with a detailed description of inputs and
intended usage. The usage generally either ensures data privacy in various ways or
aims to simplify the structure of complex storage systems. Eventually, it all leads to
the companies cost-cutting and an increase in productivity. To sum up, finding enough
use-cases confirmed the significance of the rules engine project.

During the analysis process, the selected Neo4j database and its platform were re-
searched. Because the declarative way of database querying is entirely different from
the imperative approach in retiring Titan database, there are a few required changes
in the Manta data model. With that being said, it was proved that Neo4j brings many
advantages and new features. The author also evaluated popular rules engine tools and
explained why none of them are used in the practical part.

The author implemented the prototype with the rules engine’s core functionality,
which is responsible for evaluating rule patterns in the Manta storage. Chapter 5 out-
lines the development tasks, main implementation obstacles, and procedures to deliver
new rules. With the description of the entire process of creating a rule from scratch, it
was proved that this task is too complex to be fully developed by end-users themselves.
Thus it was decided to provide customers a set of flexible rules that can be configured
by various input parameters. The author implemented five rules and explained the roles
of their input and output parameters. On top of that, the concrete output reports were
demonstrated, and results were visualized in Manta UI. Consequently, it was verified
that the business rules might add high value for many types of customers.

The evaluation chapter is devoted to summarizing the test methods used in the
project, focusing on performance testing. The efficiency of implemented rules was mea-
sured in terms of the number of database hits since it was the primary comparable

71

Conclusion .
metric. As the database traversals were written in Cypher language, the queries con-
taining main rules logic were exposed and described. Besides, the Neo4j profiling utility
allowed a detailed examination of database queries leading to the location of significant
bottlenecks. The final part of this chapter spells out how Cypher queries are executed
by the Neo4j engine and suggests ways to optimize graph operations.

In the last chapter, the author summarized the fulfillment of objectives and ini-
tial requirements during the practical implementation. This section also contains the
application’s architecture enhancement proposals to achieve simplification and easy
maintenance. The rules include a few repetitive patterns that could be effectively con-
verted into stored procedures. Besides, the author proposed three deployment stages
to achieve fast time to market and initial reactions from customers. Finally, when the
application will be launched and rules are proved to be helpful, database queries should
be further optimized to increase the overall efficiency. Thus a few ways to tune the
performance are also suggested. An option is to apply structure-based indexes, but this
would require future extensive research of Manta-specific patterns.

To sum up, the application’s architecture allows future scaling, enrichment by new
features, the addition of other reporting channels, and more. It is believed that end-
users themselves will come up with ideas for new use-cases by creating brand-new rules
or customized workflows by rules chaining. After all, these steps lead to the increase in
the business value of the rules engine application and, in consequence, the entire Manta
product.

72

References

[1] Kasey Panetta. Gartner Top Data and Analytics Trends for 2021 . 2021.
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-
trends-for-2021/.

[2] Ian Robinson, JIm Webber, and Emil Eifrem. Graph Databases: New Opportunities
for Connected Data 2nd Edition. O‘Reylly, 2015. ISBN 1491930896.

[3] Martin Svoboda. B0B36DBS, BD6B36DBS: Lecture 1 - Database Systems Con-
ceptual Modeling. . Czech Technical University.

[4] Guru99.com. Data Modelling: Conceptual, Logical, Physical Data Model Types.
https://www.guru99.com/data-modelling-conceptual-logical.html.

[5] Visual-paradigm.com. Conceptual, Logical and Physical Data Model.
https://www.visual-paradigm.com/support/documents/vpuserguide/3563/3564/
85378_conceptual,l.html.

[6] Charles Roe. ACID vs. BASE: The Shifting pH of Database Transaction Processing
- DATAVERSITY . 2012.
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-
transaction-processing/.

[7] Bryce Merkl Sasaki. Graph Databases for Beginners: ACID vs. BASE Explained.
2018.
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/.

[8] CSc. Demlová, Marie. Logic and Graphs Lectures. . Czech Technical University.
[9] Jaroslav Pokorný, Michal Valenta, and Jaroslav Ramba. Graph patterns indexes:

Their storage and retrieval. In: ACM International Conference Proceeding Se-
ries. New York, NY, USA: Association for Computing Machinery, 2018. 221–225.
ISBN 9781450364799.
https://dl.acm.org/doi/10.1145/3282373.3282374.

[10] Michelle Knight. What is a Property Graph? - Dataversity. 2020.
https://www.dataversity.net/what-is-a-property-graph/.

[11] Jiří Vyskočil, and Radek Mařík. PAL: Lecture 1 - Advanced algorithms asymptotic
notation, graphs and their representation in computers. .

[12] Ing Lucie Svitáková. Query Analysis on a Distributed Graph Database. . Czech
Technical University.

[13] TechTarget. Efficient indexing for performance. 2006.
https://searchsqlserver.techtarget.com/feature/Efficient-indexing-for-
performance.

[14] Jaroslav Pokorný, Michal Valenta, and Martin Troup. Indexing Patterns in
Graph Databases. In: DATA 2018 - Proceedings of the 7th International Confer-
ence on Data Science, Technology and Applications. SciTePress, 2018. 313–321.
ISBN 9789897583186.

73

https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/
https://www.gartner.com/smarterwithgartner/gartner-top-10-data-and-analytics-trends-for-2021/
https://www.guru99.com/data-modelling-conceptual-logical.html
https://www.visual-paradigm.com/support/documents/vpuserguide/3563/3564/85378_conceptual,l.html
https://www.visual-paradigm.com/support/documents/vpuserguide/3563/3564/85378_conceptual,l.html
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://www.dataversity.net/acid-vs-base-the-shifting-ph-of-database-transaction-processing/
https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://dl.acm.org/doi/10.1145/3282373.3282374
https://www.dataversity.net/what-is-a-property-graph/
https://searchsqlserver.techtarget.com/feature/Efficient-indexing-for-performance
https://searchsqlserver.techtarget.com/feature/Efficient-indexing-for-performance

References .
http: // www . scitepress . org / DigitalLibrary / Link . aspx ? doi = 10 . 5220 /
0006826903130321.

[15] Talend. What is Data Lineage? (and How to Get Started) - Talend Real-Time
Open Source Data Integration Software.
https://www.talend.com/resources/what-is-data-lineage-and-how-to-get-started/.

[16] Irina Ph.D. Steenbeek. The Basics of Data Lineage - EWSolutions.
https://www.ewsolutions.com/the-basics-of-data-lineage/.

[17] Laura Sebastian-Coleman. Measuring Data Quality for Ongoing Improvement. El-
sevier Inc., 2013. ISBN 9780123970336.

[18] Olivia Wassén. What is Data Lineage? — NodeGraph. 2019.
https://www.nodegraph.se/what-is-data-lineage/.

[19] GetManta. About the MANTA Platform MANTA.
https://getmanta.com/about-the-manta-platform/.

[20] GetManta. Data Lineage for DataOps — MANTA.
https://getmanta.com/solutions/data-lineage-for-dataops/.

[21] RNDr. Hermann, Lukáš. Podcast 027 — MANTA: Lukáš Hermann, VP of Engi-
neering. 2021.
https://scriptease.lolo.team/917014/7142050-027-manta-lukas-hermann-vp-of-
engineering.

[22] Amnon Drori. What is Data Lineage? — Octopai. 2021.
https://www.octopai.com/what-is-data-lineage/.

[23] Peter Brejčák. Datový startup Manta Tomáše Krátkého nabírá téměř 300 milionů
korun. Přispělo i české Credo Ventures - CzechCrunch. 2020.
https://www.czechcrunch.cz/2020/10/datovy-startup-manta-tomase-kratkeho-
nabira-temer-300-milionu-korun-prispelo-i-ceske-credo-ventures/.

[24] Jakub Ing. Moravec. Analýza a návrh abstraktní vícevrstvé architektury pro práci s
grafovou databází realizující metadatové úložiště pro data lineage. . Czech Technical
University.

[25] Ing. Pikna, Marek. Webinar: MANTAtalks: Tips for Efficient MANTA API Usage.
2020.
https://getmanta.com/webinars/mantatalks-tips-for-efficient-manta-api-usage/.

[26] Ing. Sýkora, Jan. Incremental update of data lineage storage in a graph database.
. Czech Technical University.

[27] GetManta. MANTA Live — MANTA.
https://getmanta.com/manta-live/.

[28] Peter Wang. Alation and Manta: Automating Advanced Data Lineage — Alation.
https://www.alation.com/blog/alation-manta-automate-advanced-data-lineage/.

[29] Plskova. Katerina. Manta Goes Public with Its API! — MANTA. 2017.
https://getmanta.com/blog/manta-goes-public-with-its-api/.

[30] Swagger. OpenAPI Specification - Version 3.0.3 — Swagger . 2020.
https://swagger.io/specification/.

[31] Karl E. Wiegers. When Telepathy Won’t Do: Requirements Engineering Key Prac-
tices. Process Impact. 2000,

[32] Ulf Eriksson. Functional vs Non-Functional Requirements - Understand the Dif-
ference. 2012.

74

http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006826903130321
http://www.scitepress.org/DigitalLibrary/Link.aspx?doi=10.5220/0006826903130321
https://www.talend.com/resources/what-is-data-lineage-and-how-to-get-started/
https://www.ewsolutions.com/the-basics-of-data-lineage/
https://www.nodegraph.se/what-is-data-lineage/
https://getmanta.com/about-the-manta-platform/
https://getmanta.com/solutions/data-lineage-for-dataops/
https://scriptease.lolo.team/917014/7142050-027-manta-lukas-hermann-vp-of-engineering
https://scriptease.lolo.team/917014/7142050-027-manta-lukas-hermann-vp-of-engineering
https://www.octopai.com/what-is-data-lineage/
https://www.czechcrunch.cz/2020/10/datovy-startup-manta-tomase-kratkeho-nabira-temer-300-milionu-korun-prispelo-i-ceske-credo-ventures/
https://www.czechcrunch.cz/2020/10/datovy-startup-manta-tomase-kratkeho-nabira-temer-300-milionu-korun-prispelo-i-ceske-credo-ventures/
https://getmanta.com/webinars/mantatalks-tips-for-efficient-manta-api-usage/
https://getmanta.com/manta-live/
https://www.alation.com/blog/alation-manta-automate-advanced-data-lineage/
https://getmanta.com/blog/manta-goes-public-with-its-api/
https://swagger.io/specification/

. .
https://reqtest.com/requirements-blog/functional-vs-non-functional-
requirements/.

[33] Ali Alakeel. A Guide to Dynamic Load Balancing in Distributed Computer Sys-
tems. IJCSNS International Journal of Computer Science and Network Security,
VOL.10 No.6. 2009,

[34] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction To Algorithms - Thomas H.. Cormen, Thomas H Cormen, Charles
E Leiserson, Ronald L Rivest, Clifford Stein. 2001.
https://books.google.cz/books?id=NLngYyWFl_YC&pg.

[35] Jaroslav Bc. Ramba. Indexování struktur v grafovém DB stroji Neo4j II . . Czech
Technical University.

[36] Peter Neubauer. Peter Neubauer on Twitter: ”sarkkine Neo4j was developed as
part of a CMS SaaS 2000-2007, became released OSS 2007 when Neo Technology
spun out.” / Twitter . 2010.
https://twitter.com/peterneubauer/status/9248821667.

[37] Neo4j. Introduction - Operations Manual.
https://neo4j.com/docs/operations-manual/current/introduction/.

[38] Onofrio Panzario. Learning Cypher . Packt, 2014. ISBN 978-1-78328-775-8.
[39] Neo4j. Neo4j APOC Library - Developer Guides.

https://neo4j.com/developer/neo4j-apoc/.
[40] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-

daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, Andrés
Taylor, Al Cypher, Université Paris-Est Alastair Green Neo, Tobias Lindaaker
Neo, Stefan Plantikow Neo, Petra Selmer Neo, and Andrés Taylor Neo. Cypher:
An Evolving Query Language for Property Graphs. 2018, 14 1433.

[41] Max De Marzi. Neo4j Stored Procedure Training Part 2 . 2019.
https://www.slideshare.net/maxdemarzi/neo4j-stored-procedure-training-part-2.

[42] Max De Marzi. Neo4j Stored Procedure Training Part 1 . 2019.
https://www.slideshare.net/maxdemarzi/neo4j-stored-procedure-training-part-1.

[43] Neo4j. Path Expander Overview - APOC Documentation.
https://neo4j.com/labs/apoc/4.1/graph-querying/path-expander/.

[44] Neo4j. Neo4j Graph Platform - Developer Guides.
https://neo4j.com/developer/graph-platform/.

[45] Neo4j. Neo4j Developer Guides - Neo4j Graph Database Platform.
https://neo4j.com/developer/.

[46] Neo4j. Client applications - Neo4j Driver Manual.
https://neo4j.com/docs/driver-manual/current/client-applications/.

[47] Neo4j. Including Neo4j in your project - Neo4j Java Reference.
https://neo4j.com/docs/java-reference/current/java-embedded/include-neo4j/.

[48] Michael Simon. Testing your Neo4j-based Java application — Medium. 2019.
https://medium.com/neo4j/testing-your-neo4j-based-java-application-
34bef487cc3c.

[49] Baeldung. Introduction to Spring Data Neo4j. 2020.
https://www.baeldung.com/spring-data-neo4j-intro.

[50] Spring. Spring Data Neo4j.
https://spring.io/projects/spring-data-neo4j.

75

https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://reqtest.com/requirements-blog/functional-vs-non-functional-requirements/
https://books.google.cz/books?id=NLngYyWFl_YC&pg
https://twitter.com/peterneubauer/status/9248821667
https://neo4j.com/docs/operations-manual/current/introduction/
https://neo4j.com/developer/neo4j-apoc/
https://www.slideshare.net/maxdemarzi/neo4j-stored-procedure-training-part-2
https://www.slideshare.net/maxdemarzi/neo4j-stored-procedure-training-part-1
https://neo4j.com/labs/apoc/4.1/graph-querying/path-expander/
https://neo4j.com/developer/graph-platform/
https://neo4j.com/developer/
https://neo4j.com/docs/driver-manual/current/client-applications/
https://neo4j.com/docs/java-reference/current/java-embedded/include-neo4j/
https://medium.com/neo4j/testing-your-neo4j-based-java-application-34bef487cc3c
https://medium.com/neo4j/testing-your-neo4j-based-java-application-34bef487cc3c
https://www.baeldung.com/spring-data-neo4j-intro
https://spring.io/projects/spring-data-neo4j

References .
[51] Joy Chao. Graph Databases for Beginners: Native vs. Non-Native Graph Technol-

ogy. 2018.
https://neo4j.com/blog/native-vs-non-native-graph-technology/.

[52] Gaurav Sarma. Neo4j storage internals — Medium. 2020.
https://medium.com/@gauravsarma1992/neo4j-storage-internals-be8d150028db.

[53] Qusay H. Mahmoud. Getting Started With the Java Rule Engine API (JSR 94):
Toward Rule-Based Applications. 2005.
https://www.oracle.com/technical-resources/articles/javase/javarule.html.

[54] Ying Jin, Vadlamannati Lakshmi Venkata Sai Raja Bharath, and Jinaliben Shah.
Active rules in a graph database environment. In: EPiC Series in Computing. Easy-
Chair, 2020. 134–140.

[55] Martin Fowler. RulesEngine. 2009.
https://martinfowler.com/bliki/RulesEngine.html.

[56] Michal Bachman. (Un)common Use Cases for Graph Databases. 2016.
https://neo4j.com/blog/uncommon-use-cases-graph-databases/.

[57] Baeldung. List of Rules Engines in Java. 2019.
https://www.baeldung.com/java-rule-engines.

[58] Drools. Business Rules Management System (Java™, Open Source).
https://www.drools.org/.

[59] Baeldung. Introduction to Drools. 2018.
https://www.baeldung.com/drools.

[60] Mahmoud Ben Hassine. j-easy/easy-rules: The simple, stupid rules engine for Java.
https://github.com/j-easy/easy-rules.

[61] Sunil Mogadati. Drools Using Rules from Excel Files — Baeldung. 2020.
https://www.baeldung.com/drools-excel.

[62] OpenL Tablets. Easy Business Rules.
http://openl-tablets.org/.

[63] Mark Proctor, Michael Neale, Peter Lin, Michael Frandsen, and Sam Griffith Jr.
1.2 Why use a Rule Engine? — Jbug.jp.
http://www.jbug.jp/trans/jboss-rules3.0.2/ja/html/ch01s02.html.

[64] Veselin Pizurica. What is a rules engine and when do we need one? — Waylay
Blog. 2018.
https://www.waylay.io/articles/what-is-a-rules-engine-and-why-or-when-do-
we-need-one.

[65] Ryan Jolly Young. Why should I use Drools? — Medium. 2017.
https://medium.com/@ryanjollyyoung/why-should-i-use-drools-ba80be3b5311.

[66] GeeksforGeeks. Software Engineering — Software Design Process. 2019.
https://www.geeksforgeeks.org/software-engineering-software-design-process/.

[67] Ionos. Visitor design pattern: explanations and examples - IONOS . 2020.
https://www.ionos.com/digitalguide/websites/web-development/visitor-pattern/.

[68] Kent Beck. Test Driven Development: By Example. 2000. ISBN 978-0321146533.
[69] Alexandra Altvater. The Ultimate Guide to Performance Testing and Software

Testing: Testing Types, Performance Testing Steps, Best Practices, and More –
Stackify. 2017.
https://stackify.com/ultimate-guide-performance-testing-and-software-testing/.

76

https://neo4j.com/blog/native-vs-non-native-graph-technology/
https://medium.com/@gauravsarma1992/neo4j-storage-internals-be8d150028db
https://www.oracle.com/technical-resources/articles/javase/javarule.html
https://martinfowler.com/bliki/RulesEngine.html
https://neo4j.com/blog/uncommon-use-cases-graph-databases/
https://www.baeldung.com/java-rule-engines
https://www.drools.org/
https://www.baeldung.com/drools
https://github.com/j-easy/easy-rules
https://www.baeldung.com/drools-excel
http://openl-tablets.org/
http://www.jbug.jp/trans/jboss-rules3.0.2/ja/html/ch01s02.html
https://www.waylay.io/articles/what-is-a-rules-engine-and-why-or-when-do-we-need-one
https://www.waylay.io/articles/what-is-a-rules-engine-and-why-or-when-do-we-need-one
https://medium.com/@ryanjollyyoung/why-should-i-use-drools-ba80be3b5311
https://www.geeksforgeeks.org/software-engineering-software-design-process/
https://www.ionos.com/digitalguide/websites/web-development/visitor-pattern/
https://stackify.com/ultimate-guide-performance-testing-and-software-testing/

. .
[70] Suryadi K. Cron Job: a Comprehensive Guide for Beginners 2021 . 2021.

https://www.hostinger.com/tutorials/cron-job.
[71] Dave Gordon. Warm the cache to improve performance from cold start - Knowledge

Base Neo4j.
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-
cold-start/.

77

https://www.hostinger.com/tutorials/cron-job
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/
https://neo4j.com/developer/kb/warm-the-cache-to-improve-performance-from-cold-start/

Appendix A
Specification

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

457416Personal ID number:Jarrah LukášStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Science

Open InformaticsStudy program:

Data ScienceSpecialisation:

II. Master’s thesis details

Master’s thesis title in English:

Engine for pattern detection in graph database used as metadata storage for data lineage

Master’s thesis title in Czech:

Nástroj pro detekci vzorů v grafové databázi sloužící jako úložiště metadat pro zpracování data lineage

Guidelines:
1) Research current practices of data storage in graph databases.
2) Familiarize yourself with data lineage functionality in the Manta Tools project
and chosen graph database API.
3) Gather customer requirements of rules to detect complex patterns,
irregularities, redundancies in, and analyze the business use-cases.
4) Design and implement a module with an engine consisting of configurable
rules detecting the selected graph patterns in a data lineage.
5) Analyze the effectiveness of implemented rule algorithms and propose
methods for more efficient evaluation with respect to the number of
database calls and total running time.

Bibliography / sources:
1. Onofrio Panzarino: Learning Cypher. Packt publisher, 2014. ISBN:
9781783287758
2. Ian Robinson, Jim Webber, Emil Eifrem: Graph Databases: New Opportunities
for Connected Data 2nd Edition. O‘Reylly, 2015. ISBN:1491930896
3. Troup, M.; Valenta, M.; Pokorný, J.: Indexing Patterns in Graph Databases In:
Proceedings of the 7th International Conference on Data Science, Technology
and Applications. Porto: SciTePress - Science and Technology Publications, 2018.
p. 313-321. vol. 1. ISBN 978-989-758-318-6.
4. Valenta, M.; Ramba, J.; Pokorný, J.: Graph Patterns Indexes: their Storage and
Retrieval In: Proceeding iiWAS2018 Proceedings of the 20th International
Conference on Information Integration and Web-based Applications & Services.
New York: ACM, 2018. p. 221-225. ISBN 978-1-4503-6479-9.

Name and workplace of master’s thesis supervisor:

Ing. Michal Valenta, Ph.D., Department of Software Engineering, FIT

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 20.02.2021

Assignment valid until: 19.02.2023

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
Head of department’s signatureIng. Michal Valenta, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

79

Appendix B
Glossary

ACID . Atomicity, Consistency, Izolacy, Durability
API . Application Programming Interface
APOC . Awesome Procedures On Cypher
BASE . Basically Available, Soft state, Eventual consistency
BFS . Breadth-first Search
BI . Business Intelligence
CSV . Comma-separated values
DB . Database
DBMS . Database Management System
DFS . Depth-first Search
DSL . Domain-specific language
DWH . Data Warehouse
ETL . Extract, Transform, and Load
GDB . Graph Database
GDPR . General Data Protection Regulation
GUI . Graphical User Interface
HTTP . HyperText Transfer Protocol
HTTPS . Hypertext Transfer Protocol Secure
JAR . Java Archive format
NoSQL . non-SQL or non-relational database
REST . Representational State Transfer
SQL . Structured Query Language
TDD . Test-driven development
UI . User Interface
UML . Unified Modeling Language
YAML . Ain’t Markup Language

80

Appendix C
Attachments

C.1 List of files

README.md Description of how to run the rules engine by using local
Neo4j server instance

rules-engine.zip Source code of the rules engine prototype implementa-
tion in Java with dependencies defined in pom.xml file

thesis-text.pdf This document in PDF format
thesis-text.zip Source code of the TEX document

81

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents
	Tables/Figures
	Introduction
	Objectives
	Structure

	Theory of graph databases
	Outline of databases
	Data storage
	Relational databases
	NoSQL databases

	Graph databases
	Graph
	Data model
	Physical storage
	Indexing

	Data lineage
	Data lineage
	Description
	Use cases

	Manta product
	Platform architecture
	Components of Manta Flow Server

	Metadata storage structure
	Graph
	Nodes
	Edges
	Indexes

	Requirements
	Motivation and ways of lineage interpretation
	Manta UI
	Third-party tools
	Public API
	Rules engine

	Requirements analysis
	General
	Functional requirements
	Non-functional requirements

	Objectives
	Use cases of business rules
	Centroids rule
	Restricted flows rule
	Isolated components rule
	The longest chains rule
	Independent flows rule
	Use cases summary

	Analysis and design
	Neo4j
	Overview
	Querying the database
	Cypher
	Stored procedures
	Platform
	Storage

	Rules engine tools
	General
	Representatives
	Summary

	Design
	Overview
	Module design

	Implementation
	Process
	General
	Graph operations
	Libraries and APIs
	Rules integration

	Rules
	Centroids rule
	Restricted flows rule
	Isolated components rule
	The longest chains rule
	Independent flows rule

	Summary

	Evaluation
	Testing
	Unit tests
	Integration tests
	Performance tests

	Rules
	General
	Centroids rule
	Restricted flows rule
	Isolated components rule
	The longest chains rule
	Independent flows rule

	Rules evaluation

	Enhancements
	Enhancements
	Requirements summary
	Maintenance and simplification
	Performance

	Deployment plan

	Conclusion
	References
	Specification
	Glossary
	Attachments
	List of files

