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Abstract

Anomaly Detection in log data from large
computer systems is an area of growing
importance over the past few years. As
logs are text data, they first must be em-
bedded into vector spaces for performing
Anomaly Detection.

This thesis explores the use of current
state-of-the-art NLP methods for contex-
tual embedding of log-lines into vectors.
Specifically, we have used BERT mod-
els, which are Deep Neural Networks, as
the base component for our Sentence En-
coders. We have used the Inverse Cloze
Task for unsupervised Sentence Encoder
training on unlabeled publicly available
log datasets. The quality of log-line em-
beddings produced by our encoders was
evaluated by performing Anomaly Detec-
tion experiments on the labeled HDFS1
log dataset, using the Auto Encoder Tem-
poral Convolutional Network anomaly de-
tection method. We have used fastText
embeddings for obtaining the baseline
anomaly detection performance.

Our contextual embeddings have not
been able to match the quality of the base-
line fastText embeddings. Still, they show
promise, as the used anomaly detection
dataset may not be complex enough to
reap the benefits of contextual embedding,
but this has not been verified due to the
lack of publicly available complex labeled
log datasets.

Keywords: vector embedding, logs,
anomaly detection, NLP, BERT

Supervisor: Ing. Jan Drchal, Ph.D.
Czech Technical University,
Faculty of Electrical Engineering,
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Abstrakt

Detekce anomálií v datech logů z velkých
počítačových systémů je v posledních le-
tech oblastí rostoucího významu. Logy
jakožto textová data musí být nejdříve
převedeny (embedovány) na jejich vekto-
rové reprezentace (embeddingy) aby bylo
možné provádět detekci anomálií.

Tato práce zkoumá použití moder-
ních metod zpracování přirozeného jazyka
(NLP) pro vytváření kontextových repre-
zentací z logů. Konkrétně jsme použili hlu-
boké neuronové sítě BERT, jako základ
našich enkodérů vět. Naše enkodéry byly
trénovány bez učitele pomocí úlohy ICT
na veřejně dostupných neanotovaných log
datasetech. Kvalitu reprezentací z našich
enkodérů jsme ověřili provedením experi-
mentů na detekci anomálií v anotovaném
log datasetu HDFS1, za použití AETCN
detektoru anomálií. Pro získání výchozího
bodu kvality detekce anomálií jsme použili
reprezentace vytvořené metodou fastText.

Naše kontextové reprezentace nebyly
schopné dosáhnout stejné kvality detekce
anomálií jako základní fastText reprezen-
tace, ale i tak výsledky vypadají nadějně,
jelikož použitý dataset pro detekci ano-
málií nemusí být dostatečně komplexní
pro využití potenciálu nabízeného kon-
textovými reprezentacemi. Toto nemohlo
být ověřeno kvůli nedostatku veřejně do-
stupných komplexních anotovaných log
datasetů.

Klíčová slova: vektorové reprezentace,
logy, detekce anomálií, NLP, BERT

Překlad názvu: Kontextové
reprezentace pro detekci anomálií v
souborech logů
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Chapter 1

Introduction

Detecting anomalies in logs is an area of growing importance in large modern
computer systems, as the volume of logs keeps growing with computer systems.
Detecting anomalous behaviour automatically can significantly help human
operators of these systems find causes of issues faster, or even prevent more
significant problems down the line by detecting anomalous events at their
start before they can become a larger issue.

Logs are typically semi-structured to unstructured text data, the format of
which changes rapidly with even minute differences in software versions chang-
ing the log structure significantly. Therefore anomaly detection approaches
need to be able to deal with these changing environments.

Current anomaly detection methods employ a combination of automatic
structure detection for extracting log templates from log lines, such as times-
tamps, error levels, etc., and common text embedding algorithms such as
word2vec [MCCD13, MSC+13], and fastText [BGJM17] to embed the un-
structured part of the logs into vectors.

There have been significant breakthroughs in the past few years using
Deep Neural Networks (DNN) in various Computer Science tasks, especially
in Natural Language Processing (NLP) tasks, such as Machine Translation,
Summarization, Question Answering, Text classification, etc. Many of these
breakthroughs were enabled by using DNNs as Language Models (LMs)
trained on large corpora of unlabeled text to gain understanding of the
semantics of human languages. These Language Models can then embed text
into high-dimensional vectors upon which solutions to particular downstream
tasks can be built.

This thesis aims to explore the possibility of training large Language Models
to create text embeddings for use with the downstream task of Anomaly

1



1. Introduction .....................................
Detection in log files. The first step is to explore current state-of-the-art
contextual embedding methods from the NLP domain. The next step is to
select and modify an appropriate method to work on log lines. The final
step is to compare the quality of the obtained embeddings to other current
embedding methods on a downstream log anomaly detection task. This thesis
will not explore anomaly detection methods, as the main focus is on log
embedding, and an anomaly detection method provided by the supervisor
will be used.

The structure of the thesis is as follows. Chapter 2 presents related work
and prerequisites, chapter 3 presents the methodology and proposed solution
design, chapter 4 presents the used datasets, chapter 5 presents notes on the
implementation of the solution design, chapter 6 presents the experiments
and evaluation on the anomaly detection downstream task, chapter 7 touches
beyond the main scope of this thesis and explores how to explain the Machine
Learning models used in this thesis, chapter 8 presents discussion on the
results achieved in this thesis and chapter 9 presents the conclusion and future
work.

2



Chapter 2

Related Work

2.1 Tokenization

One of the first steps when working with text data is to split the input
text into smaller manageable pieces called tokens, which can then be one-hot
encoded (into vectors of length equal to the total number of possible tokens),
upon which further transformations can be done, as tokenization enables
working with text-data as with points in vector spaces.

One of the simplest tokenization methods would be to split the input text
by spaces, e.g., separate the input text into individual words, given that the
language we are working with uses spaces as word separators. This technique
is basic, and there are several basic issues. It does not handle punctuation
"attached" to words at the end of sentences and creates different tokens for the
same word depending on whether it is at the end of the sentence, et cetera.

This approach also disregards any subword information and semantics.
Consider for example words "runner", "running" and "runnable". Using simple
splitting by spaces, these would all be considered different words, although
we see that it could be beneficial to split the words into subwords, here for
example "run" and different suffixes ("-ing", "-able", etc.).

WordPiece. One of the currently most used tokenization approaches is
WordPiece, by Wu et al. [WSC+16], and now commonly used as a tokenizer
for many Neural Network models. It works by initializing its vocabulary
with all individual letters in a selected alphabet as initial tokens and creating
new tokens by selecting pairs of tokens already in its vocabulary, combining
them, and adding the new combined token to the vocabulary if its addition
increases the likelihood of the text corpus the tokenizer is being trained

3



2. Related Work.....................................
on. This approach usually results in vocabularies where common words are
represented whole as their own tokens, while enabling to represent arbitrary
words by several tokens, as the single-character alphabet is always included
in the vocabulary.

BPE. A similar approach to tokenization called BPE tokenization is pre-
sented by Sennrich, Haddow and Birch [SHB15], which works similarly to
WordPiece, but chooses pairs of tokens to combine from its vocabulary not
by maximizing the likelihood of training data, but combining the pairs with
the highest frequency in the training data.

2.2 Global embeddings

A common approach for creating vector representations of text is to find
a matrix E ∈ R|V |×d, where V is the vocabulary, e.g. finite set of text
units (words, most typically tokens obtained from a tokenizer), and d is the
dimension of the vector space we want to embed the text in. Each row of E is
a d dimensional vector representing a particular word from V . It is desirable
that the vectors in E carry some semantic structure, for example that vectors
for words "dad" and "father" are similar/close by.

These techniques only have one representation for each word, disregarding
the context it is used in, which is disadvantageous because meaning of a word
can change dramatically depending on its context.

2.2.1 word2vec

Technique presented by Mikolov et al. over two papers [MCCD13, MSC+13]
builds vector representations of words from a given vocabulary. This model
is designed as a shallow two-layer neural network trained on the Skip-Gram
task, which tries to predict the context (words) surrounding a word. This is
based on the assumption that the meaning of a word is strongly related to
its surrounding.

The shallow neural network contains a linear layer of the shape (# words
in vocabulary × output vector dimension), as it is a projector from one-hot
encoding of words in the vocabulary to the vector space into which we want
to project the words. The resulting weight matrix extracted from the layer
dictates the vector embeddings for each word, as each row of the matrix is
the vector representation of each word.

4



................................ 2.3. Contextual embeddings

A downside of this technique that it does not handle out-of-vocabulary
words.

2.2.2 fastText

Improvement of word2vec by Bojanowski, Grave, Joulin and Mikolov
[BGJM17], with the goal of enriching the vector representations with sub-
word information.

To achieve this, the words are broken into bags of overlapping character
n-grams, which are n -tuples of characters, for example, the word "where"
using n = 3 would be tokenized into a bag of triples "<wh", "whe", "her",
"ere", "re>". The symbols "<" and ">" denote the start and end of a word,
respectively.

A word is then represented as a bag of these n-grams, upon which a Skip-
Gram task is trained, as in word2vec. The final word embeddings are sums
of the learned vectors of each n-gram the word is comprised of.

Using n-grams enables fastText to represent even unknown words in addi-
tion to understanding prefixes and suffixes.

2.3 Contextual embeddings

Although global embeddings brought much success in dealing with NLP
tasks, their inability to take the context of a token into account limits their
usability, as each token only has one vector representation.

Contextual embeddings take the whole sequence into account to create
an embedding of a token from the sequence, e.g. the contextual embedding
e of the i − th token in sequence s is obtained as a function of the whole
sentence, e.g. esi = f (s1, s2, ..., sn). The contextual embedding function
f usually includes some non-contextual token embedding as a first step
to transform the text into some meaningful vector space upon which the
contextual representation is built (as noted by Liu, Kusner and Blunsom
[LKB20] in their survey on contextual embeddings).

ELMo. Model by Peters et al. [PNI+18] which creates contextualized em-
beddings by using a bidirectional Language Model, based on LSTMs (a kind
of RNN, introduced by Hochreiter and Schmidhuber [HS97]). The bidirec-
tional model is created by concatenating vectors from an L-layer left-to-right

5



2. Related Work.....................................
(forward) LSTM and an L-layer right-to-left (backward LSTM). The final
contextual embedding for a token is then created as a task-specific affine com-
bination of all L hidden concatenated vectors. In the paper, ELMo-produced
embeddings are typically used concatenated with the global embedding of the
same tokens so that both representations can be used to possibly strengthen
the downstream tasks.

GPT. GPT by Radford, Narasimham, Salimans and Sutskever [RNSS18] is
one of the first approaches to successfully apply transfer learning in an NLP
setting. The main model is based on a part of the Transformer architecture
(by Vaswani et al. [VSP+17], see section 2.4), specifically its core is a stack of
Transformer Decoders (see section 2.4.2), which are left-to-right components,
where tokens can only attend to its left context. This architecture, combined
with a two-stage training process, where the model is pretrained on an
unsupervised Language Modelling task and then fine-tuned on a supervised
downstream task, yielded state-of-the-art results on many NLP tasks.

GPT2. Followup work by Radford et al. [RWC+19] is architecturally the
same as GPT, but the model is larger and is trained on a much larger
dataset, called WebText, which was created by scrapping outbound links from
Reddit. In this paper, the authors posed that a Language Model pretrained
unsupervised on a vast amount of text begins to learn some common NLP
tasks without specific direction to do so. They validated this by using GPT2
on ten NLP datasets in a zero-shot setting, and the model performed strongly
on several of them, which shows the potential of unsupervised pretraining of
large models on very large datasets.

BERT. Compared to GPT, which attends to the left context, and ELMo,
which although it is bidirectional does not include interactions between the left
and right context, BERT by Devlin, Change, Lee and Toutanova [DCLT18]
is an innately bidirectional model which can consider information from both
contexts at the same time. Similarly to GPT, the strength of this model
lies in its ability to be successfully used in transfer learning, with a similar
workflow of long pretraining on large unlabeled text datasets and much less
computationally demanding supervised fine-tuning. It’s architecture is based
on Transformer Encoders (see section 2.4.2). Its input/output format is
flexible, allowing it to easily integrate into various downstream tasks, where it
achieved many state-of-the-art results. The model is explored in more detail
in section 2.5. Due to its surprising empirical strength, many variants of
BERT were created after the release of the original paper.

6



..................................... 2.4. Transformer

2.4 Transformer

Introduced by Vaswani et al. [VSP+17], the Transformer is a Neural
Network architecture primarily designed for sequence-to-sequence tasks (such
as translation), with the goals of improving performance over Recurrent
Neural Network (RNN) models. This is achieved by relying solely on Attention
instead of using recurrence.

2.4.1 Attention

Attention (originally introduced by Bahdanau, Cho and Bengyo [BCB14])
is a mechanism to handle long-term dependencies which allows the neural
network to attend to specific parts of the input for the current token. A
high-level example is figuring out what subject the word "it" refers to in the
sentence "The chicken crossed the road because it was hungry.".

The attention function can be described as a mapping from a query and
a set of key-value pairs to an output, which is a weighted combination of
values, weighted by the softmax of the product between the query and key
corresponding to a particular value.

Scaled Dot-Product Attention

The specific Attention used in the Transformer, called scaled dot product
attention, can be seen in eq. (2.1), where Q ∈ Rn×dq , K ∈ Rm×dq , V ∈ Rm×dv ,
dq, dv, n,m ∈ N. dq is the dimensionality of the query and key vectors, dv is
the dimensionality of value vectors, and n,m are counts of query and key &
value vectors respectively. The attention output is of the shape n× dv.

Attention (Q,K, V ) = softmax
(
QKᵀ√
dq

)
V (2.1)

The query-key dot product is scaled by 1√
dq

to counteract the possible
magnitude of high-dimensional dot-products before applying softmax, to
prevent pushing the function into extreme regions.

7



2. Related Work.....................................
Multihead Attention

The transformer model internally works with vectors of some dimension dm,
but instead of just using attention directly with dq = dv = dm, the authors
found it beneficial to use multiple separate attention heads, with their own
representational space and concatenate their results together to get higher
quality attention mechanism.

MultiheadAttention (Q,K, V ) = Concat (head1, ...,headk)WO

where headi = Attention
(
QWQ

i ,KW
K
i , V W

V
i

) (2.2)

Where WQ
i ,W

K
i ∈ Rdm×dq , W V

i ∈ Rdm×dv for i ∈ {1, ..., k} are projection
matrices for each head, and WO ∈ Rk·dv×dm is the matrix projecting all the
concatenated attentions back into the dm dimensional space of the model.

In the paper, k = 8 attention heads were used, and the attention dimen-
sionality was set to dq = dv = dm

8

2.4.2 Encoder and decoder stacks

The Transformer is composed of a stack of encoder blocks and a stack of
decoder blocks. The whole architecture, including the inner details of the
encoder and decoder blocks, is shown in fig. 2.1.

Transformer Encoder. An encoder block is composed of two sublayers, first
is the Multihead Attention, where the block input vectors serve as queries,
keys, and values at the same time. The second layer in the encoder block is a
Fully Connected Feed Forward network, which comprises two linear layers
with ReLU activation between them. The input and output dimensions of
the FCFFN are dm, but the inner dimension between the two linear layers is
some dimension dff typically higher than dm. Each of the two sublayers has
a residual connection around it, and it is followed by layer normalization.

Transformer Decoder. A decoder block is very similar to the encoder block,
with additional multihead attention in the middle. The first sublayer in a
decoder block is again multihead attention, again having the block input
vectors serve as queries, keys, and values at the same time, with the difference
that the future positions are masked (decoder is mainly used for generating
text - translations, and cannot have access to following words, e.g., it attends
only to the left context). The second sublayer is another multihead attention,
but here the output of the encoder stack serves as the queries and keys, while

8
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Figure 2.1: Transformer architecture. Encoder block on the left and decoder
block on the right. Inputs to the middle multihead attention in decoder block
always come only from the top-most encoder in the encoder stack. Figure from
[VSP+17].

the output of the decoder self-attention serves as the values. The last layer in
the decoder block is the same Fully Connected Feed Forward network as in
the encoder. All sublayers have residual connections and layer normalization
applied to them.

2.5 BERT

The regular Transformer proved to be groundbreaking in the field of
sequence to sequence tasks, with its Encoder-Decoder architecture. Devlin,
Chang, Lee and Toutanova [DCLT18] posed that the Encoder stack from the
Transformer holds a lot of information about the language it is trained on
and could be used by itself as a general pretrained Language Model.

To that end, they have created BERT - Bidirectional Encoder Representa-
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tions from Transformer, which is a stack of Transformer Encoder blocks (see
section 2.4.2), pretrained on large unlabeled corpora. With just small task-
specific networks (often single-layer) attached to it and a bit of fine-tuning
on the specific tasks, it achieves state-of-the-art results on many NLP tasks
such as Question Answering, Textual Entailment, etc.

2.5.1 Architecture

Standard BERT is a stack of L Transformer Encoder blocks, with hidden
dimension dm, and the number of heads in multihead attention A. In the
paper, two configurations were explored the most, BERTBASE, with L = 12,
dm = 768 and A = 12, with a total of 110M parameters, and BERTLARGE,
with L = 24, dm = 1024 and A = 16, with a total of 340M parameters. The
hidden dimension dff of the FCFNN inside the encoder block was always set
to dff = 4dm.

Besides the stack of Transformer Encoders, BERT uses the WordPiece
tokenizer [WSC+16] and a single layer embedding the tokens into the dm
dimensional space the Encoder stack expects as input. Various layers/networks
can then be attached to the output of the Encoder stack for solving various
downstream tasks.

2.5.2 Pre-training

Two unsupervised training tasks were devised to pretrain the network so it
could be used as a general Language Model and enable the usage of BERT
for transfer learning in NLP.

The input representation for BERT was designed to be flexible to allow
for a large variety of downstream tasks. It accepts tokenized WordPiece
tokens, with each input token sequence prepended with the special [CLS]
(classification) token and ending with a special [SEP] token.

To handle sentence-pair task (where sentence is an arbitrary text sequence,
from a sentence or a larger chunk of text), the input for two sentences A, B
is constructed into a single token sequence as "[CLS] tokens of sentence A
[SEP] tokens of sentence B [SEP]".

After the construction of token sequences, each token is embedded into a
dm dimensional vector with which the network operates. Each of the token
embeddings gets summed with a positional embedding, coding the position
of each token in a sentence, and for sentence-pair tasks additionally summed

10
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with segment embeddings signifying whether the token belongs to sentence A
or B.

Masked Language Modelling (MLM)

The first pretraining task is Masked Language Modelling, originating from
the Cloze task [Tay53]. As BERT is bi-directional, each word (token) can
indirectly see itself, which would enable it to trivially predict each word.

To solve this problem, a certain percentage of input tokens gets replaced
by a [MASK] token, and the network is trained to predict the original word
present at the masked position. To predict the tokens, the final hidden vector
for the token to predict gets fed into a Softmax layer over the vocabulary.

The authors randomly masked 15% of non-special tokens (e.g., excluding
[CLS], [SEP]) during training, out of which 80% gets replaced with the
[MASK] token, 10% are replaced with a random token, and the remaining
10% is left unchanged. This is done to mitigate the mismatch between
pretraining and finetuning, as the [MASK] token never appears in the data
during finetuning.

Next Sentence Prediction (NSP)

As sentence-pair level tasks are very common in NLP, the Next Sentence
Prediction task was used as a simple pretraining task, data for which can be
trivially constructed from a large corpus of training text. During creation of
training data, for sentence A, sentence B is the actual sentence following A
50% of the time, and a random sentence otherwise.

To predict whether B is the following sentence, a shallow two-layer classifier
network is attached to BERT, consuming the final hidden vector corresponding
to the classification [CLS] token. This sort of pretraining conditions the
network to treat the [CLS] token as an aggregate sequence level embedding,
although without fine-tuning, the output of a [CLS] token only pretrained on
NSP is not an ideal sentence representation.

2.5.3 Fine-tuning

Joint end-to-end fine-tuning

After pretraining, BERT can be easily finetuned to specific tasks by ap-
pending task-specific output layers, which can be very small, typically even
single-layer.

11
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For sentence-level tasks, classifiers can be appended to the final hidden

vectors corresponding to the [CLS] token, e.g., for sentiment analysis, textual
entailment, etc. Work is also being done on using concatenations of the
hidden vectors from several last encoder blocks, instead of only using the
final hidden vector [DCLT18].

For token level tasks, e.g., Question Answering, Named Entity Recognition,
Sequence Tagging, etc., the per-token representations are passed into an
output layer.

Feature based fine-tuning

In cases where joint training of the whole stack of BERT and a more complex
downstream task solution, BERT can be used to precompute embeddings of
text sequences beforehand, which can then be fed as inputs to downstream
solutions. This can present significant computational savings, so input data
do not have to be processed multiple times.

Although not strictly necessary, it is better for this approach to perform
additional task-specific pretraining on the (NSP,MLM)-pretrained BERT
model to obtain better task-specific embeddings.

2.6 Sentence Embedding

For anomaly detection in logs, our goal is to embed whole log-lines into
some vector space. As a log-line can be thought of as a sentence, we want to
explore the various current sentence embedding approaches.

For global embedding methods, such as word2vec (section 2.2.1) and
fastText (section 2.2.2), the most commonly used approach is to average the
token embeddings for the whole sentence, with optional vector normalization
done prior to the averaging.

For contextual embeddings, there are more approaches that we will discuss
in this section.

2.6.1 Sentence BERT

Introduced by Reimers and Gurevych [RG19], Sentence BERT (SBERT) is
an approach for creating semantically meaningful sentence embeddings from
BERT-like models. The paper poses that the common practice of simply
taking the [CLS] token embedding, or pure averaging of all token embeddings

12
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for a sentence is not a good sentence embedding with regards to preserving
semantic meaning in the vector space, e.g., that semantically similar sentences
do not get mapped to similar coordinates.

The paper presents a supervised pretraining approach using a siamese and
triplet network architectures to solve this problem. The first modification is
the addition of a pooling layer onto the output of BERT, which can either
average the output token embeddings, select element-wise maximum for each
dimension over all output token embeddings, or output the embedding of the
[CLS] token.

The proposed approach to making SBERT presumes the existence of a
labeled dataset of sentence pairs or triples, which can have several formats,
depending on which the pretraining task is selected. The pretraining task
then dictates the model architecture. Depending on whether the dataset
consists of sentence pairs or triples, a siamese or a triplet model architecture is
chosen. The sentences are passed through BERT individually, and only after
an embedding is created for each of them is the objective function computed.
The sentences pass through the same BERT network, but the architecture
can be pictured as two or three separate BERT towers with tied weights,
outputs of which are then used as inputs to an objective function.

Classification objective. This pretraining task is used with datasets com-
prising of labeled sentence pairs (example labels can be the relationship
of the sentences, e.g. "contradiction", "entailment", "neutral"). A siamese
architecture is then used, creating embedding vectors a, b for the input sen-
tences, which are then concatenated together and also with their elementwise
difference |a − b|, and passed through a linear layer to softmax trying to
predict the correct label.

Regression objective. Given that a dataset contains sentence pairs labeled
with their distance (cosine similarity was used in the paper), this task again
uses a siamese architecture, producing embeddings u, v for the sentences, and
computing cosine distance of the embedding vectors. Mean squared error
is then minimized between the computed cosine distance and the labeled
distance.

Triplet objective. Given three sentences, a being an anchor sentence, p
being positive sentence, and n negative sentence, the task is to tune the
network to produce embeddings ea, ep, en such that ‖ea − ep‖ < ‖ea − en‖,
e.g., the distance between the anchor sentence and positive sentence is smaller
than the distance between the anchor and the negative sentence. This task
requires a triplet model architecture, e.g., three passes through the embedding
BERT network, one for each sentence.

13
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These pretraining approaches are shown to produce quality sentence em-

beddings by achieving top results on several benchmark datasets for sentence
embedding, dealing with Semantic Text Similarity, clustering, and information
retrieval via semantic search.

The downside of this approach is the necessity to have a quality labeled
sentence-pair dataset, which is not always feasible. Although there are
approaches for creating higher quality labeled datasets by augmentation and
automatic labeling, as explored in Augmented SBERT by Thakur, Reimers,
Daxenberger and Gurevych [TRDG20], these techniques still require the
existence of at least a small labeled sentence pair dataset.

2.6.2 Unsupervised sentence embedding pretraining tasks

Given sentence embedding applicability for large-scale semantic search,
several pretraining tasks were explored by Chang et al. [CYC+20] in the
context of query-document search.

Their explored task was to find a set of relevant documents from a large
corpus given a query (usually a natural language sentence). This problem can
be solved by embedding the query and documents in the same vector space
which captures the semantic meaning and finding the documents closest to
the query in the vector space.

Their proposed architecture is to create two separate encoders, one for
the queries and one for the documents. In the paper, each encoder was an
instance of a BERT network with a linear layer applied to the output of the
[CLS] token. The BERTs did not share parameters.

They present three pretraining tasks, the Inverse Cloze Task (ICT), Body
First Selection (BFS), and Wiki Link Prediction (WLP). BFS and WLP are
original pretraining tasks from [CYC+20]. The training data for each of the
tasks is presumed to consist of positive query-document pairs, e.g., the data
consists only of pairs of documents and queries that relate to each other.

Formally, they are trying to maximize the log likelihood of a document
given a query, e.g. max∑(q,d)∈T log p (d | q), where p (d | q) is the softmax of
similarity scores between the query q and the correct document d in relation
to the similarity of q with all other documents d′ (which present the negative
examples) in the training data.

Computing this full softmax is very expensive because of the need to
compute the similarity between all training documents and the current query.
To get around this during training, Sampled Softmax is employed, where the
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negative examples are the other documents present in the same mini-batch
of training query-document pairs.

Inverse Cloze Task (ICT). Given a passage of n sentences (for example a
paragraph), the query q is a randomly selected sentence from the passage,
and the document d is the remaining n− 1 sentences from the passage. This
task captures the semantic meaning of a sentence related to its surrounding
context. It was originally proposed by Lee, Chang and Toutanova [LCT19].

The remaining tasks were created specifically with the usage of Wikipedia
as the source dataset.

Body First Selection (BFS). To capture non-local semantics outside of a
contiguous passage of sentences, this task selects the query q as a random
sentence from the first paragraph of a Wikipedia page, and the document d
is a random passage from the remainder of the same Wikipedia page. Given
that the first paragraph on a Wikipedia page is usually a summary, this task
is expected to capture core semantics of the text.

Wiki Link Prediction (WLP). To capture even longer-range semantics, the
query q is again selected as a random sentence from the first paragraph of
a Wikipedia page, but the document d is selected as a passage of text from
a different Wikipedia page containing a hyperlink to the page the query q
comes from.

Training data for each of the tasks were generated from Wikipedia articles,
but can be generated from other data sources without too much hassle for un-
supervised sentence embedding pretraining. ICT is the most straightforward
pretraining task to apply to various source datasets.

The authors pretrained the query and document encoders using a mixed
dataset consisting of data from all three tasks and evaluated their approach on
common Question Answering benchmark datasets, where they have achieved
state-of-the-art results, beating previous techniques.

2.7 Anomaly Detection

Anomaly Detection techniques are methods for detecting anomalous data
points in various kinds of data. Typical applications include fraud detection
in finances, preventing cyberattacks by analyzing traffic, et cetera. It is also
an important tool when working with large-scale computer systems, where
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detecting unwanted anomalous behaviour in log-files quickly is very desirable
to prevent system interruptions and maintain high service availability.

Anomaly detection methods can be categorized into supervised, semi-
supervised, and unsupervised methods depending on the kind of needed
training data.

Supervised anomaly detection methods assume that there exists a label
for each training point specifying whether it is anomalous or not. These
methods typically try to model both anomalous and normal data. Although
supervised methods are typically the best at detecting anomalies, collecting
the necessary training data is usually difficult. Typical supervised approaches
for anomaly detection are SVMs [LZXS07] and decision trees [CZL+04].

Semi-supervised anomaly detection method assumes that anomalous data
points are significantly different from normal data points. Using this as-
sumption enables them to only need normal data for training, which can be
significantly easier to obtain compared to fully labeled data. One-class SVMs
[SWS+99] and autoencoders [ZP17] are typical examples of semi-supervised
anomaly detection methods.

Unsupervised methods do not need labeled data and assume that anomalies
are infrequent compared to normal data and are intrinsically different so that
they can be detected. A typical unsupervised approach is the Isolation Forest
[LTZ08], which identifies anomalies by isolating them from normal data.

In the past few years, there have been various successes in using Deep Neural
Networks for anomaly detection. Du, Li, Zheng and Srikumar [DLZS17]
explore using LSTMs and custom log-parsing to detect anomalies.

Souček [Sou20] finds that using NLP approaches for log-parsing in conjunc-
tion with DNNs provides promising results. Specifically, fastText sentence
embeddings were used to embed log-lines into a high dimensional vector space.

Motivated by Souček’s findings, this thesis explores the effect of contextual
embeddings on the task of anomaly detection in log files. To isolate the effect
the contextual embeddings have, we will use the AETCN anomaly detection
method, from Koryťák’s [Kor21] exploration of neural network architectures
for anomaly detection in logs, as the single fixed anomaly detection method.

AETCN. Auto Encoder Temporal Convolution Network [Kor21] is a semi-
supervised anomaly detection method based on Temporal Convolutional
Networks [LFV+16] and Autoencoders. An autoencoder is a neural network
architecture trying to learn an identity function by learning to compress
an input vector with a high dimensionality dH into a hidden vector with
a low dimension dL, and then reconstruct the original vector of dimension
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dH from the dL dimensional hidden vector. The AETCN is a special kind
of autoencoder that works with sequences of data, which in our case are
embeddings of several log-lines, with the detector then predicting whether
the whole sequence is anomalous or not. The AETCN anomaly detection is
trained on normal data, and it is presumed that the reconstruction error on
them will be low. To detect anomalies, a threshold on the reconstruction error
is used, such that any vectors with a higher reconstruction error than the
threshold will be classified as anomalous. The threshold selected is typically
one which maximizes the F1-score (defined below, see eq. (2.5)) on a validation
dataset.

There are three metrics typically used for measuring anomaly detection
quality - precision, recall, and F1-score, as known from binary classification,
with the anomalous label being the positive class.

Precision (eq. (2.3)) is the proportion of true detected anomalies from
all data points the detector labeled as anomalous. Recall eq. (2.4) is the
proportion of true detected anomalies from all truly anomalous data points
in the dataset. It is not recommended to only use precision or recall as an
observed metric, as for example it is possible to have perfect recall by labeling
all data as anomalous, while achieving very high precision by only labeling
very few very likely data points as anomalous.

As precision and recall usually have an inverse relationship, the F1-score
(eq. (2.5)) was devised to combine these two metrics, being defined as the
harmonic mean of precision and recall. The F1-score is a one-sided measure,
as it does not consider true negative counts at all, but in the context of
anomaly detection, where there is a heavy emphasis on the positive class, it
is used as a standard basic quality measure for comparing anomaly detectors.

precision = true positives
true positives + false positives (2.3)

recall = true positives
true positives + false negatives (2.4)

F1-score = 2 · precision · recallprecision + recall (2.5)
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Chapter 3

Solution design

To create contextual embeddings of log-lines, we propose to use BERT-like
architectures, as they are the current state-of-the-art methods in NLP tasks
and contextual sentence embeddings. In the rest of the thesis, we will use
the BERT model to mean any BERT-like network unless explicitly stated.

Using BERT models allows us to leverage pretrained network checkpoints,
which are saved weights of a BERT network already trained on large text
corpora. These checkpoints already contain some learned knowledge of
semantics of the language (or languages) they were trained on. Using the
pretrained checkpoint allows us to significantly shorten the training task for
learning the semantics of our log-line text data, as well as hopefully leverage
the language semantics already learned by the checkpoints, which were learned
during their long pretraining on large compute clusters.

3.1 Sentence encoder architecture

First building block of our solution is the design of a sentence encoder for
encoding log-lines. Our proposed architecture, which can be seen in fig. 3.1,
is inspired by Chang et al. [CYC+20] (see section 2.6.2).

Prior to feeding a log-line through a network, it must first be tokenized
(see section 2.1). Because we are using pretrained BERT checkpoints, we are
forced to use the tokenizer which was used to pretrain the given checkpoint.
As described in section 2.5.2, after tokenization each sentence is prepended
with the [CLS] token and appended with the [SEP] token before being fed
into a BERT network.

To create an embedding for a sentence (log-line), we feed its tokenized form
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BERT-like
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Figure 3.1: Proposed sentence (log-line) encoder architecture showing the
pipeline for a single sentence

through a BERT network, applying a pooling operation on the hidden state
vectors created by the network (usually only on the hidden vectors of the
last transformer block) followed by feeding the pooled vector through a linear
layer to transform the potentially differently sized vector from the pooling
operation to the chosen output dimension. The output of the linear layer is
the desired contextual embedding of a log-line.

Pooling

We use several pooling operations. The simplest one, which was used by
Chang et al. is the selection of the last hidden state vector corresponding to
the [CLS] token.

Another pooling operation we use is averaging last hidden state vectors of
all non-special tokens (e.g., vectors for all tokens except [CLS] and [SEP]), as
proposed by Reimers and Gurevych [RG19] (see section 2.6.1).

The last pooling operation we will explore is concatenation of hidden
vectors for the [CLS] token from the last n Transformer blocks the network is
composed of, which is an approach suggested by Devlin et al. [DCLT18] in
the original BERT paper.

3.2 Pretraining task - Inverse Cloze Task

To obtain meaningful log-line embeddings using our proposed sentence
encoder architecture, we must first pretrain it with a pretraining task seman-
tically meaningful for the "language" of log-lines. Such pretraining task must
be unsupervised, with the ability to easily generate the needed task data from
the large available corpora of raw logs from production systems.

Finding such a training task is difficult, as most tasks designed for sentence
embedding either need labeled datasets of pairs of sentences, labeled by either
the relationship of the sentences or even their numeric similarity (SBERT
[RG19] see section 2.6.1).

Even relaxing the need to have labeled datasets, other pretraining tasks,
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such as BFS and WLP (see section 2.6.2) require that some higher level
structures, such as paragraphs or links between source documents are present
in the raw data to create the training dataset. This makes them unsuitable
for use with raw log datasets, as logs are typically just a stream of log-lines,
not containing paragraph-like structures.

Considering that, we decided to use the Inverse Cloze Task ([LCT19], as
briefly described in section 2.6.2) as the pretraining task for log data, as it only
needs passages of sentences to create training data. To be able to use ICT, we
must make an assumption that related log-lines happen at similar times, e.g.,
we must presume semantic temporal-locality. Although in current large-scale
computer systems, many different things may be happening simultaneously,
we argue that given the nature of how log-lines are inspected manually, by
sequential examination, the assumption of temporal-locality does at least
partially hold.

Given a dataset of N positive target and context pairs T = {(ti, ci) | i =
1, ..., N}, the ICT objective is defined as maximizing the log-likelihood of the
conditional probability of a context c on the target t, as seen in eq. (3.1)

max
∑

(t,c)∈T
log p(c | t) (3.1)

The conditional probability is defined as a softmax in eq. (3.2), where C
is the set of all possible contexts, φ(x) and ψ(x) are the target and context
sentence encoders respectively.

p(c | t) = exp (φ(t)ᵀψ(c))∑
c′∈C exp (φ(t)ᵀψ(c′)) (3.2)

Computing the full softmax as in eq. (3.2) is infeasible. To get around this,
we employ the Sampled Softmax, where the contexts in the denominator are
taken only from the current batch of B pairs of targets and contexts. This
can be seen in eq. (3.3), where C′ is the set of contexts in the current batch
and |C′| = B.

psampled(c | t) = exp (φ(t)ᵀψ(c))∑
c′∈C′ exp (φ(t)ᵀψ(c′)) (3.3)

3.3 ICT pretraining data creation

To employ ICT, we need to have passages of several sentences to create
pairs of a target sentence and its context (known as query and document
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respectively in the nomenclature used in section 2.6.2, but we will use target
and context in the rest of this thesis). Assuming the temporal-locality
introduced above holds, we can create passages of n sentences by taking n
consecutive lines in the raw source log file and grouping them together to
create a single passage, to which we will refer to as a chunk.

3.3.1 Chunking log lines

The general chunking operation can be seen in eq. (3.4), taking an input
log file consisting of m lines, which is then chunked into C chunks of length
n, where C ∈ N0, C ≤ m

n and n ≪ m. This leads to not using the last (m
mod n) lines when Cn 6= m, e.g., dropping the last possible chunk, but we
argue that dropping a single chunk out of a very large number of chunks does
not matter, and it allows us to simplify further data preparation when we
have chunks of uniform length, although nothing is preventing us from using
chunks of uneven lengths.

(l1, ..., lm)︸ ︷︷ ︸
m log lines

→
(

(l1, ..., ln)︸ ︷︷ ︸
Chunk 1

, (ln+1, ..., l2n)︸ ︷︷ ︸
Chunk 2

, ..., (l(C−1)n+1, ..., lCn)︸ ︷︷ ︸
Chunk C

)
(3.4)

Alternative chunking. Although typically chunking is done on log-lines
which are ordered by time, if there is additional information, it can be
used to group log-lines into more related groups prior to chunking, such as
grouping the log lines belonging to the same machine or logs coming from the
same application. This depends on the kind of anomalies we wish to detect
and whether we presume that an anomaly can span multiple applications
/ machines / sessions or not. The HDFS1 dataset (section 4.1.1) contains
block IDs that can and were used for grouping during the creation of our
HDFS1-blocks ICT dataset (section 4.3.1).

3.3.2 Creating a target and context from chunk

We now need to obtain a target and a context for ICT. This is straightfor-
ward once we have a chunk. Given a chunk (l1, l2, ..., ln) containing n lines,
we select a positive integer i ≤ n, and select the target t = li, with the context
c being the remaining lines from the chunk, with the target line being kept in
only a small percentage of the time. This can be seen as two operations on a
chunk, with the target selection given an index being defined in eq. (3.5a),
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and context creation defined in eq. (3.5b).

GetTarget
(
(l1, ..., ln), i

)
= li (3.5a)

GetContext
(
(l1, ..., ln), i

)
=
{

(l1, ..., li−1, li+1, ..., ln), with probability p.
(l1, ..., ln), otherwise.

(3.5b)

The context c contains the target li with a small probability. This is done
to increase the possible semantic similarity between the target and context
vectors (after the target and contexts have been encoded by a sentence
encoder). But the context c does not contain li with probability p, with p
being a high probability, in our experiments set to p = 0.9.

Each chunk can be (and is) used for creation of multiple target-context
pairs by selecting a different target log-line from the chunk each time.

3.3.3 Tokenization and final preprocessing of target and
context

Tokenization. After chunking and creation of targets and contexts from
chunks, the data still needs to be tokenized to enter the sentence encoder.
This is straightforward with the target sentence, as it can be tokenized straight
away and sent through the sentence encoder. The context needs a bit more
care, as it is a list of sentences. Each sentence in the context is tokenized
as usual into a list of tokens, which are then collected into a list of lists of
tokens, representing the tokenized context.

Flattening of tokenized context and truncation

BERT models have a maximum tokenized input sentence length, and
therefore very long tokenized sentences need to be truncated. Tokenized
target sentences are simple, if they are over the limit (which is usually not
the case for a single log line), they are simply truncated to the maximum
input length, and the rest is thrown away.

The situation is more complicated with tokenized contexts, as they are not
a flat list of tokens, but a list of tokenized representations of each context
sentence. Therefore we need to decide on a flattening strategy in conjunction
with the maximum input length, as a context will typically have more total
tokens than the maximum input length.
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Concatenation to max length. The first strategy we use is simple, we
simply concatenate the tokenized context sentences one after another until
the maximum input length is reached, and the rest of the context is thrown
away.

Smart Length Averaging. Our other approach considers the maximum
input length and tries to uniformly represent each context sentence in the
flattened and truncated representation of the context. We want to compute
a threshold on the maximum amount of tokens to take from each sentence so
they fit into the maximum input length.

The simplest threshold T =
⌊

maximum input length
# of sentences in context

⌋
works when all sen-

tences in the context are long, but usually there are sentences shorter than
this initial threshold, so we want to find the maximum threshold on the
length of each sentence, such that the total length of all tokenized context
sentences after truncation by this threshold is as close to the maximum input
length as possible. The algorithm for finding such a threshold is described in
algorithm 1.

Algorithm 1 Compute Smart Average Threshold
1: function SmartAvgThreshold(contextLengths, maxLength)
2: n← Length of contextLengths, e.g. # of sentences
3: prevThreshold← Null
4: curThreshold←

⌊
maxLength

n

⌋
5: while curThreshold 6= prevThreshold do
6: short← {i | i = 1, ..., n , contextLengths[i] < curThreshold}
7: lenToDistribute← maxLength−

∑
i∈short contextLenghts[i]

8: cntMoreThanCurThresh← |{i | i = 1, ..., n , i /∈ short}|
9: prevThreshold← curThreshold

10: curThreshold←
⌊

lenToDistribute
cntMoreThanCurThresh

⌋
11: return curThreshold

After finding the smart average threshold T , we will concatenate all sen-
tences from the context, taking only up to T tokens from each sentence.

3.4 ICT pretraining architecture

To pretrain the log-line sentence encoder we need to create a larger com-
posite neural network to use the pairs of (target, context) created from our
raw log datasets, where target and context are both lists of tokens, e.g., the
context is already flattened and truncated by some method from section 3.3.3.
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Figure 3.2: Proposed ICT pretraining architecture

The (target, context) pairs are batched into batches of size B as follows.
(t1, t2, ..., tB) are the targets and (c1, c2, ..., cB) are the contexts for the current
batch. For each target ti, i = 1, 2, ..., B, the context ci is the positive example
for ti and the other contexts {cj , | j = 1, 2, ..., B, j 6= i} are the negative
examples for ti, as the sampled softmax from eq. (3.3) can be thought of as
performing a classification task with B classes.

The ICT network architecture can be seen in fig. 3.2. The network takes
three inputs for the current batch, the targets, the contexts and the correct
class labels k = (k1, k2, ..., kB), where ki is the index of the context cki

that
corresponds to the target ti. As we have described, due to the way we
create batches, the corresponding index ki = i, but we created our network
architecture in such a way that it could handle even different input batch
structures.

The targets and contexts for the current batch are then separately passed
through a Sentence Encoder (as described in section 3.1). The targets and con-
texts are all padded so they all have the same length within their group, result-
ing in inputs to the sentence encoders having shapes (B,max_tokenstarget)
and (B,max_tokenscontext) for the target and context encoder respectively,
where the max_tokensgroup is the maximum sequence length of the tokenized
sentence within each group in the current batch.

After padding and passing through the sentence encoders, the batch of
targets is encoded as T , and the batch of contexts is encoded as C, where
T,C ∈ RB×D, with D being the embedding dimension. These matrices are
then passed through a linear kernel, e.g. multiplied together into logits
L = TCᵀ, L ∈ RB×B, where each element Li,j is the similarity of target
embedding Ti to context embedding Cj .

The logits L are then passed together with the correct class labels k (correct
contexts) into a combined Softmax and Cross-Entropy layer, which computes

25



3. Solution design....................................
a single loss value for the entire batch of B targets and contexts, facilitating
the training of the ICT objective from eq. (3.1) using Sampled Softmax from
eq. (3.3).

We explore two possibilities for the Sentence Encoder training architecture,
one inspired by Sentence-BERT (see section 2.6.1), and one inspired Chang
et al. ([CYC+20], see section 2.6.2), which we call One Tower and Two Tower
architectures, respectively.

One Tower. This approach ties the weights of the target and context
Sentence Encoders, or in other words, uses the same Sentence Encoder to
encode both the targets and the contexts. This results in training a single
Sentence Encoder jointly embedding both target log-lines and their contexts
into a vector space. This is the same approach as used by Sentence-BERT
for encoding pairs of sentences into the same vector space. The advantage of
this approach is faster training due to only needing to train a single Sentence
Encoder. Furthermore, given our assumption that log-lines are related to
their surrounding contexts, embedding both the context and target using the
same encoder could result in it learning a good vector space representation of
the log-lines.

Two Tower. This approach directly corresponds to fig. 3.2, where the
Sentence Encoders for the targets and contexts are separate entities. This
approach is commonly used when training ICT together with tasks such as
BFS and WLP (see section 2.6.2). Using separate Sentence Encoders presents
greater flexibility during training, as the contexts and targets can have
different structures, and having Sentence Encoders tailored to each specific
case can present better embeddings for each. The resulting context and target
embeddings are still being jointly embedded into the same vector space due
to the loss function combining the outputs of both sentence encoders.

After training on the ICT task, the desired log-line Sentence Encoder is
the target Sentence Encoder (fig. 3.2) from the ICT network.

3.5 Evaluation on Anomaly Detection task

To evaluate how well our trained Sentence Encoders embed log-lines for
the downstream Anomaly Detection task, we will train an AETCN ([Kor21],
see section 2.7) anomaly detector with fixed training hyperparameters, so
that the only observed difference should come from the embeddings produced
by different Sentence Encoders.
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As AETCN is a sequence anomaly detection method, it expects the dataset
to be in the form of groups of log-lines, with the whole group being labeled
as either Normal or Anomalous. Given a labeled anomaly detection logs
dataset, we will divide it into training, validation, and testing splits. These
three splits will then be embedded from text log-lines into vectors by our
trained Sentence Encoder. It must be noted that although AETCN works
with groups of log-lines, no aggregation of log-lines is being done, the group
of strings gets transformed into a group of embeddings, line by line.

After embedding, the AETCN detector will be trained only on the embedded
groups from the training split which are labeled Normal. Then to detect
anomalies using AETCN we need to find a threshold on the reconstruction
error. It is selected to such a value which maximizes the F1-score (eq. (2.5))
on the validation split, as described in section 2.7.

Precision, recall, and F1-score are then computed on the testing split using
the threshold selected on the validation split. We will use these scores to
compare the embedding quality of different Sentence Encoders on the anomaly
detection task.

3.6 Overall solution design

Figure 3.3 on page 28 shows the overall structure of the whole solution.
The left part illustrates the bulk of our work and the topic of this thesis,
the unsupervised Sentence Encoder pretraining, while the right part shows
how the Sentence Encoder gets evaluated using the Semi-Supervised AETCN
Anomaly Detection method by Koryťák [Kor21].

The ICT pretraining operation, on the left side of fig. 3.3, in addition
to the shown inputs of the BERT checkpoint and the training data, also
encompasses the remaining training configuration for the Sentence Encoder,
such as pooling strategy and which ICT architecture was used. They are not
shown to prevent unnecessarily cluttering the figure.

The different coloring of some operations, such as AETCN Training, on
the right side of fig. 3.3, which shows the Anomaly Detection flow, signifies
which parts of the solution we cooperated on with Koryťák. The Split of
the anomaly detection datasets was cooperated such that we could easily
compare our Anomaly Detection scores, because we used the same HDFS1
anomaly detection dataset (as described in section 4.2).

The AETCN Training and Find threshold operations were provided by
Koryťák when providing the whole AETCN architecture, as described in sec-
tion 3.5. The Anomaly Detection Task Evaluation producing the performance
metrics was also coordinated upon for easier model comparisons.
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Figure 3.3: Overall solution design showing Sentence Encoder training and
subsequent Anomaly Detection evaluation. Blue nodes show objects, orange and
red nodes show operations. Orange nodes are our work, while red nodes were
done in cooperation with Koryťák [Kor21]
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Chapter 4

Datasets

4.1 Raw Datasets

HDFS1 HDFS2 Spark BGL Hadoop Zookeeper
Lines 11 175 629 71 115 180 33 236 604 4 747 963 393 431 74 380
Labels Per group1 - - Per line Per group2 -
Raw size 1.47GB 16.06GB 2.75GB 708MB 48.61MB 9.95MB

1 has anomalies labeled by block ids (per session)
2 has anomalies labeled by whole tasks

Table 4.1: Summary of raw used datasets

All of our datasets come from Loghub [HZHL20], which is a collection of
log datasets freely available for automatic log analysis research. We have
needed datasets for different purposes, some for ICT training data creation
and some for anomaly detection. This section briefly describes all of them.
The overview of all used datasets can be seen in table 4.1.

4.1.1 HDFS1

081109 203519 143 INFO dfs.DataNode$DataXceiver: Receiving block blk_
−1608999687919862906 src: /10.250.10.6:40524 dest: /10.250.10.6:50010

081109 203519 145 INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_
−1608999687919862906 terminating

...
081109 210201 32 WARN dfs.FSNamesystem: BLOCK∗ NameSystem.addStoredBlock:

Redundant addStoredBlock request received for blk_−2995535508265484441 on
10.251.194.129:50010 size 67108864

Listing 4.1: HDFS1 example log-lines

HDFS is the Hadoop Distributed File System designed to run on commodity
hardware to provide high availability and maintainability. This dataset
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4. Datasets.......................................
published by Xu et al. [XHF+09] was generated on a private cloud using
benchmark workloads. 3 sample log-lines can be seen in listing 4.1.

Each log in the dataset contains ’blk_NUMERIC_ID’, which is a block
ID using which log-lines can be grouped. This dataset is labeled, with the
anomaly labels being only available per block ID. The anomalies were labeled
manually using handcrafted rules.

The authors preprocessed this dataset such that each line of the raw text
file corresponds to a single log message, each having a timestamp and basic
message type at the beginning.

4.1.2 HDFS2

2016−10−22 13:28:13,176 INFO BlockStateChange: BLOCK∗ addStoredBlock: blockMap
updated: 10.10.34.30:50010 is added to blk_1075559733_1818909 size 160

2016−10−22 13:28:13,176 INFO org.apache.hadoop.hdfs.StateChange: DIR∗ completeFile: /
pjhe/test/42/_temporary/0/_temporary/
attempt_201610221328_0157_m_000155_26359/part−00155 is closed by
DFSClient_NON

MAPREDUCE_248870818_112
...
2015−08−21 11:16:17,538 INFO org.apache.hadoop.hdfs.server.namenode.SecondaryNameNode

: registered UNIX signal handlers for [TERM, HUP, INT]
2015−08−21 11:16:18,094 INFO org.apache.hadoop.metrics2.impl.MetricsConfig: loaded

properties from hadoop−metrics2.properties
...
2015−08−21 11:16:44,610 WARN org.apache.hadoop.hdfs.server.datanode.DataNode:

IOException in offerService
java.io.EOFException: End of File Exception between local host is: "mesos−master

−2/10.10.34.12"; destination host is: "mesos−master−1":9000; : java.io.EOFException;
For more details see: http://wiki.

apache.org/hadoop/EOFException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)

Listing 4.2: HDFS2 example log-lines

Second dataset from a Hadoop cluster, this one was collected by the
authors of Loghub [HZHL20] at the CUHK (Chinese University of Hong
Kong) compute cluster. Example raw lines can be seen in listing 4.2.

This dataset is unlabeled and available as raw log outputs captured from
32 DataNodes, one NameNode and one Secondary NameNode. Due to its
raw nature, a single log message can span multiple lines in this dataset,
and the log files do contain full exception stack traces and other multi-line
messages in addition to structured log messages containing timestamps and
other structured information.

The contents of log messages slightly differ by the node type they come
from, as there are 3 types of nodes in an HDFS cluster, a NameNode, serving
as the main coordinator node, a Secondary NameNode, which is offloading
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.................................... 4.1. Raw Datasets

some of the work from the NameNode, and a lot of DataNodes, which store
the actual data.

4.1.3 Spark

17/06/09 20:10:40 INFO executor.CoarseGrainedExecutorBackend: Registered signal handlers
for [TERM, HUP, INT]

17/06/09 20:10:40 INFO spark.SecurityManager: Changing view acls to: yarn,curi
17/06/09 20:10:41 INFO slf4j.Slf4jLogger: Slf4jLogger started
17/06/09 20:10:41 INFO Remoting: Starting remoting
17/06/09 20:10:41 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://

sparkExecutorActorSystem@mesos−slave−07:55904]
...
16/04/07 10:46:31 WARN executor.CoarseGrainedExecutorBackend: An unknown (mesos−

slave−24:43670) driver disconnected.
...
15/09/01 18:19:50 ERROR executor.CoarseGrainedExecutorBackend: Driver 10.10.18.32:65488

disassociated! Shutting down.

Listing 4.3: Spark example log-lines

Unlabeled dataset collected by authors of Loghub [HZHL20] at the CUHK
Apache Spark cluster, which is an analytics platform for big data processing.
Example logs can be seen in listing 4.3.

The logs have a clear timestamp and log level at the beginning of each
message, and due to the varied capabilities Apache Spark provides there is a
lot of variety in the following log texts.

4.1.4 BGL

− 1118271740 2005.06.08 R03−M1−N9−C:J09−U11 2005−06−08−16.02.20.600478 R03−M1−
N9−C:J09−U11 RAS KERNEL INFO 1 ddr errors(s) detected and corrected on rank 0,
symbol 25, bit 1

− 1118285722 2005.06.08 R15−M1−N6−C:J04−U11 2005−06−08−19.55.22.798062 R15−M1−
N6−C:J04−U11 RAS KERNEL INFO CE sym 14, at 0x06047860, mask 0x20

...
APPREAD 1117869872 2005.06.04 R04−M1−N4−I:J18−U11 2005−06−04−00.24.32.432192

R04−M1−N4−I:J18−U11 RAS APP FATAL ciod: failed to read message prefix on
control stream (CioStream socket to 172.16.96.116:33569

...
KERNDTLB 1118536327 2005.06.11 R30−M0−N9−C:J16−U01 2005−06−11−17.32.07.581048

R30−M0−N9−C:J16−U01 RAS KERNEL FATAL data TLB error interrupt

Listing 4.4: BGL example log-lines

Labeled dataset comprising of data on the operation of the BGL super-
computer, a system with over 131 thousand processors and 32TB of memory.
The dataset was collected by Oliner and Stearley [OS07]. Each log line begins
with an alert category, with normal (non-anomalous) messages starting with
the ’-’ symbol, as can be seen in listing 4.4. It contains lower-level (kernel,
networking) messages compared to other used datasets. Due to its simple
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4. Datasets.......................................
anomaly labeling strategy, it is not well suited for benchmarking anomaly
detection methods, as it can be easily learned, but it can be a good source of
unlabeled data.

4.1.5 Hadoop

2015−10−18 18:01:47,978 INFO [main] org.apache.hadoop.mapreduce.v2.app.MRAppMaster:
Created MRAppMaster for application appattempt_1445144423722_0020_000001

...
2015−10−18 18:01:53,744 INFO [AsyncDispatcher event handler] org.apache.hadoop.

mapreduce.v2.app.job.impl.JobImpl: job_1445144423722_0020Job Transitioned from
INITED to SETUP

...
2015−10−18 18:04:11,034 ERROR [RMCommunicator Allocator] org.apache.hadoop.

mapreduce.v2.app.rm.RMContainerAllocator: Container complete event for unknown
container id container_1445144423722_0020_01_000012

...
2015−10−18 18:05:27,570 WARN [LeaseRenewer:msrabi@msra−sa−41:9000] org.apache.

hadoop.ipc.Client: Address change detected. Old: msra−sa−41/10.190.173.170:9000 New:
msra−sa−41:9000

Listing 4.5: Hadoop example log-lines

Hadoop is a distributed big data processing platform capable of working
with very large datasets due to its MapReduce programming paradigm.

This labeled dataset was artificially created by Lin et al. [LZL+16] for
research on log clustering. It comes from a small cluster of 5 machines
running two benchmark MapReduce applications. Each log message contains
a timestamp and log level. Example log lines can be seen in listing 4.5.

The anomaly labels are provided per groups of log messages coming from
the same MapReduce subtask. The anomalies were artificially caused and
are of three types, Machine failure, Network failure and Disk full.

4.1.6 Zookeeper

2015−07−29 19:37:19,676 − WARN [RecvWorker:188978561024:
QuorumCnxManager$RecvWorker@765] − Interrupting SendWorker

...
2015−07−29 21:01:41,504 − INFO [NIOServerCxn.Factory:0.0.0.0/0.0.0.0:2181:

ZooKeeperServer@839] − Client attempting to establish new session at
/10.10.34.19:33425

2015−07−29 21:34:45,452 − INFO [CommitProcessor:1:ZooKeeperServer@595] − Established
session 0x14ed93111f20027 with negotiated timeout 10000 for client /10.10.34.13:37177

...
2015−07−29 23:44:28,903 − ERROR [CommitProcessor:1:NIOServerCnxn@180] −

Unexpected Exception:

Listing 4.6: Zookeeper example log-lines
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Zookeeper is a service providing centralized configuration for a large amount
of distributed services within the Hadoop ecosystem. This dataset was
collected at CUHK by the authors of Loghub. [HZHL20]

This dataset is unlabeled and preprocessed in a way that each log-message
only spans one line. Each log message contains a timestamp and a log level,
example messages can be seen in listing 4.6.

4.2 Anomaly Detection Dataset

There are few high-quality labeled datasets for anomaly detection, which
could be used as benchmark datasets. From the datasets we presented, only
three are labeled, from which we have chosen only the HDFS1 dataset (see
section 4.1.1).

We have decided to drop BGL (section 4.1.4) as an anomaly detection
benchmark due to findings by Souček [Sou20], where it was found that due to
the automatic nature of anomaly label assignment, it is typically easy to learn
to detect anomalies based on the appearance of symbols such as "Warning"
or "Error". As we are interested in detecting more complex anomalies that
require understanding the semantics of the messages, BGL as a dataset mainly
used with methods that detect anomalies per log-line and do not employ NLP
is not interesting to us for anomaly detection.

We have also decided not to use Hadoop (section 4.1.5) dataset for anomaly
detection, even though it is not labeled per line, its simplistic automatic
labeling process makes it less appealing to us.

As described in section 4.1.1, the anomaly labels in HDFS1 are provided
per block and not per line. There are 575 061 blocks in the dataset, 16 838
of which are anomalous, which means that roughly 2.93% of all blocks are
anomalous.

HDFS1-Train HDFS1-Val HDFS1-Test Full HDFS1
Lines 9 051 028 1 004 865 1 119 736 11 175 629
Blocks 465 798 51 756 57 507 575 061
Anomalous blocks 13 639 1 515 1 684 16 838

Table 4.2: Training, validation and test splits of HDFS1

We have then split the HDFS1 dataset three ways into a training, validation,
and test split. The split was done such that no blocks were divided. The
anomalous blocks were uniformly distributed among the splits to preserve
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4. Datasets.......................................
the original distribution, e.g., around 2.93% of blocks in each split would be
anomalous. The split details are listed in table 4.2.

4.3 ICT Datasets

For the creation of ICT pretraining data for training sentence encoders we
do not need labels, as the raw lines from the datasets get transformed into
(target, context) pairs, as described in section 3.3. We have created 4 ICT
datasets, 2 based on HDFS1 and 2 created as a mixture of all the datasets
described in section 4.1.

4.3.1 HDFS1 based datasets

A common practice when creating embeddings, if the method needs training,
is to use a training split of the anomaly detection data for learning embeddings.
Therefore we created our first two datasets from the HDFS1 training split as
described in section 4.2.

Given the general three steps of ICT data creating, being chunking, target-
context pair creation, and then the context flattening-truncation step, these
datasets differ in how the chunks were created.

Both datasets were created to use chunks of 10 lines each. This was chosen
by examining the tokenized (see section 2.1) lengths of the log-lines after
using both kinds of tokenizers we used. BERT tokenizer resulted in an
average sentence length of 58 tokens, with a maximum length 129, while using
RoBERTa BPE tokenizer resulted in an average of 46, with a maximum 94.
Detailed histograms can be seen in fig. 4.1.

Using chunks of 10 lines will result in contexts usually having only slightly
more tokens than the maximum of 512 the base encoder models can accept.
Due to not usually having to truncate many tokens, and with relatively
low maximum tokenized lengths in the HDFS1 dataset, we decided to only
use the Concatenation to max token count context truncation strategy (see
section 3.3.3) for both derived datasets.

HDFS1-time

This dataset orders all log-messages by timestamp in ascending order to
simulate how log messages are usually collected. The data is subsequently
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Figure 4.1: Histograms of tokenized HDFS1 train sentence lengths

chunked and preprocessed for ICT as described in section 3.3.1) and following
sections.

HDFS1-blocks

As previously described in section 4.1.1, the HDFS1 log-lines contain block
IDs, which denote log lines relating to the same filesystem block. Logs about
the same block could be more relevant to each other, and it could be more
meaningful to create target sentences and contexts for ICT from chunks
containing log lines about the same block.

To explore this, we created this dataset by first grouping the log lines by
their block IDs and keeping them ordered by time within each group. These
log-line groups were then chunked, such that each chunk only contained log
lines with the same block ID. The remaining preprocessing steps are the same
as in section 3.3.

4.3.2 Mix datasets

Our other pair of ICT datasets was created to test whether a sentence
encoder can learn semantic embeddings by training on multiple different
sources of log data, not just on the log data on which anomaly detection is
then performed.

Another factor contributing to our decision to create a mixed dataset were
the surprising anomaly detection experiment results, where sentence encoders
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HDFS1-Train HDFS2 Spark BGL Hadoop Zookeeper

Lines 570 000 2 280 000 2 280 000 570 000 373 690 70 600
Chunks 57 000 228 000 228 000 57 000 37 369 7 060
Proportion 9,28% 37,11% 37,11% 9,28% 6,08% 1,15%

Table 4.3: Composition of the Mix dataset
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Figure 4.2: Histograms of tokenized Mix dataset sentence lengths

trained on HDFS1-time performed better than when trained on HDFS1-blocks
dataset (see section 6.2.2).

The dataset was created from all of the datasets from section 4.1, the
specific composition can be seen in table 4.3. For HDFS1, only the train
split as described in section 4.2 was used. We wanted to have data from
HDFS account for roughly 50% of the dataset, but with having a much larger
representation of the more varied HDFS2 data compared to HDFS1. The
other remaining datasets also come from other various distributed services,
except for BGL, which comes from a supercomputer and was included for
more variety.

The lines from the datasets could not be sampled outright because of the
need to create the (target, context) pairs for ICT. But we do not want to
just take the beginning of each log file. To solve this, we decided to chunk all
datasets first. The datasets had all of their lines ordered by time, and then
each dataset got partitioned into chunks of 10 lines, the same as for HDFS1
datasets.

The chunks themselves could then be randomly sampled, which resulted in
us having valid chunks for target and context creation, while also having log
lines from any part of the datasets, not just the beginning.
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We analyzed the tokenized lengths in this dataset to verify that the chunk
size of 10 was appropriate for this dataset. The histograms can be seen in
fig. 4.2. We found out that the average tokenized lengths were not much
higher than for HDFS1, with the average token length being 64 tokens when
using BERT tokenizer, and 53 when using RoBERTa tokenizer. But there is
a much higher variance of the tokenized lengths, with the maximum lengths
being over 512 tokens, which is the maximum length the base models can
accept and therefore were truncated to 512 tokens straight away.

For this reason we have decided to explore both context truncation methods
from section 3.3.3, as this truncation could have a higher impact on this
dataset compared to HDFS1.

Mix Concat. This is the version of the dataset using Concatenation to
maximum token count context truncation strategy

Mix SmartAvg. This version uses the Smart Average Threshold (see algo-
rithm 1) technique to find the fair truncation length for each log-line in the
context.
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Chapter 5

Implementation

The language Python1 3.7 [VRD09] was used for implementation of our
approaches described in chapter 3, along with most of the support scripts,
as it is currently the most widely used language for scientific computing and
Artificial Intelligence.

We have used the widely used machine learning library PyTorch [PGM+19]
for implementing our neural network architectures. In conjunction we have
used the Huggingface Transformers [WDS+20] library for the base imple-
mentations and source of pretrained model checkpoints of the various BERT
models we used within our Sentence encoders, as described in section 3.1.

For dataset preprocessing and manipulation, we have created our scripts in
Python, while also using the Huggingface Datasets [WLvP+20] library, which
provides a simple interface for manipulating very large datasets.

For anomaly detection, we were provided an AETCN anomaly detector
implementation by Koryťák [Kor21], which we’ve used for our experiments. It
is also implemented in Python using the PyTorch library. fastText2 [BGJM17]
was used to obtain baseline sentence embeddings for anomaly detection
experiments.

The overall implementation follows the overall solution design described in
section 3.6, illustrated in fig. 3.3.

The access to the computational infrastructure of the OP VVV funded
project CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics”
is also gratefully acknowledged, which was used for running our experiments.

1https://www.python.org
2https://fasttext.cc/
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5. Implementation....................................
5.1 Sentence Encoders and ICT networks

Implementation of Sentence Encoders was straightforward and follows the
architecture described in section 3.1 without significant changes. We create a
Sentence Encoder class for each pair of base BERT-model type and pooling
strategy, list of which can be seen in section 6.1.

The One Tower and Two Tower ICT training network implementations also
closely follow their descriptions in section 3.4. Our initial implementation for
training on the ICT task presumed the dataset was in the form of chunks,
and the creation of targets and contexts from chunks was done on the fly
during training.

Although this is convenient, our experiments have shown that generating
targets and contexts on the fly significantly slows down the training process.
Therefore we have decided to redo our training implementation so that it
accepts datasets already containing the (target, context) pairs. Although this
means preparing the ICT data in advance, the training speed was increased
threefold.

5.2 ICT data pipeline

The implementation follows the steps described in section 3.3. Initially, we
have only needed to tokenize and chunk (and in the case of HDFS1-blocks
also group) the raw input log-lines, with the target and context creation being
done online at training time.

During this stage we have discovered a bug in the Huggingface Datasets
library, which has significantly slowed down the chunking process. This has
led us to reimplement the chunking without the use of the library, such that
it was done in-memory. This has resulted in a 72-fold speedup in chunking.
We have reported the issue on Huggingface Datasets GitHub, and a fix for
our issue was merged, although only after we have already completed our
experiments.

After we decided to prepare the whole ICT dataset ahead of time, we have
also implemented the (target, context) creation and context flattening steps,
which did not present any issues. Preparing the ICT dataset ahead of time
also meant selecting training epochs ahead of time. This is implemented by
selecting as many different targets from each chunk as there are epochs. This
also means that we cannot use more epochs than there are lines in a chunk if
we do not want to have duplicate training data.
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5.3 Anomaly Detection pipeline

Implementation of anomaly detection experiments was straightforward.
After a Sentence Encoder has been trained, we have created a data pipeline
which uses the Sentence Encoder to embed the training, validation, and testing
datasets needed for anomaly detection ahead of time. Then we created an
experiment runner script which used the three embedded datasets to train
the provided AETCN [Kor21] detector on the train split, find the anomaly
detection threshold on the validation split and then compute the precision,
recall, and F1-score metrics on the test split. See the right side of fig. 3.3 for
illustration of this process.
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Chapter 6

Experiments

In this chapter we present the findings of our experiments. The chapter is
structured as follows. Section 6.1 describes the various configuration details,
and an overview of what kind of experiments were run. Section 6.2 presents
the main results of our experiments. Section 6.3 tests various hypotheses on
the performance of our Sentence Encoders using statistical hypothesis testing
methods.

6.1 Setup

We have trained a total of 72 different Sentence Encoders, with embedding
dimension D = 100. The experiments were run on the RCI computing cluster
employing the NVIDIA Tesla V100 GPUs with 32GB of VRAM. ICT training
time for each Sentence Encoder ranged from 14 to 22 hours, with the follow-
up Anomaly Detection experiments for each encoder taking further 4 hours,
including embedding time.

Sentence Encoder configurations

The encoders are of several basic types. Three building blocks describe
each Sentence Encoder - the base BERT model, the pooling strategy, and the
number of towers used for ICT pretraining.

We have used two base BERT models, both of which were smaller, distilled
versions of common large BERT models. Distillation, introduced by Hinton,
Vinyals and Dean [HVD15], is a process of training a smaller, so-called
student, neural network to behave the same as a larger teacher neural network.
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Distilling a network enables it to retain most of the accuracy of the original
network while being much smaller and executing much faster.

We have opted to use distilled BERTs to be able to explore more Sen-
tence Encoder architectures more quickly, as the computing requirements for
pretraining full BERTs are much higher.

The checkpoints we used were pretrained on English language corpora, as
our log datasets contain English text in them.

.DistilBERT - Checkpoint name distilbert-base-cased. Presented by
Sanh, Debut, Chaumond and Wolf [SDCW19] this base model is a
distilled version of BERTBASE model from the original BERT paper. Its
size is only 60% compared to the original, while retaining over 97% of
its performance on common benchmarks, while being over 60% faster. It
uses L = 6 Transformer Encoder blocks, compared to the original model’s
12. The model uses the same WordPiece (see section 2.1) tokenizer as
the original BERT. This model uses a case-sensitive tokenizer with a
vocabulary of 28996 tokens..DistilRoBERTa - Checkpoint name distilroberta-base. This is a distilled
version of the RoBERTa model, distilled by the authors of the Huggingface
Transformers library. It is the same size as the DistilBERT model. The
original RoBERTa was created by Liu et al. [LOG+19]. They set out to
replicate the original BERT paper [DCLT18] to find the impacts different
hyperparameter choices have on the final model. Their findings resulted
in a different training strategy for the network, using only the MLM task
(see section 2.5.2) and training the network for longer. This resulted
in creating RoBERTa, which surpassed BERT in the same benchmarks.
The model uses a case-sensitive BPE tokenizer with a vocabulary of
50265 tokens.

We have used the three pooling strategies as described in section 3.1. We
will use the following names for the strategies in the remainder of this chapter.

.Cls - This pooling strategy uses the output vector of the last transformer
block corresponding to the [CLS] token..Mean - This pooling strategy averages all the output vectors of the last
transformer block corresponding to non-special tokens, e.g., all tokens
except [CLS] and [SEP]. LastNCls - This pooling strategy is similar to the Cls strategy, but
it concatenates the hidden vectors of the last N transformers blocks
corresponding to the [CLS] token. In our experiments we’ve used N = 3.
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The pooling layer outputs vectors which usually have the same dimension-
ality as the hidden size dh of the BERT model, except for LastNCls, which
outputs vector with N · dh dimensions. The vectors are then passed through a
linear layer which transforms them from the pooling layer output dimension
to the desired final embedding dimension.

The Sentence Encoder can also be trained with either the One Tower
or Two Tower ICT architecture, which may be abbreviated to 1T and 2T
respectively in the remainder of this chapter.

This results in 2 × 3 × 2 = 12 possible Sentence Encoder types for each
training dataset configuration.

Dataset configuration

Each Sentence Encoder configuration was tested on six dataset configura-
tions, which can be seen in table 6.1.

Dataset Epochs Training pairs1

HDFS1-blocks 4 3 620 384
HDFS1-time 4 3 620 384
Mix Concat 3 1 843 264
Mix Concat 5 3 072 128
Mix SmartAvg 3 1 843 264
Mix SmartAvg 5 3 072 128

1 Total number of (target, context) training pairs
in a given configuration

Table 6.1: Dataset configurations for experiments

It must be noted that although timestamps in the log files were used for
ordering during chunk creation, all timestamps were removed from the datasets
prior to ICT pretraining and Anomaly Detection experiments. This was done
because handling time-based features for log-lines is typically handled by
different automatic methods, using log-message templates, etc. This is done
so that only the remaining text information is passed into NLP methods.
For anomaly detection, after creating NLP embeddings, it is common to
concatenate these vectors with the extracted time-based features prior to
executing the anomaly detection task. This is the approach explored by
Souček [Sou20].
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ICT training configuration

We have used batches containing 32 (target, context) pairs, which means
that each target will have 31 negative examples when employing the Sampled
Softmax from eq. (3.3). We have wanted to use larger batch sizes, but a
batch size of 64 did not fit into memory, so we used 32 due to the general
recommendation to use powers of 2 batch sizes, which usually work best for
current GPU architectures.

We did not use gradient accumulation, which is a common approach to sim-
ulate larger batch sizes in memory-constrained environments. Although our
task when using Sampled Softmax is reminiscent of performing a classification
task with batch_size classes, because the classes are the contexts which differ
for every batch, implementing gradient accumulation is not straightforward.

Anomaly Detection configuration

For the anomaly detection experiments using AETCN, we have used hy-
perparameters found by Koryťák [Kor21]. They have run neural network
architecture grid search to find the AETCN hyperparameters maximizing the
F1-score while using fastText embeddings of the same dimension D = 100
as our sentence encoders. Although the architecture was not tuned for each
specific embedding, we do not expect it to be of large importance due to the
embeddings having the same dimensionality.

The used AETCN architecture consists of a TCN [LFV+16] encoder with
142 filters, which is followed by two linear layers, creating the autoencoder
bottleneck, with the inner dimension between them being 1246. Finally, the
network ends with a TCN decoder with 100 filters.

As our HDFS1 anomaly detection dataset (section 4.2) is labeled per block
(see section 4.1.1), our anomaly detection experiments were also designed to
predict anomalies per block, instead of per line.

The data flow (roughly illustrated in fig. 3.3) for anomaly detection is
as follows. Given a block of n log-lines from the dataset (l1, l2, ..., ln), each
log-line is then embedded using a pretrained Sentence Encoder into a D = 100-
dimensional vector individually, and the block is then a collection of n D-
dimensional vector (e1, e2, ..., en), where each ei ∈ RD. The whole embedded
block is then used as a matrix B ∈ Rn×D, where each row i of the matrix B
is the embedding ei of log-line li. The matrix B is then fed as an input to the
anomaly detector, which the predicts either a Normal or Anomalous label.
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6.2 Results

Here we present summarised results of all of our 73 experiments (including
the baseline). Each results table will contain an overall rank column which
signifies the concrete method’s ranking among all of our experiments. The
full table with all experimental results can be found in appendix B.

6.2.1 Baseline

Our baseline was running AETCN on the HDFS1 anomaly detection
dataset (section 4.2) using log-line sentence embeddings produced by fastText
[BGJM17] with dimension D = 100, learned from the HDFS1-train split. The
baseline scores can be seen in table 6.2

Overall rank Model Precision Recall F1-score
1 fastText 0.7768 0.9365 0.8492

Table 6.2: Baseline anomaly detection scores using fastText

6.2.2 HDFS1-blocks and HDFS1-time

Our first experiments were trained on the HDFS1-based datasets for four
epochs on both. The overall results can be seen in fig. 6.1, with overall
violinplots in the background for BERT types, showing the quartiles, while
also showing each experiment result, colored by its pooling type. The results
for the best three models can be seen in table 6.3a for HDFS1-blocks, and in
table 6.3b for HDFS1-time.

The results were surprising to us, with the encoders trained on HDFS1-
blocks performing worse than those trained on HDFS1-time. We have expected
to find models trained on HDFS1-blocks to perform better, as the chunking
procedure used when creating HDFS1-blocks creates chunks of lines related
to the same block and should theoretically be closer in usage to the way the
anomaly detection task is handled - per block.

We hypothesize that this low performance when training on HDFS1-blocks
could be caused by the Sentence Encoder paying too much attention to the
block ID. We explore this in section 7.1.

On the other hand, the good results for HDFS1-time trained encoders
encouraged us that our choice to pretrain using ICT seems to be valid,
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Figure 6.1: F1-scores when trained on HDFS1 datasets

Rank BERT Pooling Towers Precision Recall F1 % of
baseline

40 DistilBERT Cls 2T 0.7916 0.5392 0.6415 75.54%
46 DistilRoBERTa Mean 1T 0.5811 0.6722 0.6233 73.40%
59 DistilBERT Mean 1T 0.9747 0.4115 0.5787 68.15%

(a) : HDFS1-blocks

Rank BERT Pooling Towers Precision Recall F1 % of
baseline

4 DistilBERT Cls 2T 0.7418 0.8052 0.7722 90.93%
18 DistilBERT Mean 2T 0.8449 0.6081 0.7072 83.27%
24 DistilBERT Mean 1T 0.7799 0.6188 0.6901 81.26%

(b) : HDFS1-time

Table 6.3: Best Sentence Encoders for HDFS1 datasets

with the best result achieving almost 91% of the accuracy of the baseline
embeddings. These results also encouraged us to create the Mix dataset
(section 4.3.2), to explore whether there are some innate log semantics that
could be learned by learning from multiple datasets.

Examining the results in fig. 6.1 we see that the DistilBERT base models
typically result in better embeddings, particularly for the HDFS1-time dataset,
where the difference is quite pronounced. DistilRoBERTa models perform
worse, but they still show some improvement when using HDFS1-time.

For the pooling strategies, it seems that for DistilBERT the best embeddings
are usually created by using Cls pooling, followed by Mean and the LastNCls.
The situation is different for DistilRoBERTa, where the Cls strategy is never
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the best.

We pose given that RoBERTa was not trained on the NSP task (see
section 2.5.2), which employs the [CLS] token, then the corresponding hidden
vector for it does not contain enough semantic information for the rest of
the sentence. It might be possible that RoBERTa produces higher quality
embeddings for the individual tokens, which might be the reason why the
Mean strategy performs better on HDFS1-blocks in fig. 6.1a. However, it may
not be as straightforward, as the same pooling is the worst for HDFS1-time
in fig. 6.1b. We explore whether Mean pooling is better than Cls pooling for
DistilRoBERTa models trained on any dataset in hypothesis1 H7

0.

From table 6.3a and table 6.3b we can also see that the Two Tower ICT
architecture produces the highest ranking encoders when training on the
HDFS1 datasets.

6.2.3 Mix datasets

Our second set of experiments was done by training on our Mix datasets
(section 4.3.2), which differ by using different context truncation strategies
(see section 3.3.3). We trained all 12 of our possible Sentence Encoder types
on these two datasets, each for 3 and 5 epochs, producing 48 total encoders.
The overall results can be seen in fig. 6.2. The best three models can be seen
in table 6.4a for Mix Concat, and in table 6.4b for Mix SmartAvg.

We see that encoders trained on these datasets typically perform better than
most of those trained on HDFS1 datasets. Unfortunately, none of our models
were able to match or surpass the baseline, with the Mix Concat trained
DistilBERT Cls encoder reaching the highest F1-score, which is 93.12% of
the baseline.

In fig. 6.2 we can compare the different truncation strategies on the datasets.
Although the best encoder was trained on the Mix Concat dataset, it appears
that training on Smart Average context truncated datasets results in slightly
better encoders. We verify this in hypothesis H3

0.

Generally we see the continuation of the trend that DistilBERT based
encoders perform better than the DistilRoBERTa ones, although even those
perform slightly better than most of the HDFS1 based encoders, with the
exception of the HDFS1-time trained DistilBERT encoders.

1All hypotheses can be found in section 6.3
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Figure 6.2: F1-scores when trained on Mix datasets

Rank BERT Pooling Towers Epochs Precision Recall F1 % of
baseline

2 DistilBERT Cls 1T 3 0.8882 0.7126 0.7908 93.12%
9 DistilBERT Mean 1T 5 0.8822 0.6538 0.7510 88.44%
11 DistilBERT Cls 1T 5 0.8920 0.6425 0.7470 87.96%

(a) : Mix Concat

Rank BERT Pooling Towers Epochs Precision Recall F1 % of
baseline

3 DistilBERT Mean 1T 3 0.9026 0.6770 0.7737 91.10%
5 DistilBERT Cls 1T 3 0.8604 0.6989 0.7713 90.82%
6 DistilBERT Mean 1T 5 0.8972 0.6740 0.7698 90.64%

(b) : Mix SmartAvg

Table 6.4: Best Sentence Encoders for Mix datasets

6.2.4 Overall results

In this section we present selected results pertaining to various possible
groupings of the Sentence Encoders.

In fig. 6.3 we see the comparison of F1-scores of sentence encoders trained
on the Mix datasets and the HDFS1 datasets. Each experiment is plotted as a
dot, with density estimation below it, with dashed horizontal lines dividing the
quartiles of the distribution. This figure shows us that training on varied log
datasets could lead to the encoders learning better language representations.
We test the hypothesis that using Mix datasets is better in hypothesis H1

0.
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Figure 6.5: F1-scores of different pooling strategies

In fig. 6.4 we see the comparison of sentence encoders using the different
BERT base networks. It would appear that in general DistilBERT based
encoders lead to better performance compared to DistilRoBERTa encoders.
We explore this in hypothesis H2

0.

Figure 6.5 shows the impact of using different pooling strategies. As we can
see in fig. 6.5a, when taking all possible encoder configurations into account,
there does not seem to be a marked difference in the F1-score distributions
between the pooling strategies. We test for the presence of a difference in
hypothesis H4

0.

Figure 6.5b shows a different story. When we restrict our considerations to
only the DistilBERT encoders, there seem to be differences in the performance
when using different pooling strategies, with the trend appearing to be that
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BERT Pooling Towers Precision Recall F1-score
DistilBERT Cls 2T 0.8269 0.6418 0.7177

1T 0.8797 0.6166 0.7170
Mean 1T 0.8829 0.6137 0.7170

2T 0.8663 0.5813 0.6891
LastNCls 1T 0.8809 0.5469 0.6697

2T 0.8791 0.5405 0.6647
DistilRoBERTa Cls 2T 0.8462 0.5165 0.6306

LastNCls 1T 0.7674 0.5394 0.6172
Mean 2T 0.8393 0.4922 0.6103
LastNCls 2T 0.8592 0.4716 0.6004
Cls 1T 0.8029 0.4868 0.5953
Mean 1T 0.7313 0.5203 0.5942

Table 6.5: Averaged metrics for Sentence Encoder type comparison, ordered by
F1-score

Cls is the best, followed by Mean, with LastNCls in the last place when using
DistilBERT encoders. We test whether the difference between the pooling
strategies is statistically significant for DistilBERT encoders in hypothesis H5

0.
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Figure 6.6: F1-scores of different ICT tower
counts

In fig. 6.6 we see the effect of
One Tower compared to Two Tower
ICT pretraining architecture, e.g.,
whether to use a single sentence en-
coder for embedding both targets
and contexts, or to use a dedicated
sentence encoder for each. We test
whether there is a statistically signif-
icant difference between the training
architectures in hypothesis H6

0.

Table 6.5 shows the average per-
formance of Sentence Encoder types,
where a type is a group of Sentence
Encoders with the same BERT base network, pooling strategy, and ICT
pretraining architecture. Each row in the table is an average of 6 sentence
encoders trained with the same configuration. Encoders within a group differ
by the dataset they were trained on.

From these aggregate results, we see that generally the best performing
sentence encoder type is a DistilBERT with Cls pooling, trained using a
Two Tower ICT architecture. It is closely followed by One Tower trained
DistilBERT types, with Cls and Mean pooling.
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6.3 Encoder hypotheses

In this section we present various hypotheses on the performance of using
various Sentence Encoders. All hypotheses are tested at the significance level
α = 0.05.

Hypothesis H1
0: The median difference in F1-scores between the encoders

trained on Mix datasets compared to those trained on HDFS1 datasets is
negative.

Alternative H1
A: The median difference in F1-scores is positive.

Paraphrasing the null hypothesis H1
0, it states that training on the Mix

datasets leads to worse performing encoders compared to training on HDFS1.
The distribution estimations are visualized in fig. 6.3.

We employed the non-parametric Mann-Whitney U test to test this hypoth-
esis, which was designed to compare distributions of different populations,
with possibly different sample sizes. Sample sizes differ in this case, as there
are 48 encoders trained on the Mix datasets and 24 encoders trained on
HDFS1 datasets.

Running the test, we obtained a p-value of 4.14 · 10−5, which leads us to
reject the null hypothesis H1

0 in favor of the alternative H1
A. We conclude

that training on Mix datasets generally leads to better performing encoders.

Hypothesis H2
0: The median difference in F1-scores between the Distil-

BERT based encoders compared to the DistilRoBERTa based encoders is
negative.

Alternative H2
A: The median difference in F1-scores is positive.

In other words, null hypothesis H2
0 states that DistilBERT encoders perform

worse than DistilRoBERTa encoders. The distribution estimates can be seen
in fig. 6.4.

We employed the one-sided Wilcoxon matched Signed-rank test. We used
this test because we could pair up each DistilBERT training configuration
with the corresponding DistilRoBERTa configuration. There were 36 matched
pairs of encoders.

Running the test resulted in a p-value of 2.47 ·10−7, leading us to reject the
null hypothesis H2

0 in favor of the alternative H2
A, meaning that DistilBERT

generally leads to better performing encoders compared to DistilRoBERTa.
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Hypothesis H3

0: The median difference in F1-scores between the encoders
trained on Mix SmartAvg dataset compared to those trained on Mix Concat
dataset is negative.

Alternative H3
A: The median difference in F1-scores is positive.

In other words, the null hypothesis H3
0 states that training on Mix SmartAvg

generally results in encoders with lower F1-scores, while the alternative says
that it results in higher F1-scores compared to training the same configuration
on Mix Concat.

To test this hypothesis we employed the one-sided Wilcoxon matched
Signed-rank test. We decided to use the matched test, as we have trained the
same encoder configurations on both kinds of datasets. We also have enough
samples - 24 encoders trained on each dataset.

Running the test resulted in a p-value of 0.004, which leads us to reject
the null hypothesis H3

0 in favor of the alternative H3
A. We conclude that

using Smart Average context truncation generally results in slightly better
encoders.

Hypothesis H4
0: The median F1-score is the same for each pooling method.

Alternative H4
A: The median F1-score differs between the pooling methods.

The null hypothesis H4
0 states that all pooling methods (see section 3.1)

result in encoders of similar quality, while the alternative says that some of
the pooling methods results in differently performing encoders. The density
estimation can be seen in fig. 6.5a

We have used the Friedman test, which is used when there are repeated
measurements of the same individual across different groups. As our encoder
configuration can be considered an individual, with the only difference being
the pooling method, we were able to create matched triples for each possible
Sentence Encoder configuration with each possible training configuration
(dataset, epochs), differing only in the pooling method. There were 24 triples,
e.g., 24 Sentence Encoders for each pooling type.

We have obtained p-value of 0.167, so we are unable to reject the null
hypothesis H4

0 that the F1-scores differ when using different pooling methods,
e.g., we are unable to say whether any pooling method is different from the
others.

Hypothesis H5
0: The median F1-score is the same for each pooling method

when only using DistilBERT based Sentence Encoders.

Alternative H5
A: The median F1-score differs between the pooling methods

for DistilBERT encoders.
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The null hypothesis H5
0 states that when using DistilBERT encoders all

pooling methods are the same. The density estimations can be seen in fig. 6.5b.
This hypothesis is the same as hypothesis H4

0, except we restrict ourselves to
only considering DistilBERT based encoders. As such, we have also used the
Friedman test, only this time there were only 12 triples.

We have obtained p-value of 0.002, which leads us to reject the null hy-
pothesis H5

0 in favor of the alternative H5
A, which means that the choice of

pooling method is important for DistilBERT based encoders.

Hypothesis H6
0: The median F1-score is the same for encoders trained using

One Tower architecture and those trained using the Two Tower architecture.

Alternative H6
A: The median F1-score differs depending on the training

architecture.

Null hypothesis H6
0 states that there is not a difference in the performance

of the encoders trained using One Tower training compared to those using
Two Towers. The density estimations can be seen in fig. 6.6.

This hypothesis was tested using the two-sided Wilcoxon matched Signed-
rank test. We were able to pair each training configuration using One Tower
architecture with its corresponding match using the Two Tower architecture.
There were 36 pairs.

The test produced a p-value of 0.987, which does not allow us to reject the
null hypothesis H6

0. We conclude that, in general, there was not a difference
in encoder quality based on the ICT training architecture.

Hypothesis H7
0: The median difference in F1-scores across all datasets

between the DistilRoBERTa based encoders using the Mean pooling compared
to corresponding encoders using Cls pooling is negative.

Alternative H7
A: The median difference in F1-scores is positive.

Null hypothesis H7
0 states that for all DistilRoBERTa encoders using Mean

pooling, trained on any datasets, the median F1-score is lower than for
DistilRoBERTa encoders using Cls pooling, e.g., that using Mean generally
leads to worse encoders, while the alternate hypothesis says that Mean pooling
leads to better DistilRoBERTa based encoders.

We again used the one-sided Wilcoxon matched Signed-rank test, as we
could create pairs of the same training configurations, with the only difference
being the pooling method. There were 12 pairs.

The test resulted in a p-value of 0.909, which does allow us to reject the null
hypothesis. This leads us to conclude that our initial guess in section 6.2.2 that
Mean pooling is better than Cls for DistilRoBERTa is most likely incorrect.
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Chapter 7

Exploration of model behaviour

In this chapter, we attempt to use current methods of explaining the
decisions made by black-box models to gain insight into the inner workings
of our Sentence Encoders. Specifically, in section 7.1, we explore why our
Sentence Encoders performed poorly on the HDFS1-blocks dataset, and in
section 7.2 we explore the predictions made by Anomaly Detection.

For both tasks, we use a technique called LIME (Local Interpretable Model-
agnostic Explanations), introduced by Ribeiro, Singh and Guestrin [RSG16].
LIME is a method of creating explanations for machine learning classification
models. It is a model-agnostic technique that works with any classification
models which outputs class probabilities.

It provides explanations for single instances, which it does by searching the
neighborhood of the instance to be explained by randomly perturbing it and
examining how to output probabilities change. An example of how perturbing
is typically achieved for text data is splitting the text by whitespace and
leaving out words in the text to see how the class probabilities change.

7.1 LIME explanation of HDFS1-blocks model
behaviour

As presented in section 6.2.2, the performance of models trained on HDFS1-
blocks seems to be much worse compared to HDFS1-time, even though
HDFS1-blocks should lead to creating targets and contexts with more related
log-lines for ICT (see section 3.2).

We hypothesize that this low performance when training on HDFS1-blocks
could be caused by the network paying too much attention to the block ID,

57



7. Exploration of model behaviour.............................
such that the block ID dominates the final contextual sentence embedding
meaning. The cause of this may be the fact that both the target and the
context texts contain the same block ID.

Setup

Exploring and explaining what has a Language Model (our Sentence En-
coders) learned is a difficult task, as Language Modelling by itself is not
a classification task, and such LIME is not applicable straight away. To
employ LIME, we decided to explore how the Sentence Encoder assigns the
probabilities of a target belonging to a particular context in the ICT task, as
ICT can be seen as a classification task.

During regular ICT training, the network is given B targets and B contexts,
with each target having its correct context. The network then tries to correctly
pair up each target to its context, which is done by assigning probabilities of
each context belonging to each target.

To employ LIME, we will restrict ourselves to exploring how the ICT assigns
probabilities for each context given only a single target. We have taken data
from the Anomaly Detection HDFS1 validation split, e.g., HDFS1 log-lines
which the Sentence Encoder has not seen during training, and preprocessed
them in the same fashion as HDFS1-blocks ICT pretraining dataset, e.g., that
the chunks from which targets and contexts are created only contain log-lines
with the same block ID.

We have then randomly selected B = 32 (target, context) pairs from this
dataset. Now we can employ LIME, using the 32 contexts as the classification
classes. We then used LIME to create explanations of how a target was
assigned its correct context.

We explored the behaviour of the best performing Sentence Encoder trained
on HDFS1-blocks, which was DistilBERT with Cls pooling trained using Two
Tower architecture. Because of the Two Tower nature of this model, we used
two Sentence Encoders, as this pretraining architecture produces two. One
for embedding targets and one for embedding contexts. Only the one for
embedding targets is used for the creation of contextual embeddings of log-
lines for Anomaly Detection task, but for LIME, we used the corresponding
encoders for the targets and contexts.

The class (context) probabilities are obtained similarly to the ICT pretrain-
ing illustrated in fig. 3.2. For a single target embedding t ∈ RD, where D
is the embedding dimension, and the contexts embeddings C ∈ RB×D, the
context probabilities p are obtained as follows. Treating t as a row vector, we
obtain logits l = tCᵀ, l ∈ RB. We use l to create probabilities p = softmax(l),
p ∈ [0, 1]B, with ∑B

i=1 pi = 1.
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Figure 7.1: LIME pre-
diction probabilities for
different context indices
for target 0

0.0 0.2 0.4 0.6 0.8 1.0

INFO
DataBlockScanner
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dfs
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blk_1585739181671941657

Local explanation for class 0

Figure 7.2: LIME explanation of the most influential words for
assigning target 0 to it’s corresponding context

LIME explanations

Here we present the LIME explanations for target with index 0 in our
selected batch, which has a corresponding context with index 0. We have
explored other indices, but the results were analogous. The target 0 can
be seen in listing 7.1, and it’s corresponding context 0 is seen in listing 7.2.
Although timestamps are present in the raw log-lines, they are removed
prior to both Sentence Encoder training and Anomaly Detection, for reasons
described in section 6.1.

INFO dfs.DataBlockScanner: Verification succeeded for blk_1585739181671941657

Listing 7.1: Target log-line with index 0 in our explored batch

INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block
blk_1585739181671941657 terminating

INFO dfs.DataNode$PacketResponder: Received block blk_1585739181671941657 of size
67108864 from /10.251.74.134

WARN dfs.DataNode$DataXceiver: 10.251.74.134:50010:Got exception while serving
blk_1585739181671941657 to /10.251.38.53:

INFO dfs.DataNode$DataXceiver: 10.251.74.134:50010 Served block blk_1585739181671941657
to /10.251.38.53

WARN dfs.DataNode$DataXceiver: 10.251.74.134:50010:Got exception while serving
blk_1585739181671941657 to /10.251.74.134:

INFO dfs.FSNamesystem: BLOCK∗ NameSystem.delete: blk_1585739181671941657 is added
to invalidSet of 10.251.106.214:50010

INFO dfs.FSNamesystem: BLOCK∗ NameSystem.delete: blk_1585739181671941657 is added
to invalidSet of 10.251.39.64:50010

INFO dfs.FSNamesystem: BLOCK∗ NameSystem.delete: blk_1585739181671941657 is added
to invalidSet of 10.251.74.134:50010

INFO dfs.FSDataset: Deleting block blk_1585739181671941657 file /mnt/hadoop/dfs/data/
current/subdir49/blk_1585739181671941657

Listing 7.2: Context log-lines with index 0 in our explored batch

Figure 7.1 shows the LIME output for prediction probabilities of the most
likely classes for target 0. In our case, the classes are the contexts, which are
represented in the figure by their index. We see that the probability of the
context with index 0 is 1, e.g., the network is certain that target 0 belongs to
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context 0, which is correct, and shows 0 probability for the other classes. It
being so sure is not a good sign, as we would expect the probabilities to be
more "fuzzy" (given the assumption that the contexts are not significantly
different).

Figure 7.2 gives us more insight into what words from target 0 influenced
the probability for context 0. LIME produces similar graphs for each of the
classes, e.g., for each context in the batch in our case. But except for this
graph, where we see that the block ID dominates all other words from the
target, other graphs had the effects of other words close to 0.

When trying to get explanations for the remaining targets i, the situation
was analogous to figs. 7.1 and 7.2, with the context i having probability 1 or
very close to it, and the explanation graphs showing the block ID being the
only word with significant impact.

All of this supports our hypothesis that models trained on HDFS1-blocks do
learn to only primarily represent the block IDs in their sentence embeddings.

7.2 LIME explanation of Anomaly Detection
predictions

We wanted to see whether we could also use LIME to explain the decisions
made by the Anomaly Detector. As the HDFS1 Anomaly Detection dataset
has labels per block (a group of log-lines with the same block ID), we wanted
to see whether LIME could be used to identify the most influential lines in a
block.

Setup

To employ LIME, we need prediction probabilities for the Normal and
Anomalous classes. The AETCN method we use unfortunately does not
provide the probabilities, as it works by thresholding the reconstruction error
and gives only binary output. To get around this, we decided to emulate
prediction probabilities by using a sigmoid curve with its midpoint at the
decision threshold, e.g., at the threshold, there is a 50% probability of the
block of log-lines being Anomalous or Normal.

We devised a translated sigmoid function τ αc , which can be seen in eq. (7.1),
where c is a parameter, such that τ αc (c) = 0.5, and α is the parameter such
that τ αc (0) = σ (α), where σ (x) = (1 + e−x)−1 is the classic sigmoid function.
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τ αc (x) = σ

(−α · (x− c)
c

)
(7.1)
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Figure 7.3: Translated Sigmoid for proba-
bility of the Normal class

We then used τ αc to create proba-
bilities for the Normal class (with the
Anomalous probabilities being the
complement) given the reconstruc-
tion error. Specifically, we used τ 7

th,
where th is the found threshold asso-
ciated with the currently examined
AETCN detector, e.g., such as thresh-
old which maximizes the F1-score on
the validation dataset, as described
in section 3.5. We used α = 7, such
that the probability of the Normal
class given the reconstruction error is
0 is 99.9%. The function can be seen
in fig. 7.3.

We also had to modify LIME’s text splitting algorithm, as usually it
removes whole words to create a neighborhood for the instance it is trying to
explain, but we wanted to examine the effect of whole log-lines. To achieve
that, we set LIME to split the input instance by the newline symbol, so when
passing it multiple log-lines as a single string separated by newlines, it would
treat whole lines as the building blocks.

LIME explanation

Here we present the anomaly detection explanations using embeddings
produced by the best Sentence Encoder, the DistilBERT with Cls pooling
trained using One Tower ICT on the Mix Concat dataset.

We will show the LIME explanations in detail only for block 8367791625462110565
from the HDFS1-validation dataset, to illustrate how LIME could be used for
understanding the anomaly detection prediction and identifying the important
log-lines within a block.

Block 8367791625462110565 contains 33 lines and has the Anomalous label.
We prefixed each line with its index for presentation purposes, but the model
did not contain the indices when passed to the model. The model correctly
identifies it as anomalous, with probability of 63%, when using our τ 7

th

function, e.g., the reconstruction error was slightly higher than the threshold.

Figure 7.4 shows the influence of specific lines on the classification. The
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Local explanation for class Anomalous

Figure 7.4: LIME explanation for block 8367791625462110565, showing the
influence of it’s lines on the Anomalous classification, with orange signifying
positive influence and blue negative.

influences are not probabilities, as by purely examining the figure, it would
seem that the block was classified as Normal. The numerical value of the
influences is the weight of the given line in the internal LIME model and only
represents the relative influence size of the different lines.

We can use these obtained weights from the internal LIME model to color
the individual log-lines in the block, to quickly judge which lines might be
causing the block to be Anomalous. This coloring can be seen in listing 7.3.
A quick glance shows us that the model identifies several INFO level lines
almost at the end, together with WARN lines at the end as the possible
culprits of what Anomalous behaviour happened in this block.
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....................7.2. LIME explanation of Anomaly Detection predictions

We see that this usage of LIME can help with diagnosing anomalies and
possibly save time for the engineers tending to the system. Nevertheless, the
method is not without issues. We found out that for blocks comprised of
only a few lines, LIME was not able to find any meaningful weights for them,
as there was not a large enough neighborhood around the instance to find
meaningful weights. A concrete example, given a block of 2 lines, there are
only 4 possible "neighbor" instances, one empty instance, only the first line,
only the second line, and the whole original block. This is not enough data
to generate an explanation, but this should not be an issue in the real world,
as a human can examine such a block themselves.

Another possible issue is that the weights need to be taken with a grain
of salt. The Anomaly Detection model itself is most likely not perfect, and
LIME works by trying to approximate it locally, e.g., caution must be taken
when interpreting the LIME explanations, as they are not guaranteed to hold
true.

Nevertheless, when taking the explanation uncertainty into account, we
pose that this usage of LIME can be a beneficial helping tool when diagnosing
anomaly detection predictions and whether they are trustworthy.

Listing 7.3: LIME coloring of each line in an anomalous block, which provides
visual aid to finding which log-lines contributed most to either Normal (blue) or
Anomalous (orange) classification

0|INFO dfs.FSNamesystem: BLOCK* NameSystem.allocateBlock: /user/root/randtxt/_tempora
ry/_task_200811092030_0003_m_000983_0/part-00983. blk_8367791625462110565

1|INFO dfs.DataNode$DataXceiver: Receiving block blk_8367791625462110565 src: /10.251.195.
33:57003 dest: /10.251.195.33:50010

2|INFO dfs.DataNode$DataXceiver: Receiving block blk_8367791625462110565 src: /10.251.195.
33:39521 dest: /10.251.195.33:50010

3|INFO dfs.DataNode$DataXceiver: Receiving block blk_8367791625462110565 src: /10.251.203.
166:32809 dest: /10.251.203.166:50010

4|INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.
203.166:50010 is added to blk_8367791625462110565 size 67108864
5|INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.
39.192:50010 is added to blk_8367791625462110565 size 67108864
6|INFO dfs.DataNode$PacketResponder: PacketResponder 0 for block blk_836779162546211056
5 terminating

7|INFO dfs.DataNode$PacketResponder: Received block blk_8367791625462110565 of size 67108
864 from /10.251.203.166

8|INFO dfs.FSNamesystem: BLOCK* NameSystem.addStoredBlock: blockMap updated: 10.251.
195.33:50010 is added to blk_8367791625462110565 size 67108864
9|INFO dfs.DataNode$PacketResponder: PacketResponder 1 for block blk_836779162546211056
5 terminating

10|INFO dfs.DataNode$PacketResponder: Received block blk_8367791625462110565 of size 6710
8864 from /10.251.195.33

11|INFO dfs.DataNode$PacketResponder: PacketResponder 2 for block blk_836779162546211056
5 terminating

12|INFO dfs.DataNode$PacketResponder: Received block blk_8367791625462110565 of size 6710
8864 from /10.251.195.33
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13|INFO dfs.DataNode$DataXceiver: 10.251.39.192:50010 Served block blk_836779162546211056
5 to /10.251.39.192

14|WARN dfs.DataNode$DataXceiver: 10.251.195.33:50010:Got exception while serving blk_836
7791625462110565 to /10.251.214.112:

15|INFO dfs.DataNode$DataXceiver: 10.251.195.33:50010 Served block blk_836779162546211056
5 to /10.250.5.237

16|WARN dfs.DataNode$DataXceiver: 10.251.203.166:50010:Got exception while serving blk_83
67791625462110565 to /10.251.214.112:

17|INFO dfs.DataNode$DataXceiver: 10.251.203.166:50010 Served block blk_83677916254621105
65 to /10.251.203.166

18|INFO dfs.DataNode$DataXceiver: 10.251.195.33:50010 Served block blk_836779162546211056
5 to /10.251.195.33

19|WARN dfs.DataNode$DataXceiver: 10.251.203.166:50010:Got exception while serving blk_83
67791625462110565 to /10.251.214.112:

20|INFO dfs.DataNode$DataXceiver: 10.251.39.192:50010 Served block blk_836779162546211056
5 to /10.251.39.192

21|INFO dfs.DataNode$DataXceiver: 10.251.203.166:50010 Served block blk_83677916254621105
65 to /10.250.5.237

22|WARN dfs.DataNode$DataXceiver: 10.251.195.33:50010:Got exception while serving blk_836
7791625462110565 to /10.251.214.112:

23|INFO dfs.DataNode$DataXceiver: 10.251.203.166:50010 Served block blk_83677916254621105
65 to /10.251.203.166

24|INFO dfs.DataNode$DataXceiver: 10.251.195.33:50010 Served block blk_836779162546211056
5 to /10.250.5.237

25|INFO dfs.FSNamesystem: BLOCK* NameSystem.delete: blk_8367791625462110565 is added
to invalidSet of 10.251.195.33:50010
26|INFO dfs.FSNamesystem: BLOCK* NameSystem.delete: blk_8367791625462110565 is added
to invalidSet of 10.251.203.166:50010
27|INFO dfs.FSNamesystem: BLOCK* NameSystem.delete: blk_8367791625462110565 is added
to invalidSet of 10.251.39.192:50010
28|INFO dfs.FSDataset: Deleting block blk_8367791625462110565 file /mnt/hadoop/dfs/data/c
urrent/subdir34/blk_8367791625462110565

29|INFO dfs.FSDataset: Deleting block blk_8367791625462110565 file /mnt/hadoop/dfs/data/c
urrent/subdir49/blk_8367791625462110565

30|INFO dfs.FSDataset: Deleting block blk_8367791625462110565 file /mnt/hadoop/dfs/data/c
urrent/subdir30/blk_8367791625462110565

31|WARN dfs.FSDataset: Unexpected error trying to delete block blk_8367791625462110565. Bl
ockInfo not found in volumeMap.

32|WARN dfs.FSDataset: Unexpected error trying to delete block blk_8367791625462110565. Bl
ockInfo not found in volumeMap.
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Chapter 8

Discussion

Here we present the main takeaways from our thesis, mainly from our
experiments (chapter 6) and hypotheses (section 6.3).

We have found out and statistically verified in hypothesis H1
0 that training

on Mix datasets produces better Sentence Encoders than training on HDFS1
datasets alone, showing the potential of BERT networks for learning semantics
hidden in varied textual data, even log lines.

We also obtained a statistically significant finding in hypothesis H2
0 that

DistilBERT based encoders perform better compared to DistilRoBERTa
encoders. We theorize that this difference could come from the different
pretraining approaches the original models employed, with RoBERTa not
having any pretraining task which would use the [CLS] token. Another factor
could be that RoBERTa has double the amount of tokens in its vocabulary,
which could mean that it may need to be trained for longer.

Another statistically significant finding stemming from hypothesis H3
0 is

that Smart Average context truncation strategy resulted in better encoders
compared to using the Concatenation to max tokens strategy. This could
point to the Sentence Encoder learning better by "seeing" the beginnings of
more sentences in a context compared to having fewer full-length sentences
in a context.

We have not been able to show in general whether using One Tower or
Two Tower ICT pretraining architecture is better (hypothesis H6

0), as usually
the performance of the resulting encoders was similar, with one approach
sometimes edging out the other in the same scenario and vice versa. We
theorise that our log datasets are not varied enough for the contexts to differ
enough semantically from the targets to fully utilise the flexibility offered by
having separate encoders for each. It may be the case that using One Tower
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may result in faster training of the Sentence Encoder, as it could be learning
semantics from both target and the context at the same time.

Similarly to ICT architectures, we have not been able to show whether
there is a difference between the pooling strategies (hypothesis H4

0). However,
we have been able to show that there is a difference in quality between
the pooling strategies when only considering DistilBERT based encoders in
hypothesis H5

0. Together with fig. 6.5b we found that for DistilBERT Cls
pooling is the best, followed by Mean, with LastNCls being the last.

None of our Sentence Encoders were able to beat the baseline fastText
embeddings, which achieved an F1-score of 0.85, while the best configuration,
DistilBERT with Cls pooling using One Tower ICT trained for 3 epochs on
Mix Concat dataset, achieved F1 of 0.79, being 93% of the baseline. When
averaging metrics over all training datasets in table 6.5, we found out that
the best Sentence Encoder training configuration in general was DistilBERT
with Cls pooling using Two Tower ICT.

One explanation of why our contextual embeddings have not improved the
anomaly detection performance is that the HDFS1 dataset is not expressive
enough, i.e., the natural language portions of the logs are not varied enough for
contextual models to bring an advantage over high-quality global embedding
techniques, such as fastText. But high-quality labeled log anomaly detection
datasets with interesting text are hard to find, which leaves the exploration
of this hypothesis as future work.

In section 7.1, we found out that the issue with sentence encoders trained
on HDFS1-blocks dataset (section 4.3.1) is that they learn to only pay
attention to the block ID present in each line. Our solution for preventing
the network from only paying attention to this block ID was to create the
Mix datasets (section 4.3.2), which contain log-lines from multiple different
datasets. Another approach that may be worth exploring in future work
would be to keep the HDFS1-blocks dataset, but to either remove the block
IDs or replace them with random identifiers, such that the network would be
forced to pay more attention to the semantics of the logs.
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Chapter 9

Conclusion

This thesis explored the applicability of Contextual Embedding methods
for creating sentence embedding vectors from log-lines for use in the domain
of Log Anomaly Detection. There have been successes in the past few years of
applying Natural Language Processing techniques, particularly fastText, for
the creation of vector embeddings of log-lines for use with anomaly detection
methods. However, fastText only creates global embeddings, i.e., embeddings
missing contextual information.

To explore the use of more advanced contextual embedding methods, we
have created Sentence Encoders using BERT (section 2.5) models as their
main component, which are the current state-of-the-art NLP neural network
architectures. BERT models are capable of processing input strings of variable
length, while producing a variable amount of vectors. We explored several
methods for pooling the BERT output to reduce this variable amount of
vectors into a single log-line embedding vector.

We have selected the Inverse Cloze Task as the training task for unsuper-
vised training of our BERT-based Sentence encoders and created the necessary
data preprocessing pipeline, which enabled us to use the large amount of
publicly available raw unlabeled log datasets for training.

Our experiments took over 1824 combined GPU-compute hours, as we have
trained 72 Sentence Encoders and evaluated the quality of their produced
embeddings by using them to embed the labeled HDFS1 dataset to perform
an Anomaly Detection task. The anomaly detection performance was then
compared to baseline performance obtained by using fastText embeddings of
the same dataset.

Although none of our Sentence Encoders were able to match the baseline,
they still performed well, with the best achieving an F1-score 93% of the
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fastText F1-score. This shows there is still promise for the use of contextual
embeddings for anomaly detection, as the HDFS1 dataset is not expressive
enough to reap the benefits of contextual models compared to global embed-
ding models such as fastText. This result of approaching the baseline also
verifies our choice of ICT as a valid unsupervised pretraining task.

We have also explored several ways of preparing the dataset for ICT
pretraining and have found out that since the total length of the input
BERT accepts is limited, it is better to use smart average context truncation
(section 3.3.3), instead of just plain concatenation of the log-lines in the
context and then truncating to the maximum BERT input length. This is a
possible venue of future work, which could explore using different amount of
log-lines in the context, and other ICT pretraining parameters which were
not explored in this thesis, which could be done in conjunction with the usage
of BERT models capable of processing longer inputs.

Interesting future work could be done on using larger BERT models as
the base for the Sentence Encoders, which may have higher learning capacity
than the distilled, less parametrized BERT models used in this thesis.

Lastly, outside the main topic of this thesis, we have done preliminary work
on using techniques for explaining machine learning models for explaining
Anomaly Detection predictions and have shown it to be another possible
interesting venue for future work.
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Appendix B

All experiment results

Here we list all the raw Anomaly Detection results from chapter 6.

Rank Model Type Pooling Towers Epochs Dataset Precision Recall F1-score % of
baseline

1 fastText - - - HDFS1
train 0.7768 0.9365 0.8492 100.00%

2 DistilBERT Cls 1T 3 Mix
Concat 0.8882 0.7126 0.7908 93.12%

3 DistilBERT Mean 1T 3 Mix
SmartAvg 0.9026 0.6770 0.7737 91.10%

4 DistilBERT Cls 2T 4 HDFS1
time 0.7418 0.8052 0.7722 90.93%

5 DistilBERT Cls 1T 3 Mix
SmartAvg 0.8604 0.6989 0.7713 90.82%

6 DistilBERT Mean 1T 5 Mix
SmartAvg 0.8972 0.6740 0.7698 90.64%

7 DistilBERT Cls 2T 3 Mix
SmartAvg 0.8755 0.6722 0.7605 89.55%

8 DistilBERT Cls 1T 5 Mix
SmartAvg 0.8747 0.6716 0.7598 89.47%

9 DistilBERT Mean 1T 5 Mix
Concat 0.8822 0.6538 0.7510 88.44%

10 DistilBERT Mean 2T 3 Mix
SmartAvg 0.8568 0.6681 0.7508 88.40%

11 DistilBERT Cls 1T 5 Mix
Concat 0.8920 0.6425 0.7470 87.96%

12 DistilBERT Mean 1T 3 Mix
Concat 0.8610 0.6473 0.7390 87.02%

13 DistilBERT Cls 2T 5 Mix
SmartAvg 0.8741 0.6306 0.7327 86.28%

14 DistilBERT Cls 2T 5 Mix
Concat 0.8379 0.6508 0.7326 86.27%

15 DistilBERT LastNCls 1T 3 Mix
SmartAvg 0.8753 0.6211 0.7266 85.57%

16 DistilBERT Mean 2T 5 Mix
SmartAvg 0.8557 0.6128 0.7142 84.10%
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Rank Model Type Pooling Towers Epochs Dataset Precision Recall F1-score % of

baseline

17 DistilBERT LastNCls 2T 3 Mix
SmartAvg 0.8295 0.6182 0.7084 83.42%

18 DistilBERT Mean 2T 4 HDFS1
time 0.8449 0.6081 0.7072 83.27%

19 DistilBERT LastNCls 1T 3 Mix
Concat 0.8518 0.6039 0.7067 83.22%

20 DistilBERT LastNCls 1T 5 Mix
SmartAvg 0.8807 0.5742 0.6952 81.86%

21 DistilBERT Mean 2T 3 Mix
Concat 0.7971 0.6134 0.6933 81.64%

22 DistilRoBERTa Mean 2T 3 Mix
SmartAvg 0.7912 0.6164 0.6929 81.60%

23 DistilBERT Mean 2T 5 Mix
Concat 0.8674 0.5748 0.6914 81.42%

24 DistilBERT Mean 1T 4 HDFS1
time 0.7799 0.6188 0.6901 81.26%

25 DistilRoBERTa Cls 2T 3 Mix
Concat 0.8059 0.6015 0.6889 81.12%

26 DistilRoBERTa Cls 2T 3 Mix
SmartAvg 0.8448 0.5784 0.6866 80.86%

27 DistilBERT LastNCls 2T 4 HDFS1
time 0.8329 0.5802 0.6839 80.54%

28 DistilRoBERTa Mean 2T 3 Mix
Concat 0.8101 0.5903 0.6829 80.42%

29 DistilBERT LastNCls 2T 5 Mix
SmartAvg 0.8871 0.5505 0.6794 80.00%

30 DistilBERT LastNCls 2T 3 Mix
Concat 0.8718 0.5534 0.6771 79.73%

31 DistilBERT LastNCls 2T 5 Mix
Concat 0.8996 0.5374 0.6729 79.23%

32 DistilRoBERTa LastNCls 1T 5 Mix
SmartAvg 0.7331 0.6164 0.6697 78.86%

33 DistilBERT Cls 2T 3 Mix
Concat 0.8403 0.5529 0.6669 78.53%

34 DistilBERT LastNCls 1T 4 HDFS1
time 0.8093 0.5570 0.6599 77.70%

35 DistilRoBERTa LastNCls 2T 3 Mix
SmartAvg 0.7409 0.5926 0.6585 77.55%

36 DistilBERT Cls 1T 4 HDFS1
time 0.7827 0.5647 0.6561 77.26%

37 DistilBERT LastNCls 1T 5 Mix
Concat 0.8900 0.5190 0.6557 77.21%

38 DistilRoBERTa Cls 2T 5 Mix
Concat 0.7285 0.5831 0.6478 76.28%

39 DistilRoBERTa Cls 1T 3 Mix
SmartAvg 0.6985 0.5956 0.6429 75.71%

40 DistilBERT Cls 2T 4 HDFS1
blocks 0.7916 0.5392 0.6415 75.54%

41 DistilRoBERTa Cls 2T 5 Mix
SmartAvg 0.7850 0.5398 0.6397 75.33%

42 DistilRoBERTa LastNCls 1T 3 Mix
Concat 0.7114 0.5796 0.6387 75.22%

43 DistilRoBERTa LastNCls 1T 5 Mix
Concat 0.6780 0.6015 0.6375 75.07%
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Rank Model Type Pooling Towers Epochs Dataset Precision Recall F1-score % of
baseline

44 DistilRoBERTa LastNCls 1T 4 HDFS1
time 0.6432 0.6306 0.6369 75.00%

45 DistilRoBERTa Cls 1T 3 Mix
Concat 0.7609 0.5309 0.6254 73.64%

46 DistilRoBERTa Mean 1T 4 HDFS1
blocks 0.5811 0.6722 0.6233 73.40%

47 DistilRoBERTa LastNCls 2T 5 Mix
SmartAvg 0.7494 0.5184 0.6128 72.17%

48 DistilRoBERTa Cls 1T 5 Mix
Concat 0.7068 0.5368 0.6102 71.85%

49 DistilRoBERTa Mean 1T 3 Mix
Concat 0.7423 0.5166 0.6092 71.74%

50 DistilRoBERTa Mean 1T 5 Mix
SmartAvg 0.8201 0.4846 0.6092 71.73%

51 DistilRoBERTa LastNCls 2T 4 HDFS1
time 0.8252 0.4822 0.6087 71.68%

52 DistilRoBERTa Mean 1T 3 Mix
SmartAvg 0.6037 0.5843 0.5938 69.93%

53 DistilRoBERTa Cls 1T 5 Mix
SmartAvg 0.8333 0.4602 0.5930 69.82%

54 DistilRoBERTa Mean 2T 5 Mix
SmartAvg 0.7739 0.4798 0.5924 69.76%

55 DistilRoBERTa Cls 2T 4 HDFS1
time 0.9179 0.4317 0.5872 69.15%

56 DistilRoBERTa LastNCls 2T 5 Mix
Concat 0.9750 0.4169 0.5840 68.77%

57 DistilRoBERTa Mean 2T 5 Mix
Concat 0.7314 0.4834 0.5821 68.54%

58 DistilRoBERTa Mean 2T 4 HDFS1
time 0.9292 0.4210 0.5795 68.24%

59 DistilBERT Mean 1T 4 HDFS1
blocks 0.9747 0.4115 0.5787 68.15%

60 DistilBERT Mean 2T 4 HDFS1
blocks 0.9760 0.4103 0.5778 68.03%

61 DistilBERT Cls 1T 4 HDFS1
blocks 0.9801 0.4091 0.5773 67.98%

62 DistilBERT LastNCls 1T 4 HDFS1
blocks 0.9785 0.4062 0.5741 67.60%

63 DistilRoBERTa LastNCls 2T 4 HDFS1
blocks 0.9717 0.4074 0.5741 67.60%

64 DistilRoBERTa LastNCls 1T 3 Mix
SmartAvg 0.8776 0.4258 0.5734 67.52%

65 DistilRoBERTa Mean 1T 5 Mix
Concat 0.7766 0.4501 0.5699 67.11%

66 DistilRoBERTa Cls 1T 4 HDFS1
time 0.8181 0.4353 0.5682 66.91%

67 DistilBERT LastNCls 2T 4 HDFS1
blocks 0.9537 0.4032 0.5668 66.74%

68 DistilRoBERTa LastNCls 2T 3 Mix
Concat 0.8932 0.4121 0.5640 66.41%

69 DistilRoBERTa Mean 1T 4 HDFS1
time 0.8637 0.4139 0.5596 65.90%

70 DistilRoBERTa LastNCls 1T 4 HDFS1
blocks 0.9612 0.3824 0.5472 64.43%
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Rank Model Type Pooling Towers Epochs Dataset Precision Recall F1-score % of

baseline

71 DistilRoBERTa Cls 2T 4 HDFS1
blocks 0.9951 0.3646 0.5337 62.84%

72 DistilRoBERTa Mean 2T 4 HDFS1
blocks 1.0000 0.3622 0.5318 62.62%

73 DistilRoBERTa Cls 1T 4 HDFS1
blocks 1.0000 0.3622 0.5318 62.62%
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Appendix C

List of Attachements

. Source code for the work done in this thesis.
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