
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Control Engineering

Optimal Planning and Control of Vehicle
Dynamics

Bc. Petr Turnovec

Supervisor: Ing. David Vošahlík
Field of study: Cybernetics and Robotics
May 2021

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

459919Personal ID number:Turnovec PetrStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Control Engineering

Cybernetics and RoboticsStudy program:

Cybernetics and RoboticsBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Optimal planning and control of vehicle dynamics

Master’s thesis title in Czech:

Optimální plánování a řízení dynamiky vozidla

Guidelines:
The goal of this master’s thesis will be to evaluate performance of two optimization-based methods - model predictive
control (MPC) and minimum violation planning (MVP). The work will focus on Vehicle dynamics control/planning problems
solution achieving safety and overall efficiency of the system. Problems will range from vehicle dynamics control, which
is domain of MPC, to the purely planning tasks. Constraints of planning, which is domain of MVP, shall be in form of logical
statements (LTL formulas). The thesis will be worked out in cooperation with industry - Garrett motion.
The thesis will compose of following steps:
1. Develop/adopt non-linear verification mathematical model
2. Develop design models suitable for MPC (different complexity levels)
3. Implement LTL (linear temporal logic) formulas as MPC constraints
4. Develop design models suitable for MVP (different complexity levels)
5. Implement both control algorithms
6. Use Garrett tools for implementation
7. Validate and compare both MVP and MPC algorithms in simulations

Bibliography / sources:
[1] Dieter Schramm, Manfred Hiller, Roberto Bardini – Vehicle Dynamics – Duisburg 2014
[2] Hans B. Pacejka - Tire and Vehicle Dynamics – The Netherlands 2012
[3] B. Brito, B. Floor, L.Ferranti, J. Alonso-Mora - Model Predictive Contouring Control for Collision Avoidance in Unstructured
Dynamic Environments - IEEE Robotics and Automation Letters 2019
[4] T. Wongpiromsarn, K. Slutsky, E. Frazzoli, U. Topcu - Minimum-violation planning for autonomous systems: Theoretical
and practical considerations - arXiv 2020

Name and workplace of master’s thesis supervisor:

Ing. David Vošahlík, Department of Control Engineering, FEE

Name and workplace of second master’s thesis supervisor or consultant:

Ing. Tomáš Haniš, Ph.D., Department of Control Engineering, FEE

Deadline for master's thesis submission: 21.05.2021Date of master’s thesis assignment: 25.01.2021

Assignment valid until:
by the end of summer semester 2021/2022

prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Michael Šebek, DrSc.

Head of department’s signature
Ing. David Vošahlík
Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZDP-2015.1

Acknowledgements

First, I would like to thank my supervi-
sor Ing. David Vošahlík for his valuable
advice and supportive supervision of my
work.

Great thanks also belong to Smart Driv-
ing Solution team at Department of Con-
trol Engineering. I namely thank Ing.
Tomáš Haniš, Ph.D. and Bc. Marek Bo-
háč.

My thanks also belongs to Garrett Mo-
tion Czech Republic s.r.o, namely to Ing.
Jaroslav Pekař, Ph.D. for his helpful ad-
vice.

Last, yet the most, I would like to thank
my family for their support.

Declaration

I hereby declare that this master’s thesis
was finished on my own and that I have
cited all the used information sources in
compliance with the Methodical guideline
on the observance of ethical principles
in the preparation of university graduate
thesis.

In Prague, 20 May 2021

v

Abstract

The master thesis deals with comparison
of model predictive control and minimum-
violation planning for vehicle trajectory
optimal planning and control problems.
Planning problems are defined using lin-
ear temporal logic formulas that are
easy to formulate by a designer. How-
ever, its transformation to model pre-
dictive control constraints introduced is
highly problem-specific. First, mathe-
matical models of vehicle individual com-
ponents are presented. Then, a high-
fidelity vehicle dynamics model is inte-
grated. Next, nonlinear model predictive
control method is briefly described and ve-
hicle design models suitable for control by
the method are derived. The method so-
lution for a nonconvex environment with
obstacles is proposed. Further, an intro-
duction to minimum-violation planning
method follows. Vehicle design models
suitable for control by minimum-violation
planning are derived and modifications to
the method for dynamic systems with a
high number of states are proposed. Fi-
nally, results of the methods are presented
and the methods comparison for simple
demo scenarios is given.

Keywords: control of vehicle dynamics,
optimal trajectory planning, model
predictive control, minimum-violation
planning, environment with obstacles

Supervisor: Ing. David Vošahlík

Abstrakt

Tato práce porovnává metody model pre-
dictive control a minimum-violation plan-
ning pro optimální plánování trajektorie
vozidla a jeho řízení. Problémy plánování
jsou definovány pomocí výroků lineární
temporální logiky, které jsou snadné na
formulaci. Jejich uvedená tranformace na
omezení pro model predictive control je
ale závislá na konkrétním problému. Nej-
prve jsou uvedeny matematické modely
jednotlivých komponent vozidla a poté
je sestaven dynamický model vozidla pro
verifikaci. Dále je stručně popsána neli-
neární varianta metody model predictive
control, jsou odvozeny zjednodušené mo-
dely vozidla vhodné pro řízení touto me-
todou a je navženo řešení pro nekonvexní
prostředí s překážkami. Následuje před-
stavení metody minimum-violation plan-
ning, odvození zjednodušených modelů
vozidla vhodných pro minimum-violation
planning, a jsou navženy modifikace této
metody pro dynamické systémy s vyšším
počtem stavů. Nakonec jsou podány vý-
sledky obou metod a je uvedeno porov-
nání těchto metod na jednoduchých ukáz-
kových scénářích.

Klíčová slova: řízení dynamiky vozidla,
optimální plánování trajektorie, model
predictive control, minimum-violation
planning, prostředí s překážkami

Překlad názvu: Optimální plánování a
řízení dynamiky vozidla

vi

Contents

1 Introduction 1

2 Problem Formulation, Test
Scenarios 5

3 Vehicle Modeling 9

3.1 Vehicle components 10

3.1.1 Electric motor model 10

3.1.2 Battery model 12

3.1.3 Wheel model 14

3.1.4 Vehicle dynamics model 16

3.2 High-fidelity single-track model . 19

3.3 Model Validation 21

4 Nonlinear Model Predictive
Control 23

4.1 NMPC introduction 23

4.2 NMPC vehicle design models . . . 25

4.2.1 High complexity vehicle design
model . 26

4.2.2 Low complexity vehicle design
model . 31

4.3 NMPC problem solution 34

4.3.1 Mixed-integer programming . 34

4.3.2 Dealing with static obstacles -
Cost to go heuristics 35

4.3.3 Dealing with moving obstacles 40

4.4 NMPC results 41

4.4.1 Scenario 1 43

4.4.2 Scenario 2 45

4.4.3 Scenario 3 49

5 Minimum-violation Planning 53

5.1 MVP introduction 53

5.1.1 Linear temporal logic 55

5.1.2 Cost function formulation . . . 57

5.2 MVP vehicle design models 57

5.2.1 High complexity vehicle design
model . 58

5.2.2 Low complexity vehicle design
model . 58

5.3 MVP problem solution 58

vii

5.3.1 Trajectories precomputation for
MVP . 59

5.3.2 Modification to RRT* for MVP
- version 1 . 61

5.3.3 MVP based on modified RRT
for large systems - version 2 63

5.4 MVP open loop results 64

5.4.1 Scenario 1 66

5.4.2 Scenario 2 69

5.4.3 Scenario 3 71

5.5 MVP in feedback 73

5.5.1 Trajectory tracking 74

5.5.2 Trajectory replanning. 74

6 Algorithms Comparison 77

6.1 Comparison in test scenarios . . . 77

6.1.1 Scenario 1 78

6.1.2 Scenario 2 81

6.2 Comparison in general 83

6.2.1 Time demands 83

6.2.2 Space searching comparison . 84

7 Conclusion and Future Work 87

A Bibliography 89

B List of Abbreviations, Symbols
and Parameters 92

C Content of Enclosed CD 96

viii

Figures

2.1 Scenario 1 - environment without
static obstacles or moving obstacles,
only dynamics constraints. 6

2.2 Scenario 2 - environment with
static obstacles and/or moving
obstacles. 7

2.3 Scenario 3 - environment with
moving obstacle, tracking path
(position points) - overtaking. 7

3.1 High fidelity single track model. 10

3.2 Battery circuit equivalent scheme. 12

3.3 Open circuit voltage dependence on
the state of charge. Example given
for parameters used in the thesis. . 13

3.4 Wheel coordinate system. 14

3.5 Pacejka magic formula. Generated
forces for tire parameters used in the
thesis (appendix B.3) with Fz = 1 N. 16

3.6 Transformation of tire forces back
to the vehicle coordinate frame. . . . 16

3.7 Vehicle forces. 17

3.8 Vehicle position and orientation. 18

3.9 Vehicle velocities. 19

4.1 Validation of electric motor
simplifications. 27

4.2 Validation of battery
simplifications. 28

4.3 Validation of atan2 function
simplification. 29

4.4 Validation of the high complexity
vehicle design model. 31

4.5 Validation of the low complexity
vehicle design model. 33

4.6 Created graph: nodes - obstacles
vertices and goal, edges - collision
free lines between vertices 37

4.7 Tree created by Dijkstra’s
algorithm from graph. Goal as a root,
vertices as nodes. 37

4.8 The best path given by vehicle
position. 38

4.9 Trajectory restricted by lines on
some distance horizon. 38

4.10 Dijkstra path positions directly as
references - stuck at local minima is
possible. 39

4.11 Modification for paths with sharp
turn. 40

4.12 Dealing with moving obstacles. 41

ix

4.13 Vehicle path by NMPC in the
first scenario. Two versions of the
cost function compared - with(w/)
and without (w/o) penalty in the
cost function for state of charge
maximization. 44

4.14 Other vehicle states and inputs in
the first scenario. Two versions of
cost function compared - with(w/)
and without (w/o) penalty in the
cost function for state of charge
maximization. 45

4.15 Vehicle path by NMPC in the
second scenario. Two versions of cost
function compared - with low and
with high penalty in the cost function
for the state of charge maximization. 46

4.16 Other vehicle states and inputs in
the second scenario. Two versions of
cost function compared - with low
and with high penalty in the cost
function for the state of charge
maximization. 47

4.17 Predicted trajectories by NMPC
for both situations - with low (4.17a,
4.17b) and high (4.17c,4.17d)
penalty on SoC maximization. 48

4.18 Vehicle path by NMPC in the last
scenario - overtaking 49

4.19 Other vehicle states and inputs in
the last scenario. 50

4.20 Predicted trajectory by NMPC in
the last scenario for different times. 51

5.1 RRT* for Minimum-violation
planning. Adopted from [24] and
modified. 54

5.2 Modified RRT* for
Minimum-violation planning.
(Figures inspired by [24] and
modified.) . 62

5.3 Modified RRT for
Minimum-violation planning.
(Figures inspired by [24] and
modified.) . 64

5.4 Tree by MVP and the best path
based on the cost function 5.8. . . . 66

5.5 Vehicle states and inputs based on
the cost function 5.8. 67

5.6 Created tree and best path based
on the cost function 5.10. 68

5.7 Vehicle states and inputs based on
the cost function 5.10. 69

5.8 Created tree by MVP and the best
path based on the cost function
5.13. 70

5.9 Vehicle states and inputs based on
the cost function 5.13. 71

5.10 Created tree by MVP and the
best path based on the cost function
5.15. 72

5.11 Vehicle states and inputs based
on the cost function 5.15. 73

x

6.1 NMPC and MVP path comparison
in the first scenario in feedback
simulation. 79

6.2 NMPC and MVP other states and
inputs comparison in the first
scenario in feedback simulation. . . 80

6.3 NMPC and MVP path comparison
in the second scenario in feedback
simulation. 81

6.4 NMPC and MVP other states and
inputs comparison in the second
scenario in feedback simulation. . . 82

xi

Chapter 1

Introduction

In the last decade, the development of autonomous vehicle industry expe-
riences a boom. Many companies and institutions are trying to replace a
driver by designing algorithms and creating more or less vehicles controlled
by artificial intelligence. In some cases, partial replacement of a driver or an
assistance provided to the driver is introduced. On the other side, in some
cases, fully self-driving cars are designed.

Systems that are fully in charge of vehicle control can be assigned to the
latter group. These are complex systems that have to

(i) . recognize the vehicle surrounding environment,

(ii) . process information, make a decision, plan a path,

(iii) . ensure proper execution of the decision.

The part (i) is domain of computer vision. Next part (ii) can be provided by
one of many decision making algorithms. For example, it can be based on
machine learning, neural networks, Markov decision processes, control theory,
..., or whatever meaningful planning algorithm. The last part (iii) is mainly
a domain of control theory (feedback, estimation processes).

Assistance systems ensuring safety or systems improving vehicle behavior
are, for example,

1

1. Introduction
.Anti-lock braking system (ABS)

A wheel brake can cause wheel blocking and thus, braking moment
decrease. Anti-look braking system is the usual system that prevents too
high undesirable slip of the tires in situations when the car is braking
hard.. Electronic stability program (ESP)
Electronic stability program handles the lateral stabilization of the vehicle.
The ESP aims to stabilize the yaw rate (angular speed around the vehicle
center of gravity) in critical situations using brakes. Stabilization is
ensured by brake control at individual wheels and appropriate reduction
of the braking action on the particular wheel..Traction control (TC)
Traction control technology has the same purpose as ABS. However, it
can control the drive torque and therefore it prevents undesirable slip of
the tires when the car is accelerating..Torque vectoring (TV)
Torque vectoring system is similar to ESP. The two are in a similar
relationship as ABS and TC. Torque vectoring actively uses torques on
individual wheels to ensure yaw stabilization.

These systems are mainly in charge of vehicle dynamics. However, the
responsibility for driving still goes to the driver.

The thesis will discuss items (ii) - (iii). Therefore, it is assumed that the
surrounding environment is known. Static or moving obstacles are identified
and their positions are accurately given as well as the vehicle position in
the environment. The aim is to plan a path (make a decision) and go along
with that path or replan the path (feedback). On the other hand, the stated
assistance algorithms (ABS, ESP, TC, TV) will not be discussed at all as it
is not the thesis objective and their functionality can be eventually included
directly in the decision making algorithm.

Goal of the thesis is to compare two optimization-based algorithms - model
predictive control and minimum-violation planning - for planning tasks and for
vehicle dynamics control. Model predictive control is a widely used method
in control theory. It is exploited mainly for control of dynamic systems.
The thesis tries to implement model predictive control also for planning in
the environment with obstacles. Minimum violation planning is a sampling-
based algorithm and its domain is primarily path planning. The method is
implemented to planning for a large dynamic system (vehicle) and so under a
lot of dynamic constraints in the thesis.

2

......................................1. Introduction
Both methods should fulfill requirements mainly regarding safety (obstacle

avoidance) and other requirements like travel time or fuel consumption
minimization. Results are obtained from simulations. For verification, high-
fidelity single-track model of the vehicle is used.

Problem of planning in the environment with obstacles, which will be
discussed in the thesis, is introduced and test scenarios for verification purposes
are given in chapter 2. High-fidelity single-track model of a vehicle is presented
and its components are described in the next chapter 3. Following chapter 4
focuses on model predictive control. At first, an introduction to nonlinear
model predictive control (NMPC) is stated, then design models of the vehicle
suitable for control by NMPC are derived, and finally, solution by NMPC to
the analyzed problem is discussed and proposed. Results of NMPC are shown
in the last section of the chapter. Next chapter 5 is about minimum-violation
planning (MVP). At first, an introduction to MVP is presented, then design
models of the vehicle suitable for control by MVP are provided, and further
modifications to MVP are proposed to deal with large systems with dynamics
constraints. Finally, feedback for MVP is discussed. Furthermore, the results
of MVP are given for open loop structure and for feedback structure. Chapter
6 presents a comparison of both methods NMPC and MVP. The thesis is
summarized and concluded in the last chapter 7.

3

4

Chapter 2

Problem Formulation, Test Scenarios

The problem formulation is not written down rigorously but rather sketched.
Differences in the methods MPC and MVP intended for solution of this
problem and their different domains are the main reason for this. The
problem analyzed in the thesis is following.

A dynamic system - vehicle - is given, which will be controlled. A goal is
to steer the vehicle from the start state to the goal state (or position). Thus,
the problem is trajectory generation, not trajectory tracking. Environment
contains obstacles and these can be static or moving. Furthermore, the
obstacles can be impassable like buildings, other cars, pedestrians, or the
obstacle can be passable, but it is not suitable and advantageous to go through
it, like pavement, grass.

Moreover, requirements which a trajectory should fulfill can be given.
Thus, for example, (except the obstacle avoidance) time or consumption
minimization, or smooth ride ensuring (close consecutive steer inputs) and
etc. States of the dynamic system can be also constrained - for example,
maximal or minimal speed.

It is assumed that obstacles have been already identified and their positions
are known. The obstacles are considered as polygons and their vertices in
state space. Thus, obstacles with round shapes were transformed to polygons
in advance. A vehicle is modeled as a spatial or rather planar object in
the following chapter, in spite of that, the controlled vehicle is assumed to
be a mass point regarding the collision avoidance or in case of any other
constraint fulfillment check. The surrounding obstacles can be inflated and

5

2. Problem Formulation, Test Scenarios
other constraints reformulated to capture the fact that the vehicle is not a
mass point if it is needed.

The problem is illustrated by the following scenarios. The depicted situa-
tions will serve as test scenarios for the algorithms. The first scenario (Fig.
2.1) is environment without any static or moving obstacles, only the vehicle
dynamics is controlled, and requirements for optimization of some variables
are presented. The second scenario (Fig. 2.2) is environment with static
obstacles (red objects) and possibly also with moving obstacles (the gray one).
The last situation is slightly different. It is an overtaking scenario (Fig. 2.3),
where the goal is to overtake the other car, if it is advantageous from the
optimization point of view, while staying on the road and tracking the center
line of the right lane. Here, the problem is close to trajectory tracking (or
better path tracking).

Constraints, which violate the convexity required for the other state vari-
ables (like velocity, yaw rate, state of charge) will be briefly discussed in the
comparison chapter 6.

-30 -20 -10 0 10

East [m]

0

5

10

15

20

25

30

35

40

N
o

rt
h

 [
m

]

goal

start

vehicle heading

Figure 2.1: Scenario 1 - environment without static obstacles or moving obstacles,
only dynamics constraints.

6

........................... 2. Problem Formulation, Test Scenarios

0 20 40 60 80 100

East [m]

-10

0

10

20

30

40

N
o

rt
h

 [
m

]

goal

start

moving obstacle

static obstacle

Figure 2.2: Scenario 2 - environment with static obstacles and/or moving
obstacles.

0 10 20 30 40 50 60 70 80

East [m]

-10

0

10

20

30

40

50

N
o

rt
h

 [
m

]

goal

start

moving obstacle

roadside

center line

Figure 2.3: Scenario 3 - environment with moving obstacle, tracking path
(position points) - overtaking.

7

8

Chapter 3

Vehicle Modeling

The high fidelity model of the vehicle (plant model) which will be used through
the work is described in this chapter. The model would serve in the thesis as
a verification tool because all results are acquired only in simulations. On
the following lines, a single-track model of the vehicle is derived. Single track
model has considerably fewer states than more complex twin track models
[20]. It is given not only by "tracks" reduction, but mainly by lifting, rolling
and pitching motion neglect. However, it is sufficient and precise enough
for purpose of the thesis. For the single-track model used here, the front
wheels are represented as a single one as well as rear ones. Both wheels
(front and rear) of the vehicle are driven by its own electric motor. These
motors are powered by one battery. Battery can be charged during the ride
as regenerative braking by the motors is considered. Single track model is
shown in the figure 3.1.

The single-track vehicle dynamics model was adopted with modifications
from [5] (similar models are described in [14] and [12]), tire model was derived
according to [16], electric motor model was adopted from [10] and battery
model from [3]. Implementation of electric motor model and battery model
according to stated papers used by Garrett motion were adopted and modified.
Various vehicle modeling techniques and its extensive description can be found
in literature [6], [13] and [20], where single-track and twin-track models are
described and the modeling of lifting, rolling and pitching motion is given.

9

3. Vehicle Modeling
V

ψ

ery

Motor - generator
unit

Motor - generator
unit

Tf,req Tr,req

Tr,brake Tf,brake

Figure 3.1: High fidelity single track model.

3.1 Vehicle components

Vehicle is divided into various components for clarity. This means easy
composition of different models and different configurations, if needed (eg.,
twin track with 4 motors, etc.). The main advantage of this approach is easy
components re-usability. Quite naturally, the vehicle single track model was
divided into four components:

. electric motor,. battery,. wheel including tire,. vehicle dynamics.

These components will be described in this section. For each component,
there will be given table enumerating inputs, states and outputs of the state
space representation in a unified manner.

3.1.1 Electric motor model

Electric motor (EM) is modeled as a system that consists of 2 states, 2 inputs
and 2 outputs according to the article [10].

10

..................................3.1. Vehicle components

Variable Description Units
Inputs
Treq Requested torque Nm
ωin Shaft speed rad/s

States
Tint EM torque Nm
ωem EM speed rad/s

Outputs
Tem EM torque out Nm
Pem EM electric power W

Table 3.1: Electric motor - system representation.

The state equations are

Ṫint = − 1
tT

(Tint −min(max(Treq, Tint,min), Tint,max), (3.1)

ω̇em = − 1
tω

(ωem − ωin). (3.2)

The first state Tint represents the mechanical torque produced by the motor.
Time constant tT in Eq. 3.1 determine the transition speed of input torque
request Treq tracking. The input torque request is limited to be in interval
〈Tint,min, Tint,max〉. The other state ωem is angular speed of the motor. Eq.
3.2 models shaft and motor speed differentiation with time constant tω. The
equation represents the fact that the connection is not fixed.

Outputs of the system are drive torque Tem for wheel and electric power
Pem consumed or produced (depends on the sign),

Tem = Tintrω − Jemr
2
ω(− 1

tω
(ωem − ωin)), (3.3)

Pem = Tintrωωinη−1(Tint, ωin). (3.4)

Note in Eq. 3.3 the term − 1
tω

(ωem − ωin) which means EM acceleration.
Therefore, the second term in the equation represents the torque "taken"
by EM. In both of these output equations rω represents gear ratio. In
the second output equation 3.4 efficiency (inverse efficiency) η−1(Tint, ωin)
is taken into account. The efficiency is modeled as a function dependent
on the power consumed or produced by the motor. The efficiency models
losses of electric motor. When the motor is powered, the inverse efficiency
η−1(Tint, ωin) is greater than one (the supplied power is greater than efficient
power). On the other hand, when the motor generates power, the inverse
efficiency η−1(Tint, ωin) is smaller than one. Electric motor (EM) is powered
by battery. It is important to say here that consumed or produced electric
power should respect battery limitations (battery power is limited). This is
ensured by appropriate control system.

11

3. Vehicle Modeling
3.1.2 Battery model

Battery model was developed and modified according to [3]. The paper models
a battery as an electro-thermal system. The thermal part is neglected in the
thesis as the thermal behavior modeling is not in interest of the thesis. It can
be done because thermal management is assumed and the thermal condition
has negligible impact on usual modes of the battery and their significance
to the electrical parts of the battery grows only in marginal conditions. The
resulting electrical model is described by circuit in the following figure 3.2.

Figure 3.2: Battery circuit equivalent scheme.

The circuit consists of one DC source, 2 RC pairs and one separate resistor.
According to the figure, three state equations 3.5, 3.6 and 3.7 are written
down, where the third one describes the state of charge (SoC) of the battery,

v̇1 = − 1
R1C1

v1 + 1
C1
i, (3.5)

v̇2 = − 1
R2C2

v2 + 1
C2
i, (3.6)

˙SoC = − 100
3600C i. (3.7)

In the equations, R1, R2 denotes to resistors, C1, C2 to capacitors, C to
battery capacity and i to the circuit current. The system representation is
in the table 3.2. Because the important state is the state of charge, it is the
only output. The input to the system is power Ptrm, which is supplied by the
battery or power for the battery charging, depending on the sign of the input.

12

..................................3.1. Vehicle components

Variable Description Units
Inputs
Ptrm Battery terminal power W
States
SoC State of charge %
v1 Voltage across the R1C1 pair V
v2 Voltage across the R2C2 pair V

Outputs
SoC State of charge %

Table 3.2: Battery - system representation.

Circuit current occurring in the state equations is calculated in Eq. 3.8,
where terminal voltage Vtrm is computed in Eq. 3.9. The equation 3.10
is obtained by current substitution from Eq. 3.8. In these equations, Voc

represents open circuit voltage, which is function of SoC as well as R0 (Eq.
3.11, 3.12). Example of such a dependence of Voc on SoC is in the figure 3.3.

i = Ptrm

Vtrm
, (3.8)

Vtrm = Voc − v1 − v2 −R0i, (3.9)

Vtrm = Voc − v1 − v2 +
√

(Voc − v1 − v2)2 − 4R0Ptrm

2 , (3.10)

Voc = focv(SoC) eg.= 25 · 10−4 (SoC − 55)3 + 360, (3.11)

R0 = fR0(SoC) eg.= 2 · 10−4SoC + 9 · 10−3. (3.12)

0 20 40 60 80 100

SoC [%]

310

320

330

340

350

360

370

380

390

V
o
c
 [
V

]

Open circuit voltage dependence on the state of charge

Figure 3.3: Open circuit voltage dependence on the state of charge. Example
given for parameters used in the thesis.

13

3. Vehicle Modeling
3.1.3 Wheel model

The next component which will be described is a wheel including a tire.
Coordinate systems (CS) shown in the figure 3.4 are used. Figure on the left
3.4a shows overall situation. Tire is steered by steering angle δ. Coordinate
frame with subscript v is bounded with vehicle coordinates originated at the
wheel pivot point. Coordinates with subscript w are bounded with a wheel.
Axis xw points to the front of the tire, yw axis originates in the tire center of
rotation and points to the left.

(a) : Wheel (w) vs. vehicle (v) coordinate
frame. (b) : Wheel and its coordinate frame.

Figure 3.4: Wheel coordinate system.

Tire system representation is given in table 3.3. Inputs to the system are

Variable Description Units
Inputs
δ Steering angle rad
Tw Wheel drive torque Nm
Tw,br Wheel brake torque Nm
vx Wheel translation velocity in vehicle CS in direction x m/s
vy Wheel translation velocity in vehicle CS in direction y m/s
Fz Wheel vertical load N

States
ω Wheel angular velocity rad/s

Outputs
Fx Longitudinal force generated by tire, in vehicle CS N
Fy Lateral force generated by tire, in vehicle CS N
ω Wheel angular velocity rad/s

Table 3.3: Wheel system representation.

14

..................................3.1. Vehicle components

steer angle δ, drive and brake torque Tω and Tω,br, wheel translation velocity
in vehicle CS in direction x - vx and y - vy respectively and wheel vertical
load Fz. According to the given figure 3.4a velocities are transformed to the
tire coordinate frame by the following equations

vwx = vx cos δ + vy sin δ, (3.13)
vwy = −vx sin δ + vy cos δ. (3.14)

Tire is the only contact point of the vehicle with the road and therefore, it
generates forces that act on the vehicle. The goal is to get these forces now.
One of the most used approaches to do that is by using so-called Pacejka
magic formula designed by Hans B. Pacejka [16]. Various other techniques for
tire modeling are described for example in [9]. By this Pacejka approach it is
possible to calculate the longitudinal and lateral forces that the tire generates.
For this, slip ratio and side slip angle of the tire have to be computed first.

Tire translation velocity is not equal to the tire peripheral speed. This
difference describes slip ratio λ by equation

λ = ωR− vwx

max(ωR, |vwx|)
, (3.15)

where ω is angular speed, R is radius and vwx is the translation velocity in x
direction of the tire.

Moreover, the wheel velocity direction is not the same as its orientation.
The fact describes side slip angle which is given as (convention where positive
rotations are anticlockwise is used throughout the work)

α = − arctan vwy

vwx
(3.16)

Now Pacejka magic formulas are introduced to compute the longitudinal and
lateral forces of the tire,

Fwx(λ) = FzDx sin(Cx arctan(Bxλ− Ex(Bxλ− arctan(Bxλ)))), (3.17)
Fwy(α) = FzDy sin(Cy arctan(Byα− Ey(Byα− arctan(Byα)))). (3.18)

In these equations, Bx, Cx, Dx, Ex and By, Cy, Dy, Ey are the longitudinal
and lateral coefficients of the given tire. Example of dependence of the
longitudinal force on the slip ratio and lateral force on the slip angle is shown
in the figure 3.5. Finally, these forces have to be transformed back to the
vehicle coordinate frame (Fig. 3.6) by transformation

Fx = Fwx cos δ − Fwy sin δ, (3.19)
Fy = Fwx sin δ + Fwy cos δ. (3.20)

15

3. Vehicle Modeling
The wheel system has one state - wheel angular speed ω, whose dynamics is
defined as

ω̇ = 1
J

(Tw − FwxR− sgn(ω)Tw,br), (3.21)

where J is the moment of inertia of the wheel.

-100 -80 -60 -40 -20 0 20 40 60 80 100

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Longitudinal force on slip ratio dependence.

(a) : Longitudinal force.

-50 -40 -30 -20 -10 0 10 20 30 40 50

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Lateral force on side slip angle dependence.

(b) : Lateral force.

Figure 3.5: Pacejka magic formula. Generated forces for tire parameters used
in the thesis (appendix B.3) with Fz = 1 N.

δ

Fx

xw

yw

�

yv

xv

Fy

Fwy

Fwx

Figure 3.6: Transformation of tire forces back to the vehicle coordinate frame.

3.1.4 Vehicle dynamics model

Finally, the vehicle dynamics will be described. For this purpose single-track
model of the vehicle was adopted (see [5], [14], [12]). For a single-track model,
the front wheels are represented as a single one as well as rear ones. Moreover,
the pitching, rolling and lifting motions are neglected. However, single-track
model captures quite well the dynamics of the vehicle. Mainly the variables

16

..................................3.1. Vehicle components

we are interested in are modeled - position, yaw angle, velocity, yaw rate.
Finally, the model provides enough precision for thesis purposes.

Single-track is shown in the figure 3.7. Vehicle x axis goes from the center
of gravity (CoG) towards the front tire, axis y from CoG towards the left
side of the vehicle and axis z according to right-handed orientation, upwards.
Inputs to the model are forces generated by the front and rear tires Fxf , Fyf

and Fxr, Fyr. Vehicle velocity v direction is given by side slip angle β. Vehicle
yaw rate around the z axis is ψ̇. Longitudinal distance of the front, resp. rear
axle from CoG is lf , resp. lr. Torque around the z axis is denoted as Mz.

Figure 3.7: Vehicle forces.

Now the following forces and moment equations can be written down,

Fx = Fxf + Fxr − Faero − Fslope, (3.22)
Fy = Fyf + Fyr, (3.23)
Mz = lfFyf − lrFyr, (3.24)

where Faero and Fslope, which are calculated as

Faero = 1
2ρacdAfv

2, (3.25)

Fslope = mg sinαinc, (3.26)

are not generated through the tires, but act directly on the vehicle. In Eq.
3.25, 3.26 ρa stands for air density, cd for drag coefficient, Af for vehicle
frontal area, m for vehicle mass and αinc is the inclination angle of the road.

Three states describing the vehicle dynamics are given as (for a detailed
derivation see eg. [22])

v̇ = 1
m

(sin(β)Fy + cos(β)Fx), (3.27)

β̇ = −ψ̇ + 1
mv

(cos(β)Fy − sin(β)Fx), (3.28)

ψ̈ = 1
Iz
Mz, (3.29)

17

3. Vehicle Modeling
where Iz is the vehicle moment of inertia with respect to z axis.

Moreover, it is needed to describe the position and yaw angle of the vehicle.
For this purpose, additional equations are needed

ė = v cos(β + ψ), (3.30)
ṅ = v sin(β + ψ), (3.31)
ψ̇ = ψ̇, (3.32)

where e is the east position and n is the north position.

Figure 3.8: Vehicle position and orientation.

Previously stated inputs and states summarizes table 3.4. There are given
additional outputs in the table. These outputs are inputs for the tires.
Velocities of the front and rear tire can be calculated according to figure 3.9
as

vxf = v cosβ, (3.33)
vxr = v cosβ, (3.34)
vyf = v sin β + lf ψ̇, (3.35)
vyr = v sin β − lrψ̇. (3.36)

And the forces loading these tires are given by the equations

Fzf = mg
lr

lf + lr
, (3.37)

Fzr = mg
lf

lf + lr
. (3.38)

18

.............................3.2. High-fidelity single-track model

Figure 3.9: Vehicle velocities.

Variable Description Units
Inputs
αinc Inclination angle rad
Fxf Longitudinal force generated by front tire, in vehicle CS N
Fxr Longitudinal force generated by rear tire, in vehicle CS N
Fyf Lateral force generated by front tire, in vehicle CS N
Fyr Lateral force generated by rear tire, in vehicle CS N

States
e East position m
n North position m
ψ Yaw angle of vehicle rad
v Velocity m/s
β Side slip angle rad
ψ̇ Yaw rate rad/s

Outputs
States All the states are outputs -
vxf Front tire longitudinal translation velocity, in vehicle CS m/s
vxr Rear tire longitudinal translation velocity, in vehicle CS m/s
vyf Front tire lateral translation velocity, in vehicle CS m/s
vyr Rear tire lateral translation velocity, in vehicle CS m/s
Fzf Front tire vertical load, in vehicle CS N
Fzr Rear tire vertical load, in vehicle CS N

Table 3.4: Vehicle dynamics system representation.

3.2 High-fidelity single-track model

Now it is possible to compose a complex high-fidelity single-track model,
which consists of one battery and two tires, each of them driven by its own
electric motor as in the figure 3.1 at the beginning of the chapter.

Inputs to individual components will be divided into two categories -
manipulated inputs and disturbance inputs. Inputs that can be controlled

19

3. Vehicle Modeling
(manipulated) belong to the first category, whereas in the latter one are inputs
given by outputs of the other components or given externally. These inputs
are marked in the table 3.5. This table gives overview how the overall model
is composed from the components.

Input Type Description
Front EM
Treqf Manipulated -
ωinf Disturbance Proportionally given by front tire ωf

Rear EM
Treqr Manipulated -
ωinr Disturbance Proportionally given by rear tire ωr

Battery
Ptrm Disturbance Given as Ptrm = Pemf

+ Pemr

Front tire
δf Manipulated -
Tωf Disturbance Given by front EM out torque Temf

Tω,brf Manipulated -
vxf Disturbance Given by vehicle vxf output
vyf Disturbance Given by vehicle vyf output
Fzf Disturbance Given by vehicle Fzf output

Rear tire
δr Manipulated -
Tωr Disturbance Given by rear EM out torque Temr

Tω,brr Manipulated -
vxr Disturbance Given by vehicle vxr output
vyr Disturbance Given by vehicle vyr output
Fzr Disturbance Given by vehicle Fzr output

Vehicle dyn
αinc Disturbance Given by the road inclination
Fxf Disturbance Given by front tire output Fxf

Fyf Disturbance Given by front tire output Fyf

Fxr Disturbance Given by rear tire output Fxr

Fyr Disturbance Given by rear tire output Fyr

Table 3.5: Classification of inputs to vehicle components.

The high-fidelity model was developed with 6 inputs that can be controlled
- δf , δr, Treqf , Treqr , Tω,brf , Tω,brr - and 15 states - Tintf , Tintr , ωemf

, ωemr ,
SoC, v1, v2, ωf , ωr, e, n, ψ, v, β, ψ̇.

However, for both NMPC and MVP algorithms that are to be implemented
only front steering angle δf , drive torque Treqf and Tω,brf will be
controlled. Inputs δr, Treqr and Tω,brr will be zeros. Presence of these inputs

20

...................................3.3. Model Validation

will be used in further work.

All used parameters for individual components and their values can be
seen in appendix B.

3.3 Model Validation

Now the derived high fidelity model should be validated to ensure real vehicle
reality matching. For this purpose, the reader is referred to publications
where validation was done. Single-track vehicle dynamics with tire modeling
by Pacejka magic formula was validated for example in the master thesis
[14], where validation on a real car Porsche Boxster S was performed or in
the master thesis [12], where validation on a student formula was performed.
In addition, a similar model was validated on a student car in the author’s
previous work [22]. For more information about vehicle dynamics modeling,
please look at the previously referenced [6], [13], [20]. Electric motor model
and battery model are validated in the mentioned papers [10] and [3].

21

22

Chapter 4

Nonlinear Model Predictive Control

4.1 NMPC introduction

Model predictive control (MPC) is well-established advanced algorithm in
control theory. Therefore, it will be described very briefly here. Up to date,
extensive books dedicated to MPC are for example [2] and [18]. MPC is
model-based algorithm. Dynamic design model (simplified) of the system
is assumed to be derived. Mostly linear models for MPC are used, but also
variants of MPC exist where this is not necessary and nonlinear models can
be used - Nonlinear model predictive control (NMPC). In the thesis, NMPC
is used. Generally, MPC algorithm can be simply described by three steps
that are performed at each discrete time t

. get states x(t) estimates based on measurements y(t) of the system. solve optimization problem on a given prediction horizon
(t, t+ Ts, ..., t+NTs) via inputs {u1, u2, uN} manipulation,. select only the first input u1 and apply it to the system

Discarding all inputs except the first one in the last step ensures that MPC
is a control algorithm with feedback. In practice, a special form of the
optimization problem is often used, where the cost function (the objective of
the optimization) consists of matrices Q and R that weight states magnitudes

23

4. Nonlinear Model Predictive Control
and control inputs magnitudes. However, other optimization formulations
are possible in the second step (for instance, the optimization described later
in the section 5.5.2).

The term NMPC will be used in the thesis for a tool provided by Garrett
motion which implements the nonlinear MPC. NMPC will be briefly described
on the following lines. Only parts needed for the thesis are covered in the
summary. For further information see papers or literature on nonlinear model
predictive control, for example, [2], [18]. One NMPC iteration overview is
shown in algorithm 1. The NMPC works for continuous systems as well

Algorithm 1 Nonlinear model predictive control - one iteration overview.
1: Inputs: uinit, x0
2: u(t)← uinit

3: while not TermCond do
4: ysim, xsim ← simulate(u(t), x0)
5: Hy = sensitivityCalculation(u(t), xsim, ysim)
6: δu(t)∗ = solveQP(Hy, ysim, u(t))
7: u(t)← u(t) + αδu(t)∗

return u(t)

as for discrete systems, the version that uses continuous systems will be
described and further used. Initial input uinit (eg. input from previous
iteration) and current state x0 of the system are inputs to the algorithm. Then
while the termination condition is not met, iterations of sequential quadratic
programming (SQP) are performed (line 3 - line 7). At the beginning of this
SQP iteration, a system is simulated by an ordinary differential equation
solver (eg. ode45) from the state x0 by using piecewise constant input u(t). It
results in state and output trajectories xsim and ysim, but these are taken only
at times given by sample time Ts. Sensitivity matrices Hy from perturbation
δu of input u(t) to the output y are computed at line 5. Jacobians of the
state function f(x, u) and output function g(x, u) with respect to x and u
along the trajectory xsim, ysim (at discrete times kTs) are needed for this.
Sensitivity Hy is defined as

δy(t) = Hyδu(t), (4.1)

where δy(t) = ypred − ysim, thus

ypred = ysim +Hyδu(t). (4.2)

NMPC tool cost function can be formulated (one of the possible formulations

24

............................. 4.2. NMPC vehicle design models

including various terms) as

Jout,in = 1
2[(ypred − yref)TQr(ypred − yref) + yT

predQypred+ (4.3)

+ (u(t) + δu)TR(u(t) + δu) + ∆(u(t) + δu)TRd∆(u(t) + δu) =

= 1
2[(ysim +Hyδu(t)− yref)TQr(ysim +Hyδu(t)− yref)+

+ (ysim +Hyδu(t))TQ(ysim +Hyδu(t))+
+ (u(t) + δu)TR(u(t) + δu) + ∆(u(t) + δu)TRd∆(u(t) + δu)],

where the first term belongs to reference tracking cost, the second term to
the output magnitude cost, the third term to the input magnitude cost and
the last term to the cost related to a change between consecutive inputs (∆
denotes to differences between consecutive inputs).

Constraints ymin, ymax on outputs are formulated as a soft constraint.
Therefore, these constraints are transformed to the cost function as

Jsoft = 1
2e

TGe, (4.4)

where the new variable e ensures this (see formulation 4.6 below). General
cost function can be written down as

J(δu, e) = Jout,in + Jsoft. (4.5)

And the optimization problem is formulated as follows

min J(δu, e), (4.6)
subject to umin ≤ u(t) + δu(t) ≤ umax,

ymin + e ≤ ysim +Hyδu(t) ≤ ymax + e,

e ≥ 0.

This quadratic program is solved. The resulting optimal δu(t)∗ is multiplied
by step size parameter α ∈ (0, 1〉 and added to the previous input (line 7).
SQP iterations are ended when either the number of iterations is exceeded
or if the difference between the previous and the current input is less than
certain constant (parameter).

4.2 NMPC vehicle design models

In this section, design models (in some literature the term control oriented
model is used) of the vehicle for NMPC algorithm are introduced at different

25

4. Nonlinear Model Predictive Control
levels of complexity. At the end of the section, a comparison of design models
with high fidelity model is done.

After a closer look to the NMPC algorithm introduction, the model used
for optimization has to be as simple as possible. Especially, the sensitivity
calculation part is restrictive. Mainly the convexity of a model is required for
the correct function of the algorithm. Convexity is required to achieve global
optimality, not only local. Linearity is not necessary as nonlinear MPC is
used. However, it is advantageous as it improves convergence.

Two models for NMPC algorithm in slightly different complexity levels are
introduced. Functions of the high fidelity model that can cause problems
were replaced by appropriate replacements. Further aim was to reduce the
number of states while maintaining the system behavior. For these purposes,
we also took into account the sample time then used for NMPC.

4.2.1 High complexity vehicle design model

We will go through the individual components, derive the vehicle design
model equations and comment changes or simplifications.

Electric motor

Both states of the electric motor were neglected. These states are not necessary.
The first state Tint (Eq. 3.1) can be neglected because it tracks Treq and its
dynamics is very fast compared with the sample time intended for NMPC
algorithm (0.1s, the model sample time is discussed later in the section 4.4).
The second state ωem (Eq. 3.2) is neglected as well. The dynamics given by
the time constant tω is fast too, but the main reason for doing this is that
the moment of inertia of the electric motor is very small compared with other
moments of inertia on which the output torque acts. Therefore, the torque
"taken" by EM for its angular acceleration is negligible. Remaining relevant
equations are

Tem = Treqrω, (4.7)
Pem = Treqrωωinη−1(Treq). (4.8)

The result of this simplification in comparison with the original system can
be seen in the figure 4.1.

26

............................. 4.2. NMPC vehicle design models

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

500

1000

T
e

m
 [

N
m

] Electro motor high fidelity and design model comparison

High fidelity model

Design model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

5

10

15

P
e

m
 [

W
]

10
4

High fidelity model

Design model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

50

100

T
re

q
 [

N
m

]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

0

500

1000

in
 [

rp
m

]

Figure 4.1: Validation of electric motor simplifications.

Battery

For the battery model, it is important to get rid of the square root in the
equation 3.10. The square root makes trouble when the number in it is
negative. NMPC algorithm has all output constraints as soft constraints,
therefore the non-negativity cannot be guaranteed by this constraint and the
algorithm could fail. Simplification of the battery model was done with the
following assumptions. Transient events caused by capacitors are neglected,
therefore RC pairs can be discarded and one resistor as R = R0 +R1 +R2 is
introduced. When a comparison of the open circuit voltage Voc with voltage
lost at this resistor (Ri) is done it can be find out that even for big values
of current i, Vtrm ≈ Voc holds in the order of units of voltages. Then the
equations describing this reduced battery model are

˙SoC = − 100
3600C i, (4.9)

i = Ptrm

Voc
, (4.10)

where Voc = focv(SoC) or can be approximated eg. by a linear function in
the relevant operating point (because SoC is changing very slowly within the

27

4. Nonlinear Model Predictive Control
3s prediction horizon intended for NMPC - see 4.4). Justification or rather
validation of these simplifications can be seen in the figure 4.2, where original
and reduced models are compared.

0 1 2 3 4 5

Time [s]

39

39.5

40

S
o
C

 [
%

]

Battery high-fidelity and design model comparison

High fidelity model

Design model

0 1 2 3 4 5

Time [s]

4

6

8

10

P
tr

m
 [
W

]

104

Figure 4.2: Validation of battery simplifications.

Wheel model

For the reduced wheel model, the aim is to get rid of equation 3.15 for λ
together with equation 3.21 for wheel angular speed dynamics. There are
two reasons for doing that. First, the former equation runs into error when
the denominator is close to zero (both ω and v are close to zero), the latter
equation dynamics is very fast and can cause stiff problems. If zero slip
is assumed and thus tire peripheral velocity equal to vehicle speed, these
equations can be replaced by the simpler one (here only forward motion is
assumed (because of Tω,br))

Fwx = (Tω − Tω,br)
R

. (4.11)

Furthermore, in Eq. 3.16 prevention of division by zero is not guaranteed.
In the high-fidelity model implementation, atan2(x2, x1) function is used for
this purpose. This function is not differentiable at point (0, 0) and its usage
is therefore unwise in a control oriented model for NMPC, which relies on it.
This atan2() function was replaced by the function

ˆatan2(vωy, vωx) = 4vωy√
1 + 3(4vωx)2 + (4vωy)2

. (4.12)

28

............................. 4.2. NMPC vehicle design models

The function 4.12 was designed to accurately capture values for vωx > 1.
There are depicted function values for different vωx cuts in figure 4.3.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-100

-50

0

50

100

-6 -4 -2 0 2 4 6

-100

-50

0

50

100

-30 -20 -10 0 10 20 30

-100

-50

0

50

100

Figure 4.3: Validation of atan2 function simplification.

Derived reduced model is defined as follows

vwx = vx cos δ + vy sin δ, (4.13)
vwy = −vx sin δ + vy cos δ, (4.14)
α = − ˆatan2(vωy, vωx), (4.15)

Fwx = (Tω − Tω,br)
R

, (4.16)

Fwy(α) = FzDy sin(Cy arctan(Byα− Ey(Byα− arctan(Byα)))), (4.17)
Fx = Fwx cos δ − Fwy sin δ, (4.18)
Fy = Fwx sin δ + Fwy cos δ. (4.19)

Note that Eq. 4.17 is nonconvex (see Fig. 3.5b), but this can be eliminated
by appropriate α restriction in NMPC optimization objective because roughly
α ∈ (−10; 10) deg is desired.

29

4. Nonlinear Model Predictive Control
Vehicle dynamics

Finally, the vehicle dynamics model was reduced. The only problem is with
the side slip angle β dynamics (Eq. 3.28), when vehicle velocity is close to
zero. There are two possible solutions. The first one is the replacement of the
velocity magnitude v and its direction given by β with two velocities - one
velocity in the vehicle x axis direction and one velocity in the y axis direction
- this could be also done in the high-fidelity model. The other solution is to
omit the side slip angle β. This is quite reasonable (for a control oriented
model) because its values are relatively small during the ride. The second
approach was implemented and β was neglected. Derived equations are then

Fx = Fxf + Fxr − Faero − Fslope, (4.20)
Mz = lfFyf − lrFyr, (4.21)
ė = v cos(ψ), (4.22)
ṅ = v sin(ψ), (4.23)
ψ̇ = ψ̇, (4.24)

v̇ = Fx

m
, (4.25)

ψ̈ = 1
Iz
Mz, (4.26)

vxf = v, (4.27)
vxr = v, (4.28)
vyf = lf ψ̇, (4.29)
vyr = −lrψ̇. (4.30)

Validation

Vehicle design model was created with 6 states - e, n, ψ, v, ψ̇ and SoC -
instead of 15 states for the original model. Comparison of these integrated
models is shown in the figure 4.4. Three states - east and north position
and velocity - depending on the three inputs to the front wheel are shown
in the figure. State of charge has been already validated and heading ψ and
possibly ψ̇ can be deducted from the first subfigure. Moderate differences
in the velocity course can be mainly attributed to the slip ratio neglecting.
Therefore, the design model acceleration is higher than the one of high fidelity
model. Differences in position are caused by velocities and by the side slip
angle β neglecting. However, these differences have arisen on the horizon of
10 seconds. The time horizon intended for NMPC algorithm is much smaller

30

............................. 4.2. NMPC vehicle design models

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40
High fidelity and design model comparison

High fidelity model

Design model

0 1 2 3 4 5 6 7 8 9 10
5

10

15

0 1 2 3 4 5 6 7 8 9 10

-10
-5
0
5

0 1 2 3 4 5 6 7 8 9 10
0

50

0 1 2 3 4 5 6 7 8 9 10
0

500

Figure 4.4: Validation of the high complexity vehicle design model.

(3 seconds). Thus, this is an acceptable mismatch for the control oriented
model.

4.2.2 Low complexity vehicle design model

For this complexity level, the derived design model in the previous subsection
is further simplified. The main simplification besides the previous model
is in the wheel component. Then state ψ̇ will be neglected. All remaining

31

4. Nonlinear Model Predictive Control
functions and states are maintained - vehicle position, yaw, velocity and state
of charge (consumption minimization purpose).

Electric motor and battery

Equations remain the same as in the high complexity design model 4.2.1
(nothing to reasonably further simplify),

Tem = Treqrω, (4.31)
Pem = Treqrωωinη−1(Treq), (4.32)

˙SoC = − 100
3600C i, (4.33)

i = Ptrm

Voc
. (4.34)

Wheels and vehicle dynamics

The lateral forces generation by using Pacejka magic formula was neglected.
Turning is performed directly by the front wheel steering. The remaining
equation for both front and rear wheels is

Fx = (Tω − Tω,br)
R

. (4.35)

Vehicle dynamics without neglected yaw-rate state is as follows

Fx = Fxf + Fxr − Faero − Fslope, (4.36)

ė = v cos(ψ), (4.37)
ṅ = v sin(ψ), (4.38)

ψ̇ = 1
k
vδf , (4.39)

v̇ = Fx

m
, (4.40)

where k is a constant that best fits to the given vehicle. The constant
k = 3.125 m is used in this work. The simplification introduced in Eq. 4.39 is
based on a mathematical analysis of the physical behavior. The constant k
can be interpreted as a turning radius.

32

............................. 4.2. NMPC vehicle design models

Validation

A control oriented model with 5 states - e, n, ψ, v and SoC was derived.
Comparison of the design model and of the high-fidelity model is shown in
the figure 4.5. Performance of the design model is reasonable (for the purpose
of control in time horizon within a few seconds) while having much simpler
structure.

0 10 20 30 40 50 60 70 80
-30

-20

-10

0
High fidelity and design model comparison

High fidelity model

Design model

0 1 2 3 4 5 6 7 8 9 10

8

10

12

0 1 2 3 4 5 6 7 8 9 10

-5

0

5

10

0 1 2 3 4 5 6 7 8 9 10
0

20

40

0 1 2 3 4 5 6 7 8 9 10
0

500

Figure 4.5: Validation of the low complexity vehicle design model.

33

4. Nonlinear Model Predictive Control
4.3 NMPC problem solution

In this section, the problem solution by NMPC is described. First, different
alternative approaches are shown and discussed. Then the used solution is
explained. Presence of static obstacles and more challenging moving obstacles
in the environment is the main problem for NMPC algorithm. Obstacles
generally create a nonconvex space, which is to be dealt with. Within state
of the art research of MPC in a nonconvex environment, two approaches are
often used. The first one is by using suitable heuristics. Heuristics give a
path or constraints for the path and then MPC is used to ensure that the
trajectory is within the desired path or directly track the path. For example,
articles [11], [8], [7] use this approach. Mixed-integer programming [19] is
alternative approach that is computationally very demanding.

4.3.1 Mixed-integer programming

Mixed-integer programming (MIP) is used in applications with both integer
and real valued variables. For example mixed-integer linear program can be
formulated as

min cT
1 z + cT

2 x, (4.41)
subject to A1z + A2x ≤ b,[

z
x

]
≥ 0,

z ∈ Zn1 ,x ∈ Rn2 .

Similarly, a mixed integer program that is quadratic in real variables can
be formulated. Dedicated solvers to these problems are available. Within
control problems, eg. YALMIP can handle MIP. The MIP problems are often
solved via

. enumeration method,. branch and bound method,. cutting planes method.

For example, following requirement 4.42 shown in figure 2.2,
if (east ≥ 60 and east ≤ 70) then
north ≥ 20 xor north ≤ 2. (4.42)

34

................................4.3. NMPC problem solution

can be expressed with two new binary variables z1, z2 ∈ {0; 1} as 4.43 and
4.44,

if (east ≥ 60 and east ≤ 70) then
z1(north− 20) + z2(2− north) ≥ 0, (4.43)

z1 + z2 = 1. (4.44)

Similarly, other logical statements can be expressed with binary variables.
The solution by so-called big M (big positive number) is often used when the
first statement or the second statement must hold. However, despite the easy
program building mixed-integer programs are NP-hard and its usage is thus
very limited.

The thesis uses NMPC tool by Garrett motion, where MIP is not available.
To avoid binary variables, the equations can be modified with one additional
variable z ∈ R and one additional soft constraint ysoft as

if (east ≥ 60 and east ≤ 70) then
z(north− 20) + (1− z)(2− north) ≥ 0, (4.45)

ysoft = z2 − z = 0. (4.46)

Although this formulation uses only real variables, it cannot be used for
NMPC because the problem is nonconvex and therefore stuck at local minima
(with z near 0 or with z near 1) is very likely. Due to that fact, the approach
cannot be applied.

4.3.2 Dealing with static obstacles - Cost to go heuristics

For dealing with static obstacles, a solution based on heuristics called Cost
to go [19] was chosen. Points in the space which are beneficial to go through
compared to the other points are the result of the heuristics. These points are
given in advance, it means before running the NMPC. However, the overall
algorithm was proposed such that NMPC still generates the trajectory, but
only in given restricted part of the space. The heuristics takes points in the
space and assigns a value to each of those points, such that its value measures
cost of the trajectory from that point to the goal. The points were chosen
as vertices of the obstacles. The cost can be based on various optimization
objectives.

The proposed solution is expressed in algorithm 2. Overall approach in
every iteration is: (1) based on Cost to go heuristics restrict the possible

35

4. Nonlinear Model Predictive Control
space, (2) get the optimal inputs by NMPC, (3) provide the first optimal
input.

Algorithm 2 Nonlinear model predictive control with Cost to go heuristics.
1: Inputs: x0, obstacle vertices V , obstacles O
2: G = createGraph(O, V, goal)
3: T = Dijkstra(G)
4: i← 0
5: while i ≤ n do
6: e0, n0 ← x0(1), x0(2)
7: v, path← findBestNode(T,O, e0, n0)
8: ysoftLim = restrictTrajectory(path,O, V)
9: yref = setRefAndWeights(path, x0)

10: x0c ← x0(idxs)
11: u = NMPC(x0c, yref , ysoftLim)
12: x0 ← simulateHF(x0, u(1), Ts)
13: i← i+ 1

Individual steps of the algorithm will be described on the following lines.
The second test scenario will serve for illustration.

Inputs are the initial state x0 of the system, static obstacles O - convex
polygons and the obstacle vertices V . It is always possible to split nonconvex
polygons to convex polygons. Graph is created from the vertices at line 2
(example shown in Fig. 4.6). Its nodes are obstacle vertices and goal. Edges
are collision-free connections between the vertices (lines without collision with
obstacles). Obstacle edges are considered as collision free. The common line
is not collision free in the case where the obstacle is a result of nonconvex
polygon split.

Next part of the algorithm (line 3) assign each of the vertices of the graph
G cost based on Dijkstra search. The cost can be based on a combination
of optimization parameters J = J(t, SoC, length) and computed by suitable
optimization tool. Cost based on the length J = J(length) is used in the
work. The search starts from the goal. At the end, each vertex has a cost
and its parent. Therefore, Dijkstra search creates a tree T from the graph
with the goal node as a root (fig. 4.7).

36

................................4.3. NMPC problem solution

0 10 20 30 40 50 60 70 80 90 100

East [m]

-10

0

10

20

30
N

o
rt

h
 [
m

]

Figure 4.6: Created graph: nodes - obstacles vertices and goal, edges - collision
free lines between vertices

0 10 20 30 40 50 60 70 80 90 100

East [m]

-10

0

10

20

30

N
o
rt

h
 [
m

]

Figure 4.7: Tree created by Dijkstra’s algorithm from graph. Goal as a root,
vertices as nodes.

Then the while loop runs while the number of iterations given by the
simulation time is not exceeded. Note that graph creation and Dijkstra search
can be moved into the loop if needed. For example, if only some obstacles are
known at the start and knowledge of the environment develops. The vehicle
current position can be included in the graph in that case. If not (as in the
presented algorithm), the node u which gives best cost for the current vehicle
position J((e, n)) is chosen. The cost used in this work is

J((e, n)) = J(u) + J((e, n), u) = J(u) + length((e, n), u). (4.47)

At the same time, the node has to have collision-free line connection with
vehicle. The node u also gives the optimal path (based on the heuristics)
to the goal (Fig. 4.8). The function J has two meanings: J(·) means node

37

4. Nonlinear Model Predictive Control
cost, i.e. cost from node to root, whereas J(·, ·) means cost from one node to
another.

The heuristics path serves only for trajectory restrictions because of obsta-
cles. The trajectory restriction by lines is shown in the figure 4.9. Obstacles
along the trajectory are delimited by lines. Only nodes visible from the vehicle
position can be delimited and only obstacles on some distance horizon are
delimited. These requirements are expressed by outputs soft limits ysoftLim.

0 20 40 60 80 100

East [m]

-10

0

10

20

30

40

N
o

rt
h

 [
m

]

goal

vehicle position

Figure 4.8: The best path given by vehicle position.

0 20 40 60 80 100

East [m]

-10

0

10

20

30

40

N
o

rt
h

 [
m

]

goal

vehicle position

best node

current goal

path restrictions

Figure 4.9: Trajectory restricted by lines on some distance horizon.

References and their weights are set at line 9. Such a point on path is chosen

38

................................4.3. NMPC problem solution

as a current goal that the vehicle is not able to reach it within one prediction
horizon. More precisely, the point (current goal) is reachable by the vehicle if
the vehicle goes exactly along the path, uses the maximal acceleration from
current velocity while respecting the maximal allowed velocity. The choice
of the current goal is intentional, because then the vehicle does not brake
unnecessary at intermediate goals and goes the right path. If some vertices
are on the path between the vehicle and the current goal, the position of the
vertices is set as a reference in the middle of the prediction horizon. With
the similar procedure as for the current goal, the vertex is set as a reference
for a particular time in the prediction horizon. These points serve as guiding
rather than actual references. Therefore, weight on the reference points is set
as linearly increasing with the prediction time. Thus, the biggest weight is
assigned to the current goal and weights of points near the vehicle approach
zero.

However, the situation is slightly different if the part of the Dijkstra path
from vehicle position to the current goal has a sharp turn. The situation is
outlined in the figure 4.10. For this case, the presented algorithm would quite
easily stuck at local minima behind the obstacle as the cost is not improving
along the obstacle edge towards the nearest vertex. As described above, the
setting vertices at the path as other references at particular times in the
prediction horizon helps, however, it can be insufficient in some cases.

-5 0 5 10 15 20 25 30 35 40
-5

0

5

10

15

current goal

vehicle position

predicted path

vehicle path

waypoint 1

waypoint 2

path restrictions

Figure 4.10: Dijkstra path positions directly as references - stuck at local minima
is possible.

Better solution for the cases with sharp turn path is shown in the figure
4.11. In this case, only nearest vertex on the best path is set as a reference
for time in the prediction horizon as described above. It is also possible to
set as a reference position given by obstacle edge length ("current goal" in the

39

4. Nonlinear Model Predictive Control
figure) as shown in the figure. In this case (sharp path), the nearest vertex
on the best path has bigger weight because the following position is only
auxiliary.

-5 0 5 10 15 20 25 30 35 40
-5

0

5

10

15

goal

vehicle position

predicted path

vehicle path

waypoint 1

current goal

path restrictions

Figure 4.11: Modification for paths with sharp turn.

Only states needed for design model x0c are chosen from vehicle states x0.
Then NMPC algorithm is run. The first optimal input is applied for sample
time Ts and the high-fidelity model (or real system if available) is simulated.

To summarize this part, the procedure is following: the heuristics select a
subspace of the state space. Then NMPC generates a trajectory in this sub-
space. The NMPC actually generates the trajectory compared to conventional
trajectory tracking problem.

4.3.3 Dealing with moving obstacles

In the previous subsection, dealing with static obstacles was solved by heuris-
tics Cost to go. It is not possible to use the described approach also for
moving obstacles. The reason is the position change in time. Knowledge of
the moving obstacle positions on the prediction horizon is considered. Vertices
of an obstacle (polygon) are moving. Therefore, it is not possible to assign
costs to vertices as in the previous section. Assignment of each vertex cost
for individual time steps in the prediction horizon is realizable. The used
heuristics in the previous section decides about the side to go around an
obstacle. In this case, the decision to go around the obstacle from the selected

40

.................................... 4.4. NMPC results

side can be often unfeasible from the vehicle dynamics constraints.

Instead, the moving obstacle is wrapped by some function, circumscribed
by eg. ellipse (fig. 4.12). Then an output soft constraint is created. The
constraint ensures that positions of the controlled vehicle in the prediction
horizon are outside the ellipse.

35 40 45 50 55

East [m]

-10

-5

0

5

10

N
o
rt

h
 [
m

]

circumscribed ellipse

moving obstacle - car

Figure 4.12: Dealing with moving obstacles.

It is important to say that this approach can lead to stuck at local minima.
Hence, it is the reason why this procedure is not applied to static obstacles.
This is a subject for further improvements in the future.

4.4 NMPC results

In this chapter, results of NMPC method are presented. Outcomes are given
and described for scenarios (Fig. 2.1), (Fig. 2.2) and (Fig. 2.3) by NMPC
algorithm. For all scenarios, a zero inclination angle αinc = 0 is considered.
Code was implemented in MATLAB with NMPC tool provided by Garrett
motion. The NMPC runs on design (control oriented) models, the simulation
on high fidelity model.

The NMPC algorithm parameters were chosen as

.model sample time: Ts = 0.1s,

41

4. Nonlinear Model Predictive Control
. prediction horizon samples: N = 30,. =⇒ prediction horizon time: T = NTs = 3s.

Option of these parameters provides a suitable combination of model sample
time and prediction horizon time. Model sample time is short enough to
capture majority of the vehicle dynamics. However, some modes of the
dynamics are too quick (for instance, slip ratio) and it cannot be properly
controlled with this model sample time, but anyway it is not the thesis
objective. Number of prediction samples gives three-second long prediction
time. The prediction time is very short. Searching for the best trajectory in a
chosen subspace for minimization of time or battery state of charge includes
only 3s prediction. Or, for instance, it can be impossible to stop from high
speed, especially when slip is present. However, longer prediction time as well
as shorter model sample time means higher time demands for computations
and more complex space to inspect. The 3 seconds long prediction horizon is
tradeoff respecting the aforementioned facts.

Formulation of time minimization is not straightforward for the classic
model predictive control. Prediction horizon is fixed and it is not an optimiza-
tion parameter. Thus, it is not possible to set a goal (current goal) position as
an end state and minimize the time to reach that goal, while satisfying other
constraints. Instead, the current goal and waypoints are set as an reference
for certain sample(s) in the prediction horizon. Therefore, the formulation is
the minimization of distance to the goal rather than time minimization. The
procedure of current goal and way-point setting as a reference for prediction
samples is described in section 4.3.2. The weight of the main sample (sample
with the biggest weight on it, mostly the current goal) in the prediction
horizon for position tracking will be denoted as w.

Only inputs to the front axle are controlled, therefore the subscript f
denoted to the front axle is redundant. The inputs are bounded by values

. δ ∈ 〈−25 deg; 25 deg〉,. Treq ∈ 〈−100 N m; 100 N m〉 (drive torque ∈ 〈−1000 N m; 1000 N m〉),. Tω,br ∈ 〈0 N m; 2000 N m〉,

for all scenarios. Note that Treq is requested torque for an electric motor,
while Tω,br is brake torque acting directly on the wheel. There is a gear
ratio rω = 10, which transforms out torque of the electric motor generator

42

.................................... 4.4. NMPC results

to a torque acting on the wheel. In the following figures, the expression
drive torque is denoted to the term Treqrω (to have the same scale as for
brake torque). The matrix R is not used in the cost function, the matrix Rd

that weights the differences between consecutive inputs is preferred as this
option represents better solved tracking reference problem. Therefore, in the
scenarios NMPC cost function Jin, representing the cost for inputs, is given
by (roughly, may slightly differ depending on the scenario) matrices

. Rdδ = diag(50), RdTreq
= diag(10), RdTω,br

= diag(10),

which weights inputs that are normalized in interval 〈−1; 1〉 in advance for
this purpose. The matrices are square of size 30x30 with stated values on
their diagonals. Requirements (constraints) for the individual scenarios will
be formulated by linear temporal logic. Section 5.1.1 is denoted to linear
temporal logic, but the requirements are very simple in the presented cases.
Low-complexity design model is used in the scenario 1 and 3, high-complexity
design model is used in the scenario 2.

4.4.1 Scenario 1

The first scenario is without any obstacles. Control of the vehicle will be
shown for two different costs on the state of charge maximization. The NMPC
cost is as

Jout,in = 1
2[(epred − eref)TQre(epred − eref)+ (4.48)

+ (npred − nref)TQrn(npred − nref)+
+ (SoCpred − SoCref)TQrSoC (SoCpred − SoCref)]+
+ Jin,

where matrices Qre and Qrn weight position reference tracking and QrSoC

state of charge tracking. Here, the environment is without obstacles, therefore
according to the proposed algorithm, only the current goal is given as a
reference for the last sample in the prediction horizon and weight for it was
chosen as w = 0.1 (last element on diagonal of both matrices Qre , Qrn).
Slightly bigger SoC then current SoC is given as a reference for state of
charge: SoCref = SoC + 2% at the end of the prediction horizon. Paths (Fig.
4.13) and other states and inputs (Fig. 4.14) of the vehicle are shown in the
following figures for two different weights on SoC. The first one shows the
situation without cost for SoC, the other one with cost on SoC given by the
square matrix QrSoC = diag(0, .., 0, 10).

43

4. Nonlinear Model Predictive Control

-30 -25 -20 -15 -10 -5 0 5 10 15
0

5

10

15

20

25

30

35

40

Vehicle path

goal position

start position

path w/o penalty on SoC

path w/ penalty on SoC

Figure 4.13: Vehicle path by NMPC in the first scenario. Two versions of
the cost function compared - with(w/) and without (w/o) penalty in the cost
function for state of charge maximization.

The path with penalty on the state of charge maximization is more direct
than the other path. At the final positions of shown paths, the vehicle still
has a certain (small) velocity. It can be seen that the presence of the penalty
for SoC in the cost function can inconveniently affect tracking of the goal -
it is advantageous (from the optimization point of view) to slightly pass the
goal, because long-lasting mild braking gives better recuperation power than
quick heavy braking.

Other initial states of the vehicle are vinit = 2 m
s , ψinit = 0 deg,

SoCinit = 40 %. From the subfigure which displays SoC (Fig. 4.14) can
be seen that trajectory with penalty on state of charge maximization ends
with value about SoC = 39.8 %, while the other trajectory ends with value
only slightly better than SoC = 39.7 %. The reason is shown in the last
subfigure. For the trajectory with consumption minimization, braking by
motor generator torque is preferred over brake torque. A smooth course of
the steering angle δ is shown for both trajectories.

44

.................................... 4.4. NMPC results

0 1 2 3 4 5 6 7 8
0

5

10
Remaining vehicle states and inputs

w/o penalty on SoC

w/ penalty on SoC

0 1 2 3 4 5 6 7 8
0

50 w/o penalty on SoC

w/ penalty on SoC

0 1 2 3 4 5 6 7 8
39.7

39.8

39.9
w/o penalty on SoC

w/ penalty on SoC

0 1 2 3 4 5 6 7 8
0

10

20 w/o penalty on SoC

w/ penalty on SoC

0 1 2 3 4 5 6 7 8

-500

0

500

1000

Drive torque w/o SoC

Brake torque w/o SoC

Drive torque w/ SoC

Brake torque w/ SoC

Figure 4.14: Other vehicle states and inputs in the first scenario. Two versions
of cost function compared - with(w/) and without (w/o) penalty in the cost
function for state of charge maximization.

4.4.2 Scenario 2

Static and moving obstacles are present in the second scenario. The NMPC
tracking cost formulation is as in the previous scenario 4.48. The matrices
Qre and Qrn , which weights position reference tracking, are set during the

45

4. Nonlinear Model Predictive Control
ride according to the proposed algorithm. Weight for the main sample (main
position reference) was chosen as w = 0.2.

The obstacles avoidance requirements can be formulated by linear temporal
logic as

�¬(collision with static obstacle), (4.49)
�¬(collision with moving obstacle), (4.50)

where the collision means that the vehicle position is in the obstacle. The
requirements are reformulated to MPC constraints by the described proposed
algorithm with the usage of soft output constraints for obstacles restriction.

Two NMPC cost functions for different penalties for SoC are compared in
this scenario, too. The first cost is given by matrix QrSoC = diag(0, .., 0, 30),
the other one by QrSoC = diag(0, .., 0, 100). Paths (Fig. 4.15) and other
states and inputs (Fig. 4.16) of the vehicle are shown in the figures. The
vehicle is quicker in the situation with lower SoC penalty and it chooses an
overtaking maneuver for moving obstacle avoidance, while for bigger SoC
penalty it maintains more economy trajectory and passes the moving obstacle
from the other side. For a better understanding of the described situation,
look at the predictions for certain simulation times shown in the figure 4.17
for both cases with the depicted moving obstacle.

Other initial states of the vehicle are vinit = 0.1 m
s , ψinit = 0 deg,

SoCinit = 40 %.

0 20 40 60 80 100
-10

0

10

20

30

40
Vehicle path

goal position

start position

path - low penalty on SoC

path - high penalty on SoC

Figure 4.15: Vehicle path by NMPC in the second scenario. Two versions of
cost function compared - with low and with high penalty in the cost function for
the state of charge maximization.

46

.................................... 4.4. NMPC results

0 1 2 3 4 5 6 7 8 9 10
0

5

10

Remaining vehicle states and inputs

0 1 2 3 4 5 6 7 8 9 10

-40
-20

0
20
40

low penalty on SoC

high penalty on SoC

0 1 2 3 4 5 6 7 8 9 10

39.5

40

0 1 2 3 4 5 6 7 8 9 10

-20

-10

0

10

low penalty on SoC

high penalty on SoC

0 1 2 3 4 5 6 7 8 9 10

-500
0

500
1000

Drive torque low SoC

Brake torque low SoC

Drive torque high SoC

Brake torque high SoC

Figure 4.16: Other vehicle states and inputs in the second scenario. Two versions
of cost function compared - with low and with high penalty in the cost function
for the state of charge maximization.

The vehicle is not required to completely stop at the goal position as this
is impossible from the higher velocities within the 3 seconds long prediction
horizon. From the subfigure which displays SoC, it can be seen that the
trajectory with higher penalty on the state of charge maximization ends
with higher SoC value (in addition, it is the value before the main usage
of regenerative braking as the vehicle does not reach the goal yet (see Fig.
4.15)). The last subfigure shows that smaller drive torque is used during
the ride for the trajectory with high SoC penalty. The steering angle δ is
not so smooth as in the previous scenario. The matrix Rdδ = diag(20) is
used, as this slightly smaller cost for δ improves the searching in the space
with constraints given by obstacles. However, the main reasons for the rough
course of steering angle are close passing around obstacles and design model
vs. high fidelity model mismatch.

47

4. Nonlinear Model Predictive Control

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40
goal

vehicle position

predicted path

vehicle path

waypoint

current goal

obstacle

current constraints

(a) : Predicted trajectory - low penalty on SoC maximization.

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40
goal

vehicle position

predicted path

vehicle path

waypoint

current goal

(b) : Predicted trajectory - low penalty on SoC maximization.

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40
goal

vehicle position

predicted path

vehicle path

waypoint1

waypoint2

current goal

obstacle

current constraints

(c) : Predicted trajectory - high penalty on SoC maximiza-
tion.

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40
goal

vehicle position

predicted path

vehicle path

waypoint

current goal

(d) : Predicted trajectory - high penalty on SoC maximiza-
tion.

Figure 4.17: Predicted trajectories by NMPC for both situations - with low
(4.17a, 4.17b) and high (4.17c,4.17d) penalty on SoC maximization.

48

.................................... 4.4. NMPC results

4.4.3 Scenario 3

The last scenario is slightly different as it requires path (given by positions)
tracking. The desired path is given by the center line of the right lane. Moving
obstacle is in the right lane and goes with velocity 3 m

s . Again, the NMPC
cost is formulated as 4.48. The position references are given to all the samples
in the prediction horizon as a points which are possible to reach by vehicle
in the time given by position of the sample in the prediction horizon. The
matrices Qre and Qrn which weights position reference tracking are set such
that they weight the close samples with bigger values and far samples with
smaller values: Qre = Qrn = diag(0.4, .., 0.1)

Requirements formulated by linear temporal logic are

�¬(collision with moving obstacle), (4.51)
�(on the road). (4.52)

The requirements are reformulated to MPC constraints by soft output con-
straints for obstacles restrictions and road restrictions.

In the figure 4.18 the vehicle path is shown. The vehicle does not track the
center line of the right lane exactly, rather it maintains its position in the left
half of the right lane, then it overtakes the moving obstacle and continues.

0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50
Vehicle path

goal position

start position

vehicle path

Figure 4.18: Vehicle path by NMPC in the last scenario - overtaking

49

4. Nonlinear Model Predictive Control
Moving obstacle is shown in the predictions for certain simulation times in

the figure 4.20 for a better understanding of the described situation.

The vehicle starts from initial states vinit = 0.1 m
s , ψinit = 0 deg,

SoCinit = 40 %. From sub-figure which shows steering angle δ of the figure
4.19 can be seen that at the beginning the vehicle turns slightly (look at the
ψ̇, because of the low velocity) to the left, because of the weights on the
position references.

0 1 2 3 4 5 6 7 8 9
0

10

20
Vehicle states and inputs

0 1 2 3 4 5 6 7 8 9

-20

0

20

0 1 2 3 4 5 6 7 8 9
39

39.5

40

0 1 2 3 4 5 6 7 8 9
-5

0

5

0 1 2 3 4 5 6 7 8 9

0

1000

2000

Drive torque Brake torque

Figure 4.19: Other vehicle states and inputs in the last scenario.

50

.................................... 4.4. NMPC results

0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50
Vehicle path

goal position

vehicle position

predicted path

vehicle path

(a) : Predicted trajectory in scenario 3.

0 10 20 30 40 50 60 70
-10

0

10

20

30

40

50
Vehicle path

goal position

vehicle position

predicted path

vehicle path

(b) : Predicted trajectory in scenario 3.

Figure 4.20: Predicted trajectory by NMPC in the last scenario for different
times.

51

52

Chapter 5

Minimum-violation Planning

5.1 MVP introduction

In this section, the algorithm named minimum-violation planning (MVP)
will be concisely described. Unlike model predictive control, the MVP is a
recent and novel approach. The algorithm state of the art is given in [25].
Therefore, the paper is the main source of information about MVP for the
thesis. Further information, providing also the algorithm development, can
be found in prior articles [23], [21], [26], [4], [17], in which the problem was
solved via automata theory. However, this approach was leaved later in favor
of sampling algorithms. As the name suggests, the algorithm is developed
for path planning problems. Extension to all states generating trajectory is
given in MVP. Phrase minimum-violation indicates the trajectory is in some
sense optimal. The optimum is given by a cost function minimum, where for
MVP the cost is a vector function, whose dimensions are equivalent to levels
with different priorities.

MVP is sampling-based algorithm. States of the system are randomly
sampled and connected. For this purpose, algorithms like Rapidly-exploring
random tree (RRT), Rapidly-exploring random graph (RRG) or Probabilistic
roadmap (PRM) are considered.

The following MVP algorithm overview is adopted from [25]. It is repeated
here and described for clarity.

53

5. Minimum-violation Planning
Algorithm 3 Minimum-violation planning. (Adopted from [25].)

1: QK ← ∅; RK ← ∅; Qgoal,K ← ∅;
2: add(qinit) to QK ;
3: for all i ∈ N≤n do
4: qnew ← sample(i);
5: Qnear = near(qnew);
6: add(qnew) to QK ;
7: for all q ∈ Qnear do
8: if steer(q, qnew) 6= ∅ then
9: connect(q, qnew);

10: for all q ∈ Qnear do
11: if steer(qnew, q) 6= ∅ then
12: connect(qnew, q);
13: if qnew ∈ Qgoal then
14: Qgoal,K = Qgoal,K ∪ qnew;
15: return Kn = (QK , qinit, RK ,Π, L,WK), Qgoal,K

(a) : Line 4.

nearQ

(b) : Lines 7 - 9.

nearQ

(c) : Lines 10 - 12.

Figure 5.1: RRT* for Minimum-violation planning. Adopted from [24] and
modified.

The algorithm 3 will be briefly described here, but for deeper understanding
the reader is referred to [25] (page 5). At the start, a set of sampled states
QK , set of existing transitions between states RK and set of near to goal
states Qgoal,K are initialized to empty sets. Initial state is added to set QK

in function add at line 2. Then a graph with n nodes is constructed. New
node (an independent, identically distributed sample from state space uniform
distribution) is added to QK in each iteration. Its nearest neighbors in QK

(given by some state distance limit) are found (line 5) and for each neighbor
trajectory from the neighbor to new node qnew is constructed (8). If it exists,
the node is connected to the neighbor (line 9). Connect part of the algorithm
differs with sampling-based algorithm used. RRG just adds the transition
(q, qnew) to RK and computes the cost WK(q, qnew) from q to qnew. On the
other hand, RRT computes the transition cost WK(q, qnew) and cost JK(q)
from root node qinit to q, then transition is added only if it improves the cost
JK(qnew) := JK(q) +WK(q, qnew) (previous transition to node qnew is deleted
if there was any). After that, each neighbor trajectory is searched and the

54

.................................. 5.1. MVP introduction

same connection procedure is done in reverse order from qnew to q (lines 10 -
12). Finally, qnew is added to Qgoal,K if it is in goal states Qgoal. The result is a
graph (RRG) or tree graph (RRT) with nodes QK , transitions RK , transition
costs WK , initial node qinit and set Qgoal,K matching goal states. The tuple
Kn = (QK , qinit, RK ,ΠK , LK ,WK) is called weighted Kripke structure, where
ΠK is a set of atomic propositions and LK : QK → 2ΠK is labeling function
assigning each state set of atomic propositions that are true at that state
(2ΠK is powerset of Π). These concepts are important for the computation of
the cost function WK and will be further clarified.

5.1.1 Linear temporal logic

Trajectory which is searched has to minimize the cost function JK(qgoal) of
the trajectory from qinit to qgoal ∈ Qgoal,K . The cost function is in MVP
formulated based on rules given by Linear temporal logic (LTL), more precisely
by Finite linear temporal logic (FLTL). FLTL formulas are constructed from

. set of atomic propositions Π,. logic operator negation (¬) and disjunction (∨),. temporal operator next (©) and until (U).

Further logic operators, eg. conjunction (∧), implication (=⇒), equivalence
(⇐⇒), true, false, can be constructed from fundamental operators and
further temporal operators, eg. always (�), eventually (♦), can be constructed
from fundamental operators. FLTL formula is given inductively as

. p is FLTL formula if p ∈ Π,. if p, p′ are FLTL formulas then ¬p, p∨ p′, ©p, p Up′ are FLTL formulas.

FLTL will be restricted to a smaller class called si− FLTLGx . Restriction
is done to better accommodate algorithm 3 cost function WK computation.
The computation of WK (in connect part of the algorithm) cares only about
a state and its nearest parent state and the relevant transition. With FLTL,
a much bigger class of formulas can be built up (eg. by using ©© p state
and the parent of its parent can be related), therefore the smaller class of
formulas is needed. si− FLTLGx is defined as follows (adopted from [25]):

55

5. Minimum-violation Planning
Definition 5.1. An si−FLTLGx formula over a set Π of atomic propositions
is an FLTL formula that is stutter-invariant (explained below) and is of the
form

ϕ = �Px, (5.1)

where Px belongs to the smallest set defined inductively by the following
rules:

. p is a formula for all p ∈ Π ∪ {True, False},.©p is a formula for all p ∈ Π ∪ {True, False}, and. if P 1
x and P 2

x are formulas, then so are ¬P 1
x , P 1

x ∨ P 2
x , P 1

x ∧ P 2
x and

P 1
x =⇒ P 2

x .

In other words, Px is a Boolean combination of propositions from Π and
expressions of the form ©p, where p ∈ Π.

It is good to say that besides si− FLTLGx formulas the mentioned article
[25] defines also si − FLTLG formulas. Every formula from si − FLTLGx

can be written in si− FLTLG. The si− FLTLG nomenclature is then used
through the paper. This is not so important for the thesis because it is used
mainly for the proofs in the article.

Expressions for which will be evaluated their truth (interpreted) over FLTL
formulas are called words. A finite word assigns a set of consecutive states
x = q1q2...qk labels l1l2...lk:

ω(x) = l1l2...lk. (5.2)

If the word ω satisfies formula ϕ it is written as ω |= ϕ. As the system
trajectory is continuous, for the MVP purpose, these states are taken only at
times T , when function LK has discontinuities:

T =
{
t | lim

t′→t−
LK(x(t)) = lim

t′→t+
LK(x(t))

}
(5.3)

A word ω = l1l2...lk is called stutter-invariant if for any word ω′ = l1l2...li−1lilili+1...lk
created from ω by duplicating some letters it applies ω′ |= ϕ if and only if
ω |= ϕ. Additionally, ω′ is called stutter-invariant because by removing some
letters (word ω) it still applies ω′ |= ϕ if and only if ω |= ϕ.

56

.............................. 5.2. MVP vehicle design models

5.1.2 Cost function formulation

The cost function is in MVP [25] given as a vector function

J(x) =
[
λP (ω,Ψ1), λP (ω,Ψ2), ..., λP (ω,ΨN),∑
i

ρ1iF1i(sssf), ...,
∑

j

ρmjFmj(sssf)
]
∈ RN+m. (5.4)

Each dimension up to N in the cost function defines a different so-called level
of unsafety λP of the word ω(x). Formulas ϕ ∈ Φ are organized into sets Ψi

which are arranged in an ordered set

Ψ = (Ψ1,Ψ2, ...,ΨN), (5.5)

where formulas in Ψ1 have the biggest priority and ΨN the lowest. Each
formula ϕ ∈ Φ has its own weight ρ(ϕ), therefore unsafety of word ω(x) on
level i is given by

λP (ω,Ψi) =
∑

ϕ∈Ψi
ρ(ϕ)λ(ω, ϕ), (5.6)

where λ(ω, ϕ) is level of unsafety of word ω = l1l2...lk of the formula ϕ defined
as

λ(ω, ϕ) =
∑

i∈N≤n | lili+1 6|=Px

{
ti+1 − ti, if lil′ 6|= Px ∀l′ ∈ 2Π,

1, otherwise.
(5.7)

This can differentiate between taking an unsafe transition and visiting an
unsafe state (for more information see [25]).

The second part (dimensions N + 1 to N + m) of the cost function 5.4
represents other trajectory costs by functions Fuv(sssf) ordered according
to their priorities, where sssf denotes to the trajectory including inputs and
times. Function F (sssf) can represent for example minimization of trajectory
time, consumption or inputs magnitude. Only trajectory time minimization
was stated in the paper [25], however, the paper mentions the ease of the
extension like this one. The optimization is performed based on the cost
function 5.4 dimension by dimension such that cost on the lower dimension
has bigger priority. That is eventually possible to move functions Fl to lower
dimensions to have bigger priority for them than for formulas in Ψk.

5.2 MVP vehicle design models

In this section, design models (control oriented models) of the vehicle for MVP
algorithm are introduced at two slightly different levels of complexity. For

57

5. Minimum-violation Planning
MVP algorithm, neither linearity nor convexity is required. Used functions
can be very nonlinear, if − else and similar structures are allowed. However,
simplifications are needed as well due to computational complexity. For MVP
algorithm, state complexity is needed to be reduced. Steer part of the MVP
algorithm, where a trajectory from one state to another state is found, causes
the main problem. This is time demanding and/or after some introduced
adjustment memory demanding. This means it is not possible to use the
high-fidelity model directly because it has too many states and the two-state
connection would be almost impossible in a reasonable time. (More in section
5.3.) Because the states have been already reduced for both NMPC design
models, the work is almost done. It is advantageous as algorithms comparison
on the similar models can be done.

5.2.1 High complexity vehicle design model

The same model as in subsection 4.2.1 is used. The equations are not
stated here again. The reader is referred to equations 4.7 - 4.30. The only
difference is in Eq. 4.12 or 4.15 - atan2 function can be used here without
any approximation as MVP is a derivative free method.

5.2.2 Low complexity vehicle design model

The same model as in subsection 4.2.2 is used. Again, the reader is refereed
to equations 4.31 - 4.40. The equations are not stated here again. And no
additional modification is done. This is advantageous because both algorithms
can be compared on the same model.

5.3 MVP problem solution

This section describes modifications of the Minimum-violation planning (MVP)
algorithm introduced in this work. Modifications are needed as direct usage
of the algorithm is not possible for systems with a high number of states
or inputs. In [25], Dubins car is used as an example. Dubins car has only
three states x, y position and heading ψ. It goes with constant velocity and
the only input is the angular velocity ψ̇. Trajectory finding between two
states is very simple for Dubins car model. That is the reason for its frequent

58

................................ 5.3. MVP problem solution

usage in path planning problems. A real car does not travel with constant
velocity and etc. Thus, then the steer function in algorithm 3 leads to a
complex two-point boundary value problem. This is the main bottleneck of
the MVP algorithm. Modifications made on the following lines deal mainly
with this problem. In the thesis, MVP is based on Rapidly-exploring random
tree (RRT) and mainly on its asymptotically optimal variant RRT*. For
other algorithms (like RRG), only some of the following modifications bring
improvements.

5.3.1 Trajectories precomputation for MVP

This section deals with two-point boundary value problem (TPBVP) solved
in each iteration of algorithm 3 at lines 8 and 11 for each node in the
neighborhood. The TPBVP solution by optimization tools was considered.
Specifically, CasADi optimization tool was used for trajectory solution. By
CasADi one such TPBVP for MVP design models described at section 5.2
last about 10ms on a computer with parameters stated in appendix table
B.5.. Solver Gurobi gave similar times. Thousands of nodes in the tree are
needed for minimal coverage of environments similar to those presented in
test scenarios. And if a neighborhood of 10-30 nodes is considered, the time
consumed only by the TPBVP is in the order of minutes.

Therefore, a different technique is proposed. System trajectories are pre-
computed based on MVP design model for certain inputs, states and time
grids. Then, the steer function in MVP algorithm searches for a suitable
trajectory that starts in a given start state and ends near the end state
of the TPBVP in precomputed trajectories. The procedure of trajectories
precomputation is described in algorithm 4. Grids for inputs, states and for

Algorithm 4 precomputeTraj(inputsGrid, statesGrid, timeGrid)
1: Inputs: inputsGrid, statesGrid, timeGrid
2: trajectories = [size(statesGrid), size(inputsGrid)]
3: for all state ∈ statesGrid do
4: x0 = state
5: for all u ∈ inputsGrid do
6: traj = integrate(x0, u, timeGrid)
7: add(traj) to trajectories[state]

return trajectories

time are needed in the algorithm. Inputs and states grids are created by
an appropriate step length between minimal and maximal inputs and states.
Time grid is defined by a step length and is limited by a selected time. For
example, the time step can be 0.05 s and the maximal time 2 s. A trajectory

59

5. Minimum-violation Planning
is computed by integration for every state and every input in the grid. The
integration starts from a state in the grid and is performed by application
of (constant) input in the grid for a maximal time. Result of integration
is the trajectory. Purpose of the time step in the grid is following: In the
steer function, trajectories lasting less than the maximal time can be also
taken into account when searching for the suitable trajectory in MVP. Thus,
the states pertaining to these times in the time grid can be also taken as
endpoints of trajectory. The trajectories are saved in KDtrees. KDtrees were
implemented because it improves the query time. Complexity of the KDtree
query is log(n) [1].

Not all states have to be included in the statesGrid. Under certain assump-
tions - like considering the same slope of the road everywhere - trajectory
can be transformed from the initial point (e, n, ψ) = (0, 0, 0) to arbitrary
point (e, n, ψ) in the environment by well-known geometric transformation
relations. Or under other assumption - slope of the road is not excessively
changing within the timeGrid - the slope can serve for a grid. There is a lot
of other possibilities that can be convenient to use and it depends on the
given situation. These transformations can significantly reduce the time and
memory demands for trajectories precomputation and reduce query time in
the MVP.

The steer function with precomputed trajectories is given by algorithm 5.
First, the nearest state to the start state qstart in the statesGrid is found.
Then KDtree searching for a trajectory starting at state and ending near
qend is performed (line 2). Trajectory is accepted if the distance between qend

and end of the best trajectory is less than a specified threshold. Every point
given by the time grid as described above can be viewed as an end point
of some trajectory. Trajectory is then taken only to that point. If needed,
transformation of the trajectory is performed in the steer function.

Algorithm 5 steer(qstart, qend)
1: state = findNearest(qstart, statesGrid)
2: traj, trajend = findNearestTraj(qend, trajectories[state])
3: if distance(qend, trajend) ≤ threshold then
4: return traj
5: else
6: return ∅

MVP with precomputed trajectories is further modified in algorithm 6.
New sample (line 15) is added to the tree only if it has a parent. It was not
so in the original MVP and for larger systems (larger state space) it led to
situations where lots of nodes were not connected to any other node.

60

................................ 5.3. MVP problem solution

Algorithm 6 Minimum-violation planning with precomputed trajectories.
1: Inputs: trajectories, statesGrid, timeGrid
2: QK ← ∅; RK ← ∅; Qgoal,K ← ∅;
3: add(qinit) to QK ;
4: i← 0; val← false
5: while i ≤ n do
6: qnew ← sample();
7: Qnear = near(qnew);
8: JK(qnew) = inf
9: for all q ∈ Qnear do

10: if steer(q, qnew) 6= ∅ then . steer - Algorithm 5
11: val = true
12: connect(q, qnew) . Algorithm 7
13: if not val then
14: continue;
15: add(qnew) to QK ;
16: for all q ∈ Qnear do
17: if steer(qnew, q) 6= ∅ then . steer - Algorithm 5
18: connect(qnew, q) . Algorithm 7
19: if qnew ∈ Qgoal then
20: Qgoal,K = Qgoal,K ∪ qnew;
21: i← i+ 1
22: return Kn = (QK , qinit, RK ,Π, L,WK), Qgoal,K

Algorithm 7 connect(qstart, qend)
1: if JK(qstart) +WK(qstart, qend) ≤ JK(qend) then
2: JK(qend) = JK(qstart) +WK(qstart, qend)
3: RK ← (RK\ {(q1, qend) ∈ RK}) ∪ {(qstart, qend)}

5.3.2 Modification to RRT* for MVP - version 1

Unfortunately, a trajectory between two states (produced by steer function)
often does not exist, which leads to discarding the sampled state. There are
multiple reasons. At first, generally for a system like vehicle, the closer are
the states in eg. position, the closer must be their velocities, heading, etc.,
for a connection to exist. Furthermore, if nodes are too far from each other,
a connection also does not exist due to the maximal time in the grid. Finally,
the grid for trajectory precomputation cannot be too dense as it leads to
time and memory issues. And it can cause a missing trajectory, although in
the real world (or by some optimization tools) a trajectory would exist. The
problem is also found when the trajectory exists only for a few nodes (one,
two) in the neighborhood. Then, although the chosen node can have the best

61

5. Minimum-violation Planning
cost from these, the cost can be still much worse compared to other nodes in
the neighborhood for which a trajectory was not found. Then the algorithm
produces possibly suboptimal connections between states rather than the best
connections based on the cost optimization. Following proposed modification
to RRT* introduced in algorithm 8 can deal with the issues described above.

Algorithm 8 Minimum-violation planning - version 1.
1: Inputs: trajectories, statesGrid, timeGrid
2: QK ← ∅; RK ← ∅; Qgoal,K ← ∅; i← 0;
3: add(qinit) to QK ;
4: while i ≤ n do
5: qsample ← sample();
6: Qnear = near(qsample);
7: qbest = bestNode(Qnear)
8: qnew = chooseRandomTraj(qbest, trajectories)
9: JK(qnew) = inf

10: connect(qbest, qnew) . Algorithm 7
11: add(qnew) to QK ;
12: Qnear = near(qnew);
13: for all q ∈ Qnear do
14: if steer(qnew, q) 6= ∅ then . steer - Algorithm 5
15: connect(qnew, q) . Algorithm 7
16: if qnew ∈ Qgoal then
17: Qgoal,K = Qgoal,K ∪ qnew;
18: i← i+ 1
19: return Kn = (QK , qinit, RK ,Π, L,WK), Qgoal,K

(a) : Lines 5 - 7. (b) : Lines 8 - 11.

nearQ

(c) : Lines 12 - 15.

Figure 5.2: Modified RRT* for Minimum-violation planning. (Figures inspired
by [24] and modified.)

Here, the state space is sampled (qsample) only for neighborhood selection.
Then the node qbest with the best cost from the neighborhood is selected and
from this node a random trajectory is chosen. New state qnew, the end of
the trajectory, is added to the set of states. Finally, reconnecting as in the
original MVP is done nevertheless with precomputed trajectories.

62

................................ 5.3. MVP problem solution

The aim of the adjusted part of the algorithm was to produce similar results
as produced by the original RRT*. Random sampling ensures a random choice
of the state space as in the original algorithm. Then the added state qnew

is roughly in a similar part of the state space (can be slightly different).
Although this modification brings a lot of pros, it has also cons. In the
original MVP, the best node in the neighborhood can be chosen also based
on the cost given by transition between the node and the currently sampled
node. In the modified version 1, the transition cost is not known at the time
when the best node qbest is chosen from the neighborhood and therefore it is
assumed in advance that the transition cost is much smaller than the cost of
the particular node (node cost is derived from the LTL rules). Solution to
this small imperfection is proposed in the next subsection and can be also
applied with small modifications to this version of the MVP algorithm.

5.3.3 MVP based on modified RRT for large systems -
version 2

Trajectories precomputation is not realistic for large systems because of the
time and memory demands. MVP algorithm based on RRT is proposed
for systems with a large number of states and/or inputs in this subsection
(algorithm 9). Unlike RRT*, RRT is not asymptotically optimal. It is only
probabilistic complete. RRT does not include the last reconnection part of
the RRT*. If the reconnection part is dropped from the previous proposed
version 1 (section 5.3.2), the trajectory precomputation is not needed anymore.
Except that, the algorithm can remain unchanged, only random inputs are
chosen at line 6 and integrated, instead of random trajectory choosing in the
previous version 1.

Promised solution to the imperfection mentioned at the end of the previous
subsection is following. Sample qsample from the state space is taken. It serves
only for neighborhood selection. Then a random input is chosen. The input is
applied to all nodes (or to a certain number of nodes with the best costs from
these) in the neighborhood and for each node the trajectory is obtained by
integration. Finally, from the ends of the trajectories, node with the best cost
qnew is added to the set of states. Here, the transition cost of two consecutive
states can be included in the optimization, because the best node is chosen
from the final (possibly added) states, not from the parents states as in the
version 1. The approach can be used in the previous version 1, only random
trajectories can be used instead of random inputs.

63

5. Minimum-violation Planning
Algorithm 9 Minimum-violation planning - version 2.

1: QK ← ∅; RK ← ∅; Qgoal,K ← ∅; i← 0;
2: add(qinit) to QK ;
3: while i ≤ n do
4: qsample ← sample();
5: Qnear = near(qsample);
6: u = chooseRandomInputs()
7: JK(qnew) = inf
8: for all q ∈ Qnear do
9: qaux = integrate(q, u, t)

10: connect(q, qaux, qnew) . Algorithm 10
11: add(qnew) to QK ;
12: if qnew ∈ Qgoal then
13: Qgoal,K = Qgoal,K ∪ qnew;
14: i← i+ 1
15: return Kn = (QK , qinit, RK ,Π, L,WK), Qgoal,K

(a) : Lines 4 - 5. (b) : Lines 6 - 10. (c) : Line 11.

Figure 5.3: Modified RRT for Minimum-violation planning. (Figures inspired
by [24] and modified.)

Algorithm 10 connect(qstart, qend, qnew)
1: if JK(qstart) +WK(qstart, qend) ≤ JK(qnew) then
2: JK(qend) = JK(qstart) +WK(qstart, qend)
3: RK ← (RK\ {(q1, qnew) ∈ RK}) ∪ {(qstart, qend)}
4: qnew ← qend

5.4 MVP open loop results

Results of MVP method are presented in this section. Outcomes are given
and described for scenarios (Fig. 2.1), (Fig. 2.2) and (Fig. 2.3) by MVP
algorithm. Zero inclination angle αinc = 0 is considered for all scenarios. Code
was implemented in Python. Presented results in this section are outcomes
of the MVP algorithm based on the design models for one optimization

64

................................ 5.4. MVP open loop results

iteration by MVP. Thus, the optimization is run by MVP and the optimal
inputs and states are returned, no simulation on the high-fidelity model is
run. Low-complexity design model (section 5.2.2) and MVP version 1 (section
5.3.2) is used in the scenario 1 and 3, high-complexity design model (section
5.2.1) and MVP version 2 (section 5.3.3) is used in the scenario 2.

Input limits are the same as for NMPC algorithm 4.4. The high complexity
design model cannot be used in the first proposed modified version 1 of MVP.
Time demands for trajectories precomputation (in order of hours) and mainly
memory demands that overflow RAM capacity (8 GB) are the reason. The
demands for trajectories precomputation are achievable for the low complexity
design model, if the brake input is not used. It is also possible with big steps
in a brake grid, however it creates files with trajectories in the order of GB.
Therefore, in the presented scenarios, the brake is not used together with
version 1 of the MVP (braking is performed by motor torque). The version
2 is capable to run on both complexity levels of the design models with all
inputs.

A lot of parameters have to be tuned for MVP, for example (there are many
others that are not mentioned; typical values in the scenarios are stated, but
note that these can vary for the presented scenarios or MVP versions)

. distance threshold in steer function for searching near nodes reconnections
in precomputed trajectories: 1,. steps in states grid for trajectory precomputation: eg. v = 0.1 m

s ,. steps in inputs for trajectory precomputation: torques: 40 N m,
δ = [−25, ..., 0, 0.25, 1, 2.25, 4, 6.25, 9, 12.25, 16, 20.25, 25] deg,.maximal time of the trajectories (transitions): 2 s,. time step for possible nodes on the trajectories (transitions): 0.1 s,. weights on the individual states (variables) for state distances computa-
tions:

[
e n ψ v SoC

]
=
[
1 1 4 1 10

]
,. distance limit for near nodes: function of current number of nodes in the

tree or,
number of wanted nearest nodes: 20-30,. number of best nodes from nearest nodes for version 2: 5-10,. number of nodes for limitation of sampling of area sampled with many
nodes already there,. number of nodes in the tree.

65

5. Minimum-violation Planning
5.4.1 Scenario 1

Obstacles are not in this scenario, therefore no formulas defined by LTL logic
are needed. The results for two different cost functions will be stated, version
1 of MVP is used. In the following lines, the expression q1q2 is denoted to
the trajectory from one node q1 to another node q2 including also the inputs
at these nodes. For the first case, the cost function is formulated as

J(q1q2) = (ρTFT (q1q2) + ρ∆uF∆u(q1q2)) = (FT (q1q2) + 0.05F∆u(q1q2)),
(5.8)

where the function FT (q1q2) gives time of the trajectory q1q2 and F∆u(q1q2)
defined as

F∆u(q1q2) = 100(δq1 − δq2)2 + 0.1(Treq,q1 − Treq,q2)2, (5.9)

gives the cost for consecutive inputs. The defined cost function J(q1q2) has
only one level of unsafety (priority level). The parameters ρT = 1 and
ρ∆u = 0.05 weights between these costs. Tree was created by MVP based on
this formulation. The tree nodes and transitions between nodes are shown
in the figure 5.4. The best path and nodes based on the cost function are
displayed. The vehicle starts from initial states vinit = 2 m

s , ψinit = 0 deg,
SoCinit = 40 %. The acceptable goal states are given by minimal distance
4 m from the goal.

−30 −20 −10 0 10 20
East [m]

0

10

20

30

40

No
rth

 [m
]

Vehicle path
tree nodes
tree transitions
best states
best path
goal

Figure 5.4: Tree by MVP and the best path based on the cost function 5.8.

66

................................ 5.4. MVP open loop results

Maximal turning radius can be seen in the figure around the start position.
The maximal velocity was limited by 15 m

s . Other vehicle best trajectory
states are shown in the figure 5.5. It is evident that the consecutive inputs for
steering angle δ are very close as well as for torque inputs (maximal velocity
is restrictive).

0 1 2 3 4 5 6

5

10

15

V
e

lo
c
it

y
[m

/s
]

Vehicle states and inputs

0 1 2 3 4 5 6
0

100

Ya
w

 [
d

e
g

]

0 1 2 3 4 5 6

39.6

39.8

40.0

S
o

C
 [

%
]

0 1 2 3 4 5 6

0

10

20

S
te

e
ri

n
g

 [
d

e
g

]

0 1 2 3 4 5 6

Tim e [s]

500

750

To
rq

u
e

 [
N

m
]

Figure 5.5: Vehicle states and inputs based on the cost function 5.8.

For the other case, the cost function is formulated as

J(q1q2) = (ρTFT (q1q2) + ρsocFsoc(q1q2))
= (FT (q1q2) + 10Fsoc(q1q2)), (5.10)

where the function Fsoc(q1q2) defined as

Fsoc(q1q2) = SoCq1 − SoCq2 , (5.11)

67

5. Minimum-violation Planning
gives the cost for the state of charge maximization. The parameters are
ρT = 1 and ρsoc = 10. Tree was created by MVP based on this formulation.
The tree nodes, transitions between nodes and the best path are shown in
the figure 5.6.

−30 −20 −10 0 10 20
East [m]

0

10

20

30

40

No
rth

 [m
]

Vehicle path
tree nodes
tree transitions
best states
best path
goal

Figure 5.6: Created tree and best path based on the cost function 5.10.

Other vehicle states and inputs are shown in the figure 5.7. On first sight, it
is clear that the consecutive inputs for both steering angle δ and drive torque
are not so close as in the previous formulation. The formulation minimizes
the consumption, which is shown in the subfigure denoted to the state of
charge. The SoC ends with value above 39.85 % compared to the value under
39.6 % for the previous formulation. However, the end time is higher in this
case.

68

................................ 5.4. MVP open loop results

0 1 2 3 4 5 6 7

5

10

V
e

lo
c
it

y
[m

/s
]

Vehicle states and inputs

0 1 2 3 4 5 6 7
0

100

Y
a

w
 [

d
e

g
]

0 1 2 3 4 5 6 7

39.8

39.9

40.0

S
o

C
 [

%
]

0 1 2 3 4 5 6 7

0

20

S
te

e
ri

n
g

 [
d

e
g

]

0 1 2 3 4 5 6 7

Tim e [s]

0

1000

To
rq

u
e

 [
N

m
]

Figure 5.7: Vehicle states and inputs based on the cost function 5.10.

5.4.2 Scenario 2

For the second scenario, the requirements are formulated by linear temporal
logic as

ϕ = �¬(collision with obstacle). (5.12)

Then, the cost function formulation is as follows

J(q1q2) = (ρϕ(ϕ)λ(ω(q1q2), ϕ), ρTFT (q1q2))
= (λ(ω(q1q2), ϕ), FT (q1q2)). (5.13)

69

5. Minimum-violation Planning
The cost function is two-dimensional, higher priority is given for collision
avoidance with obstacles than for time minimization. Weights are set to
ρϕ = 1 and ρT = 1. Here, the scenario is without moving obstacle. The
scenario with moving obstacle will be presented later when the feedback will
be ensured and simulation will run.

The created tree with 2000 nodes is shown in the figure 5.8.The environment
is not uniformly covered by samples. The situation can be different and the
space around position e = 35 m, n = 20 m can be sampled more densely in
another run. Sampled nodes that are in the obstacles are chosen only with
probability 30 %. It is possible as the version 2 without reconnecting part
is presented. This can be disadvantageous for version 1 based on RRT* or
in situations where the obstacles are, for example, only areas with grass or
something that is passable.

The best trajectory is similar to the one got by NMPC. However, it is still
a random-based algorithm and in other run trajectories with an upper path
or with a path below the obstacle in the left bottom are got. A tree with
more nodes will be needed to obtain a path really close to the optimal one.

0 20 40 60 80 100
East [m]

−10

0

10

20

30

40

No
rth

 [m
]

Vehicle path
tree nodes
tree transitions
best states
best path
goal

Figure 5.8: Created tree by MVP and the best path based on the cost function
5.13.

Other vehicle states and inputs for the scenario are in the figure 5.9.

70

................................ 5.4. MVP open loop results

0 2 4 6 8 10

5

10
Ve
lo
cit
y
[m
/s
] Vehicle states and inputs

0 2 4 6 8 10

0

50

Ya
w
ra
te
 [d
eg
/s
]

0 2 4 6 8 10
39.50

39.75

40.00

So
C
[%
]

0 2 4 6 8 10
−20

0

20

St
ee
%in
g
[d
eg
]

0 2 4 6 8 10
−1000

0

1000

To
%q
ue
 [N
/
]

0 2 4 6 8 10
Ti e [s]

0

1000

B%
ak
e
[N
/
]

Figure 5.9: Vehicle states and inputs based on the cost function 5.13.

5.4.3 Scenario 3

This scenario is rather a tracking scenario. Requirements are formulated by

ϕ = �¬(collision with moving obstacle). (5.14)

Cost function formulation is

J(q1q2) = (ρ(ϕ)λ(ω(q1q2), ϕ), ρTFT (q1q2) + ρCLFCL(q1q2))
= (λ(ω(q1q2), ϕ), FT (q1q2) + 0.1FCL(q1q2)). (5.15)

The cost function is two-dimensional. Weights are set to ρ = 1, ρT = 1 and
ρCL = 0.1. Function FCL(q1q2) defines tracking of the right lane center line

71

5. Minimum-violation Planning
as a sum of squared distances of the individual points on the trajectory q1q2
from the center line (CL).

FCL(q1q2) = sum(distance(q1q2, CL)2). (5.16)

A tree with a thousand of nodes is needed to achieve sufficient path tracking.
In the following figure 5.10 a tree with 10000 nodes is created. Figure 5.11
shows other vehicle states and inputs.

The computation time was about 50 s. The best path fairly track the
reference. About position e = 50 m overtaking maneuver is performed.

0 10 20 30 40 50 60 70 80
East [m]

−10

0

10

20

30

40

50

No
rth

 [m
]

Vehicle path
tree nodes
tree transitions
best states
best path
goal

Figure 5.10: Created tree by MVP and the best path based on the cost function
5.15.

72

...................................5.5. MVP in feedback

0 2 4 6 8

5

10

V
e

lo
c
it

y
 [

m
/s

]

Vehicle states and inputs

0 2 4 6 8

0

50

Ya
w

 [
d

e
g

]

0 2 4 6 8

39.8

40.0

S
o

C
 [

%
]

0 2 4 6 8

0

10

S
te

e
ri

n
g

 [
d

e
g

]

0 2 4 6 8

Tim e [s]

0

1000

To
rq

u
e

 [
N

m
]

Figure 5.11: Vehicle states and inputs based on the cost function 5.15.

5.5 MVP in feedback

So far, MVP with the proposed various modifications is still an open-loop
algorithm. Because the procedure consists only of trajectory planning at the
start. Planned trajectory is based on design models and therefore it is needed
to ensure feedback control due to model - reality mismatch.

There are two main approaches that can be used for feedback control

. trajectory tracking,

73

5. Minimum-violation Planning
. trajectory generation (re-planning) in certain time steps (MPC - like

approach).

Both approaches require knowledge about the current state of the system (at
least those included in the design model). The knowledge about the state
can be based on measurements or/and on estimation of the state.

5.5.1 Trajectory tracking

The trajectory tracking approach requires only one procedure of planning
based on MVP at the beginning. When the best trajectory and the relevant
inputs are acquired, a control that ensures tracking is run. There is a lot
of options that can be used for control. For all, it can be mentioned that
well-known and often used control by

. proportional–integral–derivative controller (PID),. linear-quadratic regulator (LQR),.model predictive control (MPC).

5.5.2 Trajectory replanning

The other option is replanning of the trajectory by MVP within particular
time instants. Thus, this is the similar approach to MPC as described at the
beginning of the chapter 4 with optimization by MVP. There can be various
of techniques. One of the classification of the techniques can be based on the
time step used:

(a) fixed time step less than or equal to the smallest time distance between
consecutive states (nodes) in the tree

(b) variable time step given by the time distances between relevant consecu-
tive states (nodes: root and its successor) in the best path.

The other classification can be based on the tree creation procedure in every
iteration. We proposed:

74

...................................5.5. MVP in feedback

(i) tree creation from scratch with root given by current system states,

(ii) part of the tree around the best path (all nodes that have the root first
successor in their path to root) transformation to the new root given by
the current system states, extension of the tree by adding new samples,

(iii) tree root transformation to the new root given by the current system
states, leaving the tree as it is and rewiring the tree around the new root
to the new root, possibly extension of the tree by adding new samples.

Note that in (iii) the root is transformed, whereas in (ii) the part of the tree
is transformed. The variant (i) is easy for implementation, but it has higher
time demands, because a new tree is created in each iteration. The variant
(ii) is better from computational point of view as it keeps (slightly shift as
required) the best part of the tree and therefore in situations when the time
allocated for tree creation is not sufficient the good path is still provided.
The tree is created along the previous best path and therefore it is probable
that a slightly better path than the previous one in the previous best path
neighborhood will be obtained. The variant (iii) keeps the whole tree and
transforms only the root. The procedure of root rewiring in RRT* algorithm
is proposed and explained in article [15]. The tree is extended uniformly in
this variant, therefore if there is a better path than the one from the previous
iteration in different part of the environment, the variant will likely give
better results.

The variant (b)(ii) was chosen and implemented as a feedback control law.
The procedure is following. At each iteration, when the tree is created, the
best path, inputs and inputs duration is obtained and the first input is applied
to the high-fidelity model for the respective time. If there was not a model -
reality mismatch, the trajectory of the system would end in the first successor
of the root in the best path. However, the mismatch is present, therefore
the trajectory ends only near to that point. Thus, the best previous path,
starting from the root’s first successor is taken and all pertaining inputs are
applied for relevant times to the design model starting from a new root. The
new root is given by vehicle states. The obtained sequence of states similar
to the previous path gives a foundation for tree creation in this iteration. It
is a kind of warm started optimization problem.

Results of MVP for the previously described trajectory replanning in each
iteration are given in the comparison chapter 6 for scenario 2.1 and 2.2. For the
last scenario, this is skipped as it was shown that sufficient tracking requires
thousands of nodes in the tree and it takes unusably much time. Moreover, the
described procedure of trajectory replanning as MPC-like algorithm simulates
the high-fidelity model for time given by the time distance between nodes
in the path. It can be up to 2 s. There is a certain design model - reality

75

5. Minimum-violation Planning
mismatch and the 2 s long open loop interval can cause trouble for reference
tracking especially in the small environment like lane of the road.

The high-fidelity model is implemented only in MATLAB. Optimization
by MVP is coded (as before) in Python. These two environments were
connected. MATLAB code was launched from Python. Thus, inputs based
on optimization by MVP are sent to MATLAB, then high-fidelity model is
simulated for the needed time and the current vehicle state is fed back to
Python.

76

Chapter 6

Algorithms Comparison

The methods NMPC and MVP are compared in this chapter. At first, the
algorithms performances on the presented scenarios are discussed. Then a
general comparison is given.

It could be illustrative to make a performance comparison based on values of
the same cost functions. Unfortunately, the cost function formulations are too
different. The cost for NMPC is one-dimensional, whereas the cost for MVP
is multidimensional. However, mainly, the time minimization requirement is
formulated as a distance minimization for NMPC and therefore cost of the
resulting trajectory cannot be properly evaluated for NMPC and compared
with the MVP trajectory cost afterwards.

6.1 Comparison in test scenarios

The comparison in scenarios 2.1 and 2.2 is given. The last scenario 2.3 is not
discussed. The reason is given in subsection 5.5.2 (not usable for MVP).

77

6. Algorithms Comparison
6.1.1 Scenario 1

As an example, the results of algorithms for "similar" costs are discussed.
Formulation of the NMPC cost is as it was in the NMPC results section,

Jout,in = 1
2[(epred − eref)TQre(epred − eref)+ (6.1)

+ (npred − nref)TQrn(npred − nref)+
+ (SoCpred − SoCref)TQrSoC (SoCpred − SoCref)]+
+ Jin.

According to the proposed NMPC algorithm (section 4.3), only the current
goal is given as a reference for the last sample in the prediction horizon
(environment without obstacles) and the weight for it was chosen as w = 0.1
(last element on diagonal of both matrices Qre , Qrn). State of charge reference
is SoCref = SoC + 2% at the end of the prediction horizon. SoC is given by
square matrix QrSoC = diag(0, .., 0, 10).

MVP cost function is formulated as

J(q1q2) = (ρTFT (q1q2) + ρsocFsoc(q1q2)) = (FT (q1q2) + 2Fsoc(q1q2)), (6.2)

where

Fsoc(q1q2) = SoCq1 − SoCq2 , (6.3)

gives the cost for the state of charge maximization. The parameters are ρT = 1
and ρsoc = 2. The used MVP cost function is the same (except for ρsoc) as in
the open loop section for the case with time and state of charge minimization
(formulation 5.10). The MVP final velocity state was required to be close
to the earlier obtained final velocity by NMPC to have similar conditions.
MVP tree was created in each iteration with 2000 nodes. The result of the
closed-loop simulation is shown in figures 6.1, 6.2. The MVP path is a little
wavy, it can be attributed to the longer intervals for the closed-loop structure
(0.1 s for NMPC vs. up to 2 s for MVP) and to a randomness in the MVP
algorithm.

78

.............................. 6.1. Comparison in test scenarios

-30 -25 -20 -15 -10 -5 0 5 10 15
0

5

10

15

20

25

30

35

40

45
Vehicle path

goal position

start position

MVP path

NMPC path

Figure 6.1: NMPC and MVP path comparison in the first scenario in feedback
simulation.

79

6. Algorithms Comparison

0 1 2 3 4 5 6 7 8
0

5

10
Vehicle states and inputs

MVP

NMPC

0 1 2 3 4 5 6 7 8

0
20
40
60 MVP

NMPC

0 1 2 3 4 5 6 7 8
39.6

39.8

40
MVP

NMPC

0 1 2 3 4 5 6 7 8

0

10

20 MVP

NMPC

0 1 2 3 4 5 6 7 8
-1000

0

1000

MVP drive torque

MVP brake torque

NMPC drive torque

NMPC brake torque

Figure 6.2: NMPC and MVP other states and inputs comparison in the first
scenario in feedback simulation.

It can be seen that steering angle δ by NMPC is smooth. For MVP big
steps in the steering angle δ are present, it is caused by a long interval
between re-plannings. However, some steps (eg. about time 3.5 s) are caused
by insufficient sampling or by insufficient (missing in this case - version 2 is
used) reconnecting.

Both MVP and NMPC paths end in a similar position at the same time.
Final SoC of NMPC is bigger than final SoC of MVP. Therefore, it is clear
that NMPC algorithm has better performance in this case. Because the MVP
is random-sampling based algorithm, its results vary. It is good to say that
the cost of the presented MVP trajectory belongs rather to the better one
obtained. Mostly higher end time or lower final SoC are got. Thus, it can be
concluded that for this particular scenario NMPC gives better results.

80

.............................. 6.1. Comparison in test scenarios

6.1.2 Scenario 2

The obstacles (both static and moving) avoidance requirements are again
formulated as

ϕ = �¬(collision with obstacle). (6.4)

The NMPC cost function considered for the comparison is the same as used
before 6.1, where matrices Qre and Qrn which weights position reference
tracking are set during the ride according to the proposed algorithm. Weight
for the main reference sample is chosen as w = 0.2. Matrix QrSoC is set to
QrSoC = diag(0, .., 0, 30). The same cost was used in NMPC section for this
scenario. Obstacle avoidance requirement is reformulated to MPC soft output
constraints.

MVP cost function formulation is as follows

J(q1q2) = (ρϕ(ϕ)λ(ω(q1q2), ϕ), ρTFT (q1q2) + ρsocFsoc(q1q2))
= (λ(ω(q1q2), ϕ), FT (q1q2) + 2Fsoc(q1q2)). (6.5)

MVP tree was created in each iteration with 2000 nodes. The result of the
closed-loop simulation is shown in figures 6.3, 6.4. In this case, the vehicle
controlled by MVP goes with the upper path (may differ simulation from
simulation).

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

20

30

40
Vehicle path

goal position

start position

MVP path

NMPC path

Figure 6.3: NMPC and MVP path comparison in the second scenario in feedback
simulation.

81

6. Algorithms Comparison

0 2 4 6 8 10 12
0

5

10

Vehicle states and inputs

MVP

NMPC

0 2 4 6 8 10 12
-50

0

50 MVP

NMPC

0 2 4 6 8 10 12

39.5

40
MVP

NMPC

0 2 4 6 8 10 12

-10

0

10

20 MVP

NMPC

0 2 4 6 8 10 12

0

1000

2000

MVP drive torque

MVP brake torque

NMPC drive torque

NMPC brake torque

Figure 6.4: NMPC and MVP other states and inputs comparison in the second
scenario in feedback simulation.

Collision with the obstacles was prevented for both methods. NMPC trajec-
tory final time is better than MVP one. The MVP final SoC is slightly better
than NMPC one. It cannot be definitely decided about better performance
in this particular scenario. However, statistically it seems that NMPC gives
slightly better results over various MVP runs for this particular case.

82

.................................6.2. Comparison in general

6.2 Comparison in general

6.2.1 Time demands

In the thesis, two-point boundary value problem (TPBVP) was identified as
a main bottleneck of the original minimum-violation planning. TPBVP is
needed to be solved for all neighboring nodes in every iteration when the new
sample is added. Time demands for TPBVP solved by optimization tools
are very high for systems with more than 3 states (and multiple outputs).
Proposed version 1 (section 5.3.2) of the modified MVP with precomputed
trajectories improves the computational time. However, the trajectories
precomputation is possible only for slightly larger systems, mainly because
of memory demands. For example, systems up to 5 states and 2 inputs
(if possible, trajectory transformations are beneficial) are suitable for the
precomputation. MVP version 2 (section 5.3.3) based on RRT was proposed
for larger systems. The mean time demands for a tree with 1000 nodes and
low complexity design model are stated in the following table 6.1. For version

MVP version / TPBVP solution Computational time
Original MVP / optimization tool (CasADi) 5 min

Version 1 / trajectories precomputation 3 s
Version 2 / inputs integration (not a TPBVP) 5 s

Table 6.1: Time demands comparison for versions of MVP - dealing with TPBVP.
Times given for a tree with 1000 nodes based on the low complexity design model
on computer with parameters stated in appendix table B.5.

2, the computational time depends on used ordinary differential equation
solver. TPBVP has linear time complexity in the number of nodes in the tree.
It was observed in experiments that the TPBVP is the most demanding part
of the MVP up to a certain number of nodes (order of ten thousand nodes),
then the distances computation for nodes in neighborhood selection starts to
be more demanding.

Used replanning method for feedback discards all nodes in the tree except
the best path. Then a new whole tree has to be created again. Thus, it is
very time consuming. The stated method for root reconnecting, while keeping
the remaining nodes ((iii) in subsection 5.5.2), would give better performance.
At the start, tree precomputation could be run and then in each iteration a
certain number of nodes would be added (for example, 30 nodes per sample
time 0.1 s).

83

6. Algorithms Comparison
The presented NMPC algorithm was not real time, too. The design models

are quite large systems with 3 inputs. One NMPC iteration lasts about
0.3 s (sample time 0.1 s) on the design models. It depends on the number
of SQP iterations and a lot of other parameters and constraints. However,
the time could be reduced. The continuous models are given to NMPC, but
NMPC can easily handle discrete time models. Procedures described in the
NMPC one iteration overview (Alg. 1) are more demanding for continuous
models. Mainly equations simulations by ordinary differential equation solver
(ode45) are more demanding than simulations for discrete time models that
are carried in a loop. Thus, a transformation of the continuous models to
discrete time models can reduce the computational time.

6.2.2 Space searching comparison

As it was shown, NMPC as a solver requiring convexity needs heuristics
for dealing with a nonconvex space. Other optimization procedure/tool is
needed as a heuristics. Heuristics are usually specialized to certain problems.
Therefore, the main algorithm (NMPC) is then suitable only for that problem.
Heuristics Cost to go is used for the static obstacles in the thesis. The moving
obstacle avoidance was handled only by the provisional solution as stuck at
the local minima is possible. The designed Cost to go heuristics assigns costs
to vertices. Then trajectory along the best vertices is searched. It assumes in
advance that the obstacles in the space are not passable obstacles. However,
the obstacle can be a grass strip or mud on the road. It can be preferred
to go through that, in spite of that the grass has a higher cost than the
surrounding road over performing a complicated maneuver. This is not solved
for NMPC. Moreover, other constraints given by a surrounding environment
are not solved by the NMPC. The traffic lights can be given as an example:
"If the orange lights go with a velocity higher than a certain constant or stop."
The example creates a nonconvex constraint. These and similar cases are not
handled in NMPC. Other specialized heuristics will be needed for dealing
with this type of issues. NMPC is not a sufficiently general algorithm to solve
these issues.

On the other hand, all mentioned problems can be immediately formulated
in MVP method and it will give proper results. For example, a grass obstacle
can be added to the cost function with a suitable weight on the same priority
level as the time. Then the optimization will weight between time and
positions in grass. MVP has slightly worse results in the presented scenarios,
but this is partly given by the algorithm considerable generality.

It was shown in the last scenario that MVP is not suitable for accurate

84

.................................6.2. Comparison in general

position tracking as it requires a lot of nodes in the graph and it is very time
consuming (for large systems). Conversely, NMPC is an algorithm formed for
these types of problems and therefore it gives better performance on these
tasks.

85

86

Chapter 7

Conclusion and Future Work

Both algorithms model predictive control and minimum-violation planning
were implemented and compared. The problem of planning in the environment
with obstacles is defined in the chapter 2. In the next chapter 3, vehicle
high-fidelity model and its components are adopted and described. Following
chapter 4 solve the planning problem by nonlinear model predictive control
(tool NMPC provided by Garrett motion). Design models suitable for control
by NMPC are derived, the problem is solved via Cost to go heuristics and
the results are stated. Minimum-violation planning method is discussed in
the next chapter 5. Design models suitable for control by MVP are derived,
modifications to MVP are proposed to be able to deal with large dynamic
systems and results in open loop are stated. The possibilities of feedback for
MVP are discussed and proposed. The chapter 6 compare these methods in
test scenarios and in general.

There is a lot of possible improvements and unresolved issues that can
be handled in the future work. For NMPC, there can be improvements in
dealing with moving obstacles or improvements by time discretization of
design models for computational time reduction. For MVP, the powerful part
of the algorithm which can handle various formulas of linear temporal logic
(that can be suitable eg. for traffic rules constraints definition) were discussed
very briefly. Design model linearization in sampled states and using some of
known methods for two-point boundary value problem in linear systems is for
consideration as it could reduce the computational time. Only MVP based on
rapidly-exploring random tree was discussed, other sampling-based algorithms
could bring improvements (for example, dense sampling around the obstacles).
Trajectory post-processing could solve the roughness of the MVP trajectory.
In addition, the combination of both methods - raw trajectory generation by

87

7. Conclusion and Future Work
MVP and trajectory smoothing and tracking by NMPC - is an interesting
idea.

88

Appendix A

Bibliography

[1] Jon Louis Bentley. Multidimensional binary search trees used for as-
sociative searching. Commun. ACM, 18(9):509–517, September 1975.
doi:10.1145/361002.361007.

[2] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Predic-
tive Control for Linear and Hybrid Systems. URL: http://www.mpc.
berkeley.edu/mpc-course-material.

[3] H Bouchareb, K Saqli, N M&apos, ; Sirdi, M Oudghiri, A Naamane,
and N K M’sirdi. Electro-thermal coupled battery model : State of
charge, core and surface temperatures estimation. Technical report.
URL: https://hal.archives-ouvertes.fr/hal-02486440.

[4] Luis I Reyes Castro, Pratik Chaudhari, Jana Tůmová, Sertac Karaman,
Emilio Frazzoli, and Daniela Rus. Incremental Sampling-based Algorithm
for Minimum-violation Motion Planning. Technical report. arXiv:
1305.1102v2.

[5] Denis Efremov. Unstable ground vehicles and artificial stability sys-
tems. Master’s thesis, Czech Technical University in Prague, Faculty of
Electrical Engineering, Praha, 2018.

[6] T. D. Gillespie. Fundamentals of Vehicle Dynamics. Society of Automo-
tive Engineers, Warrendale, PA, c1992.

[7] Benjamin Gutjahr, Lutz Gröll, and Moritz Werling. Lateral vehicle
trajectory optimization using constrained linear time-varying mpc. IEEE
Transactions on Intelligent Transportation Systems, 18(6):1586–1595,
2017. doi:10.1109/TITS.2016.2614705.

89

https://doi.org/10.1145/361002.361007
http://www.mpc.berkeley.edu/mpc-course-material
http://www.mpc.berkeley.edu/mpc-course-material
https://hal.archives-ouvertes.fr/hal-02486440
http://arxiv.org/abs/1305.1102v2
http://arxiv.org/abs/1305.1102v2
https://doi.org/10.1109/TITS.2016.2614705

A. Bibliography.....................................
[8] Christian Götte, Martin Keller, Christoph Rösmann, Till Natter-

mann, Carsten Haß, Karl-Heinz Glander, Alois Seewald, and Torsten
Bertram. A real-time capable model predictive approach to lateral
vehicle guidance. In 2016 IEEE 19th International Conference on
Intelligent Transportation Systems (ITSC), pages 1908–1913, 2016.
doi:10.1109/ITSC.2016.7795865.

[9] Lukáš Haffner. Real-time tire models for lateral vehicle state estimation.
Phd thesis, Technischen Universität Wien, Fakultät für Maschninenbau,
Wien, 2008.

[10] Kerem Koprubasi. Modeling and control of a hybrid-electric vehicle
for drivability and fuel economy improvements. PhD thesis, The Ohio
State University, January 2008. URL: https://ui.adsabs.harvard.
edu/abs/2008PhDT.......125K.

[11] Chang Liu, Seungho Lee, Scott Varnhagen, and H. Eric Tseng. Path
planning for autonomous vehicles using model predictive control. In
2017 IEEE Intelligent Vehicles Symposium (IV), pages 174–179, 2017.
doi:10.1109/IVS.2017.7995716.

[12] Marek Lászlo. Flight control solutions applied for improving vehicle
dynamics. Master’s thesis, Czech Technical University in Prague, Faculty
of Electrical Engineering, Praha, 2019.

[13] Douglas L. Milliken and William F. Milliken. Race car vehicle dynamics.
SAE International, Warrendale, PA, c2003.

[14] Martin Mondek. Active torque vectoring systems for electric drive
vehicles. Master’s thesis, Czech Technical University in Prague, Faculty
of Electrical Engineering, Praha, 2018.

[15] Kourosh Naderi, Joose Rajamäki, and Perttu Hämäläinen. RT-
RRT*: A Real-Time Path Planning Algorithm Based On RRT*.
URL: http://dx.doi.org/10.1145/2822013.2822036, doi:10.1145/
2822013.2822036.

[16] Hans B. Pacejka. Tire and Vehicle Dynamics. SAE International, 2nd
edition, 2005.

[17] Vasumathi Raman, Alexandre Donzé, Mehdi Maasoumy, Richard M
Murray, Alberto Sangiovanni-Vincentelli, and Sanjit A Seshia. Model
Predictive Control for Signal Temporal Logic Specifications. Technical
report. arXiv:1703.09563v1.

[18] James B Rawlings, David Q Mayne, and Moritz M Diehl. Model Predic-
tive Control: Theory, Computation, and Design 2nd Edition. URL: http:
//www.nobhillpublishing.com/mpc-paperback/index-mpc.html.

[19] Arthur Richards and Jonathan How. Mixed-integer Programming for
Control. Technical report. URL: http://hohmann.mit.edu/milp/.

90

https://doi.org/10.1109/ITSC.2016.7795865
https://ui.adsabs.harvard.edu/abs/2008PhDT.......125K
https://ui.adsabs.harvard.edu/abs/2008PhDT.......125K
https://doi.org/10.1109/IVS.2017.7995716
http://dx.doi.org/10.1145/2822013.2822036
https://doi.org/10.1145/2822013.2822036
https://doi.org/10.1145/2822013.2822036
http://arxiv.org/abs/1703.09563v1
http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html
http://www.nobhillpublishing.com/mpc-paperback/index-mpc.html
http://hohmann.mit.edu/milp/

..................................... A. Bibliography

[20] Dieter Schramm, Manfred Hiller, and Roberto Bardini. Vehicle dynamics.
Springer, New York, 2014.

[21] Jana Tumova, Gavin C. Hall, Sertac Karaman, Emilio Frazzoli, and
Daniela Rus. Least-violating control strategy synthesis with safety rules.
In Proceedings of the 16th International Conference on Hybrid Systems:
Computation and Control, HSCC ’13, page 1–10, New York, NY, USA,
2013. Association for Computing Machinery. doi:10.1145/2461328.
2461330.

[22] Petr Turnovec. Vehicle Slip Ratio Control System for Torque Vectoring
Functionality. Bachelor’s thesis, Czech Technical University in Prague,
Faculty of Electrical Engineering, Praha, 2019.

[23] Jana Tůmová, Luis I Reyes Castro, Sertac Karaman, Emilio Frazzoli,
and Daniela Rus. Minimum-violation LTL Planning with Conflicting
Specifications. Technical report, 2013. arXiv:1303.3679v1.

[24] Vojtěch Vonásek. Motion planning algorithms. Autonomous robotics
course, Czech Technical University in Prague, Faculty of Electrical
Engineering, Praha, 2020.

[25] Tichakorn Wongpiromsarn, Konstantin Slutsky, Emilio Frazzoli, and
Ufuk Topcu. Minimum-Violation Planning for Autonomous Systems:
Theoretical and Practical Considerations. arXiv:2009.11954v1.

[26] Tichakorn Wongpiromsarn, Ufuk Topcu, and Richard M Murray. Re-
ceding Horizon Temporal Logic Planning. Technical report, 2010. URL:
http://www.cds.caltech.edu/{~}murray/papers/wtm10-tac.html.

91

https://doi.org/10.1145/2461328.2461330
https://doi.org/10.1145/2461328.2461330
http://arxiv.org/abs/1303.3679v1
http://arxiv.org/abs/2009.11954v1
http://www.cds.caltech.edu/{~}murray/papers/wtm10-tac.html

Appendix B

List of Abbreviations, Symbols and
Parameters

.Abbreviations

ABS Anti-lock braking system
CL Center line

CoG Centre of Gravity
CS Coordinate system
EM Electric motor generator
ESP Electronic stability program

(F)LTL (Finite) linear temporal logic
LQR Linear-quadratic regulator
MIP Mixed-integer programming
MPC Model predictive control
MVP Minimum-violation planning

NMPC Nonlinear model predictive control (tool provided by Garrett motion)
PID Proportional–Integral–Derivative Controller

PRM Probabilistic roadmap
RRG Rapidly-exploring random graph
RRT Rapidly-exploring random tree
SQP Sequential quadratic programming
TC Traction control

TPBVP Two-point boundary value problem
TV Torque vectoring

92

...................... B. List of Abbreviations, Symbols and Parameters

. Symbols

Treq Electric motor - generator requested torque
ωin Electric motor - generator shaft angular speed
Tint Electric motor - generator torque
ωem Electric motor - generator angular speed
Tem Electric motor - generator out torque
Pem Electric motor - generator power
η Electric motor - generator efficiency

Ptrm Battery terminal power
SoC Battery state of charge
v1 Battery circuit voltage
v2 Battery circuit voltage
i Battery circuit current

Vtrm Battery terminal voltage
Voc Battery open circuit voltage
R0 Battery internal resistance
δ Wheel steering angle

Tω Wheel drive torque
Tω,br Wheel brake drive torque
vx Wheel brake translation velocity in longitudinal direction
vy Wheel brake translation velocity in lateral direction
Fz Wheel vertical load
ω Wheel angular velocity
λ Tire slip ratio
α Tire slip angle

Faero Vehicle aerodynamics drag force
Fslope Vehicle slope force

v Vehicle velocity
β Vehicle side slip angle
ψ̇ Vehicle yaw rate
ψ Vehicle yaw angle (heading)
e Vehicle east position
n Vehicle north position
Fx Longitudinal force
Fy Lateral force

αinc Road inclination (slope) angle
Mz Moment around vehicle CoG

. Subscripts

f Front - wheel, tire, electric motor, ...
r Rear - wheel, tire, electric motor, ...
x Longitudinal direction - wheel, vehicle, ...
y Lateral direction - wheel, vehicle, ...

93

B. List of Abbreviations, Symbols and Parameters
.Parameters

Description Notation Value Unit
Torque time constant tT 0.05 s
Angular speed filter constant tω 0.5 s
Rotor moment of inertia Jem 0.01 kgm2

EM minimal torque Tint,min -100 Nm
EM maximal torque Tint,max 100 Nm
Gear ratio rω 10 -

Table B.1: Vehicle electric motor - generator parameters.

Description Notation Value Unit
Battery capacity C 27.2 Ah
Resistance in R1C1 pair R1 0.08 Ω
Resistance in R2C2 pair R2 0.04 Ω
Capacitor in R1C1 pair C1 0.8 F
Capacitor in R2C2 pair C2 0.4 F

Table B.2: Vehicle battery parameters.

Description Notation Value Unit
Tire radius R 0.3 m
Front tire moment of inertia J 1.0 kgm2

Longitudinal stiffness factor Bx 10 -
Longitudinal shape factor Cx 2.05 -
Longitudinal peak factor Dx 1.0 -
Longitudinal curvature factor Ex 0.6 -
Lateral stiffness factor By 5.73 -
Lateral shape factor Cy 2.0 -
Lateral peak factor Dy 1.0 -
Lateral curvature factor Ey 0.6 -

Table B.3: Vehicle tire parameters.

94

...................... B. List of Abbreviations, Symbols and Parameters

Description Notation Value Unit
Vehicle mass m 1000 kg
Vehicle vertical axis
moment of inertia Iz 1000 kg

Longitudinal distance of front
axle from center of gravity lf 1.3 m

Longitudinal distance of rear
axle from center of gravity lr 1.7 m

Gravitational acceleration g 9.81 ms−2

Aerodynamic reference area Af 2.23 m m2

Air density ρ 1.225 kgm3

Aero dynamic drag coefficient cd 0.304 -

Table B.4: Vehicle parameters.

Description Parameter
System model HP ProBook 640 G4
Operating system Microsoft Windows 10 Pro
System Type x64-based PC

Processor Intel(R) Core(TM) i5-8350U CPU @ 1.70 GHz,
1896 Mhz, 4 Cores, 8 Logical Processors

RAM 8.00 GB

Table B.5: Computer parameters.

95

Appendix C

Content of Enclosed CD

. The thesis in pdf format.. Source files - majority of the files is not executable because of NMPC
tool licensing by Garrett motion and because the high-fidelity models
of vehicle components were implemented in Garrett motion MATLAB
class suitable for it, which cannot be published. However, the included
configuration files are quite easily understandable and are enclosed for
illustration.. Simulation videos for the presented scenarios and one new scenario.

96

	Introduction
	Problem Formulation, Test Scenarios
	Vehicle Modeling
	Vehicle components
	Electric motor model
	Battery model
	Wheel model
	Vehicle dynamics model

	High-fidelity single-track model
	Model Validation

	Nonlinear Model Predictive Control
	NMPC introduction
	NMPC vehicle design models
	High complexity vehicle design model
	Low complexity vehicle design model

	NMPC problem solution
	Mixed-integer programming
	Dealing with static obstacles - Cost to go heuristics
	Dealing with moving obstacles

	NMPC results
	Scenario 1
	Scenario 2
	Scenario 3

	Minimum-violation Planning
	MVP introduction
	Linear temporal logic
	Cost function formulation

	MVP vehicle design models
	High complexity vehicle design model
	Low complexity vehicle design model

	MVP problem solution
	Trajectories precomputation for MVP
	Modification to RRT* for MVP - version 1
	MVP based on modified RRT for large systems - version 2

	MVP open loop results
	Scenario 1
	Scenario 2
	Scenario 3

	MVP in feedback
	Trajectory tracking
	Trajectory replanning

	Algorithms Comparison
	Comparison in test scenarios
	Scenario 1
	Scenario 2

	Comparison in general
	Time demands
	Space searching comparison

	Conclusion and Future Work
	Bibliography
	List of Abbreviations, Symbols and Parameters
	Content of Enclosed CD

